]> Pileus Git - ~andy/linux/blob - drivers/staging/ft1000/ft1000-usb/ft1000_hw.c
staging: ft1000: Fix coding style in ft1000_start_xmit function.
[~andy/linux] / drivers / staging / ft1000 / ft1000-usb / ft1000_hw.c
1 //=====================================================
2 // CopyRight (C) 2007 Qualcomm Inc. All Rights Reserved.
3 //
4 //
5 // This file is part of Express Card USB Driver
6 //
7 // $Id:
8 //====================================================
9 // 20090926; aelias; removed compiler warnings & errors; ubuntu 9.04; 2.6.28-15-generic
10
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
16 #include <linux/usb.h>
17 #include "ft1000_usb.h"
18 #include <linux/types.h>
19
20 #define HARLEY_READ_REGISTER     0x0
21 #define HARLEY_WRITE_REGISTER    0x01
22 #define HARLEY_READ_DPRAM_32     0x02
23 #define HARLEY_READ_DPRAM_LOW    0x03
24 #define HARLEY_READ_DPRAM_HIGH   0x04
25 #define HARLEY_WRITE_DPRAM_32    0x05
26 #define HARLEY_WRITE_DPRAM_LOW   0x06
27 #define HARLEY_WRITE_DPRAM_HIGH  0x07
28
29 #define HARLEY_READ_OPERATION    0xc1
30 #define HARLEY_WRITE_OPERATION   0x41
31
32 //#define JDEBUG
33
34 static int ft1000_reset(struct net_device *ft1000dev);
35 static int ft1000_submit_rx_urb(struct ft1000_info *info);
36 static int ft1000_start_xmit(struct sk_buff *skb, struct net_device *dev);
37 static int ft1000_open (struct net_device *dev);
38 static struct net_device_stats *ft1000_netdev_stats(struct net_device *dev);
39 static int ft1000_chkcard (struct ft1000_device *dev);
40
41 //Jim
42
43 static u8 tempbuffer[1600];
44
45 #define MAX_RCV_LOOP   100
46
47 //---------------------------------------------------------------------------
48 // Function:    ft1000_control
49 //
50 // Parameters:  ft1000_device  - device structure
51 //              pipe - usb control message pipe
52 //              request - control request
53 //              requesttype - control message request type
54 //              value - value to be written or 0
55 //              index - register index
56 //              data - data buffer to hold the read/write values
57 //              size - data size
58 //              timeout - control message time out value
59 //
60 // Returns:     STATUS_SUCCESS - success
61 //              STATUS_FAILURE - failure
62 //
63 // Description: This function sends a control message via USB interface synchronously
64 //
65 // Notes:
66 //
67 //---------------------------------------------------------------------------
68 static int ft1000_control(struct ft1000_device *ft1000dev, unsigned int pipe,
69                           u8 request, u8 requesttype, u16 value, u16 index,
70                           void *data, u16 size, int timeout)
71 {
72         u16 ret;
73
74         if ((ft1000dev == NULL) || (ft1000dev->dev == NULL)) {
75                 DEBUG("ft1000dev or ft1000dev->dev == NULL, failure\n");
76                 return -ENODEV;
77         }
78
79         ret = usb_control_msg(ft1000dev->dev, pipe, request, requesttype,
80                               value, index, data, size, LARGE_TIMEOUT);
81
82         if (ret > 0)
83                 ret = 0;
84
85         return ret;
86 }
87
88 //---------------------------------------------------------------------------
89 // Function:    ft1000_read_register
90 //
91 // Parameters:  ft1000_device  - device structure
92 //              Data - data buffer to hold the value read
93 //              nRegIndex - register index
94 //
95 // Returns:     STATUS_SUCCESS - success
96 //              STATUS_FAILURE - failure
97 //
98 // Description: This function returns the value in a register
99 //
100 // Notes:
101 //
102 //---------------------------------------------------------------------------
103
104 int ft1000_read_register(struct ft1000_device *ft1000dev, u16* Data,
105                          u16 nRegIndx)
106 {
107         int ret = STATUS_SUCCESS;
108
109         ret = ft1000_control(ft1000dev,
110                              usb_rcvctrlpipe(ft1000dev->dev, 0),
111                              HARLEY_READ_REGISTER,
112                              HARLEY_READ_OPERATION,
113                              0,
114                              nRegIndx,
115                              Data,
116                              2,
117                              LARGE_TIMEOUT);
118
119         return ret;
120 }
121
122 //---------------------------------------------------------------------------
123 // Function:    ft1000_write_register
124 //
125 // Parameters:  ft1000_device  - device structure
126 //              value - value to write into a register
127 //              nRegIndex - register index
128 //
129 // Returns:     STATUS_SUCCESS - success
130 //              STATUS_FAILURE - failure
131 //
132 // Description: This function writes the value in a register
133 //
134 // Notes:
135 //
136 //---------------------------------------------------------------------------
137 int ft1000_write_register(struct ft1000_device *ft1000dev, u16 value,
138                           u16 nRegIndx)
139 {
140         int ret = STATUS_SUCCESS;
141
142         ret = ft1000_control(ft1000dev,
143                              usb_sndctrlpipe(ft1000dev->dev, 0),
144                              HARLEY_WRITE_REGISTER,
145                              HARLEY_WRITE_OPERATION,
146                              value,
147                              nRegIndx,
148                              NULL,
149                              0,
150                              LARGE_TIMEOUT);
151
152         return ret;
153 }
154
155 //---------------------------------------------------------------------------
156 // Function:    ft1000_read_dpram32
157 //
158 // Parameters:  ft1000_device  - device structure
159 //              indx - starting address to read
160 //              buffer - data buffer to hold the data read
161 //              cnt - number of byte read from DPRAM
162 //
163 // Returns:     STATUS_SUCCESS - success
164 //              STATUS_FAILURE - failure
165 //
166 // Description: This function read a number of bytes from DPRAM
167 //
168 // Notes:
169 //
170 //---------------------------------------------------------------------------
171
172 int ft1000_read_dpram32(struct ft1000_device *ft1000dev, u16 indx, u8 *buffer,
173                         u16 cnt)
174 {
175         int ret = STATUS_SUCCESS;
176
177         ret = ft1000_control(ft1000dev,
178                              usb_rcvctrlpipe(ft1000dev->dev, 0),
179                              HARLEY_READ_DPRAM_32,
180                              HARLEY_READ_OPERATION,
181                              0,
182                              indx,
183                              buffer,
184                              cnt,
185                              LARGE_TIMEOUT);
186
187         return ret;
188 }
189
190 //---------------------------------------------------------------------------
191 // Function:    ft1000_write_dpram32
192 //
193 // Parameters:  ft1000_device  - device structure
194 //              indx - starting address to write the data
195 //              buffer - data buffer to write into DPRAM
196 //              cnt - number of bytes to write
197 //
198 // Returns:     STATUS_SUCCESS - success
199 //              STATUS_FAILURE - failure
200 //
201 // Description: This function writes into DPRAM a number of bytes
202 //
203 // Notes:
204 //
205 //---------------------------------------------------------------------------
206 int ft1000_write_dpram32(struct ft1000_device *ft1000dev, u16 indx, u8 *buffer,
207                          u16 cnt)
208 {
209         int ret = STATUS_SUCCESS;
210
211         if (cnt % 4)
212                 cnt += cnt - (cnt % 4);
213
214         ret = ft1000_control(ft1000dev,
215                              usb_sndctrlpipe(ft1000dev->dev, 0),
216                              HARLEY_WRITE_DPRAM_32,
217                              HARLEY_WRITE_OPERATION,
218                              0,
219                              indx,
220                              buffer,
221                              cnt,
222                              LARGE_TIMEOUT);
223
224         return ret;
225 }
226
227 //---------------------------------------------------------------------------
228 // Function:    ft1000_read_dpram16
229 //
230 // Parameters:  ft1000_device  - device structure
231 //              indx - starting address to read
232 //              buffer - data buffer to hold the data read
233 //              hightlow - high or low 16 bit word
234 //
235 // Returns:     STATUS_SUCCESS - success
236 //              STATUS_FAILURE - failure
237 //
238 // Description: This function read 16 bits from DPRAM
239 //
240 // Notes:
241 //
242 //---------------------------------------------------------------------------
243 int ft1000_read_dpram16(struct ft1000_device *ft1000dev, u16 indx, u8 *buffer,
244                         u8 highlow)
245 {
246         int ret = STATUS_SUCCESS;
247         u8 request;
248
249         if (highlow == 0)
250                 request = HARLEY_READ_DPRAM_LOW;
251         else
252                 request = HARLEY_READ_DPRAM_HIGH;
253
254         ret = ft1000_control(ft1000dev,
255                              usb_rcvctrlpipe(ft1000dev->dev, 0),
256                              request,
257                              HARLEY_READ_OPERATION,
258                              0,
259                              indx,
260                              buffer,
261                              2,
262                              LARGE_TIMEOUT);
263
264         return ret;
265 }
266
267 //---------------------------------------------------------------------------
268 // Function:    ft1000_write_dpram16
269 //
270 // Parameters:  ft1000_device  - device structure
271 //              indx - starting address to write the data
272 //              value - 16bits value to write
273 //              hightlow - high or low 16 bit word
274 //
275 // Returns:     STATUS_SUCCESS - success
276 //              STATUS_FAILURE - failure
277 //
278 // Description: This function writes into DPRAM a number of bytes
279 //
280 // Notes:
281 //
282 //---------------------------------------------------------------------------
283 int ft1000_write_dpram16(struct ft1000_device *ft1000dev, u16 indx, u16 value, u8 highlow)
284 {
285         int ret = STATUS_SUCCESS;
286         u8 request;
287
288         if (highlow == 0)
289                 request = HARLEY_WRITE_DPRAM_LOW;
290         else
291                 request = HARLEY_WRITE_DPRAM_HIGH;
292
293         ret = ft1000_control(ft1000dev,
294                              usb_sndctrlpipe(ft1000dev->dev, 0),
295                              request,
296                              HARLEY_WRITE_OPERATION,
297                              value,
