]> Pileus Git - ~andy/linux/blob - drivers/staging/et131x/et131x.c
staging: et131x: Fix i386 build warnings from use of dma_addr_t
[~andy/linux] / drivers / staging / et131x / et131x.c
1 /*
2  * Agere Systems Inc.
3  * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
4  *
5  * Copyright © 2005 Agere Systems Inc.
6  * All rights reserved.
7  *   http://www.agere.com
8  *
9  * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
10  *
11  *------------------------------------------------------------------------------
12  *
13  * SOFTWARE LICENSE
14  *
15  * This software is provided subject to the following terms and conditions,
16  * which you should read carefully before using the software.  Using this
17  * software indicates your acceptance of these terms and conditions.  If you do
18  * not agree with these terms and conditions, do not use the software.
19  *
20  * Copyright © 2005 Agere Systems Inc.
21  * All rights reserved.
22  *
23  * Redistribution and use in source or binary forms, with or without
24  * modifications, are permitted provided that the following conditions are met:
25  *
26  * . Redistributions of source code must retain the above copyright notice, this
27  *    list of conditions and the following Disclaimer as comments in the code as
28  *    well as in the documentation and/or other materials provided with the
29  *    distribution.
30  *
31  * . Redistributions in binary form must reproduce the above copyright notice,
32  *    this list of conditions and the following Disclaimer in the documentation
33  *    and/or other materials provided with the distribution.
34  *
35  * . Neither the name of Agere Systems Inc. nor the names of the contributors
36  *    may be used to endorse or promote products derived from this software
37  *    without specific prior written permission.
38  *
39  * Disclaimer
40  *
41  * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
42  * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
43  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  ANY
44  * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
45  * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
46  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
47  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
48  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
49  * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
50  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
51  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
52  * DAMAGE.
53  *
54  */
55
56 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
57
58 #include <linux/pci.h>
59 #include <linux/init.h>
60 #include <linux/module.h>
61 #include <linux/types.h>
62 #include <linux/kernel.h>
63
64 #include <linux/sched.h>
65 #include <linux/ptrace.h>
66 #include <linux/slab.h>
67 #include <linux/ctype.h>
68 #include <linux/string.h>
69 #include <linux/timer.h>
70 #include <linux/interrupt.h>
71 #include <linux/in.h>
72 #include <linux/delay.h>
73 #include <linux/bitops.h>
74 #include <linux/io.h>
75
76 #include <linux/netdevice.h>
77 #include <linux/etherdevice.h>
78 #include <linux/skbuff.h>
79 #include <linux/if_arp.h>
80 #include <linux/ioport.h>
81 #include <linux/crc32.h>
82 #include <linux/random.h>
83 #include <linux/phy.h>
84
85 #include "et131x.h"
86
87 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
88 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
89 MODULE_LICENSE("Dual BSD/GPL");
90 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
91
92 /* EEPROM defines */
93 #define MAX_NUM_REGISTER_POLLS          1000
94 #define MAX_NUM_WRITE_RETRIES           2
95
96 /* MAC defines */
97 #define COUNTER_WRAP_16_BIT 0x10000
98 #define COUNTER_WRAP_12_BIT 0x1000
99
100 /* PCI defines */
101 #define INTERNAL_MEM_SIZE       0x400   /* 1024 of internal memory */
102 #define INTERNAL_MEM_RX_OFFSET  0x1FF   /* 50%   Tx, 50%   Rx */
103
104 /* ISR defines */
105 /*
106  * For interrupts, normal running is:
107  *       rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
108  *       watchdog_interrupt & txdma_xfer_done
109  *
110  * In both cases, when flow control is enabled for either Tx or bi-direction,
111  * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
112  * buffer rings are running low.
113  */
114 #define INT_MASK_DISABLE            0xffffffff
115
116 /* NOTE: Masking out MAC_STAT Interrupt for now...
117  * #define INT_MASK_ENABLE             0xfff6bf17
118  * #define INT_MASK_ENABLE_NO_FLOW     0xfff6bfd7
119  */
120 #define INT_MASK_ENABLE             0xfffebf17
121 #define INT_MASK_ENABLE_NO_FLOW     0xfffebfd7
122
123 /* General defines */
124 /* Packet and header sizes */
125 #define NIC_MIN_PACKET_SIZE     60
126
127 /* Multicast list size */
128 #define NIC_MAX_MCAST_LIST      128
129
130 /* Supported Filters */
131 #define ET131X_PACKET_TYPE_DIRECTED             0x0001
132 #define ET131X_PACKET_TYPE_MULTICAST            0x0002
133 #define ET131X_PACKET_TYPE_BROADCAST            0x0004
134 #define ET131X_PACKET_TYPE_PROMISCUOUS          0x0008
135 #define ET131X_PACKET_TYPE_ALL_MULTICAST        0x0010
136
137 /* Tx Timeout */
138 #define ET131X_TX_TIMEOUT       (1 * HZ)
139 #define NIC_SEND_HANG_THRESHOLD 0
140
141 /* MP_TCB flags */
142 #define fMP_DEST_MULTI                  0x00000001
143 #define fMP_DEST_BROAD                  0x00000002
144
145 /* MP_ADAPTER flags */
146 #define fMP_ADAPTER_RECV_LOOKASIDE      0x00000004
147 #define fMP_ADAPTER_INTERRUPT_IN_USE    0x00000008
148
149 /* MP_SHARED flags */
150 #define fMP_ADAPTER_LOWER_POWER         0x00200000
151
152 #define fMP_ADAPTER_NON_RECOVER_ERROR   0x00800000
153 #define fMP_ADAPTER_HARDWARE_ERROR      0x04000000
154
155 #define fMP_ADAPTER_FAIL_SEND_MASK      0x3ff00000
156
157 /* Some offsets in PCI config space that are actually used. */
158 #define ET1310_PCI_MAC_ADDRESS          0xA4
159 #define ET1310_PCI_EEPROM_STATUS        0xB2
160 #define ET1310_PCI_ACK_NACK             0xC0
161 #define ET1310_PCI_REPLAY               0xC2
162 #define ET1310_PCI_L0L1LATENCY          0xCF
163
164 /* PCI Product IDs */
165 #define ET131X_PCI_DEVICE_ID_GIG        0xED00  /* ET1310 1000 Base-T 8 */
166 #define ET131X_PCI_DEVICE_ID_FAST       0xED01  /* ET1310 100  Base-T */
167
168 /* Define order of magnitude converter */
169 #define NANO_IN_A_MICRO 1000
170
171 #define PARM_RX_NUM_BUFS_DEF    4
172 #define PARM_RX_TIME_INT_DEF    10
173 #define PARM_RX_MEM_END_DEF     0x2bc
174 #define PARM_TX_TIME_INT_DEF    40
175 #define PARM_TX_NUM_BUFS_DEF    4
176 #define PARM_DMA_CACHE_DEF      0
177
178 /* RX defines */
179 #define FBR_CHUNKS 32
180 #define MAX_DESC_PER_RING_RX         1024
181
182 /* number of RFDs - default and min */
183 #define RFD_LOW_WATER_MARK      40
184 #define NIC_DEFAULT_NUM_RFD     1024
185 #define NUM_FBRS                2
186
187 #define NIC_MIN_NUM_RFD         64
188 #define NUM_PACKETS_HANDLED     256
189
190 #define ALCATEL_MULTICAST_PKT   0x01000000
191 #define ALCATEL_BROADCAST_PKT   0x02000000
192
193 /* typedefs for Free Buffer Descriptors */
194 struct fbr_desc {
195         u32 addr_lo;
196         u32 addr_hi;
197         u32 word2;              /* Bits 10-31 reserved, 0-9 descriptor */
198 };
199
200 /* Packet Status Ring Descriptors
201  *
202  * Word 0:
203  *
204  * top 16 bits are from the Alcatel Status Word as enumerated in
205  * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
206  *
207  * 0: hp                        hash pass
208  * 1: ipa                       IP checksum assist
209  * 2: ipp                       IP checksum pass
210  * 3: tcpa                      TCP checksum assist
211  * 4: tcpp                      TCP checksum pass
212  * 5: wol                       WOL Event
213  * 6: rxmac_error               RXMAC Error Indicator
214  * 7: drop                      Drop packet
215  * 8: ft                        Frame Truncated
216  * 9: jp                        Jumbo Packet
217  * 10: vp                       VLAN Packet
218  * 11-15: unused
219  * 16: asw_prev_pkt_dropped     e.g. IFG too small on previous
220  * 17: asw_RX_DV_event          short receive event detected
221  * 18: asw_false_carrier_event  bad carrier since last good packet
222  * 19: asw_code_err             one or more nibbles signalled as errors
223  * 20: asw_CRC_err              CRC error
224  * 21: asw_len_chk_err          frame length field incorrect
225  * 22: asw_too_long             frame length > 1518 bytes
226  * 23: asw_OK                   valid CRC + no code error
227  * 24: asw_multicast            has a multicast address
228  * 25: asw_broadcast            has a broadcast address
229  * 26: asw_dribble_nibble       spurious bits after EOP
230  * 27: asw_control_frame        is a control frame
231  * 28: asw_pause_frame          is a pause frame
232  * 29: asw_unsupported_op       unsupported OP code
233  * 30: asw_VLAN_tag             VLAN tag detected
234  * 31: asw_long_evt             Rx long event
235  *
236  * Word 1:
237  * 0-15: length                 length in bytes
238  * 16-25: bi                    Buffer Index
239  * 26-27: ri                    Ring Index
240  * 28-31: reserved
241  */
242
243 struct pkt_stat_desc {
244         u32 word0;
245         u32 word1;
246 };
247
248 /* Typedefs for the RX DMA status word */
249
250 /*
251  * rx status word 0 holds part of the status bits of the Rx DMA engine
252  * that get copied out to memory by the ET-1310.  Word 0 is a 32 bit word
253  * which contains the Free Buffer ring 0 and 1 available offset.
254  *
255  * bit 0-9 FBR1 offset
256  * bit 10 Wrap flag for FBR1
257  * bit 16-25 FBR0 offset
258  * bit 26 Wrap flag for FBR0
259  */
260
261 /*
262  * RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
263  * that get copied out to memory by the ET-1310.  Word 3 is a 32 bit word
264  * which contains the Packet Status Ring available offset.
265  *
266  * bit 0-15 reserved
267  * bit 16-27 PSRoffset
268  * bit 28 PSRwrap
269  * bit 29-31 unused
270  */
271
272 /*
273  * struct rx_status_block is a structure representing the status of the Rx
274  * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
275  */
276 struct rx_status_block {
277         u32 word0;
278         u32 word1;
279 };
280
281 /*
282  * Structure for look-up table holding free buffer ring pointers, addresses
283  * and state.
284  */
285 struct fbr_lookup {
286         void            *virt[MAX_DESC_PER_RING_RX];
287         void            *buffer1[MAX_DESC_PER_RING_RX];
288         void            *buffer2[MAX_DESC_PER_RING_RX];
289         u32              bus_high[MAX_DESC_PER_RING_RX];
290         u32              bus_low[MAX_DESC_PER_RING_RX];
291         void            *ring_virtaddr;
292         dma_addr_t       ring_physaddr;
293         void            *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
294         dma_addr_t       mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
295         dma_addr_t       offset;
296         u32              local_full;
297         u32              num_entries;
298         dma_addr_t       buffsize;
299 };
300
301 /*
302  * struct rx_ring is the sructure representing the adaptor's local
303  * reference(s) to the rings
304  *
305  ******************************************************************************
306  * IMPORTANT NOTE :- fbr_lookup *fbr[NUM_FBRS] uses index 0 to refer to FBR1
307  *                      and index 1 to refer to FRB0
308  ******************************************************************************
309  */
310 struct rx_ring {
311         struct fbr_lookup *fbr[NUM_FBRS];
312         void *ps_ring_virtaddr;
313         dma_addr_t ps_ring_physaddr;
314         u32 local_psr_full;
315         u32 psr_num_entries;
316
317         struct rx_status_block *rx_status_block;
318         dma_addr_t rx_status_bus;
319
320         /* RECV */
321         struct list_head recv_list;
322         u32 num_ready_recv;
323
324         u32 num_rfd;
325
326         bool unfinished_receives;
327
328         /* lookaside lists */
329         struct kmem_cache *recv_lookaside;
330 };
331
332 /* TX defines */
333 /*
334  * word 2 of the control bits in the Tx Descriptor ring for the ET-1310
335  *
336  * 0-15: length of packet
337  * 16-27: VLAN tag
338  * 28: VLAN CFI
339  * 29-31: VLAN priority
340  *
341  * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
342  *
343  * 0: last packet in the sequence
344  * 1: first packet in the sequence
345  * 2: interrupt the processor when this pkt sent
346  * 3: Control word - no packet data
347  * 4: Issue half-duplex backpressure : XON/XOFF
348  * 5: send pause frame
349  * 6: Tx frame has error
350  * 7: append CRC
351  * 8: MAC override
352  * 9: pad packet
353  * 10: Packet is a Huge packet
354  * 11: append VLAN tag
355  * 12: IP checksum assist
356  * 13: TCP checksum assist
357  * 14: UDP checksum assist
358  */
359
360 /* struct tx_desc represents each descriptor on the ring */
361 struct tx_desc {
362         u32 addr_hi;
363         u32 addr_lo;
364         u32 len_vlan;   /* control words how to xmit the */
365         u32 flags;      /* data (detailed above) */
366 };
367
368 /*
369  * The status of the Tx DMA engine it sits in free memory, and is pointed to
370  * by 0x101c / 0x1020. This is a DMA10 type
371  */
372
373 /* TCB (Transmit Control Block: Host Side) */
374 struct tcb {
375         struct tcb *next;       /* Next entry in ring */
376         u32 flags;              /* Our flags for the packet */
377         u32 count;              /* Used to spot stuck/lost packets */
378         u32 stale;              /* Used to spot stuck/lost packets */
379         struct sk_buff *skb;    /* Network skb we are tied to */
380         u32 index;              /* Ring indexes */
381         u32 index_start;
382 };
383
384 /* Structure representing our local reference(s) to the ring */
385 struct tx_ring {
386         /* TCB (Transmit Control Block) memory and lists */
387         struct tcb *tcb_ring;
388
389         /* List of TCBs that are ready to be used */
390         struct tcb *tcb_qhead;
391         struct tcb *tcb_qtail;
392
393         /* list of TCBs that are currently being sent.  NOTE that access to all
394          * three of these (including used) are controlled via the
395          * TCBSendQLock.  This lock should be secured prior to incementing /
396          * decrementing used, or any queue manipulation on send_head /
397          * tail
398          */
399         struct tcb *send_head;
400         struct tcb *send_tail;
401         int used;
402
403         /* The actual descriptor ring */
404         struct tx_desc *tx_desc_ring;
405         dma_addr_t tx_desc_ring_pa;
406
407         /* send_idx indicates where we last wrote to in the descriptor ring. */
408         u32 send_idx;
409
410         /* The location of the write-back status block */
411         u32 *tx_status;
412         dma_addr_t tx_status_pa;
413
414         /* Packets since the last IRQ: used for interrupt coalescing */
415         int since_irq;
416 };
417
418 /*
419  * Do not change these values: if changed, then change also in respective
420  * TXdma and Rxdma engines
421  */
422 #define NUM_DESC_PER_RING_TX         512    /* TX Do not change these values */
423 #define NUM_TCB                      64
424
425 /*
426  * These values are all superseded by registry entries to facilitate tuning.
427  * Once the desired performance has been achieved, the optimal registry values
428  * should be re-populated to these #defines:
429  */
430 #define TX_ERROR_PERIOD             1000
431
432 #define LO_MARK_PERCENT_FOR_PSR     15
433 #define LO_MARK_PERCENT_FOR_RX      15
434
435 /* RFD (Receive Frame Descriptor) */
436 struct rfd {
437         struct list_head list_node;
438         struct sk_buff *skb;
439         u32 len;        /* total size of receive frame */
440         u16 bufferindex;
441         u8 ringindex;
442 };
443
444 /* Flow Control */
445 #define FLOW_BOTH       0
446 #define FLOW_TXONLY     1
447 #define FLOW_RXONLY     2
448 #define FLOW_NONE       3
449
450 /* Struct to define some device statistics */
451 struct ce_stats {
452         /* MIB II variables
453          *
454          * NOTE: atomic_t types are only guaranteed to store 24-bits; if we
455          * MUST have 32, then we'll need another way to perform atomic
456          * operations
457          */
458         u32             unicast_pkts_rcvd;
459         atomic_t        unicast_pkts_xmtd;
460         u32             multicast_pkts_rcvd;
461         atomic_t        multicast_pkts_xmtd;
462         u32             broadcast_pkts_rcvd;
463         atomic_t        broadcast_pkts_xmtd;
464         u32             rcvd_pkts_dropped;
465
466         /* Tx Statistics. */
467         u32             tx_underflows;
468
469         u32             tx_collisions;
470         u32             tx_excessive_collisions;
471         u32             tx_first_collisions;
472         u32             tx_late_collisions;
473         u32             tx_max_pkt_errs;
474         u32             tx_deferred;
475
476         /* Rx Statistics. */
477         u32             rx_overflows;
478
479         u32             rx_length_errs;
480         u32             rx_align_errs;
481         u32             rx_crc_errs;
482         u32             rx_code_violations;
483         u32             rx_other_errs;
484
485         u32             synchronous_iterations;
486         u32             interrupt_status;
487 };
488
489 /* The private adapter structure */
490 struct et131x_adapter {
491         struct net_device *netdev;
492         struct pci_dev *pdev;
493         struct mii_bus *mii_bus;
494         struct phy_device *phydev;
495         struct work_struct task;
496
497         /* Flags that indicate current state of the adapter */
498         u32 flags;
499
500         /* local link state, to determine if a state change has occurred */
501         int link;
502
503         /* Configuration  */
504         u8 rom_addr[ETH_ALEN];
505         u8 addr[ETH_ALEN];
506         bool has_eeprom;
507         u8 eeprom_data[2];
508
509         /* Spinlocks */
510         spinlock_t lock;
511
512         spinlock_t tcb_send_qlock;
513         spinlock_t tcb_ready_qlock;
514         spinlock_t send_hw_lock;
515
516         spinlock_t rcv_lock;
517         spinlock_t rcv_pend_lock;
518         spinlock_t fbr_lock;
519
520         spinlock_t phy_lock;
521
522         /* Packet Filter and look ahead size */
523         u32 packet_filter;
524
525         /* multicast list */
526         u32 multicast_addr_count;
527         u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
528
529         /* Pointer to the device's PCI register space */
530         struct address_map __iomem *regs;
531
532         /* Registry parameters */
533         u8 wanted_flow;         /* Flow we want for 802.3x flow control */
534         u32 registry_jumbo_packet;      /* Max supported ethernet packet size */
535
536         /* Derived from the registry: */
537         u8 flowcontrol;         /* flow control validated by the far-end */
538
539         /* Minimize init-time */
540         struct timer_list error_timer;
541
542         /* variable putting the phy into coma mode when boot up with no cable
543          * plugged in after 5 seconds
544          */
545         u8 boot_coma;
546
547         /* Next two used to save power information at power down. This
548          * information will be used during power up to set up parts of Power
549          * Management in JAGCore
550          */
551         u16 pdown_speed;
552         u8 pdown_duplex;
553
554         /* Tx Memory Variables */
555         struct tx_ring tx_ring;
556
557         /* Rx Memory Variables */
558         struct rx_ring rx_ring;
559
560         /* Stats */
561         struct ce_stats stats;
562
563         struct net_device_stats net_stats;
564 };
565
566 static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
567 {
568         u32 reg;
569         int i;
570
571         /*
572          * 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
573          *    bits 7,1:0 both equal to 1, at least once after reset.
574          *    Subsequent operations need only to check that bits 1:0 are equal
575          *    to 1 prior to starting a single byte read/write
576          */
577
578         for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
579                 /* Read registers grouped in DWORD1 */
580                 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
581                         return -EIO;
582
583                 /* I2C idle and Phy Queue Avail both true */
584                 if ((reg & 0x3000) == 0x3000) {
585                         if (status)
586                                 *status = reg;
587                         return reg & 0xFF;
588                 }
589         }
590         return -ETIMEDOUT;
591 }
592
593
594 /**
595  * eeprom_write - Write a byte to the ET1310's EEPROM
596  * @adapter: pointer to our private adapter structure
597  * @addr: the address to write
598  * @data: the value to write
599  *
600  * Returns 1 for a successful write.
601  */
602 static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
603 {
604         struct pci_dev *pdev = adapter->pdev;
605         int index = 0;
606         int retries;
607         int err = 0;
608         int i2c_wack = 0;
609         int writeok = 0;
610         u32 status;
611         u32 val = 0;
612
613         /*
614          * For an EEPROM, an I2C single byte write is defined as a START
615          * condition followed by the device address, EEPROM address, one byte
616          * of data and a STOP condition.  The STOP condition will trigger the
617          * EEPROM's internally timed write cycle to the nonvolatile memory.
618          * All inputs are disabled during this write cycle and the EEPROM will
619          * not respond to any access until the internal write is complete.
620          */
621
622         err = eeprom_wait_ready(pdev, NULL);
623         if (err)
624                 return err;
625
626          /*
627          * 2. Write to the LBCIF Control Register:  bit 7=1, bit 6=1, bit 3=0,
628          *    and bits 1:0 both =0.  Bit 5 should be set according to the
629          *    type of EEPROM being accessed (1=two byte addressing, 0=one
630          *    byte addressing).
631          */
632         if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
633                         LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE))
634                 return -EIO;
635
636         i2c_wack = 1;
637
638         /* Prepare EEPROM address for Step 3 */
639
640         for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
641                 /* Write the address to the LBCIF Address Register */
642                 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
643                         break;
644                 /*
645                  * Write the data to the LBCIF Data Register (the I2C write
646                  * will begin).
647                  */
648                 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
649                         break;
650                 /*
651                  * Monitor bit 1:0 of the LBCIF Status Register.  When bits
652                  * 1:0 are both equal to 1, the I2C write has completed and the
653                  * internal write cycle of the EEPROM is about to start.
654                  * (bits 1:0 = 01 is a legal state while waiting from both
655                  * equal to 1, but bits 1:0 = 10 is invalid and implies that
656                  * something is broken).
657                  */
658                 err = eeprom_wait_ready(pdev, &status);
659                 if (err < 0)
660                         return 0;
661
662                 /*
663                  * Check bit 3 of the LBCIF Status Register.  If  equal to 1,
664                  * an error has occurred.Don't break here if we are revision
665                  * 1, this is so we do a blind write for load bug.
666                  */
667                 if ((status & LBCIF_STATUS_GENERAL_ERROR)
668                         && adapter->pdev->revision == 0)
669                         break;
670
671                 /*
672                  * Check bit 2 of the LBCIF Status Register.  If equal to 1 an
673                  * ACK error has occurred on the address phase of the write.
674                  * This could be due to an actual hardware failure or the
675                  * EEPROM may still be in its internal write cycle from a
676                  * previous write. This write operation was ignored and must be
677                   *repeated later.
678                  */
679                 if (status & LBCIF_STATUS_ACK_ERROR) {
680                         /*
681                          * This could be due to an actual hardware failure
682                          * or the EEPROM may still be in its internal write
683                          * cycle from a previous write. This write operation
684                          * was ignored and must be repeated later.
685                          */
686                         udelay(10);
687                         continue;
688                 }
689
690                 writeok = 1;
691                 break;
692         }
693
694         /*
695          * Set bit 6 of the LBCIF Control Register = 0.
696          */
697         udelay(10);
698
699         while (i2c_wack) {
700                 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
701                         LBCIF_CONTROL_LBCIF_ENABLE))
702                         writeok = 0;
703
704                 /* Do read until internal ACK_ERROR goes away meaning write
705                  * completed
706                  */
707                 do {
708                         pci_write_config_dword(pdev,
709                                                LBCIF_ADDRESS_REGISTER,
710                                                addr);
711                         do {
712                                 pci_read_config_dword(pdev,
713                                         LBCIF_DATA_REGISTER, &val);
714                         } while ((val & 0x00010000) == 0);
715                 } while (val & 0x00040000);
716
717                 if ((val & 0xFF00) != 0xC000 || index == 10000)
718                         break;
719                 index++;
720         }
721         return writeok ? 0 : -EIO;
722 }
723
724 /**
725  * eeprom_read - Read a byte from the ET1310's EEPROM
726  * @adapter: pointer to our private adapter structure
727  * @addr: the address from which to read
728  * @pdata: a pointer to a byte in which to store the value of the read
729  * @eeprom_id: the ID of the EEPROM
730  * @addrmode: how the EEPROM is to be accessed
731  *
732  * Returns 1 for a successful read
733  */
734 static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
735 {
736         struct pci_dev *pdev = adapter->pdev;
737         int err;
738         u32 status;
739
740         /*
741          * A single byte read is similar to the single byte write, with the
742          * exception of the data flow:
743          */
744
745         err = eeprom_wait_ready(pdev, NULL);
746         if (err)
747                 return err;
748         /*
749          * Write to the LBCIF Control Register:  bit 7=1, bit 6=0, bit 3=0,
750          * and bits 1:0 both =0.  Bit 5 should be set according to the type
751          * of EEPROM being accessed (1=two byte addressing, 0=one byte
752          * addressing).
