]> Pileus Git - ~andy/linux/blob - drivers/staging/media/lirc/lirc_sir.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/signal
[~andy/linux] / drivers / staging / media / lirc / lirc_sir.c
1 /*
2  * LIRC SIR driver, (C) 2000 Milan Pikula <www@fornax.sk>
3  *
4  * lirc_sir - Device driver for use with SIR (serial infra red)
5  * mode of IrDA on many notebooks.
6  *
7  *  This program is free software; you can redistribute it and/or modify
8  *  it under the terms of the GNU General Public License as published by
9  *  the Free Software Foundation; either version 2 of the License, or
10  *  (at your option) any later version.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, write to the Free Software
19  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20  *
21  *
22  * 2000/09/16 Frank Przybylski <mail@frankprzybylski.de> :
23  *  added timeout and relaxed pulse detection, removed gap bug
24  *
25  * 2000/12/15 Christoph Bartelmus <lirc@bartelmus.de> :
26  *   added support for Tekram Irmate 210 (sending does not work yet,
27  *   kind of disappointing that nobody was able to implement that
28  *   before),
29  *   major clean-up
30  *
31  * 2001/02/27 Christoph Bartelmus <lirc@bartelmus.de> :
32  *   added support for StrongARM SA1100 embedded microprocessor
33  *   parts cut'n'pasted from sa1100_ir.c (C) 2000 Russell King
34  */
35
36 #include <linux/module.h>
37 #include <linux/sched.h>
38 #include <linux/errno.h>
39 #include <linux/signal.h>
40 #include <linux/fs.h>
41 #include <linux/interrupt.h>
42 #include <linux/ioport.h>
43 #include <linux/kernel.h>
44 #include <linux/serial_reg.h>
45 #include <linux/time.h>
46 #include <linux/string.h>
47 #include <linux/types.h>
48 #include <linux/wait.h>
49 #include <linux/mm.h>
50 #include <linux/delay.h>
51 #include <linux/poll.h>
52 #include <linux/io.h>
53 #include <asm/irq.h>
54 #include <linux/fcntl.h>
55 #ifdef LIRC_ON_SA1100
56 #include <asm/hardware.h>
57 #ifdef CONFIG_SA1100_COLLIE
58 #include <asm/arch/tc35143.h>
59 #include <asm/ucb1200.h>
60 #endif
61 #endif
62
63 #include <linux/timer.h>
64
65 #include <media/lirc.h>
66 #include <media/lirc_dev.h>
67
68 /* SECTION: Definitions */
69
70 /*** Tekram dongle ***/
71 #ifdef LIRC_SIR_TEKRAM
72 /* stolen from kernel source */
73 /* definitions for Tekram dongle */
74 #define TEKRAM_115200 0x00
75 #define TEKRAM_57600  0x01
76 #define TEKRAM_38400  0x02
77 #define TEKRAM_19200  0x03
78 #define TEKRAM_9600   0x04
79 #define TEKRAM_2400   0x08
80
81 #define TEKRAM_PW 0x10 /* Pulse select bit */
82
83 /* 10bit * 1s/115200bit in milliseconds = 87ms*/
84 #define TIME_CONST (10000000ul/115200ul)
85
86 #endif
87
88 #ifdef LIRC_SIR_ACTISYS_ACT200L
89 static void init_act200(void);
90 #elif defined(LIRC_SIR_ACTISYS_ACT220L)
91 static void init_act220(void);
92 #endif
93
94 /*** SA1100 ***/
95 #ifdef LIRC_ON_SA1100
96 struct sa1100_ser2_registers {
97         /* HSSP control register */
98         unsigned char hscr0;
99         /* UART registers */
100         unsigned char utcr0;
101         unsigned char utcr1;
102         unsigned char utcr2;
103         unsigned char utcr3;
104         unsigned char utcr4;
105         unsigned char utdr;
106         unsigned char utsr0;
107         unsigned char utsr1;
108 } sr;
109
110 static int irq = IRQ_Ser2ICP;
111
112 #define LIRC_ON_SA1100_TRANSMITTER_LATENCY 0
113
114 /* pulse/space ratio of 50/50 */
115 static unsigned long pulse_width = (13-LIRC_ON_SA1100_TRANSMITTER_LATENCY);
116 /* 1000000/freq-pulse_width */
117 static unsigned long space_width = (13-LIRC_ON_SA1100_TRANSMITTER_LATENCY);
118 static unsigned int freq = 38000;      /* modulation frequency */
119 static unsigned int duty_cycle = 50;   /* duty cycle of 50% */
120
121 #endif
122
123 #define RBUF_LEN 1024
124 #define WBUF_LEN 1024
125
126 #define LIRC_DRIVER_NAME "lirc_sir"
127
128 #define PULSE '['
129
130 #ifndef LIRC_SIR_TEKRAM
131 /* 9bit * 1s/115200bit in milli seconds = 78.125ms*/
132 #define TIME_CONST (9000000ul/115200ul)
133 #endif
134
135
136 /* timeout for sequences in jiffies (=5/100s), must be longer than TIME_CONST */
137 #define SIR_TIMEOUT     (HZ*5/100)
138
139 #ifndef LIRC_ON_SA1100
140 #ifndef LIRC_IRQ
141 #define LIRC_IRQ 4
142 #endif
143 #ifndef LIRC_PORT
144 /* for external dongles, default to com1 */
145 #if defined(LIRC_SIR_ACTISYS_ACT200L)         || \
146             defined(LIRC_SIR_ACTISYS_ACT220L) || \
147             defined(LIRC_SIR_TEKRAM)
148 #define LIRC_PORT 0x3f8
149 #else
150 /* onboard sir ports are typically com3 */
151 #define LIRC_PORT 0x3e8
152 #endif
153 #endif
154
155 static int io = LIRC_PORT;
156 static int irq = LIRC_IRQ;
157 static int threshold = 3;
158 #endif
159
160 static DEFINE_SPINLOCK(timer_lock);
161 static struct timer_list timerlist;
162 /* time of last signal change detected */
163 static struct timeval last_tv = {0, 0};
164 /* time of last UART data ready interrupt */
165 static struct timeval last_intr_tv = {0, 0};
166 static int last_value;
167
168 static DECLARE_WAIT_QUEUE_HEAD(lirc_read_queue);
169
170 static DEFINE_SPINLOCK(hardware_lock);
171
172 static int rx_buf[RBUF_LEN];
173 static unsigned int rx_tail, rx_head;
174
175 static bool debug;
176 #define dprintk(fmt, args...)                                           \
177         do {                                                            \
178                 if (debug)                                              \
179                         printk(KERN_DEBUG LIRC_DRIVER_NAME ": "         \
180                                 fmt, ## args);                          \
181         } while (0)
182
183 /* SECTION: Prototypes */
184
185 /* Communication with user-space */
186 static unsigned int lirc_poll(struct file *file, poll_table *wait);
187 static ssize_t lirc_read(struct file *file, char *buf, size_t count,