298                              indx,
299                              NULL,
300                              0,
301                              LARGE_TIMEOUT);
302
303         return ret;
304 }
305
306 //---------------------------------------------------------------------------
307 // Function:    fix_ft1000_read_dpram32
308 //
309 // Parameters:  ft1000_device  - device structure
310 //              indx - starting address to read
311 //              buffer - data buffer to hold the data read
312 //
313 //
314 // Returns:     STATUS_SUCCESS - success
315 //              STATUS_FAILURE - failure
316 //
317 // Description: This function read DPRAM 4 words at a time
318 //
319 // Notes:
320 //
321 //---------------------------------------------------------------------------
322 int fix_ft1000_read_dpram32(struct ft1000_device *ft1000dev, u16 indx,
323                             u8 *buffer)
324 {
325         u8 buf[16];
326         u16 pos;
327         int ret = STATUS_SUCCESS;
328
329         pos = (indx / 4) * 4;
330         ret = ft1000_read_dpram32(ft1000dev, pos, buf, 16);
331
332         if (ret == STATUS_SUCCESS) {
333                 pos = (indx % 4) * 4;
334                 *buffer++ = buf[pos++];
335                 *buffer++ = buf[pos++];
336                 *buffer++ = buf[pos++];
337                 *buffer++ = buf[pos++];
338         } else {
339                 DEBUG("fix_ft1000_read_dpram32: DPRAM32 Read failed\n");
340                 *buffer++ = 0;
341                 *buffer++ = 0;
342                 *buffer++ = 0;
343                 *buffer++ = 0;
344         }
345
346         return ret;
347 }
348
349
350 //---------------------------------------------------------------------------
351 // Function:    fix_ft1000_write_dpram32
352 //
353 // Parameters:  ft1000_device  - device structure
354 //              indx - starting address to write
355 //              buffer - data buffer to write
356 //
357 //
358 // Returns:     STATUS_SUCCESS - success
359 //              STATUS_FAILURE - failure
360 //
361 // Description: This function write to DPRAM 4 words at a time
362 //
363 // Notes:
364 //
365 //---------------------------------------------------------------------------
366 int fix_ft1000_write_dpram32(struct ft1000_device *ft1000dev, u16 indx, u8 *buffer)
367 {
368         u16 pos1;
369         u16 pos2;
370         u16 i;
371         u8 buf[32];
372         u8 resultbuffer[32];
373         u8 *pdata;
374         int ret  = STATUS_SUCCESS;
375
376         pos1 = (indx / 4) * 4;
377         pdata = buffer;
378         ret = ft1000_read_dpram32(ft1000dev, pos1, buf, 16);
379
380         if (ret == STATUS_SUCCESS) {
381                 pos2 = (indx % 4)*4;
382                 buf[pos2++] = *buffer++;
383                 buf[pos2++] = *buffer++;
384                 buf[pos2++] = *buffer++;
385                 buf[pos2++] = *buffer++;
386                 ret = ft1000_write_dpram32(ft1000dev, pos1, buf, 16);
387         } else {
388                 DEBUG("fix_ft1000_write_dpram32: DPRAM32 Read failed\n");
389                 return ret;
390         }
391
392         ret = ft1000_read_dpram32(ft1000dev, pos1, (u8 *)&resultbuffer[0], 16);
393
394         if (ret == STATUS_SUCCESS) {
395                 buffer = pdata;
396                 for (i = 0; i < 16; i++) {
397                         if (buf[i] != resultbuffer[i])
398                                 ret = STATUS_FAILURE;
399                 }
400         }
401
402         if (ret == STATUS_FAILURE) {
403                 ret = ft1000_write_dpram32(ft1000dev, pos1,
404                                            (u8 *)&tempbuffer[0], 16);
405                 ret = ft1000_read_dpram32(ft1000dev, pos1,
406                                           (u8 *)&resultbuffer[0], 16);
407                 if (ret == STATUS_SUCCESS) {
408                         buffer = pdata;
409                         for (i = 0; i < 16; i++) {
410                                 if (tempbuffer[i] != resultbuffer[i]) {
411                                         ret = STATUS_FAILURE;
412                                         DEBUG("%s Failed to write\n",
413                                               __func__);
414                                 }
415                         }
416                 }
417         }
418
419         return ret;
420 }
421
422
423 //------------------------------------------------------------------------
424 //
425 //  Function:   card_reset_dsp
426 //
427 //  Synopsis:   This function is called to reset or activate the DSP
428 //
429 //  Arguments:  value                  - reset or activate
430 //
431 //  Returns:    None
432 //-----------------------------------------------------------------------
433 static void card_reset_dsp(struct ft1000_device *ft1000dev, bool value)
434 {
435         u16 status = STATUS_SUCCESS;
436         u16 tempword;
437
438         status = ft1000_write_register(ft1000dev, HOST_INTF_BE,
439                                         FT1000_REG_SUP_CTRL);
440         status = ft1000_read_register(ft1000dev, &tempword,
441                                       FT1000_REG_SUP_CTRL);
442
443         if (value) {
444                 DEBUG("Reset DSP\n");
445                 status = ft1000_read_register(ft1000dev, &tempword,
446                                               FT1000_REG_RESET);
447                 tempword |= DSP_RESET_BIT;
448                 status = ft1000_write_register(ft1000dev, tempword,
449                                                FT1000_REG_RESET);
450         } else {
451                 DEBUG("Activate DSP\n");
452                 status = ft1000_read_register(ft1000dev, &tempword,
453                                               FT1000_REG_RESET);
454                 tempword |= DSP_ENCRYPTED;
455                 tempword &= ~DSP_UNENCRYPTED;
456                 status = ft1000_write_register(ft1000dev, tempword,
457                                                FT1000_REG_RESET);
458                 status = ft1000_read_register(ft1000dev, &tempword,
459                                               FT1000_REG_RESET);
460                 tempword &= ~EFUSE_MEM_DISABLE;
461                 tempword &= ~DSP_RESET_BIT;
462                 status = ft1000_write_register(ft1000dev, tempword,
463                                                FT1000_REG_RESET);
464                 status = ft1000_read_register(ft1000dev, &tempword,
465                                               FT1000_REG_RESET);
466         }
467 }
468
469 //---------------------------------------------------------------------------
470 // Function:    card_send_command
471 //
472 // Parameters:  ft1000_device  - device structure
473 //              ptempbuffer - command buffer
474 //              size - command buffer size
475 //
476 // Returns:     STATUS_SUCCESS - success
477 //              STATUS_FAILURE - failure
478 //
479 // Description: This function sends a command to ASIC
480 //
481 // Notes:
482 //
483 //---------------------------------------------------------------------------
484 void card_send_command(struct ft1000_device *ft1000dev, void *ptempbuffer,
485                        int size)
486 {
487         unsigned short temp;
488         unsigned char *commandbuf;
489
490         DEBUG("card_send_command: enter card_send_command... size=%d\n", size);
491
492         commandbuf = (unsigned char *)kmalloc(size + 2, GFP_KERNEL);
493         memcpy((void *)commandbuf + 2, (void *)ptempbuffer, size);
494
495         //DEBUG("card_send_command: Command Send\n");
496
497         ft1000_read_register(ft1000dev, &temp, FT1000_REG_DOORBELL);
498
499         if (temp & 0x0100)
500                 msleep(10);
501
502         /* check for odd word */
503         size = size + 2;
504
505         /* Must force to be 32 bit aligned */
506         if (size % 4)
507                 size += 4 - (size % 4);
508
509         //DEBUG("card_send_command: write dpram ... size=%d\n", size);
510         ft1000_write_dpram32(ft1000dev, 0, commandbuf, size);
511         msleep(1);
512         //DEBUG("card_send_command: write into doorbell ...\n");
513         ft1000_write_register(ft1000dev, FT1000_DB_DPRAM_TX,
514                               FT1000_REG_DOORBELL);
515         msleep(1);
516
517         ft1000_read_register(ft1000dev, &temp, FT1000_REG_DOORBELL);
518         //DEBUG("card_send_command: read doorbell ...temp=%x\n", temp);
519         if ((temp & 0x0100) == 0) {
520                 //DEBUG("card_send_command: Message sent\n");
521         }
522
523 }
524
525 //--------------------------------------------------------------------------
526 //
527 //  Function:   dsp_reload
528 //
529 //  Synopsis:   This function is called to load or reload the DSP
530 //
531 //  Arguments:  ft1000dev - device structure
532 //
533 //  Returns:    None
534 //-----------------------------------------------------------------------
535 int dsp_reload(struct ft1000_device *ft1000dev)
536 {
537         u16 status;
538         u16 tempword;
539         u32 templong;
540
541         struct ft1000_info *pft1000info;
542
543         pft1000info = netdev_priv(ft1000dev->net);
544
545         pft1000info->CardReady = 0;
546
547         /* Program Interrupt Mask register */
548         status = ft1000_write_register(ft1000dev, 0xffff, FT1000_REG_SUP_IMASK);
549
550         status = ft1000_read_register(ft1000dev, &tempword, FT1000_REG_RESET);
551         tempword |= ASIC_RESET_BIT;
552         status = ft1000_write_register(ft1000dev, tempword, FT1000_REG_RESET);
553         msleep(1000);
554         status = ft1000_read_register(ft1000dev, &tempword, FT1000_REG_RESET);
555         DEBUG("Reset Register = 0x%x\n", tempword);
556
557         /* Toggle DSP reset */
558         card_reset_dsp(ft1000dev, 1);
559         msleep(1000);
560         card_reset_dsp(ft1000dev, 0);
561         msleep(1000);
562
563         status =
564             ft1000_write_register(ft1000dev, HOST_INTF_BE, FT1000_REG_SUP_CTRL);
565
566         /* Let's check for FEFE */
567         status =
568             ft1000_read_dpram32(ft1000dev, FT1000_MAG_DPRAM_FEFE_INDX,
569                                 (u8 *) &templong, 4);
570         DEBUG("templong (fefe) = 0x%8x\n", templong);
571
572         /* call codeloader */
573         status = scram_dnldr(ft1000dev, pFileStart, FileLength);
574
575         if (status != STATUS_SUCCESS)
576                 return -EIO;
577
578         msleep(1000);
579
580         DEBUG("dsp_reload returned\n");
581
582         return 0;
583 }
584
585 //---------------------------------------------------------------------------
586 //
587 // Function:   ft1000_reset_asic
588 // Descripton: This function will call the Card Service function to reset the
589 //             ASIC.
