]> Pileus Git - ~andy/linux/blob - drivers/spi/spi-rspi.c
spi: rspi: Use u8 for 8-bit register values
[~andy/linux] / drivers / spi / spi-rspi.c
1 /*
2  * SH RSPI driver
3  *
4  * Copyright (C) 2012  Renesas Solutions Corp.
5  *
6  * Based on spi-sh.c:
7  * Copyright (C) 2011 Renesas Solutions Corp.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; version 2 of the License.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/errno.h>
28 #include <linux/list.h>
29 #include <linux/workqueue.h>
30 #include <linux/interrupt.h>
31 #include <linux/platform_device.h>
32 #include <linux/io.h>
33 #include <linux/clk.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/sh_dma.h>
37 #include <linux/spi/spi.h>
38 #include <linux/spi/rspi.h>
39
40 #define RSPI_SPCR               0x00
41 #define RSPI_SSLP               0x01
42 #define RSPI_SPPCR              0x02
43 #define RSPI_SPSR               0x03
44 #define RSPI_SPDR               0x04
45 #define RSPI_SPSCR              0x08
46 #define RSPI_SPSSR              0x09
47 #define RSPI_SPBR               0x0a
48 #define RSPI_SPDCR              0x0b
49 #define RSPI_SPCKD              0x0c
50 #define RSPI_SSLND              0x0d
51 #define RSPI_SPND               0x0e
52 #define RSPI_SPCR2              0x0f
53 #define RSPI_SPCMD0             0x10
54 #define RSPI_SPCMD1             0x12
55 #define RSPI_SPCMD2             0x14
56 #define RSPI_SPCMD3             0x16
57 #define RSPI_SPCMD4             0x18
58 #define RSPI_SPCMD5             0x1a
59 #define RSPI_SPCMD6             0x1c
60 #define RSPI_SPCMD7             0x1e
61
62 /*qspi only */
63 #define QSPI_SPBFCR             0x18
64 #define QSPI_SPBDCR             0x1a
65 #define QSPI_SPBMUL0            0x1c
66 #define QSPI_SPBMUL1            0x20
67 #define QSPI_SPBMUL2            0x24
68 #define QSPI_SPBMUL3            0x28
69
70 /* SPCR */
71 #define SPCR_SPRIE              0x80
72 #define SPCR_SPE                0x40
73 #define SPCR_SPTIE              0x20
74 #define SPCR_SPEIE              0x10
75 #define SPCR_MSTR               0x08
76 #define SPCR_MODFEN             0x04
77 #define SPCR_TXMD               0x02
78 #define SPCR_SPMS               0x01
79
80 /* SSLP */
81 #define SSLP_SSL1P              0x02
82 #define SSLP_SSL0P              0x01
83
84 /* SPPCR */
85 #define SPPCR_MOIFE             0x20
86 #define SPPCR_MOIFV             0x10
87 #define SPPCR_SPOM              0x04
88 #define SPPCR_SPLP2             0x02
89 #define SPPCR_SPLP              0x01
90
91 /* SPSR */
92 #define SPSR_SPRF               0x80
93 #define SPSR_SPTEF              0x20
94 #define SPSR_PERF               0x08
95 #define SPSR_MODF               0x04
96 #define SPSR_IDLNF              0x02
97 #define SPSR_OVRF               0x01
98
99 /* SPSCR */
100 #define SPSCR_SPSLN_MASK        0x07
101
102 /* SPSSR */
103 #define SPSSR_SPECM_MASK        0x70
104 #define SPSSR_SPCP_MASK         0x07
105
106 /* SPDCR */
107 #define SPDCR_SPLW              0x20
108 #define SPDCR_SPRDTD            0x10
109 #define SPDCR_SLSEL1            0x08
110 #define SPDCR_SLSEL0            0x04
111 #define SPDCR_SLSEL_MASK        0x0c
112 #define SPDCR_SPFC1             0x02
113 #define SPDCR_SPFC0             0x01
114
115 /* SPCKD */
116 #define SPCKD_SCKDL_MASK        0x07
117
118 /* SSLND */
119 #define SSLND_SLNDL_MASK        0x07
120
121 /* SPND */
122 #define SPND_SPNDL_MASK         0x07
123
124 /* SPCR2 */
125 #define SPCR2_PTE               0x08
126 #define SPCR2_SPIE              0x04
127 #define SPCR2_SPOE              0x02
128 #define SPCR2_SPPE              0x01
129
130 /* SPCMDn */
131 #define SPCMD_SCKDEN            0x8000
132 #define SPCMD_SLNDEN            0x4000
133 #define SPCMD_SPNDEN            0x2000
134 #define SPCMD_LSBF              0x1000
135 #define SPCMD_SPB_MASK          0x0f00
136 #define SPCMD_SPB_8_TO_16(bit)  (((bit - 1) << 8) & SPCMD_SPB_MASK)
137 #define SPCMD_SPB_8BIT          0x0000  /* qspi only */
138 #define SPCMD_SPB_16BIT         0x0100
139 #define SPCMD_SPB_20BIT         0x0000
140 #define SPCMD_SPB_24BIT         0x0100
141 #define SPCMD_SPB_32BIT         0x0200
142 #define SPCMD_SSLKP             0x0080
143 #define SPCMD_SSLA_MASK         0x0030
144 #define SPCMD_BRDV_MASK         0x000c
145 #define SPCMD_CPOL              0x0002
146 #define SPCMD_CPHA              0x0001
147
148 /* SPBFCR */
149 #define SPBFCR_TXRST            0x80    /* qspi only */
150 #define SPBFCR_RXRST            0x40    /* qspi only */