753          */
754         if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
755                                   LBCIF_CONTROL_LBCIF_ENABLE))
756                 return -EIO;
757         /*
758          * Write the address to the LBCIF Address Register (I2C read will
759          * begin).
760          */
761         if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
762                 return -EIO;
763         /*
764          * Monitor bit 0 of the LBCIF Status Register.  When = 1, I2C read
765          * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
766          * has occurred).
767          */
768         err = eeprom_wait_ready(pdev, &status);
769         if (err < 0)
770                 return err;
771         /*
772          * Regardless of error status, read data byte from LBCIF Data
773          * Register.
774          */
775         *pdata = err;
776         /*
777          * Check bit 2 of the LBCIF Status Register.  If = 1,
778          * then an error has occurred.
779          */
780         return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
781 }
782
783 static int et131x_init_eeprom(struct et131x_adapter *adapter)
784 {
785         struct pci_dev *pdev = adapter->pdev;
786         u8 eestatus;
787
788         /* We first need to check the EEPROM Status code located at offset
789          * 0xB2 of config space
790          */
791         pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS,
792                                       &eestatus);
793
794         /* THIS IS A WORKAROUND:
795          * I need to call this function twice to get my card in a
796          * LG M1 Express Dual running. I tried also a msleep before this
797          * function, because I thought there could be some time condidions
798          * but it didn't work. Call the whole function twice also work.
799          */
800         if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
801                 dev_err(&pdev->dev,
802                        "Could not read PCI config space for EEPROM Status\n");
803                 return -EIO;
804         }
805
806         /* Determine if the error(s) we care about are present. If they are
807          * present we need to fail.
808          */
809         if (eestatus & 0x4C) {
810                 int write_failed = 0;
811                 if (pdev->revision == 0x01) {
812                         int     i;
813                         static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
814
815                         /* Re-write the first 4 bytes if we have an eeprom
816                          * present and the revision id is 1, this fixes the
817                          * corruption seen with 1310 B Silicon
818                          */
819                         for (i = 0; i < 3; i++)
820                                 if (eeprom_write(adapter, i, eedata[i]) < 0)
821                                         write_failed = 1;
822                 }
823                 if (pdev->revision  != 0x01 || write_failed) {
824                         dev_err(&pdev->dev,
825                             "Fatal EEPROM Status Error - 0x%04x\n", eestatus);
826
827                         /* This error could mean that there was an error
828                          * reading the eeprom or that the eeprom doesn't exist.
829                          * We will treat each case the same and not try to
830                          * gather additional information that normally would
831                          * come from the eeprom, like MAC Address
832                          */
833                         adapter->has_eeprom = 0;
834                         return -EIO;
835                 }
836         }
837         adapter->has_eeprom = 1;
838
839         /* Read the EEPROM for information regarding LED behavior. Refer to
840          * ET1310_phy.c, et131x_xcvr_init(), for its use.
841          */
842         eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
843         eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
844
845         if (adapter->eeprom_data[0] != 0xcd)
846                 /* Disable all optional features */
847                 adapter->eeprom_data[1] = 0x00;
848
849         return 0;
850 }
851
852 /**
853  * et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
854  * @adapter: pointer to our adapter structure
855  */
856 static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
857 {
858         /* Setup the receive dma configuration register for normal operation */
859         u32 csr =  0x2000;      /* FBR1 enable */
860
861         if (adapter->rx_ring.fbr[0]->buffsize == 4096)
862                 csr |= 0x0800;
863         else if (adapter->rx_ring.fbr[0]->buffsize == 8192)
864                 csr |= 0x1000;
865         else if (adapter->rx_ring.fbr[0]->buffsize == 16384)
866                 csr |= 0x1800;
867
868         csr |= 0x0400;          /* FBR0 enable */
869         if (adapter->rx_ring.fbr[1]->buffsize == 256)
870                 csr |= 0x0100;
871         else if (adapter->rx_ring.fbr[1]->buffsize == 512)
872                 csr |= 0x0200;
873         else if (adapter->rx_ring.fbr[1]->buffsize == 1024)
874                 csr |= 0x0300;
875         writel(csr, &adapter->regs->rxdma.csr);
876
877         csr = readl(&adapter->regs->rxdma.csr);
878         if ((csr & 0x00020000) != 0) {
879                 udelay(5);
880                 csr = readl(&adapter->regs->rxdma.csr);
881                 if ((csr & 0x00020000) != 0) {
882                         dev_err(&adapter->pdev->dev,
883                             "RX Dma failed to exit halt state.  CSR 0x%08x\n",
884                                 csr);
885                 }
886         }
887 }
888
889 /**
890  * et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
891  * @adapter: pointer to our adapter structure
892  */
893 static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
894 {
895         u32 csr;
896         /* Setup the receive dma configuration register */
897         writel(0x00002001, &adapter->regs->rxdma.csr);
898         csr = readl(&adapter->regs->rxdma.csr);
899         if ((csr & 0x00020000) == 0) {  /* Check halt status (bit 17) */
900                 udelay(5);
901                 csr = readl(&adapter->regs->rxdma.csr);
902                 if ((csr & 0x00020000) == 0)
903                         dev_err(&adapter->pdev->dev,
904                         "RX Dma failed to enter halt state. CSR 0x%08x\n",
905                                 csr);
906         }
907 }
908
909 /**
910  * et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
911  * @adapter: pointer to our adapter structure
912  *
913  * Mainly used after a return to the D0 (full-power) state from a lower state.
914  */
915 static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
916 {
917         /* Setup the transmit dma configuration register for normal
918          * operation
919          */
920         writel(ET_TXDMA_SNGL_EPKT|(PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
921                                         &adapter->regs->txdma.csr);
922 }
923
924 static inline void add_10bit(u32 *v, int n)
925 {
926         *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
927 }
928
929 static inline void add_12bit(u32 *v, int n)
930 {
931         *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
932 }
933
934 /**
935  * et1310_config_mac_regs1 - Initialize the first part of MAC regs
936  * @adapter: pointer to our adapter structure
937  */
938 static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
939 {
940         struct mac_regs __iomem *macregs = &adapter->regs->mac;
941         u32 station1;
942         u32 station2;
943         u32 ipg;
944
945         /* First we need to reset everything.  Write to MAC configuration
946          * register 1 to perform reset.
947          */
948         writel(0xC00F0000, &macregs->cfg1);
949
950         /* Next lets configure the MAC Inter-packet gap register */
951         ipg = 0x38005860;               /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
952         ipg |= 0x50 << 8;               /* ifg enforce 0x50 */
953         writel(ipg, &macregs->ipg);
954
955         /* Next lets configure the MAC Half Duplex register */
956         /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
957         writel(0x00A1F037, &macregs->hfdp);
958
959         /* Next lets configure the MAC Interface Control register */
960         writel(0, &macregs->if_ctrl);
961
962         /* Let's move on to setting up the mii management configuration */
963         writel(0x07, &macregs->mii_mgmt_cfg);   /* Clock reset 0x7 */
964
965         /* Next lets configure the MAC Station Address register.  These
966          * values are read from the EEPROM during initialization and stored
967          * in the adapter structure.  We write what is stored in the adapter
968          * structure to the MAC Station Address registers high and low.  This
969          * station address is used for generating and checking pause control
970          * packets.
971          */
972         station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
973                    (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
974         station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
975                    (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
976                    (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
977                     adapter->addr[2];
978         writel(station1, &macregs->station_addr_1);
979         writel(station2, &macregs->station_addr_2);
980
981         /* Max ethernet packet in bytes that will be passed by the mac without
982          * being truncated.  Allow the MAC to pass 4 more than our max packet
983          * size.  This is 4 for the Ethernet CRC.
984          *
985          * Packets larger than (registry_jumbo_packet) that do not contain a
986          * VLAN ID will be dropped by the Rx function.
987          */
988         writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
989
990         /* clear out MAC config reset */
991         writel(0, &macregs->cfg1);
992 }
993
994 /**
995  * et1310_config_mac_regs2 - Initialize the second part of MAC regs
996  * @adapter: pointer to our adapter structure
997  */
998 static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
999 {
1000         int32_t delay = 0;
1001         struct mac_regs __iomem *mac = &adapter->regs->mac;
1002         struct phy_device *phydev = adapter->phydev;
1003         u32 cfg1;
1004         u32 cfg2;
1005         u32 ifctrl;
1006         u32 ctl;
1007
1008         ctl = readl(&adapter->regs->txmac.ctl);
1009         cfg1 = readl(&mac->cfg1);
1010         cfg2 = readl(&mac->cfg2);
1011         ifctrl = readl(&mac->if_ctrl);
1012
1013         /* Set up the if mode bits */
1014         cfg2 &= ~0x300;
1015         if (phydev && phydev->speed == SPEED_1000) {
1016                 cfg2 |= 0x200;
1017                 /* Phy mode bit */
1018                 ifctrl &= ~(1 << 24);
1019         } else {
1020                 cfg2 |= 0x100;
1021                 ifctrl |= (1 << 24);
1022         }
1023
1024         /* We need to enable Rx/Tx */
1025         cfg1 |= CFG1_RX_ENABLE | CFG1_TX_ENABLE | CFG1_TX_FLOW;
1026         /* Initialize loop back to off */
1027         cfg1 &= ~(CFG1_LOOPBACK | CFG1_RX_FLOW);
1028         if (adapter->flowcontrol == FLOW_RXONLY ||
1029                                 adapter->flowcontrol == FLOW_BOTH)
1030                 cfg1 |= CFG1_RX_FLOW;
1031         writel(cfg1, &mac->cfg1);
1032
1033         /* Now we need to initialize the MAC Configuration 2 register */
1034         /* preamble 7, check length, huge frame off, pad crc, crc enable
1035            full duplex off */
1036         cfg2 |= 0x7016;
1037         cfg2 &= ~0x0021;
1038
1039         /* Turn on duplex if needed */
1040         if (phydev && phydev->duplex == DUPLEX_FULL)
1041                 cfg2 |= 0x01;
1042
1043         ifctrl &= ~(1 << 26);
1044         if (phydev && phydev->duplex == DUPLEX_HALF)
1045                 ifctrl |= (1<<26);      /* Enable ghd */
1046
1047         writel(ifctrl, &mac->if_ctrl);
1048         writel(cfg2, &mac->cfg2);
1049
1050         do {
1051                 udelay(10);
1052                 delay++;
1053                 cfg1 = readl(&mac->cfg1);
1054         } while ((cfg1 & CFG1_WAIT) != CFG1_WAIT && delay < 100);
1055
1056         if (delay == 100) {
1057                 dev_warn(&adapter->pdev->dev,
1058                     "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
1059                         cfg1);
1060         }
1061
1062         /* Enable txmac */
1063         ctl |= 0x09;    /* TX mac enable, FC disable */
1064         writel(ctl, &adapter->regs->txmac.ctl);
1065
1066         /* Ready to start the RXDMA/TXDMA engine */
1067         if (adapter->flags & fMP_ADAPTER_LOWER_POWER) {
1068                 et131x_rx_dma_enable(adapter);
1069                 et131x_tx_dma_enable(adapter);
1070         }
1071 }
1072
1073 /**
1074  * et1310_in_phy_coma - check if the device is in phy coma
1075  * @adapter: pointer to our adapter structure
1076  *
1077  * Returns 0 if the device is not in phy coma, 1 if it is in phy coma
1078  */
1079 static int et1310_in_phy_coma(struct et131x_adapter *adapter)
1080 {
1081         u32 pmcsr;
1082
1083         pmcsr = readl(&adapter->regs->global.pm_csr);
1084
1085         return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
1086 }
1087
1088 static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
1089 {
1090         struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1091         u32 hash1 = 0;
1092         u32 hash2 = 0;
1093         u32 hash3 = 0;
1094         u32 hash4 = 0;
1095         u32 pm_csr;
1096
1097         /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
1098          * the multi-cast LIST.  If it is NOT specified, (and "ALL" is not
1099          * specified) then we should pass NO multi-cast addresses to the
1100          * driver.
1101          */
1102         if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
1103                 int i;
1104
1105                 /* Loop through our multicast array and set up the device */
1106                 for (i = 0; i < adapter->multicast_addr_count; i++) {
1107                         u32 result;
1108
1109                         result = ether_crc(6, adapter->multicast_list[i]);
1110
1111                         result = (result & 0x3F800000) >> 23;
1112
1113                         if (result < 32) {
1114                                 hash1 |= (1 << result);
1115                         } else if ((31 < result) && (result < 64)) {
1116                                 result -= 32;
1117                                 hash2 |= (1 << result);
1118                         } else if ((63 < result) && (result < 96)) {
1119                                 result -= 64;
1120                                 hash3 |= (1 << result);
1121                         } else {
1122                                 result -= 96;
1123                                 hash4 |= (1 << result);
1124                         }
1125                 }
1126         }
1127
1128         /* Write out the new hash to the device */
1129         pm_csr = readl(&adapter->regs->global.pm_csr);
1130         if (!et1310_in_phy_coma(adapter)) {
1131                 writel(hash1, &rxmac->multi_hash1);
1132                 writel(hash2, &rxmac->multi_hash2);
1133                 writel(hash3, &rxmac->multi_hash3);
1134                 writel(hash4, &rxmac->multi_hash4);
1135         }
1136 }
1137
1138 static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
1139 {
1140         struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1141         u32 uni_pf1;
1142         u32 uni_pf2;
1143         u32 uni_pf3;
1144         u32 pm_csr;
1145
1146         /* Set up unicast packet filter reg 3 to be the first two octets of
1147          * the MAC address for both address
1148          *
1149          * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1150          * MAC address for second address
1151          *
1152          * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1153          * MAC address for first address
1154          */
1155         uni_pf3 = (adapter->addr[0] << ET_UNI_PF_ADDR2_1_SHIFT) |
1156                   (adapter->addr[1] << ET_UNI_PF_ADDR2_2_SHIFT) |
1157                   (adapter->addr[0] << ET_UNI_PF_ADDR1_1_SHIFT) |
1158                    adapter->addr[1];
1159
1160         uni_pf2 = (adapter->addr[2] << ET_UNI_PF_ADDR2_3_SHIFT) |
1161                   (adapter->addr[3] << ET_UNI_PF_ADDR2_4_SHIFT) |
1162                   (adapter->addr[4] << ET_UNI_PF_ADDR2_5_SHIFT) |
1163                    adapter->addr[5];
1164
1165         uni_pf1 = (adapter->addr[2] << ET_UNI_PF_ADDR1_3_SHIFT) |
1166                   (adapter->addr[3] << ET_UNI_PF_ADDR1_4_SHIFT) |
1167                   (adapter->addr[4] << ET_UNI_PF_ADDR1_5_SHIFT) |
1168                    adapter->addr[5];
1169
1170         pm_csr = readl(&adapter->regs->global.pm_csr);
1171         if (!et1310_in_phy_coma(adapter)) {
1172                 writel(uni_pf1, &rxmac->uni_pf_addr1);
1173                 writel(uni_pf2, &rxmac->uni_pf_addr2);
1174                 writel(uni_pf3, &rxmac->uni_pf_addr3);
1175         }
1176 }
1177
1178 static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1179 {
1180         struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1181         struct phy_device *phydev = adapter->phydev;
1182         u32 sa_lo;
1183         u32 sa_hi = 0;
1184         u32 pf_ctrl = 0;
1185
1186         /* Disable the MAC while it is being configured (also disable WOL) */
1187         writel(0x8, &rxmac->ctrl);
1188
1189         /* Initialize WOL to disabled. */
1190         writel(0, &rxmac->crc0);
1191         writel(0, &rxmac->crc12);
1192         writel(0, &rxmac->crc34);
1193
1194         /* We need to set the WOL mask0 - mask4 next.  We initialize it to
1195          * its default Values of 0x00000000 because there are not WOL masks
1196          * as of this time.
1197          */
1198         writel(0, &rxmac->mask0_word0);
1199         writel(0, &rxmac->mask0_word1);
1200         writel(0, &rxmac->mask0_word2);
1201         writel(0, &rxmac->mask0_word3);
1202
1203         writel(0, &rxmac->mask1_word0);
1204         writel(0, &rxmac->mask1_word1);
1205         writel(0, &rxmac->mask1_word2);
1206         writel(0, &rxmac->mask1_word3);
1207
1208         writel(0, &rxmac->mask2_word0);
1209         writel(0, &rxmac->mask2_word1);
1210         writel(0, &rxmac->mask2_word2);
1211         writel(0, &rxmac->mask2_word3);
1212
1213         writel(0, &rxmac->mask3_word0);
1214         writel(0, &rxmac->mask3_word1);
1215         writel(0, &rxmac->mask3_word2);
1216         writel(0, &rxmac->mask3_word3);
1217
1218         writel(0, &rxmac->mask4_word0);
1219         writel(0, &rxmac->mask4_word1);
1220         writel(0, &rxmac->mask4_word2);
1221         writel(0, &rxmac->mask4_word3);
1222
1223         /* Lets setup the WOL Source Address */
1224         sa_lo = (adapter->addr[2] << ET_WOL_LO_SA3_SHIFT) |
1225                 (adapter->addr[3] << ET_WOL_LO_SA4_SHIFT) |
1226                 (adapter->addr[4] << ET_WOL_LO_SA5_SHIFT) |
1227                  adapter->addr[5];
1228         writel(sa_lo, &rxmac->sa_lo);
1229
1230         sa_hi = (u32) (adapter->addr[0] << ET_WOL_HI_SA1_SHIFT) |
1231                        adapter->addr[1];
1232         writel(sa_hi, &rxmac->sa_hi);
1233
1234         /* Disable all Packet Filtering */
1235         writel(0, &rxmac->pf_ctrl);
1236
1237         /* Let's initialize the Unicast Packet filtering address */
1238         if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1239                 et1310_setup_device_for_unicast(adapter);
1240                 pf_ctrl |= 4;   /* Unicast filter */
1241         } else {
1242                 writel(0, &rxmac->uni_pf_addr1);
1243                 writel(0, &rxmac->uni_pf_addr2);
1244                 writel(0, &rxmac->uni_pf_addr3);
1245         }
1246
1247         /* Let's initialize the Multicast hash */
1248         if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1249                 pf_ctrl |= 2;   /* Multicast filter */
1250                 et1310_setup_device_for_multicast(adapter);
1251         }
1252
1253         /* Runt packet filtering.  Didn't work in version A silicon. */
1254         pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << 16;
1255         pf_ctrl |= 8;   /* Fragment filter */
1256
1257         if (adapter->registry_jumbo_packet > 8192)
1258                 /* In order to transmit jumbo packets greater than 8k, the
1259                  * FIFO between RxMAC and RxDMA needs to be reduced in size
1260                  * to (16k - Jumbo packet size).  In order to implement this,
1261                  * we must use "cut through" mode in the RxMAC, which chops
1262                  * packets down into segments which are (max_size * 16).  In
1263                  * this case we selected 256 bytes, since this is the size of
1264                  * the PCI-Express TLP's that the 1310 uses.
1265                  *
1266                  * seg_en on, fc_en off, size 0x10
1267                  */
1268                 writel(0x41, &rxmac->mcif_ctrl_max_seg);
1269         else
1270                 writel(0, &rxmac->mcif_ctrl_max_seg);
1271
1272         /* Initialize the MCIF water marks */
1273         writel(0, &rxmac->mcif_water_mark);
1274
1275         /*  Initialize the MIF control */
1276         writel(0, &rxmac->mif_ctrl);
1277
1278         /* Initialize the Space Available Register */
1279         writel(0, &rxmac->space_avail);
1280
1281         /* Initialize the the mif_ctrl register
1282          * bit 3:  Receive code error. One or more nibbles were signaled as
1283          *         errors  during the reception of the packet.  Clear this
1284          *         bit in Gigabit, set it in 100Mbit.  This was derived
1285          *         experimentally at UNH.
1286          * bit 4:  Receive CRC error. The packet's CRC did not match the
1287          *         internally generated CRC.
1288          * bit 5:  Receive length check error. Indicates that frame length
1289          *         field value in the packet does not match the actual data
1290          *         byte length and is not a type field.
1291          * bit 16: Receive frame truncated.
1292          * bit 17: Drop packet enable
1293          */
1294         if (phydev && phydev->speed == SPEED_100)
1295                 writel(0x30038, &rxmac->mif_ctrl);
1296         else
1297                 writel(0x30030, &rxmac->mif_ctrl);
1298
1299         /* Finally we initialize RxMac to be enabled & WOL disabled.  Packet
1300          * filter is always enabled since it is where the runt packets are
1301          * supposed to be dropped.  For version A silicon, runt packet
1302          * dropping doesn't work, so it is disabled in the pf_ctrl register,
1303          * but we still leave the packet filter on.
1304          */
1305         writel(pf_ctrl, &rxmac->pf_ctrl);
1306         writel(0x9, &rxmac->ctrl);
1307 }
1308
1309 static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1310 {
1311         struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1312
1313         /* We need to update the Control Frame Parameters
1314          * cfpt - control frame pause timer set to 64 (0x40)
1315          * cfep - control frame extended pause timer set to 0x0
1316          */
1317         if (adapter->flowcontrol == FLOW_NONE)
1318                 writel(0, &txmac->cf_param);
1319         else
1320                 writel(0x40, &txmac->cf_param);
1321 }
1322
1323 static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1324 {
1325         struct macstat_regs __iomem *macstat =
1326                 &adapter->regs->macstat;
1327
1328         /* Next we need to initialize all the macstat registers to zero on
1329          * the device.
1330          */
1331         writel(0, &macstat->txrx_0_64_byte_frames);
1332         writel(0, &macstat->txrx_65_127_byte_frames);
1333         writel(0, &macstat->txrx_128_255_byte_frames);
1334         writel(0, &macstat->txrx_256_511_byte_frames);
1335         writel(0, &macstat->txrx_512_1023_byte_frames);
1336         writel(0, &macstat->txrx_1024_1518_byte_frames);
1337         writel(0, &macstat->txrx_1519_1522_gvln_frames);
1338
1339         writel(0, &macstat->rx_bytes);
1340         writel(0, &macstat->rx_packets);
1341         writel(0, &macstat->rx_fcs_errs);
1342         writel(0, &macstat->rx_multicast_packets);
1343         writel(0, &macstat->rx_broadcast_packets);
1344         writel(0, &macstat->rx_control_frames);
1345         writel(0, &macstat->rx_pause_frames);
1346         writel(0, &macstat->rx_unknown_opcodes);
1347         writel(0, &macstat->rx_align_errs);
1348         writel(0, &macstat->rx_frame_len_errs);
1349         writel(0, &macstat->rx_code_errs);
1350         writel(0, &macstat->rx_carrier_sense_errs);
1351         writel(0, &macstat->rx_undersize_packets);
1352         writel(0, &macstat->rx_oversize_packets);
1353         writel(0, &macstat->rx_fragment_packets);
1354         writel(0, &macstat->rx_jabbers);
1355         writel(0, &macstat->rx_drops);
1356
1357         writel(0, &macstat->tx_bytes);
1358         writel(0, &macstat->tx_packets);
1359         writel(0, &macstat->tx_multicast_packets);
1360         writel(0, &macstat->tx_broadcast_packets);
1361         writel(0, &macstat->tx_pause_frames);
1362         writel(0, &macstat->tx_deferred);
1363         writel(0, &macstat->tx_excessive_deferred);
1364         writel(0, &macstat->tx_single_collisions);
1365         writel(0, &macstat->tx_multiple_collisions);
1366         writel(0, &macstat->tx_late_collisions);
1367         writel(0, &macstat->tx_excessive_collisions);
1368         writel(0, &macstat->tx_total_collisions);
1369         writel(0, &macstat->tx_pause_honored_frames);
1370         writel(0, &macstat->tx_drops);
1371         writel(0, &macstat->tx_jabbers);
1372         writel(0, &macstat->tx_fcs_errs);
1373         writel(0, &macstat->tx_control_frames);
1374         writel(0, &macstat->tx_oversize_frames);
1375         writel(0, &macstat->tx_undersize_frames);
1376         writel(0, &macstat->tx_fragments);
1377         writel(0, &macstat->carry_reg1);
1378         writel(0, &macstat->carry_reg2);
1379
1380         /* Unmask any counters that we want to track the overflow of.
1381          * Initially this will be all counters.  It may become clear later
1382          * that we do not need to track all counters.