590 // Input:
591 //     dev    - device structure
592 // Output:
593 //     none
594 //
595 //---------------------------------------------------------------------------
596 static void ft1000_reset_asic(struct net_device *dev)
597 {
598         struct ft1000_info *info = netdev_priv(dev);
599         struct ft1000_device *ft1000dev = info->pFt1000Dev;
600         u16 tempword;
601
602         DEBUG("ft1000_hw:ft1000_reset_asic called\n");
603
604         info->ASICResetNum++;
605
606         /* Let's use the register provided by the Magnemite ASIC to reset the
607          * ASIC and DSP.
608          */
609         ft1000_write_register(ft1000dev, (DSP_RESET_BIT | ASIC_RESET_BIT),
610                               FT1000_REG_RESET);
611
612         mdelay(1);
613
614         /* set watermark to -1 in order to not generate an interrrupt */
615         ft1000_write_register(ft1000dev, 0xffff, FT1000_REG_MAG_WATERMARK);
616
617         /* clear interrupts */
618         ft1000_read_register(ft1000dev, &tempword, FT1000_REG_SUP_ISR);
619         DEBUG("ft1000_hw: interrupt status register = 0x%x\n", tempword);
620         ft1000_write_register(ft1000dev, tempword, FT1000_REG_SUP_ISR);
621         ft1000_read_register(ft1000dev, &tempword, FT1000_REG_SUP_ISR);
622         DEBUG("ft1000_hw: interrupt status register = 0x%x\n", tempword);
623 }
624
625
626 //---------------------------------------------------------------------------
627 //
628 // Function:   ft1000_reset_card
629 // Descripton: This function will reset the card
630 // Input:
631 //     dev    - device structure
632 // Output:
633 //     status - FALSE (card reset fail)
634 //              TRUE  (card reset successful)
635 //
636 //---------------------------------------------------------------------------
637 static int ft1000_reset_card(struct net_device *dev)
638 {
639         struct ft1000_info *info = netdev_priv(dev);
640         struct ft1000_device *ft1000dev = info->pFt1000Dev;
641         u16 tempword;
642         struct prov_record *ptr;
643
644         DEBUG("ft1000_hw:ft1000_reset_card called.....\n");
645
646         info->fCondResetPend = 1;
647         info->CardReady = 0;
648         info->fProvComplete = 0;
649
650         /* Make sure we free any memory reserve for provisioning */
651         while (list_empty(&info->prov_list) == 0) {
652                 DEBUG("ft1000_reset_card:deleting provisioning record\n");
653                 ptr =
654                     list_entry(info->prov_list.next, struct prov_record, list);
655                 list_del(&ptr->list);
656                 kfree(ptr->pprov_data);
657                 kfree(ptr);
658         }
659
660         DEBUG("ft1000_hw:ft1000_reset_card: reset asic\n");
661         ft1000_reset_asic(dev);
662
663         info->DSPResetNum++;
664
665         DEBUG("ft1000_hw:ft1000_reset_card: call dsp_reload\n");
666         dsp_reload(ft1000dev);
667
668         DEBUG("dsp reload successful\n");
669
670         mdelay(10);
671
672         /* Initialize DSP heartbeat area */
673         ft1000_write_dpram16(ft1000dev, FT1000_MAG_HI_HO, ho_mag,
674                              FT1000_MAG_HI_HO_INDX);
675         ft1000_read_dpram16(ft1000dev, FT1000_MAG_HI_HO, (u8 *) &tempword,
676                             FT1000_MAG_HI_HO_INDX);
677         DEBUG("ft1000_hw:ft1000_reset_card:hi_ho value = 0x%x\n", tempword);
678
679         info->CardReady = 1;
680
681         info->fCondResetPend = 0;
682
683         return TRUE;
684 }
685
686
687 //mbelian
688 #ifdef HAVE_NET_DEVICE_OPS
689 static const struct net_device_ops ftnet_ops =
690 {
691         .ndo_open = &ft1000_open,
692         .ndo_stop = &ft1000_close,
693         .ndo_start_xmit = &ft1000_start_xmit,
694         .ndo_get_stats = &ft1000_netdev_stats,
695 };
696 #endif
697
698
699 //---------------------------------------------------------------------------
700 // Function:    init_ft1000_netdev
701 //
702 // Parameters:  ft1000dev  - device structure
703 //
704 //
705 // Returns:     STATUS_SUCCESS - success
706 //              STATUS_FAILURE - failure
707 //
708 // Description: This function initialize the network device
709 //
710 // Notes:
711 //
712 //---------------------------------------------------------------------------
713 int init_ft1000_netdev(struct ft1000_device *ft1000dev)
714 {
715         struct net_device *netdev;
716         struct ft1000_info *pInfo = NULL;
717         struct dpram_blk *pdpram_blk;
718         int i, ret_val;
719         struct list_head *cur, *tmp;
720         char card_nr[2];
721         unsigned long gCardIndex = 0;
722
723         DEBUG("Enter init_ft1000_netdev...\n");
724
725         netdev = alloc_etherdev(sizeof(struct ft1000_info));
726         if (!netdev) {
727                 DEBUG("init_ft1000_netdev: can not allocate network device\n");
728                 return -ENOMEM;
729         }
730
731         pInfo = netdev_priv(netdev);
732
733         memset(pInfo, 0, sizeof(struct ft1000_info));
734
735         dev_alloc_name(netdev, netdev->name);
736
737         DEBUG("init_ft1000_netdev: network device name is %s\n", netdev->name);
738
739         if (strncmp(netdev->name, "eth", 3) == 0) {
740                 card_nr[0] = netdev->name[3];
741                 card_nr[1] = '\0';
742                 ret_val = strict_strtoul(card_nr, 10, &gCardIndex);
743                 if (ret_val) {
744                         printk(KERN_ERR "Can't parse netdev\n");
745                         goto err_net;
746                 }
747
748                 pInfo->CardNumber = gCardIndex;
749                 DEBUG("card number = %d\n", pInfo->CardNumber);
750         } else {
751                 printk(KERN_ERR "ft1000: Invalid device name\n");
752                 ret_val = -ENXIO;
753                 goto err_net;
754         }
755
756         memset(&pInfo->stats, 0, sizeof(struct net_device_stats));
757
758         spin_lock_init(&pInfo->dpram_lock);
759         pInfo->pFt1000Dev = ft1000dev;
760         pInfo->DrvErrNum = 0;
761         pInfo->ASICResetNum = 0;
762         pInfo->registered = 1;
763         pInfo->ft1000_reset = ft1000_reset;
764         pInfo->mediastate = 0;
765         pInfo->fifo_cnt = 0;
766         pInfo->DeviceCreated = FALSE;
767         pInfo->CurrentInterruptEnableMask = ISR_DEFAULT_MASK;
768         pInfo->InterruptsEnabled = FALSE;
769         pInfo->CardReady = 0;
770         pInfo->DSP_TIME[0] = 0;
771         pInfo->DSP_TIME[1] = 0;
772         pInfo->DSP_TIME[2] = 0;
773         pInfo->DSP_TIME[3] = 0;
774         pInfo->fAppMsgPend = 0;
775         pInfo->fCondResetPend = 0;
776         pInfo->usbboot = 0;
777         pInfo->dspalive = 0;
778         memset(&pInfo->tempbuf[0], 0, sizeof(pInfo->tempbuf));
779
780         INIT_LIST_HEAD(&pInfo->prov_list);
781
782         INIT_LIST_HEAD(&pInfo->nodes.list);
783
784 #ifdef HAVE_NET_DEVICE_OPS
785         netdev->netdev_ops = &ftnet_ops;
786 #else
787         netdev->hard_start_xmit = &ft1000_start_xmit;
788         netdev->get_stats = &ft1000_netdev_stats;
789         netdev->open = &ft1000_open;
790         netdev->stop = &ft1000_close;
791 #endif
792
793         ft1000dev->net = netdev;
794
795         DEBUG("Initialize free_buff_lock and freercvpool\n");
796         spin_lock_init(&free_buff_lock);
797
798         /* initialize a list of buffers to be use for queuing
799          * up receive command data
800          */
801         INIT_LIST_HEAD(&freercvpool);
802
803         /* create list of free buffers */
804         for (i = 0; i < NUM_OF_FREE_BUFFERS; i++) {
805                 /* Get memory for DPRAM_DATA link list */
806                 pdpram_blk = kmalloc(sizeof(struct dpram_blk), GFP_KERNEL);
807                 if (pdpram_blk == NULL) {
808                         ret_val = -ENOMEM;
809                         goto err_free;
810                 }
811                 /* Get a block of memory to store command data */
812                 pdpram_blk->pbuffer = kmalloc(MAX_CMD_SQSIZE, GFP_KERNEL);
813                 if (pdpram_blk->pbuffer == NULL) {
814                         ret_val = -ENOMEM;
815                         kfree(pdpram_blk);
816                         goto err_free;
817                 }
818                 /* link provisioning data */
819                 list_add_tail(&pdpram_blk->list, &freercvpool);
820         }
821         numofmsgbuf = NUM_OF_FREE_BUFFERS;
822
823         return 0;
824
825 err_free:
826         list_for_each_safe(cur, tmp, &freercvpool) {
827                 pdpram_blk = list_entry(cur, struct dpram_blk, list);
828                 list_del(&pdpram_blk->list);
829                 kfree(pdpram_blk->pbuffer);
830                 kfree(pdpram_blk);
831         }
832 err_net:
833         free_netdev(netdev);
834         return ret_val;
835 }
836
837 //---------------------------------------------------------------------------
838 // Function:    reg_ft1000_netdev
839 //
840 // Parameters:  ft1000dev  - device structure
841 //
842 //
843 // Returns:     STATUS_SUCCESS - success
844 //              STATUS_FAILURE - failure
845 //
846 // Description: This function register the network driver
847 //
848 // Notes:
849 //
850 //---------------------------------------------------------------------------
851 int reg_ft1000_netdev(struct ft1000_device *ft1000dev,
852                       struct usb_interface *intf)
853 {
854         struct net_device *netdev;
855         struct ft1000_info *pInfo;
856         int rc;
857
858         netdev = ft1000dev->net;
859         pInfo = netdev_priv(ft1000dev->net);
860         DEBUG("Enter reg_ft1000_netdev...\n");
861
862         ft1000_read_register(ft1000dev, &pInfo->AsicID, FT1000_REG_ASIC_ID);
863
864         usb_set_intfdata(intf, pInfo);
865         SET_NETDEV_DEV(netdev, &intf->dev);
866
867         rc = register_netdev(netdev);
868         if (rc) {
869                 DEBUG("reg_ft1000_netdev: could not register network device\n");
870                 free_netdev(netdev);
871                 return rc;
872         }
873
874         ft1000_create_dev(ft1000dev);
875
876         DEBUG("reg_ft1000_netdev returned\n");
877
878         pInfo->CardReady = 1;
879
880         return 0;
881 }
882
883 static int ft1000_reset(struct net_device *dev)
884 {
885         ft1000_reset_card(dev);
886         return 0;
887 }
888
889 //---------------------------------------------------------------------------
890 // Function:    ft1000_usb_transmit_complete
891 //
892 // Parameters:  urb  - transmitted usb urb
893 //
894 //
895 // Returns:     none
896 //
897 // Description: This is the callback function when a urb is transmitted
898 //
899 // Notes:
900 //
901 //---------------------------------------------------------------------------
902 static void ft1000_usb_transmit_complete(struct urb *urb)
903 {
904
905         struct ft1000_device *ft1000dev = urb->context;
906
907     //DEBUG("ft1000_usb_transmit_complete entered\n");
908
909         if (urb->status)
910                 pr_err("%s: TX status %d\n", ft1000dev->net->name, urb->status);
911
912         netif_wake_queue(ft1000dev->net);
913
914     //DEBUG("Return from ft1000_usb_transmit_complete\n");
915 }
916
917 //---------------------------------------------------------------------------
918 //
919 // Function:   ft1000_copy_down_pkt
920 // Descripton: This function will take an ethernet packet and convert it to
921 //             a Flarion packet prior to sending it to the ASIC Downlink
922 //             FIFO.