151
152 #define DUMMY_DATA              0x00
153
154 struct rspi_data {
155         void __iomem *addr;
156         u32 max_speed_hz;
157         struct spi_master *master;
158         struct list_head queue;
159         struct work_struct ws;
160         wait_queue_head_t wait;
161         spinlock_t lock;
162         struct clk *clk;
163         u8 spsr;
164         const struct spi_ops *ops;
165
166         /* for dmaengine */
167         struct dma_chan *chan_tx;
168         struct dma_chan *chan_rx;
169         int irq;
170
171         unsigned dma_width_16bit:1;
172         unsigned dma_callbacked:1;
173 };
174
175 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
176 {
177         iowrite8(data, rspi->addr + offset);
178 }
179
180 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
181 {
182         iowrite16(data, rspi->addr + offset);
183 }
184
185 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
186 {
187         iowrite32(data, rspi->addr + offset);
188 }
189
190 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
191 {
192         return ioread8(rspi->addr + offset);
193 }
194
195 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
196 {
197         return ioread16(rspi->addr + offset);
198 }
199
200 /* optional functions */
201 struct spi_ops {
202         int (*set_config_register)(const struct rspi_data *rspi,
203                                    int access_size);
204         int (*send_pio)(struct rspi_data *rspi, struct spi_message *mesg,
205                         struct spi_transfer *t);
206         int (*receive_pio)(struct rspi_data *rspi, struct spi_message *mesg,
207                            struct spi_transfer *t);
208
209 };
210
211 /*
212  * functions for RSPI
213  */
214 static int rspi_set_config_register(const struct rspi_data *rspi,
215                                     int access_size)
216 {
217         int spbr;
218
219         /* Sets output mode(CMOS) and MOSI signal(from previous transfer) */
220         rspi_write8(rspi, 0x00, RSPI_SPPCR);
221
222         /* Sets transfer bit rate */
223         spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1;
224         rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
225
226         /* Sets number of frames to be used: 1 frame */
227         rspi_write8(rspi, 0x00, RSPI_SPDCR);
228
229         /* Sets RSPCK, SSL, next-access delay value */
230         rspi_write8(rspi, 0x00, RSPI_SPCKD);
231         rspi_write8(rspi, 0x00, RSPI_SSLND);
232         rspi_write8(rspi, 0x00, RSPI_SPND);
233
234         /* Sets parity, interrupt mask */
235         rspi_write8(rspi, 0x00, RSPI_SPCR2);
236
237         /* Sets SPCMD */
238         rspi_write16(rspi, SPCMD_SPB_8_TO_16(access_size) | SPCMD_SSLKP,
239                      RSPI_SPCMD0);
240
241         /* Sets RSPI mode */
242         rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
243
244         return 0;
245 }
246
247 /*
248  * functions for QSPI
249  */
250 static int qspi_set_config_register(const struct rspi_data *rspi,
251                                     int access_size)
252 {
253         u16 spcmd;
254         int spbr;
255
256         /* Sets output mode(CMOS) and MOSI signal(from previous transfer) */
257         rspi_write8(rspi, 0x00, RSPI_SPPCR);
258
259         /* Sets transfer bit rate */
260         spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz);
261         rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
262
263         /* Sets number of frames to be used: 1 frame */
264         rspi_write8(rspi, 0x00, RSPI_SPDCR);
265
266         /* Sets RSPCK, SSL, next-access delay value */
267         rspi_write8(rspi, 0x00, RSPI_SPCKD);
268         rspi_write8(rspi, 0x00, RSPI_SSLND);
269         rspi_write8(rspi, 0x00, RSPI_SPND);
270
271         /* Data Length Setting */
272         if (access_size == 8)
273                 spcmd = SPCMD_SPB_8BIT;
274         else if (access_size == 16)
275                 spcmd = SPCMD_SPB_16BIT;
276         else if (access_size == 32)
277                 spcmd = SPCMD_SPB_32BIT;
278
279         spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SSLKP | SPCMD_SPNDEN;
280
281         /* Resets transfer data length */
282         rspi_write32(rspi, 0, QSPI_SPBMUL0);
283
284         /* Resets transmit and receive buffer */
285         rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
286         /* Sets buffer to allow normal operation */
287         rspi_write8(rspi, 0x00, QSPI_SPBFCR);