1383          */
1384         writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1385         writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1386 }
1387
1388 /**
1389  * et131x_phy_mii_read - Read from the PHY through the MII Interface on the MAC
1390  * @adapter: pointer to our private adapter structure
1391  * @addr: the address of the transceiver
1392  * @reg: the register to read
1393  * @value: pointer to a 16-bit value in which the value will be stored
1394  *
1395  * Returns 0 on success, errno on failure (as defined in errno.h)
1396  */
1397 static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1398               u8 reg, u16 *value)
1399 {
1400         struct mac_regs __iomem *mac = &adapter->regs->mac;
1401         int status = 0;
1402         u32 delay = 0;
1403         u32 mii_addr;
1404         u32 mii_cmd;
1405         u32 mii_indicator;
1406
1407         /* Save a local copy of the registers we are dealing with so we can
1408          * set them back
1409          */
1410         mii_addr = readl(&mac->mii_mgmt_addr);
1411         mii_cmd = readl(&mac->mii_mgmt_cmd);
1412
1413         /* Stop the current operation */
1414         writel(0, &mac->mii_mgmt_cmd);
1415
1416         /* Set up the register we need to read from on the correct PHY */
1417         writel(MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1418
1419         writel(0x1, &mac->mii_mgmt_cmd);
1420
1421         do {
1422                 udelay(50);
1423                 delay++;
1424                 mii_indicator = readl(&mac->mii_mgmt_indicator);
1425         } while ((mii_indicator & MGMT_WAIT) && delay < 50);
1426
1427         /* If we hit the max delay, we could not read the register */
1428         if (delay == 50) {
1429                 dev_warn(&adapter->pdev->dev,
1430                             "reg 0x%08x could not be read\n", reg);
1431                 dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1432                             mii_indicator);
1433
1434                 status = -EIO;
1435         }
1436
1437         /* If we hit here we were able to read the register and we need to
1438          * return the value to the caller */
1439         *value = readl(&mac->mii_mgmt_stat) & 0xFFFF;
1440
1441         /* Stop the read operation */
1442         writel(0, &mac->mii_mgmt_cmd);
1443
1444         /* set the registers we touched back to the state at which we entered
1445          * this function
1446          */
1447         writel(mii_addr, &mac->mii_mgmt_addr);
1448         writel(mii_cmd, &mac->mii_mgmt_cmd);
1449
1450         return status;
1451 }
1452
1453 static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1454 {
1455         struct phy_device *phydev = adapter->phydev;
1456
1457         if (!phydev)
1458                 return -EIO;
1459
1460         return et131x_phy_mii_read(adapter, phydev->addr, reg, value);
1461 }
1462
1463 /**
1464  * et131x_mii_write - Write to a PHY register through the MII interface of the MAC
1465  * @adapter: pointer to our private adapter structure
1466  * @reg: the register to read
1467  * @value: 16-bit value to write
1468  *
1469  * FIXME: one caller in netdev still
1470  *
1471  * Return 0 on success, errno on failure (as defined in errno.h)
1472  */
1473 static int et131x_mii_write(struct et131x_adapter *adapter, u8 reg, u16 value)
1474 {
1475         struct mac_regs __iomem *mac = &adapter->regs->mac;
1476         struct phy_device *phydev = adapter->phydev;
1477         int status = 0;
1478         u8 addr;
1479         u32 delay = 0;
1480         u32 mii_addr;
1481         u32 mii_cmd;
1482         u32 mii_indicator;
1483
1484         if (!phydev)
1485                 return -EIO;
1486
1487         addr = phydev->addr;
1488
1489         /* Save a local copy of the registers we are dealing with so we can
1490          * set them back
1491          */
1492         mii_addr = readl(&mac->mii_mgmt_addr);
1493         mii_cmd = readl(&mac->mii_mgmt_cmd);
1494
1495         /* Stop the current operation */
1496         writel(0, &mac->mii_mgmt_cmd);
1497
1498         /* Set up the register we need to write to on the correct PHY */
1499         writel(MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1500
1501         /* Add the value to write to the registers to the mac */
1502         writel(value, &mac->mii_mgmt_ctrl);
1503
1504         do {
1505                 udelay(50);
1506                 delay++;
1507                 mii_indicator = readl(&mac->mii_mgmt_indicator);
1508         } while ((mii_indicator & MGMT_BUSY) && delay < 100);
1509
1510         /* If we hit the max delay, we could not write the register */
1511         if (delay == 100) {
1512                 u16 tmp;
1513
1514                 dev_warn(&adapter->pdev->dev,
1515                     "reg 0x%08x could not be written", reg);
1516                 dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1517                             mii_indicator);
1518                 dev_warn(&adapter->pdev->dev, "command is  0x%08x\n",
1519                             readl(&mac->mii_mgmt_cmd));
1520
1521                 et131x_mii_read(adapter, reg, &tmp);
1522
1523                 status = -EIO;
1524         }
1525         /* Stop the write operation */
1526         writel(0, &mac->mii_mgmt_cmd);
1527
1528         /*
1529          * set the registers we touched back to the state at which we entered
1530          * this function
1531          */
1532         writel(mii_addr, &mac->mii_mgmt_addr);
1533         writel(mii_cmd, &mac->mii_mgmt_cmd);
1534
1535         return status;
1536 }
1537
1538 /* Still used from _mac for BIT_READ */
1539 static void et1310_phy_access_mii_bit(struct et131x_adapter *adapter,
1540                                       u16 action, u16 regnum, u16 bitnum,
1541                                       u8 *value)
1542 {
1543         u16 reg;
1544         u16 mask = 0x0001 << bitnum;
1545
1546         /* Read the requested register */
1547         et131x_mii_read(adapter, regnum, &reg);
1548
1549         switch (action) {
1550         case TRUEPHY_BIT_READ:
1551                 *value = (reg & mask) >> bitnum;
1552                 break;
1553
1554         case TRUEPHY_BIT_SET:
1555                 et131x_mii_write(adapter, regnum, reg | mask);
1556                 break;
1557
1558         case TRUEPHY_BIT_CLEAR:
1559                 et131x_mii_write(adapter, regnum, reg & ~mask);
1560                 break;
1561
1562         default:
1563                 break;
1564         }
1565 }
1566
1567 static void et1310_config_flow_control(struct et131x_adapter *adapter)
1568 {
1569         struct phy_device *phydev = adapter->phydev;
1570
1571         if (phydev->duplex == DUPLEX_HALF) {
1572                 adapter->flowcontrol = FLOW_NONE;
1573         } else {
1574                 char remote_pause, remote_async_pause;
1575
1576                 et1310_phy_access_mii_bit(adapter,
1577                                 TRUEPHY_BIT_READ, 5, 10, &remote_pause);
1578                 et1310_phy_access_mii_bit(adapter,
1579                                 TRUEPHY_BIT_READ, 5, 11,
1580                                 &remote_async_pause);
1581
1582                 if ((remote_pause == TRUEPHY_BIT_SET) &&
1583                     (remote_async_pause == TRUEPHY_BIT_SET)) {
1584                         adapter->flowcontrol = adapter->wanted_flow;
1585                 } else if ((remote_pause == TRUEPHY_BIT_SET) &&
1586                            (remote_async_pause == TRUEPHY_BIT_CLEAR)) {
1587                         if (adapter->wanted_flow == FLOW_BOTH)
1588                                 adapter->flowcontrol = FLOW_BOTH;
1589                         else
1590                                 adapter->flowcontrol = FLOW_NONE;
1591                 } else if ((remote_pause == TRUEPHY_BIT_CLEAR) &&
1592                            (remote_async_pause == TRUEPHY_BIT_CLEAR)) {
1593                         adapter->flowcontrol = FLOW_NONE;
1594                 } else {/* if (remote_pause == TRUEPHY_CLEAR_BIT &&
1595                                remote_async_pause == TRUEPHY_SET_BIT) */
1596                         if (adapter->wanted_flow == FLOW_BOTH)
1597                                 adapter->flowcontrol = FLOW_RXONLY;
1598                         else
1599                                 adapter->flowcontrol = FLOW_NONE;
1600                 }
1601         }
1602 }
1603
1604 /**
1605  * et1310_update_macstat_host_counters - Update the local copy of the statistics
1606  * @adapter: pointer to the adapter structure
1607  */
1608 static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1609 {
1610         struct ce_stats *stats = &adapter->stats;
1611         struct macstat_regs __iomem *macstat =
1612                 &adapter->regs->macstat;
1613
1614         stats->tx_collisions           += readl(&macstat->tx_total_collisions);
1615         stats->tx_first_collisions     += readl(&macstat->tx_single_collisions);
1616         stats->tx_deferred             += readl(&macstat->tx_deferred);
1617         stats->tx_excessive_collisions +=
1618                                 readl(&macstat->tx_multiple_collisions);
1619         stats->tx_late_collisions      += readl(&macstat->tx_late_collisions);
1620         stats->tx_underflows           += readl(&macstat->tx_undersize_frames);
1621         stats->tx_max_pkt_errs         += readl(&macstat->tx_oversize_frames);
1622
1623         stats->rx_align_errs        += readl(&macstat->rx_align_errs);
1624         stats->rx_crc_errs          += readl(&macstat->rx_code_errs);
1625         stats->rcvd_pkts_dropped    += readl(&macstat->rx_drops);
1626         stats->rx_overflows         += readl(&macstat->rx_oversize_packets);
1627         stats->rx_code_violations   += readl(&macstat->rx_fcs_errs);
1628         stats->rx_length_errs       += readl(&macstat->rx_frame_len_errs);
1629         stats->rx_other_errs        += readl(&macstat->rx_fragment_packets);
1630 }
1631
1632 /**
1633  * et1310_handle_macstat_interrupt
1634  * @adapter: pointer to the adapter structure
1635  *
1636  * One of the MACSTAT counters has wrapped.  Update the local copy of
1637  * the statistics held in the adapter structure, checking the "wrap"
1638  * bit for each counter.
1639  */
1640 static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1641 {
1642         u32 carry_reg1;
1643         u32 carry_reg2;
1644
1645         /* Read the interrupt bits from the register(s).  These are Clear On
1646          * Write.
1647          */
1648         carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1649         carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1650
1651         writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1652         writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1653
1654         /* We need to do update the host copy of all the MAC_STAT counters.
1655          * For each counter, check it's overflow bit.  If the overflow bit is
1656          * set, then increment the host version of the count by one complete
1657          * revolution of the counter.  This routine is called when the counter
1658          * block indicates that one of the counters has wrapped.
1659          */
1660         if (carry_reg1 & (1 << 14))
1661                 adapter->stats.rx_code_violations       += COUNTER_WRAP_16_BIT;
1662         if (carry_reg1 & (1 << 8))
1663                 adapter->stats.rx_align_errs    += COUNTER_WRAP_12_BIT;
1664         if (carry_reg1 & (1 << 7))
1665                 adapter->stats.rx_length_errs   += COUNTER_WRAP_16_BIT;
1666         if (carry_reg1 & (1 << 2))
1667                 adapter->stats.rx_other_errs    += COUNTER_WRAP_16_BIT;
1668         if (carry_reg1 & (1 << 6))
1669                 adapter->stats.rx_crc_errs      += COUNTER_WRAP_16_BIT;
1670         if (carry_reg1 & (1 << 3))
1671                 adapter->stats.rx_overflows     += COUNTER_WRAP_16_BIT;
1672         if (carry_reg1 & (1 << 0))
1673                 adapter->stats.rcvd_pkts_dropped        += COUNTER_WRAP_16_BIT;
1674         if (carry_reg2 & (1 << 16))
1675                 adapter->stats.tx_max_pkt_errs  += COUNTER_WRAP_12_BIT;
1676         if (carry_reg2 & (1 << 15))
1677                 adapter->stats.tx_underflows    += COUNTER_WRAP_12_BIT;
1678         if (carry_reg2 & (1 << 6))
1679                 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1680         if (carry_reg2 & (1 << 8))
1681                 adapter->stats.tx_deferred      += COUNTER_WRAP_12_BIT;
1682         if (carry_reg2 & (1 << 5))
1683                 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1684         if (carry_reg2 & (1 << 4))
1685                 adapter->stats.tx_late_collisions       += COUNTER_WRAP_12_BIT;
1686         if (carry_reg2 & (1 << 2))
1687                 adapter->stats.tx_collisions    += COUNTER_WRAP_12_BIT;
1688 }
1689
1690 static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1691 {
1692         struct net_device *netdev = bus->priv;
1693         struct et131x_adapter *adapter = netdev_priv(netdev);
1694         u16 value;
1695         int ret;
1696
1697         ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1698
1699         if (ret < 0)
1700                 return ret;
1701         else
1702                 return value;
1703 }
1704
1705 static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1706                              int reg, u16 value)
1707 {
1708         struct net_device *netdev = bus->priv;
1709         struct et131x_adapter *adapter = netdev_priv(netdev);
1710
1711         return et131x_mii_write(adapter, reg, value);
1712 }
1713
1714 static int et131x_mdio_reset(struct mii_bus *bus)
1715 {
1716         struct net_device *netdev = bus->priv;
1717         struct et131x_adapter *adapter = netdev_priv(netdev);
1718
1719         et131x_mii_write(adapter, MII_BMCR, BMCR_RESET);
1720
1721         return 0;
1722 }
1723
1724 /**
1725  *      et1310_phy_power_down   -       PHY power control
1726  *      @adapter: device to control
1727  *      @down: true for off/false for back on
1728  *
1729  *      one hundred, ten, one thousand megs
1730  *      How would you like to have your LAN accessed
1731  *      Can't you see that this code processed
1732  *      Phy power, phy power..
1733  */
1734 static void et1310_phy_power_down(struct et131x_adapter *adapter, bool down)
1735 {
1736         u16 data;
1737
1738         et131x_mii_read(adapter, MII_BMCR, &data);
1739         data &= ~BMCR_PDOWN;
1740         if (down)
1741                 data |= BMCR_PDOWN;
1742         et131x_mii_write(adapter, MII_BMCR, data);
1743 }
1744
1745 /**
1746  * et131x_xcvr_init - Init the phy if we are setting it into force mode
1747  * @adapter: pointer to our private adapter structure
1748  *
1749  */
1750 static void et131x_xcvr_init(struct et131x_adapter *adapter)
1751 {
1752         u16 imr;
1753         u16 isr;
1754         u16 lcr2;
1755
1756         et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &isr);
1757         et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &imr);
1758
1759         /* Set the link status interrupt only.  Bad behavior when link status
1760          * and auto neg are set, we run into a nested interrupt problem
1761          */
1762         imr |= (ET_PHY_INT_MASK_AUTONEGSTAT |
1763                 ET_PHY_INT_MASK_LINKSTAT |
1764                 ET_PHY_INT_MASK_ENABLE);
1765
1766         et131x_mii_write(adapter, PHY_INTERRUPT_MASK, imr);
1767
1768         /* Set the LED behavior such that LED 1 indicates speed (off =
1769          * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1770          * link and activity (on for link, blink off for activity).
1771          *
1772          * NOTE: Some customizations have been added here for specific
1773          * vendors; The LED behavior is now determined by vendor data in the
1774          * EEPROM. However, the above description is the default.
1775          */
1776         if ((adapter->eeprom_data[1] & 0x4) == 0) {
1777                 et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1778
1779                 lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
1780                 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1781
1782                 if ((adapter->eeprom_data[1] & 0x8) == 0)
1783                         lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1784                 else
1785                         lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1786
1787                 et131x_mii_write(adapter, PHY_LED_2, lcr2);
1788         }
1789 }
1790
1791 /**
1792  * et131x_configure_global_regs -       configure JAGCore global regs
1793  * @adapter: pointer to our adapter structure
1794  *
1795  * Used to configure the global registers on the JAGCore
1796  */
1797 static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1798 {
1799         struct global_regs __iomem *regs = &adapter->regs->global;
1800
1801         writel(0, &regs->rxq_start_addr);
1802         writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1803
1804         if (adapter->registry_jumbo_packet < 2048) {
1805                 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1806                  * block of RAM that the driver can split between Tx
1807                  * and Rx as it desires.  Our default is to split it
1808                  * 50/50:
1809                  */
1810                 writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1811                 writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1812         } else if (adapter->registry_jumbo_packet < 8192) {
1813                 /* For jumbo packets > 2k but < 8k, split 50-50. */
1814                 writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1815                 writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1816         } else {
1817                 /* 9216 is the only packet size greater than 8k that
1818                  * is available. The Tx buffer has to be big enough
1819                  * for one whole packet on the Tx side. We'll make
1820                  * the Tx 9408, and give the rest to Rx
1821                  */
1822                 writel(0x01b3, &regs->rxq_end_addr);
1823                 writel(0x01b4, &regs->txq_start_addr);
1824         }
1825
1826         /* Initialize the loopback register. Disable all loopbacks. */
1827         writel(0, &regs->loopback);
1828
1829         /* MSI Register */
1830         writel(0, &regs->msi_config);
1831
1832         /* By default, disable the watchdog timer.  It will be enabled when
1833          * a packet is queued.
1834          */
1835         writel(0, &regs->watchdog_timer);
1836 }
1837
1838 /**
1839  * et131x_config_rx_dma_regs - Start of Rx_DMA init sequence
1840  * @adapter: pointer to our adapter structure
1841  */
1842 static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1843 {
1844         struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1845         struct rx_ring *rx_local = &adapter->rx_ring;
1846         struct fbr_desc *fbr_entry;
1847         u32 entry;
1848         u32 psr_num_des;
1849         unsigned long flags;
1850
1851         /* Halt RXDMA to perform the reconfigure.  */
1852         et131x_rx_dma_disable(adapter);
1853
1854         /* Load the completion writeback physical address */
1855         writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
1856         writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
1857
1858         memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1859
1860         /* Set the address and parameters of the packet status ring into the
1861          * 1310's registers
1862          */
1863         writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
1864         writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
1865         writel(rx_local->psr_num_entries - 1, &rx_dma->psr_num_des);
1866         writel(0, &rx_dma->psr_full_offset);
1867
1868         psr_num_des = readl(&rx_dma->psr_num_des) & 0xFFF;
1869         writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1870                &rx_dma->psr_min_des);
1871
1872         spin_lock_irqsave(&adapter->rcv_lock, flags);
1873
1874         /* These local variables track the PSR in the adapter structure */
1875         rx_local->local_psr_full = 0;
1876
1877         /* Now's the best time to initialize FBR1 contents */
1878         fbr_entry = (struct fbr_desc *) rx_local->fbr[0]->ring_virtaddr;
1879         for (entry = 0; entry < rx_local->fbr[0]->num_entries; entry++) {
1880                 fbr_entry->addr_hi = rx_local->fbr[0]->bus_high[entry];
1881                 fbr_entry->addr_lo = rx_local->fbr[0]->bus_low[entry];
1882                 fbr_entry->word2 = entry;
1883                 fbr_entry++;
1884         }
1885
1886         /* Set the address and parameters of Free buffer ring 1 (and 0 if
1887          * required) into the 1310's registers
1888          */
1889         writel(upper_32_bits(rx_local->fbr[0]->ring_physaddr),
1890                &rx_dma->fbr1_base_hi);
1891         writel(lower_32_bits(rx_local->fbr[0]->ring_physaddr),
1892                &rx_dma->fbr1_base_lo);
1893         writel(rx_local->fbr[0]->num_entries - 1, &rx_dma->fbr1_num_des);
1894         writel(ET_DMA10_WRAP, &rx_dma->fbr1_full_offset);
1895
1896         /* This variable tracks the free buffer ring 1 full position, so it
1897          * has to match the above.
1898          */
1899         rx_local->fbr[0]->local_full = ET_DMA10_WRAP;
1900         writel(
1901            ((rx_local->fbr[0]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1902            &rx_dma->fbr1_min_des);
1903
1904         /* Now's the best time to initialize FBR0 contents */
1905         fbr_entry = (struct fbr_desc *) rx_local->fbr[1]->ring_virtaddr;
1906         for (entry = 0; entry < rx_local->fbr[1]->num_entries; entry++) {
1907                 fbr_entry->addr_hi = rx_local->fbr[1]->bus_high[entry];
1908                 fbr_entry->addr_lo = rx_local->fbr[1]->bus_low[entry];
1909                 fbr_entry->word2 = entry;
1910                 fbr_entry++;
1911         }
1912
1913         writel(upper_32_bits(rx_local->fbr[1]->ring_physaddr),
1914                &rx_dma->fbr0_base_hi);
1915         writel(lower_32_bits(rx_local->fbr[1]->ring_physaddr),
1916                &rx_dma->fbr0_base_lo);
1917         writel(rx_local->fbr[1]->num_entries - 1, &rx_dma->fbr0_num_des);
1918         writel(ET_DMA10_WRAP, &rx_dma->fbr0_full_offset);
1919
1920         /* This variable tracks the free buffer ring 0 full position, so it
1921          * has to match the above.
1922          */
1923         rx_local->fbr[1]->local_full = ET_DMA10_WRAP;
1924         writel(
1925            ((rx_local->fbr[1]->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1926            &rx_dma->fbr0_min_des);
1927
1928         /* Program the number of packets we will receive before generating an
1929          * interrupt.
1930          * For version B silicon, this value gets updated once autoneg is
1931          *complete.
1932          */
1933         writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1934
1935         /* The "time_done" is not working correctly to coalesce interrupts
1936          * after a given time period, but rather is giving us an interrupt
1937          * regardless of whether we have received packets.
1938          * This value gets updated once autoneg is complete.
1939          */
1940         writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1941
1942         spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1943 }
1944
1945 /**
1946  * et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1947  * @adapter: pointer to our private adapter structure
1948  *
1949  * Configure the transmit engine with the ring buffers we have created
1950  * and prepare it for use.