923 // Input:
924 //     dev    - device structure
925 //     packet - address of ethernet packet
926 //     len    - length of IP packet
927 // Output:
928 //     status - FAILURE
929 //              SUCCESS
930 //
931 //---------------------------------------------------------------------------
932 static int ft1000_copy_down_pkt(struct net_device *netdev, u8 * packet, u16 len)
933 {
934         struct ft1000_info *pInfo = netdev_priv(netdev);
935         struct ft1000_device *pFt1000Dev = pInfo->pFt1000Dev;
936
937         int count, ret;
938         u8 *t;
939         struct pseudo_hdr hdr;
940
941         if (!pInfo->CardReady) {
942                 DEBUG("ft1000_copy_down_pkt::Card Not Ready\n");
943                 return -ENODEV;
944         }
945
946         //DEBUG("ft1000_copy_down_pkt() entered, len = %d\n", len);
947
948         count = sizeof(struct pseudo_hdr) + len;
949         if (count > MAX_BUF_SIZE) {
950                 DEBUG("Error:ft1000_copy_down_pkt:Message Size Overflow!\n");
951                 DEBUG("size = %d\n", count);
952                 return -EINVAL;
953         }
954
955         if (count % 4)
956                 count = count + (4 - (count % 4));
957
958         memset(&hdr, 0, sizeof(struct pseudo_hdr));
959
960         hdr.length = ntohs(count);
961         hdr.source = 0x10;
962         hdr.destination = 0x20;
963         hdr.portdest = 0x20;
964         hdr.portsrc = 0x10;
965         hdr.sh_str_id = 0x91;
966         hdr.control = 0x00;
967
968         hdr.checksum = hdr.length ^ hdr.source ^ hdr.destination ^
969             hdr.portdest ^ hdr.portsrc ^ hdr.sh_str_id ^ hdr.control;
970
971         memcpy(&pFt1000Dev->tx_buf[0], &hdr, sizeof(hdr));
972         memcpy(&(pFt1000Dev->tx_buf[sizeof(struct pseudo_hdr)]), packet, len);
973
974         netif_stop_queue(netdev);
975
976         //DEBUG ("ft1000_copy_down_pkt: count = %d\n", count);
977
978         usb_fill_bulk_urb(pFt1000Dev->tx_urb,
979                           pFt1000Dev->dev,
980                           usb_sndbulkpipe(pFt1000Dev->dev,
981                                           pFt1000Dev->bulk_out_endpointAddr),
982                           pFt1000Dev->tx_buf, count,
983                           ft1000_usb_transmit_complete, (void *)pFt1000Dev);
984
985         t = (u8 *) pFt1000Dev->tx_urb->transfer_buffer;
986         //DEBUG("transfer_length=%d\n", pFt1000Dev->tx_urb->transfer_buffer_length);
987         /*for (i=0; i<count; i++ )
988            {
989            DEBUG("%x    ", *t++ );
990            } */
991
992         ret = usb_submit_urb(pFt1000Dev->tx_urb, GFP_ATOMIC);
993
994         if (ret) {
995                 DEBUG("ft1000 failed tx_urb %d\n", ret);
996                 return ret;
997         } else {
998                 pInfo->stats.tx_packets++;
999                 pInfo->stats.tx_bytes += (len + 14);
1000         }
1001
1002         //DEBUG("ft1000_copy_down_pkt() exit\n");
1003
1004         return 0;
1005 }
1006
1007
1008 //---------------------------------------------------------------------------
1009 // Function:    ft1000_start_xmit
1010 //
1011 // Parameters:  skb - socket buffer to be sent
1012 //              dev - network device
1013 //
1014 //
1015 // Returns:     none
1016 //
1017 // Description: transmit a ethernet packet
1018 //
1019 // Notes:
1020 //
1021 //---------------------------------------------------------------------------
1022 static int ft1000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1023 {
1024         struct ft1000_info *pInfo = netdev_priv(dev);
1025         struct ft1000_device *pFt1000Dev = pInfo->pFt1000Dev;
1026         u8 *pdata;
1027         int maxlen, pipe;
1028
1029         //DEBUG(" ft1000_start_xmit() entered\n");
1030
1031         if (skb == NULL) {
1032                 DEBUG("ft1000_hw: ft1000_start_xmit:skb == NULL!!!\n");
1033                 return NETDEV_TX_OK;
1034         }
1035
1036         if (pFt1000Dev->status & FT1000_STATUS_CLOSING) {
1037                 DEBUG("network driver is closed, return\n");
1038                 goto err;
1039         }
1040         //DEBUG("ft1000_start_xmit 1:length of packet = %d\n", skb->len);
1041         pipe =
1042             usb_sndbulkpipe(pFt1000Dev->dev, pFt1000Dev->bulk_out_endpointAddr);
1043         maxlen = usb_maxpacket(pFt1000Dev->dev, pipe, usb_pipeout(pipe));
1044         //DEBUG("ft1000_start_xmit 2: pipe=%d dev->maxpacket  = %d\n", pipe, maxlen);
1045
1046         pdata = (u8 *) skb->data;
1047         /*for (i=0; i<skb->len; i++)
1048            DEBUG("skb->data[%d]=%x    ", i, *(skb->data+i));
1049
1050            DEBUG("\n"); */
1051
1052         if (pInfo->mediastate == 0) {
1053                 /* Drop packet is mediastate is down */
1054                 DEBUG("ft1000_hw:ft1000_start_xmit:mediastate is down\n");
1055                 goto err;
1056         }
1057
1058         if ((skb->len < ENET_HEADER_SIZE) || (skb->len > ENET_MAX_SIZE)) {
1059                 /* Drop packet which has invalid size */
1060                 DEBUG("ft1000_hw:ft1000_start_xmit:invalid ethernet length\n");
1061                 goto err;
1062         }
1063 //mbelian
1064         ft1000_copy_down_pkt(dev, (pdata + ENET_HEADER_SIZE - 2),
1065                              skb->len - ENET_HEADER_SIZE + 2);
1066
1067 err:
1068         dev_kfree_skb(skb);
1069         //DEBUG(" ft1000_start_xmit() exit\n");
1070
1071         return NETDEV_TX_OK;
1072 }
1073
1074
1075 //---------------------------------------------------------------------------
1076 //
1077 // Function:   ft1000_copy_up_pkt
1078 // Descripton: This function will take a packet from the FIFO up link and
1079 //             convert it into an ethernet packet and deliver it to the IP stack
1080 // Input:
1081 //     urb - the receving usb urb
1082 //
1083 // Output:
1084 //     status - FAILURE
1085 //              SUCCESS
1086 //
1087 //---------------------------------------------------------------------------
1088 static int ft1000_copy_up_pkt (struct urb *urb)
1089 {
1090         struct ft1000_info *info = urb->context;
1091     struct ft1000_device *ft1000dev = info->pFt1000Dev;
1092     struct net_device *net = ft1000dev->net;
1093
1094     u16 tempword;
1095     u16 len;
1096     u16 lena; //mbelian
1097     struct sk_buff *skb;
1098     u16 i;
1099     u8 *pbuffer=NULL;
1100     u8 *ptemp=NULL;
1101     u16 *chksum;
1102
1103
1104     //DEBUG("ft1000_copy_up_pkt entered\n");
1105
1106     if ( ft1000dev->status & FT1000_STATUS_CLOSING)
1107     {
1108         DEBUG("network driver is closed, return\n");
1109         return STATUS_SUCCESS;
1110     }
1111
1112     // Read length
1113     len = urb->transfer_buffer_length;
1114     lena = urb->actual_length; //mbelian
1115     //DEBUG("ft1000_copy_up_pkt: transfer_buffer_length=%d, actual_buffer_len=%d\n",
1116       //       urb->transfer_buffer_length, urb->actual_length);
1117
1118     chksum = (u16 *)ft1000dev->rx_buf;
1119
1120     tempword = *chksum++;
1121     for (i=1; i<7; i++)
1122     {
1123         tempword ^= *chksum++;
1124     }
1125
1126     if  (tempword != *chksum)
1127     {
1128         info->stats.rx_errors ++;
1129         ft1000_submit_rx_urb(info);
1130         return STATUS_FAILURE;
1131     }
1132
1133
1134     //DEBUG("ft1000_copy_up_pkt: checksum is correct %x\n", *chksum);
1135
1136     skb = dev_alloc_skb(len+12+2);
1137
1138     if (skb == NULL)
1139     {
1140         DEBUG("ft1000_copy_up_pkt: No Network buffers available\n");
1141         info->stats.rx_errors++;
1142         ft1000_submit_rx_urb(info);
1143         return STATUS_FAILURE;
1144     }
1145
