]> Pileus Git - ~andy/linux/blob - drivers/staging/ft1000/ft1000-usb/ft1000_hw.c
staging: ft1000: Fix coding style in ft1000_reset function.
[~andy/linux] / drivers / staging / ft1000 / ft1000-usb / ft1000_hw.c
1 //=====================================================
2 // CopyRight (C) 2007 Qualcomm Inc. All Rights Reserved.
3 //
4 //
5 // This file is part of Express Card USB Driver
6 //
7 // $Id:
8 //====================================================
9 // 20090926; aelias; removed compiler warnings & errors; ubuntu 9.04; 2.6.28-15-generic
10
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/netdevice.h>
15 #include <linux/etherdevice.h>
16 #include <linux/usb.h>
17 #include "ft1000_usb.h"
18 #include <linux/types.h>
19
20 #define HARLEY_READ_REGISTER     0x0
21 #define HARLEY_WRITE_REGISTER    0x01
22 #define HARLEY_READ_DPRAM_32     0x02
23 #define HARLEY_READ_DPRAM_LOW    0x03
24 #define HARLEY_READ_DPRAM_HIGH   0x04
25 #define HARLEY_WRITE_DPRAM_32    0x05
26 #define HARLEY_WRITE_DPRAM_LOW   0x06
27 #define HARLEY_WRITE_DPRAM_HIGH  0x07
28
29 #define HARLEY_READ_OPERATION    0xc1
30 #define HARLEY_WRITE_OPERATION   0x41
31
32 //#define JDEBUG
33
34 static int ft1000_reset(struct net_device *ft1000dev);
35 static int ft1000_submit_rx_urb(struct ft1000_info *info);
36 static int ft1000_start_xmit(struct sk_buff *skb, struct net_device *dev);
37 static int ft1000_open (struct net_device *dev);
38 static struct net_device_stats *ft1000_netdev_stats(struct net_device *dev);
39 static int ft1000_chkcard (struct ft1000_device *dev);
40
41 //Jim
42
43 static u8 tempbuffer[1600];
44
45 #define MAX_RCV_LOOP   100
46
47 //---------------------------------------------------------------------------
48 // Function:    ft1000_control
49 //
50 // Parameters:  ft1000_device  - device structure
51 //              pipe - usb control message pipe
52 //              request - control request
53 //              requesttype - control message request type
54 //              value - value to be written or 0
55 //              index - register index
56 //              data - data buffer to hold the read/write values
57 //              size - data size
58 //              timeout - control message time out value
59 //
60 // Returns:     STATUS_SUCCESS - success
61 //              STATUS_FAILURE - failure
62 //
63 // Description: This function sends a control message via USB interface synchronously
64 //
65 // Notes:
66 //
67 //---------------------------------------------------------------------------
68 static int ft1000_control(struct ft1000_device *ft1000dev, unsigned int pipe,
69                           u8 request, u8 requesttype, u16 value, u16 index,
70                           void *data, u16 size, int timeout)
71 {
72         u16 ret;
73
74         if ((ft1000dev == NULL) || (ft1000dev->dev == NULL)) {
75                 DEBUG("ft1000dev or ft1000dev->dev == NULL, failure\n");
76                 return -ENODEV;
77         }
78
79         ret = usb_control_msg(ft1000dev->dev, pipe, request, requesttype,
80                               value, index, data, size, LARGE_TIMEOUT);
81
82         if (ret > 0)
83                 ret = 0;
84
85         return ret;
86 }
87
88 //---------------------------------------------------------------------------
89 // Function:    ft1000_read_register
90 //
91 // Parameters:  ft1000_device  - device structure
92 //              Data - data buffer to hold the value read
93 //              nRegIndex - register index
94 //
95 // Returns:     STATUS_SUCCESS - success
96 //              STATUS_FAILURE - failure
97 //
98 // Description: This function returns the value in a register
99 //
100 // Notes:
101 //
102 //---------------------------------------------------------------------------
103
104 int ft1000_read_register(struct ft1000_device *ft1000dev, u16* Data,
105                          u16 nRegIndx)
106 {
107         int ret = STATUS_SUCCESS;
108
109         ret = ft1000_control(ft1000dev,
110                              usb_rcvctrlpipe(ft1000dev->dev, 0),
111                              HARLEY_READ_REGISTER,
112                              HARLEY_READ_OPERATION,
113                              0,
114                              nRegIndx,
115                              Data,
116                              2,
117                              LARGE_TIMEOUT);
118
119         return ret;
120 }
121
122 //---------------------------------------------------------------------------
123 // Function:    ft1000_write_register
124 //
125 // Parameters:  ft1000_device  - device structure
126 //              value - value to write into a register
127 //              nRegIndex - register index
128 //
129 // Returns:     STATUS_SUCCESS - success
130 //              STATUS_FAILURE - failure
131 //
132 // Description: This function writes the value in a register
133 //
134 // Notes:
135 //
136 //---------------------------------------------------------------------------
137 int ft1000_write_register(struct ft1000_device *ft1000dev, u16 value,
138                           u16 nRegIndx)
139 {
140         int ret = STATUS_SUCCESS;
141
142         ret = ft1000_control(ft1000dev,
143                              usb_sndctrlpipe(ft1000dev->dev, 0),
144                              HARLEY_WRITE_REGISTER,
145                              HARLEY_WRITE_OPERATION,
146                              value,
147                              nRegIndx,
148                              NULL,
149                              0,
150                              LARGE_TIMEOUT);
151
152         return ret;
153 }
154
155 //---------------------------------------------------------------------------
156 // Function:    ft1000_read_dpram32
157 //
158 // Parameters:  ft1000_device  - device structure
159 //              indx - starting address to read
160 //              buffer - data buffer to hold the data read
161 //              cnt - number of byte read from DPRAM
162 //
163 // Returns:     STATUS_SUCCESS - success
164 //              STATUS_FAILURE - failure
165 //
166 // Description: This function read a number of bytes from DPRAM
167 //
168 // Notes:
169 //
170 //---------------------------------------------------------------------------
171
172 int ft1000_read_dpram32(struct ft1000_device *ft1000dev, u16 indx, u8 *buffer,
173                         u16 cnt)
174 {
175         int ret = STATUS_SUCCESS;
176
177         ret = ft1000_control(ft1000dev,
178                              usb_rcvctrlpipe(ft1000dev->dev, 0),
179                              HARLEY_READ_DPRAM_32,
180                              HARLEY_READ_OPERATION,
181                              0,
182                              indx,
183                              buffer,
184                              cnt,
185                              LARGE_TIMEOUT);
186
187         return ret;
188 }
189
190 //---------------------------------------------------------------------------
191 // Function:    ft1000_write_dpram32
192 //
193 // Parameters:  ft1000_device  - device structure
194 //              indx - starting address to write the data
195 //              buffer - data buffer to write into DPRAM
196 //              cnt - number of bytes to write
197 //
198 // Returns:     STATUS_SUCCESS - success
199 //              STATUS_FAILURE - failure
200 //
201 // Description: This function writes into DPRAM a number of bytes
202 //
203 // Notes:
204 //
205 //---------------------------------------------------------------------------
206 int ft1000_write_dpram32(struct ft1000_device *ft1000dev, u16 indx, u8 *buffer,
207                          u16 cnt)
208 {
209         int ret = STATUS_SUCCESS;
210
211         if (cnt % 4)
212                 cnt += cnt - (cnt % 4);
213
214         ret = ft1000_control(ft1000dev,
215                              usb_sndctrlpipe(ft1000dev->dev, 0),
216                              HARLEY_WRITE_DPRAM_32,
217                              HARLEY_WRITE_OPERATION,
218                              0,
219                              indx,
220                              buffer,
221                              cnt,
222                              LARGE_TIMEOUT);
223
224         return ret;
225 }
226
227 //---------------------------------------------------------------------------
228 // Function:    ft1000_read_dpram16
229 //
230 // Parameters:  ft1000_device  - device structure
231 //              indx - starting address to read
232 //              buffer - data buffer to hold the data read
233 //              hightlow - high or low 16 bit word
234 //
235 // Returns:     STATUS_SUCCESS - success
236 //              STATUS_FAILURE - failure
237 //
238 // Description: This function read 16 bits from DPRAM
239 //
240 // Notes:
241 //
242 //---------------------------------------------------------------------------
243 int ft1000_read_dpram16(struct ft1000_device *ft1000dev, u16 indx, u8 *buffer,
244                         u8 highlow)
245 {
246         int ret = STATUS_SUCCESS;
247         u8 request;
248
249         if (highlow == 0)
250                 request = HARLEY_READ_DPRAM_LOW;
251         else
252                 request = HARLEY_READ_DPRAM_HIGH;
253
254         ret = ft1000_control(ft1000dev,
255                              usb_rcvctrlpipe(ft1000dev->dev, 0),
256                              request,
257                              HARLEY_READ_OPERATION,
258                              0,
259                              indx,
260                              buffer,
261                              2,
262                              LARGE_TIMEOUT);
263
264         return ret;
265 }
266
267 //---------------------------------------------------------------------------
268 // Function:    ft1000_write_dpram16
269 //
270 // Parameters:  ft1000_device  - device structure
271 //              indx - starting address to write the data
272 //              value - 16bits value to write
273 //              hightlow - high or low 16 bit word
274 //
275 // Returns:     STATUS_SUCCESS - success
276 //              STATUS_FAILURE - failure
277 //
278 // Description: This function writes into DPRAM a number of bytes
279 //
280 // Notes:
281 //
282 //---------------------------------------------------------------------------
283 int ft1000_write_dpram16(struct ft1000_device *ft1000dev, u16 indx, u16 value, u8 highlow)
284 {
285         int ret = STATUS_SUCCESS;
286         u8 request;
287
288         if (highlow == 0)
289                 request = HARLEY_WRITE_DPRAM_LOW;
290         else
291                 request = HARLEY_WRITE_DPRAM_HIGH;
292
293         ret = ft1000_control(ft1000dev,
294                              usb_sndctrlpipe(ft1000dev->dev, 0),
295                              request,
296                              HARLEY_WRITE_OPERATION,
297                              value,