288
289         /* Sets SPCMD */
290         rspi_write16(rspi, spcmd, RSPI_SPCMD0);
291
292         /* Enables SPI function in a master mode */
293         rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);
294
295         return 0;
296 }
297
298 #define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
299
300 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
301 {
302         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
303 }
304
305 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
306 {
307         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
308 }
309
310 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
311                                    u8 enable_bit)
312 {
313         int ret;
314
315         rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
316         rspi_enable_irq(rspi, enable_bit);
317         ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
318         if (ret == 0 && !(rspi->spsr & wait_mask))
319                 return -ETIMEDOUT;
320
321         return 0;
322 }
323
324 static void rspi_assert_ssl(const struct rspi_data *rspi)
325 {
326         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
327 }
328
329 static void rspi_negate_ssl(const struct rspi_data *rspi)
330 {
331         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
332 }
333
334 static int rspi_send_pio(struct rspi_data *rspi, struct spi_message *mesg,
335                          struct spi_transfer *t)
336 {
337         int remain = t->len;
338         const u8 *data = t->tx_buf;
339         while (remain > 0) {
340                 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD,
341                             RSPI_SPCR);
342
343                 if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
344                         dev_err(&rspi->master->dev,
345                                 "%s: tx empty timeout\n", __func__);
346                         return -ETIMEDOUT;
347                 }
348
349                 rspi_write16(rspi, *data, RSPI_SPDR);
350                 data++;
351                 remain--;
352         }
353
354         /* Waiting for the last transmition */
355         rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
356
357         return 0;
358 }
359
360 static int qspi_send_pio(struct rspi_data *rspi, struct spi_message *mesg,
361                          struct spi_transfer *t)
362 {
363         int remain = t->len;
364         const u8 *data = t->tx_buf;
365
366         rspi_write8(rspi, SPBFCR_TXRST, QSPI_SPBFCR);
367         rspi_write8(rspi, 0x00, QSPI_SPBFCR);
368
369         while (remain > 0) {
370
371                 if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
372                         dev_err(&rspi->master->dev,
373                                 "%s: tx empty timeout\n", __func__);
374                         return -ETIMEDOUT;
375                 }
376                 rspi_write8(rspi, *data++, RSPI_SPDR);
377
378                 if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) {
379                         dev_err(&rspi->master->dev,
380                                 "%s: receive timeout\n", __func__);
381                         return -ETIMEDOUT;
382                 }
383                 rspi_read8(rspi, RSPI_SPDR);
384
385                 remain--;
386         }
387
388         /* Waiting for the last transmition */
389         rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
390
391         return 0;
392 }
393
394 #define send_pio(spi, mesg, t) spi->ops->send_pio(spi, mesg, t)
395
396 static void rspi_dma_complete(void *arg)
397 {
398         struct rspi_data *rspi = arg;
399
400         rspi->dma_callbacked = 1;
401         wake_up_interruptible(&rspi->wait);
402 }
403
404 static int rspi_dma_map_sg(struct scatterlist *sg, const void *buf,
405                            unsigned len, struct dma_chan *chan,
406                            enum dma_transfer_direction dir)
407 {
408         sg_init_table(sg, 1);
409         sg_set_buf(sg, buf, len);
410         sg_dma_len(sg) = len;
411         return dma_map_sg(chan->device->dev, sg, 1, dir);
412 }
413
414 static void rspi_dma_unmap_sg(struct scatterlist *sg, struct dma_chan *chan,
415                               enum dma_transfer_direction dir)
416 {
417         dma_unmap_sg(chan->device->dev, sg, 1, dir);
418 }
419
420 static void rspi_memory_to_8bit(void *buf, const void *data, unsigned len)
421 {