1951  */
1952 static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1953 {
1954         struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1955
1956         /* Load the hardware with the start of the transmit descriptor ring. */
1957         writel(upper_32_bits(adapter->tx_ring.tx_desc_ring_pa),
1958                &txdma->pr_base_hi);
1959         writel(lower_32_bits(adapter->tx_ring.tx_desc_ring_pa),
1960                &txdma->pr_base_lo);
1961
1962         /* Initialise the transmit DMA engine */
1963         writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1964
1965         /* Load the completion writeback physical address */
1966         writel(upper_32_bits(adapter->tx_ring.tx_status_pa),
1967                &txdma->dma_wb_base_hi);
1968         writel(lower_32_bits(adapter->tx_ring.tx_status_pa),
1969                &txdma->dma_wb_base_lo);
1970
1971         *adapter->tx_ring.tx_status = 0;
1972
1973         writel(0, &txdma->service_request);
1974         adapter->tx_ring.send_idx = 0;
1975 }
1976
1977 /**
1978  * et131x_adapter_setup - Set the adapter up as per cassini+ documentation
1979  * @adapter: pointer to our private adapter structure
1980  *
1981  * Returns 0 on success, errno on failure (as defined in errno.h)
1982  */
1983 static void et131x_adapter_setup(struct et131x_adapter *adapter)
1984 {
1985         /* Configure the JAGCore */
1986         et131x_configure_global_regs(adapter);
1987
1988         et1310_config_mac_regs1(adapter);
1989
1990         /* Configure the MMC registers */
1991         /* All we need to do is initialize the Memory Control Register */
1992         writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1993
1994         et1310_config_rxmac_regs(adapter);
1995         et1310_config_txmac_regs(adapter);
1996
1997         et131x_config_rx_dma_regs(adapter);
1998         et131x_config_tx_dma_regs(adapter);
1999
2000         et1310_config_macstat_regs(adapter);
2001
2002         et1310_phy_power_down(adapter, 0);
2003         et131x_xcvr_init(adapter);
2004 }
2005
2006 /**
2007  * et131x_soft_reset - Issue a soft reset to the hardware, complete for ET1310
2008  * @adapter: pointer to our private adapter structure
2009  */
2010 static void et131x_soft_reset(struct et131x_adapter *adapter)
2011 {
2012         /* Disable MAC Core */
2013         writel(0xc00f0000, &adapter->regs->mac.cfg1);
2014
2015         /* Set everything to a reset value */
2016         writel(0x7F, &adapter->regs->global.sw_reset);
2017         writel(0x000f0000, &adapter->regs->mac.cfg1);
2018         writel(0x00000000, &adapter->regs->mac.cfg1);
2019 }
2020
2021 /**
2022  *      et131x_enable_interrupts        -       enable interrupt
2023  *      @adapter: et131x device
2024  *
2025  *      Enable the appropriate interrupts on the ET131x according to our
2026  *      configuration
2027  */
2028 static void et131x_enable_interrupts(struct et131x_adapter *adapter)
2029 {
2030         u32 mask;
2031
2032         /* Enable all global interrupts */
2033         if (adapter->flowcontrol == FLOW_TXONLY ||
2034                             adapter->flowcontrol == FLOW_BOTH)
2035                 mask = INT_MASK_ENABLE;
2036         else
2037                 mask = INT_MASK_ENABLE_NO_FLOW;
2038
2039         writel(mask, &adapter->regs->global.int_mask);
2040 }
2041
2042 /**
2043  *      et131x_disable_interrupts       -       interrupt disable
2044  *      @adapter: et131x device
2045  *
2046  *      Block all interrupts from the et131x device at the device itself
2047  */
2048 static void et131x_disable_interrupts(struct et131x_adapter *adapter)
2049 {
2050         /* Disable all global interrupts */
2051         writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
2052 }
2053
2054 /**
2055  * et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310
2056  * @adapter: pointer to our adapter structure
2057  */
2058 static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
2059 {
2060         /* Setup the tramsmit dma configuration register */
2061         writel(ET_TXDMA_CSR_HALT|ET_TXDMA_SNGL_EPKT,
2062                                         &adapter->regs->txdma.csr);
2063 }
2064
2065 /**
2066  * et131x_enable_txrx - Enable tx/rx queues
2067  * @netdev: device to be enabled
2068  */
2069 static void et131x_enable_txrx(struct net_device *netdev)
2070 {
2071         struct et131x_adapter *adapter = netdev_priv(netdev);
2072
2073         /* Enable the Tx and Rx DMA engines (if not already enabled) */
2074         et131x_rx_dma_enable(adapter);
2075         et131x_tx_dma_enable(adapter);
2076
2077         /* Enable device interrupts */
2078         if (adapter->flags & fMP_ADAPTER_INTERRUPT_IN_USE)
2079                 et131x_enable_interrupts(adapter);
2080
2081         /* We're ready to move some data, so start the queue */
2082         netif_start_queue(netdev);
2083 }
2084
2085 /**
2086  * et131x_disable_txrx - Disable tx/rx queues
2087  * @netdev: device to be disabled
2088  */
2089 static void et131x_disable_txrx(struct net_device *netdev)
2090 {
2091         struct et131x_adapter *adapter = netdev_priv(netdev);
2092
2093         /* First thing is to stop the queue */
2094         netif_stop_queue(netdev);
2095
2096         /* Stop the Tx and Rx DMA engines */
2097         et131x_rx_dma_disable(adapter);
2098         et131x_tx_dma_disable(adapter);
2099
2100         /* Disable device interrupts */
2101         et131x_disable_interrupts(adapter);
2102 }
2103
2104 /**
2105  * et131x_init_send - Initialize send data structures
2106  * @adapter: pointer to our private adapter structure
2107  */
2108 static void et131x_init_send(struct et131x_adapter *adapter)
2109 {
2110         struct tcb *tcb;
2111         u32 ct;
2112         struct tx_ring *tx_ring;
2113
2114         /* Setup some convenience pointers */
2115         tx_ring = &adapter->tx_ring;
2116         tcb = adapter->tx_ring.tcb_ring;
2117
2118         tx_ring->tcb_qhead = tcb;
2119
2120         memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
2121
2122         /* Go through and set up each TCB */
2123         for (ct = 0; ct++ < NUM_TCB; tcb++)
2124                 /* Set the link pointer in HW TCB to the next TCB in the
2125                  * chain
2126                  */
2127                 tcb->next = tcb + 1;
2128
2129         /* Set the  tail pointer */
2130         tcb--;
2131         tx_ring->tcb_qtail = tcb;
2132         tcb->next = NULL;
2133         /* Curr send queue should now be empty */
2134         tx_ring->send_head = NULL;
2135         tx_ring->send_tail = NULL;
2136 }
2137
2138 /**
2139  * et1310_enable_phy_coma - called when network cable is unplugged
2140  * @adapter: pointer to our adapter structure
2141  *
2142  * driver receive an phy status change interrupt while in D0 and check that
2143  * phy_status is down.
2144  *
2145  *          -- gate off JAGCore;
2146  *          -- set gigE PHY in Coma mode
2147  *          -- wake on phy_interrupt; Perform software reset JAGCore,
2148  *             re-initialize jagcore and gigE PHY
2149  *
2150  *      Add D0-ASPM-PhyLinkDown Support:
2151  *          -- while in D0, when there is a phy_interrupt indicating phy link
2152  *             down status, call the MPSetPhyComa routine to enter this active
2153  *             state power saving mode
2154  *          -- while in D0-ASPM-PhyLinkDown mode, when there is a phy_interrupt
2155  *       indicating linkup status, call the MPDisablePhyComa routine to
2156  *             restore JAGCore and gigE PHY
2157  */
2158 static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
2159 {
2160         unsigned long flags;
2161         u32 pmcsr;
2162
2163         pmcsr = readl(&adapter->regs->global.pm_csr);
2164
2165         /* Save the GbE PHY speed and duplex modes. Need to restore this
2166          * when cable is plugged back in
2167          */
2168         /*
2169          * TODO - when PM is re-enabled, check if we need to
2170          * perform a similar task as this -
2171          * adapter->pdown_speed = adapter->ai_force_speed;
2172          * adapter->pdown_duplex = adapter->ai_force_duplex;
2173          */
2174
2175         /* Stop sending packets. */
2176         spin_lock_irqsave(&adapter->send_hw_lock, flags);
2177         adapter->flags |= fMP_ADAPTER_LOWER_POWER;
2178         spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
2179
2180         /* Wait for outstanding Receive packets */
2181
2182         et131x_disable_txrx(adapter->netdev);
2183
2184         /* Gate off JAGCore 3 clock domains */
2185         pmcsr &= ~ET_PMCSR_INIT;
2186         writel(pmcsr, &adapter->regs->global.pm_csr);
2187
2188         /* Program gigE PHY in to Coma mode */
2189         pmcsr |= ET_PM_PHY_SW_COMA;
2190         writel(pmcsr, &adapter->regs->global.pm_csr);
2191 }
2192
2193 /**
2194  * et1310_disable_phy_coma - Disable the Phy Coma Mode
2195  * @adapter: pointer to our adapter structure
2196  */
2197 static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
2198 {
2199         u32 pmcsr;
2200
2201         pmcsr = readl(&adapter->regs->global.pm_csr);
2202
2203         /* Disable phy_sw_coma register and re-enable JAGCore clocks */
2204         pmcsr |= ET_PMCSR_INIT;
2205         pmcsr &= ~ET_PM_PHY_SW_COMA;
2206         writel(pmcsr, &adapter->regs->global.pm_csr);
2207
2208         /* Restore the GbE PHY speed and duplex modes;
2209          * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
2210          */
2211         /* TODO - when PM is re-enabled, check if we need to
2212          * perform a similar task as this -
2213          * adapter->ai_force_speed = adapter->pdown_speed;
2214          * adapter->ai_force_duplex = adapter->pdown_duplex;
2215          */
2216
2217         /* Re-initialize the send structures */
2218         et131x_init_send(adapter);
2219
2220         /* Bring the device back to the state it was during init prior to
2221          * autonegotiation being complete.  This way, when we get the auto-neg
2222          * complete interrupt, we can complete init by calling ConfigMacREGS2.
2223          */
2224         et131x_soft_reset(adapter);
2225
2226         /* setup et1310 as per the documentation ?? */
2227         et131x_adapter_setup(adapter);
2228
2229         /* Allow Tx to restart */
2230         adapter->flags &= ~fMP_ADAPTER_LOWER_POWER;
2231
2232         et131x_enable_txrx(adapter->netdev);
2233 }
2234
2235 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
2236 {
2237         u32 tmp_free_buff_ring = *free_buff_ring;
2238         tmp_free_buff_ring++;
2239         /* This works for all cases where limit < 1024. The 1023 case
2240            works because 1023++ is 1024 which means the if condition is not
2241            taken but the carry of the bit into the wrap bit toggles the wrap
2242            value correctly */
2243         if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
2244                 tmp_free_buff_ring &= ~ET_DMA10_MASK;
2245                 tmp_free_buff_ring ^= ET_DMA10_WRAP;
2246         }
2247         /* For the 1023 case */
2248         tmp_free_buff_ring &= (ET_DMA10_MASK|ET_DMA10_WRAP);
2249         *free_buff_ring = tmp_free_buff_ring;
2250         return tmp_free_buff_ring;
2251 }
2252
2253 /**
2254  * et131x_align_allocated_memory - Align allocated memory on a given boundary
2255  * @adapter: pointer to our adapter structure
2256  * @phys_addr: pointer to Physical address
2257  * @offset: pointer to the offset variable
2258  * @mask: correct mask
2259  */
2260 static void et131x_align_allocated_memory(struct et131x_adapter *adapter,
2261                                           dma_addr_t *phys_addr, dma_addr_t *offset,
2262                                           u64 mask)
2263 {
2264         u64 new_addr = *phys_addr & ~mask;
2265
2266         *offset = 0;
2267
2268         if (new_addr != *phys_addr) {
2269                 /* Move to next aligned block */
2270                 new_addr += mask + 1;
2271                 /* Return offset for adjusting virt addr */
2272                 *offset = new_addr - *phys_addr;
2273                 /* Return new physical address */
2274                 *phys_addr = new_addr;
2275         }
2276 }
2277
2278 /**
2279  * et131x_rx_dma_memory_alloc
2280  * @adapter: pointer to our private adapter structure
2281  *
2282  * Returns 0 on success and errno on failure (as defined in errno.h)
2283  *
2284  * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
2285  * and the Packet Status Ring.
2286  */
2287 static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
2288 {
2289         u32 i, j;
2290         u32 bufsize;
2291         u32 pktstat_ringsize, fbr_chunksize;
2292         struct rx_ring *rx_ring;
2293
2294         /* Setup some convenience pointers */
2295         rx_ring = &adapter->rx_ring;
2296
2297         /* Alloc memory for the lookup table */
2298         rx_ring->fbr[1] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2299         rx_ring->fbr[0] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2300
2301         /* The first thing we will do is configure the sizes of the buffer
2302          * rings. These will change based on jumbo packet support.  Larger
2303          * jumbo packets increases the size of each entry in FBR0, and the
2304          * number of entries in FBR0, while at the same time decreasing the
2305          * number of entries in FBR1.
2306          *
2307          * FBR1 holds "large" frames, FBR0 holds "small" frames.  If FBR1
2308          * entries are huge in order to accommodate a "jumbo" frame, then it
2309          * will have less entries.  Conversely, FBR1 will now be relied upon
2310          * to carry more "normal" frames, thus it's entry size also increases
2311          * and the number of entries goes up too (since it now carries
2312          * "small" + "regular" packets.
2313          *
2314          * In this scheme, we try to maintain 512 entries between the two
2315          * rings. Also, FBR1 remains a constant size - when it's size doubles
2316          * the number of entries halves.  FBR0 increases in size, however.
2317          */
2318
2319         if (adapter->registry_jumbo_packet < 2048) {
2320                 rx_ring->fbr[1]->buffsize = 256;
2321                 rx_ring->fbr[1]->num_entries = 512;
2322                 rx_ring->fbr[0]->buffsize = 2048;
2323                 rx_ring->fbr[0]->num_entries = 512;
2324         } else if (adapter->registry_jumbo_packet < 4096) {
2325                 rx_ring->fbr[1]->buffsize = 512;
2326                 rx_ring->fbr[1]->num_entries = 1024;
2327                 rx_ring->fbr[0]->buffsize = 4096;
2328                 rx_ring->fbr[0]->num_entries = 512;
2329         } else {
2330                 rx_ring->fbr[1]->buffsize = 1024;
2331                 rx_ring->fbr[1]->num_entries = 768;
2332                 rx_ring->fbr[0]->buffsize = 16384;
2333                 rx_ring->fbr[0]->num_entries = 128;
2334         }
2335
2336         adapter->rx_ring.psr_num_entries =
2337                                 adapter->rx_ring.fbr[1]->num_entries +
2338                                 adapter->rx_ring.fbr[0]->num_entries;
2339
2340         /* Allocate an area of memory for Free Buffer Ring 1 */
2341         bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) +
2342                                                                         0xfff;
2343         rx_ring->fbr[0]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2344                                         bufsize,
2345                                         &rx_ring->fbr[0]->ring_physaddr,
2346                                         GFP_KERNEL);
2347         if (!rx_ring->fbr[0]->ring_virtaddr) {
2348                 dev_err(&adapter->pdev->dev,
2349                           "Cannot alloc memory for Free Buffer Ring 1\n");
2350                 return -ENOMEM;
2351         }
2352
2353         /* Align Free Buffer Ring 1 on a 4K boundary */
2354         et131x_align_allocated_memory(adapter,
2355                                       &rx_ring->fbr[0]->ring_physaddr,
2356                                       &rx_ring->fbr[0]->offset, 0x0FFF);
2357
2358         rx_ring->fbr[0]->ring_virtaddr =
2359                         (void *)((u8 *) rx_ring->fbr[0]->ring_virtaddr +
2360                         rx_ring->fbr[0]->offset);
2361
2362         /* Allocate an area of memory for Free Buffer Ring 0 */
2363         bufsize = (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) +
2364                                                                         0xfff;
2365         rx_ring->fbr[1]->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2366                                                 bufsize,
2367                                                 &rx_ring->fbr[1]->ring_physaddr,
2368                                                 GFP_KERNEL);
2369         if (!rx_ring->fbr[1]->ring_virtaddr) {
2370                 dev_err(&adapter->pdev->dev,
2371                           "Cannot alloc memory for Free Buffer Ring 0\n");
2372                 return -ENOMEM;
2373         }
2374
2375         /* Align Free Buffer Ring 0 on a 4K boundary */
2376         et131x_align_allocated_memory(adapter,
2377                                       &rx_ring->fbr[1]->ring_physaddr,
2378                                       &rx_ring->fbr[1]->offset, 0x0FFF);
2379
2380         rx_ring->fbr[1]->ring_virtaddr =
2381                         (void *)((u8 *) rx_ring->fbr[1]->ring_virtaddr +
2382                         rx_ring->fbr[1]->offset);
2383
2384         for (i = 0; i < (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); i++) {
2385                 dma_addr_t fbr1_tmp_physaddr;
2386                 dma_addr_t fbr1_offset;
2387                 u32 fbr1_align;
2388
2389                 /* This code allocates an area of memory big enough for N
2390                  * free buffers + (buffer_size - 1) so that the buffers can
2391                  * be aligned on 4k boundaries.  If each buffer were aligned
2392                  * to a buffer_size boundary, the effect would be to double
2393                  * the size of FBR0.  By allocating N buffers at once, we
2394                  * reduce this overhead.
2395                  */
2396                 if (rx_ring->fbr[0]->buffsize > 4096)
2397                         fbr1_align = 4096;
2398                 else
2399                         fbr1_align = rx_ring->fbr[0]->buffsize;
2400
2401                 fbr_chunksize =
2402                     (FBR_CHUNKS * rx_ring->fbr[0]->buffsize) + fbr1_align - 1;
2403                 rx_ring->fbr[0]->mem_virtaddrs[i] =
2404                     dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
2405                                        &rx_ring->fbr[0]->mem_physaddrs[i],
2406                                        GFP_KERNEL);
2407
2408                 if (!rx_ring->fbr[0]->mem_virtaddrs[i]) {
2409                         dev_err(&adapter->pdev->dev,
2410                                 "Could not alloc memory\n");
2411                         return -ENOMEM;
2412                 }
2413
2414                 /* See NOTE in "Save Physical Address" comment above */
2415                 fbr1_tmp_physaddr = rx_ring->fbr[0]->mem_physaddrs[i];
2416
2417                 et131x_align_allocated_memory(adapter,
2418                                               &fbr1_tmp_physaddr,
2419                                               &fbr1_offset, (fbr1_align - 1));
2420
2421                 for (j = 0; j < FBR_CHUNKS; j++) {
2422                         u32 index = (i * FBR_CHUNKS) + j;
2423
2424                         /* Save the Virtual address of this index for quick
2425                          * access later
2426                          */
2427                         rx_ring->fbr[0]->virt[index] =
2428                             (u8 *) rx_ring->fbr[0]->mem_virtaddrs[i] +
2429                             (j * rx_ring->fbr[0]->buffsize) + fbr1_offset;
2430
2431                         /* now store the physical address in the descriptor
2432                          * so the device can access it
2433                          */
2434                         rx_ring->fbr[0]->bus_high[index] =
2435                                         upper_32_bits(fbr1_tmp_physaddr);
2436                         rx_ring->fbr[0]->bus_low[index] =
2437                                         lower_32_bits(fbr1_tmp_physaddr);
2438
2439                         fbr1_tmp_physaddr += rx_ring->fbr[0]->buffsize;
2440
2441                         rx_ring->fbr[0]->buffer1[index] =
2442                                         rx_ring->fbr[0]->virt[index];
2443                         rx_ring->fbr[0]->buffer2[index] =
2444                                         rx_ring->fbr[0]->virt[index] - 4;
2445                 }
2446         }
2447
2448         /* Same for FBR0 (if in use) */
2449         for (i = 0; i < (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); i++) {
2450                 dma_addr_t fbr0_tmp_physaddr;
2451                 dma_addr_t fbr0_offset;
2452
2453                 fbr_chunksize =
2454                     ((FBR_CHUNKS + 1) * rx_ring->fbr[1]->buffsize) - 1;
2455                 rx_ring->fbr[1]->mem_virtaddrs[i] =
2456                     dma_alloc_coherent(&adapter->pdev->dev, fbr_chunksize,
2457                                        &rx_ring->fbr[1]->mem_physaddrs[i],
2458                                        GFP_KERNEL);
2459
2460                 if (!rx_ring->fbr[1]->mem_virtaddrs[i]) {
2461                         dev_err(&adapter->pdev->dev,
2462                                 "Could not alloc memory\n");
2463                         return -ENOMEM;
2464                 }
2465
2466                 /* See NOTE in "Save Physical Address" comment above */
2467                 fbr0_tmp_physaddr = rx_ring->fbr[1]->mem_physaddrs[i];
2468
2469                 et131x_align_allocated_memory(adapter,
2470                                               &fbr0_tmp_physaddr,
2471                                               &fbr0_offset,
2472                                               rx_ring->fbr[1]->buffsize - 1);
2473
2474                 for (j = 0; j < FBR_CHUNKS; j++) {
2475                         u32 index = (i * FBR_CHUNKS) + j;
2476
2477                         rx_ring->fbr[1]->virt[index] =
2478                             (u8 *) rx_ring->fbr[1]->mem_virtaddrs[i] +
2479                             (j * rx_ring->fbr[1]->buffsize) + fbr0_offset;
2480
2481                         rx_ring->fbr[1]->bus_high[index] =
2482                                         upper_32_bits(fbr0_tmp_physaddr);
2483                         rx_ring->fbr[1]->bus_low[index] =
2484                                         lower_32_bits(fbr0_tmp_physaddr);
2485
2486                         fbr0_tmp_physaddr += rx_ring->fbr[1]->buffsize;
2487
2488                         rx_ring->fbr[1]->buffer1[index] =
2489                                         rx_ring->fbr[1]->virt[index];
2490                         rx_ring->fbr[1]->buffer2[index] =
2491                                         rx_ring->fbr[1]->virt[index] - 4;
2492                 }
2493         }
2494
2495         /* Allocate an area of memory for FIFO of Packet Status ring entries */
2496         pktstat_ringsize =
2497             sizeof(struct pkt_stat_desc) * adapter->rx_ring.psr_num_entries;
2498
2499         rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2500                                                   pktstat_ringsize,
2501                                                   &rx_ring->ps_ring_physaddr,
2502                                                   GFP_KERNEL);
2503
2504         if (!rx_ring->ps_ring_virtaddr) {
2505                 dev_err(&adapter->pdev->dev,
2506                           "Cannot alloc memory for Packet Status Ring\n");
2507                 return -ENOMEM;
2508         }
2509         pr_info("Packet Status Ring %llx\n",
2510                 (unsigned long long) rx_ring->ps_ring_physaddr);
2511
2512         /*
2513          * NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
2514          * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2515          * are ever returned, make sure the high part is retrieved here before
2516          * storing the adjusted address.
2517          */
2518
2519         /* Allocate an area of memory for writeback of status information */
2520         rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
2521                                             sizeof(struct rx_status_block),
2522                                             &rx_ring->rx_status_bus,
2523                                             GFP_KERNEL);
2524         if (!rx_ring->rx_status_block) {
2525                 dev_err(&adapter->pdev->dev,
2526                           "Cannot alloc memory for Status Block\n");
2527                 return -ENOMEM;
2528         }
2529         rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
2530         pr_info("PRS %llx\n", (unsigned long long)rx_ring->rx_status_bus);
2531
2532         /* Recv
2533          * kmem_cache_create initializes a lookaside list. After successful
2534          * creation, nonpaged fixed-size blocks can be allocated from and
2535          * freed to the lookaside list.
2536          * RFDs will be allocated from this pool.
2537          */
2538         rx_ring->recv_lookaside = kmem_cache_create(adapter->netdev->name,
2539                                                    sizeof(struct rfd),
2540                                                    0,
2541                                                    SLAB_CACHE_DMA |
2542                                                    SLAB_HWCACHE_ALIGN,
2543                                                    NULL);
2544
2545         adapter->flags |= fMP_ADAPTER_RECV_LOOKASIDE;
2546
2547         /* The RFDs are going to be put on lists later on, so initialize the
2548          * lists now.
2549          */
2550         INIT_LIST_HEAD(&rx_ring->recv_list);
2551         return 0;
2552 }
2553
2554 /**
2555  * et131x_rx_dma_memory_free - Free all memory allocated within this module.
2556  * @adapter: pointer to our private adapter structure
2557  */
2558 static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2559 {
2560         u32 index;
2561         u32 bufsize;
2562         u32 pktstat_ringsize;
2563         struct rfd *rfd;
2564         struct rx_ring *rx_ring;
2565
2566         /* Setup some convenience pointers */
2567         rx_ring = &adapter->rx_ring;
2568
2569         /* Free RFDs and associated packet descriptors */
2570         WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2571
2572         while (!list_empty(&rx_ring->recv_list)) {
2573                 rfd = (struct rfd *) list_entry(rx_ring->recv_list.next,
2574                                 struct rfd, list_node);
2575
2576                 list_del(&rfd->list_node);
2577                 rfd->skb = NULL;
2578                 kmem_cache_free(adapter->rx_ring.recv_lookaside, rfd);
2579         }
2580
2581         /* Free Free Buffer Ring 1 */
2582         if (rx_ring->fbr[0]->ring_virtaddr) {
2583                 /* First the packet memory */
2584                 for (index = 0; index <
2585                      (rx_ring->fbr[0]->num_entries / FBR_CHUNKS); index++) {
2586                         if (rx_ring->fbr[0]->mem_virtaddrs[index]) {
2587                                 u32 fbr1_align;
2588
2589                                 if (rx_ring->fbr[0]->buffsize > 4096)
2590                                         fbr1_align = 4096;
2591                                 else
2592                                         fbr1_align = rx_ring->fbr[0]->buffsize;
2593
2594                                 bufsize =
2595                                     (rx_ring->fbr[0]->buffsize * FBR_CHUNKS) +
2596                                     fbr1_align - 1;
2597
2598                                 dma_free_coherent(&adapter->pdev->dev,
2599                                         bufsize,
2600                                         rx_ring->fbr[0]->mem_virtaddrs[index],
2601                                         rx_ring->fbr[0]->mem_physaddrs[index]);
2602
2603                                 rx_ring->fbr[0]->mem_virtaddrs[index] = NULL;
2604                         }
2605                 }
2606
2607                 /* Now the FIFO itself */
2608                 rx_ring->fbr[0]->ring_virtaddr = (void *)((u8 *)
2609                     rx_ring->fbr[0]->ring_virtaddr - rx_ring->fbr[0]->offset);
2610
2611                 bufsize =
2612                     (sizeof(struct fbr_desc) * rx_ring->fbr[0]->num_entries) +
2613                                                                         0xfff;
2614
2615                 dma_free_coherent(&adapter->pdev->dev, bufsize,
2616                                     rx_ring->fbr[0]->ring_virtaddr,
2617                                     rx_ring->fbr[0]->ring_physaddr);
2618
2619                 rx_ring->fbr[0]->ring_virtaddr = NULL;
2620         }
2621
2622         /* Now the same for Free Buffer Ring 0 */
2623         if (rx_ring->fbr[1]->ring_virtaddr) {
2624                 /* First the packet memory */
2625                 for (index = 0; index <
2626                      (rx_ring->fbr[1]->num_entries / FBR_CHUNKS); index++) {
2627                         if (rx_ring->fbr[1]->mem_virtaddrs[index]) {
2628                                 bufsize =
2629                                     (rx_ring->fbr[1]->buffsize *
2630                                      (FBR_CHUNKS + 1)) - 1;
2631
2632                                 dma_free_coherent(&adapter->pdev->dev,
2633                                         bufsize,
2634                                         rx_ring->fbr[1]->mem_virtaddrs[index],
2635                                         rx_ring->fbr[1]->mem_physaddrs[index]);
2636
2637                                 rx_ring->fbr[1]->mem_virtaddrs[index] = NULL;
2638                         }
2639                 }
2640
2641                 /* Now the FIFO itself */
2642                 rx_ring->fbr[1]->ring_virtaddr = (void *)((u8 *)
2643                     rx_ring->fbr[1]->ring_virtaddr - rx_ring->fbr[1]->offset);
2644
2645                 bufsize =
2646                     (sizeof(struct fbr_desc) * rx_ring->fbr[1]->num_entries) +
2647                                                                         0xfff;
2648
2649                 dma_free_coherent(&adapter->pdev->dev,
2650                                   bufsize,
2651                                   rx_ring->fbr[1]->ring_virtaddr,
2652                                   rx_ring->fbr[1]->ring_physaddr);
2653
2654                 rx_ring->fbr[1]->ring_virtaddr = NULL;
2655         }
2656
2657         /* Free Packet Status Ring */
2658         if (rx_ring->ps_ring_virtaddr) {
2659                 pktstat_ringsize =
2660                     sizeof(struct pkt_stat_desc) *
2661                     adapter->rx_ring.psr_num_entries;
2662
2663                 dma_free_coherent(&adapter->pdev->dev, pktstat_ringsize,
2664                                     rx_ring->ps_ring_virtaddr,
2665                                     rx_ring->ps_ring_physaddr);
2666
2667                 rx_ring->ps_ring_virtaddr = NULL;
2668         }
2669
2670         /* Free area of memory for the writeback of status information */
2671         if (rx_ring->rx_status_block) {
2672                 dma_free_coherent(&adapter->pdev->dev,
2673                         sizeof(struct rx_status_block),
2674                         rx_ring->rx_status_block, rx_ring->rx_status_bus);
2675                 rx_ring->rx_status_block = NULL;
2676         }
2677
2678         /* Destroy the lookaside (RFD) pool */
2679         if (adapter->flags & fMP_ADAPTER_RECV_LOOKASIDE) {
2680                 kmem_cache_destroy(rx_ring->recv_lookaside);
2681                 adapter->flags &= ~fMP_ADAPTER_RECV_LOOKASIDE;
2682         }
2683
2684         /* Free the FBR Lookup Table */
2685         kfree(rx_ring->fbr[1]);
2686         kfree(rx_ring->fbr[0]);
2687
2688         /* Reset Counters */
2689         rx_ring->num_ready_recv = 0;
2690 }
2691
2692 /**
2693  * et131x_init_recv - Initialize receive data structures.