298                              indx,
299                              NULL,
300                              0,
301                              LARGE_TIMEOUT);
302
303         return ret;
304 }
305
306 //---------------------------------------------------------------------------
307 // Function:    fix_ft1000_read_dpram32
308 //
309 // Parameters:  ft1000_device  - device structure
310 //              indx - starting address to read
311 //              buffer - data buffer to hold the data read
312 //
313 //
314 // Returns:     STATUS_SUCCESS - success
315 //              STATUS_FAILURE - failure
316 //
317 // Description: This function read DPRAM 4 words at a time
318 //
319 // Notes:
320 //
321 //---------------------------------------------------------------------------
322 int fix_ft1000_read_dpram32(struct ft1000_device *ft1000dev, u16 indx,
323                             u8 *buffer)
324 {
325         u8 buf[16];
326         u16 pos;
327         int ret = STATUS_SUCCESS;
328
329         pos = (indx / 4) * 4;
330         ret = ft1000_read_dpram32(ft1000dev, pos, buf, 16);
331
332         if (ret == STATUS_SUCCESS) {
333                 pos = (indx % 4) * 4;
334                 *buffer++ = buf[pos++];
335                 *buffer++ = buf[pos++];
336                 *buffer++ = buf[pos++];
337                 *buffer++ = buf[pos++];
338         } else {
339                 DEBUG("fix_ft1000_read_dpram32: DPRAM32 Read failed\n");
340                 *buffer++ = 0;
341                 *buffer++ = 0;
342                 *buffer++ = 0;
343                 *buffer++ = 0;
344         }
345
346         return ret;
347 }
348
349
350 //---------------------------------------------------------------------------
351 // Function:    fix_ft1000_write_dpram32
352 //
353 // Parameters:  ft1000_device  - device structure
354 //              indx - starting address to write
355 //              buffer - data buffer to write
356 //
357 //
358 // Returns:     STATUS_SUCCESS - success
359 //              STATUS_FAILURE - failure
360 //
361 // Description: This function write to DPRAM 4 words at a time
362 //
363 // Notes:
364 //
365 //---------------------------------------------------------------------------
366 int fix_ft1000_write_dpram32(struct ft1000_device *ft1000dev, u16 indx, u8 *buffer)
367 {
368         u16 pos1;
369         u16 pos2;
370         u16 i;
371         u8 buf[32];
372         u8 resultbuffer[32];
373         u8 *pdata;
374         int ret  = STATUS_SUCCESS;
375
376         pos1 = (indx / 4) * 4;
377         pdata = buffer;
378         ret = ft1000_read_dpram32(ft1000dev, pos1, buf, 16);
379
380         if (ret == STATUS_SUCCESS) {
381                 pos2 = (indx % 4)*4;
382                 buf[pos2++] = *buffer++;
383                 buf[pos2++] = *buffer++;
384                 buf[pos2++] = *buffer++;
385                 buf[pos2++] = *buffer++;
386                 ret = ft1000_write_dpram32(ft1000dev, pos1, buf, 16);
387         } else {
388                 DEBUG("fix_ft1000_write_dpram32: DPRAM32 Read failed\n");
389                 return ret;
390         }
391
392         ret = ft1000_read_dpram32(ft1000dev, pos1, (u8 *)&resultbuffer[0], 16);
393
394         if (ret == STATUS_SUCCESS) {
395                 buffer = pdata;
396                 for (i = 0; i < 16; i++) {
397                         if (buf[i] != resultbuffer[i])
398                                 ret = STATUS_FAILURE;
399                 }
400         }
401
402         if (ret == STATUS_FAILURE) {
403                 ret = ft1000_write_dpram32(ft1000dev, pos1,
404                                            (u8 *)&tempbuffer[0], 16);
405                 ret = ft1000_read_dpram32(ft1000dev, pos1,
406                                           (u8 *)&resultbuffer[0], 16);
407                 if (ret == STATUS_SUCCESS) {
408                         buffer = pdata;
409                         for (i = 0; i < 16; i++) {
410                                 if (tempbuffer[i] != resultbuffer[i]) {
411                                         ret = STATUS_FAILURE;
412                                         DEBUG("%s Failed to write\n",
413                                               __func__);
414                                 }
415                         }
416                 }
417         }
418
419         return ret;
420 }
421
422
423 //------------------------------------------------------------------------
424 //
425 //  Function:   card_reset_dsp
426 //
427 //  Synopsis:   This function is called to reset or activate the DSP
428 //
429 //  Arguments:  value                  - reset or activate
430 //
431 //  Returns:    None
432 //-----------------------------------------------------------------------
433 static void card_reset_dsp(struct ft1000_device *ft1000dev, bool value)
434 {
435         u16 status = STATUS_SUCCESS;
436         u16 tempword;
437
438         status = ft1000_write_register(ft1000dev, HOST_INTF_BE,
439                                         FT1000_REG_SUP_CTRL);
440         status = ft1000_read_register(ft1000dev, &tempword,
441                                       FT1000_REG_SUP_CTRL);
442
443         if (value) {
444                 DEBUG("Reset DSP\n");
445                 status = ft1000_read_register(ft1000dev, &tempword,
446                                               FT1000_REG_RESET);
447                 tempword |= DSP_RESET_BIT;
448                 status = ft1000_write_register(ft1000dev, tempword,
449                                                FT1000_REG_RESET);
450         } else {
451                 DEBUG("Activate DSP\n");
452                 status = ft1000_read_register(ft1000dev, &tempword,
453                                               FT1000_REG_RESET);
454                 tempword |= DSP_ENCRYPTED;
455                 tempword &= ~DSP_UNENCRYPTED;
456                 status = ft1000_write_register(ft1000dev, tempword,
457                                                FT1000_REG_RESET);
458                 status = ft1000_read_register(ft1000dev, &tempword,
459                                               FT1000_REG_RESET);
460                 tempword &= ~EFUSE_MEM_DISABLE;
461                 tempword &= ~DSP_RESET_BIT;
462                 status = ft1000_write_register(ft1000dev, tempword,
463                                                FT1000_REG_RESET);
464                 status = ft1000_read_register(ft1000dev, &tempword,
465                                               FT1000_REG_RESET);
466         }
467 }
468
469 //---------------------------------------------------------------------------
470 // Function:    card_send_command
471 //
472 // Parameters:  ft1000_device  - device structure
473 //              ptempbuffer - command buffer
474 //              size - command buffer size
475 //
476 // Returns:     STATUS_SUCCESS - success
477 //              STATUS_FAILURE - failure
478 //
479 // Description: This function sends a command to ASIC
480 //
481 // Notes:
482 //
483 //---------------------------------------------------------------------------
484 void card_send_command(struct ft1000_device *ft1000dev, void *ptempbuffer,
485                        int size)
486 {
487         unsigned short temp;
488         unsigned char *commandbuf;
489
490         DEBUG("card_send_command: enter card_send_command... size=%d\n", size);
491
492         commandbuf = (unsigned char *)kmalloc(size + 2, GFP_KERNEL);
493         memcpy((void *)commandbuf + 2, (void *)ptempbuffer, size);
494
495         //DEBUG("card_send_command: Command Send\n");
496
497         ft1000_read_register(ft1000dev, &temp, FT1000_REG_DOORBELL);
498
499         if (temp & 0x0100)
500                 msleep(10);
501
502         /* check for odd word */
503         size = size + 2;
504
505         /* Must force to be 32 bit aligned */
506         if (size % 4)
507                 size += 4 - (size % 4);
508
509         //DEBUG("card_send_command: write dpram ... size=%d\n", size);
510         ft1000_write_dpram32(ft1000dev, 0, commandbuf, size);
511         msleep(1);
512         //DEBUG("card_send_command: write into doorbell ...\n");
513         ft1000_write_register(ft1000dev, FT1000_DB_DPRAM_TX,
514                               FT1000_REG_DOORBELL);
515         msleep(1);
516
517         ft1000_read_register(ft1000dev, &temp, FT1000_REG_DOORBELL);
518         //DEBUG("card_send_command: read doorbell ...temp=%x\n", temp);
519         if ((temp & 0x0100) == 0) {
520                 //DEBUG("card_send_command: Message sent\n");
521         }
522
523 }
524
525 //--------------------------------------------------------------------------
526 //
527 //  Function:   dsp_reload
528 //
529 //  Synopsis:   This function is called to load or reload the DSP
530 //
531 //  Arguments:  ft1000dev - device structure
532 //
533 //  Returns:    None
534 //-----------------------------------------------------------------------
535 int dsp_reload(struct ft1000_device *ft1000dev)
536 {
537         u16 status;
538         u16 tempword;
539         u32 templong;
540
541         struct ft1000_info *pft1000info;
542
543         pft1000info = netdev_priv(ft1000dev->net);
544
545         pft1000info->CardReady = 0;
546
547         /* Program Interrupt Mask register */
548         status = ft1000_write_register(ft1000dev, 0xffff, FT1000_REG_SUP_IMASK);
549
550         status = ft1000_read_register(ft1000dev, &tempword, FT1000_REG_RESET);
551         tempword |= ASIC_RESET_BIT;
552         status = ft1000_write_register(ft1000dev, tempword, FT1000_REG_RESET);
553         msleep(1000);
554         status = ft1000_read_register(ft1000dev, &tempword, FT1000_REG_RESET);
555         DEBUG("Reset Register = 0x%x\n", tempword);
556
557         /* Toggle DSP reset */
558         card_reset_dsp(ft1000dev, 1);
559         msleep(1000);
560         card_reset_dsp(ft1000dev, 0);
561         msleep(1000);
562
563         status =
564             ft1000_write_register(ft1000dev, HOST_INTF_BE, FT1000_REG_SUP_CTRL);
565
566         /* Let's check for FEFE */
567         status =
568             ft1000_read_dpram32(ft1000dev, FT1000_MAG_DPRAM_FEFE_INDX,
569                                 (u8 *) &templong, 4);
570         DEBUG("templong (fefe) = 0x%8x\n", templong);
571
572         /* call codeloader */
573         status = scram_dnldr(ft1000dev, pFileStart, FileLength);
574
575         if (status != STATUS_SUCCESS)
576                 return -EIO;
577
578         msleep(1000);
579
580         DEBUG("dsp_reload returned\n");
581
582         return 0;
583 }
584
585 //---------------------------------------------------------------------------
586 //
587 // Function:   ft1000_reset_asic
588 // Descripton: This function will call the Card Service function to reset the
589 //             ASIC.
