]> Pileus Git - ~andy/linux/blob - drivers/scsi/scsi_lib.c
199b02452259e4758e20d17047539472cbe11bb1
[~andy/linux] / drivers / scsi / scsi_lib.c
1 /*
2  *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
3  *
4  *  SCSI queueing library.
5  *      Initial versions: Eric Youngdale (eric@andante.org).
6  *                        Based upon conversations with large numbers
7  *                        of people at Linux Expo.
8  */
9
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/completion.h>
13 #include <linux/kernel.h>
14 #include <linux/mempool.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/pci.h>
18 #include <linux/delay.h>
19 #include <linux/hardirq.h>
20 #include <linux/scatterlist.h>
21
22 #include <scsi/scsi.h>
23 #include <scsi/scsi_cmnd.h>
24 #include <scsi/scsi_dbg.h>
25 #include <scsi/scsi_device.h>
26 #include <scsi/scsi_driver.h>
27 #include <scsi/scsi_eh.h>
28 #include <scsi/scsi_host.h>
29
30 #include "scsi_priv.h"
31 #include "scsi_logging.h"
32
33
34 #define SG_MEMPOOL_NR           ARRAY_SIZE(scsi_sg_pools)
35 #define SG_MEMPOOL_SIZE         2
36
37 /*
38  * The maximum number of SG segments that we will put inside a scatterlist
39  * (unless chaining is used). Should ideally fit inside a single page, to
40  * avoid a higher order allocation.
41  */
42 #define SCSI_MAX_SG_SEGMENTS    128
43
44 struct scsi_host_sg_pool {
45         size_t          size;
46         char            *name;
47         struct kmem_cache       *slab;
48         mempool_t       *pool;
49 };
50
51 #define SP(x) { x, "sgpool-" #x }
52 static struct scsi_host_sg_pool scsi_sg_pools[] = {
53         SP(8),
54         SP(16),
55 #if (SCSI_MAX_SG_SEGMENTS > 16)
56         SP(32),
57 #if (SCSI_MAX_SG_SEGMENTS > 32)
58         SP(64),
59 #if (SCSI_MAX_SG_SEGMENTS > 64)
60         SP(128),
61 #endif
62 #endif
63 #endif
64 };
65 #undef SP
66
67 static void scsi_run_queue(struct request_queue *q);
68
69 /*
70  * Function:    scsi_unprep_request()
71  *
72  * Purpose:     Remove all preparation done for a request, including its
73  *              associated scsi_cmnd, so that it can be requeued.
74  *
75  * Arguments:   req     - request to unprepare
76  *
77  * Lock status: Assumed that no locks are held upon entry.
78  *
79  * Returns:     Nothing.
80  */
81 static void scsi_unprep_request(struct request *req)
82 {
83         struct scsi_cmnd *cmd = req->special;
84
85         req->cmd_flags &= ~REQ_DONTPREP;
86         req->special = NULL;
87
88         scsi_put_command(cmd);
89 }
90
91 /*
92  * Function:    scsi_queue_insert()
93  *
94  * Purpose:     Insert a command in the midlevel queue.
95  *
96  * Arguments:   cmd    - command that we are adding to queue.
97  *              reason - why we are inserting command to queue.
98  *
99  * Lock status: Assumed that lock is not held upon entry.
100  *
101  * Returns:     Nothing.
102  *
103  * Notes:       We do this for one of two cases.  Either the host is busy
104  *              and it cannot accept any more commands for the time being,
105  *              or the device returned QUEUE_FULL and can accept no more
106  *              commands.
107  * Notes:       This could be called either from an interrupt context or a
108  *              normal process context.
109  */
110 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
111 {
112         struct Scsi_Host *host = cmd->device->host;
113         struct scsi_device *device = cmd->device;
114         struct request_queue *q = device->request_queue;
115         unsigned long flags;
116
117         SCSI_LOG_MLQUEUE(1,
118                  printk("Inserting command %p into mlqueue\n", cmd));
119
120         /*
121          * Set the appropriate busy bit for the device/host.
122          *
123          * If the host/device isn't busy, assume that something actually
124          * completed, and that we should be able to queue a command now.
125          *
126          * Note that the prior mid-layer assumption that any host could
127          * always queue at least one command is now broken.  The mid-layer
128          * will implement a user specifiable stall (see
129          * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
130          * if a command is requeued with no other commands outstanding
131          * either for the device or for the host.
132          */
133         if (reason == SCSI_MLQUEUE_HOST_BUSY)
134                 host->host_blocked = host->max_host_blocked;
135         else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
136                 device->device_blocked = device->max_device_blocked;
137
138         /*
139          * Decrement the counters, since these commands are no longer
140          * active on the host/device.
141          */
142         scsi_device_unbusy(device);
143
144         /*
145          * Requeue this command.  It will go before all other commands
146          * that are already in the queue.
147          *
148          * NOTE: there is magic here about the way the queue is plugged if
149          * we have no outstanding commands.
150          * 
151          * Although we *don't* plug the queue, we call the request
152          * function.  The SCSI request function detects the blocked condition
153          * and plugs the queue appropriately.
154          */
155         spin_lock_irqsave(q->queue_lock, flags);
156         blk_requeue_request(q, cmd->request);
157         spin_unlock_irqrestore(q->queue_lock, flags);
158
159         scsi_run_queue(q);
160
161         return 0;
162 }
163
164 /**
165  * scsi_execute - insert request and wait for the result
166  * @sdev:       scsi device
167  * @cmd:        scsi command
168  * @data_direction: data direction
169  * @buffer:     data buffer
170  * @bufflen:    len of buffer
171  * @sense:      optional sense buffer
172  * @timeout:    request timeout in seconds
173  * @retries:    number of times to retry request
174  * @flags:      or into request flags;
175  *
176  * returns the req->errors value which is the scsi_cmnd result
177  * field.