2694  * @adapter: pointer to our private adapter structure
2695  *
2696  * Returns 0 on success and errno on failure (as defined in errno.h)
2697  */
2698 static int et131x_init_recv(struct et131x_adapter *adapter)
2699 {
2700         int status = -ENOMEM;
2701         struct rfd *rfd = NULL;
2702         u32 rfdct;
2703         u32 numrfd = 0;
2704         struct rx_ring *rx_ring;
2705
2706         /* Setup some convenience pointers */
2707         rx_ring = &adapter->rx_ring;
2708
2709         /* Setup each RFD */
2710         for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2711                 rfd = kmem_cache_alloc(rx_ring->recv_lookaside,
2712                                                      GFP_ATOMIC | GFP_DMA);
2713
2714                 if (!rfd) {
2715                         dev_err(&adapter->pdev->dev,
2716                                   "Couldn't alloc RFD out of kmem_cache\n");
2717                         status = -ENOMEM;
2718                         continue;
2719                 }
2720
2721                 rfd->skb = NULL;
2722
2723                 /* Add this RFD to the recv_list */
2724                 list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2725
2726                 /* Increment both the available RFD's, and the total RFD's. */
2727                 rx_ring->num_ready_recv++;
2728                 numrfd++;
2729         }
2730
2731         if (numrfd > NIC_MIN_NUM_RFD)
2732                 status = 0;
2733
2734         rx_ring->num_rfd = numrfd;
2735
2736         if (status != 0) {
2737                 kmem_cache_free(rx_ring->recv_lookaside, rfd);
2738                 dev_err(&adapter->pdev->dev,
2739                           "Allocation problems in et131x_init_recv\n");
2740         }
2741         return status;
2742 }
2743
2744 /**
2745  * et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate.
2746  * @adapter: pointer to our adapter structure
2747  */
2748 static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2749 {
2750         struct phy_device *phydev = adapter->phydev;
2751
2752         if (!phydev)
2753                 return;
2754
2755         /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2756          * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2757          */
2758         if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2759                 writel(0, &adapter->regs->rxdma.max_pkt_time);
2760                 writel(1, &adapter->regs->rxdma.num_pkt_done);
2761         }
2762 }
2763
2764 /**
2765  * NICReturnRFD - Recycle a RFD and put it back onto the receive list
2766  * @adapter: pointer to our adapter
2767  * @rfd: pointer to the RFD
2768  */
2769 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2770 {
2771         struct rx_ring *rx_local = &adapter->rx_ring;
2772         struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2773         u16 buff_index = rfd->bufferindex;
2774         u8 ring_index = rfd->ringindex;
2775         unsigned long flags;
2776
2777         /* We don't use any of the OOB data besides status. Otherwise, we
2778          * need to clean up OOB data
2779          */
2780         if (
2781             (ring_index == 0 && buff_index < rx_local->fbr[1]->num_entries) ||
2782             (ring_index == 1 && buff_index < rx_local->fbr[0]->num_entries)) {
2783                 spin_lock_irqsave(&adapter->fbr_lock, flags);
2784
2785                 if (ring_index == 1) {
2786                         struct fbr_desc *next = (struct fbr_desc *)
2787                                         (rx_local->fbr[0]->ring_virtaddr) +
2788                                         INDEX10(rx_local->fbr[0]->local_full);
2789
2790                         /* Handle the Free Buffer Ring advancement here. Write
2791                          * the PA / Buffer Index for the returned buffer into
2792                          * the oldest (next to be freed)FBR entry
2793                          */
2794                         next->addr_hi = rx_local->fbr[0]->bus_high[buff_index];
2795                         next->addr_lo = rx_local->fbr[0]->bus_low[buff_index];
2796                         next->word2 = buff_index;
2797
2798                         writel(bump_free_buff_ring(
2799                                         &rx_local->fbr[0]->local_full,
2800                                         rx_local->fbr[0]->num_entries - 1),
2801                                         &rx_dma->fbr1_full_offset);
2802                 } else {
2803                         struct fbr_desc *next = (struct fbr_desc *)
2804                                 rx_local->fbr[1]->ring_virtaddr +
2805                                     INDEX10(rx_local->fbr[1]->local_full);
2806
2807                         /* Handle the Free Buffer Ring advancement here. Write
2808                          * the PA / Buffer Index for the returned buffer into
2809                          * the oldest (next to be freed) FBR entry
2810                          */
2811                         next->addr_hi = rx_local->fbr[1]->bus_high[buff_index];
2812                         next->addr_lo = rx_local->fbr[1]->bus_low[buff_index];
2813                         next->word2 = buff_index;
2814
2815                         writel(bump_free_buff_ring(
2816                                         &rx_local->fbr[1]->local_full,
2817                                         rx_local->fbr[1]->num_entries - 1),
2818                                &rx_dma->fbr0_full_offset);
2819                 }
2820                 spin_unlock_irqrestore(&adapter->fbr_lock, flags);
2821         } else {
2822                 dev_err(&adapter->pdev->dev,
2823                           "%s illegal Buffer Index returned\n", __func__);
2824         }
2825
2826         /* The processing on this RFD is done, so put it back on the tail of
2827          * our list
2828          */
2829         spin_lock_irqsave(&adapter->rcv_lock, flags);
2830         list_add_tail(&rfd->list_node, &rx_local->recv_list);
2831         rx_local->num_ready_recv++;
2832         spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2833
2834         WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2835 }
2836
2837 /**
2838  * nic_rx_pkts - Checks the hardware for available packets
2839  * @adapter: pointer to our adapter
2840  *
2841  * Returns rfd, a pointer to our MPRFD.
2842  *
2843  * Checks the hardware for available packets, using completion ring
2844  * If packets are available, it gets an RFD from the recv_list, attaches
2845  * the packet to it, puts the RFD in the RecvPendList, and also returns
2846  * the pointer to the RFD.
2847  */
2848 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2849 {
2850         struct rx_ring *rx_local = &adapter->rx_ring;
2851         struct rx_status_block *status;
2852         struct pkt_stat_desc *psr;
2853         struct rfd *rfd;
2854         u32 i;
2855         u8 *buf;
2856         unsigned long flags;
2857         struct list_head *element;
2858         u8 ring_index;
2859         u16 buff_index;
2860         u32 len;
2861         u32 word0;
2862         u32 word1;
2863
2864         /* RX Status block is written by the DMA engine prior to every
2865          * interrupt. It contains the next to be used entry in the Packet
2866          * Status Ring, and also the two Free Buffer rings.
2867          */
2868         status = rx_local->rx_status_block;
2869         word1 = status->word1 >> 16;    /* Get the useful bits */
2870
2871         /* Check the PSR and wrap bits do not match */
2872         if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2873                 /* Looks like this ring is not updated yet */
2874                 return NULL;
2875
2876         /* The packet status ring indicates that data is available. */
2877         psr = (struct pkt_stat_desc *) (rx_local->ps_ring_virtaddr) +
2878                         (rx_local->local_psr_full & 0xFFF);
2879
2880         /* Grab any information that is required once the PSR is
2881          * advanced, since we can no longer rely on the memory being
2882          * accurate
2883          */
2884         len = psr->word1 & 0xFFFF;
2885         ring_index = (psr->word1 >> 26) & 0x03;
2886         buff_index = (psr->word1 >> 16) & 0x3FF;
2887         word0 = psr->word0;
2888
2889         /* Indicate that we have used this PSR entry. */
2890         /* FIXME wrap 12 */
2891         add_12bit(&rx_local->local_psr_full, 1);
2892         if (
2893           (rx_local->local_psr_full & 0xFFF) > rx_local->psr_num_entries - 1) {
2894                 /* Clear psr full and toggle the wrap bit */
2895                 rx_local->local_psr_full &=  ~0xFFF;
2896                 rx_local->local_psr_full ^= 0x1000;
2897         }
2898
2899         writel(rx_local->local_psr_full,
2900                &adapter->regs->rxdma.psr_full_offset);
2901
2902         if (ring_index > 1 ||
2903                         (ring_index == 0 &&
2904                         buff_index > rx_local->fbr[1]->num_entries - 1) ||
2905                         (ring_index == 1 &&
2906                         buff_index > rx_local->fbr[0]->num_entries - 1)) {
2907                 /* Illegal buffer or ring index cannot be used by S/W*/
2908                 dev_err(&adapter->pdev->dev,
2909                           "NICRxPkts PSR Entry %d indicates "
2910                           "length of %d and/or bad bi(%d)\n",
2911                           rx_local->local_psr_full & 0xFFF,
2912                           len, buff_index);
2913                 return NULL;
2914         }
2915
2916         /* Get and fill the RFD. */
2917         spin_lock_irqsave(&adapter->rcv_lock, flags);
2918
2919         rfd = NULL;
2920         element = rx_local->recv_list.next;
2921         rfd = (struct rfd *) list_entry(element, struct rfd, list_node);
2922
2923         if (rfd == NULL) {
2924                 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2925                 return NULL;
2926         }
2927
2928         list_del(&rfd->list_node);
2929         rx_local->num_ready_recv--;
2930
2931         spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2932
2933         rfd->bufferindex = buff_index;
2934         rfd->ringindex = ring_index;
2935
2936         /* In V1 silicon, there is a bug which screws up filtering of
2937          * runt packets.  Therefore runt packet filtering is disabled
2938          * in the MAC and the packets are dropped here.  They are
2939          * also counted here.
2940          */
2941         if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2942                 adapter->stats.rx_other_errs++;
2943                 len = 0;
2944         }
2945
2946         if (len) {
2947                 /* Determine if this is a multicast packet coming in */
2948                 if ((word0 & ALCATEL_MULTICAST_PKT) &&
2949                     !(word0 & ALCATEL_BROADCAST_PKT)) {
2950                         /* Promiscuous mode and Multicast mode are
2951                          * not mutually exclusive as was first
2952                          * thought.  I guess Promiscuous is just
2953                          * considered a super-set of the other
2954                          * filters. Generally filter is 0x2b when in
2955                          * promiscuous mode.
2956                          */
2957                         if ((adapter->packet_filter &
2958                                         ET131X_PACKET_TYPE_MULTICAST)
2959                             && !(adapter->packet_filter &
2960                                         ET131X_PACKET_TYPE_PROMISCUOUS)
2961                             && !(adapter->packet_filter &
2962                                         ET131X_PACKET_TYPE_ALL_MULTICAST)) {
2963                                 /*
2964                                  * Note - ring_index for fbr[] array is reversed
2965                                  * 1 for FBR0 etc
2966                                  */
2967                                 buf = rx_local->fbr[(ring_index == 0 ? 1 : 0)]->
2968                                                 virt[buff_index];
2969
2970                                 /* Loop through our list to see if the
2971                                  * destination address of this packet
2972                                  * matches one in our list.
2973                                  */
2974                                 for (i = 0; i < adapter->multicast_addr_count;
2975                                      i++) {
2976                                         if (buf[0] ==
2977                                                 adapter->multicast_list[i][0]
2978                                             && buf[1] ==
2979                                                 adapter->multicast_list[i][1]
2980                                             && buf[2] ==
2981                                                 adapter->multicast_list[i][2]
2982                                             && buf[3] ==
2983                                                 adapter->multicast_list[i][3]
2984                                             && buf[4] ==
2985                                                 adapter->multicast_list[i][4]
2986                                             && buf[5] ==
2987                                                 adapter->multicast_list[i][5]) {
2988                                                 break;
2989                                         }
2990                                 }
2991
2992                                 /* If our index is equal to the number
2993                                  * of Multicast address we have, then
2994                                  * this means we did not find this
2995                                  * packet's matching address in our
2996                                  * list.  Set the len to zero,
2997                                  * so we free our RFD when we return
2998                                  * from this function.
2999                                  */
3000                                 if (i == adapter->multicast_addr_count)
3001                                         len = 0;
3002                         }
3003
3004                         if (len > 0)
3005                                 adapter->stats.multicast_pkts_rcvd++;
3006                 } else if (word0 & ALCATEL_BROADCAST_PKT)
3007                         adapter->stats.broadcast_pkts_rcvd++;
3008                 else
3009                         /* Not sure what this counter measures in
3010                          * promiscuous mode. Perhaps we should check
3011                          * the MAC address to see if it is directed
3012                          * to us in promiscuous mode.
3013                          */
3014                         adapter->stats.unicast_pkts_rcvd++;
3015         }
3016
3017         if (len > 0) {
3018                 struct sk_buff *skb = NULL;
3019
3020                 /*rfd->len = len - 4; */
3021                 rfd->len = len;
3022
3023                 skb = dev_alloc_skb(rfd->len + 2);
3024                 if (!skb) {
3025                         dev_err(&adapter->pdev->dev,
3026                                   "Couldn't alloc an SKB for Rx\n");
3027                         return NULL;
3028                 }
3029
3030                 adapter->net_stats.rx_bytes += rfd->len;
3031
3032                 /*
3033                  * Note - ring_index for fbr[] array is reversed,
3034                  * 1 for FBR0 etc
3035                  */
3036                 memcpy(skb_put(skb, rfd->len),
3037                     rx_local->fbr[(ring_index == 0 ? 1 : 0)]->virt[buff_index],
3038                     rfd->len);
3039
3040                 skb->dev = adapter->netdev;
3041                 skb->protocol = eth_type_trans(skb, adapter->netdev);
3042                 skb->ip_summed = CHECKSUM_NONE;
3043
3044                 netif_rx_ni(skb);
3045         } else {
3046                 rfd->len = 0;
3047         }
3048
3049         nic_return_rfd(adapter, rfd);
3050         return rfd;
3051 }
3052
3053 /**
3054  * et131x_handle_recv_interrupt - Interrupt handler for receive processing
3055  * @adapter: pointer to our adapter
3056  *
3057  * Assumption, Rcv spinlock has been acquired.
3058  */
3059 static void et131x_handle_recv_interrupt(struct et131x_adapter *adapter)
3060 {
3061         struct rfd *rfd = NULL;
3062         u32 count = 0;
3063         bool done = true;
3064
3065         /* Process up to available RFD's */
3066         while (count < NUM_PACKETS_HANDLED) {
3067                 if (list_empty(&adapter->rx_ring.recv_list)) {
3068                         WARN_ON(adapter->rx_ring.num_ready_recv != 0);
3069                         done = false;
3070                         break;
3071                 }
3072
3073                 rfd = nic_rx_pkts(adapter);
3074
3075                 if (rfd == NULL)
3076                         break;
3077
3078                 /* Do not receive any packets until a filter has been set.
3079                  * Do not receive any packets until we have link.
3080                  * If length is zero, return the RFD in order to advance the
3081                  * Free buffer ring.
3082                  */
3083                 if (!adapter->packet_filter ||
3084                     !netif_carrier_ok(adapter->netdev) ||
3085                     rfd->len == 0)
3086                         continue;
3087
3088                 /* Increment the number of packets we received */
3089                 adapter->net_stats.rx_packets++;
3090
3091                 /* Set the status on the packet, either resources or success */
3092                 if (adapter->rx_ring.num_ready_recv < RFD_LOW_WATER_MARK) {
3093                         dev_warn(&adapter->pdev->dev,
3094                                     "RFD's are running out\n");
3095                 }
3096                 count++;
3097         }
3098
3099         if (count == NUM_PACKETS_HANDLED || !done) {
3100                 adapter->rx_ring.unfinished_receives = true;
3101                 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
3102                        &adapter->regs->global.watchdog_timer);
3103         } else
3104                 /* Watchdog timer will disable itself if appropriate. */
3105                 adapter->rx_ring.unfinished_receives = false;
3106 }
3107
3108 /**
3109  * et131x_tx_dma_memory_alloc
3110  * @adapter: pointer to our private adapter structure
3111  *
3112  * Returns 0 on success and errno on failure (as defined in errno.h).
3113  *
3114  * Allocates memory that will be visible both to the device and to the CPU.
3115  * The OS will pass us packets, pointers to which we will insert in the Tx
3116  * Descriptor queue. The device will read this queue to find the packets in
3117  * memory. The device will update the "status" in memory each time it xmits a
3118  * packet.
3119  */
3120 static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
3121 {
3122         int desc_size = 0;
3123         struct tx_ring *tx_ring = &adapter->tx_ring;
3124
3125         /* Allocate memory for the TCB's (Transmit Control Block) */
3126         adapter->tx_ring.tcb_ring =
3127                 kcalloc(NUM_TCB, sizeof(struct tcb), GFP_ATOMIC | GFP_DMA);
3128         if (!adapter->tx_ring.tcb_ring) {
3129                 dev_err(&adapter->pdev->dev, "Cannot alloc memory for TCBs\n");
3130                 return -ENOMEM;
3131         }
3132
3133         /* Allocate enough memory for the Tx descriptor ring, and allocate
3134          * some extra so that the ring can be aligned on a 4k boundary.
3135          */
3136         desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX) + 4096 - 1;
3137         tx_ring->tx_desc_ring =
3138             (struct tx_desc *) dma_alloc_coherent(&adapter->pdev->dev,
3139                                                   desc_size,
3140                                                   &tx_ring->tx_desc_ring_pa,
3141                                                   GFP_KERNEL);
3142         if (!adapter->tx_ring.tx_desc_ring) {
3143                 dev_err(&adapter->pdev->dev,
3144                         "Cannot alloc memory for Tx Ring\n");
3145                 return -ENOMEM;
3146         }
3147
3148         /* Save physical address
3149          *
3150          * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
3151          * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
3152          * are ever returned, make sure the high part is retrieved here before
3153          * storing the adjusted address.
3154          */
3155         /* Allocate memory for the Tx status block */
3156         tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
3157                                                     sizeof(u32),
3158                                                     &tx_ring->tx_status_pa,
3159                                                     GFP_KERNEL);
3160         if (!adapter->tx_ring.tx_status_pa) {
3161                 dev_err(&adapter->pdev->dev,
3162                                   "Cannot alloc memory for Tx status block\n");
3163                 return -ENOMEM;
3164         }
3165         return 0;
3166 }
3167
3168 /**
3169  * et131x_tx_dma_memory_free - Free all memory allocated within this module
3170  * @adapter: pointer to our private adapter structure
3171  *
3172  * Returns 0 on success and errno on failure (as defined in errno.h).
3173  */
3174 static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
3175 {
3176         int desc_size = 0;
3177
3178         if (adapter->tx_ring.tx_desc_ring) {
3179                 /* Free memory relating to Tx rings here */
3180                 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX)
3181                                                                 + 4096 - 1;
3182                 dma_free_coherent(&adapter->pdev->dev,
3183                                     desc_size,
3184                                     adapter->tx_ring.tx_desc_ring,
3185                                     adapter->tx_ring.tx_desc_ring_pa);
3186                 adapter->tx_ring.tx_desc_ring = NULL;
3187         }
3188
3189         /* Free memory for the Tx status block */
3190         if (adapter->tx_ring.tx_status) {
3191                 dma_free_coherent(&adapter->pdev->dev,
3192                                     sizeof(u32),
3193                                     adapter->tx_ring.tx_status,
3194                                     adapter->tx_ring.tx_status_pa);
3195
3196                 adapter->tx_ring.tx_status = NULL;
3197         }
3198         /* Free the memory for the tcb structures */
3199         kfree(adapter->tx_ring.tcb_ring);
3200 }
3201
3202 /**
3203  * nic_send_packet - NIC specific send handler for version B silicon.
3204  * @adapter: pointer to our adapter
3205  * @tcb: pointer to struct tcb
3206  *
3207  * Returns 0 or errno.
3208  */
3209 static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
3210 {
3211         u32 i;
3212         struct tx_desc desc[24];        /* 24 x 16 byte */
3213         u32 frag = 0;
3214         u32 thiscopy, remainder;
3215         struct sk_buff *skb = tcb->skb;
3216         u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
3217         struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
3218         unsigned long flags;
3219         struct phy_device *phydev = adapter->phydev;
3220         dma_addr_t dma_addr;
3221
3222         /* Part of the optimizations of this send routine restrict us to
3223          * sending 24 fragments at a pass.  In practice we should never see
3224          * more than 5 fragments.
3225          *
3226          * NOTE: The older version of this function (below) can handle any
3227          * number of fragments. If needed, we can call this function,
3228          * although it is less efficient.
3229          */
3230         if (nr_frags > 23)
3231                 return -EIO;
3232
3233         memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
3234
3235         for (i = 0; i < nr_frags; i++) {
3236                 /* If there is something in this element, lets get a
3237                  * descriptor from the ring and get the necessary data
3238                  */
3239                 if (i == 0) {
3240                         /* If the fragments are smaller than a standard MTU,
3241                          * then map them to a single descriptor in the Tx
3242                          * Desc ring. However, if they're larger, as is
3243                          * possible with support for jumbo packets, then
3244                          * split them each across 2 descriptors.
3245                          *
3246                          * This will work until we determine why the hardware
3247                          * doesn't seem to like large fragments.