590 // Input:
591 //     dev    - device structure
592 // Output:
593 //     none
594 //
595 //---------------------------------------------------------------------------
596 static void ft1000_reset_asic(struct net_device *dev)
597 {
598         struct ft1000_info *info = netdev_priv(dev);
599         struct ft1000_device *ft1000dev = info->pFt1000Dev;
600         u16 tempword;
601
602         DEBUG("ft1000_hw:ft1000_reset_asic called\n");
603
604         info->ASICResetNum++;
605
606         /* Let's use the register provided by the Magnemite ASIC to reset the
607          * ASIC and DSP.
608          */
609         ft1000_write_register(ft1000dev, (DSP_RESET_BIT | ASIC_RESET_BIT),
610                               FT1000_REG_RESET);
611
612         mdelay(1);
613
614         /* set watermark to -1 in order to not generate an interrrupt */
615         ft1000_write_register(ft1000dev, 0xffff, FT1000_REG_MAG_WATERMARK);
616
617         /* clear interrupts */
618         ft1000_read_register(ft1000dev, &tempword, FT1000_REG_SUP_ISR);
619         DEBUG("ft1000_hw: interrupt status register = 0x%x\n", tempword);
620         ft1000_write_register(ft1000dev, tempword, FT1000_REG_SUP_ISR);
621         ft1000_read_register(ft1000dev, &tempword, FT1000_REG_SUP_ISR);
622         DEBUG("ft1000_hw: interrupt status register = 0x%x\n", tempword);
623 }
624
625
626 //---------------------------------------------------------------------------
627 //
628 // Function:   ft1000_reset_card
629 // Descripton: This function will reset the card
630 // Input:
631 //     dev    - device structure
632 // Output:
633 //     status - FALSE (card reset fail)
634 //              TRUE  (card reset successful)
635 //
636 //---------------------------------------------------------------------------
637 static int ft1000_reset_card(struct net_device *dev)
638 {
639         struct ft1000_info *info = netdev_priv(dev);
640         struct ft1000_device *ft1000dev = info->pFt1000Dev;
641         u16 tempword;
642         struct prov_record *ptr;
643
644         DEBUG("ft1000_hw:ft1000_reset_card called.....\n");
645
646         info->fCondResetPend = 1;
647         info->CardReady = 0;
648         info->fProvComplete = 0;
649
650         /* Make sure we free any memory reserve for provisioning */
651         while (list_empty(&info->prov_list) == 0) {
652                 DEBUG("ft1000_reset_card:deleting provisioning record\n");
653                 ptr =
654                     list_entry(info->prov_list.next, struct prov_record, list);
655                 list_del(&ptr->list);
656                 kfree(ptr->pprov_data);
657                 kfree(ptr);
658         }
659
660         DEBUG("ft1000_hw:ft1000_reset_card: reset asic\n");
661         ft1000_reset_asic(dev);
662
663         info->DSPResetNum++;
664
665         DEBUG("ft1000_hw:ft1000_reset_card: call dsp_reload\n");
666         dsp_reload(ft1000dev);
667
668         DEBUG("dsp reload successful\n");
669
670         mdelay(10);
671
672         /* Initialize DSP heartbeat area */
673         ft1000_write_dpram16(ft1000dev, FT1000_MAG_HI_HO, ho_mag,
674                              FT1000_MAG_HI_HO_INDX);
675         ft1000_read_dpram16(ft1000dev, FT1000_MAG_HI_HO, (u8 *) &tempword,
676                             FT1000_MAG_HI_HO_INDX);
677         DEBUG("ft1000_hw:ft1000_reset_card:hi_ho value = 0x%x\n", tempword);
678
679         info->CardReady = 1;
680
681         info->fCondResetPend = 0;
682
683         return TRUE;
684 }
685
686
687 //mbelian
688 #ifdef HAVE_NET_DEVICE_OPS
689 static const struct net_device_ops ftnet_ops =
690 {
691         .ndo_open = &ft1000_open,
692         .ndo_stop = &ft1000_close,
693         .ndo_start_xmit = &ft1000_start_xmit,
694         .ndo_get_stats = &ft1000_netdev_stats,
695 };
696 #endif
697
698
699 //---------------------------------------------------------------------------
700 // Function:    init_ft1000_netdev
701 //
702 // Parameters:  ft1000dev  - device structure
703 //
704 //
705 // Returns:     STATUS_SUCCESS - success
706 //              STATUS_FAILURE - failure
707 //
708 // Description: This function initialize the network device
709 //
710 // Notes:
711 //
712 //---------------------------------------------------------------------------
713 int init_ft1000_netdev(struct ft1000_device *ft1000dev)
714 {
715         struct net_device *netdev;
716         struct ft1000_info *pInfo = NULL;
717         struct dpram_blk *pdpram_blk;
718         int i, ret_val;
719         struct list_head *cur, *tmp;
720         char card_nr[2];
721         unsigned long gCardIndex = 0;
722
723         DEBUG("Enter init_ft1000_netdev...\n");
724
725         netdev = alloc_etherdev(sizeof(struct ft1000_info));
726         if (!netdev) {
727                 DEBUG("init_ft1000_netdev: can not allocate network device\n");
728                 return -ENOMEM;
729         }
730
731         pInfo = netdev_priv(netdev);
732
733         memset(pInfo, 0, sizeof(struct ft1000_info));
734
735         dev_alloc_name(netdev, netdev->name);
736
737         DEBUG("init_ft1000_netdev: network device name is %s\n", netdev->name);
738
739         if (strncmp(netdev->name, "eth", 3) == 0) {
740                 card_nr[0] = netdev->name[3];
741                 card_nr[1] = '\0';
742                 ret_val = strict_strtoul(card_nr, 10, &gCardIndex);
743                 if (ret_val) {
744                         printk(KERN_ERR "Can't parse netdev\n");
745                         goto err_net;
746                 }
747
748                 pInfo->CardNumber = gCardIndex;
749                 DEBUG("card number = %d\n", pInfo->CardNumber);
750         } else {
751                 printk(KERN_ERR "ft1000: Invalid device name\n");
752                 ret_val = -ENXIO;
753                 goto err_net;
754         }
755
756         memset(&pInfo->stats, 0, sizeof(struct net_device_stats));
757
758         spin_lock_init(&pInfo->dpram_lock);
759         pInfo->pFt1000Dev = ft1000dev;
760         pInfo->DrvErrNum = 0;
761         pInfo->ASICResetNum = 0;
762         pInfo->registered = 1;
763         pInfo->ft1000_reset = ft1000_reset;
764         pInfo->mediastate = 0;
765         pInfo->fifo_cnt = 0;
766         pInfo->DeviceCreated = FALSE;
767         pInfo->CurrentInterruptEnableMask = ISR_DEFAULT_MASK;
768         pInfo->InterruptsEnabled = FALSE;
769         pInfo->CardReady = 0;
770         pInfo->DSP_TIME[0] = 0;
771         pInfo->DSP_TIME[1] = 0;
772         pInfo->DSP_TIME[2] = 0;
773         pInfo->DSP_TIME[3] = 0;
774         pInfo->fAppMsgPend = 0;
775         pInfo->fCondResetPend = 0;
776         pInfo->usbboot = 0;
777         pInfo->dspalive = 0;
778         memset(&pInfo->tempbuf[0], 0, sizeof(pInfo->tempbuf));
779
780         INIT_LIST_HEAD(&pInfo->prov_list);
781
782         INIT_LIST_HEAD(&pInfo->nodes.list);
783
784 #ifdef HAVE_NET_DEVICE_OPS
785         netdev->netdev_ops = &ftnet_ops;
786 #else
787         netdev->hard_start_xmit = &ft1000_start_xmit;
788         netdev->get_stats = &ft1000_netdev_stats;
789         netdev->open = &ft1000_open;
790         netdev->stop = &ft1000_close;
791 #endif
792
793         ft1000dev->net = netdev;
794
795         DEBUG("Initialize free_buff_lock and freercvpool\n");
796         spin_lock_init(&free_buff_lock);
797
798         /* initialize a list of buffers to be use for queuing
799          * up receive command data
800          */
801         INIT_LIST_HEAD(&freercvpool);
802
803         /* create list of free buffers */
804         for (i = 0; i < NUM_OF_FREE_BUFFERS; i++) {
805                 /* Get memory for DPRAM_DATA link list */
806                 pdpram_blk = kmalloc(sizeof(struct dpram_blk), GFP_KERNEL);
807                 if (pdpram_blk == NULL) {
808                         ret_val = -ENOMEM;
809                         goto err_free;
810                 }
811                 /* Get a block of memory to store command data */
812                 pdpram_blk->pbuffer = kmalloc(MAX_CMD_SQSIZE, GFP_KERNEL);
813                 if (pdpram_blk->pbuffer == NULL) {
814                         ret_val = -ENOMEM;
815                         kfree(pdpram_blk);
816                         goto err_free;
817                 }
818                 /* link provisioning data */
819                 list_add_tail(&pdpram_blk->list, &freercvpool);
820         }
821         numofmsgbuf = NUM_OF_FREE_BUFFERS;
822
823         return 0;
824
825 err_free:
826         list_for_each_safe(cur, tmp, &freercvpool) {
827                 pdpram_blk = list_entry(cur, struct dpram_blk, list);
828                 list_del(&pdpram_blk->list);
829                 kfree(pdpram_blk->pbuffer);
830                 kfree(pdpram_blk);
831         }
832 err_net:
833         free_netdev(netdev);
834         return ret_val;
835 }
836
837 //---------------------------------------------------------------------------
838 // Function:    reg_ft1000_netdev
839 //
840 // Parameters:  ft1000dev  - device structure
841 //
842 //
843 // Returns:     STATUS_SUCCESS - success
844 //              STATUS_FAILURE - failure
845 //
846 // Description: This function register the network driver
847 //
848 // Notes:
849 //
850 //---------------------------------------------------------------------------
851 int reg_ft1000_netdev(struct ft1000_device *ft1000dev,
852                       struct usb_interface *intf)
853 {
854         struct net_device *netdev;
855         struct ft1000_info *pInfo;
856         int rc;
857
858         netdev = ft1000dev->net;
859         pInfo = netdev_priv(ft1000dev->net);
860         DEBUG("Enter reg_ft1000_netdev...\n");
861
862         ft1000_read_register(ft1000dev, &pInfo->AsicID, FT1000_REG_ASIC_ID);
863
864         usb_set_intfdata(intf, pInfo);
865         SET_NETDEV_DEV(netdev, &intf->dev);
866
867         rc = register_netdev(netdev);
868         if (rc) {
869                 DEBUG("reg_ft1000_netdev: could not register network device\n");
870                 free_netdev(netdev);
871                 return rc;
872         }
873
874         ft1000_create_dev(ft1000dev);
875
876         DEBUG("reg_ft1000_netdev returned\n");
877
878         pInfo->CardReady = 1;
879
880         return 0;
881 }
882
883 static int ft1000_reset(struct net_device *dev)
884 {
885         ft1000_reset_card(dev);
886         return 0;
887 }
888
889 //---------------------------------------------------------------------------
890 // Function:    ft1000_usb_transmit_complete
891 //
892 // Parameters:  urb  - transmitted usb urb
893 //
894 //
895 // Returns:     none
896 //
897 // Description: This is the callback function when a urb is transmitted
898 //
899 // Notes:
900 //
901 //---------------------------------------------------------------------------
902 static void ft1000_usb_transmit_complete(struct urb *urb)
903 {
904
905     struct ft1000_device *ft1000dev = urb->context;
906
907     //DEBUG("ft1000_usb_transmit_complete entered\n");
908
909     if (urb->status)
910         printk("%s: TX status %d\n", ft1000dev->net->name, urb->status);
911
912     netif_wake_queue(ft1000dev->net);
913
914     //DEBUG("Return from ft1000_usb_transmit_complete\n");
915 }
916
917 //---------------------------------------------------------------------------
918 //
919 // Function:   ft1000_copy_down_pkt
920 // Descripton: This function will take an ethernet packet and convert it to
921 //             a Flarion packet prior to sending it to the ASIC Downlink
922 //             FIFO.