422         u16 *dst = buf;
423         const u8 *src = data;
424
425         while (len) {
426                 *dst++ = (u16)(*src++);
427                 len--;
428         }
429 }
430
431 static void rspi_memory_from_8bit(void *buf, const void *data, unsigned len)
432 {
433         u8 *dst = buf;
434         const u16 *src = data;
435
436         while (len) {
437                 *dst++ = (u8)*src++;
438                 len--;
439         }
440 }
441
442 static int rspi_send_dma(struct rspi_data *rspi, struct spi_transfer *t)
443 {
444         struct scatterlist sg;
445         const void *buf = NULL;
446         struct dma_async_tx_descriptor *desc;
447         unsigned len;
448         int ret = 0;
449
450         if (rspi->dma_width_16bit) {
451                 void *tmp;
452                 /*
453                  * If DMAC bus width is 16-bit, the driver allocates a dummy
454                  * buffer. And, the driver converts original data into the
455                  * DMAC data as the following format:
456                  *  original data: 1st byte, 2nd byte ...
457                  *  DMAC data:     1st byte, dummy, 2nd byte, dummy ...
458                  */
459                 len = t->len * 2;
460                 tmp = kmalloc(len, GFP_KERNEL);
461                 if (!tmp)
462                         return -ENOMEM;
463                 rspi_memory_to_8bit(tmp, t->tx_buf, t->len);
464                 buf = tmp;
465         } else {
466                 len = t->len;
467                 buf = t->tx_buf;
468         }
469
470         if (!rspi_dma_map_sg(&sg, buf, len, rspi->chan_tx, DMA_TO_DEVICE)) {
471                 ret = -EFAULT;
472                 goto end_nomap;
473         }
474         desc = dmaengine_prep_slave_sg(rspi->chan_tx, &sg, 1, DMA_TO_DEVICE,
475                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
476         if (!desc) {
477                 ret = -EIO;
478                 goto end;
479         }
480
481         /*
482          * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
483          * called. So, this driver disables the IRQ while DMA transfer.
484          */
485         disable_irq(rspi->irq);
486
487         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD, RSPI_SPCR);
488         rspi_enable_irq(rspi, SPCR_SPTIE);
489         rspi->dma_callbacked = 0;
490
491         desc->callback = rspi_dma_complete;
492         desc->callback_param = rspi;
493         dmaengine_submit(desc);
494         dma_async_issue_pending(rspi->chan_tx);
495
496         ret = wait_event_interruptible_timeout(rspi->wait,
497                                                rspi->dma_callbacked, HZ);
498         if (ret > 0 && rspi->dma_callbacked)
499                 ret = 0;
500         else if (!ret)
501                 ret = -ETIMEDOUT;
502         rspi_disable_irq(rspi, SPCR_SPTIE);
503
504         enable_irq(rspi->irq);
505
506 end:
507         rspi_dma_unmap_sg(&sg, rspi->chan_tx, DMA_TO_DEVICE);
508 end_nomap:
509         if (rspi->dma_width_16bit)
510                 kfree(buf);
511
512         return ret;
513 }
514
515 static void rspi_receive_init(const struct rspi_data *rspi)
516 {
517         u8 spsr;
518
519         spsr = rspi_read8(rspi, RSPI_SPSR);
520         if (spsr & SPSR_SPRF)
521                 rspi_read16(rspi, RSPI_SPDR);   /* dummy read */
522         if (spsr & SPSR_OVRF)
523                 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
524                             RSPI_SPCR);
525 }
526
527 static int rspi_receive_pio(struct rspi_data *rspi, struct spi_message *mesg,
528                             struct spi_transfer *t)
529 {
530         int remain = t->len;
531         u8 *data;
532
533         rspi_receive_init(rspi);
534
535         data = t->rx_buf;
536         while (remain > 0) {
537                 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD,
538                             RSPI_SPCR);
539
540                 if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
541                         dev_err(&rspi->master->dev,
542                                 "%s: tx empty timeout\n", __func__);
543                         return -ETIMEDOUT;
544                 }
545                 /* dummy write for generate clock */
546                 rspi_write16(rspi, DUMMY_DATA, RSPI_SPDR);
547
548                 if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) {
549                         dev_err(&rspi->master->dev,