3248                          */
3249                         if (skb_headlen(skb) <= 1514) {
3250                                 /* Low 16bits are length, high is vlan and
3251                                    unused currently so zero */
3252                                 desc[frag].len_vlan = skb_headlen(skb);
3253                                 dma_addr = dma_map_single(&adapter->pdev->dev,
3254                                                           skb->data,
3255                                                           skb_headlen(skb),
3256                                                           DMA_TO_DEVICE);
3257                                 desc[frag].addr_lo = lower_32_bits(dma_addr);
3258                                 desc[frag].addr_hi = upper_32_bits(dma_addr);
3259                                 frag++;
3260                         } else {
3261                                 desc[frag].len_vlan = skb_headlen(skb) / 2;
3262                                 dma_addr = dma_map_single(&adapter->pdev->dev,
3263                                                           skb->data,
3264                                                           (skb_headlen(skb) / 2),
3265                                                           DMA_TO_DEVICE);
3266                                 desc[frag].addr_lo = lower_32_bits(dma_addr);
3267                                 desc[frag].addr_hi = upper_32_bits(dma_addr);
3268                                 frag++;
3269
3270                                 desc[frag].len_vlan = skb_headlen(skb) / 2;
3271                                 dma_addr = dma_map_single(&adapter->pdev->dev,
3272                                                           skb->data +
3273                                                           (skb_headlen(skb) / 2),
3274                                                           (skb_headlen(skb) / 2),
3275                                                           DMA_TO_DEVICE);
3276                                 desc[frag].addr_lo = lower_32_bits(dma_addr);
3277                                 desc[frag].addr_hi = upper_32_bits(dma_addr);
3278                                 frag++;
3279                         }
3280                 } else {
3281                         desc[frag].len_vlan = frags[i - 1].size;
3282                         dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
3283                                                     &frags[i - 1],
3284                                                     0,
3285                                                     frags[i - 1].size,
3286                                                     DMA_TO_DEVICE);
3287                         desc[frag].addr_lo = lower_32_bits(dma_addr);
3288                         desc[frag].addr_hi = upper_32_bits(dma_addr);
3289                         frag++;
3290                 }
3291         }
3292
3293         if (phydev && phydev->speed == SPEED_1000) {
3294                 if (++adapter->tx_ring.since_irq == PARM_TX_NUM_BUFS_DEF) {
3295                         /* Last element & Interrupt flag */
3296                         desc[frag - 1].flags = 0x5;
3297                         adapter->tx_ring.since_irq = 0;
3298                 } else { /* Last element */
3299                         desc[frag - 1].flags = 0x1;
3300                 }
3301         } else
3302                 desc[frag - 1].flags = 0x5;
3303
3304         desc[0].flags |= 2;     /* First element flag */
3305
3306         tcb->index_start = adapter->tx_ring.send_idx;
3307         tcb->stale = 0;
3308
3309         spin_lock_irqsave(&adapter->send_hw_lock, flags);
3310
3311         thiscopy = NUM_DESC_PER_RING_TX -
3312                                 INDEX10(adapter->tx_ring.send_idx);
3313
3314         if (thiscopy >= frag) {
3315                 remainder = 0;
3316                 thiscopy = frag;
3317         } else {
3318                 remainder = frag - thiscopy;
3319         }
3320
3321         memcpy(adapter->tx_ring.tx_desc_ring +
3322                INDEX10(adapter->tx_ring.send_idx), desc,
3323                sizeof(struct tx_desc) * thiscopy);
3324
3325         add_10bit(&adapter->tx_ring.send_idx, thiscopy);
3326
3327         if (INDEX10(adapter->tx_ring.send_idx) == 0 ||
3328                   INDEX10(adapter->tx_ring.send_idx) == NUM_DESC_PER_RING_TX) {
3329                 adapter->tx_ring.send_idx &= ~ET_DMA10_MASK;
3330                 adapter->tx_ring.send_idx ^= ET_DMA10_WRAP;
3331         }
3332
3333         if (remainder) {
3334                 memcpy(adapter->tx_ring.tx_desc_ring,
3335                        desc + thiscopy,
3336                        sizeof(struct tx_desc) * remainder);
3337
3338                 add_10bit(&adapter->tx_ring.send_idx, remainder);
3339         }
3340
3341         if (INDEX10(adapter->tx_ring.send_idx) == 0) {
3342                 if (adapter->tx_ring.send_idx)
3343                         tcb->index = NUM_DESC_PER_RING_TX - 1;
3344                 else
3345                         tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
3346         } else
3347                 tcb->index = adapter->tx_ring.send_idx - 1;
3348
3349         spin_lock(&adapter->tcb_send_qlock);
3350
3351         if (adapter->tx_ring.send_tail)
3352                 adapter->tx_ring.send_tail->next = tcb;
3353         else
3354                 adapter->tx_ring.send_head = tcb;
3355
3356         adapter->tx_ring.send_tail = tcb;
3357
3358         WARN_ON(tcb->next != NULL);
3359
3360         adapter->tx_ring.used++;
3361
3362         spin_unlock(&adapter->tcb_send_qlock);
3363
3364         /* Write the new write pointer back to the device. */
3365         writel(adapter->tx_ring.send_idx,
3366                &adapter->regs->txdma.service_request);
3367
3368         /* For Gig only, we use Tx Interrupt coalescing.  Enable the software
3369          * timer to wake us up if this packet isn't followed by N more.
3370          */
3371         if (phydev && phydev->speed == SPEED_1000) {
3372                 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
3373                        &adapter->regs->global.watchdog_timer);
3374         }
3375         spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
3376
3377         return 0;
3378 }
3379
3380 /**
3381  * send_packet - Do the work to send a packet
3382  * @skb: the packet(s) to send
3383  * @adapter: a pointer to the device's private adapter structure
3384  *
3385  * Return 0 in almost all cases; non-zero value in extreme hard failure only.
3386  *
3387  * Assumption: Send spinlock has been acquired
3388  */
3389 static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
3390 {
3391         int status;
3392         struct tcb *tcb = NULL;
3393         u16 *shbufva;
3394         unsigned long flags;
3395
3396         /* All packets must have at least a MAC address and a protocol type */
3397         if (skb->len < ETH_HLEN)
3398                 return -EIO;
3399
3400         /* Get a TCB for this packet */
3401         spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3402
3403         tcb = adapter->tx_ring.tcb_qhead;
3404
3405         if (tcb == NULL) {
3406                 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3407                 return -ENOMEM;
3408         }
3409
3410         adapter->tx_ring.tcb_qhead = tcb->next;
3411
3412         if (adapter->tx_ring.tcb_qhead == NULL)
3413                 adapter->tx_ring.tcb_qtail = NULL;
3414
3415         spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3416
3417         tcb->skb = skb;
3418
3419         if (skb->data != NULL && skb_headlen(skb) >= 6) {
3420                 shbufva = (u16 *) skb->data;
3421
3422                 if ((shbufva[0] == 0xffff) &&
3423                     (shbufva[1] == 0xffff) && (shbufva[2] == 0xffff)) {
3424                         tcb->flags |= fMP_DEST_BROAD;
3425                 } else if ((shbufva[0] & 0x3) == 0x0001) {
3426                         tcb->flags |=  fMP_DEST_MULTI;
3427                 }
3428         }
3429
3430         tcb->next = NULL;
3431
3432         /* Call the NIC specific send handler. */
3433         status = nic_send_packet(adapter, tcb);
3434
3435         if (status != 0) {
3436                 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3437
3438                 if (adapter->tx_ring.tcb_qtail)
3439                         adapter->tx_ring.tcb_qtail->next = tcb;
3440                 else
3441                         /* Apparently ready Q is empty. */
3442                         adapter->tx_ring.tcb_qhead = tcb;
3443
3444                 adapter->tx_ring.tcb_qtail = tcb;
3445                 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3446                 return status;
3447         }
3448         WARN_ON(adapter->tx_ring.used > NUM_TCB);
3449         return 0;
3450 }
3451
3452 /**
3453  * et131x_send_packets - This function is called by the OS to send packets
3454  * @skb: the packet(s) to send
3455  * @netdev:device on which to TX the above packet(s)
3456  *
3457  * Return 0 in almost all cases; non-zero value in extreme hard failure only
3458  */
3459 static int et131x_send_packets(struct sk_buff *skb, struct net_device *netdev)
3460 {
3461         int status = 0;
3462         struct et131x_adapter *adapter = netdev_priv(netdev);
3463
3464         /* Send these packets
3465          *
3466          * NOTE: The Linux Tx entry point is only given one packet at a time
3467          * to Tx, so the PacketCount and it's array used makes no sense here
3468          */
3469
3470         /* TCB is not available */
3471         if (adapter->tx_ring.used >= NUM_TCB) {
3472                 /* NOTE: If there's an error on send, no need to queue the
3473                  * packet under Linux; if we just send an error up to the
3474                  * netif layer, it will resend the skb to us.
3475                  */
3476                 status = -ENOMEM;
3477         } else {
3478                 /* We need to see if the link is up; if it's not, make the
3479                  * netif layer think we're good and drop the packet
3480                  */
3481                 if ((adapter->flags & fMP_ADAPTER_FAIL_SEND_MASK) ||
3482                                         !netif_carrier_ok(netdev)) {
3483                         dev_kfree_skb_any(skb);
3484                         skb = NULL;
3485
3486                         adapter->net_stats.tx_dropped++;
3487                 } else {
3488                         status = send_packet(skb, adapter);
3489                         if (status != 0 && status != -ENOMEM) {
3490                                 /* On any other error, make netif think we're
3491                                  * OK and drop the packet
3492                                  */
3493                                 dev_kfree_skb_any(skb);
3494                                 skb = NULL;
3495                                 adapter->net_stats.tx_dropped++;
3496                         }
3497                 }
3498         }
3499         return status;
3500 }
3501
3502 /**
3503  * free_send_packet - Recycle a struct tcb
3504  * @adapter: pointer to our adapter
3505  * @tcb: pointer to struct tcb
3506  *
3507  * Complete the packet if necessary
3508  * Assumption - Send spinlock has been acquired
3509  */
3510 static inline void free_send_packet(struct et131x_adapter *adapter,
3511                                                 struct tcb *tcb)
3512 {
3513         unsigned long flags;
3514         struct tx_desc *desc = NULL;
3515         struct net_device_stats *stats = &adapter->net_stats;
3516         u64  dma_addr;
3517
3518         if (tcb->flags & fMP_DEST_BROAD)
3519                 atomic_inc(&adapter->stats.broadcast_pkts_xmtd);
3520         else if (tcb->flags & fMP_DEST_MULTI)
3521                 atomic_inc(&adapter->stats.multicast_pkts_xmtd);
3522         else
3523                 atomic_inc(&adapter->stats.unicast_pkts_xmtd);
3524
3525         if (tcb->skb) {
3526                 stats->tx_bytes += tcb->skb->len;
3527
3528                 /* Iterate through the TX descriptors on the ring
3529                  * corresponding to this packet and umap the fragments
3530                  * they point to
3531                  */
3532                 do {
3533                         desc = (struct tx_desc *)
3534                                     (adapter->tx_ring.tx_desc_ring +
3535                                                 INDEX10(tcb->index_start));
3536
3537                         dma_addr = desc->addr_lo;
3538                         dma_addr |= (u64)desc->addr_hi << 32;
3539
3540                         dma_unmap_single(&adapter->pdev->dev,
3541                                          dma_addr,
3542                                          desc->len_vlan, DMA_TO_DEVICE);
3543
3544                         add_10bit(&tcb->index_start, 1);
3545                         if (INDEX10(tcb->index_start) >=
3546                                                         NUM_DESC_PER_RING_TX) {
3547                                 tcb->index_start &= ~ET_DMA10_MASK;
3548                                 tcb->index_start ^= ET_DMA10_WRAP;
3549                         }
3550                 } while (desc != (adapter->tx_ring.tx_desc_ring +
3551                                 INDEX10(tcb->index)));
3552
3553                 dev_kfree_skb_any(tcb->skb);
3554         }
3555
3556         memset(tcb, 0, sizeof(struct tcb));
3557
3558         /* Add the TCB to the Ready Q */
3559         spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3560
3561         adapter->net_stats.tx_packets++;
3562
3563         if (adapter->tx_ring.tcb_qtail)
3564                 adapter->tx_ring.tcb_qtail->next = tcb;
3565         else
3566                 /* Apparently ready Q is empty. */
3567                 adapter->tx_ring.tcb_qhead = tcb;
3568
3569         adapter->tx_ring.tcb_qtail = tcb;
3570
3571         spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3572         WARN_ON(adapter->tx_ring.used < 0);
3573 }
3574
3575 /**
3576  * et131x_free_busy_send_packets - Free and complete the stopped active sends
3577  * @adapter: pointer to our adapter
3578  *
3579  * Assumption - Send spinlock has been acquired
3580  */
3581 static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
3582 {
3583         struct tcb *tcb;
3584         unsigned long flags;
3585         u32 freed = 0;
3586
3587         /* Any packets being sent? Check the first TCB on the send list */
3588         spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3589
3590         tcb = adapter->tx_ring.send_head;
3591
3592         while (tcb != NULL && freed < NUM_TCB) {
3593                 struct tcb *next = tcb->next;
3594
3595                 adapter->tx_ring.send_head = next;
3596
3597                 if (next == NULL)
3598                         adapter->tx_ring.send_tail = NULL;
3599
3600                 adapter->tx_ring.used--;
3601
3602                 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3603
3604                 freed++;
3605                 free_send_packet(adapter, tcb);
3606
3607                 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3608
3609                 tcb = adapter->tx_ring.send_head;
3610         }
3611
3612         WARN_ON(freed == NUM_TCB);
3613
3614         spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3615
3616         adapter->tx_ring.used = 0;
3617 }
3618
3619 /**
3620  * et131x_handle_send_interrupt - Interrupt handler for sending processing
3621  * @adapter: pointer to our adapter
3622  *
3623  * Re-claim the send resources, complete sends and get more to send from
3624  * the send wait queue.
3625  *
3626  * Assumption - Send spinlock has been acquired
3627  */
3628 static void et131x_handle_send_interrupt(struct et131x_adapter *adapter)
3629 {
3630         unsigned long flags;
3631         u32 serviced;
3632         struct tcb *tcb;
3633         u32 index;
3634
3635         serviced = readl(&adapter->regs->txdma.new_service_complete);
3636         index = INDEX10(serviced);
3637
3638         /* Has the ring wrapped?  Process any descriptors that do not have
3639          * the same "wrap" indicator as the current completion indicator
3640          */
3641         spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3642
3643         tcb = adapter->tx_ring.send_head;
3644
3645         while (tcb &&
3646                ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
3647                index < INDEX10(tcb->index)) {
3648                 adapter->tx_ring.used--;
3649                 adapter->tx_ring.send_head = tcb->next;
3650                 if (tcb->next == NULL)
3651                         adapter->tx_ring.send_tail = NULL;
3652
3653                 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3654                 free_send_packet(adapter, tcb);
3655                 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3656
3657                 /* Goto the next packet */
3658                 tcb = adapter->tx_ring.send_head;
3659         }
3660         while (tcb &&
3661                !((serviced ^ tcb->index) & ET_DMA10_WRAP)
3662                && index > (tcb->index & ET_DMA10_MASK)) {
3663                 adapter->tx_ring.used--;
3664                 adapter->tx_ring.send_head = tcb->next;
3665                 if (tcb->next == NULL)
3666                         adapter->tx_ring.send_tail = NULL;
3667
3668                 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3669                 free_send_packet(adapter, tcb);
3670                 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3671
3672                 /* Goto the next packet */
3673                 tcb = adapter->tx_ring.send_head;
3674         }
3675
3676         /* Wake up the queue when we hit a low-water mark */
3677         if (adapter->tx_ring.used <= NUM_TCB / 3)
3678                 netif_wake_queue(adapter->netdev);
3679
3680         spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3681 }
3682
3683 static int et131x_get_settings(struct net_device *netdev,
3684                                struct ethtool_cmd *cmd)
3685 {
3686         struct et131x_adapter *adapter = netdev_priv(netdev);
3687
3688         return phy_ethtool_gset(adapter->phydev, cmd);
3689 }
3690
3691 static int et131x_set_settings(struct net_device *netdev,
3692                                struct ethtool_cmd *cmd)
3693 {
3694         struct et131x_adapter *adapter = netdev_priv(netdev);
3695
3696         return phy_ethtool_sset(adapter->phydev, cmd);
3697 }
3698
3699 static int et131x_get_regs_len(struct net_device *netdev)
3700 {
3701 #define ET131X_REGS_LEN 256
3702         return ET131X_REGS_LEN * sizeof(u32);
3703 }
3704
3705 static void et131x_get_regs(struct net_device *netdev,
3706                             struct ethtool_regs *regs, void *regs_data)
3707 {
3708         struct et131x_adapter *adapter = netdev_priv(netdev);
3709         struct address_map __iomem *aregs = adapter->regs;
3710         u32 *regs_buff = regs_data;
3711         u32 num = 0;
3712
3713         memset(regs_data, 0, et131x_get_regs_len(netdev));
3714
3715         regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
3716                         adapter->pdev->device;
3717
3718         /* PHY regs */
3719         et131x_mii_read(adapter, MII_BMCR, (u16 *)&regs_buff[num++]);
3720         et131x_mii_read(adapter, MII_BMSR, (u16 *)&regs_buff[num++]);
3721         et131x_mii_read(adapter, MII_PHYSID1, (u16 *)&regs_buff[num++]);
3722         et131x_mii_read(adapter, MII_PHYSID2, (u16 *)&regs_buff[num++]);
3723         et131x_mii_read(adapter, MII_ADVERTISE, (u16 *)&regs_buff[num++]);
3724         et131x_mii_read(adapter, MII_LPA, (u16 *)&regs_buff[num++]);
3725         et131x_mii_read(adapter, MII_EXPANSION, (u16 *)&regs_buff[num++]);
3726         /* Autoneg next page transmit reg */
3727         et131x_mii_read(adapter, 0x07, (u16 *)&regs_buff[num++]);
3728         /* Link partner next page reg */
3729         et131x_mii_read(adapter, 0x08, (u16 *)&regs_buff[num++]);
3730         et131x_mii_read(adapter, MII_CTRL1000, (u16 *)&regs_buff[num++]);
3731         et131x_mii_read(adapter, MII_STAT1000, (u16 *)&regs_buff[num++]);
3732         et131x_mii_read(adapter, MII_ESTATUS, (u16 *)&regs_buff[num++]);
3733         et131x_mii_read(adapter, PHY_INDEX_REG, (u16 *)&regs_buff[num++]);
3734         et131x_mii_read(adapter, PHY_DATA_REG, (u16 *)&regs_buff[num++]);
3735         et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3736                         (u16 *)&regs_buff[num++]);
3737         et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL,
3738                         (u16 *)&regs_buff[num++]);
3739         et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL+1,
3740                         (u16 *)&regs_buff[num++]);
3741         et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL,
3742                         (u16 *)&regs_buff[num++]);
3743         et131x_mii_read(adapter, PHY_CONFIG, (u16 *)&regs_buff[num++]);
3744         et131x_mii_read(adapter, PHY_PHY_CONTROL, (u16 *)&regs_buff[num++]);
3745         et131x_mii_read(adapter, PHY_INTERRUPT_MASK, (u16 *)&regs_buff[num++]);
3746         et131x_mii_read(adapter, PHY_INTERRUPT_STATUS,
3747                         (u16 *)&regs_buff[num++]);
3748         et131x_mii_read(adapter, PHY_PHY_STATUS, (u16 *)&regs_buff[num++]);
3749         et131x_mii_read(adapter, PHY_LED_1, (u16 *)&regs_buff[num++]);
3750         et131x_mii_read(adapter, PHY_LED_2, (u16 *)&regs_buff[num++]);
3751
3752         /* Global regs */
3753         regs_buff[num++] = readl(&aregs->global.txq_start_addr);
3754         regs_buff[num++] = readl(&aregs->global.txq_end_addr);
3755         regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
3756         regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
3757         regs_buff[num++] = readl(&aregs->global.pm_csr);
3758         regs_buff[num++] = adapter->stats.interrupt_status;
3759         regs_buff[num++] = readl(&aregs->global.int_mask);
3760         regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
3761         regs_buff[num++] = readl(&aregs->global.int_status_alias);
3762         regs_buff[num++] = readl(&aregs->global.sw_reset);
3763         regs_buff[num++] = readl(&aregs->global.slv_timer);
3764         regs_buff[num++] = readl(&aregs->global.msi_config);
3765         regs_buff[num++] = readl(&aregs->global.loopback);
3766         regs_buff[num++] = readl(&aregs->global.watchdog_timer);
3767
3768         /* TXDMA regs */
3769         regs_buff[num++] = readl(&aregs->txdma.csr);
3770         regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
3771         regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
3772         regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
3773         regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
3774         regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
3775         regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
3776         regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
3777         regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
3778         regs_buff[num++] = readl(&aregs->txdma.service_request);
3779         regs_buff[num++] = readl(&aregs->txdma.service_complete);
3780         regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
3781         regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
3782         regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
3783         regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
3784         regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
3785         regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
3786         regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
3787         regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
3788         regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
3789         regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
3790         regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
3791         regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
3792         regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
3793         regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
3794         regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
3795
3796         /* RXDMA regs */
3797         regs_buff[num++] = readl(&aregs->rxdma.csr);
3798         regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
3799         regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
3800         regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
3801         regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
3802         regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
3803         regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
3804         regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
3805         regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
3806         regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
3807         regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
3808         regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
3809         regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
3810         regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
3811         regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
3812         regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
3813         regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
3814         regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
3815         regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
3816         regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
3817         regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
3818         regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
3819         regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
3820         regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
3821         regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
3822         regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
3823         regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
3824         regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
3825         regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
3826 }
3827
3828 #define ET131X_DRVINFO_LEN 32 /* value from ethtool.h */
3829 static void et131x_get_drvinfo(struct net_device *netdev,
3830                                struct ethtool_drvinfo *info)
3831 {
3832         struct et131x_adapter *adapter = netdev_priv(netdev);
3833
3834         strncpy(info->driver, DRIVER_NAME, ET131X_DRVINFO_LEN);
3835         strncpy(info->version, DRIVER_VERSION, ET131X_DRVINFO_LEN);
3836         strncpy(info->bus_info, pci_name(adapter->pdev), ET131X_DRVINFO_LEN);
3837 }
3838
3839 static struct ethtool_ops et131x_ethtool_ops = {
3840         .get_settings   = et131x_get_settings,
3841         .set_settings   = et131x_set_settings,
3842         .get_drvinfo    = et131x_get_drvinfo,
3843         .get_regs_len   = et131x_get_regs_len,
3844         .get_regs       = et131x_get_regs,
3845         .get_link = ethtool_op_get_link,
3846 };
3847 /**
3848  * et131x_hwaddr_init - set up the MAC Address on the ET1310
3849  * @adapter: pointer to our private adapter structure
3850  */
3851 static void et131x_hwaddr_init(struct et131x_adapter *adapter)
3852 {
3853         /* If have our default mac from init and no mac address from
3854          * EEPROM then we need to generate the last octet and set it on the
3855          * device
3856          */
3857         if (is_zero_ether_addr(adapter->rom_addr)) {
3858                 /*
3859                  * We need to randomly generate the last octet so we
3860                  * decrease our chances of setting the mac address to
3861                  * same as another one of our cards in the system
3862                  */
3863                 get_random_bytes(&adapter->addr[5], 1);
3864                 /*
3865                  * We have the default value in the register we are
3866                  * working with so we need to copy the current
3867                  * address into the permanent address
3868                  */
3869                 memcpy(adapter->rom_addr,
3870                         adapter->addr, ETH_ALEN);
3871         } else {
3872                 /* We do not have an override address, so set the
3873                  * current address to the permanent address and add
3874                  * it to the device
3875                  */
3876                 memcpy(adapter->addr,
3877                        adapter->rom_addr, ETH_ALEN);
3878         }
3879 }
3880
3881 /**
3882  * et131x_pci_init       - initial PCI setup
3883  * @adapter: pointer to our private adapter structure
3884  * @pdev: our PCI device
3885  *
3886  * Perform the initial setup of PCI registers and if possible initialise
3887  * the MAC address. At this point the I/O registers have yet to be mapped
3888  */
3889 static int et131x_pci_init(struct et131x_adapter *adapter,
3890                                                 struct pci_dev *pdev)
3891 {
3892         u16 max_payload;
3893         int i, rc;
3894
3895         rc = et131x_init_eeprom(adapter);
3896         if (rc < 0)
3897                 goto out;
3898
3899         if (!pci_is_pcie(pdev)) {
3900                 dev_err(&pdev->dev, "Missing PCIe capabilities\n");
3901                 goto err_out;
3902         }
3903
3904         /* Let's set up the PORT LOGIC Register.  First we need to know what
3905          * the max_payload_size is
3906          */
3907         if (pcie_capability_read_word(pdev, PCI_EXP_DEVCAP, &max_payload)) {
3908                 dev_err(&pdev->dev,
3909                     "Could not read PCI config space for Max Payload Size\n");
3910                 goto err_out;
3911         }
3912
3913         /* Program the Ack/Nak latency and replay timers */
3914         max_payload &= 0x07;
3915
3916         if (max_payload < 2) {
3917                 static const u16 acknak[2] = { 0x76, 0xD0 };
3918                 static const u16 replay[2] = { 0x1E0, 0x2ED };
3919
3920                 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
3921                                                acknak[max_payload])) {
3922                         dev_err(&pdev->dev,
3923                           "Could not write PCI config space for ACK/NAK\n");
3924                         goto err_out;
3925                 }
3926                 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
3927                                                replay[max_payload])) {
3928                         dev_err(&pdev->dev,
3929                           "Could not write PCI config space for Replay Timer\n");
3930                         goto err_out;
3931                 }
3932         }
3933
3934         /* l0s and l1 latency timers.  We are using default values.