923 // Input:
924 //     dev    - device structure
925 //     packet - address of ethernet packet
926 //     len    - length of IP packet
927 // Output:
928 //     status - FAILURE
929 //              SUCCESS
930 //
931 //---------------------------------------------------------------------------
932 static int ft1000_copy_down_pkt (struct net_device *netdev, u8 *packet, u16 len)
933 {
934         struct ft1000_info *pInfo = netdev_priv(netdev);
935     struct ft1000_device *pFt1000Dev = pInfo->pFt1000Dev;
936
937
938         int count, ret;
939     u8 *t;
940         struct pseudo_hdr hdr;
941
942     if (!pInfo->CardReady)
943     {
944
945         DEBUG("ft1000_copy_down_pkt::Card Not Ready\n");
946         return -ENODEV;
947
948     }
949
950
951     //DEBUG("ft1000_copy_down_pkt() entered, len = %d\n", len);
952
953         count = sizeof(struct pseudo_hdr) + len;
954     if(count > MAX_BUF_SIZE)
955     {
956         DEBUG("Error:ft1000_copy_down_pkt:Message Size Overflow!\n");
957         DEBUG("size = %d\n", count);
958         return -EINVAL;
959     }
960
961     if ( count % 4)
962         count = count + (4- (count %4) );
963
964         memset(&hdr, 0, sizeof(struct pseudo_hdr));
965
966         hdr.length = ntohs(count);
967         hdr.source = 0x10;
968         hdr.destination = 0x20;
969         hdr.portdest = 0x20;
970         hdr.portsrc = 0x10;
971         hdr.sh_str_id = 0x91;
972         hdr.control = 0x00;
973
974         hdr.checksum = hdr.length ^ hdr.source ^ hdr.destination ^
975                         hdr.portdest ^ hdr.portsrc ^ hdr.sh_str_id ^
976                         hdr.control;
977
978         memcpy(&pFt1000Dev->tx_buf[0], &hdr, sizeof(hdr));
979         memcpy(&(pFt1000Dev->tx_buf[sizeof(struct pseudo_hdr)]), packet, len);
980
981     netif_stop_queue(netdev);
982
983     //DEBUG ("ft1000_copy_down_pkt: count = %d\n", count);
984
985     usb_fill_bulk_urb(pFt1000Dev->tx_urb,
986                       pFt1000Dev->dev,
987                       usb_sndbulkpipe(pFt1000Dev->dev, pFt1000Dev->bulk_out_endpointAddr),
988                       pFt1000Dev->tx_buf,
989                       count,
990                       ft1000_usb_transmit_complete,
991                       (void*)pFt1000Dev);
992
993     t = (u8 *)pFt1000Dev->tx_urb->transfer_buffer;
994     //DEBUG("transfer_length=%d\n", pFt1000Dev->tx_urb->transfer_buffer_length);
995     /*for (i=0; i<count; i++ )
996     {
997        DEBUG("%x    ", *t++ );
998     }*/
999
1000
1001         ret = usb_submit_urb(pFt1000Dev->tx_urb, GFP_ATOMIC);
1002         if (ret) {
1003                 DEBUG("ft1000 failed tx_urb %d\n", ret);
1004                 return ret;
1005         } else {
1006                 pInfo->stats.tx_packets++;
1007                 pInfo->stats.tx_bytes += (len+14);
1008         }
1009
1010     //DEBUG("ft1000_copy_down_pkt() exit\n");
1011
1012         return 0;
1013 }
1014
1015 //---------------------------------------------------------------------------
1016 // Function:    ft1000_start_xmit
1017 //
1018 // Parameters:  skb - socket buffer to be sent
1019 //              dev - network device
1020 //
1021 //
1022 // Returns:     none
1023 //
1024 // Description: transmit a ethernet packet
1025 //
1026 // Notes:
1027 //
1028 //---------------------------------------------------------------------------
1029 static int ft1000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1030 {
1031         struct ft1000_info *pInfo = netdev_priv(dev);
1032     struct ft1000_device *pFt1000Dev= pInfo->pFt1000Dev;
1033     u8 *pdata;
1034     int maxlen, pipe;
1035
1036
1037     //DEBUG(" ft1000_start_xmit() entered\n");
1038
1039     if ( skb == NULL )
1040     {
1041         DEBUG ("ft1000_hw: ft1000_start_xmit:skb == NULL!!!\n" );
1042         return NETDEV_TX_OK;
1043     }
1044
1045     if ( pFt1000Dev->status & FT1000_STATUS_CLOSING)
1046     {
1047         DEBUG("network driver is closed, return\n");
1048         goto err;
1049     }
1050
1051     //DEBUG("ft1000_start_xmit 1:length of packet = %d\n", skb->len);
1052     pipe = usb_sndbulkpipe(pFt1000Dev->dev, pFt1000Dev->bulk_out_endpointAddr);
1053     maxlen = usb_maxpacket(pFt1000Dev->dev, pipe, usb_pipeout(pipe));
1054     //DEBUG("ft1000_start_xmit 2: pipe=%d dev->maxpacket  = %d\n", pipe, maxlen);
1055
1056     pdata = (u8 *)skb->data;
1057     /*for (i=0; i<skb->len; i++)
1058         DEBUG("skb->data[%d]=%x    ", i, *(skb->data+i));
1059
1060     DEBUG("\n");*/
1061
1062
1063     if (pInfo->mediastate == 0)
1064     {
1065         /* Drop packet is mediastate is down */
1066         DEBUG("ft1000_hw:ft1000_start_xmit:mediastate is down\n");
1067         goto err;
1068     }
1069
1070     if ( (skb->len < ENET_HEADER_SIZE) || (skb->len > ENET_MAX_SIZE) )
1071     {
1072         /* Drop packet which has invalid size */
1073         DEBUG("ft1000_hw:ft1000_start_xmit:invalid ethernet length\n");
1074         goto err;
1075     }
1076 //mbelian
1077         ft1000_copy_down_pkt(dev, (pdata+ENET_HEADER_SIZE-2),
1078                                 skb->len - ENET_HEADER_SIZE + 2);
1079
1080 err:
1081         dev_kfree_skb(skb);
1082     //DEBUG(" ft1000_start_xmit() exit\n");
1083
1084         return NETDEV_TX_OK;
1085 }
1086
1087 //---------------------------------------------------------------------------
1088 //
1089 // Function:   ft1000_copy_up_pkt
1090 // Descripton: This function will take a packet from the FIFO up link and
1091 //             convert it into an ethernet packet and deliver it to the IP stack
1092 // Input:
1093 //     urb - the receving usb urb
1094 //
1095 // Output:
1096 //     status - FAILURE
1097 //              SUCCESS
1098 //
1099 //---------------------------------------------------------------------------
1100 static int ft1000_copy_up_pkt (struct urb *urb)
1101 {
1102         struct ft1000_info *info = urb->context;
1103     struct ft1000_device *ft1000dev = info->pFt1000Dev;
1104     struct net_device *net = ft1000dev->net;
1105
1106     u16 tempword;
1107     u16 len;
1108     u16 lena; //mbelian
1109     struct sk_buff *skb;
1110     u16 i;
1111     u8 *pbuffer=NULL;
1112     u8 *ptemp=NULL;
1113     u16 *chksum;
1114
1115
1116     //DEBUG("ft1000_copy_up_pkt entered\n");
1117
1118     if ( ft1000dev->status & FT1000_STATUS_CLOSING)
1119     {
1120         DEBUG("network driver is closed, return\n");
1121         return STATUS_SUCCESS;
1122     }
1123
1124     // Read length
1125     len = urb->transfer_buffer_length;
1126     lena = urb->actual_length; //mbelian
1127     //DEBUG("ft1000_copy_up_pkt: transfer_buffer_length=%d, actual_buffer_len=%d\n",
1128       //       urb->transfer_buffer_length, urb->actual_length);
1129
1130     chksum = (u16 *)ft1000dev->rx_buf;
1131
1132     tempword = *chksum++;
1133     for (i=1; i<7; i++)
1134     {
1135         tempword ^= *chksum++;
1136     }
1137
1138     if  (tempword != *chksum)
1139     {
1140         info->stats.rx_errors ++;
1141         ft1000_submit_rx_urb(info);
1142         return STATUS_FAILURE;
1143     }
1144
1145
1146     //DEBUG("ft1000_copy_up_pkt: checksum is correct %x\n", *chksum);
1147
1148     skb = dev_alloc_skb(len+12+2);
1149
1150     if (skb == NULL)
1151     {
1152         DEBUG("ft1000_copy_up_pkt: No Network buffers available\n");
1153         info->stats.rx_errors++;
1154         ft1000_submit_rx_urb(info);
1155         return STATUS_FAILURE;
1156     }
1157
1158     pbuffer = (u8 *)skb_put(skb, len+12);
1159
1160     //subtract the number of bytes read already