178  */
179 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
180                  int data_direction, void *buffer, unsigned bufflen,
181                  unsigned char *sense, int timeout, int retries, int flags)
182 {
183         struct request *req;
184         int write = (data_direction == DMA_TO_DEVICE);
185         int ret = DRIVER_ERROR << 24;
186
187         req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
188
189         if (bufflen &&  blk_rq_map_kern(sdev->request_queue, req,
190                                         buffer, bufflen, __GFP_WAIT))
191                 goto out;
192
193         req->cmd_len = COMMAND_SIZE(cmd[0]);
194         memcpy(req->cmd, cmd, req->cmd_len);
195         req->sense = sense;
196         req->sense_len = 0;
197         req->retries = retries;
198         req->timeout = timeout;
199         req->cmd_type = REQ_TYPE_BLOCK_PC;
200         req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
201
202         /*
203          * head injection *required* here otherwise quiesce won't work
204          */
205         blk_execute_rq(req->q, NULL, req, 1);
206
207         ret = req->errors;
208  out:
209         blk_put_request(req);
210
211         return ret;
212 }
213 EXPORT_SYMBOL(scsi_execute);
214
215
216 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
217                      int data_direction, void *buffer, unsigned bufflen,
218                      struct scsi_sense_hdr *sshdr, int timeout, int retries)
219 {
220         char *sense = NULL;
221         int result;
222         
223         if (sshdr) {
224                 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
225                 if (!sense)
226                         return DRIVER_ERROR << 24;
227         }
228         result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
229                               sense, timeout, retries, 0);
230         if (sshdr)
231                 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
232
233         kfree(sense);
234         return result;
235 }
236 EXPORT_SYMBOL(scsi_execute_req);
237
238 struct scsi_io_context {
239         void *data;
240         void (*done)(void *data, char *sense, int result, int resid);
241         char sense[SCSI_SENSE_BUFFERSIZE];
242 };
243
244 static struct kmem_cache *scsi_io_context_cache;
245
246 static void scsi_end_async(struct request *req, int uptodate)
247 {
248         struct scsi_io_context *sioc = req->end_io_data;
249
250         if (sioc->done)
251                 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
252
253         kmem_cache_free(scsi_io_context_cache, sioc);
254         __blk_put_request(req->q, req);
255 }
256
257 static int scsi_merge_bio(struct request *rq, struct bio *bio)
258 {
259         struct request_queue *q = rq->q;
260
261         bio->bi_flags &= ~(1 << BIO_SEG_VALID);
262         if (rq_data_dir(rq) == WRITE)
263                 bio->bi_rw |= (1 << BIO_RW);
264         blk_queue_bounce(q, &bio);
265
266         return blk_rq_append_bio(q, rq, bio);
267 }
268
269 static void scsi_bi_endio(struct bio *bio, int error)
270 {
271         bio_put(bio);
272 }
273
274 /**
275  * scsi_req_map_sg - map a scatterlist into a request
276  * @rq:         request to fill
277  * @sgl:        scatterlist
278  * @nsegs:      number of elements
279  * @bufflen:    len of buffer
280  * @gfp:        memory allocation flags
281  *
282  * scsi_req_map_sg maps a scatterlist into a request so that the
283  * request can be sent to the block layer. We do not trust the scatterlist
284  * sent to use, as some ULDs use that struct to only organize the pages.
285  */
286 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
287                            int nsegs, unsigned bufflen, gfp_t gfp)
288 {
289         struct request_queue *q = rq->q;
290         int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
291         unsigned int data_len = bufflen, len, bytes, off;
292         struct scatterlist *sg;
293         struct page *page;
294         struct bio *bio = NULL;
295         int i, err, nr_vecs = 0;
296
297         for_each_sg(sgl, sg, nsegs, i) {
298                 page = sg_page(sg);
299                 off = sg->offset;
300                 len = sg->length;
301                 data_len += len;
302
303                 while (len > 0 && data_len > 0) {
304                         /*
305                          * sg sends a scatterlist that is larger than
306                          * the data_len it wants transferred for certain
307                          * IO sizes
308                          */
309                         bytes = min_t(unsigned int, len, PAGE_SIZE - off);
310                         bytes = min(bytes, data_len);
311
312                         if (!bio) {
313                                 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
314                                 nr_pages -= nr_vecs;
315
316                                 bio = bio_alloc(gfp, nr_vecs);
317                                 if (!bio) {
318                                         err = -ENOMEM;
319                                         goto free_bios;
320                                 }
321                                 bio->bi_end_io = scsi_bi_endio;
322                         }
323
324                         if (bio_add_pc_page(q, bio, page, bytes, off) !=
325                             bytes) {
326                                 bio_put(bio);
327                                 err = -EINVAL;
328                                 goto free_bios;
329                         }
330
331                         if (bio->bi_vcnt >= nr_vecs) {
332                                 err = scsi_merge_bio(rq, bio);
333                                 if (err) {
334                                         bio_endio(bio, 0);
335                                         goto free_bios;
336                                 }
337                                 bio = NULL;
338                         }
339
340                         page++;
341                         len -= bytes;
342                         data_len -=bytes;
343                         off = 0;
344                 }
345         }
346
347         rq->buffer = rq->data = NULL;
348         rq->data_len = bufflen;
349         return 0;
350
351 free_bios:
352         while ((bio = rq->bio) != NULL) {
353                 rq->bio = bio->bi_next;
354                 /*
355                  * call endio instead of bio_put incase it was bounced
356                  */
357                 bio_endio(bio, 0);
358         }
359
360         return err;
361 }
362
363 /**
364  * scsi_execute_async - insert request
365  * @sdev:       scsi device
366  * @cmd:        scsi command
367  * @cmd_len:    length of scsi cdb
368  * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
369  * @buffer:     data buffer (this can be a kernel buffer or scatterlist)
370  * @bufflen:    len of buffer
371  * @use_sg:     if buffer is a scatterlist this is the number of elements
372  * @timeout:    request timeout in seconds
373  * @retries:    number of times to retry request
374  * @privdata:   data passed to done()
375  * @done:       callback function when done
376  * @gfp:        memory allocation flags
377  */
378 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
379                        int cmd_len, int data_direction, void *buffer, unsigned bufflen,
380                        int use_sg, int timeout, int retries, void *privdata,
381                        void (*done)(void *, char *, int, int), gfp_t gfp)
382 {
383         struct request *req;
384         struct scsi_io_context *sioc;
385         int err = 0;
386         int write = (data_direction == DMA_TO_DEVICE);
387
388         sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
389         if (!sioc)
390                 return DRIVER_ERROR << 24;
391
392         req = blk_get_request(sdev->request_queue, write, gfp);
393         if (!req)
394                 goto free_sense;
395         req->cmd_type = REQ_TYPE_BLOCK_PC;
396         req->cmd_flags |= REQ_QUIET;
397
398         if (use_sg)
399                 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
400         else if (bufflen)
401                 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
402
403         if (err)
404                 goto free_req;
405
406         req->cmd_len = cmd_len;
407         memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
408         memcpy(req->cmd, cmd, req->cmd_len);
409         req->sense = sioc->sense;
410         req->sense_len = 0;
411         req->timeout = timeout;
412         req->retries = retries;
413         req->end_io_data = sioc;
414
415         sioc->data = privdata;
416         sioc->done = done;
417
418         blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
419         return 0;
420
421 free_req:
422         blk_put_request(req);
423 free_sense:
424         kmem_cache_free(scsi_io_context_cache, sioc);
425         return DRIVER_ERROR << 24;
426 }
427 EXPORT_SYMBOL_GPL(scsi_execute_async);
428
429 /*
430  * Function:    scsi_init_cmd_errh()
431  *
432  * Purpose:     Initialize cmd fields related to error handling.
433  *
434  * Arguments:   cmd     - command that is ready to be queued.
435  *
436  * Notes:       This function has the job of initializing a number of
437  *              fields related to error handling.   Typically this will
438  *              be called once for each command, as required.
439  */
440 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
441 {
442         cmd->serial_number = 0;
443         cmd->resid = 0;
444         memset(cmd->sense_buffer, 0, sizeof cmd->sense_buffer);
445         if (cmd->cmd_len == 0)
446                 cmd->cmd_len = COMMAND_SIZE(cmd->cmnd[0]);
447 }
448
449 void scsi_device_unbusy(struct scsi_device *sdev)
450 {
451         struct Scsi_Host *shost = sdev->host;
452         unsigned long flags;
453
454         spin_lock_irqsave(shost->host_lock, flags);
455         shost->host_busy--;
456         if (unlikely(scsi_host_in_recovery(shost) &&
457                      (shost->host_failed || shost->host_eh_scheduled)))
458                 scsi_eh_wakeup(shost);
459         spin_unlock(shost->host_lock);
460         spin_lock(sdev->request_queue->queue_lock);
461         sdev->device_busy--;
462         spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
463 }
464
465 /*
466  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
467  * and call blk_run_queue for all the scsi_devices on the target -
468  * including current_sdev first.