3935          * Representing 001 for L0s and 010 for L1
3936          */
3937         if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3938                 dev_err(&pdev->dev,
3939                   "Could not write PCI config space for Latency Timers\n");
3940                 goto err_out;
3941         }
3942
3943         /* Change the max read size to 2k */
3944         if (pcie_capability_clear_and_set_word(pdev, PCI_EXP_DEVCTL,
3945                                 PCI_EXP_DEVCTL_READRQ, 0x4 << 12)) {
3946                 dev_err(&pdev->dev,
3947                         "Couldn't change PCI config space for Max read size\n");
3948                 goto err_out;
3949         }
3950
3951         /* Get MAC address from config space if an eeprom exists, otherwise
3952          * the MAC address there will not be valid
3953          */
3954         if (!adapter->has_eeprom) {
3955                 et131x_hwaddr_init(adapter);
3956                 return 0;
3957         }
3958
3959         for (i = 0; i < ETH_ALEN; i++) {
3960                 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
3961                                         adapter->rom_addr + i)) {
3962                         dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
3963                         goto err_out;
3964                 }
3965         }
3966         memcpy(adapter->addr, adapter->rom_addr, ETH_ALEN);
3967 out:
3968         return rc;
3969 err_out:
3970         rc = -EIO;
3971         goto out;
3972 }
3973
3974 /**
3975  * et131x_error_timer_handler
3976  * @data: timer-specific variable; here a pointer to our adapter structure
3977  *
3978  * The routine called when the error timer expires, to track the number of
3979  * recurring errors.
3980  */
3981 static void et131x_error_timer_handler(unsigned long data)
3982 {
3983         struct et131x_adapter *adapter = (struct et131x_adapter *) data;
3984         struct phy_device *phydev = adapter->phydev;
3985
3986         if (et1310_in_phy_coma(adapter)) {
3987                 /* Bring the device immediately out of coma, to
3988                  * prevent it from sleeping indefinitely, this
3989                  * mechanism could be improved! */
3990                 et1310_disable_phy_coma(adapter);
3991                 adapter->boot_coma = 20;
3992         } else {
3993                 et1310_update_macstat_host_counters(adapter);
3994         }
3995
3996         if (!phydev->link && adapter->boot_coma < 11)
3997                 adapter->boot_coma++;
3998
3999         if (adapter->boot_coma == 10) {
4000                 if (!phydev->link) {
4001                         if (!et1310_in_phy_coma(adapter)) {
4002                                 /* NOTE - This was originally a 'sync with
4003                                  *  interrupt'. How to do that under Linux?
4004                                  */
4005                                 et131x_enable_interrupts(adapter);
4006                                 et1310_enable_phy_coma(adapter);
4007                         }
4008                 }
4009         }
4010
4011         /* This is a periodic timer, so reschedule */
4012         mod_timer(&adapter->error_timer, jiffies +
4013                                           TX_ERROR_PERIOD * HZ / 1000);
4014 }
4015
4016 /**
4017  * et131x_adapter_memory_alloc
4018  * @adapter: pointer to our private adapter structure
4019  *
4020  * Returns 0 on success, errno on failure (as defined in errno.h).
4021  *
4022  * Allocate all the memory blocks for send, receive and others.
4023  */
4024 static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
4025 {
4026         int status;
4027
4028         /* Allocate memory for the Tx Ring */
4029         status = et131x_tx_dma_memory_alloc(adapter);
4030         if (status != 0) {
4031                 dev_err(&adapter->pdev->dev,
4032                           "et131x_tx_dma_memory_alloc FAILED\n");
4033                 return status;
4034         }
4035         /* Receive buffer memory allocation */
4036         status = et131x_rx_dma_memory_alloc(adapter);
4037         if (status != 0) {
4038                 dev_err(&adapter->pdev->dev,
4039                           "et131x_rx_dma_memory_alloc FAILED\n");
4040                 et131x_tx_dma_memory_free(adapter);
4041                 return status;
4042         }
4043
4044         /* Init receive data structures */
4045         status = et131x_init_recv(adapter);
4046         if (status != 0) {
4047                 dev_err(&adapter->pdev->dev,
4048                         "et131x_init_recv FAILED\n");
4049                 et131x_tx_dma_memory_free(adapter);
4050                 et131x_rx_dma_memory_free(adapter);
4051         }
4052         return status;
4053 }
4054
4055 /**
4056  * et131x_adapter_memory_free - Free all memory allocated for use by Tx & Rx
4057  * @adapter: pointer to our private adapter structure
4058  */
4059 static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
4060 {
4061         /* Free DMA memory */
4062         et131x_tx_dma_memory_free(adapter);
4063         et131x_rx_dma_memory_free(adapter);
4064 }
4065
4066 static void et131x_adjust_link(struct net_device *netdev)
4067 {
4068         struct et131x_adapter *adapter = netdev_priv(netdev);
4069         struct  phy_device *phydev = adapter->phydev;
4070
4071         if (netif_carrier_ok(netdev)) {
4072                 adapter->boot_coma = 20;
4073
4074                 if (phydev && phydev->speed == SPEED_10) {
4075                         /*
4076                          * NOTE - Is there a way to query this without
4077                          * TruePHY?
4078                          * && TRU_QueryCoreType(adapter->hTruePhy, 0)==
4079                          * EMI_TRUEPHY_A13O) {
4080                          */
4081                         u16 register18;
4082
4083                         et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
4084                                          &register18);
4085                         et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4086                                          register18 | 0x4);
4087                         et131x_mii_write(adapter, PHY_INDEX_REG,
4088                                          register18 | 0x8402);
4089                         et131x_mii_write(adapter, PHY_DATA_REG,
4090                                          register18 | 511);
4091                         et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4092                                          register18);
4093                 }
4094
4095                 et1310_config_flow_control(adapter);
4096
4097                 if (phydev && phydev->speed == SPEED_1000 &&
4098                                 adapter->registry_jumbo_packet > 2048) {
4099                         u16 reg;
4100
4101                         et131x_mii_read(adapter, PHY_CONFIG, &reg);
4102                         reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
4103                         reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
4104                         et131x_mii_write(adapter, PHY_CONFIG, reg);
4105                 }
4106
4107                 et131x_set_rx_dma_timer(adapter);
4108                 et1310_config_mac_regs2(adapter);
4109         }
4110
4111         if (phydev && phydev->link != adapter->link) {
4112                 /*
4113                  * Check to see if we are in coma mode and if
4114                  * so, disable it because we will not be able
4115                  * to read PHY values until we are out.
4116                  */
4117                 if (et1310_in_phy_coma(adapter))
4118                         et1310_disable_phy_coma(adapter);
4119
4120                 if (phydev->link) {
4121                         adapter->boot_coma = 20;
4122                 } else {
4123                         dev_warn(&adapter->pdev->dev,
4124                             "Link down - cable problem ?\n");
4125                         adapter->boot_coma = 0;
4126
4127                         if (phydev->speed == SPEED_10) {
4128                                 /* NOTE - Is there a way to query this without
4129                                  * TruePHY?
4130                                  * && TRU_QueryCoreType(adapter->hTruePhy, 0) ==
4131                                  * EMI_TRUEPHY_A13O)
4132                                  */
4133                                 u16 register18;
4134
4135                                 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
4136                                                  &register18);
4137                                 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4138                                                  register18 | 0x4);
4139                                 et131x_mii_write(adapter, PHY_INDEX_REG,
4140                                                  register18 | 0x8402);
4141                                 et131x_mii_write(adapter, PHY_DATA_REG,
4142                                                  register18 | 511);
4143                                 et131x_mii_write(adapter, PHY_MPHY_CONTROL_REG,
4144                                                  register18);
4145                         }
4146
4147                         /* Free the packets being actively sent & stopped */
4148                         et131x_free_busy_send_packets(adapter);
4149
4150                         /* Re-initialize the send structures */
4151                         et131x_init_send(adapter);
4152
4153                         /*
4154                          * Bring the device back to the state it was during
4155                          * init prior to autonegotiation being complete. This
4156                          * way, when we get the auto-neg complete interrupt,
4157                          * we can complete init by calling config_mac_regs2.
4158                          */
4159                         et131x_soft_reset(adapter);
4160
4161                         /* Setup ET1310 as per the documentation */
4162                         et131x_adapter_setup(adapter);
4163
4164                         /* perform reset of tx/rx */
4165                         et131x_disable_txrx(netdev);
4166                         et131x_enable_txrx(netdev);
4167                 }
4168
4169                 adapter->link = phydev->link;
4170
4171                 phy_print_status(phydev);
4172         }
4173 }
4174
4175 static int et131x_mii_probe(struct net_device *netdev)
4176 {
4177         struct et131x_adapter *adapter = netdev_priv(netdev);
4178         struct  phy_device *phydev = NULL;
4179
4180         phydev = phy_find_first(adapter->mii_bus);
4181         if (!phydev) {
4182                 dev_err(&adapter->pdev->dev, "no PHY found\n");
4183                 return -ENODEV;
4184         }
4185
4186         phydev = phy_connect(netdev, dev_name(&phydev->dev),
4187                         &et131x_adjust_link, 0, PHY_INTERFACE_MODE_MII);
4188
4189         if (IS_ERR(phydev)) {
4190                 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
4191                 return PTR_ERR(phydev);
4192         }
4193
4194         phydev->supported &= (SUPPORTED_10baseT_Half
4195                                 | SUPPORTED_10baseT_Full
4196                                 | SUPPORTED_100baseT_Half
4197                                 | SUPPORTED_100baseT_Full
4198                                 | SUPPORTED_Autoneg
4199                                 | SUPPORTED_MII
4200                                 | SUPPORTED_TP);
4201
4202         if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
4203                 phydev->supported |= SUPPORTED_1000baseT_Full;
4204
4205         phydev->advertising = phydev->supported;
4206         adapter->phydev = phydev;
4207
4208         dev_info(&adapter->pdev->dev, "attached PHY driver [%s] (mii_bus:phy_addr=%s)\n",
4209                  phydev->drv->name, dev_name(&phydev->dev));
4210
4211         return 0;
4212 }
4213
4214 /**
4215  * et131x_adapter_init
4216  * @adapter: pointer to the private adapter struct
4217  * @pdev: pointer to the PCI device
4218  *
4219  * Initialize the data structures for the et131x_adapter object and link
4220  * them together with the platform provided device structures.
4221  */
4222 static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
4223                 struct pci_dev *pdev)
4224 {
4225         static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
4226
4227         struct et131x_adapter *adapter;
4228
4229         /* Allocate private adapter struct and copy in relevant information */
4230         adapter = netdev_priv(netdev);
4231         adapter->pdev = pci_dev_get(pdev);
4232         adapter->netdev = netdev;
4233
4234         /* Initialize spinlocks here */
4235         spin_lock_init(&adapter->lock);
4236         spin_lock_init(&adapter->tcb_send_qlock);
4237         spin_lock_init(&adapter->tcb_ready_qlock);
4238         spin_lock_init(&adapter->send_hw_lock);
4239         spin_lock_init(&adapter->rcv_lock);
4240         spin_lock_init(&adapter->rcv_pend_lock);
4241         spin_lock_init(&adapter->fbr_lock);
4242         spin_lock_init(&adapter->phy_lock);
4243
4244         adapter->registry_jumbo_packet = 1514;  /* 1514-9216 */
4245
4246         /* Set the MAC address to a default */
4247         memcpy(adapter->addr, default_mac, ETH_ALEN);
4248
4249         return adapter;
4250 }
4251
4252 /**
4253  * et131x_pci_remove
4254  * @pdev: a pointer to the device's pci_dev structure
4255  *
4256  * Registered in the pci_driver structure, this function is called when the
4257  * PCI subsystem detects that a PCI device which matches the information
4258  * contained in the pci_device_id table has been removed.
4259  */
4260 static void __devexit et131x_pci_remove(struct pci_dev *pdev)
4261 {
4262         struct net_device *netdev = pci_get_drvdata(pdev);
4263         struct et131x_adapter *adapter = netdev_priv(netdev);
4264
4265         unregister_netdev(netdev);
4266         phy_disconnect(adapter->phydev);
4267         mdiobus_unregister(adapter->mii_bus);
4268         kfree(adapter->mii_bus->irq);
4269         mdiobus_free(adapter->mii_bus);
4270
4271         et131x_adapter_memory_free(adapter);
4272         iounmap(adapter->regs);
4273         pci_dev_put(pdev);
4274
4275         free_netdev(netdev);
4276         pci_release_regions(pdev);
4277         pci_disable_device(pdev);
4278 }
4279
4280 /**
4281  * et131x_up - Bring up a device for use.
4282  * @netdev: device to be opened
4283  */
4284 static void et131x_up(struct net_device *netdev)
4285 {
4286         struct et131x_adapter *adapter = netdev_priv(netdev);
4287
4288         et131x_enable_txrx(netdev);
4289         phy_start(adapter->phydev);
4290 }
4291
4292 /**
4293  * et131x_down - Bring down the device
4294  * @netdev: device to be brought down
4295  */
4296 static void et131x_down(struct net_device *netdev)
4297 {
4298         struct et131x_adapter *adapter = netdev_priv(netdev);
4299
4300         /* Save the timestamp for the TX watchdog, prevent a timeout */
4301         netdev->trans_start = jiffies;
4302
4303         phy_stop(adapter->phydev);
4304         et131x_disable_txrx(netdev);
4305 }
4306
4307 #ifdef CONFIG_PM_SLEEP
4308 static int et131x_suspend(struct device *dev)
4309 {
4310         struct pci_dev *pdev = to_pci_dev(dev);
4311         struct net_device *netdev = pci_get_drvdata(pdev);
4312
4313         if (netif_running(netdev)) {
4314                 netif_device_detach(netdev);
4315                 et131x_down(netdev);
4316                 pci_save_state(pdev);
4317         }
4318
4319         return 0;
4320 }
4321
4322 static int et131x_resume(struct device *dev)
4323 {
4324         struct pci_dev *pdev = to_pci_dev(dev);
4325         struct net_device *netdev = pci_get_drvdata(pdev);
4326
4327         if (netif_running(netdev)) {
4328                 pci_restore_state(pdev);
4329                 et131x_up(netdev);
4330                 netif_device_attach(netdev);
4331         }
4332
4333         return 0;
4334 }
4335
4336 static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
4337 #define ET131X_PM_OPS (&et131x_pm_ops)
4338 #else
4339 #define ET131X_PM_OPS NULL
4340 #endif
4341
4342 /**
4343  * et131x_isr - The Interrupt Service Routine for the driver.
4344  * @irq: the IRQ on which the interrupt was received.
4345  * @dev_id: device-specific info (here a pointer to a net_device struct)
4346  *
4347  * Returns a value indicating if the interrupt was handled.
4348  */
4349 irqreturn_t et131x_isr(int irq, void *dev_id)
4350 {
4351         bool handled = true;
4352         struct net_device *netdev = (struct net_device *)dev_id;
4353         struct et131x_adapter *adapter = NULL;
4354         u32 status;
4355
4356         if (!netif_device_present(netdev)) {
4357                 handled = false;
4358                 goto out;
4359         }
4360
4361         adapter = netdev_priv(netdev);
4362
4363         /* If the adapter is in low power state, then it should not
4364          * recognize any interrupt
4365          */
4366
4367         /* Disable Device Interrupts */
4368         et131x_disable_interrupts(adapter);
4369
4370         /* Get a copy of the value in the interrupt status register
4371          * so we can process the interrupting section
4372          */
4373         status = readl(&adapter->regs->global.int_status);
4374
4375         if (adapter->flowcontrol == FLOW_TXONLY ||
4376             adapter->flowcontrol == FLOW_BOTH) {
4377                 status &= ~INT_MASK_ENABLE;
4378         } else {
4379                 status &= ~INT_MASK_ENABLE_NO_FLOW;
4380         }
4381
4382         /* Make sure this is our interrupt */
4383         if (!status) {
4384                 handled = false;
4385                 et131x_enable_interrupts(adapter);
4386                 goto out;
4387         }
4388
4389         /* This is our interrupt, so process accordingly */
4390
4391         if (status & ET_INTR_WATCHDOG) {
4392                 struct tcb *tcb = adapter->tx_ring.send_head;
4393
4394                 if (tcb)
4395                         if (++tcb->stale > 1)
4396                                 status |= ET_INTR_TXDMA_ISR;
4397
4398                 if (adapter->rx_ring.unfinished_receives)
4399                         status |= ET_INTR_RXDMA_XFR_DONE;
4400                 else if (tcb == NULL)
4401                         writel(0, &adapter->regs->global.watchdog_timer);
4402
4403                 status &= ~ET_INTR_WATCHDOG;
4404         }
4405
4406         if (status == 0) {
4407                 /* This interrupt has in some way been "handled" by
4408                  * the ISR. Either it was a spurious Rx interrupt, or
4409                  * it was a Tx interrupt that has been filtered by
4410                  * the ISR.
4411                  */
4412                 et131x_enable_interrupts(adapter);
4413                 goto out;
4414         }
4415
4416         /* We need to save the interrupt status value for use in our
4417          * DPC. We will clear the software copy of that in that
4418          * routine.
4419          */
4420         adapter->stats.interrupt_status = status;
4421
4422         /* Schedule the ISR handler as a bottom-half task in the
4423          * kernel's tq_immediate queue, and mark the queue for
4424          * execution
4425          */
4426         schedule_work(&adapter->task);
4427 out:
4428         return IRQ_RETVAL(handled);
4429 }
4430
4431 /**
4432  * et131x_isr_handler - The ISR handler
4433  * @p_adapter, a pointer to the device's private adapter structure
4434  *
4435  * scheduled to run in a deferred context by the ISR. This is where the ISR's
4436  * work actually gets done.
4437  */
4438 static void et131x_isr_handler(struct work_struct *work)
4439 {
4440         struct et131x_adapter *adapter =
4441                 container_of(work, struct et131x_adapter, task);
4442         u32 status = adapter->stats.interrupt_status;
4443         struct address_map __iomem *iomem = adapter->regs;
4444
4445         /*
4446          * These first two are by far the most common.  Once handled, we clear
4447          * their two bits in the status word.  If the word is now zero, we
4448          * exit.
4449          */
4450         /* Handle all the completed Transmit interrupts */
4451         if (status & ET_INTR_TXDMA_ISR)
4452                 et131x_handle_send_interrupt(adapter);
4453
4454         /* Handle all the completed Receives interrupts */
4455         if (status & ET_INTR_RXDMA_XFR_DONE)
4456                 et131x_handle_recv_interrupt(adapter);
4457
4458         status &= 0xffffffd7;
4459
4460         if (status) {
4461                 /* Handle the TXDMA Error interrupt */
4462                 if (status & ET_INTR_TXDMA_ERR) {
4463                         u32 txdma_err;
4464
4465                         /* Following read also clears the register (COR) */
4466                         txdma_err = readl(&iomem->txdma.tx_dma_error);
4467
4468                         dev_warn(&adapter->pdev->dev,
4469                                     "TXDMA_ERR interrupt, error = %d\n",
4470                                     txdma_err);
4471                 }
4472
4473                 /* Handle Free Buffer Ring 0 and 1 Low interrupt */
4474                 if (status &
4475                     (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
4476                         /*
4477                          * This indicates the number of unused buffers in
4478                          * RXDMA free buffer ring 0 is <= the limit you
4479                          * programmed. Free buffer resources need to be
4480                          * returned.  Free buffers are consumed as packets
4481                          * are passed from the network to the host. The host
4482                          * becomes aware of the packets from the contents of
4483                          * the packet status ring. This ring is queried when
4484                          * the packet done interrupt occurs. Packets are then
4485                          * passed to the OS. When the OS is done with the
4486                          * packets the resources can be returned to the
4487                          * ET1310 for re-use. This interrupt is one method of
4488                          * returning resources.
4489                          */
4490
4491                         /* If the user has flow control on, then we will
4492                          * send a pause packet, otherwise just exit
4493                          */
4494                         if (adapter->flowcontrol == FLOW_TXONLY ||
4495                             adapter->flowcontrol == FLOW_BOTH) {
4496                                 u32 pm_csr;
4497
4498                                 /* Tell the device to send a pause packet via
4499                                  * the back pressure register (bp req  and
4500                                  * bp xon/xoff)
4501                                  */
4502                                 pm_csr = readl(&iomem->global.pm_csr);
4503                                 if (!et1310_in_phy_coma(adapter))
4504                                         writel(3, &iomem->txmac.bp_ctrl);
4505                         }
4506                 }
4507
4508                 /* Handle Packet Status Ring Low Interrupt */
4509                 if (status & ET_INTR_RXDMA_STAT_LOW) {
4510
4511                         /*
4512                          * Same idea as with the two Free Buffer Rings.
4513                          * Packets going from the network to the host each
4514                          * consume a free buffer resource and a packet status
4515                          * resource.  These resoures are passed to the OS.
4516                          * When the OS is done with the resources, they need
4517                          * to be returned to the ET1310. This is one method
4518                          * of returning the resources.
4519                          */
4520                 }
4521
4522                 /* Handle RXDMA Error Interrupt */
4523                 if (status & ET_INTR_RXDMA_ERR) {
4524                         /*
4525                          * The rxdma_error interrupt is sent when a time-out
4526                          * on a request issued by the JAGCore has occurred or
4527                          * a completion is returned with an un-successful
4528                          * status.  In both cases the request is considered
4529                          * complete. The JAGCore will automatically re-try the
4530                          * request in question. Normally information on events
4531                          * like these are sent to the host using the "Advanced
4532                          * Error Reporting" capability. This interrupt is
4533                          * another way of getting similar information. The
4534                          * only thing required is to clear the interrupt by
4535                          * reading the ISR in the global resources. The
4536                          * JAGCore will do a re-try on the request.  Normally
4537                          * you should never see this interrupt. If you start
4538                          * to see this interrupt occurring frequently then
4539                          * something bad has occurred. A reset might be the
4540                          * thing to do.
4541                          */
4542                         /* TRAP();*/
4543
4544                         dev_warn(&adapter->pdev->dev,
4545                                     "RxDMA_ERR interrupt, error %x\n",
4546                                     readl(&iomem->txmac.tx_test));
4547                 }
4548
4549                 /* Handle the Wake on LAN Event */
4550                 if (status & ET_INTR_WOL) {
4551                         /*
4552                          * This is a secondary interrupt for wake on LAN.
4553                          * The driver should never see this, if it does,
4554                          * something serious is wrong. We will TRAP the
4555                          * message when we are in DBG mode, otherwise we
4556                          * will ignore it.
4557                          */
4558                         dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
4559                 }
4560
4561                 /* Let's move on to the TxMac */
4562                 if (status & ET_INTR_TXMAC) {
4563                         u32 err = readl(&iomem->txmac.err);
4564
4565                         /*
4566                          * When any of the errors occur and TXMAC generates
4567                          * an interrupt to report these errors, it usually
4568                          * means that TXMAC has detected an error in the data
4569                          * stream retrieved from the on-chip Tx Q. All of
4570                          * these errors are catastrophic and TXMAC won't be
4571                          * able to recover data when these errors occur.  In
4572                          * a nutshell, the whole Tx path will have to be reset
4573                          * and re-configured afterwards.
4574                          */
4575                         dev_warn(&adapter->pdev->dev,
4576                                     "TXMAC interrupt, error 0x%08x\n",
4577                                     err);
4578
4579                         /* If we are debugging, we want to see this error,
4580                          * otherwise we just want the device to be reset and
4581                          * continue
4582                          */
4583                 }
4584
4585                 /* Handle RXMAC Interrupt */
4586                 if (status & ET_INTR_RXMAC) {
4587                         /*
4588                          * These interrupts are catastrophic to the device,
4589                          * what we need to do is disable the interrupts and
4590                          * set the flag to cause us to reset so we can solve
4591                          * this issue.
4592                          */
4593                         /* MP_SET_FLAG( adapter,
4594                                                 fMP_ADAPTER_HARDWARE_ERROR); */
4595
4596                         dev_warn(&adapter->pdev->dev,
4597                           "RXMAC interrupt, error 0x%08x.  Requesting reset\n",
4598                                     readl(&iomem->rxmac.err_reg));
4599
4600                         dev_warn(&adapter->pdev->dev,
4601                                     "Enable 0x%08x, Diag 0x%08x\n",
4602                                     readl(&iomem->rxmac.ctrl),
4603                                     readl(&iomem->rxmac.rxq_diag));
4604
4605                         /*
4606                          * If we are debugging, we want to see this error,
4607                          * otherwise we just want the device to be reset and
4608                          * continue
4609                          */
4610                 }
4611
4612                 /* Handle MAC_STAT Interrupt */
4613                 if (status & ET_INTR_MAC_STAT) {
4614                         /*
4615                          * This means at least one of the un-masked counters
4616                          * in the MAC_STAT block has rolled over.  Use this
4617                          * to maintain the top, software managed bits of the
4618                          * counter(s).
4619                          */
4620                         et1310_handle_macstat_interrupt(adapter);
4621                 }
4622
4623                 /* Handle SLV Timeout Interrupt */
4624                 if (status & ET_INTR_SLV_TIMEOUT) {
4625                         /*
4626                          * This means a timeout has occurred on a read or
4627                          * write request to one of the JAGCore registers. The
4628                          * Global Resources block has terminated the request
4629                          * and on a read request, returned a "fake" value.
4630                          * The most likely reasons are: Bad Address or the
4631                          * addressed module is in a power-down state and
4632                          * can't respond.