550                                 "%s: receive timeout\n", __func__);
551                         return -ETIMEDOUT;
552                 }
553                 /* SPDR allows 16 or 32-bit access only */
554                 *data = (u8)rspi_read16(rspi, RSPI_SPDR);
555
556                 data++;
557                 remain--;
558         }
559
560         return 0;
561 }
562
563 static void qspi_receive_init(const struct rspi_data *rspi)
564 {
565         u8 spsr;
566
567         spsr = rspi_read8(rspi, RSPI_SPSR);
568         if (spsr & SPSR_SPRF)
569                 rspi_read8(rspi, RSPI_SPDR);   /* dummy read */
570         rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
571         rspi_write8(rspi, 0x00, QSPI_SPBFCR);
572 }
573
574 static int qspi_receive_pio(struct rspi_data *rspi, struct spi_message *mesg,
575                             struct spi_transfer *t)
576 {
577         int remain = t->len;
578         u8 *data;
579
580         qspi_receive_init(rspi);
581
582         data = t->rx_buf;
583         while (remain > 0) {
584
585                 if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
586                         dev_err(&rspi->master->dev,
587                                 "%s: tx empty timeout\n", __func__);
588                         return -ETIMEDOUT;
589                 }
590                 /* dummy write for generate clock */
591                 rspi_write8(rspi, DUMMY_DATA, RSPI_SPDR);
592
593                 if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) {
594                         dev_err(&rspi->master->dev,
595                                 "%s: receive timeout\n", __func__);
596                         return -ETIMEDOUT;
597                 }
598                 /* SPDR allows 8, 16 or 32-bit access */
599                 *data++ = rspi_read8(rspi, RSPI_SPDR);
600                 remain--;
601         }
602
603         return 0;
604 }
605
606 #define receive_pio(spi, mesg, t) spi->ops->receive_pio(spi, mesg, t)
607
608 static int rspi_receive_dma(struct rspi_data *rspi, struct spi_transfer *t)
609 {
610         struct scatterlist sg, sg_dummy;
611         void *dummy = NULL, *rx_buf = NULL;
612         struct dma_async_tx_descriptor *desc, *desc_dummy;
613         unsigned len;
614         int ret = 0;
615
616         if (rspi->dma_width_16bit) {
617                 /*
618                  * If DMAC bus width is 16-bit, the driver allocates a dummy
619                  * buffer. And, finally the driver converts the DMAC data into
620                  * actual data as the following format:
621                  *  DMAC data:   1st byte, dummy, 2nd byte, dummy ...
622                  *  actual data: 1st byte, 2nd byte ...
623                  */
624                 len = t->len * 2;
625                 rx_buf = kmalloc(len, GFP_KERNEL);
626                 if (!rx_buf)
627                         return -ENOMEM;
628          } else {
629                 len = t->len;
630                 rx_buf = t->rx_buf;
631         }
632
633         /* prepare dummy transfer to generate SPI clocks */
634         dummy = kzalloc(len, GFP_KERNEL);
635         if (!dummy) {
636                 ret = -ENOMEM;
637                 goto end_nomap;
638         }
639         if (!rspi_dma_map_sg(&sg_dummy, dummy, len, rspi->chan_tx,
640                              DMA_TO_DEVICE)) {
641                 ret = -EFAULT;
642                 goto end_nomap;
643         }
644         desc_dummy = dmaengine_prep_slave_sg(rspi->chan_tx, &sg_dummy, 1,
645                         DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
646         if (!desc_dummy) {
647                 ret = -EIO;
648                 goto end_dummy_mapped;
649         }
650
651         /* prepare receive transfer */
652         if (!rspi_dma_map_sg(&sg, rx_buf, len, rspi->chan_rx,
653                              DMA_FROM_DEVICE)) {
654                 ret = -EFAULT;
655                 goto end_dummy_mapped;
656
657         }
658         desc = dmaengine_prep_slave_sg(rspi->chan_rx, &sg, 1, DMA_FROM_DEVICE,
659                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
660         if (!desc) {
661                 ret = -EIO;
662                 goto end;
663         }
664
665         rspi_receive_init(rspi);
666
667         /*
668          * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
669          * called. So, this driver disables the IRQ while DMA transfer.