469  *
470  * Called with *no* scsi locks held.
471  */
472 static void scsi_single_lun_run(struct scsi_device *current_sdev)
473 {
474         struct Scsi_Host *shost = current_sdev->host;
475         struct scsi_device *sdev, *tmp;
476         struct scsi_target *starget = scsi_target(current_sdev);
477         unsigned long flags;
478
479         spin_lock_irqsave(shost->host_lock, flags);
480         starget->starget_sdev_user = NULL;
481         spin_unlock_irqrestore(shost->host_lock, flags);
482
483         /*
484          * Call blk_run_queue for all LUNs on the target, starting with
485          * current_sdev. We race with others (to set starget_sdev_user),
486          * but in most cases, we will be first. Ideally, each LU on the
487          * target would get some limited time or requests on the target.
488          */
489         blk_run_queue(current_sdev->request_queue);
490
491         spin_lock_irqsave(shost->host_lock, flags);
492         if (starget->starget_sdev_user)
493                 goto out;
494         list_for_each_entry_safe(sdev, tmp, &starget->devices,
495                         same_target_siblings) {
496                 if (sdev == current_sdev)
497                         continue;
498                 if (scsi_device_get(sdev))
499                         continue;
500
501                 spin_unlock_irqrestore(shost->host_lock, flags);
502                 blk_run_queue(sdev->request_queue);
503                 spin_lock_irqsave(shost->host_lock, flags);
504         
505                 scsi_device_put(sdev);
506         }
507  out:
508         spin_unlock_irqrestore(shost->host_lock, flags);
509 }
510
511 /*
512  * Function:    scsi_run_queue()
513  *
514  * Purpose:     Select a proper request queue to serve next
515  *
516  * Arguments:   q       - last request's queue
517  *
518  * Returns:     Nothing
519  *
520  * Notes:       The previous command was completely finished, start
521  *              a new one if possible.
522  */
523 static void scsi_run_queue(struct request_queue *q)
524 {
525         struct scsi_device *sdev = q->queuedata;
526         struct Scsi_Host *shost = sdev->host;
527         unsigned long flags;
528
529         if (sdev->single_lun)
530                 scsi_single_lun_run(sdev);
531
532         spin_lock_irqsave(shost->host_lock, flags);
533         while (!list_empty(&shost->starved_list) &&
534                !shost->host_blocked && !shost->host_self_blocked &&
535                 !((shost->can_queue > 0) &&
536                   (shost->host_busy >= shost->can_queue))) {
537                 /*
538                  * As long as shost is accepting commands and we have
539                  * starved queues, call blk_run_queue. scsi_request_fn
540                  * drops the queue_lock and can add us back to the
541                  * starved_list.
542                  *
543                  * host_lock protects the starved_list and starved_entry.
544                  * scsi_request_fn must get the host_lock before checking
545                  * or modifying starved_list or starved_entry.
546                  */
547                 sdev = list_entry(shost->starved_list.next,
548                                           struct scsi_device, starved_entry);
549                 list_del_init(&sdev->starved_entry);
550                 spin_unlock_irqrestore(shost->host_lock, flags);
551
552
553                 if (test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
554                     !test_and_set_bit(QUEUE_FLAG_REENTER,
555                                       &sdev->request_queue->queue_flags)) {
556                         blk_run_queue(sdev->request_queue);
557                         clear_bit(QUEUE_FLAG_REENTER,
558                                   &sdev->request_queue->queue_flags);
559                 } else
560                         blk_run_queue(sdev->request_queue);
561
562                 spin_lock_irqsave(shost->host_lock, flags);
563                 if (unlikely(!list_empty(&sdev->starved_entry)))
564                         /*
565                          * sdev lost a race, and was put back on the
566                          * starved list. This is unlikely but without this
567                          * in theory we could loop forever.
568                          */
569                         break;
570         }
571         spin_unlock_irqrestore(shost->host_lock, flags);
572
573         blk_run_queue(q);
574 }
575
576 /*
577  * Function:    scsi_requeue_command()
578  *
579  * Purpose:     Handle post-processing of completed commands.
580  *
581  * Arguments:   q       - queue to operate on
582  *              cmd     - command that may need to be requeued.
583  *
584  * Returns:     Nothing
585  *
586  * Notes:       After command completion, there may be blocks left
587  *              over which weren't finished by the previous command
588  *              this can be for a number of reasons - the main one is
589  *              I/O errors in the middle of the request, in which case
590  *              we need to request the blocks that come after the bad
591  *              sector.
592  * Notes:       Upon return, cmd is a stale pointer.
593  */
594 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
595 {
596         struct request *req = cmd->request;
597         unsigned long flags;
598
599         scsi_unprep_request(req);
600         spin_lock_irqsave(q->queue_lock, flags);
601         blk_requeue_request(q, req);
602         spin_unlock_irqrestore(q->queue_lock, flags);
603
604         scsi_run_queue(q);
605 }
606
607 void scsi_next_command(struct scsi_cmnd *cmd)
608 {
609         struct scsi_device *sdev = cmd->device;
610         struct request_queue *q = sdev->request_queue;
611
612         /* need to hold a reference on the device before we let go of the cmd */
613         get_device(&sdev->sdev_gendev);
614
615         scsi_put_command(cmd);
616         scsi_run_queue(q);
617
618         /* ok to remove device now */
619         put_device(&sdev->sdev_gendev);
620 }
621
622 void scsi_run_host_queues(struct Scsi_Host *shost)
623 {
624         struct scsi_device *sdev;
625
626         shost_for_each_device(sdev, shost)
627                 scsi_run_queue(sdev->request_queue);
628 }
629
630 /*
631  * Function:    scsi_end_request()
632  *
633  * Purpose:     Post-processing of completed commands (usually invoked at end
634  *              of upper level post-processing and scsi_io_completion).
635  *
636  * Arguments:   cmd      - command that is complete.
637  *              uptodate - 1 if I/O indicates success, <= 0 for I/O error.
638  *              bytes    - number of bytes of completed I/O
639  *              requeue  - indicates whether we should requeue leftovers.
640  *
641  * Lock status: Assumed that lock is not held upon entry.
642  *
643  * Returns:     cmd if requeue required, NULL otherwise.
644  *
645  * Notes:       This is called for block device requests in order to
646  *              mark some number of sectors as complete.
647  * 
648  *              We are guaranteeing that the request queue will be goosed
649  *              at some point during this call.
650  * Notes:       If cmd was requeued, upon return it will be a stale pointer.
651  */
652 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int uptodate,
653                                           int bytes, int requeue)
654 {
655         struct request_queue *q = cmd->device->request_queue;
656         struct request *req = cmd->request;
657         unsigned long flags;
658
659         /*
660          * If there are blocks left over at the end, set up the command
661          * to queue the remainder of them.
662          */
663         if (end_that_request_chunk(req, uptodate, bytes)) {
664                 int leftover = (req->hard_nr_sectors << 9);
665
666                 if (blk_pc_request(req))
667                         leftover = req->data_len;
668
669                 /* kill remainder if no retrys */
670                 if (!uptodate && blk_noretry_request(req))
671                         end_that_request_chunk(req, 0, leftover);
672                 else {
673                         if (requeue) {
674                                 /*
675                                  * Bleah.  Leftovers again.  Stick the
676                                  * leftovers in the front of the
677                                  * queue, and goose the queue again.