1146     pbuffer = (u8 *)skb_put(skb, len+12);
1147
1148     //subtract the number of bytes read already
1149     ptemp = pbuffer;
1150
1151     // fake MAC address
1152     *pbuffer++ = net->dev_addr[0];
1153     *pbuffer++ = net->dev_addr[1];
1154     *pbuffer++ = net->dev_addr[2];
1155     *pbuffer++ = net->dev_addr[3];
1156     *pbuffer++ = net->dev_addr[4];
1157     *pbuffer++ = net->dev_addr[5];
1158     *pbuffer++ = 0x00;
1159     *pbuffer++ = 0x07;
1160     *pbuffer++ = 0x35;
1161     *pbuffer++ = 0xff;
1162     *pbuffer++ = 0xff;
1163     *pbuffer++ = 0xfe;
1164
1165
1166
1167
1168         memcpy(pbuffer, ft1000dev->rx_buf+sizeof(struct pseudo_hdr), len-sizeof(struct pseudo_hdr));
1169
1170     //DEBUG("ft1000_copy_up_pkt: Data passed to Protocol layer\n");
1171     /*for (i=0; i<len+12; i++)
1172     {
1173         DEBUG("ft1000_copy_up_pkt: Protocol Data: 0x%x\n ", *ptemp++);
1174     }*/
1175
1176     skb->dev = net;
1177
1178     skb->protocol = eth_type_trans(skb, net);
1179     skb->ip_summed = CHECKSUM_UNNECESSARY;
1180     netif_rx(skb);
1181
1182     info->stats.rx_packets++;
1183     // Add on 12 bytes for MAC address which was removed
1184     info->stats.rx_bytes += (lena+12); //mbelian
1185
1186     ft1000_submit_rx_urb(info);
1187     //DEBUG("ft1000_copy_up_pkt exited\n");
1188     return SUCCESS;
1189 }
1190
1191 //---------------------------------------------------------------------------
1192 //
1193 // Function:   ft1000_submit_rx_urb
1194 // Descripton: the receiving function of the network driver
1195 //
1196 // Input:
1197 //     info - a private structure contains the device information
1198 //
1199 // Output:
1200 //     status - FAILURE
1201 //              SUCCESS
1202 //
1203 //---------------------------------------------------------------------------
1204 static int ft1000_submit_rx_urb(struct ft1000_info *info)
1205 {
1206     int result;
1207     struct ft1000_device *pFt1000Dev = info->pFt1000Dev;
1208
1209
1210     //DEBUG ("ft1000_submit_rx_urb entered: sizeof rx_urb is %d\n", sizeof(*pFt1000Dev->rx_urb));
1211     if ( pFt1000Dev->status & FT1000_STATUS_CLOSING)
1212     {
1213         DEBUG("network driver is closed, return\n");
1214         //usb_kill_urb(pFt1000Dev->rx_urb); //mbelian
1215         return -ENODEV;
1216     }
1217
1218     usb_fill_bulk_urb(pFt1000Dev->rx_urb,
1219             pFt1000Dev->dev,
1220             usb_rcvbulkpipe(pFt1000Dev->dev, pFt1000Dev->bulk_in_endpointAddr),
1221             pFt1000Dev->rx_buf,
1222             MAX_BUF_SIZE,
1223             (usb_complete_t)ft1000_copy_up_pkt,
1224             info);
1225
1226
1227     if((result = usb_submit_urb(pFt1000Dev->rx_urb, GFP_ATOMIC)))
1228     {
1229         printk("ft1000_submit_rx_urb: submitting rx_urb %d failed\n", result);
1230         return result;
1231     }
1232
1233     //DEBUG("ft1000_submit_rx_urb exit: result=%d\n", result);
1234
1235         return 0;
1236 }
1237
1238 //---------------------------------------------------------------------------
1239 // Function:    ft1000_open
1240 //
1241 // Parameters:
1242 //              dev - network device
1243 //
1244 //
1245 // Returns:     none
1246 //
1247 // Description: open the network driver
1248 //
1249 // Notes:
1250 //
1251 //---------------------------------------------------------------------------
1252 static int ft1000_open (struct net_device *dev)
1253 {
1254         struct ft1000_info *pInfo = netdev_priv(dev);
1255     struct timeval tv; //mbelian
1256         int ret;
1257
1258     DEBUG("ft1000_open is called for card %d\n", pInfo->CardNumber);
1259     //DEBUG("ft1000_open: dev->addr=%x, dev->addr_len=%d\n", dev->addr, dev->addr_len);
1260
1261         pInfo->stats.rx_bytes = 0; //mbelian
1262         pInfo->stats.tx_bytes = 0; //mbelian
1263         pInfo->stats.rx_packets = 0; //mbelian
1264         pInfo->stats.tx_packets = 0; //mbelian
1265         do_gettimeofday(&tv);
1266     pInfo->ConTm = tv.tv_sec;
1267         pInfo->ProgConStat = 0; //mbelian
1268
1269
1270     netif_start_queue(dev);
1271
1272     netif_carrier_on(dev); //mbelian
1273
1274         ret = ft1000_submit_rx_urb(pInfo);
1275
1276         return ret;
1277 }
1278
1279 //---------------------------------------------------------------------------
1280 // Function:    ft1000_close
1281 //
1282 // Parameters:
1283 //              net - network device
1284 //
1285 //
1286 // Returns:     none
1287 //
1288 // Description: close the network driver
1289 //
1290 // Notes:
1291 //
1292 //---------------------------------------------------------------------------
1293 int ft1000_close(struct net_device *net)
1294 {
1295         struct ft1000_info *pInfo = netdev_priv(net);
1296     struct ft1000_device *ft1000dev = pInfo->pFt1000Dev;
1297
1298     //DEBUG ("ft1000_close: netdev->refcnt=%d\n", net->refcnt);
1299
1300     ft1000dev->status |= FT1000_STATUS_CLOSING;
1301     
1302     //DEBUG("ft1000_close: calling usb_kill_urb \n");
1303
1304     DEBUG("ft1000_close: pInfo=%p, ft1000dev=%p\n", pInfo, ft1000dev);
1305     netif_carrier_off(net);//mbelian
1306     netif_stop_queue(net);
1307     //DEBUG("ft1000_close: netif_stop_queue called\n");
1308     ft1000dev->status &= ~FT1000_STATUS_CLOSING;
1309
1310    pInfo->ProgConStat = 0xff; //mbelian
1311
1312
1313     return 0;
1314 }
1315
1316 static struct net_device_stats *ft1000_netdev_stats(struct net_device *dev)
1317 {
1318         struct ft1000_info *info = netdev_priv(dev);
1319
1320         return &(info->stats); //mbelian
1321 }
1322
1323
1324 /*********************************************************************************
1325 Jim
1326 */
1327
1328
1329 //---------------------------------------------------------------------------
1330 //
1331 // Function:   ft1000_chkcard
1332 // Descripton: This function will check if the device is presently available on
1333 //             the system.
1334 // Input:
1335 //     dev    - device structure
1336 // Output:
1337 //     status - FALSE (device is not present)
1338 //              TRUE  (device is present)
1339 //
1340 //---------------------------------------------------------------------------
1341 static int ft1000_chkcard (struct ft1000_device *dev) {
1342     u16 tempword;
1343     u16 status;
1344         struct ft1000_info *info = netdev_priv(dev->net);
1345
1346     if (info->fCondResetPend)
1347     {
1348         DEBUG("ft1000_hw:ft1000_chkcard:Card is being reset, return FALSE\n");
1349         return TRUE;
1350     }
1351
1352     // Mask register is used to check for device presence since it is never
1353     // set to zero.
1354     status = ft1000_read_register(dev, &tempword, FT1000_REG_SUP_IMASK);
1355     //DEBUG("ft1000_hw:ft1000_chkcard: read FT1000_REG_SUP_IMASK = %x\n", tempword);
1356     if (tempword == 0) {
1357         DEBUG("ft1000_hw:ft1000_chkcard: IMASK = 0 Card not detected\n");
1358         return FALSE;
1359     }
1360
1361     // The system will return the value of 0xffff for the version register
1362     // if the device is not present.
1363     status = ft1000_read_register(dev, &tempword, FT1000_REG_ASIC_ID);
1364     //DEBUG("ft1000_hw:ft1000_chkcard: read FT1000_REG_ASIC_ID = %x\n", tempword);
1365     if (tempword != 0x1b01 ){
1366         dev->status |= FT1000_STATUS_CLOSING; //mbelian
1367         DEBUG("ft1000_hw:ft1000_chkcard: Version = 0xffff Card not detected\n");
1368         return FALSE;
1369     }
1370     return TRUE;
1371 }
1372
1373
1374
1375 //---------------------------------------------------------------------------
1376 //
1377 // Function:   ft1000_receive_cmd
1378 // Descripton: This function will read a message from the dpram area.