188                 loff_t *ppos);
189 static ssize_t lirc_write(struct file *file, const char *buf, size_t n,
190                 loff_t *pos);
191 static long lirc_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
192 static void add_read_queue(int flag, unsigned long val);
193 static int init_chrdev(void);
194 static void drop_chrdev(void);
195 /* Hardware */
196 static irqreturn_t sir_interrupt(int irq, void *dev_id);
197 static void send_space(unsigned long len);
198 static void send_pulse(unsigned long len);
199 static int init_hardware(void);
200 static void drop_hardware(void);
201 /* Initialisation */
202 static int init_port(void);
203 static void drop_port(void);
204
205 #ifdef LIRC_ON_SA1100
206 static void on(void)
207 {
208         PPSR |= PPC_TXD2;
209 }
210
211 static void off(void)
212 {
213         PPSR &= ~PPC_TXD2;
214 }
215 #else
216 static inline unsigned int sinp(int offset)
217 {
218         return inb(io + offset);
219 }
220
221 static inline void soutp(int offset, int value)
222 {
223         outb(value, io + offset);
224 }
225 #endif
226
227 #ifndef MAX_UDELAY_MS
228 #define MAX_UDELAY_US 5000
229 #else
230 #define MAX_UDELAY_US (MAX_UDELAY_MS*1000)
231 #endif
232
233 static void safe_udelay(unsigned long usecs)
234 {
235         while (usecs > MAX_UDELAY_US) {
236                 udelay(MAX_UDELAY_US);
237                 usecs -= MAX_UDELAY_US;
238         }
239         udelay(usecs);
240 }
241
242 /* SECTION: Communication with user-space */
243
244 static unsigned int lirc_poll(struct file *file, poll_table *wait)
245 {
246         poll_wait(file, &lirc_read_queue, wait);
247         if (rx_head != rx_tail)
248                 return POLLIN | POLLRDNORM;
249         return 0;
250 }
251
252 static ssize_t lirc_read(struct file *file, char *buf, size_t count,
253                 loff_t *ppos)
254 {
255         int n = 0;
256         int retval = 0;
257         DECLARE_WAITQUEUE(wait, current);
258
259         if (count % sizeof(int))
260                 return -EINVAL;
261
262         add_wait_queue(&lirc_read_queue, &wait);
263         set_current_state(TASK_INTERRUPTIBLE);
264         while (n < count) {
265                 if (rx_head != rx_tail) {
266                         if (copy_to_user((void *) buf + n,
267                                         (void *) (rx_buf + rx_head),
268                                         sizeof(int))) {
269                                 retval = -EFAULT;
270                                 break;
271                         }
272                         rx_head = (rx_head + 1) & (RBUF_LEN - 1);
273                         n += sizeof(int);
274                 } else {
275                         if (file->f_flags & O_NONBLOCK) {
276                                 retval = -EAGAIN;
277                                 break;
278                         }
279                         if (signal_pending(current)) {
280                                 retval = -ERESTARTSYS;
281                                 break;
282                         }
283                         schedule();
284                         set_current_state(TASK_INTERRUPTIBLE);
285                 }
286         }
287         remove_wait_queue(&lirc_read_queue, &wait);
288         set_current_state(TASK_RUNNING);
289         return n ? n : retval;
290 }
291 static ssize_t lirc_write(struct file *file, const char *buf, size_t n,
292                                 loff_t *pos)
293 {
294         unsigned long flags;
295         int i, count;
296         int *tx_buf;
297
298         count = n / sizeof(int);
299         if (n % sizeof(int) || count % 2 == 0)
300                 return -EINVAL;
301         tx_buf = memdup_user(buf, n);
302         if (IS_ERR(tx_buf))
303                 return PTR_ERR(tx_buf);
304         i = 0;
305 #ifdef LIRC_ON_SA1100
306         /* disable receiver */
307         Ser2UTCR3 = 0;
308 #endif
309         local_irq_save(flags);
310         while (1) {
311                 if (i >= count)
312                         break;
313                 if (tx_buf[i])
314                         send_pulse(tx_buf[i]);
315                 i++;
316                 if (i >= count)
317                         break;
318                 if (tx_buf[i])
319                         send_space(tx_buf[i]);
320                 i++;
321         }
322         local_irq_restore(flags);
323 #ifdef LIRC_ON_SA1100
324         off();
325         udelay(1000); /* wait 1ms for IR diode to recover */
326         Ser2UTCR3 = 0;
327         /* clear status register to prevent unwanted interrupts */
328         Ser2UTSR0 &= (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
329         /* enable receiver */
330         Ser2UTCR3 = UTCR3_RXE|UTCR3_RIE;
331 #endif
332         kfree(tx_buf);
333         return count;
334 }
335
336 static long lirc_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
337 {
338         int retval = 0;
339         __u32 value = 0;
340 #ifdef LIRC_ON_SA1100
341
342         if (cmd == LIRC_GET_FEATURES)
343                 value = LIRC_CAN_SEND_PULSE |
344                         LIRC_CAN_SET_SEND_DUTY_CYCLE |
345                         LIRC_CAN_SET_SEND_CARRIER |
346                         LIRC_CAN_REC_MODE2;
347         else if (cmd == LIRC_GET_SEND_MODE)
348                 value = LIRC_MODE_PULSE;
349         else if (cmd == LIRC_GET_REC_MODE)
350                 value = LIRC_MODE_MODE2;
351 #else
352         if (cmd == LIRC_GET_FEATURES)
353                 value = LIRC_CAN_SEND_PULSE | LIRC_CAN_REC_MODE2;
354         else if (cmd == LIRC_GET_SEND_MODE)
355                 value = LIRC_MODE_PULSE;
356         else if (cmd == LIRC_GET_REC_MODE)
357                 value = LIRC_MODE_MODE2;
358 #endif
359
360         switch (cmd) {
361         case LIRC_GET_FEATURES:
362         case LIRC_GET_SEND_MODE:
363         case LIRC_GET_REC_MODE:
364                 retval = put_user(value, (__u32 *) arg);
365                 break;
366
367         case LIRC_SET_SEND_MODE:
368         case LIRC_SET_REC_MODE:
369                 retval = get_user(value, (__u32 *) arg);
370                 break;
371 #ifdef LIRC_ON_SA1100
372         case LIRC_SET_SEND_DUTY_CYCLE:
373                 retval = get_user(value, (__u32 *) arg);
374                 if (retval)
375                         return retval;
376                 if (value <= 0 || value > 100)
377                         return -EINVAL;
378                 /* (value/100)*(1000000/freq) */
379                 duty_cycle = value;
380                 pulse_width = (unsigned long) duty_cycle*10000/freq;
381                 space_width = (unsigned long) 1000000L/freq-pulse_width;
382                 if (pulse_width >= LIRC_ON_SA1100_TRANSMITTER_LATENCY)
383                         pulse_width -= LIRC_ON_SA1100_TRANSMITTER_LATENCY;
384                 if (space_width >= LIRC_ON_SA1100_TRANSMITTER_LATENCY)
385                         space_width -= LIRC_ON_SA1100_TRANSMITTER_LATENCY;
386                 break;
387         case LIRC_SET_SEND_CARRIER:
388                 retval = get_user(value, (__u32 *) arg);
389                 if (retval)
390                         return retval;
391                 if (value > 500000 || value < 20000)
392                         return -EINVAL;
393                 freq = value;
394                 pulse_width = (unsigned long) duty_cycle*10000/freq;
395                 space_width = (unsigned long) 1000000L/freq-pulse_width;
396                 if (pulse_width >= LIRC_ON_SA1100_TRANSMITTER_LATENCY)
397                         pulse_width -= LIRC_ON_SA1100_TRANSMITTER_LATENCY;
398                 if (space_width >= LIRC_ON_SA1100_TRANSMITTER_LATENCY)
399                         space_width -= LIRC_ON_SA1100_TRANSMITTER_LATENCY;
400                 break;
401 #endif
402         default:
403                 retval = -ENOIOCTLCMD;
404
405         }
406
407         if (retval)
408                 return retval;
409         if (cmd == LIRC_SET_REC_MODE) {
410                 if (value != LIRC_MODE_MODE2)
411                         retval = -ENOSYS;
412         } else if (cmd == LIRC_SET_SEND_MODE) {
413                 if (value != LIRC_MODE_PULSE)
414                         retval = -ENOSYS;
415         }
416
417         return retval;
418 }
419
420 static void add_read_queue(int flag, unsigned long val)
421 {
422         unsigned int new_rx_tail;
423         int newval;
424
425         dprintk("add flag %d with val %lu\n", flag, val);
426
427         newval = val & PULSE_MASK;
428
429         /*
430          * statistically, pulses are ~TIME_CONST/2 too long. we could
431          * maybe make this more exact, but this is good enough
432          */
433         if (flag) {
434                 /* pulse */
435                 if (newval > TIME_CONST/2)
436                         newval -= TIME_CONST/2;
437                 else /* should not ever happen */
438                         newval = 1;
439                 newval |= PULSE_BIT;
440         } else {
441                 newval += TIME_CONST/2;
442         }
443         new_rx_tail = (rx_tail + 1) & (RBUF_LEN - 1);
444         if (new_rx_tail == rx_head) {
445                 dprintk("Buffer overrun.\n");
446                 return;
447         }
448         rx_buf[rx_tail] = newval;
449         rx_tail = new_rx_tail;
450         wake_up_interruptible(&lirc_read_queue);
451 }
452
453 static const struct file_operations lirc_fops = {
454         .owner          = THIS_MODULE,
455         .read           = lirc_read,
456         .write          = lirc_write,
457         .poll           = lirc_poll,
458         .unlocked_ioctl = lirc_ioctl,
459 #ifdef CONFIG_COMPAT
460         .compat_ioctl   = lirc_ioctl,
461 #endif
462         .open           = lirc_dev_fop_open,
463         .release        = lirc_dev_fop_close,
464         .llseek         = no_llseek,
465 };
466
467 static int set_use_inc(void *data)
468 {
469         return 0;
470 }
471
472 static void set_use_dec(void *data)
473 {
474 }
475
476 static struct lirc_driver driver = {
477         .name           = LIRC_DRIVER_NAME,
478         .minor          = -1,
479         .code_length    = 1,
480         .sample_rate    = 0,
481         .data           = NULL,
482         .add_to_buf     = NULL,
483         .set_use_inc    = set_use_inc,
484         .set_use_dec    = set_use_dec,
485         .fops           = &lirc_fops,
486         .dev            = NULL,
487         .owner          = THIS_MODULE,
488 };
489
490
491 static int init_chrdev(void)
492 {
493         driver.minor = lirc_register_driver(&driver);
494         if (driver.minor < 0) {
495                 printk(KERN_ERR LIRC_DRIVER_NAME ": init_chrdev() failed.\n");
496                 return -EIO;
497         }
498         return 0;
499 }
500
501 static void drop_chrdev(void)
502 {
503         lirc_unregister_driver(driver.minor);
504 }
505
506 /* SECTION: Hardware */
507 static long delta(struct timeval *tv1, struct timeval *tv2)
508 {
509         unsigned long deltv;
510
511         deltv = tv2->tv_sec - tv1->tv_sec;
512         if (deltv > 15)
513                 deltv = 0xFFFFFF;
514         else
515                 deltv = deltv*1000000 +
516                         tv2->tv_usec -
517                         tv1->tv_usec;
518         return deltv;
519 }
520
521 static void sir_timeout(unsigned long data)
522 {
523         /*
524          * if last received signal was a pulse, but receiving stopped
525          * within the 9 bit frame, we need to finish this pulse and
526          * simulate a signal change to from pulse to space. Otherwise
527          * upper layers will receive two sequences next time.