678                                  */
679                                 scsi_requeue_command(q, cmd);
680                                 cmd = NULL;
681                         }
682                         return cmd;
683                 }
684         }
685
686         add_disk_randomness(req->rq_disk);
687
688         spin_lock_irqsave(q->queue_lock, flags);
689         if (blk_rq_tagged(req))
690                 blk_queue_end_tag(q, req);
691         end_that_request_last(req, uptodate);
692         spin_unlock_irqrestore(q->queue_lock, flags);
693
694         /*
695          * This will goose the queue request function at the end, so we don't
696          * need to worry about launching another command.
697          */
698         scsi_next_command(cmd);
699         return NULL;
700 }
701
702 /*
703  * Like SCSI_MAX_SG_SEGMENTS, but for archs that have sg chaining. This limit
704  * is totally arbitrary, a setting of 2048 will get you at least 8mb ios.
705  */
706 #define SCSI_MAX_SG_CHAIN_SEGMENTS      2048
707
708 static inline unsigned int scsi_sgtable_index(unsigned short nents)
709 {
710         unsigned int index;
711
712         switch (nents) {
713         case 1 ... 8:
714                 index = 0;
715                 break;
716         case 9 ... 16:
717                 index = 1;
718                 break;
719 #if (SCSI_MAX_SG_SEGMENTS > 16)
720         case 17 ... 32:
721                 index = 2;
722                 break;
723 #if (SCSI_MAX_SG_SEGMENTS > 32)
724         case 33 ... 64:
725                 index = 3;
726                 break;
727 #if (SCSI_MAX_SG_SEGMENTS > 64)
728         case 65 ... 128:
729                 index = 4;
730                 break;
731 #endif
732 #endif
733 #endif
734         default:
735                 printk(KERN_ERR "scsi: bad segment count=%d\n", nents);
736                 BUG();
737         }
738
739         return index;
740 }
741
742 struct scatterlist *scsi_alloc_sgtable(struct scsi_cmnd *cmd, gfp_t gfp_mask)
743 {
744         struct scsi_host_sg_pool *sgp;
745         struct scatterlist *sgl, *prev, *ret;
746         unsigned int index;
747         int this, left;
748
749         BUG_ON(!cmd->use_sg);
750
751         left = cmd->use_sg;
752         ret = prev = NULL;
753         do {
754                 this = left;
755                 if (this > SCSI_MAX_SG_SEGMENTS) {
756                         this = SCSI_MAX_SG_SEGMENTS - 1;
757                         index = SG_MEMPOOL_NR - 1;
758                 } else
759                         index = scsi_sgtable_index(this);
760
761                 left -= this;
762
763                 sgp = scsi_sg_pools + index;
764
765                 sgl = mempool_alloc(sgp->pool, gfp_mask);
766                 if (unlikely(!sgl))
767                         goto enomem;
768
769                 sg_init_table(sgl, sgp->size);
770
771                 /*
772                  * first loop through, set initial index and return value
773                  */
774                 if (!ret)
775                         ret = sgl;
776
777                 /*
778                  * chain previous sglist, if any. we know the previous
779                  * sglist must be the biggest one, or we would not have
780                  * ended up doing another loop.
781                  */
782                 if (prev)
783                         sg_chain(prev, SCSI_MAX_SG_SEGMENTS, sgl);
784
785                 /*
786                  * if we have nothing left, mark the last segment as
787                  * end-of-list
788                  */
789                 if (!left)
790                         sg_mark_end(&sgl[this - 1]);
791
792                 /*
793                  * don't allow subsequent mempool allocs to sleep, it would
794                  * violate the mempool principle.
795                  */
796                 gfp_mask &= ~__GFP_WAIT;
797                 gfp_mask |= __GFP_HIGH;
798                 prev = sgl;
799         } while (left);
800
801         /*
802          * ->use_sg may get modified after dma mapping has potentially
803          * shrunk the number of segments, so keep a copy of it for free.
804          */
805         cmd->__use_sg = cmd->use_sg;
806         return ret;
807 enomem:
808         if (ret) {
809                 /*
810                  * Free entries chained off ret. Since we were trying to
811                  * allocate another sglist, we know that all entries are of
812                  * the max size.
813                  */
814                 sgp = scsi_sg_pools + SG_MEMPOOL_NR - 1;
815                 prev = ret;
816                 ret = &ret[SCSI_MAX_SG_SEGMENTS - 1];
817
818                 while ((sgl = sg_chain_ptr(ret)) != NULL) {
819                         ret = &sgl[SCSI_MAX_SG_SEGMENTS - 1];
820                         mempool_free(sgl, sgp->pool);
821                 }
822
823                 mempool_free(prev, sgp->pool);
824         }
825         return NULL;
826 }
827
828 EXPORT_SYMBOL(scsi_alloc_sgtable);
829
830 void scsi_free_sgtable(struct scsi_cmnd *cmd)
831 {
832         struct scatterlist *sgl = cmd->request_buffer;
833         struct scsi_host_sg_pool *sgp;
834
835         /*
836          * if this is the biggest size sglist, check if we have
837          * chained parts we need to free
838          */
839         if (cmd->__use_sg > SCSI_MAX_SG_SEGMENTS) {
840                 unsigned short this, left;
841                 struct scatterlist *next;
842                 unsigned int index;
843
844                 left = cmd->__use_sg - (SCSI_MAX_SG_SEGMENTS - 1);
845                 next = sg_chain_ptr(&sgl[SCSI_MAX_SG_SEGMENTS - 1]);
846                 while (left && next) {
847                         sgl = next;
848                         this = left;
849                         if (this > SCSI_MAX_SG_SEGMENTS) {
850                                 this = SCSI_MAX_SG_SEGMENTS - 1;
851                                 index = SG_MEMPOOL_NR - 1;
852                         } else
853                                 index = scsi_sgtable_index(this);
854
855                         left -= this;
856
857                         sgp = scsi_sg_pools + index;
858
859                         if (left)
860                                 next = sg_chain_ptr(&sgl[sgp->size - 1]);
861
862                         mempool_free(sgl, sgp->pool);
863                 }
864
865                 /*
866                  * Restore original, will be freed below
867                  */
868                 sgl = cmd->request_buffer;
869                 sgp = scsi_sg_pools + SG_MEMPOOL_NR - 1;
870         } else
871                 sgp = scsi_sg_pools + scsi_sgtable_index(cmd->__use_sg);
872
873         mempool_free(sgl, sgp->pool);
874 }
875
876 EXPORT_SYMBOL(scsi_free_sgtable);
877
878 /*
879  * Function:    scsi_release_buffers()
880  *
881  * Purpose:     Completion processing for block device I/O requests.
882  *
883  * Arguments:   cmd     - command that we are bailing.
884  *
885  * Lock status: Assumed that no lock is held upon entry.
886  *
887  * Returns:     Nothing
888  *
889  * Notes:       In the event that an upper level driver rejects a
890  *              command, we must release resources allocated during
891  *              the __init_io() function.  Primarily this would involve
892  *              the scatter-gather table, and potentially any bounce
893  *              buffers.
894  */
895 static void scsi_release_buffers(struct scsi_cmnd *cmd)
896 {
897         if (cmd->use_sg)
898                 scsi_free_sgtable(cmd);
899
900         /*
901          * Zero these out.  They now point to freed memory, and it is
902          * dangerous to hang onto the pointers.
903          */
904         cmd->request_buffer = NULL;
905         cmd->request_bufflen = 0;
906 }
907
908 /*
909  * Function:    scsi_io_completion()
910  *
911  * Purpose:     Completion processing for block device I/O requests.