1379 // Input:
1380 //    dev - network device structure
1381 //    pbuffer - caller supply address to buffer
1382 //    pnxtph - pointer to next pseudo header
1383 // Output:
1384 //   Status = 0 (unsuccessful)
1385 //          = 1 (successful)
1386 //
1387 //---------------------------------------------------------------------------
1388 static bool ft1000_receive_cmd (struct ft1000_device *dev, u16 *pbuffer, int maxsz, u16 *pnxtph) {
1389     u16 size, ret;
1390     u16 *ppseudohdr;
1391     int i;
1392     u16 tempword;
1393
1394     ret = ft1000_read_dpram16(dev, FT1000_MAG_PH_LEN, (u8 *)&size, FT1000_MAG_PH_LEN_INDX);
1395     size = ntohs(size) + PSEUDOSZ;
1396     if (size > maxsz) {
1397         DEBUG("FT1000:ft1000_receive_cmd:Invalid command length = %d\n", size);
1398         return FALSE;
1399     }
1400     else {
1401         ppseudohdr = (u16 *)pbuffer;
1402         ft1000_write_register(dev, FT1000_DPRAM_MAG_RX_BASE, FT1000_REG_DPRAM_ADDR);
1403         ret = ft1000_read_register(dev, pbuffer, FT1000_REG_MAG_DPDATAH);
1404         //DEBUG("ft1000_hw:received data = 0x%x\n", *pbuffer);
1405         pbuffer++;
1406         ft1000_write_register(dev,  FT1000_DPRAM_MAG_RX_BASE+1, FT1000_REG_DPRAM_ADDR);
1407         for (i=0; i<=(size>>2); i++) {
1408             ret = ft1000_read_register(dev, pbuffer, FT1000_REG_MAG_DPDATAL);
1409             pbuffer++;
1410             ret = ft1000_read_register(dev, pbuffer, FT1000_REG_MAG_DPDATAH);
1411             pbuffer++;
1412         }
1413         //copy odd aligned word
1414         ret = ft1000_read_register(dev, pbuffer, FT1000_REG_MAG_DPDATAL);
1415         //DEBUG("ft1000_hw:received data = 0x%x\n", *pbuffer);
1416         pbuffer++;
1417         ret = ft1000_read_register(dev, pbuffer, FT1000_REG_MAG_DPDATAH);
1418         //DEBUG("ft1000_hw:received data = 0x%x\n", *pbuffer);
1419         pbuffer++;
1420         if (size & 0x0001) {
1421             //copy odd byte from fifo
1422             ret = ft1000_read_register(dev, &tempword, FT1000_REG_DPRAM_DATA);
1423             *pbuffer = ntohs(tempword);
1424         }
1425
1426         // Check if pseudo header checksum is good
1427         // Calculate pseudo header checksum
1428         tempword = *ppseudohdr++;
1429         for (i=1; i<7; i++) {
1430             tempword ^= *ppseudohdr++;
1431         }
1432         if ( (tempword != *ppseudohdr) ) {
1433             return FALSE;
1434         }
1435
1436         return TRUE;
1437     }
1438 }
1439
1440
1441 static int ft1000_dsp_prov(void *arg)
1442 {
1443     struct ft1000_device *dev = (struct ft1000_device *)arg;
1444         struct ft1000_info *info = netdev_priv(dev->net);
1445     u16 tempword;
1446     u16 len;
1447     u16 i=0;
1448         struct prov_record *ptr;
1449         struct pseudo_hdr *ppseudo_hdr;
1450     u16 *pmsg;
1451     u16 status;
1452     u16 TempShortBuf [256];
1453
1454     DEBUG("*** DspProv Entered\n");
1455
1456     while (list_empty(&info->prov_list) == 0)
1457     {
1458         DEBUG("DSP Provisioning List Entry\n");
1459
1460         // Check if doorbell is available
1461         DEBUG("check if doorbell is cleared\n");
1462         status = ft1000_read_register (dev, &tempword, FT1000_REG_DOORBELL);
1463         if (status)
1464         {
1465                 DEBUG("ft1000_dsp_prov::ft1000_read_register error\n");
1466             break;
1467         }
1468
1469         while (tempword & FT1000_DB_DPRAM_TX) {
1470             mdelay(10);
1471             i++;
1472             if (i==10) {
1473                DEBUG("FT1000:ft1000_dsp_prov:message drop\n");
1474                return STATUS_FAILURE;
1475             }
1476             ft1000_read_register(dev, &tempword, FT1000_REG_DOORBELL);
1477         }
1478
1479         if ( !(tempword & FT1000_DB_DPRAM_TX) ) {
1480             DEBUG("*** Provision Data Sent to DSP\n");
1481
1482             // Send provisioning data
1483                 ptr = list_entry(info->prov_list.next, struct prov_record, list);
1484             len = *(u16 *)ptr->pprov_data;
1485             len = htons(len);
1486             len += PSEUDOSZ;
1487
1488             pmsg = (u16 *)ptr->pprov_data;
1489                 ppseudo_hdr = (struct pseudo_hdr *)pmsg;
1490             // Insert slow queue sequence number
1491             ppseudo_hdr->seq_num = info->squeseqnum++;
1492             ppseudo_hdr->portsrc = 0;
1493             // Calculate new checksum
1494             ppseudo_hdr->checksum = *pmsg++;
1495             //DEBUG("checksum = 0x%x\n", ppseudo_hdr->checksum);
1496             for (i=1; i<7; i++) {
1497                 ppseudo_hdr->checksum ^= *pmsg++;
1498                 //DEBUG("checksum = 0x%x\n", ppseudo_hdr->checksum);
1499             }
1500
1501             TempShortBuf[0] = 0;
1502             TempShortBuf[1] = htons (len);
1503             memcpy(&TempShortBuf[2], ppseudo_hdr, len);
1504
1505             status = ft1000_write_dpram32 (dev, 0, (u8 *)&TempShortBuf[0], (unsigned short)(len+2));
1506             status = ft1000_write_register (dev, FT1000_DB_DPRAM_TX, FT1000_REG_DOORBELL);
1507
1508             list_del(&ptr->list);
1509             kfree(ptr->pprov_data);
1510             kfree(ptr);
1511         }
1512         msleep(10);
1513     }
1514
1515     DEBUG("DSP Provisioning List Entry finished\n");
1516
1517     msleep(100);
1518
1519     info->fProvComplete = 1;
1520     info->CardReady = 1;
1521     return STATUS_SUCCESS;
1522
1523 }
1524
1525
1526 static int ft1000_proc_drvmsg (struct ft1000_device *dev, u16 size) {
1527         struct ft1000_info *info = netdev_priv(dev->net);
1528     u16 msgtype;
1529     u16 tempword;
1530         struct media_msg *pmediamsg;
1531         struct dsp_init_msg *pdspinitmsg;
1532         struct drv_msg *pdrvmsg;
1533     u16 i;
1534         struct pseudo_hdr *ppseudo_hdr;
1535     u16 *pmsg;
1536     u16 status;
1537     union {
1538         u8  byte[2];
1539         u16 wrd;
1540     } convert;
1541
1542
1543     char *cmdbuffer = kmalloc(1600, GFP_KERNEL);
1544     if (!cmdbuffer)
1545         return STATUS_FAILURE;
1546
1547     status = ft1000_read_dpram32(dev, 0x200, cmdbuffer, size);
1548
1549
1550
1551 #ifdef JDEBUG
1552         DEBUG("ft1000_proc_drvmsg:cmdbuffer\n");
1553         for(i = 0; i < size; i+=5)
1554         {
1555             if( (i + 5) < size )
1556                 DEBUG("0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n", cmdbuffer[i], cmdbuffer[i+1], cmdbuffer[i+2], cmdbuffer[i+3], cmdbuffer[i+4]);
1557             else
1558             {
1559                 for (j = i; j < size; j++)
1560                 DEBUG("0x%x ", cmdbuffer[j]);
1561                 DEBUG("\n");
1562                 break;
1563             }
1564         }
1565 #endif
1566         pdrvmsg = (struct drv_msg *)&cmdbuffer[2];
1567         msgtype = ntohs(pdrvmsg->type);
1568         DEBUG("ft1000_proc_drvmsg:Command message type = 0x%x\n", msgtype);
1569         switch (msgtype) {
1570             case MEDIA_STATE: {
1571                 DEBUG("ft1000_proc_drvmsg:Command message type = MEDIA_STATE");
1572
1573                 pmediamsg = (struct media_msg *)&cmdbuffer[0];
1574                 if (info->ProgConStat != 0xFF) {
1575                     if (pmediamsg->state) {
1576                         DEBUG("Media is up\n");
1577                         if (info->mediastate == 0) {
1578                             if ( info->NetDevRegDone )
1579                             {
1580                                 //netif_carrier_on(dev->net);//mbelian
1581                                 netif_wake_queue(dev->net);
1582                             }
1583                             info->mediastate = 1;
1584                             /*do_gettimeofday(&tv);
1585                             info->ConTm = tv.tv_sec;*/ //mbelian
1586                         }
1587                     }
1588                     else {
1589                         DEBUG("Media is down\n");
1590                         if (info->mediastate == 1) {
1591                             info->mediastate = 0;
1592                             if ( info->NetDevRegDone )
1593                             {
1594                                 //netif_carrier_off(dev->net); mbelian
1595                                 //netif_stop_queue(dev->net);
1596                             }
1597                             info->ConTm = 0;
1598                         }
1599                     }
1600                 }
1601                 else {
1602                     DEBUG("Media is down\n");
1603                     if (info->mediastate == 1) {
1604                         info->mediastate = 0;
1605                         if ( info->NetDevRegDone)
1606                         {
1607                             //netif_carrier_off(dev->net); //mbelian
1608                             //netif_stop_queue(dev->net);
1609                         }
1610                         info->ConTm = 0;
1611                     }
1612                 }
1613                 break;
1614             }
1615             case DSP_INIT_MSG: {
1616                 DEBUG("ft1000_proc_drvmsg:Command message type = DSP_INIT_MSG");
1617
1618                 pdspinitmsg = (struct dsp_init_msg *)&cmdbuffer[2];
1619                 memcpy(info->DspVer, pdspinitmsg->DspVer, DSPVERSZ);
1620                 DEBUG("DSPVER = 0x%2x 0x%2x 0x%2x 0x%2x\n", info->DspVer[0], info->DspVer[1], info->DspVer[2], info->DspVer[3]);
1621                 memcpy(info->HwSerNum, pdspinitmsg->HwSerNum, HWSERNUMSZ);
1622                 memcpy(info->Sku, pdspinitmsg->Sku, SKUSZ);
1623                 memcpy(info->eui64, pdspinitmsg->eui64, EUISZ);
1624                 DEBUG("EUI64=%2x.%2x.%2x.%2x.%2x.%2x.%2x.%2x\n", info->eui64[0],info->eui64[1], info->eui64[2], info->eui64[3], info->eui64[4], info->eui64[5],info->eui64[6], info->eui64[7]);
1625                 dev->net->dev_addr[0] = info->eui64[0];
1626                 dev->net->dev_addr[1] = info->eui64[1];
1627                 dev->net->dev_addr[2] = info->eui64[2];