528          */
529
530         unsigned long flags;
531         unsigned long pulse_end;
532
533         /* avoid interference with interrupt */
534         spin_lock_irqsave(&timer_lock, flags);
535         if (last_value) {
536 #ifndef LIRC_ON_SA1100
537                 /* clear unread bits in UART and restart */
538                 outb(UART_FCR_CLEAR_RCVR, io + UART_FCR);
539 #endif
540                 /* determine 'virtual' pulse end: */
541                 pulse_end = delta(&last_tv, &last_intr_tv);
542                 dprintk("timeout add %d for %lu usec\n", last_value, pulse_end);
543                 add_read_queue(last_value, pulse_end);
544                 last_value = 0;
545                 last_tv = last_intr_tv;
546         }
547         spin_unlock_irqrestore(&timer_lock, flags);
548 }
549
550 static irqreturn_t sir_interrupt(int irq, void *dev_id)
551 {
552         unsigned char data;
553         struct timeval curr_tv;
554         static unsigned long deltv;
555 #ifdef LIRC_ON_SA1100
556         int status;
557         static int n;
558
559         status = Ser2UTSR0;
560         /*
561          * Deal with any receive errors first.  The bytes in error may be
562          * the only bytes in the receive FIFO, so we do this first.
563          */
564         while (status & UTSR0_EIF) {
565                 int bstat;
566
567                 if (debug) {
568                         dprintk("EIF\n");
569                         bstat = Ser2UTSR1;
570
571                         if (bstat & UTSR1_FRE)
572                                 dprintk("frame error\n");
573                         if (bstat & UTSR1_ROR)
574                                 dprintk("receive fifo overrun\n");
575                         if (bstat & UTSR1_PRE)
576                                 dprintk("parity error\n");
577                 }
578
579                 bstat = Ser2UTDR;
580                 n++;
581                 status = Ser2UTSR0;
582         }
583
584         if (status & (UTSR0_RFS | UTSR0_RID)) {
585                 do_gettimeofday(&curr_tv);
586                 deltv = delta(&last_tv, &curr_tv);
587                 do {
588                         data = Ser2UTDR;
589                         dprintk("%d data: %u\n", n, (unsigned int) data);
590                         n++;
591                 } while (status & UTSR0_RID && /* do not empty fifo in order to
592                                                 * get UTSR0_RID in any case */
593                       Ser2UTSR1 & UTSR1_RNE); /* data ready */
594
595                 if (status&UTSR0_RID) {
596                         add_read_queue(0 , deltv - n * TIME_CONST); /*space*/
597                         add_read_queue(1, n * TIME_CONST); /*pulse*/
598                         n = 0;
599                         last_tv = curr_tv;
600                 }
601         }
602
603         if (status & UTSR0_TFS)
604                 printk(KERN_ERR "transmit fifo not full, shouldn't happen\n");
605
606         /* We must clear certain bits. */
607         status &= (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
608         if (status)
609                 Ser2UTSR0 = status;
610 #else
611         unsigned long deltintrtv;
612         unsigned long flags;
613         int iir, lsr;
614
615         while ((iir = inb(io + UART_IIR) & UART_IIR_ID)) {
616                 switch (iir&UART_IIR_ID) { /* FIXME toto treba preriedit */
617                 case UART_IIR_MSI:
618                         (void) inb(io + UART_MSR);
619                         break;
620                 case UART_IIR_RLSI:
621                         (void) inb(io + UART_LSR);
622                         break;
623                 case UART_IIR_THRI:
624 #if 0
625                         if (lsr & UART_LSR_THRE) /* FIFO is empty */
626                                 outb(data, io + UART_TX)
627 #endif
628                         break;
629                 case UART_IIR_RDI:
630                         /* avoid interference with timer */
631                         spin_lock_irqsave(&timer_lock, flags);
632                         do {
633                                 del_timer(&timerlist);
634                                 data = inb(io + UART_RX);
635                                 do_gettimeofday(&curr_tv);
636                                 deltv = delta(&last_tv, &curr_tv);
637                                 deltintrtv = delta(&last_intr_tv, &curr_tv);
638                                 dprintk("t %lu, d %d\n", deltintrtv, (int)data);
639                                 /*
640                                  * if nothing came in last X cycles,
641                                  * it was gap
642                                  */
643                                 if (deltintrtv > TIME_CONST * threshold) {
644                                         if (last_value) {
645                                                 dprintk("GAP\n");
646                                                 /* simulate signal change */
647                                                 add_read_queue(last_value,
648                                                                deltv -
649                                                                deltintrtv);
650                                                 last_value = 0;
651                                                 last_tv.tv_sec =
652                                                         last_intr_tv.tv_sec;
653                                                 last_tv.tv_usec =
654                                                         last_intr_tv.tv_usec;
655                                                 deltv = deltintrtv;
656                                         }
657                                 }
658                                 data = 1;
659                                 if (data ^ last_value) {
660                                         /*
661                                          * deltintrtv > 2*TIME_CONST, remember?