912  *
913  * Arguments:   cmd   - command that is finished.
914  *
915  * Lock status: Assumed that no lock is held upon entry.
916  *
917  * Returns:     Nothing
918  *
919  * Notes:       This function is matched in terms of capabilities to
920  *              the function that created the scatter-gather list.
921  *              In other words, if there are no bounce buffers
922  *              (the normal case for most drivers), we don't need
923  *              the logic to deal with cleaning up afterwards.
924  *
925  *              We must do one of several things here:
926  *
927  *              a) Call scsi_end_request.  This will finish off the
928  *                 specified number of sectors.  If we are done, the
929  *                 command block will be released, and the queue
930  *                 function will be goosed.  If we are not done, then
931  *                 scsi_end_request will directly goose the queue.
932  *
933  *              b) We can just use scsi_requeue_command() here.  This would
934  *                 be used if we just wanted to retry, for example.
935  */
936 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
937 {
938         int result = cmd->result;
939         int this_count = cmd->request_bufflen;
940         struct request_queue *q = cmd->device->request_queue;
941         struct request *req = cmd->request;
942         int clear_errors = 1;
943         struct scsi_sense_hdr sshdr;
944         int sense_valid = 0;
945         int sense_deferred = 0;
946
947         scsi_release_buffers(cmd);
948
949         if (result) {
950                 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
951                 if (sense_valid)
952                         sense_deferred = scsi_sense_is_deferred(&sshdr);
953         }
954
955         if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
956                 req->errors = result;
957                 if (result) {
958                         clear_errors = 0;
959                         if (sense_valid && req->sense) {
960                                 /*
961                                  * SG_IO wants current and deferred errors
962                                  */
963                                 int len = 8 + cmd->sense_buffer[7];
964
965                                 if (len > SCSI_SENSE_BUFFERSIZE)
966                                         len = SCSI_SENSE_BUFFERSIZE;
967                                 memcpy(req->sense, cmd->sense_buffer,  len);
968                                 req->sense_len = len;
969                         }
970                 }
971                 req->data_len = cmd->resid;
972         }
973
974         /*
975          * Next deal with any sectors which we were able to correctly
976          * handle.
977          */
978         SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
979                                       "%d bytes done.\n",
980                                       req->nr_sectors, good_bytes));
981         SCSI_LOG_HLCOMPLETE(1, printk("use_sg is %d\n", cmd->use_sg));
982
983         if (clear_errors)
984                 req->errors = 0;
985
986         /* A number of bytes were successfully read.  If there
987          * are leftovers and there is some kind of error
988          * (result != 0), retry the rest.
989          */
990         if (scsi_end_request(cmd, 1, good_bytes, result == 0) == NULL)
991                 return;
992
993         /* good_bytes = 0, or (inclusive) there were leftovers and
994          * result = 0, so scsi_end_request couldn't retry.
995          */
996         if (sense_valid && !sense_deferred) {
997                 switch (sshdr.sense_key) {
998                 case UNIT_ATTENTION:
999                         if (cmd->device->removable) {
1000                                 /* Detected disc change.  Set a bit
1001                                  * and quietly refuse further access.
1002                                  */
1003                                 cmd->device->changed = 1;
1004                                 scsi_end_request(cmd, 0, this_count, 1);
1005                                 return;
1006                         } else {
1007                                 /* Must have been a power glitch, or a
1008                                  * bus reset.  Could not have been a
1009                                  * media change, so we just retry the
1010                                  * request and see what happens.
1011                                  */
1012                                 scsi_requeue_command(q, cmd);
1013                                 return;
1014                         }
1015                         break;
1016                 case ILLEGAL_REQUEST:
1017                         /* If we had an ILLEGAL REQUEST returned, then
1018                          * we may have performed an unsupported
1019                          * command.  The only thing this should be
1020                          * would be a ten byte read where only a six
1021                          * byte read was supported.  Also, on a system
1022                          * where READ CAPACITY failed, we may have
1023                          * read past the end of the disk.
1024                          */
1025                         if ((cmd->device->use_10_for_rw &&
1026                             sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
1027                             (cmd->cmnd[0] == READ_10 ||
1028                              cmd->cmnd[0] == WRITE_10)) {
1029                                 cmd->device->use_10_for_rw = 0;
1030                                 /* This will cause a retry with a
1031                                  * 6-byte command.
1032                                  */
1033                                 scsi_requeue_command(q, cmd);
1034                                 return;
1035                         } else {
1036                                 scsi_end_request(cmd, 0, this_count, 1);
1037                                 return;
1038                         }
1039                         break;
1040                 case NOT_READY:
1041                         /* If the device is in the process of becoming
1042                          * ready, or has a temporary blockage, retry.
1043                          */
1044                         if (sshdr.asc == 0x04) {
1045                                 switch (sshdr.ascq) {
1046                                 case 0x01: /* becoming ready */
1047                                 case 0x04: /* format in progress */
1048                                 case 0x05: /* rebuild in progress */
1049                                 case 0x06: /* recalculation in progress */
1050                                 case 0x07: /* operation in progress */
1051                                 case 0x08: /* Long write in progress */
1052                                 case 0x09: /* self test in progress */
1053                                         scsi_requeue_command(q, cmd);
1054                                         return;
1055                                 default:
1056                                         break;
1057                                 }
1058                         }
1059                         if (!(req->cmd_flags & REQ_QUIET))
1060                                 scsi_cmd_print_sense_hdr(cmd,
1061                                                          "Device not ready",
1062                                                          &sshdr);
1063
1064                         scsi_end_request(cmd, 0, this_count, 1);
1065                         return;
1066                 case VOLUME_OVERFLOW:
1067                         if (!(req->cmd_flags & REQ_QUIET)) {
1068                                 scmd_printk(KERN_INFO, cmd,
1069                                             "Volume overflow, CDB: ");
1070                                 __scsi_print_command(cmd->cmnd);
1071                                 scsi_print_sense("", cmd);
1072                         }
1073                         /* See SSC3rXX or current. */
1074                         scsi_end_request(cmd, 0, this_count, 1);
1075                         return;
1076                 default:
1077                         break;
1078                 }
1079         }
1080         if (host_byte(result) == DID_RESET) {
1081                 /* Third party bus reset or reset for error recovery
1082                  * reasons.  Just retry the request and see what
1083                  * happens.
1084                  */
1085                 scsi_requeue_command(q, cmd);
1086                 return;
1087         }
1088         if (result) {
1089                 if (!(req->cmd_flags & REQ_QUIET)) {
1090                         scsi_print_result(cmd);
1091                         if (driver_byte(result) & DRIVER_SENSE)
1092                                 scsi_print_sense("", cmd);
1093                 }
1094         }
1095         scsi_end_request(cmd, 0, this_count, !result);
1096 }
1097
1098 /*
1099  * Function:    scsi_init_io()
1100  *
1101  * Purpose:     SCSI I/O initialize function.
1102  *
1103  * Arguments:   cmd   - Command descriptor we wish to initialize
1104  *
1105  * Returns:     0 on success
1106  *              BLKPREP_DEFER if the failure is retryable
1107  *              BLKPREP_KILL if the failure is fatal
1108  */
1109 static int scsi_init_io(struct scsi_cmnd *cmd)
1110 {
1111         struct request     *req = cmd->request;
1112         int                count;
1113
1114         /*
1115          * We used to not use scatter-gather for single segment request,
1116          * but now we do (it makes highmem I/O easier to support without
1117          * kmapping pages)
1118          */
1119         cmd->use_sg = req->nr_phys_segments;
1120
1121         /*
1122          * If sg table allocation fails, requeue request later.