1161     ptemp = pbuffer;
1162
1163     // fake MAC address
1164     *pbuffer++ = net->dev_addr[0];
1165     *pbuffer++ = net->dev_addr[1];
1166     *pbuffer++ = net->dev_addr[2];
1167     *pbuffer++ = net->dev_addr[3];
1168     *pbuffer++ = net->dev_addr[4];
1169     *pbuffer++ = net->dev_addr[5];
1170     *pbuffer++ = 0x00;
1171     *pbuffer++ = 0x07;
1172     *pbuffer++ = 0x35;
1173     *pbuffer++ = 0xff;
1174     *pbuffer++ = 0xff;
1175     *pbuffer++ = 0xfe;
1176
1177
1178
1179
1180         memcpy(pbuffer, ft1000dev->rx_buf+sizeof(struct pseudo_hdr), len-sizeof(struct pseudo_hdr));
1181
1182     //DEBUG("ft1000_copy_up_pkt: Data passed to Protocol layer\n");
1183     /*for (i=0; i<len+12; i++)
1184     {
1185         DEBUG("ft1000_copy_up_pkt: Protocol Data: 0x%x\n ", *ptemp++);
1186     }*/
1187
1188     skb->dev = net;
1189
1190     skb->protocol = eth_type_trans(skb, net);
1191     skb->ip_summed = CHECKSUM_UNNECESSARY;
1192     netif_rx(skb);
1193
1194     info->stats.rx_packets++;
1195     // Add on 12 bytes for MAC address which was removed
1196     info->stats.rx_bytes += (lena+12); //mbelian
1197
1198     ft1000_submit_rx_urb(info);
1199     //DEBUG("ft1000_copy_up_pkt exited\n");
1200     return SUCCESS;
1201 }
1202
1203 //---------------------------------------------------------------------------
1204 //
1205 // Function:   ft1000_submit_rx_urb
1206 // Descripton: the receiving function of the network driver
1207 //
1208 // Input:
1209 //     info - a private structure contains the device information
1210 //
1211 // Output:
1212 //     status - FAILURE
1213 //              SUCCESS
1214 //
1215 //---------------------------------------------------------------------------
1216 static int ft1000_submit_rx_urb(struct ft1000_info *info)
1217 {
1218     int result;
1219     struct ft1000_device *pFt1000Dev = info->pFt1000Dev;
1220
1221
1222     //DEBUG ("ft1000_submit_rx_urb entered: sizeof rx_urb is %d\n", sizeof(*pFt1000Dev->rx_urb));
1223     if ( pFt1000Dev->status & FT1000_STATUS_CLOSING)
1224     {
1225         DEBUG("network driver is closed, return\n");
1226         //usb_kill_urb(pFt1000Dev->rx_urb); //mbelian
1227         return -ENODEV;
1228     }
1229
1230     usb_fill_bulk_urb(pFt1000Dev->rx_urb,
1231             pFt1000Dev->dev,
1232             usb_rcvbulkpipe(pFt1000Dev->dev, pFt1000Dev->bulk_in_endpointAddr),
1233             pFt1000Dev->rx_buf,
1234             MAX_BUF_SIZE,
1235             (usb_complete_t)ft1000_copy_up_pkt,
1236             info);
1237
1238
1239     if((result = usb_submit_urb(pFt1000Dev->rx_urb, GFP_ATOMIC)))
1240     {
1241         printk("ft1000_submit_rx_urb: submitting rx_urb %d failed\n", result);
1242         return result;
1243     }
1244
1245     //DEBUG("ft1000_submit_rx_urb exit: result=%d\n", result);
1246
1247         return 0;
1248 }
1249
1250 //---------------------------------------------------------------------------
1251 // Function:    ft1000_open
1252 //
1253 // Parameters:
1254 //              dev - network device
1255 //
1256 //
1257 // Returns:     none
1258 //
1259 // Description: open the network driver
1260 //
1261 // Notes:
1262 //
1263 //---------------------------------------------------------------------------
1264 static int ft1000_open (struct net_device *dev)
1265 {
1266         struct ft1000_info *pInfo = netdev_priv(dev);
1267     struct timeval tv; //mbelian
1268         int ret;
1269
1270     DEBUG("ft1000_open is called for card %d\n", pInfo->CardNumber);
1271     //DEBUG("ft1000_open: dev->addr=%x, dev->addr_len=%d\n", dev->addr, dev->addr_len);
1272
1273         pInfo->stats.rx_bytes = 0; //mbelian
1274         pInfo->stats.tx_bytes = 0; //mbelian
1275         pInfo->stats.rx_packets = 0; //mbelian
1276         pInfo->stats.tx_packets = 0; //mbelian
1277         do_gettimeofday(&tv);
1278     pInfo->ConTm = tv.tv_sec;
1279         pInfo->ProgConStat = 0; //mbelian
1280
1281
1282     netif_start_queue(dev);
1283
1284     netif_carrier_on(dev); //mbelian
1285
1286         ret = ft1000_submit_rx_urb(pInfo);
1287
1288         return ret;
1289 }
1290
1291 //---------------------------------------------------------------------------
1292 // Function:    ft1000_close
1293 //
1294 // Parameters:
1295 //              net - network device
1296 //
1297 //
1298 // Returns:     none
1299 //
1300 // Description: close the network driver
1301 //
1302 // Notes:
1303 //
1304 //---------------------------------------------------------------------------
1305 int ft1000_close(struct net_device *net)
1306 {
1307         struct ft1000_info *pInfo = netdev_priv(net);
1308     struct ft1000_device *ft1000dev = pInfo->pFt1000Dev;
1309
1310     //DEBUG ("ft1000_close: netdev->refcnt=%d\n", net->refcnt);
1311
1312     ft1000dev->status |= FT1000_STATUS_CLOSING;
1313     
1314     //DEBUG("ft1000_close: calling usb_kill_urb \n");
1315
1316     DEBUG("ft1000_close: pInfo=%p, ft1000dev=%p\n", pInfo, ft1000dev);
1317     netif_carrier_off(net);//mbelian
1318     netif_stop_queue(net);
1319     //DEBUG("ft1000_close: netif_stop_queue called\n");
1320     ft1000dev->status &= ~FT1000_STATUS_CLOSING;
1321
1322    pInfo->ProgConStat = 0xff; //mbelian
1323
1324
1325     return 0;
1326 }
1327
1328 static struct net_device_stats *ft1000_netdev_stats(struct net_device *dev)
1329 {
1330         struct ft1000_info *info = netdev_priv(dev);
1331
1332         return &(info->stats); //mbelian
1333 }
1334
1335
1336 /*********************************************************************************
1337 Jim
1338 */
1339
1340
1341 //---------------------------------------------------------------------------
1342 //
1343 // Function:   ft1000_chkcard
1344 // Descripton: This function will check if the device is presently available on
1345 //             the system.
1346 // Input:
1347 //     dev    - device structure
1348 // Output:
1349 //     status - FALSE (device is not present)
1350 //              TRUE  (device is present)
1351 //
1352 //---------------------------------------------------------------------------
1353 static int ft1000_chkcard (struct ft1000_device *dev) {
1354     u16 tempword;
1355     u16 status;
1356         struct ft1000_info *info = netdev_priv(dev->net);
1357
1358     if (info->fCondResetPend)
1359     {
1360         DEBUG("ft1000_hw:ft1000_chkcard:Card is being reset, return FALSE\n");
1361         return TRUE;
1362     }
1363
1364     // Mask register is used to check for device presence since it is never
1365     // set to zero.
1366     status = ft1000_read_register(dev, &tempword, FT1000_REG_SUP_IMASK);
1367     //DEBUG("ft1000_hw:ft1000_chkcard: read FT1000_REG_SUP_IMASK = %x\n", tempword);
1368     if (tempword == 0) {
1369         DEBUG("ft1000_hw:ft1000_chkcard: IMASK = 0 Card not detected\n");
1370         return FALSE;
1371     }
1372
1373     // The system will return the value of 0xffff for the version register
1374     // if the device is not present.
1375     status = ft1000_read_register(dev, &tempword, FT1000_REG_ASIC_ID);
1376     //DEBUG("ft1000_hw:ft1000_chkcard: read FT1000_REG_ASIC_ID = %x\n", tempword);
1377     if (tempword != 0x1b01 ){
1378         dev->status |= FT1000_STATUS_CLOSING; //mbelian
1379         DEBUG("ft1000_hw:ft1000_chkcard: Version = 0xffff Card not detected\n");
1380         return FALSE;
1381     }
1382     return TRUE;
1383 }
1384
1385
1386
1387 //---------------------------------------------------------------------------
1388 //
1389 // Function:   ft1000_receive_cmd
1390 // Descripton: This function will read a message from the dpram area.