662                                          * the other case is timeout
663                                          */
664                                         add_read_queue(last_value,
665                                                        deltv-TIME_CONST);
666                                         last_value = data;
667                                         last_tv = curr_tv;
668                                         if (last_tv.tv_usec >= TIME_CONST) {
669                                                 last_tv.tv_usec -= TIME_CONST;
670                                         } else {
671                                                 last_tv.tv_sec--;
672                                                 last_tv.tv_usec += 1000000 -
673                                                         TIME_CONST;
674                                         }
675                                 }
676                                 last_intr_tv = curr_tv;
677                                 if (data) {
678                                         /*
679                                          * start timer for end of
680                                          * sequence detection
681                                          */
682                                         timerlist.expires = jiffies +
683                                                                 SIR_TIMEOUT;
684                                         add_timer(&timerlist);
685                                 }
686
687                                 lsr = inb(io + UART_LSR);
688                         } while (lsr & UART_LSR_DR); /* data ready */
689                         spin_unlock_irqrestore(&timer_lock, flags);
690                         break;
691                 default:
692                         break;
693                 }
694         }
695 #endif
696         return IRQ_RETVAL(IRQ_HANDLED);
697 }
698
699 #ifdef LIRC_ON_SA1100
700 static void send_pulse(unsigned long length)
701 {
702         unsigned long k, delay;
703         int flag;
704
705         if (length == 0)
706                 return;
707         /*
708          * this won't give us the carrier frequency we really want
709          * due to integer arithmetic, but we can accept this inaccuracy
710          */
711
712         for (k = flag = 0; k < length; k += delay, flag = !flag) {
713                 if (flag) {
714                         off();
715                         delay = space_width;
716                 } else {
717                         on();
718                         delay = pulse_width;
719                 }
720                 safe_udelay(delay);
721         }
722         off();
723 }
724
725 static void send_space(unsigned long length)
726 {
727         if (length == 0)
728                 return;
729         off();
730         safe_udelay(length);
731 }
732 #else
733 static void send_space(unsigned long len)
734 {
735         safe_udelay(len);
736 }
737
738 static void send_pulse(unsigned long len)
739 {
740         long bytes_out = len / TIME_CONST;
741
742         if (bytes_out == 0)
743                 bytes_out++;
744
745         while (bytes_out--) {
746                 outb(PULSE, io + UART_TX);
747                 /* FIXME treba seriozne cakanie z char/serial.c */
748                 while (!(inb(io + UART_LSR) & UART_LSR_THRE))
749                         ;
750         }
751 }
752 #endif
753
754 #ifdef CONFIG_SA1100_COLLIE
755 static int sa1100_irda_set_power_collie(int state)
756 {
757         if (state) {
758                 /*
759                  *  0 - off
760                  *  1 - short range, lowest power
761                  *  2 - medium range, medium power
762                  *  3 - maximum range, high power
763                  */
764                 ucb1200_set_io_direction(TC35143_GPIO_IR_ON,
765                                          TC35143_IODIR_OUTPUT);
766                 ucb1200_set_io(TC35143_GPIO_IR_ON, TC35143_IODAT_LOW);
767                 udelay(100);
768         } else {
769                 /* OFF */
770                 ucb1200_set_io_direction(TC35143_GPIO_IR_ON,
771                                          TC35143_IODIR_OUTPUT);
772                 ucb1200_set_io(TC35143_GPIO_IR_ON, TC35143_IODAT_HIGH);
773         }
774         return 0;
775 }
776 #endif
777
778 static int init_hardware(void)
779 {
780         unsigned long flags;
781
782         spin_lock_irqsave(&hardware_lock, flags);
783         /* reset UART */
784 #ifdef LIRC_ON_SA1100
785 #ifdef CONFIG_SA1100_BITSY
786         if (machine_is_bitsy()) {
787                 printk(KERN_INFO "Power on IR module\n");
788                 set_bitsy_egpio(EGPIO_BITSY_IR_ON);
789         }
790 #endif
791 #ifdef CONFIG_SA1100_COLLIE
792         sa1100_irda_set_power_collie(3);        /* power on */
793 #endif
794         sr.hscr0 = Ser2HSCR0;
795
796         sr.utcr0 = Ser2UTCR0;
797         sr.utcr1 = Ser2UTCR1;
798         sr.utcr2 = Ser2UTCR2;
799         sr.utcr3 = Ser2UTCR3;
800         sr.utcr4 = Ser2UTCR4;
801
802         sr.utdr = Ser2UTDR;
803         sr.utsr0 = Ser2UTSR0;
804         sr.utsr1 = Ser2UTSR1;
805
806         /* configure GPIO */
807         /* output */
808         PPDR |= PPC_TXD2;
809         PSDR |= PPC_TXD2;
810         /* set output to 0 */
811         off();