4633                          */
4634                 }
4635         }
4636         et131x_enable_interrupts(adapter);
4637 }
4638
4639 /**
4640  * et131x_stats - Return the current device statistics.
4641  * @netdev: device whose stats are being queried
4642  *
4643  * Returns 0 on success, errno on failure (as defined in errno.h)
4644  */
4645 static struct net_device_stats *et131x_stats(struct net_device *netdev)
4646 {
4647         struct et131x_adapter *adapter = netdev_priv(netdev);
4648         struct net_device_stats *stats = &adapter->net_stats;
4649         struct ce_stats *devstat = &adapter->stats;
4650
4651         stats->rx_errors = devstat->rx_length_errs +
4652                            devstat->rx_align_errs +
4653                            devstat->rx_crc_errs +
4654                            devstat->rx_code_violations +
4655                            devstat->rx_other_errs;
4656         stats->tx_errors = devstat->tx_max_pkt_errs;
4657         stats->multicast = devstat->multicast_pkts_rcvd;
4658         stats->collisions = devstat->tx_collisions;
4659
4660         stats->rx_length_errors = devstat->rx_length_errs;
4661         stats->rx_over_errors = devstat->rx_overflows;
4662         stats->rx_crc_errors = devstat->rx_crc_errs;
4663
4664         /* NOTE: These stats don't have corresponding values in CE_STATS,
4665          * so we're going to have to update these directly from within the
4666          * TX/RX code
4667          */
4668         /* stats->rx_bytes            = 20; devstat->; */
4669         /* stats->tx_bytes            = 20;  devstat->; */
4670         /* stats->rx_dropped          = devstat->; */
4671         /* stats->tx_dropped          = devstat->; */
4672
4673         /*  NOTE: Not used, can't find analogous statistics */
4674         /* stats->rx_frame_errors     = devstat->; */
4675         /* stats->rx_fifo_errors      = devstat->; */
4676         /* stats->rx_missed_errors    = devstat->; */
4677
4678         /* stats->tx_aborted_errors   = devstat->; */
4679         /* stats->tx_carrier_errors   = devstat->; */
4680         /* stats->tx_fifo_errors      = devstat->; */
4681         /* stats->tx_heartbeat_errors = devstat->; */
4682         /* stats->tx_window_errors    = devstat->; */
4683         return stats;
4684 }
4685
4686 /**
4687  * et131x_open - Open the device for use.
4688  * @netdev: device to be opened
4689  *
4690  * Returns 0 on success, errno on failure (as defined in errno.h)
4691  */
4692 static int et131x_open(struct net_device *netdev)
4693 {
4694         struct et131x_adapter *adapter = netdev_priv(netdev);
4695         struct pci_dev *pdev = adapter->pdev;
4696         unsigned int irq = pdev->irq;
4697         int result;
4698
4699         /* Start the timer to track NIC errors */
4700         init_timer(&adapter->error_timer);
4701         adapter->error_timer.expires = jiffies + TX_ERROR_PERIOD * HZ / 1000;
4702         adapter->error_timer.function = et131x_error_timer_handler;
4703         adapter->error_timer.data = (unsigned long)adapter;
4704         add_timer(&adapter->error_timer);
4705
4706         result = request_irq(irq, et131x_isr,
4707                              IRQF_SHARED, netdev->name, netdev);
4708         if (result) {
4709                 dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
4710                 return result;
4711         }
4712
4713         adapter->flags |= fMP_ADAPTER_INTERRUPT_IN_USE;
4714
4715         et131x_up(netdev);
4716
4717         return result;
4718 }
4719
4720 /**
4721  * et131x_close - Close the device
4722  * @netdev: device to be closed
4723  *
4724  * Returns 0 on success, errno on failure (as defined in errno.h)
4725  */
4726 static int et131x_close(struct net_device *netdev)
4727 {
4728         struct et131x_adapter *adapter = netdev_priv(netdev);
4729
4730         et131x_down(netdev);
4731
4732         adapter->flags &= ~fMP_ADAPTER_INTERRUPT_IN_USE;
4733         free_irq(adapter->pdev->irq, netdev);
4734
4735         /* Stop the error timer */
4736         return del_timer_sync(&adapter->error_timer);
4737 }
4738
4739 /**
4740  * et131x_ioctl - The I/O Control handler for the driver
4741  * @netdev: device on which the control request is being made
4742  * @reqbuf: a pointer to the IOCTL request buffer
4743  * @cmd: the IOCTL command code
4744  *
4745  * Returns 0 on success, errno on failure (as defined in errno.h)
4746  */
4747 static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
4748                         int cmd)
4749 {
4750         struct et131x_adapter *adapter = netdev_priv(netdev);
4751
4752         if (!adapter->phydev)
4753                 return -EINVAL;
4754
4755         return phy_mii_ioctl(adapter->phydev, reqbuf, cmd);
4756 }
4757
4758 /**
4759  * et131x_set_packet_filter - Configures the Rx Packet filtering on the device
4760  * @adapter: pointer to our private adapter structure
4761  *
4762  * FIXME: lot of dups with MAC code
4763  *
4764  * Returns 0 on success, errno on failure
4765  */
4766 static int et131x_set_packet_filter(struct et131x_adapter *adapter)
4767 {
4768         int filter = adapter->packet_filter;
4769         int status = 0;
4770         u32 ctrl;
4771         u32 pf_ctrl;
4772
4773         ctrl = readl(&adapter->regs->rxmac.ctrl);
4774         pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
4775
4776         /* Default to disabled packet filtering.  Enable it in the individual
4777          * case statements that require the device to filter something
4778          */
4779         ctrl |= 0x04;
4780
4781         /* Set us to be in promiscuous mode so we receive everything, this
4782          * is also true when we get a packet filter of 0
4783          */
4784         if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
4785                 pf_ctrl &= ~7;  /* Clear filter bits */
4786         else {
4787                 /*
4788                  * Set us up with Multicast packet filtering.  Three cases are
4789                  * possible - (1) we have a multi-cast list, (2) we receive ALL
4790                  * multicast entries or (3) we receive none.
4791                  */
4792                 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
4793                         pf_ctrl &= ~2;  /* Multicast filter bit */
4794                 else {
4795                         et1310_setup_device_for_multicast(adapter);
4796                         pf_ctrl |= 2;
4797                         ctrl &= ~0x04;
4798                 }
4799
4800                 /* Set us up with Unicast packet filtering */
4801                 if (filter & ET131X_PACKET_TYPE_DIRECTED) {
4802                         et1310_setup_device_for_unicast(adapter);
4803                         pf_ctrl |= 4;
4804                         ctrl &= ~0x04;
4805                 }
4806
4807                 /* Set us up with Broadcast packet filtering */
4808                 if (filter & ET131X_PACKET_TYPE_BROADCAST) {
4809                         pf_ctrl |= 1;   /* Broadcast filter bit */
4810                         ctrl &= ~0x04;
4811                 } else
4812                         pf_ctrl &= ~1;
4813
4814                 /* Setup the receive mac configuration registers - Packet
4815                  * Filter control + the enable / disable for packet filter
4816                  * in the control reg.
4817                  */
4818                 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
4819                 writel(ctrl, &adapter->regs->rxmac.ctrl);
4820         }
4821         return status;
4822 }
4823
4824 /**
4825  * et131x_multicast - The handler to configure multicasting on the interface
4826  * @netdev: a pointer to a net_device struct representing the device
4827  */
4828 static void et131x_multicast(struct net_device *netdev)
4829 {
4830         struct et131x_adapter *adapter = netdev_priv(netdev);
4831         int packet_filter;
4832         unsigned long flags;
4833         struct netdev_hw_addr *ha;
4834         int i;
4835
4836         spin_lock_irqsave(&adapter->lock, flags);
4837
4838         /* Before we modify the platform-independent filter flags, store them
4839          * locally. This allows us to determine if anything's changed and if
4840          * we even need to bother the hardware
4841          */
4842         packet_filter = adapter->packet_filter;
4843
4844         /* Clear the 'multicast' flag locally; because we only have a single
4845          * flag to check multicast, and multiple multicast addresses can be
4846          * set, this is the easiest way to determine if more than one
4847          * multicast address is being set.
4848          */
4849         packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4850
4851         /* Check the net_device flags and set the device independent flags
4852          * accordingly
4853          */
4854
4855         if (netdev->flags & IFF_PROMISC)
4856                 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
4857         else
4858                 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
4859
4860         if (netdev->flags & IFF_ALLMULTI)
4861                 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4862
4863         if (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST)
4864                 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4865
4866         if (netdev_mc_count(netdev) < 1) {
4867                 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
4868                 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4869         } else
4870                 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
4871
4872         /* Set values in the private adapter struct */
4873         i = 0;
4874         netdev_for_each_mc_addr(ha, netdev) {
4875                 if (i == NIC_MAX_MCAST_LIST)
4876                         break;
4877                 memcpy(adapter->multicast_list[i++], ha->addr, ETH_ALEN);
4878         }
4879         adapter->multicast_addr_count = i;
4880
4881         /* Are the new flags different from the previous ones? If not, then no
4882          * action is required
4883          *
4884          * NOTE - This block will always update the multicast_list with the
4885          *        hardware, even if the addresses aren't the same.
4886          */
4887         if (packet_filter != adapter->packet_filter) {
4888                 /* Call the device's filter function */
4889                 et131x_set_packet_filter(adapter);
4890         }
4891         spin_unlock_irqrestore(&adapter->lock, flags);
4892 }
4893
4894 /**
4895  * et131x_tx - The handler to tx a packet on the device
4896  * @skb: data to be Tx'd
4897  * @netdev: device on which data is to be Tx'd
4898  *
4899  * Returns 0 on success, errno on failure (as defined in errno.h)
4900  */
4901 static int et131x_tx(struct sk_buff *skb, struct net_device *netdev)
4902 {
4903         int status = 0;
4904         struct et131x_adapter *adapter = netdev_priv(netdev);
4905
4906         /* stop the queue if it's getting full */
4907         if (adapter->tx_ring.used >= NUM_TCB - 1 &&
4908             !netif_queue_stopped(netdev))
4909                 netif_stop_queue(netdev);
4910
4911         /* Save the timestamp for the TX timeout watchdog */
4912         netdev->trans_start = jiffies;
4913
4914         /* Call the device-specific data Tx routine */
4915         status = et131x_send_packets(skb, netdev);
4916
4917         /* Check status and manage the netif queue if necessary */
4918         if (status != 0) {
4919                 if (status == -ENOMEM)
4920                         status = NETDEV_TX_BUSY;
4921                 else
4922                         status = NETDEV_TX_OK;
4923         }
4924         return status;
4925 }
4926
4927 /**
4928  * et131x_tx_timeout - Timeout handler
4929  * @netdev: a pointer to a net_device struct representing the device
4930  *
4931  * The handler called when a Tx request times out. The timeout period is
4932  * specified by the 'tx_timeo" element in the net_device structure (see
4933  * et131x_alloc_device() to see how this value is set).
4934  */
4935 static void et131x_tx_timeout(struct net_device *netdev)
4936 {
4937         struct et131x_adapter *adapter = netdev_priv(netdev);
4938         struct tcb *tcb;
4939         unsigned long flags;
4940
4941         /* If the device is closed, ignore the timeout */
4942         if (~(adapter->flags & fMP_ADAPTER_INTERRUPT_IN_USE))
4943                 return;
4944
4945         /* Any nonrecoverable hardware error?
4946          * Checks adapter->flags for any failure in phy reading
4947          */
4948         if (adapter->flags & fMP_ADAPTER_NON_RECOVER_ERROR)
4949                 return;
4950
4951         /* Hardware failure? */
4952         if (adapter->flags & fMP_ADAPTER_HARDWARE_ERROR) {
4953                 dev_err(&adapter->pdev->dev, "hardware error - reset\n");
4954                 return;
4955         }
4956
4957         /* Is send stuck? */
4958         spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
4959
4960         tcb = adapter->tx_ring.send_head;
4961
4962         if (tcb != NULL) {
4963                 tcb->count++;
4964
4965                 if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
4966                         spin_unlock_irqrestore(&adapter->tcb_send_qlock,
4967                                                flags);
4968
4969                         dev_warn(&adapter->pdev->dev,
4970                                 "Send stuck - reset.  tcb->WrIndex %x, flags 0x%08x\n",
4971                                 tcb->index,
4972                                 tcb->flags);
4973
4974                         adapter->net_stats.tx_errors++;
4975
4976                         /* perform reset of tx/rx */
4977                         et131x_disable_txrx(netdev);
4978                         et131x_enable_txrx(netdev);
4979                         return;
4980                 }
4981         }
4982
4983         spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
4984 }
4985
4986 /**
4987  * et131x_change_mtu - The handler called to change the MTU for the device
4988  * @netdev: device whose MTU is to be changed
4989  * @new_mtu: the desired MTU
4990  *
4991  * Returns 0 on success, errno on failure (as defined in errno.h)
4992  */
4993 static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
4994 {
4995         int result = 0;
4996         struct et131x_adapter *adapter = netdev_priv(netdev);
4997
4998         /* Make sure the requested MTU is valid */
4999         if (new_mtu < 64 || new_mtu > 9216)
5000                 return -EINVAL;
5001
5002         et131x_disable_txrx(netdev);
5003         et131x_handle_send_interrupt(adapter);
5004         et131x_handle_recv_interrupt(adapter);
5005
5006         /* Set the new MTU */
5007         netdev->mtu = new_mtu;
5008
5009         /* Free Rx DMA memory */
5010         et131x_adapter_memory_free(adapter);
5011
5012         /* Set the config parameter for Jumbo Packet support */
5013         adapter->registry_jumbo_packet = new_mtu + 14;
5014         et131x_soft_reset(adapter);
5015
5016         /* Alloc and init Rx DMA memory */
5017         result = et131x_adapter_memory_alloc(adapter);
5018         if (result != 0) {
5019                 dev_warn(&adapter->pdev->dev,
5020                         "Change MTU failed; couldn't re-alloc DMA memory\n");
5021                 return result;
5022         }
5023
5024         et131x_init_send(adapter);
5025
5026         et131x_hwaddr_init(adapter);
5027         memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
5028
5029         /* Init the device with the new settings */
5030         et131x_adapter_setup(adapter);
5031
5032         et131x_enable_txrx(netdev);
5033
5034         return result;
5035 }
5036
5037 /**
5038  * et131x_set_mac_addr - handler to change the MAC address for the device
5039  * @netdev: device whose MAC is to be changed
5040  * @new_mac: the desired MAC address
5041  *
5042  * Returns 0 on success, errno on failure (as defined in errno.h)
5043  *
5044  * IMPLEMENTED BY : blux http://berndlux.de 22.01.2007 21:14
5045  */
5046 static int et131x_set_mac_addr(struct net_device *netdev, void *new_mac)
5047 {
5048         int result = 0;
5049         struct et131x_adapter *adapter = netdev_priv(netdev);
5050         struct sockaddr *address = new_mac;
5051
5052         /* begin blux */
5053
5054         if (adapter == NULL)
5055                 return -ENODEV;
5056
5057         /* Make sure the requested MAC is valid */
5058         if (!is_valid_ether_addr(address->sa_data))
5059                 return -EADDRNOTAVAIL;
5060
5061         et131x_disable_txrx(netdev);
5062         et131x_handle_send_interrupt(adapter);
5063         et131x_handle_recv_interrupt(adapter);
5064
5065         /* Set the new MAC */
5066         /* netdev->set_mac_address  = &new_mac; */
5067
5068         memcpy(netdev->dev_addr, address->sa_data, netdev->addr_len);
5069
5070         netdev_info(netdev, "Setting MAC address to %pM\n",
5071                     netdev->dev_addr);
5072
5073         /* Free Rx DMA memory */
5074         et131x_adapter_memory_free(adapter);
5075
5076         et131x_soft_reset(adapter);
5077
5078         /* Alloc and init Rx DMA memory */
5079         result = et131x_adapter_memory_alloc(adapter);
5080         if (result != 0) {
5081                 dev_err(&adapter->pdev->dev,
5082                         "Change MAC failed; couldn't re-alloc DMA memory\n");
5083                 return result;
5084         }
5085
5086         et131x_init_send(adapter);
5087
5088         et131x_hwaddr_init(adapter);
5089
5090         /* Init the device with the new settings */
5091         et131x_adapter_setup(adapter);
5092
5093         et131x_enable_txrx(netdev);
5094
5095         return result;
5096 }
5097
5098 static const struct net_device_ops et131x_netdev_ops = {
5099         .ndo_open               = et131x_open,
5100         .ndo_stop               = et131x_close,
5101         .ndo_start_xmit         = et131x_tx,
5102         .ndo_set_rx_mode        = et131x_multicast,
5103         .ndo_tx_timeout         = et131x_tx_timeout,
5104         .ndo_change_mtu         = et131x_change_mtu,
5105         .ndo_set_mac_address    = et131x_set_mac_addr,
5106         .ndo_validate_addr      = eth_validate_addr,
5107         .ndo_get_stats          = et131x_stats,
5108         .ndo_do_ioctl           = et131x_ioctl,
5109 };
5110
5111 /**
5112  * et131x_pci_setup - Perform device initialization
5113  * @pdev: a pointer to the device's pci_dev structure
5114  * @ent: this device's entry in the pci_device_id table
5115  *
5116  * Returns 0 on success, errno on failure (as defined in errno.h)
5117  *
5118  * Registered in the pci_driver structure, this function is called when the
5119  * PCI subsystem finds a new PCI device which matches the information
5120  * contained in the pci_device_id table. This routine is the equivalent to
5121  * a device insertion routine.
5122  */
5123 static int __devinit et131x_pci_setup(struct pci_dev *pdev,
5124                                const struct pci_device_id *ent)
5125 {
5126         struct net_device *netdev;
5127         struct et131x_adapter *adapter;
5128         int rc;
5129         int ii;
5130
5131         rc = pci_enable_device(pdev);
5132         if (rc < 0) {
5133                 dev_err(&pdev->dev, "pci_enable_device() failed\n");
5134                 goto out;
5135         }
5136
5137         /* Perform some basic PCI checks */
5138         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5139                 dev_err(&pdev->dev, "Can't find PCI device's base address\n");
5140                 rc = -ENODEV;
5141                 goto err_disable;
5142         }
5143
5144         rc = pci_request_regions(pdev, DRIVER_NAME);
5145         if (rc < 0) {
5146                 dev_err(&pdev->dev, "Can't get PCI resources\n");
5147                 goto err_disable;
5148         }
5149
5150         pci_set_master(pdev);
5151
5152         /* Check the DMA addressing support of this device */
5153         if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
5154                 rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
5155                 if (rc < 0) {
5156                         dev_err(&pdev->dev,
5157                           "Unable to obtain 64 bit DMA for consistent allocations\n");
5158                         goto err_release_res;
5159                 }
5160         } else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
5161                 rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
5162                 if (rc < 0) {
5163                         dev_err(&pdev->dev,
5164                           "Unable to obtain 32 bit DMA for consistent allocations\n");
5165                         goto err_release_res;
5166                 }
5167         } else {
5168                 dev_err(&pdev->dev, "No usable DMA addressing method\n");
5169                 rc = -EIO;
5170                 goto err_release_res;
5171         }
5172
5173         /* Allocate netdev and private adapter structs */
5174         netdev = alloc_etherdev(sizeof(struct et131x_adapter));
5175         if (!netdev) {
5176                 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
5177                 rc = -ENOMEM;
5178                 goto err_release_res;
5179         }
5180
5181         netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
5182         netdev->netdev_ops     = &et131x_netdev_ops;
5183
5184         SET_NETDEV_DEV(netdev, &pdev->dev);
5185         SET_ETHTOOL_OPS(netdev, &et131x_ethtool_ops);
5186
5187         adapter = et131x_adapter_init(netdev, pdev);
5188
5189         rc = et131x_pci_init(adapter, pdev);
5190         if (rc < 0)
5191                 goto err_free_dev;
5192
5193         /* Map the bus-relative registers to system virtual memory */
5194         adapter->regs = pci_ioremap_bar(pdev, 0);
5195         if (!adapter->regs) {
5196                 dev_err(&pdev->dev, "Cannot map device registers\n");
5197                 rc = -ENOMEM;
5198                 goto err_free_dev;
5199         }
5200
5201         /* If Phy COMA mode was enabled when we went down, disable it here. */
5202         writel(ET_PMCSR_INIT,  &adapter->regs->global.pm_csr);
5203
5204         /* Issue a global reset to the et1310 */
5205         et131x_soft_reset(adapter);
5206
5207         /* Disable all interrupts (paranoid) */
5208         et131x_disable_interrupts(adapter);
5209
5210         /* Allocate DMA memory */
5211         rc = et131x_adapter_memory_alloc(adapter);
5212         if (rc < 0) {
5213                 dev_err(&pdev->dev, "Could not alloc adapater memory (DMA)\n");
5214                 goto err_iounmap;
5215         }
5216
5217         /* Init send data structures */
5218         et131x_init_send(adapter);
5219
5220         /* Set up the task structure for the ISR's deferred handler */
5221         INIT_WORK(&adapter->task, et131x_isr_handler);
5222
5223         /* Copy address into the net_device struct */
5224         memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
5225
5226         /* Init variable for counting how long we do not have link status */
5227         adapter->boot_coma = 0;
5228         et1310_disable_phy_coma(adapter);
5229
5230         rc = -ENOMEM;
5231
5232         /* Setup the mii_bus struct */
5233         adapter->mii_bus = mdiobus_alloc();
5234         if (!adapter->mii_bus) {
5235                 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
5236                 goto err_mem_free;
5237         }
5238
5239         adapter->mii_bus->name = "et131x_eth_mii";
5240         snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
5241                 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
5242         adapter->mii_bus->priv = netdev;
5243         adapter->mii_bus->read = et131x_mdio_read;
5244         adapter->mii_bus->write = et131x_mdio_write;
5245         adapter->mii_bus->reset = et131x_mdio_reset;
5246         adapter->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
5247         if (!adapter->mii_bus->irq) {
5248                 dev_err(&pdev->dev, "mii_bus irq allocation failed\n");
5249                 goto err_mdio_free;
5250         }
5251
5252         for (ii = 0; ii < PHY_MAX_ADDR; ii++)
5253                 adapter->mii_bus->irq[ii] = PHY_POLL;
5254
5255         rc = mdiobus_register(adapter->mii_bus);
5256         if (rc < 0) {
5257                 dev_err(&pdev->dev, "failed to register MII bus\n");
5258                 goto err_mdio_free_irq;
5259         }
5260
5261         rc = et131x_mii_probe(netdev);
5262         if (rc < 0) {
5263                 dev_err(&pdev->dev, "failed to probe MII bus\n");
5264                 goto err_mdio_unregister;
5265         }
5266
5267         /* Setup et1310 as per the documentation */
5268         et131x_adapter_setup(adapter);
5269
5270         /* We can enable interrupts now
5271          *
5272          *  NOTE - Because registration of interrupt handler is done in the
5273          *         device's open(), defer enabling device interrupts to that
5274          *         point
5275          */
5276
5277         /* Register the net_device struct with the Linux network layer */
5278         rc = register_netdev(netdev);
5279         if (rc < 0) {
5280                 dev_err(&pdev->dev, "register_netdev() failed\n");
5281                 goto err_phy_disconnect;
5282         }
5283
5284         /* Register the net_device struct with the PCI subsystem. Save a copy
5285          * of the PCI config space for this device now that the device has
5286          * been initialized, just in case it needs to be quickly restored.
5287          */
5288         pci_set_drvdata(pdev, netdev);
5289 out:
5290         return rc;
5291
5292 err_phy_disconnect:
5293         phy_disconnect(adapter->phydev);
5294 err_mdio_unregister:
5295         mdiobus_unregister(adapter->mii_bus);
5296 err_mdio_free_irq:
5297         kfree(adapter->mii_bus->irq);
5298 err_mdio_free:
5299         mdiobus_free(adapter->mii_bus);
5300 err_mem_free:
5301         et131x_adapter_memory_free(adapter);
5302 err_iounmap:
5303         iounmap(adapter->regs);
5304 err_free_dev:
5305         pci_dev_put(pdev);
5306         free_netdev(netdev);
5307 err_release_res:
5308         pci_release_regions(pdev);
5309 err_disable:
5310         pci_disable_device(pdev);
5311         goto out;
5312 }
5313
5314 static DEFINE_PCI_DEVICE_TABLE(et131x_pci_table) = {
5315         { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
5316         { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
5317         {0,}
5318 };
5319 MODULE_DEVICE_TABLE(pci, et131x_pci_table);
5320
5321 static struct pci_driver et131x_driver = {
5322         .name           = DRIVER_NAME,
5323         .id_table       = et131x_pci_table,
5324         .probe          = et131x_pci_setup,
5325         .remove         = __devexit_p(et131x_pci_remove),
5326         .driver.pm      = ET131X_PM_OPS,
5327 };
5328
5329 module_pci_driver(et131x_driver);