1628                 dev->net->dev_addr[3] = info->eui64[5];
1629                 dev->net->dev_addr[4] = info->eui64[6];
1630                 dev->net->dev_addr[5] = info->eui64[7];
1631
1632                 if (ntohs(pdspinitmsg->length) == (sizeof(struct dsp_init_msg) - 20)) {
1633                     memcpy(info->ProductMode, pdspinitmsg->ProductMode, MODESZ);
1634                     memcpy(info->RfCalVer, pdspinitmsg->RfCalVer, CALVERSZ);
1635                     memcpy(info->RfCalDate, pdspinitmsg->RfCalDate, CALDATESZ);
1636                     DEBUG("RFCalVer = 0x%2x 0x%2x\n", info->RfCalVer[0], info->RfCalVer[1]);
1637                 }
1638                 break;
1639             }
1640             case DSP_PROVISION: {
1641                 DEBUG("ft1000_proc_drvmsg:Command message type = DSP_PROVISION\n");
1642
1643                 // kick off dspprov routine to start provisioning
1644                 // Send provisioning data to DSP
1645                 if (list_empty(&info->prov_list) == 0)
1646                 {
1647                     info->fProvComplete = 0;
1648                     status = ft1000_dsp_prov(dev);
1649                     if (status != STATUS_SUCCESS)
1650                         goto out;
1651                 }
1652                 else {
1653                     info->fProvComplete = 1;
1654                     status = ft1000_write_register (dev, FT1000_DB_HB, FT1000_REG_DOORBELL);
1655                     DEBUG("FT1000:drivermsg:No more DSP provisioning data in dsp image\n");
1656                 }
1657                 DEBUG("ft1000_proc_drvmsg:DSP PROVISION is done\n");
1658                 break;
1659             }
1660             case DSP_STORE_INFO: {
1661                 DEBUG("ft1000_proc_drvmsg:Command message type = DSP_STORE_INFO");
1662
1663                 DEBUG("FT1000:drivermsg:Got DSP_STORE_INFO\n");
1664                 tempword = ntohs(pdrvmsg->length);
1665                 info->DSPInfoBlklen = tempword;
1666                 if (tempword < (MAX_DSP_SESS_REC-4) ) {
1667                     pmsg = (u16 *)&pdrvmsg->data[0];
1668                     for (i=0; i<((tempword+1)/2); i++) {
1669                         DEBUG("FT1000:drivermsg:dsp info data = 0x%x\n", *pmsg);
1670                         info->DSPInfoBlk[i+10] = *pmsg++;
1671                     }
1672                 }
1673                 else {
1674                     info->DSPInfoBlklen = 0;
1675                 }
1676                 break;
1677             }
1678             case DSP_GET_INFO: {
1679                 DEBUG("FT1000:drivermsg:Got DSP_GET_INFO\n");
1680                 // copy dsp info block to dsp
1681                 info->DrvMsgPend = 1;
1682                 // allow any outstanding ioctl to finish
1683                 mdelay(10);
1684                 status = ft1000_read_register(dev, &tempword, FT1000_REG_DOORBELL);
1685                 if (tempword & FT1000_DB_DPRAM_TX) {
1686                     mdelay(10);
1687                     status = ft1000_read_register(dev, &tempword, FT1000_REG_DOORBELL);
1688                     if (tempword & FT1000_DB_DPRAM_TX) {
1689                         mdelay(10);
1690                             status = ft1000_read_register(dev, &tempword, FT1000_REG_DOORBELL);
1691                             if (tempword & FT1000_DB_DPRAM_TX) {
1692                                 break;
1693                             }
1694                     }
1695                 }
1696
1697                 // Put message into Slow Queue
1698                 // Form Pseudo header
1699                 pmsg = (u16 *)info->DSPInfoBlk;
1700                 *pmsg++ = 0;
1701                 *pmsg++ = htons(info->DSPInfoBlklen+20+info->DSPInfoBlklen);
1702                 ppseudo_hdr = (struct pseudo_hdr *)(u16 *)&info->DSPInfoBlk[2];
1703                 ppseudo_hdr->length = htons(info->DSPInfoBlklen+4+info->DSPInfoBlklen);
1704                 ppseudo_hdr->source = 0x10;
1705                 ppseudo_hdr->destination = 0x20;
1706                 ppseudo_hdr->portdest = 0;
1707                 ppseudo_hdr->portsrc = 0;
1708                 ppseudo_hdr->sh_str_id = 0;
1709                 ppseudo_hdr->control = 0;
1710                 ppseudo_hdr->rsvd1 = 0;
1711                 ppseudo_hdr->rsvd2 = 0;
1712                 ppseudo_hdr->qos_class = 0;
1713                 // Insert slow queue sequence number
1714                 ppseudo_hdr->seq_num = info->squeseqnum++;
1715                 // Insert application id
1716                 ppseudo_hdr->portsrc = 0;
1717                 // Calculate new checksum
1718                 ppseudo_hdr->checksum = *pmsg++;
1719                 for (i=1; i<7; i++) {
1720                     ppseudo_hdr->checksum ^= *pmsg++;
1721                 }
1722                 info->DSPInfoBlk[10] = 0x7200;
1723                 info->DSPInfoBlk[11] = htons(info->DSPInfoBlklen);
1724                 status = ft1000_write_dpram32 (dev, 0, (u8 *)&info->DSPInfoBlk[0], (unsigned short)(info->DSPInfoBlklen+22));
1725                 status = ft1000_write_register (dev, FT1000_DB_DPRAM_TX, FT1000_REG_DOORBELL);
1726                 info->DrvMsgPend = 0;
1727
1728                 break;
1729             }
1730
1731           case GET_DRV_ERR_RPT_MSG: {
1732               DEBUG("FT1000:drivermsg:Got GET_DRV_ERR_RPT_MSG\n");
1733               // copy driver error message to dsp
1734               info->DrvMsgPend = 1;
1735               // allow any outstanding ioctl to finish
1736               mdelay(10);
1737               status = ft1000_read_register(dev, &tempword, FT1000_REG_DOORBELL);
1738               if (tempword & FT1000_DB_DPRAM_TX) {
1739                   mdelay(10);
1740                   status = ft1000_read_register(dev, &tempword, FT1000_REG_DOORBELL);
1741                   if (tempword & FT1000_DB_DPRAM_TX) {
1742                       mdelay(10);
1743                   }
1744               }
1745
1746               if ( (tempword & FT1000_DB_DPRAM_TX) == 0) {
1747                   // Put message into Slow Queue
1748                   // Form Pseudo header
1749                   pmsg = (u16 *)&tempbuffer[0];
1750                         ppseudo_hdr = (struct pseudo_hdr *)pmsg;
1751                   ppseudo_hdr->length = htons(0x0012);
1752                   ppseudo_hdr->source = 0x10;
1753                   ppseudo_hdr->destination = 0x20;
1754                   ppseudo_hdr->portdest = 0;
1755                   ppseudo_hdr->portsrc = 0;
1756                   ppseudo_hdr->sh_str_id = 0;
1757                   ppseudo_hdr->control = 0;
1758                   ppseudo_hdr->rsvd1 = 0;
1759                   ppseudo_hdr->rsvd2 = 0;
1760                   ppseudo_hdr->qos_class = 0;
1761                   // Insert slow queue sequence number
1762                   ppseudo_hdr->seq_num = info->squeseqnum++;
1763                   // Insert application id
1764                   ppseudo_hdr->portsrc = 0;
1765                   // Calculate new checksum
1766                   ppseudo_hdr->checksum = *pmsg++;
1767                   for (i=1; i<7; i++) {
1768                       ppseudo_hdr->checksum ^= *pmsg++;
1769                   }
1770                   pmsg = (u16 *)&tempbuffer[16];
1771                   *pmsg++ = htons(RSP_DRV_ERR_RPT_MSG);
1772                   *pmsg++ = htons(0x000e);
1773                   *pmsg++ = htons(info->DSP_TIME[0]);
1774                   *pmsg++ = htons(info->DSP_TIME[1]);
1775                   *pmsg++ = htons(info->DSP_TIME[2]);
1776                   *pmsg++ = htons(info->DSP_TIME[3]);
1777                   convert.byte[0] = info->DspVer[0];
1778                   convert.byte[1] = info->DspVer[1];
1779                   *pmsg++ = convert.wrd;
1780                   convert.byte[0] = info->DspVer[2];
1781                   convert.byte[1] = info->DspVer[3];
1782                   *pmsg++ = convert.wrd;
1783                   *pmsg++ = htons(info->DrvErrNum);
1784
1785                   card_send_command (dev, (unsigned char*)&tempbuffer[0], (u16)(0x0012 + PSEUDOSZ));
1786                   info->DrvErrNum = 0;
1787               }
1788               info->DrvMsgPend = 0;
1789
1790           break;
1791       }
1792
1793       default:
1794           break;
1795         }
1796
1797
1798     status = STATUS_SUCCESS;
1799 out:
1800     kfree(cmdbuffer);
1801     DEBUG("return from ft1000_proc_drvmsg\n");
1802     return status;
1803 }
1804
1805
1806
1807 int ft1000_poll(void* dev_id) {
1808
1809     struct ft1000_device *dev = (struct ft1000_device *)dev_id;
1810         struct ft1000_info *info = netdev_priv(dev->net);
1811
1812     u16 tempword;
1813     u16 status;
1814     u16 size;
1815     int i;
1816     u16 data;
1817     u16 modulo;
1818     u16 portid;
1819     u16 nxtph;
1820         struct dpram_blk *pdpram_blk;
1821         struct pseudo_hdr *ppseudo_hdr;
1822     unsigned long flags;
1823
1824     //DEBUG("Enter ft1000_poll...\n");
1825     if (ft1000_chkcard(dev) == FALSE) {
1826         DEBUG("ft1000_poll::ft1000_chkcard: failed\n");
1827         return STATUS_FAILURE;
1828     }
1829
1830     status = ft1000_read_register (dev, &tempword, FT1000_REG_DOORBELL);
1831    // DEBUG("ft1000_poll: read FT1000_REG_DOORBELL message 0x%x\n", tempword);
1832
1833     if ( !status )
1834     {
1835
1836         if (tempword & FT1000_DB_DPRAM_RX) {
1837             //DEBUG("ft1000_poll: FT1000_REG_DOORBELL message type:  FT1000_DB_DPRAM_RX\n");
1838
1839             status = ft1000_read_dpram16(dev, 0x200, (u8 *)&data, 0);
1840             //DEBUG("ft1000_poll:FT1000_DB_DPRAM_RX:ft1000_read_dpram16:size = 0x%x\n", data);
1841             size = ntohs(data) + 16 + 2; //wai
1842             if (size % 4) {
1843                 modulo = 4 - (size % 4);
1844                 size = size + modulo;
1845             }
1846             status = ft1000_read_dpram16(dev, 0x201, (u8 *)&portid, 1);
1847             portid &= 0xff;
1848             //DEBUG("ft1000_poll: FT1000_REG_DOORBELL message type: FT1000_DB_DPRAM_RX : portid 0x%x\n", portid);