812
813         /* Enable HP-SIR modulation, and ensure that the port is disabled. */
814         Ser2UTCR3 = 0;
815         Ser2HSCR0 = sr.hscr0 & (~HSCR0_HSSP);
816
817         /* clear status register to prevent unwanted interrupts */
818         Ser2UTSR0 &= (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
819
820         /* 7N1 */
821         Ser2UTCR0 = UTCR0_1StpBit|UTCR0_7BitData;
822         /* 115200 */
823         Ser2UTCR1 = 0;
824         Ser2UTCR2 = 1;
825         /* use HPSIR, 1.6 usec pulses */
826         Ser2UTCR4 = UTCR4_HPSIR|UTCR4_Z1_6us;
827
828         /* enable receiver, receive fifo interrupt */
829         Ser2UTCR3 = UTCR3_RXE|UTCR3_RIE;
830
831         /* clear status register to prevent unwanted interrupts */
832         Ser2UTSR0 &= (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
833
834 #elif defined(LIRC_SIR_TEKRAM)
835         /* disable FIFO */
836         soutp(UART_FCR,
837               UART_FCR_CLEAR_RCVR|
838               UART_FCR_CLEAR_XMIT|
839               UART_FCR_TRIGGER_1);
840
841         /* Set DLAB 0. */
842         soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
843
844         /* First of all, disable all interrupts */
845         soutp(UART_IER, sinp(UART_IER) &
846               (~(UART_IER_MSI|UART_IER_RLSI|UART_IER_THRI|UART_IER_RDI)));
847
848         /* Set DLAB 1. */
849         soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB);
850
851         /* Set divisor to 12 => 9600 Baud */
852         soutp(UART_DLM, 0);
853         soutp(UART_DLL, 12);
854
855         /* Set DLAB 0. */
856         soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
857
858         /* power supply */
859         soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
860         safe_udelay(50*1000);
861
862         /* -DTR low -> reset PIC */
863         soutp(UART_MCR, UART_MCR_RTS|UART_MCR_OUT2);
864         udelay(1*1000);
865
866         soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
867         udelay(100);
868
869
870         /* -RTS low -> send control byte */
871         soutp(UART_MCR, UART_MCR_DTR|UART_MCR_OUT2);
872         udelay(7);
873         soutp(UART_TX, TEKRAM_115200|TEKRAM_PW);
874
875         /* one byte takes ~1042 usec to transmit at 9600,8N1 */
876         udelay(1500);
877
878         /* back to normal operation */
879         soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
880         udelay(50);
881
882         udelay(1500);
883
884         /* read previous control byte */
885         printk(KERN_INFO LIRC_DRIVER_NAME
886                ": 0x%02x\n", sinp(UART_RX));
887
888         /* Set DLAB 1. */
889         soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB);
890
891         /* Set divisor to 1 => 115200 Baud */
892         soutp(UART_DLM, 0);
893         soutp(UART_DLL, 1);
894
895         /* Set DLAB 0, 8 Bit */
896         soutp(UART_LCR, UART_LCR_WLEN8);
897         /* enable interrupts */
898         soutp(UART_IER, sinp(UART_IER)|UART_IER_RDI);
899 #else
900         outb(0, io + UART_MCR);
901         outb(0, io + UART_IER);
902         /* init UART */
903         /* set DLAB, speed = 115200 */
904         outb(UART_LCR_DLAB | UART_LCR_WLEN7, io + UART_LCR);
905         outb(1, io + UART_DLL); outb(0, io + UART_DLM);
906         /* 7N1+start = 9 bits at 115200 ~ 3 bits at 44000 */
907         outb(UART_LCR_WLEN7, io + UART_LCR);
908         /* FIFO operation */
909         outb(UART_FCR_ENABLE_FIFO, io + UART_FCR);
910         /* interrupts */
911         /* outb(UART_IER_RLSI|UART_IER_RDI|UART_IER_THRI, io + UART_IER); */
912         outb(UART_IER_RDI, io + UART_IER);
913         /* turn on UART */
914         outb(UART_MCR_DTR|UART_MCR_RTS|UART_MCR_OUT2, io + UART_MCR);
915 #ifdef LIRC_SIR_ACTISYS_ACT200L
916         init_act200();
917 #elif defined(LIRC_SIR_ACTISYS_ACT220L)
918         init_act220();
919 #endif
920 #endif
921         spin_unlock_irqrestore(&hardware_lock, flags);
922         return 0;
923 }
924
925 static void drop_hardware(void)
926 {
927         unsigned long flags;
928
929         spin_lock_irqsave(&hardware_lock, flags);
930
931 #ifdef LIRC_ON_SA1100
932         Ser2UTCR3 = 0;
933
934         Ser2UTCR0 = sr.utcr0;
935         Ser2UTCR1 = sr.utcr1;
936         Ser2UTCR2 = sr.utcr2;
937         Ser2UTCR4 = sr.utcr4;
938         Ser2UTCR3 = sr.utcr3;
939
940         Ser2HSCR0 = sr.hscr0;
941 #ifdef CONFIG_SA1100_BITSY
942         if (machine_is_bitsy())
943                 clr_bitsy_egpio(EGPIO_BITSY_IR_ON);
944 #endif
945 #ifdef CONFIG_SA1100_COLLIE
946         sa1100_irda_set_power_collie(0);        /* power off */
947 #endif
948 #else
949         /* turn off interrupts */
950         outb(0, io + UART_IER);
951 #endif
952         spin_unlock_irqrestore(&hardware_lock, flags);
953 }
954
955 /* SECTION: Initialisation */
956
957 static int init_port(void)
958 {
959         int retval;
960
961         /* get I/O port access and IRQ line */
962 #ifndef LIRC_ON_SA1100
963         if (request_region(io, 8, LIRC_DRIVER_NAME) == NULL) {
964                 printk(KERN_ERR LIRC_DRIVER_NAME
965                        ": i/o port 0x%.4x already in use.\n", io);
966                 return -EBUSY;
967         }
968 #endif
969         retval = request_irq(irq, sir_interrupt, 0,
970                              LIRC_DRIVER_NAME, NULL);