670          */
671         disable_irq(rspi->irq);
672
673         rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD, RSPI_SPCR);
674         rspi_enable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
675         rspi->dma_callbacked = 0;
676
677         desc->callback = rspi_dma_complete;
678         desc->callback_param = rspi;
679         dmaengine_submit(desc);
680         dma_async_issue_pending(rspi->chan_rx);
681
682         desc_dummy->callback = NULL;    /* No callback */
683         dmaengine_submit(desc_dummy);
684         dma_async_issue_pending(rspi->chan_tx);
685
686         ret = wait_event_interruptible_timeout(rspi->wait,
687                                                rspi->dma_callbacked, HZ);
688         if (ret > 0 && rspi->dma_callbacked)
689                 ret = 0;
690         else if (!ret)
691                 ret = -ETIMEDOUT;
692         rspi_disable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
693
694         enable_irq(rspi->irq);
695
696 end:
697         rspi_dma_unmap_sg(&sg, rspi->chan_rx, DMA_FROM_DEVICE);
698 end_dummy_mapped:
699         rspi_dma_unmap_sg(&sg_dummy, rspi->chan_tx, DMA_TO_DEVICE);
700 end_nomap:
701         if (rspi->dma_width_16bit) {
702                 if (!ret)
703                         rspi_memory_from_8bit(t->rx_buf, rx_buf, t->len);
704                 kfree(rx_buf);
705         }
706         kfree(dummy);
707
708         return ret;
709 }
710
711 static int rspi_is_dma(const struct rspi_data *rspi, struct spi_transfer *t)
712 {
713         if (t->tx_buf && rspi->chan_tx)
714                 return 1;
715         /* If the module receives data by DMAC, it also needs TX DMAC */
716         if (t->rx_buf && rspi->chan_tx && rspi->chan_rx)
717                 return 1;
718
719         return 0;
720 }
721
722 static void rspi_work(struct work_struct *work)
723 {
724         struct rspi_data *rspi = container_of(work, struct rspi_data, ws);
725         struct spi_message *mesg;
726         struct spi_transfer *t;
727         unsigned long flags;
728         int ret;
729
730         while (1) {
731                 spin_lock_irqsave(&rspi->lock, flags);
732                 if (list_empty(&rspi->queue)) {
733                         spin_unlock_irqrestore(&rspi->lock, flags);
734                         break;
735                 }
736                 mesg = list_entry(rspi->queue.next, struct spi_message, queue);
737                 list_del_init(&mesg->queue);
738                 spin_unlock_irqrestore(&rspi->lock, flags);
739
740                 rspi_assert_ssl(rspi);
741
742                 list_for_each_entry(t, &mesg->transfers, transfer_list) {
743                         if (t->tx_buf) {
744                                 if (rspi_is_dma(rspi, t))
745                                         ret = rspi_send_dma(rspi, t);
746                                 else
747                                         ret = send_pio(rspi, mesg, t);
748                                 if (ret < 0)
749                                         goto error;
750                         }
751                         if (t->rx_buf) {
752                                 if (rspi_is_dma(rspi, t))
753                                         ret = rspi_receive_dma(rspi, t);
754                                 else
755                                         ret = receive_pio(rspi, mesg, t);
756                                 if (ret < 0)
757                                         goto error;
758                         }
759                         mesg->actual_length += t->len;
760                 }
761                 rspi_negate_ssl(rspi);
762
763                 mesg->status = 0;
764                 mesg->complete(mesg->context);
765         }
766
767         return;
768
769 error:
770         mesg->status = ret;
771         mesg->complete(mesg->context);
772 }
773
774 static int rspi_setup(struct spi_device *spi)
775 {
776         struct rspi_data *rspi = spi_master_get_devdata(spi->master);
777
778         if (!spi->bits_per_word)
779                 spi->bits_per_word = 8;
780         rspi->max_speed_hz = spi->max_speed_hz;
781
782         set_config_register(rspi, 8);
783
784         return 0;
785 }
786
787 static int rspi_transfer(struct spi_device *spi, struct spi_message *mesg)
788 {
789         struct rspi_data *rspi = spi_master_get_devdata(spi->master);
790         unsigned long flags;
791
792         mesg->actual_length = 0;
793         mesg->status = -EINPROGRESS;
794