1391 // Input:
1392 //    dev - network device structure
1393 //    pbuffer - caller supply address to buffer
1394 //    pnxtph - pointer to next pseudo header
1395 // Output:
1396 //   Status = 0 (unsuccessful)
1397 //          = 1 (successful)
1398 //
1399 //---------------------------------------------------------------------------
1400 static bool ft1000_receive_cmd (struct ft1000_device *dev, u16 *pbuffer, int maxsz, u16 *pnxtph) {
1401     u16 size, ret;
1402     u16 *ppseudohdr;
1403     int i;
1404     u16 tempword;
1405
1406     ret = ft1000_read_dpram16(dev, FT1000_MAG_PH_LEN, (u8 *)&size, FT1000_MAG_PH_LEN_INDX);
1407     size = ntohs(size) + PSEUDOSZ;
1408     if (size > maxsz) {
1409         DEBUG("FT1000:ft1000_receive_cmd:Invalid command length = %d\n", size);
1410         return FALSE;
1411     }
1412     else {
1413         ppseudohdr = (u16 *)pbuffer;
1414         ft1000_write_register(dev, FT1000_DPRAM_MAG_RX_BASE, FT1000_REG_DPRAM_ADDR);
1415         ret = ft1000_read_register(dev, pbuffer, FT1000_REG_MAG_DPDATAH);
1416         //DEBUG("ft1000_hw:received data = 0x%x\n", *pbuffer);
1417         pbuffer++;
1418         ft1000_write_register(dev,  FT1000_DPRAM_MAG_RX_BASE+1, FT1000_REG_DPRAM_ADDR);
1419         for (i=0; i<=(size>>2); i++) {
1420             ret = ft1000_read_register(dev, pbuffer, FT1000_REG_MAG_DPDATAL);
1421             pbuffer++;
1422             ret = ft1000_read_register(dev, pbuffer, FT1000_REG_MAG_DPDATAH);
1423             pbuffer++;
1424         }
1425         //copy odd aligned word
1426         ret = ft1000_read_register(dev, pbuffer, FT1000_REG_MAG_DPDATAL);
1427         //DEBUG("ft1000_hw:received data = 0x%x\n", *pbuffer);
1428         pbuffer++;
1429         ret = ft1000_read_register(dev, pbuffer, FT1000_REG_MAG_DPDATAH);
1430         //DEBUG("ft1000_hw:received data = 0x%x\n", *pbuffer);
1431         pbuffer++;
1432         if (size & 0x0001) {
1433             //copy odd byte from fifo
1434             ret = ft1000_read_register(dev, &tempword, FT1000_REG_DPRAM_DATA);
1435             *pbuffer = ntohs(tempword);
1436         }
1437
1438         // Check if pseudo header checksum is good
1439         // Calculate pseudo header checksum
1440         tempword = *ppseudohdr++;
1441         for (i=1; i<7; i++) {
1442             tempword ^= *ppseudohdr++;
1443         }
1444         if ( (tempword != *ppseudohdr) ) {
1445             return FALSE;
1446         }
1447
1448         return TRUE;
1449     }
1450 }
1451
1452
1453 static int ft1000_dsp_prov(void *arg)
1454 {
1455     struct ft1000_device *dev = (struct ft1000_device *)arg;
1456         struct ft1000_info *info = netdev_priv(dev->net);
1457     u16 tempword;
1458     u16 len;
1459     u16 i=0;
1460         struct prov_record *ptr;
1461         struct pseudo_hdr *ppseudo_hdr;
1462     u16 *pmsg;
1463     u16 status;
1464     u16 TempShortBuf [256];
1465
1466     DEBUG("*** DspProv Entered\n");
1467
1468     while (list_empty(&info->prov_list) == 0)
1469     {
1470         DEBUG("DSP Provisioning List Entry\n");
1471
1472         // Check if doorbell is available
1473         DEBUG("check if doorbell is cleared\n");
1474         status = ft1000_read_register (dev, &tempword, FT1000_REG_DOORBELL);
1475         if (status)
1476         {
1477                 DEBUG("ft1000_dsp_prov::ft1000_read_register error\n");
1478             break;
1479         }
1480
1481         while (tempword & FT1000_DB_DPRAM_TX) {
1482             mdelay(10);
1483             i++;
1484             if (i==10) {
1485                DEBUG("FT1000:ft1000_dsp_prov:message drop\n");
1486                return STATUS_FAILURE;
1487             }
1488             ft1000_read_register(dev, &tempword, FT1000_REG_DOORBELL);
1489         }
1490
1491         if ( !(tempword & FT1000_DB_DPRAM_TX) ) {
1492             DEBUG("*** Provision Data Sent to DSP\n");
1493
1494             // Send provisioning data
1495                 ptr = list_entry(info->prov_list.next, struct prov_record, list);
1496             len = *(u16 *)ptr->pprov_data;
1497             len = htons(len);
1498             len += PSEUDOSZ;
1499
1500             pmsg = (u16 *)ptr->pprov_data;
1501                 ppseudo_hdr = (struct pseudo_hdr *)pmsg;
1502             // Insert slow queue sequence number
1503             ppseudo_hdr->seq_num = info->squeseqnum++;
1504             ppseudo_hdr->portsrc = 0;
1505             // Calculate new checksum
1506             ppseudo_hdr->checksum = *pmsg++;
1507             //DEBUG("checksum = 0x%x\n", ppseudo_hdr->checksum);
1508             for (i=1; i<7; i++) {
1509                 ppseudo_hdr->checksum ^= *pmsg++;
1510                 //DEBUG("checksum = 0x%x\n", ppseudo_hdr->checksum);
1511             }
1512
1513             TempShortBuf[0] = 0;
1514             TempShortBuf[1] = htons (len);
1515             memcpy(&TempShortBuf[2], ppseudo_hdr, len);
1516
1517             status = ft1000_write_dpram32 (dev, 0, (u8 *)&TempShortBuf[0], (unsigned short)(len+2));
1518             status = ft1000_write_register (dev, FT1000_DB_DPRAM_TX, FT1000_REG_DOORBELL);
1519
1520             list_del(&ptr->list);
1521             kfree(ptr->pprov_data);
1522             kfree(ptr);
1523         }
1524         msleep(10);
1525     }
1526
1527     DEBUG("DSP Provisioning List Entry finished\n");
1528
1529     msleep(100);
1530
1531     info->fProvComplete = 1;
1532     info->CardReady = 1;
1533     return STATUS_SUCCESS;
1534
1535 }
1536
1537
1538 static int ft1000_proc_drvmsg (struct ft1000_device *dev, u16 size) {
1539         struct ft1000_info *info = netdev_priv(dev->net);
1540     u16 msgtype;
1541     u16 tempword;
1542         struct media_msg *pmediamsg;
1543         struct dsp_init_msg *pdspinitmsg;
1544         struct drv_msg *pdrvmsg;
1545     u16 i;
1546         struct pseudo_hdr *ppseudo_hdr;
1547     u16 *pmsg;
1548     u16 status;
1549     union {
1550         u8  byte[2];
1551         u16 wrd;
1552     } convert;
1553
1554
1555     char *cmdbuffer = kmalloc(1600, GFP_KERNEL);
1556     if (!cmdbuffer)
1557         return STATUS_FAILURE;
1558
1559     status = ft1000_read_dpram32(dev, 0x200, cmdbuffer, size);
1560
1561
1562
1563 #ifdef JDEBUG
1564         DEBUG("ft1000_proc_drvmsg:cmdbuffer\n");
1565         for(i = 0; i < size; i+=5)
1566         {
1567             if( (i + 5) < size )
1568                 DEBUG("0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n", cmdbuffer[i], cmdbuffer[i+1], cmdbuffer[i+2], cmdbuffer[i+3], cmdbuffer[i+4]);
1569             else
1570             {
1571                 for (j = i; j < size; j++)
1572                 DEBUG("0x%x ", cmdbuffer[j]);
1573                 DEBUG("\n");
1574                 break;
1575             }
1576         }
1577 #endif
1578         pdrvmsg = (struct drv_msg *)&cmdbuffer[2];
1579         msgtype = ntohs(pdrvmsg->type);
1580         DEBUG("ft1000_proc_drvmsg:Command message type = 0x%x\n", msgtype);
1581         switch (msgtype) {
1582             case MEDIA_STATE: {
1583                 DEBUG("ft1000_proc_drvmsg:Command message type = MEDIA_STATE");
1584
1585                 pmediamsg = (struct media_msg *)&cmdbuffer[0];
1586                 if (info->ProgConStat != 0xFF) {
1587                     if (pmediamsg->state) {
1588                         DEBUG("Media is up\n");
1589                         if (info->mediastate == 0) {
1590                             if ( info->NetDevRegDone )
1591                             {
1592                                 //netif_carrier_on(dev->net);//mbelian
1593                                 netif_wake_queue(dev->net);
1594                             }
1595                             info->mediastate = 1;
1596                             /*do_gettimeofday(&tv);
1597                             info->ConTm = tv.tv_sec;*/ //mbelian
1598                         }
1599                     }
1600                     else {
1601                         DEBUG("Media is down\n");
1602                         if (info->mediastate == 1) {
1603                             info->mediastate = 0;
1604                             if ( info->NetDevRegDone )
1605                             {
1606                                 //netif_carrier_off(dev->net); mbelian
1607                                 //netif_stop_queue(dev->net);
1608                             }
1609                             info->ConTm = 0;
1610                         }
1611                     }
1612                 }
1613                 else {
1614                     DEBUG("Media is down\n");
1615                     if (info->mediastate == 1) {
1616                         info->mediastate = 0;
1617                         if ( info->NetDevRegDone)
1618                         {
1619                             //netif_carrier_off(dev->net); //mbelian
1620                             //netif_stop_queue(dev->net);
1621                         }
1622                         info->ConTm = 0;
1623                     }
1624                 }
1625                 break;
1626             }
1627             case DSP_INIT_MSG: {
1628                 DEBUG("ft1000_proc_drvmsg:Command message type = DSP_INIT_MSG");
1629
1630                 pdspinitmsg = (struct dsp_init_msg *)&cmdbuffer[2];
1631                 memcpy(info->DspVer, pdspinitmsg->DspVer, DSPVERSZ);
1632                 DEBUG("DSPVER = 0x%2x 0x%2x 0x%2x 0x%2x\n", info->DspVer[0], info->DspVer[1], info->DspVer[2], info->DspVer[3]);
1633                 memcpy(info->HwSerNum, pdspinitmsg->HwSerNum, HWSERNUMSZ);
1634                 memcpy(info->Sku, pdspinitmsg->Sku, SKUSZ);
1635                 memcpy(info->eui64, pdspinitmsg->eui64, EUISZ);
1636                 DEBUG("EUI64=%2x.%2x.%2x.%2x.%2x.%2x.%2x.%2x\n", info->eui64[0],info->eui64[1], info->eui64[2], info->eui64[3], info->eui64[4], info->eui64[5],info->eui64[6], info->eui64[7]);
1637                 dev->net->dev_addr[0] = info->eui64[0];
1638                 dev->net->dev_addr[1] = info->eui64[1];
1639                 dev->net->dev_addr[2] = info->eui64[2];