971         if (retval < 0) {
972 #               ifndef LIRC_ON_SA1100
973                 release_region(io, 8);
974 #               endif
975                 printk(KERN_ERR LIRC_DRIVER_NAME
976                         ": IRQ %d already in use.\n",
977                         irq);
978                 return retval;
979         }
980 #ifndef LIRC_ON_SA1100
981         printk(KERN_INFO LIRC_DRIVER_NAME
982                 ": I/O port 0x%.4x, IRQ %d.\n",
983                 io, irq);
984 #endif
985
986         init_timer(&timerlist);
987         timerlist.function = sir_timeout;
988         timerlist.data = 0xabadcafe;
989
990         return 0;
991 }
992
993 static void drop_port(void)
994 {
995         free_irq(irq, NULL);
996         del_timer_sync(&timerlist);
997 #ifndef LIRC_ON_SA1100
998         release_region(io, 8);
999 #endif
1000 }
1001
1002 #ifdef LIRC_SIR_ACTISYS_ACT200L
1003 /* Crystal/Cirrus CS8130 IR transceiver, used in Actisys Act200L dongle */
1004 /* some code borrowed from Linux IRDA driver */
1005
1006 /* Register 0: Control register #1 */
1007 #define ACT200L_REG0    0x00
1008 #define ACT200L_TXEN    0x01 /* Enable transmitter */
1009 #define ACT200L_RXEN    0x02 /* Enable receiver */
1010 #define ACT200L_ECHO    0x08 /* Echo control chars */
1011
1012 /* Register 1: Control register #2 */
1013 #define ACT200L_REG1    0x10
1014 #define ACT200L_LODB    0x01 /* Load new baud rate count value */
1015 #define ACT200L_WIDE    0x04 /* Expand the maximum allowable pulse */
1016
1017 /* Register 3: Transmit mode register #2 */
1018 #define ACT200L_REG3    0x30
1019 #define ACT200L_B0      0x01 /* DataBits, 0=6, 1=7, 2=8, 3=9(8P)  */
1020 #define ACT200L_B1      0x02 /* DataBits, 0=6, 1=7, 2=8, 3=9(8P)  */
1021 #define ACT200L_CHSY    0x04 /* StartBit Synced 0=bittime, 1=startbit */
1022
1023 /* Register 4: Output Power register */
1024 #define ACT200L_REG4    0x40
1025 #define ACT200L_OP0     0x01 /* Enable LED1C output */
1026 #define ACT200L_OP1     0x02 /* Enable LED2C output */
1027 #define ACT200L_BLKR    0x04
1028
1029 /* Register 5: Receive Mode register */
1030 #define ACT200L_REG5    0x50
1031 #define ACT200L_RWIDL   0x01 /* fixed 1.6us pulse mode */
1032     /*.. other various IRDA bit modes, and TV remote modes..*/
1033
1034 /* Register 6: Receive Sensitivity register #1 */
1035 #define ACT200L_REG6    0x60
1036 #define ACT200L_RS0     0x01 /* receive threshold bit 0 */
1037 #define ACT200L_RS1     0x02 /* receive threshold bit 1 */
1038
1039 /* Register 7: Receive Sensitivity register #2 */
1040 #define ACT200L_REG7    0x70
1041 #define ACT200L_ENPOS   0x04 /* Ignore the falling edge */
1042
1043 /* Register 8,9: Baud Rate Divider register #1,#2 */
1044 #define ACT200L_REG8    0x80
1045 #define ACT200L_REG9    0x90
1046
1047 #define ACT200L_2400    0x5f
1048 #define ACT200L_9600    0x17
1049 #define ACT200L_19200   0x0b
1050 #define ACT200L_38400   0x05
1051 #define ACT200L_57600   0x03
1052 #define ACT200L_115200  0x01
1053
1054 /* Register 13: Control register #3 */
1055 #define ACT200L_REG13   0xd0
1056 #define ACT200L_SHDW    0x01 /* Enable access to shadow registers */
1057
1058 /* Register 15: Status register */
1059 #define ACT200L_REG15   0xf0
1060
1061 /* Register 21: Control register #4 */
1062 #define ACT200L_REG21   0x50
1063 #define ACT200L_EXCK    0x02 /* Disable clock output driver */
1064 #define ACT200L_OSCL    0x04 /* oscillator in low power, medium accuracy mode */
1065
1066 static void init_act200(void)
1067 {
1068         int i;
1069         __u8 control[] = {
1070                 ACT200L_REG15,
1071                 ACT200L_REG13 | ACT200L_SHDW,
1072                 ACT200L_REG21 | ACT200L_EXCK | ACT200L_OSCL,
1073                 ACT200L_REG13,
1074                 ACT200L_REG7  | ACT200L_ENPOS,
1075                 ACT200L_REG6  | ACT200L_RS0  | ACT200L_RS1,
1076                 ACT200L_REG5  | ACT200L_RWIDL,
1077                 ACT200L_REG4  | ACT200L_OP0  | ACT200L_OP1 | ACT200L_BLKR,
1078                 ACT200L_REG3  | ACT200L_B0,
1079                 ACT200L_REG0  | ACT200L_TXEN | ACT200L_RXEN,
1080                 ACT200L_REG8 |  (ACT200L_115200       & 0x0f),
1081                 ACT200L_REG9 | ((ACT200L_115200 >> 4) & 0x0f),
1082                 ACT200L_REG1 | ACT200L_LODB | ACT200L_WIDE
1083         };
1084
1085         /* Set DLAB 1. */
1086         soutp(UART_LCR, UART_LCR_DLAB | UART_LCR_WLEN8);
1087
1088         /* Set divisor to 12 => 9600 Baud */
1089         soutp(UART_DLM, 0);
1090         soutp(UART_DLL, 12);
1091
1092         /* Set DLAB 0. */
1093         soutp(UART_LCR, UART_LCR_WLEN8);
1094         /* Set divisor to 12 => 9600 Baud */
1095
1096         /* power supply */
1097         soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
1098         for (i = 0; i < 50; i++)
1099                 safe_udelay(1000);
1100
1101                 /* Reset the dongle : set RTS low for 25 ms */
1102         soutp(UART_MCR, UART_MCR_DTR|UART_MCR_OUT2);
1103         for (i = 0; i < 25; i++)
1104                 udelay(1000);
1105
1106         soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
1107         udelay(100);
1108
1109         /* Clear DTR and set RTS to enter command mode */
1110         soutp(UART_MCR, UART_MCR_RTS|UART_MCR_OUT2);
1111         udelay(7);
1112