795         spin_lock_irqsave(&rspi->lock, flags);
796         list_add_tail(&mesg->queue, &rspi->queue);
797         schedule_work(&rspi->ws);
798         spin_unlock_irqrestore(&rspi->lock, flags);
799
800         return 0;
801 }
802
803 static void rspi_cleanup(struct spi_device *spi)
804 {
805 }
806
807 static irqreturn_t rspi_irq(int irq, void *_sr)
808 {
809         struct rspi_data *rspi = _sr;
810         u8 spsr;
811         irqreturn_t ret = IRQ_NONE;
812         u8 disable_irq = 0;
813
814         rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
815         if (spsr & SPSR_SPRF)
816                 disable_irq |= SPCR_SPRIE;
817         if (spsr & SPSR_SPTEF)
818                 disable_irq |= SPCR_SPTIE;
819
820         if (disable_irq) {
821                 ret = IRQ_HANDLED;
822                 rspi_disable_irq(rspi, disable_irq);
823                 wake_up(&rspi->wait);
824         }
825
826         return ret;
827 }
828
829 static int rspi_request_dma(struct rspi_data *rspi,
830                                       struct platform_device *pdev)
831 {
832         const struct rspi_plat_data *rspi_pd = dev_get_platdata(&pdev->dev);
833         struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
834         dma_cap_mask_t mask;
835         struct dma_slave_config cfg;
836         int ret;
837
838         if (!res || !rspi_pd)
839                 return 0;       /* The driver assumes no error. */
840
841         rspi->dma_width_16bit = rspi_pd->dma_width_16bit;
842
843         /* If the module receives data by DMAC, it also needs TX DMAC */
844         if (rspi_pd->dma_rx_id && rspi_pd->dma_tx_id) {
845                 dma_cap_zero(mask);
846                 dma_cap_set(DMA_SLAVE, mask);
847                 rspi->chan_rx = dma_request_channel(mask, shdma_chan_filter,
848                                                     (void *)rspi_pd->dma_rx_id);
849                 if (rspi->chan_rx) {
850                         cfg.slave_id = rspi_pd->dma_rx_id;
851                         cfg.direction = DMA_DEV_TO_MEM;
852                         cfg.dst_addr = 0;
853                         cfg.src_addr = res->start + RSPI_SPDR;
854                         ret = dmaengine_slave_config(rspi->chan_rx, &cfg);
855                         if (!ret)
856                                 dev_info(&pdev->dev, "Use DMA when rx.\n");
857                         else
858                                 return ret;
859                 }
860         }
861         if (rspi_pd->dma_tx_id) {
862                 dma_cap_zero(mask);
863                 dma_cap_set(DMA_SLAVE, mask);
864                 rspi->chan_tx = dma_request_channel(mask, shdma_chan_filter,
865                                                     (void *)rspi_pd->dma_tx_id);
866                 if (rspi->chan_tx) {
867                         cfg.slave_id = rspi_pd->dma_tx_id;
868                         cfg.direction = DMA_MEM_TO_DEV;
869                         cfg.dst_addr = res->start + RSPI_SPDR;
870                         cfg.src_addr = 0;
871                         ret = dmaengine_slave_config(rspi->chan_tx, &cfg);
872                         if (!ret)
873                                 dev_info(&pdev->dev, "Use DMA when tx\n");
874                         else
875                                 return ret;
876                 }
877         }
878
879         return 0;
880 }
881
882 static void rspi_release_dma(struct rspi_data *rspi)
883 {
884         if (rspi->chan_tx)
885                 dma_release_channel(rspi->chan_tx);
886         if (rspi->chan_rx)
887                 dma_release_channel(rspi->chan_rx);
888 }
889
890 static int rspi_remove(struct platform_device *pdev)
891 {
892         struct rspi_data *rspi = spi_master_get(platform_get_drvdata(pdev));
893
894         spi_unregister_master(rspi->master);
895         rspi_release_dma(rspi);
896         free_irq(platform_get_irq(pdev, 0), rspi);
897         clk_put(rspi->clk);
898         iounmap(rspi->addr);
899         spi_master_put(rspi->master);
900
901         return 0;
902 }
903
904 static int rspi_probe(struct platform_device *pdev)
905 {
906         struct resource *res;
907         struct spi_master *master;
908         struct rspi_data *rspi;
909         int ret, irq;
910         char clk_name[16];
911         const struct rspi_plat_data *rspi_pd = dev_get_platdata(&pdev->dev);
912         const struct spi_ops *ops;
913         const struct platform_device_id *id_entry = pdev->id_entry;
914