1123          */
1124         cmd->request_buffer = scsi_alloc_sgtable(cmd, GFP_ATOMIC);
1125         if (unlikely(!cmd->request_buffer)) {
1126                 scsi_unprep_request(req);
1127                 return BLKPREP_DEFER;
1128         }
1129
1130         req->buffer = NULL;
1131         if (blk_pc_request(req))
1132                 cmd->request_bufflen = req->data_len;
1133         else
1134                 cmd->request_bufflen = req->nr_sectors << 9;
1135
1136         /* 
1137          * Next, walk the list, and fill in the addresses and sizes of
1138          * each segment.
1139          */
1140         count = blk_rq_map_sg(req->q, req, cmd->request_buffer);
1141         if (likely(count <= cmd->use_sg)) {
1142                 cmd->use_sg = count;
1143                 return BLKPREP_OK;
1144         }
1145
1146         printk(KERN_ERR "Incorrect number of segments after building list\n");
1147         printk(KERN_ERR "counted %d, received %d\n", count, cmd->use_sg);
1148         printk(KERN_ERR "req nr_sec %lu, cur_nr_sec %u\n", req->nr_sectors,
1149                         req->current_nr_sectors);
1150
1151         return BLKPREP_KILL;
1152 }
1153
1154 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1155                 struct request *req)
1156 {
1157         struct scsi_cmnd *cmd;
1158
1159         if (!req->special) {
1160                 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1161                 if (unlikely(!cmd))
1162                         return NULL;
1163                 req->special = cmd;
1164         } else {
1165                 cmd = req->special;
1166         }
1167
1168         /* pull a tag out of the request if we have one */
1169         cmd->tag = req->tag;
1170         cmd->request = req;
1171
1172         return cmd;
1173 }
1174
1175 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1176 {
1177         struct scsi_cmnd *cmd;
1178         int ret = scsi_prep_state_check(sdev, req);
1179
1180         if (ret != BLKPREP_OK)
1181                 return ret;
1182
1183         cmd = scsi_get_cmd_from_req(sdev, req);
1184         if (unlikely(!cmd))
1185                 return BLKPREP_DEFER;
1186
1187         /*
1188          * BLOCK_PC requests may transfer data, in which case they must
1189          * a bio attached to them.  Or they might contain a SCSI command
1190          * that does not transfer data, in which case they may optionally
1191          * submit a request without an attached bio.
1192          */
1193         if (req->bio) {
1194                 int ret;
1195
1196                 BUG_ON(!req->nr_phys_segments);
1197
1198                 ret = scsi_init_io(cmd);
1199                 if (unlikely(ret))
1200                         return ret;
1201         } else {
1202                 BUG_ON(req->data_len);
1203                 BUG_ON(req->data);
1204
1205                 cmd->request_bufflen = 0;
1206                 cmd->request_buffer = NULL;
1207                 cmd->use_sg = 0;
1208                 req->buffer = NULL;
1209         }
1210
1211         BUILD_BUG_ON(sizeof(req->cmd) > sizeof(cmd->cmnd));
1212         memcpy(cmd->cmnd, req->cmd, sizeof(cmd->cmnd));
1213         cmd->cmd_len = req->cmd_len;
1214         if (!req->data_len)
1215                 cmd->sc_data_direction = DMA_NONE;
1216         else if (rq_data_dir(req) == WRITE)
1217                 cmd->sc_data_direction = DMA_TO_DEVICE;
1218         else
1219                 cmd->sc_data_direction = DMA_FROM_DEVICE;
1220         
1221         cmd->transfersize = req->data_len;
1222         cmd->allowed = req->retries;
1223         cmd->timeout_per_command = req->timeout;
1224         return BLKPREP_OK;
1225 }
1226 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1227
1228 /*
1229  * Setup a REQ_TYPE_FS command.  These are simple read/write request
1230  * from filesystems that still need to be translated to SCSI CDBs from
1231  * the ULD.
1232  */
1233 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1234 {
1235         struct scsi_cmnd *cmd;
1236         int ret = scsi_prep_state_check(sdev, req);
1237
1238         if (ret != BLKPREP_OK)
1239                 return ret;
1240         /*
1241          * Filesystem requests must transfer data.
1242          */
1243         BUG_ON(!req->nr_phys_segments);
1244
1245         cmd = scsi_get_cmd_from_req(sdev, req);
1246         if (unlikely(!cmd))
1247                 return BLKPREP_DEFER;
1248
1249         return scsi_init_io(cmd);
1250 }
1251 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1252
1253 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1254 {
1255         int ret = BLKPREP_OK;
1256
1257         /*
1258          * If the device is not in running state we will reject some
1259          * or all commands.
1260          */
1261         if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1262                 switch (sdev->sdev_state) {
1263                 case SDEV_OFFLINE:
1264                         /*
1265                          * If the device is offline we refuse to process any
1266                          * commands.  The device must be brought online
1267                          * before trying any recovery commands.
1268                          */
1269                         sdev_printk(KERN_ERR, sdev,
1270                                     "rejecting I/O to offline device\n");
1271                         ret = BLKPREP_KILL;
1272                         break;
1273                 case SDEV_DEL:
1274                         /*
1275                          * If the device is fully deleted, we refuse to
1276                          * process any commands as well.
1277                          */
1278                         sdev_printk(KERN_ERR, sdev,
1279                                     "rejecting I/O to dead device\n");
1280                         ret = BLKPREP_KILL;
1281                         break;
1282                 case SDEV_QUIESCE:
1283                 case SDEV_BLOCK:
1284                         /*
1285                          * If the devices is blocked we defer normal commands.
1286                          */
1287                         if (!(req->cmd_flags & REQ_PREEMPT))
1288                                 ret = BLKPREP_DEFER;
1289                         break;
1290                 default:
1291                         /*
1292                          * For any other not fully online state we only allow
1293                          * special commands.  In particular any user initiated
1294                          * command is not allowed.
1295                          */
1296                         if (!(req->cmd_flags & REQ_PREEMPT))
1297                                 ret = BLKPREP_KILL;
1298                         break;
1299                 }
1300         }
1301         return ret;
1302 }
1303 EXPORT_SYMBOL(scsi_prep_state_check);
1304
1305 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1306 {
1307         struct scsi_device *sdev = q->queuedata;
1308
1309         switch (ret) {
1310         case BLKPREP_KILL:
1311                 req->errors = DID_NO_CONNECT << 16;
1312                 /* release the command and kill it */
1313                 if (req->special) {
1314                         struct scsi_cmnd *cmd = req->special;
1315                         scsi_release_buffers(cmd);
1316                         scsi_put_command(cmd);
1317                         req->special = NULL;
1318                 }
1319                 break;
1320         case BLKPREP_DEFER:
1321                 /*
1322                  * If we defer, the elv_next_request() returns NULL, but the
1323                  * queue must be restarted, so we plug here if no returning
1324                  * command will automatically do that.