1849
1850             if (size < MAX_CMD_SQSIZE) {
1851                 switch (portid)
1852                 {
1853                     case DRIVERID:
1854                         DEBUG("ft1000_poll: FT1000_REG_DOORBELL message type: FT1000_DB_DPRAM_RX : portid DRIVERID\n");
1855
1856                         status = ft1000_proc_drvmsg (dev, size);
1857                         if (status != STATUS_SUCCESS )
1858                             return status;
1859                         break;
1860                     case DSPBCMSGID:
1861                         // This is a dsp broadcast message
1862                         // Check which application has registered for dsp broadcast messages
1863                         //DEBUG("ft1000_poll: FT1000_REG_DOORBELL message type: FT1000_DB_DPRAM_RX : portid DSPBCMSGID\n");
1864
1865                         for (i=0; i<MAX_NUM_APP; i++) {
1866                            if ( (info->app_info[i].DspBCMsgFlag) && (info->app_info[i].fileobject) &&
1867                                          (info->app_info[i].NumOfMsg < MAX_MSG_LIMIT)  )
1868                            {
1869                                //DEBUG("Dsp broadcast message detected for app id %d\n", i);
1870                                nxtph = FT1000_DPRAM_RX_BASE + 2;
1871                                pdpram_blk = ft1000_get_buffer (&freercvpool);
1872                                if (pdpram_blk != NULL) {
1873                                    if ( ft1000_receive_cmd(dev, pdpram_blk->pbuffer, MAX_CMD_SQSIZE, &nxtph) ) {
1874                                         ppseudo_hdr = (struct pseudo_hdr *)pdpram_blk->pbuffer;
1875                                        // Put message into the appropriate application block
1876                                        info->app_info[i].nRxMsg++;
1877                                        spin_lock_irqsave(&free_buff_lock, flags);
1878                                        list_add_tail(&pdpram_blk->list, &info->app_info[i].app_sqlist);
1879                                        info->app_info[i].NumOfMsg++;
1880                                        spin_unlock_irqrestore(&free_buff_lock, flags);
1881                                        wake_up_interruptible(&info->app_info[i].wait_dpram_msg);
1882                                    }
1883                                    else {
1884                                        info->app_info[i].nRxMsgMiss++;
1885                                        // Put memory back to free pool
1886                                        ft1000_free_buffer(pdpram_blk, &freercvpool);
1887                                        DEBUG("pdpram_blk::ft1000_get_buffer NULL\n");
1888                                    }
1889                                }
1890                                else {
1891                                    DEBUG("Out of memory in free receive command pool\n");
1892                                    info->app_info[i].nRxMsgMiss++;
1893                                }//endof if (pdpram_blk != NULL)
1894                            }//endof if
1895                            //else
1896                            //    DEBUG("app_info mismatch\n");
1897                         }// endof for
1898                         break;
1899                     default:
1900                         pdpram_blk = ft1000_get_buffer (&freercvpool);
1901                         //DEBUG("Memory allocated = 0x%8x\n", (u32)pdpram_blk);
1902                         if (pdpram_blk != NULL) {
1903                            if ( ft1000_receive_cmd(dev, pdpram_blk->pbuffer, MAX_CMD_SQSIZE, &nxtph) ) {
1904                                 ppseudo_hdr = (struct pseudo_hdr *)pdpram_blk->pbuffer;
1905                                // Search for correct application block
1906                                for (i=0; i<MAX_NUM_APP; i++) {
1907                                    if (info->app_info[i].app_id == ppseudo_hdr->portdest) {
1908                                        break;
1909                                    }
1910                                }
1911
1912                                if (i == MAX_NUM_APP) {
1913                                    DEBUG("FT1000:ft1000_parse_dpram_msg: No application matching id = %d\n", ppseudo_hdr->portdest);
1914                                    // Put memory back to free pool
1915                                    ft1000_free_buffer(pdpram_blk, &freercvpool);
1916                                }
1917                                else {
1918                                    if (info->app_info[i].NumOfMsg > MAX_MSG_LIMIT) {
1919                                        // Put memory back to free pool
1920                                        ft1000_free_buffer(pdpram_blk, &freercvpool);
1921                                    }
1922                                    else {
1923                                        info->app_info[i].nRxMsg++;
1924                                        // Put message into the appropriate application block
1925                                        //pxu spin_lock_irqsave(&free_buff_lock, flags);
1926                                        list_add_tail(&pdpram_blk->list, &info->app_info[i].app_sqlist);
1927                                        info->app_info[i].NumOfMsg++;
1928                                        //pxu spin_unlock_irqrestore(&free_buff_lock, flags);
1929                                        //pxu wake_up_interruptible(&info->app_info[i].wait_dpram_msg);
1930                                    }
1931                                }
1932                            }
1933                            else {
1934                                // Put memory back to free pool
1935                                ft1000_free_buffer(pdpram_blk, &freercvpool);
1936                            }
1937                         }
1938                         else {
1939                             DEBUG("Out of memory in free receive command pool\n");
1940                         }
1941                         break;
1942                 } //end of switch
1943             } //endof if (size < MAX_CMD_SQSIZE)
1944             else {
1945                 DEBUG("FT1000:dpc:Invalid total length for SlowQ = %d\n", size);
1946             }
1947             status = ft1000_write_register (dev, FT1000_DB_DPRAM_RX, FT1000_REG_DOORBELL);
1948         }
1949         else if (tempword & FT1000_DSP_ASIC_RESET) {
1950             //DEBUG("ft1000_poll: FT1000_REG_DOORBELL message type:  FT1000_DSP_ASIC_RESET\n");
1951
1952             // Let's reset the ASIC from the Host side as well
1953             status = ft1000_write_register (dev, ASIC_RESET_BIT, FT1000_REG_RESET);
1954             status = ft1000_read_register (dev, &tempword, FT1000_REG_RESET);
1955             i = 0;
1956             while (tempword & ASIC_RESET_BIT) {
1957                 status = ft1000_read_register (dev, &tempword, FT1000_REG_RESET);
1958                 msleep(10);
1959                 i++;
1960                 if (i==100)
1961                     break;
1962             }
1963             if (i==100) {
1964                 DEBUG("Unable to reset ASIC\n");
1965                 return STATUS_SUCCESS;
1966             }
1967             msleep(10);
1968             // Program WMARK register
1969             status = ft1000_write_register (dev, 0x600, FT1000_REG_MAG_WATERMARK);
1970             // clear ASIC reset doorbell
1971             status = ft1000_write_register (dev, FT1000_DSP_ASIC_RESET, FT1000_REG_DOORBELL);
1972             msleep(10);
1973         }
1974         else if (tempword & FT1000_ASIC_RESET_REQ) {
1975             DEBUG("ft1000_poll: FT1000_REG_DOORBELL message type:  FT1000_ASIC_RESET_REQ\n");
1976
1977             // clear ASIC reset request from DSP
1978             status = ft1000_write_register (dev, FT1000_ASIC_RESET_REQ, FT1000_REG_DOORBELL);
1979             status = ft1000_write_register (dev, HOST_INTF_BE, FT1000_REG_SUP_CTRL);
1980             // copy dsp session record from Adapter block
1981             status = ft1000_write_dpram32 (dev, 0, (u8 *)&info->DSPSess.Rec[0], 1024);
1982             // Program WMARK register
1983             status = ft1000_write_register (dev, 0x600, FT1000_REG_MAG_WATERMARK);
1984             // ring doorbell to tell DSP that ASIC is out of reset
1985             status = ft1000_write_register (dev, FT1000_ASIC_RESET_DSP, FT1000_REG_DOORBELL);
1986         }
1987         else if (tempword & FT1000_DB_COND_RESET) {
1988             DEBUG("ft1000_poll: FT1000_REG_DOORBELL message type:  FT1000_DB_COND_RESET\n");
1989 //By Jim
1990 // Reset ASIC and DSP
1991 //MAG
1992             if (info->fAppMsgPend == 0) {
1993                // Reset ASIC and DSP
1994
1995                 status    = ft1000_read_dpram16(dev, FT1000_MAG_DSP_TIMER0, (u8 *)&(info->DSP_TIME[0]), FT1000_MAG_DSP_TIMER0_INDX);
1996                 status    = ft1000_read_dpram16(dev, FT1000_MAG_DSP_TIMER1, (u8 *)&(info->DSP_TIME[1]), FT1000_MAG_DSP_TIMER1_INDX);
1997                 status    = ft1000_read_dpram16(dev, FT1000_MAG_DSP_TIMER2, (u8 *)&(info->DSP_TIME[2]), FT1000_MAG_DSP_TIMER2_INDX);
1998                 status    = ft1000_read_dpram16(dev, FT1000_MAG_DSP_TIMER3, (u8 *)&(info->DSP_TIME[3]), FT1000_MAG_DSP_TIMER3_INDX);
1999                 info->CardReady = 0;
2000                 info->DrvErrNum = DSP_CONDRESET_INFO;
2001                 DEBUG("ft1000_hw:DSP conditional reset requested\n");
2002                 info->ft1000_reset(dev->net);
2003             }
2004             else {
2005                 info->fProvComplete = 0;
2006                 info->fCondResetPend = 1;
2007             }
2008
2009             ft1000_write_register(dev, FT1000_DB_COND_RESET, FT1000_REG_DOORBELL);
2010         }
2011
2012     }//endof if ( !status )
2013
2014     //DEBUG("return from ft1000_poll.\n");
2015     return STATUS_SUCCESS;
2016
2017 }
2018
2019 /*end of Jim*/