915         ops = (struct spi_ops *)id_entry->driver_data;
916         /* ops parameter check */
917         if (!ops->set_config_register) {
918                 dev_err(&pdev->dev, "there is no set_config_register\n");
919                 return -ENODEV;
920         }
921         /* get base addr */
922         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
923         if (unlikely(res == NULL)) {
924                 dev_err(&pdev->dev, "invalid resource\n");
925                 return -EINVAL;
926         }
927
928         irq = platform_get_irq(pdev, 0);
929         if (irq < 0) {
930                 dev_err(&pdev->dev, "platform_get_irq error\n");
931                 return -ENODEV;
932         }
933
934         master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
935         if (master == NULL) {
936                 dev_err(&pdev->dev, "spi_alloc_master error.\n");
937                 return -ENOMEM;
938         }
939
940         rspi = spi_master_get_devdata(master);
941         platform_set_drvdata(pdev, rspi);
942         rspi->ops = ops;
943         rspi->master = master;
944         rspi->addr = ioremap(res->start, resource_size(res));
945         if (rspi->addr == NULL) {
946                 dev_err(&pdev->dev, "ioremap error.\n");
947                 ret = -ENOMEM;
948                 goto error1;
949         }
950
951         snprintf(clk_name, sizeof(clk_name), "%s%d", id_entry->name, pdev->id);
952         rspi->clk = clk_get(&pdev->dev, clk_name);
953         if (IS_ERR(rspi->clk)) {
954                 dev_err(&pdev->dev, "cannot get clock\n");
955                 ret = PTR_ERR(rspi->clk);
956                 goto error2;
957         }
958         clk_enable(rspi->clk);
959
960         INIT_LIST_HEAD(&rspi->queue);
961         spin_lock_init(&rspi->lock);
962         INIT_WORK(&rspi->ws, rspi_work);
963         init_waitqueue_head(&rspi->wait);
964
965         master->num_chipselect = rspi_pd->num_chipselect;
966         if (!master->num_chipselect)
967                 master->num_chipselect = 2; /* default */
968
969         master->bus_num = pdev->id;
970         master->setup = rspi_setup;
971         master->transfer = rspi_transfer;
972         master->cleanup = rspi_cleanup;
973
974         ret = request_irq(irq, rspi_irq, 0, dev_name(&pdev->dev), rspi);
975         if (ret < 0) {
976                 dev_err(&pdev->dev, "request_irq error\n");
977                 goto error3;
978         }
979
980         rspi->irq = irq;
981         ret = rspi_request_dma(rspi, pdev);
982         if (ret < 0) {
983                 dev_err(&pdev->dev, "rspi_request_dma failed.\n");
984                 goto error4;
985         }
986
987         ret = spi_register_master(master);
988         if (ret < 0) {
989                 dev_err(&pdev->dev, "spi_register_master error.\n");
990                 goto error4;
991         }
992
993         dev_info(&pdev->dev, "probed\n");
994
995         return 0;
996
997 error4:
998         rspi_release_dma(rspi);
999         free_irq(irq, rspi);
1000 error3:
1001         clk_put(rspi->clk);
1002 error2:
1003         iounmap(rspi->addr);
1004 error1:
1005         spi_master_put(master);
1006
1007         return ret;
1008 }
1009
1010 static struct spi_ops rspi_ops = {
1011         .set_config_register =          rspi_set_config_register,
1012         .send_pio =                     rspi_send_pio,
1013         .receive_pio =                  rspi_receive_pio,
1014 };
1015
1016 static struct spi_ops qspi_ops = {
1017         .set_config_register =          qspi_set_config_register,
1018         .send_pio =                     qspi_send_pio,
1019         .receive_pio =                  qspi_receive_pio,
1020 };
1021
1022 static struct platform_device_id spi_driver_ids[] = {
1023         { "rspi",       (kernel_ulong_t)&rspi_ops },
1024         { "qspi",       (kernel_ulong_t)&qspi_ops },
1025         {},
1026 };
1027
1028 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1029
1030 static struct platform_driver rspi_driver = {
1031         .probe =        rspi_probe,
1032         .remove =       rspi_remove,
1033         .id_table =     spi_driver_ids,
1034         .driver         = {
1035                 .name = "renesas_spi",
1036                 .owner  = THIS_MODULE,
1037         },
1038 };
1039 module_platform_driver(rspi_driver);
1040
1041 MODULE_DESCRIPTION("Renesas RSPI bus driver");
1042 MODULE_LICENSE("GPL v2");
1043 MODULE_AUTHOR("Yoshihiro Shimoda");
1044 MODULE_ALIAS("platform:rspi");