1325                  */
1326                 if (sdev->device_busy == 0)
1327                         blk_plug_device(q);
1328                 break;
1329         default:
1330                 req->cmd_flags |= REQ_DONTPREP;
1331         }
1332
1333         return ret;
1334 }
1335 EXPORT_SYMBOL(scsi_prep_return);
1336
1337 int scsi_prep_fn(struct request_queue *q, struct request *req)
1338 {
1339         struct scsi_device *sdev = q->queuedata;
1340         int ret = BLKPREP_KILL;
1341
1342         if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1343                 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1344         return scsi_prep_return(q, req, ret);
1345 }
1346
1347 /*
1348  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1349  * return 0.
1350  *
1351  * Called with the queue_lock held.
1352  */
1353 static inline int scsi_dev_queue_ready(struct request_queue *q,
1354                                   struct scsi_device *sdev)
1355 {
1356         if (sdev->device_busy >= sdev->queue_depth)
1357                 return 0;
1358         if (sdev->device_busy == 0 && sdev->device_blocked) {
1359                 /*
1360                  * unblock after device_blocked iterates to zero
1361                  */
1362                 if (--sdev->device_blocked == 0) {
1363                         SCSI_LOG_MLQUEUE(3,
1364                                    sdev_printk(KERN_INFO, sdev,
1365                                    "unblocking device at zero depth\n"));
1366                 } else {
1367                         blk_plug_device(q);
1368                         return 0;
1369                 }
1370         }
1371         if (sdev->device_blocked)
1372                 return 0;
1373
1374         return 1;
1375 }
1376
1377 /*
1378  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1379  * return 0. We must end up running the queue again whenever 0 is
1380  * returned, else IO can hang.
1381  *
1382  * Called with host_lock held.
1383  */
1384 static inline int scsi_host_queue_ready(struct request_queue *q,
1385                                    struct Scsi_Host *shost,
1386                                    struct scsi_device *sdev)
1387 {
1388         if (scsi_host_in_recovery(shost))
1389                 return 0;
1390         if (shost->host_busy == 0 && shost->host_blocked) {
1391                 /*
1392                  * unblock after host_blocked iterates to zero
1393                  */
1394                 if (--shost->host_blocked == 0) {
1395                         SCSI_LOG_MLQUEUE(3,
1396                                 printk("scsi%d unblocking host at zero depth\n",
1397                                         shost->host_no));
1398                 } else {
1399                         blk_plug_device(q);
1400                         return 0;
1401                 }
1402         }
1403         if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1404             shost->host_blocked || shost->host_self_blocked) {
1405                 if (list_empty(&sdev->starved_entry))
1406                         list_add_tail(&sdev->starved_entry, &shost->starved_list);
1407                 return 0;
1408         }
1409
1410         /* We're OK to process the command, so we can't be starved */
1411         if (!list_empty(&sdev->starved_entry))
1412                 list_del_init(&sdev->starved_entry);
1413
1414         return 1;
1415 }
1416
1417 /*
1418  * Kill a request for a dead device
1419  */
1420 static void scsi_kill_request(struct request *req, struct request_queue *q)
1421 {
1422         struct scsi_cmnd *cmd = req->special;
1423         struct scsi_device *sdev = cmd->device;
1424         struct Scsi_Host *shost = sdev->host;
1425
1426         blkdev_dequeue_request(req);
1427
1428         if (unlikely(cmd == NULL)) {
1429                 printk(KERN_CRIT "impossible request in %s.\n",
1430                                  __FUNCTION__);
1431                 BUG();
1432         }
1433
1434         scsi_init_cmd_errh(cmd);
1435         cmd->result = DID_NO_CONNECT << 16;
1436         atomic_inc(&cmd->device->iorequest_cnt);
1437
1438         /*
1439          * SCSI request completion path will do scsi_device_unbusy(),
1440          * bump busy counts.  To bump the counters, we need to dance
1441          * with the locks as normal issue path does.
1442          */
1443         sdev->device_busy++;
1444         spin_unlock(sdev->request_queue->queue_lock);
1445         spin_lock(shost->host_lock);
1446         shost->host_busy++;
1447         spin_unlock(shost->host_lock);
1448         spin_lock(sdev->request_queue->queue_lock);
1449
1450         __scsi_done(cmd);
1451 }
1452
1453 static void scsi_softirq_done(struct request *rq)
1454 {
1455         struct scsi_cmnd *cmd = rq->completion_data;
1456         unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1457         int disposition;
1458
1459         INIT_LIST_HEAD(&cmd->eh_entry);
1460
1461         disposition = scsi_decide_disposition(cmd);
1462         if (disposition != SUCCESS &&
1463             time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1464                 sdev_printk(KERN_ERR, cmd->device,
1465                             "timing out command, waited %lus\n",
1466                             wait_for/HZ);
1467                 disposition = SUCCESS;
1468         }
1469                         
1470         scsi_log_completion(cmd, disposition);
1471
1472         switch (disposition) {
1473                 case SUCCESS:
1474                         scsi_finish_command(cmd);
1475                         break;
1476                 case NEEDS_RETRY:
1477                         scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1478                         break;
1479                 case ADD_TO_MLQUEUE:
1480                         scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1481                         break;
1482                 default:
1483                         if (!scsi_eh_scmd_add(cmd, 0))
1484                                 scsi_finish_command(cmd);
1485         }
1486 }
1487
1488 /*
1489  * Function:    scsi_request_fn()
1490  *
1491  * Purpose:     Main strategy routine for SCSI.
1492  *
1493  * Arguments:   q       - Pointer to actual queue.
1494  *
1495  * Returns:     Nothing
1496  *
1497  * Lock status: IO request lock assumed to be held when called.
1498  */
1499 static void scsi_request_fn(struct request_queue *q)
1500 {
1501         struct scsi_device *sdev = q->queuedata;
1502         struct Scsi_Host *shost;
1503         struct scsi_cmnd *cmd;
1504         struct request *req;
1505
1506         if (!sdev) {
1507                 printk("scsi: killing requests for dead queue\n");
1508                 while ((req = elv_next_request(q)) != NULL)
1509                         scsi_kill_request(req, q);
1510                 return;
1511         }
1512
1513         if(!get_device(&sdev->sdev_gendev))
1514                 /* We must be tearing the block queue down already */
1515                 return;
1516
1517         /*
1518          * To start with, we keep looping until the queue is empty, or until
1519          * the host is no longer able to accept any more requests.
1520          */
1521         shost = sdev->host;
1522         while (!blk_queue_plugged(q)) {
1523                 int rtn;
1524                 /*
1525                  * get next queueable request.  We do this early to make sure
1526                  * that the request is fully prepared even if we cannot 
1527                  * accept it.
1528                  */
1529                 req = elv_next_request(q);
1530                 if (!req || !scsi_dev_queue_ready(q, sdev))
1531                         break;
1532
1533                 if (unlikely(!scsi_device_online(sdev))) {
1534                         sdev_printk(KERN_ERR, sdev,
1535                                     "rejecting I/O to offline device\n");
1536                         scsi_kill_request(req, q);
1537                         continue;
1538                 }
1539
1540
1541                 /*
1542                  * Remove the request from the request list.