1640                 dev->net->dev_addr[3] = info->eui64[5];
1641                 dev->net->dev_addr[4] = info->eui64[6];
1642                 dev->net->dev_addr[5] = info->eui64[7];
1643
1644                 if (ntohs(pdspinitmsg->length) == (sizeof(struct dsp_init_msg) - 20)) {
1645                     memcpy(info->ProductMode, pdspinitmsg->ProductMode, MODESZ);
1646                     memcpy(info->RfCalVer, pdspinitmsg->RfCalVer, CALVERSZ);
1647                     memcpy(info->RfCalDate, pdspinitmsg->RfCalDate, CALDATESZ);
1648                     DEBUG("RFCalVer = 0x%2x 0x%2x\n", info->RfCalVer[0], info->RfCalVer[1]);
1649                 }
1650                 break;
1651             }
1652             case DSP_PROVISION: {
1653                 DEBUG("ft1000_proc_drvmsg:Command message type = DSP_PROVISION\n");
1654
1655                 // kick off dspprov routine to start provisioning
1656                 // Send provisioning data to DSP
1657                 if (list_empty(&info->prov_list) == 0)
1658                 {
1659                     info->fProvComplete = 0;
1660                     status = ft1000_dsp_prov(dev);
1661                     if (status != STATUS_SUCCESS)
1662                         goto out;
1663                 }
1664                 else {
1665                     info->fProvComplete = 1;
1666                     status = ft1000_write_register (dev, FT1000_DB_HB, FT1000_REG_DOORBELL);
1667                     DEBUG("FT1000:drivermsg:No more DSP provisioning data in dsp image\n");
1668                 }
1669                 DEBUG("ft1000_proc_drvmsg:DSP PROVISION is done\n");
1670                 break;
1671             }
1672             case DSP_STORE_INFO: {
1673                 DEBUG("ft1000_proc_drvmsg:Command message type = DSP_STORE_INFO");
1674
1675                 DEBUG("FT1000:drivermsg:Got DSP_STORE_INFO\n");
1676                 tempword = ntohs(pdrvmsg->length);
1677                 info->DSPInfoBlklen = tempword;
1678                 if (tempword < (MAX_DSP_SESS_REC-4) ) {
1679                     pmsg = (u16 *)&pdrvmsg->data[0];
1680                     for (i=0; i<((tempword+1)/2); i++) {
1681                         DEBUG("FT1000:drivermsg:dsp info data = 0x%x\n", *pmsg);
1682                         info->DSPInfoBlk[i+10] = *pmsg++;
1683                     }
1684                 }
1685                 else {
1686                     info->DSPInfoBlklen = 0;
1687                 }
1688                 break;
1689             }
1690             case DSP_GET_INFO: {
1691                 DEBUG("FT1000:drivermsg:Got DSP_GET_INFO\n");
1692                 // copy dsp info block to dsp
1693                 info->DrvMsgPend = 1;
1694                 // allow any outstanding ioctl to finish
1695                 mdelay(10);
1696                 status = ft1000_read_register(dev, &tempword, FT1000_REG_DOORBELL);
1697                 if (tempword & FT1000_DB_DPRAM_TX) {
1698                     mdelay(10);
1699                     status = ft1000_read_register(dev, &tempword, FT1000_REG_DOORBELL);
1700                     if (tempword & FT1000_DB_DPRAM_TX) {
1701                         mdelay(10);
1702                             status = ft1000_read_register(dev, &tempword, FT1000_REG_DOORBELL);
1703                             if (tempword & FT1000_DB_DPRAM_TX) {
1704                                 break;
1705                             }
1706                     }
1707                 }
1708
1709                 // Put message into Slow Queue
1710                 // Form Pseudo header
1711                 pmsg = (u16 *)info->DSPInfoBlk;
1712                 *pmsg++ = 0;
1713                 *pmsg++ = htons(info->DSPInfoBlklen+20+info->DSPInfoBlklen);
1714                 ppseudo_hdr = (struct pseudo_hdr *)(u16 *)&info->DSPInfoBlk[2];
1715                 ppseudo_hdr->length = htons(info->DSPInfoBlklen+4+info->DSPInfoBlklen);
1716                 ppseudo_hdr->source = 0x10;
1717                 ppseudo_hdr->destination = 0x20;
1718                 ppseudo_hdr->portdest = 0;
1719                 ppseudo_hdr->portsrc = 0;
1720                 ppseudo_hdr->sh_str_id = 0;
1721                 ppseudo_hdr->control = 0;
1722                 ppseudo_hdr->rsvd1 = 0;
1723                 ppseudo_hdr->rsvd2 = 0;
1724                 ppseudo_hdr->qos_class = 0;
1725                 // Insert slow queue sequence number
1726                 ppseudo_hdr->seq_num = info->squeseqnum++;
1727                 // Insert application id
1728                 ppseudo_hdr->portsrc = 0;
1729                 // Calculate new checksum
1730                 ppseudo_hdr->checksum = *pmsg++;
1731                 for (i=1; i<7; i++) {
1732                     ppseudo_hdr->checksum ^= *pmsg++;
1733                 }
1734                 info->DSPInfoBlk[10] = 0x7200;
1735                 info->DSPInfoBlk[11] = htons(info->DSPInfoBlklen);
1736                 status = ft1000_write_dpram32 (dev, 0, (u8 *)&info->DSPInfoBlk[0], (unsigned short)(info->DSPInfoBlklen+22));
1737                 status = ft1000_write_register (dev, FT1000_DB_DPRAM_TX, FT1000_REG_DOORBELL);
1738                 info->DrvMsgPend = 0;
1739
1740                 break;
1741             }
1742
1743           case GET_DRV_ERR_RPT_MSG: {
1744               DEBUG("FT1000:drivermsg:Got GET_DRV_ERR_RPT_MSG\n");
1745               // copy driver error message to dsp
1746               info->DrvMsgPend = 1;
1747               // allow any outstanding ioctl to finish
1748               mdelay(10);
1749               status = ft1000_read_register(dev, &tempword, FT1000_REG_DOORBELL);
1750               if (tempword & FT1000_DB_DPRAM_TX) {
1751                   mdelay(10);
1752                   status = ft1000_read_register(dev, &tempword, FT1000_REG_DOORBELL);
1753                   if (tempword & FT1000_DB_DPRAM_TX) {
1754                       mdelay(10);
1755                   }
1756               }
1757
1758               if ( (tempword & FT1000_DB_DPRAM_TX) == 0) {
1759                   // Put message into Slow Queue
1760                   // Form Pseudo header
1761                   pmsg = (u16 *)&tempbuffer[0];
1762                         ppseudo_hdr = (struct pseudo_hdr *)pmsg;
1763                   ppseudo_hdr->length = htons(0x0012);
1764                   ppseudo_hdr->source = 0x10;
1765                   ppseudo_hdr->destination = 0x20;
1766                   ppseudo_hdr->portdest = 0;
1767                   ppseudo_hdr->portsrc = 0;
1768                   ppseudo_hdr->sh_str_id = 0;
1769                   ppseudo_hdr->control = 0;
1770                   ppseudo_hdr->rsvd1 = 0;
1771                   ppseudo_hdr->rsvd2 = 0;
1772                   ppseudo_hdr->qos_class = 0;
1773                   // Insert slow queue sequence number
1774                   ppseudo_hdr->seq_num = info->squeseqnum++;
1775                   // Insert application id
1776                   ppseudo_hdr->portsrc = 0;
1777                   // Calculate new checksum
1778                   ppseudo_hdr->checksum = *pmsg++;
1779                   for (i=1; i<7; i++) {
1780                       ppseudo_hdr->checksum ^= *pmsg++;
1781                   }
1782                   pmsg = (u16 *)&tempbuffer[16];
1783                   *pmsg++ = htons(RSP_DRV_ERR_RPT_MSG);
1784                   *pmsg++ = htons(0x000e);
1785                   *pmsg++ = htons(info->DSP_TIME[0]);
1786                   *pmsg++ = htons(info->DSP_TIME[1]);
1787                   *pmsg++ = htons(info->DSP_TIME[2]);
1788                   *pmsg++ = htons(info->DSP_TIME[3]);
1789                   convert.byte[0] = info->DspVer[0];
1790                   convert.byte[1] = info->DspVer[1];
1791                   *pmsg++ = convert.wrd;
1792                   convert.byte[0] = info->DspVer[2];
1793                   convert.byte[1] = info->DspVer[3];
1794                   *pmsg++ = convert.wrd;
1795                   *pmsg++ = htons(info->DrvErrNum);
1796
1797                   card_send_command (dev, (unsigned char*)&tempbuffer[0], (u16)(0x0012 + PSEUDOSZ));
1798                   info->DrvErrNum = 0;
1799               }
1800               info->DrvMsgPend = 0;
1801
1802           break;
1803       }
1804
1805       default:
1806           break;
1807         }
1808
1809
1810     status = STATUS_SUCCESS;
1811 out:
1812     kfree(cmdbuffer);
1813     DEBUG("return from ft1000_proc_drvmsg\n");
1814     return status;
1815 }
1816
1817
1818
1819 int ft1000_poll(void* dev_id) {
1820
1821     struct ft1000_device *dev = (struct ft1000_device *)dev_id;
1822         struct ft1000_info *info = netdev_priv(dev->net);
1823
1824     u16 tempword;
1825     u16 status;
1826     u16 size;
1827     int i;
1828     u16 data;
1829     u16 modulo;
1830     u16 portid;
1831     u16 nxtph;
1832         struct dpram_blk *pdpram_blk;
1833         struct pseudo_hdr *ppseudo_hdr;
1834     unsigned long flags;
1835
1836     //DEBUG("Enter ft1000_poll...\n");
1837     if (ft1000_chkcard(dev) == FALSE) {
1838         DEBUG("ft1000_poll::ft1000_chkcard: failed\n");
1839         return STATUS_FAILURE;
1840     }
1841
1842     status = ft1000_read_register (dev, &tempword, FT1000_REG_DOORBELL);
1843    // DEBUG("ft1000_poll: read FT1000_REG_DOORBELL message 0x%x\n", tempword);
1844
1845     if ( !status )
1846     {
1847
1848         if (tempword & FT1000_DB_DPRAM_RX) {
1849             //DEBUG("ft1000_poll: FT1000_REG_DOORBELL message type:  FT1000_DB_DPRAM_RX\n");
1850
1851             status = ft1000_read_dpram16(dev, 0x200, (u8 *)&data, 0);
1852             //DEBUG("ft1000_poll:FT1000_DB_DPRAM_RX:ft1000_read_dpram16:size = 0x%x\n", data);
1853             size = ntohs(data) + 16 + 2; //wai
1854             if (size % 4) {
1855                 modulo = 4 - (size % 4);
1856                 size = size + modulo;
1857             }
1858             status = ft1000_read_dpram16(dev, 0x201, (u8 *)&portid, 1);
1859             portid &= 0xff;
1860             //DEBUG("ft1000_poll: FT1000_REG_DOORBELL message type: FT1000_DB_DPRAM_RX : portid 0x%x\n", portid);