1113         /* send out the control register settings for 115K 7N1 SIR operation */
1114         for (i = 0; i < sizeof(control); i++) {
1115                 soutp(UART_TX, control[i]);
1116                 /* one byte takes ~1042 usec to transmit at 9600,8N1 */
1117                 udelay(1500);
1118         }
1119
1120         /* back to normal operation */
1121         soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
1122         udelay(50);
1123
1124         udelay(1500);
1125         soutp(UART_LCR, sinp(UART_LCR) | UART_LCR_DLAB);
1126
1127         /* Set DLAB 1. */
1128         soutp(UART_LCR, UART_LCR_DLAB | UART_LCR_WLEN7);
1129
1130         /* Set divisor to 1 => 115200 Baud */
1131         soutp(UART_DLM, 0);
1132         soutp(UART_DLL, 1);
1133
1134         /* Set DLAB 0. */
1135         soutp(UART_LCR, sinp(UART_LCR) & (~UART_LCR_DLAB));
1136
1137         /* Set DLAB 0, 7 Bit */
1138         soutp(UART_LCR, UART_LCR_WLEN7);
1139
1140         /* enable interrupts */
1141         soutp(UART_IER, sinp(UART_IER)|UART_IER_RDI);
1142 }
1143 #endif
1144
1145 #ifdef LIRC_SIR_ACTISYS_ACT220L
1146 /*
1147  * Derived from linux IrDA driver (net/irda/actisys.c)
1148  * Drop me a mail for any kind of comment: maxx@spaceboyz.net
1149  */
1150
1151 void init_act220(void)
1152 {
1153         int i;
1154
1155         /* DLAB 1 */
1156         soutp(UART_LCR, UART_LCR_DLAB|UART_LCR_WLEN7);
1157
1158         /* 9600 baud */
1159         soutp(UART_DLM, 0);
1160         soutp(UART_DLL, 12);
1161
1162         /* DLAB 0 */
1163         soutp(UART_LCR, UART_LCR_WLEN7);
1164
1165         /* reset the dongle, set DTR low for 10us */
1166         soutp(UART_MCR, UART_MCR_RTS|UART_MCR_OUT2);
1167         udelay(10);
1168
1169         /* back to normal (still 9600) */
1170         soutp(UART_MCR, UART_MCR_DTR|UART_MCR_RTS|UART_MCR_OUT2);
1171
1172         /*
1173          * send RTS pulses until we reach 115200
1174          * i hope this is really the same for act220l/act220l+
1175          */
1176         for (i = 0; i < 3; i++) {
1177                 udelay(10);
1178                 /* set RTS low for 10 us */
1179                 soutp(UART_MCR, UART_MCR_DTR|UART_MCR_OUT2);
1180                 udelay(10);
1181                 /* set RTS high for 10 us */
1182                 soutp(UART_MCR, UART_MCR_RTS|UART_MCR_DTR|UART_MCR_OUT2);
1183         }
1184
1185         /* back to normal operation */
1186         udelay(1500); /* better safe than sorry ;) */
1187
1188         /* Set DLAB 1. */
1189         soutp(UART_LCR, UART_LCR_DLAB | UART_LCR_WLEN7);
1190
1191         /* Set divisor to 1 => 115200 Baud */
1192         soutp(UART_DLM, 0);
1193         soutp(UART_DLL, 1);
1194
1195         /* Set DLAB 0, 7 Bit */
1196         /* The dongle doesn't seem to have any problems with operation at 7N1 */
1197         soutp(UART_LCR, UART_LCR_WLEN7);
1198
1199         /* enable interrupts */
1200         soutp(UART_IER, UART_IER_RDI);
1201 }
1202 #endif
1203
1204 static int init_lirc_sir(void)
1205 {
1206         int retval;
1207
1208         init_waitqueue_head(&lirc_read_queue);
1209         retval = init_port();
1210         if (retval < 0)
1211                 return retval;
1212         init_hardware();
1213         printk(KERN_INFO LIRC_DRIVER_NAME
1214                 ": Installed.\n");
1215         return 0;
1216 }
1217
1218
1219 static int __init lirc_sir_init(void)
1220 {
1221         int retval;
1222
1223         retval = init_chrdev();
1224         if (retval < 0)
1225                 return retval;
1226         retval = init_lirc_sir();
1227         if (retval) {
1228                 drop_chrdev();
1229                 return retval;
1230         }
1231         return 0;
1232 }
1233
1234 static void __exit lirc_sir_exit(void)
1235 {
1236         drop_hardware();
1237         drop_chrdev();
1238         drop_port();
1239         printk(KERN_INFO LIRC_DRIVER_NAME ": Uninstalled.\n");
1240 }
1241
1242 module_init(lirc_sir_init);
1243 module_exit(lirc_sir_exit);
1244
1245 #ifdef LIRC_SIR_TEKRAM
1246 MODULE_DESCRIPTION("Infrared receiver driver for Tekram Irmate 210");
1247 MODULE_AUTHOR("Christoph Bartelmus");
1248 #elif defined(LIRC_ON_SA1100)
1249 MODULE_DESCRIPTION("LIRC driver for StrongARM SA1100 embedded microprocessor");
1250 MODULE_AUTHOR("Christoph Bartelmus");
1251 #elif defined(LIRC_SIR_ACTISYS_ACT200L)
1252 MODULE_DESCRIPTION("LIRC driver for Actisys Act200L");
1253 MODULE_AUTHOR("Karl Bongers");
1254 #elif defined(LIRC_SIR_ACTISYS_ACT220L)
1255 MODULE_DESCRIPTION("LIRC driver for Actisys Act220L(+)");
1256 MODULE_AUTHOR("Jan Roemisch");
1257 #else
1258 MODULE_DESCRIPTION("Infrared receiver driver for SIR type serial ports");
1259 MODULE_AUTHOR("Milan Pikula");
1260 #endif
1261 MODULE_LICENSE("GPL");
1262
1263 #ifdef LIRC_ON_SA1100
1264 module_param(irq, int, S_IRUGO);
1265 MODULE_PARM_DESC(irq, "Interrupt (16)");
1266 #else
1267 module_param(io, int, S_IRUGO);
1268 MODULE_PARM_DESC(io, "I/O address base (0x3f8 or 0x2f8)");
1269
1270 module_param(irq, int, S_IRUGO);
1271 MODULE_PARM_DESC(irq, "Interrupt (4 or 3)");
1272
1273 module_param(threshold, int, S_IRUGO);
1274 MODULE_PARM_DESC(threshold, "space detection threshold (3)");
1275 #endif
1276
1277 module_param(debug, bool, S_IRUGO | S_IWUSR);
1278 MODULE_PARM_DESC(debug, "Enable debugging messages");