1861
1862             if (size < MAX_CMD_SQSIZE) {
1863                 switch (portid)
1864                 {
1865                     case DRIVERID:
1866                         DEBUG("ft1000_poll: FT1000_REG_DOORBELL message type: FT1000_DB_DPRAM_RX : portid DRIVERID\n");
1867
1868                         status = ft1000_proc_drvmsg (dev, size);
1869                         if (status != STATUS_SUCCESS )
1870                             return status;
1871                         break;
1872                     case DSPBCMSGID:
1873                         // This is a dsp broadcast message
1874                         // Check which application has registered for dsp broadcast messages
1875                         //DEBUG("ft1000_poll: FT1000_REG_DOORBELL message type: FT1000_DB_DPRAM_RX : portid DSPBCMSGID\n");
1876
1877                         for (i=0; i<MAX_NUM_APP; i++) {
1878                            if ( (info->app_info[i].DspBCMsgFlag) && (info->app_info[i].fileobject) &&
1879                                          (info->app_info[i].NumOfMsg < MAX_MSG_LIMIT)  )
1880                            {
1881                                //DEBUG("Dsp broadcast message detected for app id %d\n", i);
1882                                nxtph = FT1000_DPRAM_RX_BASE + 2;
1883                                pdpram_blk = ft1000_get_buffer (&freercvpool);
1884                                if (pdpram_blk != NULL) {
1885                                    if ( ft1000_receive_cmd(dev, pdpram_blk->pbuffer, MAX_CMD_SQSIZE, &nxtph) ) {
1886                                         ppseudo_hdr = (struct pseudo_hdr *)pdpram_blk->pbuffer;
1887                                        // Put message into the appropriate application block
1888                                        info->app_info[i].nRxMsg++;
1889                                        spin_lock_irqsave(&free_buff_lock, flags);
1890                                        list_add_tail(&pdpram_blk->list, &info->app_info[i].app_sqlist);
1891                                        info->app_info[i].NumOfMsg++;
1892                                        spin_unlock_irqrestore(&free_buff_lock, flags);
1893                                        wake_up_interruptible(&info->app_info[i].wait_dpram_msg);
1894                                    }
1895                                    else {
1896                                        info->app_info[i].nRxMsgMiss++;
1897                                        // Put memory back to free pool
1898                                        ft1000_free_buffer(pdpram_blk, &freercvpool);
1899                                        DEBUG("pdpram_blk::ft1000_get_buffer NULL\n");
1900                                    }
1901                                }
1902                                else {
1903                                    DEBUG("Out of memory in free receive command pool\n");
1904                                    info->app_info[i].nRxMsgMiss++;
1905                                }//endof if (pdpram_blk != NULL)
1906                            }//endof if
1907                            //else
1908                            //    DEBUG("app_info mismatch\n");
1909                         }// endof for
1910                         break;
1911                     default:
1912                         pdpram_blk = ft1000_get_buffer (&freercvpool);
1913                         //DEBUG("Memory allocated = 0x%8x\n", (u32)pdpram_blk);
1914                         if (pdpram_blk != NULL) {
1915                            if ( ft1000_receive_cmd(dev, pdpram_blk->pbuffer, MAX_CMD_SQSIZE, &nxtph) ) {
1916                                 ppseudo_hdr = (struct pseudo_hdr *)pdpram_blk->pbuffer;
1917                                // Search for correct application block
1918                                for (i=0; i<MAX_NUM_APP; i++) {
1919                                    if (info->app_info[i].app_id == ppseudo_hdr->portdest) {
1920                                        break;
1921                                    }
1922                                }
1923
1924                                if (i == MAX_NUM_APP) {
1925                                    DEBUG("FT1000:ft1000_parse_dpram_msg: No application matching id = %d\n", ppseudo_hdr->portdest);
1926                                    // Put memory back to free pool
1927                                    ft1000_free_buffer(pdpram_blk, &freercvpool);
1928                                }
1929                                else {
1930                                    if (info->app_info[i].NumOfMsg > MAX_MSG_LIMIT) {
1931                                        // Put memory back to free pool
1932                                        ft1000_free_buffer(pdpram_blk, &freercvpool);
1933                                    }
1934                                    else {
1935                                        info->app_info[i].nRxMsg++;
1936                                        // Put message into the appropriate application block
1937                                        //pxu spin_lock_irqsave(&free_buff_lock, flags);
1938                                        list_add_tail(&pdpram_blk->list, &info->app_info[i].app_sqlist);
1939                                        info->app_info[i].NumOfMsg++;
1940                                        //pxu spin_unlock_irqrestore(&free_buff_lock, flags);
1941                                        //pxu wake_up_interruptible(&info->app_info[i].wait_dpram_msg);
1942                                    }
1943                                }
1944                            }
1945                            else {
1946                                // Put memory back to free pool
1947                                ft1000_free_buffer(pdpram_blk, &freercvpool);
1948                            }
1949                         }
1950                         else {
1951                             DEBUG("Out of memory in free receive command pool\n");
1952                         }
1953                         break;
1954                 } //end of switch
1955             } //endof if (size < MAX_CMD_SQSIZE)
1956             else {
1957                 DEBUG("FT1000:dpc:Invalid total length for SlowQ = %d\n", size);
1958             }
1959             status = ft1000_write_register (dev, FT1000_DB_DPRAM_RX, FT1000_REG_DOORBELL);
1960         }
1961         else if (tempword & FT1000_DSP_ASIC_RESET) {
1962             //DEBUG("ft1000_poll: FT1000_REG_DOORBELL message type:  FT1000_DSP_ASIC_RESET\n");
1963
1964             // Let's reset the ASIC from the Host side as well
1965             status = ft1000_write_register (dev, ASIC_RESET_BIT, FT1000_REG_RESET);
1966             status = ft1000_read_register (dev, &tempword, FT1000_REG_RESET);
1967             i = 0;
1968             while (tempword & ASIC_RESET_BIT) {
1969                 status = ft1000_read_register (dev, &tempword, FT1000_REG_RESET);
1970                 msleep(10);
1971                 i++;
1972                 if (i==100)
1973                     break;
1974             }
1975             if (i==100) {
1976                 DEBUG("Unable to reset ASIC\n");
1977                 return STATUS_SUCCESS;
1978             }
1979             msleep(10);
1980             // Program WMARK register
1981             status = ft1000_write_register (dev, 0x600, FT1000_REG_MAG_WATERMARK);
1982             // clear ASIC reset doorbell
1983             status = ft1000_write_register (dev, FT1000_DSP_ASIC_RESET, FT1000_REG_DOORBELL);
1984             msleep(10);
1985         }
1986         else if (tempword & FT1000_ASIC_RESET_REQ) {
1987             DEBUG("ft1000_poll: FT1000_REG_DOORBELL message type:  FT1000_ASIC_RESET_REQ\n");
1988
1989             // clear ASIC reset request from DSP
1990             status = ft1000_write_register (dev, FT1000_ASIC_RESET_REQ, FT1000_REG_DOORBELL);
1991             status = ft1000_write_register (dev, HOST_INTF_BE, FT1000_REG_SUP_CTRL);
1992             // copy dsp session record from Adapter block
1993             status = ft1000_write_dpram32 (dev, 0, (u8 *)&info->DSPSess.Rec[0], 1024);
1994             // Program WMARK register
1995             status = ft1000_write_register (dev, 0x600, FT1000_REG_MAG_WATERMARK);
1996             // ring doorbell to tell DSP that ASIC is out of reset
1997             status = ft1000_write_register (dev, FT1000_ASIC_RESET_DSP, FT1000_REG_DOORBELL);
1998         }
1999         else if (tempword & FT1000_DB_COND_RESET) {
2000             DEBUG("ft1000_poll: FT1000_REG_DOORBELL message type:  FT1000_DB_COND_RESET\n");
2001 //By Jim
2002 // Reset ASIC and DSP
2003 //MAG
2004             if (info->fAppMsgPend == 0) {
2005                // Reset ASIC and DSP
2006
2007                 status    = ft1000_read_dpram16(dev, FT1000_MAG_DSP_TIMER0, (u8 *)&(info->DSP_TIME[0]), FT1000_MAG_DSP_TIMER0_INDX);
2008                 status    = ft1000_read_dpram16(dev, FT1000_MAG_DSP_TIMER1, (u8 *)&(info->DSP_TIME[1]), FT1000_MAG_DSP_TIMER1_INDX);
2009                 status    = ft1000_read_dpram16(dev, FT1000_MAG_DSP_TIMER2, (u8 *)&(info->DSP_TIME[2]), FT1000_MAG_DSP_TIMER2_INDX);
2010                 status    = ft1000_read_dpram16(dev, FT1000_MAG_DSP_TIMER3, (u8 *)&(info->DSP_TIME[3]), FT1000_MAG_DSP_TIMER3_INDX);
2011                 info->CardReady = 0;
2012                 info->DrvErrNum = DSP_CONDRESET_INFO;
2013                 DEBUG("ft1000_hw:DSP conditional reset requested\n");
2014                 info->ft1000_reset(dev->net);
2015             }
2016             else {
2017                 info->fProvComplete = 0;
2018                 info->fCondResetPend = 1;
2019             }
2020
2021             ft1000_write_register(dev, FT1000_DB_COND_RESET, FT1000_REG_DOORBELL);
2022         }
2023
2024     }//endof if ( !status )
2025
2026     //DEBUG("return from ft1000_poll.\n");
2027     return STATUS_SUCCESS;
2028
2029 }
2030
2031 /*end of Jim*/