1543                  */
1544                 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1545                         blkdev_dequeue_request(req);
1546                 sdev->device_busy++;
1547
1548                 spin_unlock(q->queue_lock);
1549                 cmd = req->special;
1550                 if (unlikely(cmd == NULL)) {
1551                         printk(KERN_CRIT "impossible request in %s.\n"
1552                                          "please mail a stack trace to "
1553                                          "linux-scsi@vger.kernel.org\n",
1554                                          __FUNCTION__);
1555                         blk_dump_rq_flags(req, "foo");
1556                         BUG();
1557                 }
1558                 spin_lock(shost->host_lock);
1559
1560                 if (!scsi_host_queue_ready(q, shost, sdev))
1561                         goto not_ready;
1562                 if (sdev->single_lun) {
1563                         if (scsi_target(sdev)->starget_sdev_user &&
1564                             scsi_target(sdev)->starget_sdev_user != sdev)
1565                                 goto not_ready;
1566                         scsi_target(sdev)->starget_sdev_user = sdev;
1567                 }
1568                 shost->host_busy++;
1569
1570                 /*
1571                  * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1572                  *              take the lock again.
1573                  */
1574                 spin_unlock_irq(shost->host_lock);
1575
1576                 /*
1577                  * Finally, initialize any error handling parameters, and set up
1578                  * the timers for timeouts.
1579                  */
1580                 scsi_init_cmd_errh(cmd);
1581
1582                 /*
1583                  * Dispatch the command to the low-level driver.
1584                  */
1585                 rtn = scsi_dispatch_cmd(cmd);
1586                 spin_lock_irq(q->queue_lock);
1587                 if(rtn) {
1588                         /* we're refusing the command; because of
1589                          * the way locks get dropped, we need to 
1590                          * check here if plugging is required */
1591                         if(sdev->device_busy == 0)
1592                                 blk_plug_device(q);
1593
1594                         break;
1595                 }
1596         }
1597
1598         goto out;
1599
1600  not_ready:
1601         spin_unlock_irq(shost->host_lock);
1602
1603         /*
1604          * lock q, handle tag, requeue req, and decrement device_busy. We
1605          * must return with queue_lock held.
1606          *
1607          * Decrementing device_busy without checking it is OK, as all such
1608          * cases (host limits or settings) should run the queue at some
1609          * later time.
1610          */
1611         spin_lock_irq(q->queue_lock);
1612         blk_requeue_request(q, req);
1613         sdev->device_busy--;
1614         if(sdev->device_busy == 0)
1615                 blk_plug_device(q);
1616  out:
1617         /* must be careful here...if we trigger the ->remove() function
1618          * we cannot be holding the q lock */
1619         spin_unlock_irq(q->queue_lock);
1620         put_device(&sdev->sdev_gendev);
1621         spin_lock_irq(q->queue_lock);
1622 }
1623
1624 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1625 {
1626         struct device *host_dev;
1627         u64 bounce_limit = 0xffffffff;
1628
1629         if (shost->unchecked_isa_dma)
1630                 return BLK_BOUNCE_ISA;
1631         /*
1632          * Platforms with virtual-DMA translation
1633          * hardware have no practical limit.
1634          */
1635         if (!PCI_DMA_BUS_IS_PHYS)
1636                 return BLK_BOUNCE_ANY;
1637
1638         host_dev = scsi_get_device(shost);
1639         if (host_dev && host_dev->dma_mask)
1640                 bounce_limit = *host_dev->dma_mask;
1641
1642         return bounce_limit;
1643 }
1644 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1645
1646 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1647                                          request_fn_proc *request_fn)
1648 {
1649         struct request_queue *q;
1650
1651         q = blk_init_queue(request_fn, NULL);
1652         if (!q)
1653                 return NULL;
1654
1655         /*
1656          * this limit is imposed by hardware restrictions
1657          */
1658         blk_queue_max_hw_segments(q, shost->sg_tablesize);
1659
1660         /*
1661          * In the future, sg chaining support will be mandatory and this
1662          * ifdef can then go away. Right now we don't have all archs
1663          * converted, so better keep it safe.
1664          */
1665 #ifdef ARCH_HAS_SG_CHAIN
1666         if (shost->use_sg_chaining)
1667                 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1668         else
1669                 blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1670 #else
1671         blk_queue_max_phys_segments(q, SCSI_MAX_SG_SEGMENTS);
1672 #endif
1673
1674         blk_queue_max_sectors(q, shost->max_sectors);
1675         blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1676         blk_queue_segment_boundary(q, shost->dma_boundary);
1677
1678         if (!shost->use_clustering)
1679                 clear_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
1680         return q;
1681 }
1682 EXPORT_SYMBOL(__scsi_alloc_queue);
1683
1684 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1685 {
1686         struct request_queue *q;
1687
1688         q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1689         if (!q)
1690                 return NULL;
1691
1692         blk_queue_prep_rq(q, scsi_prep_fn);
1693         blk_queue_softirq_done(q, scsi_softirq_done);
1694         return q;
1695 }
1696
1697 void scsi_free_queue(struct request_queue *q)
1698 {
1699         blk_cleanup_queue(q);
1700 }
1701
1702 /*
1703  * Function:    scsi_block_requests()
1704  *
1705  * Purpose:     Utility function used by low-level drivers to prevent further
1706  *              commands from being queued to the device.
1707  *
1708  * Arguments:   shost       - Host in question
1709  *
1710  * Returns:     Nothing
1711  *
1712  * Lock status: No locks are assumed held.
1713  *
1714  * Notes:       There is no timer nor any other means by which the requests
1715  *              get unblocked other than the low-level driver calling
1716  *              scsi_unblock_requests().
1717  */
1718 void scsi_block_requests(struct Scsi_Host *shost)
1719 {
1720         shost->host_self_blocked = 1;
1721 }
1722 EXPORT_SYMBOL(scsi_block_requests);
1723
1724 /*
1725  * Function:    scsi_unblock_requests()
1726  *
1727  * Purpose:     Utility function used by low-level drivers to allow further
1728  *              commands from being queued to the device.
1729  *
1730  * Arguments:   shost       - Host in question
1731  *
1732  * Returns:     Nothing
1733  *
1734  * Lock status: No locks are assumed held.
1735  *
1736  * Notes:       There is no timer nor any other means by which the requests
1737  *              get unblocked other than the low-level driver calling
1738  *              scsi_unblock_requests().
1739  *
1740  *              This is done as an API function so that changes to the
1741  *              internals of the scsi mid-layer won't require wholesale
1742  *              changes to drivers that use this feature.
1743  */
1744 void scsi_unblock_requests(struct Scsi_Host *shost)
1745 {
1746         shost->host_self_blocked = 0;
1747         scsi_run_host_queues(shost);
1748 }
1749 EXPORT_SYMBOL(scsi_unblock_requests);
1750
1751 int __init scsi_init_queue(void)
1752 {
1753         int i;
1754
1755         scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1756                                         sizeof(struct scsi_io_context),
1757                                         0, 0, NULL);
1758         if (!scsi_io_context_cache) {
1759                 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1760                 return -ENOMEM;
1761         }
1762
1763         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1764                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1765                 int size = sgp->size * sizeof(struct scatterlist);
1766
1767                 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1768                                 SLAB_HWCACHE_ALIGN, NULL);
1769                 if (!sgp->slab) {
1770                         printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1771                                         sgp->name);
1772                 }
1773
1774                 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1775                                                      sgp->slab);
1776                 if (!sgp->pool) {
1777                         printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1778                                         sgp->name);
1779                 }
1780         }
1781
1782         return 0;
1783 }
1784
1785 void scsi_exit_queue(void)
1786 {
1787         int i;
1788
1789         kmem_cache_destroy(scsi_io_context_cache);
1790
1791         for (i = 0; i < SG_MEMPOOL_NR; i++) {
1792                 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1793                 mempool_destroy(sgp->pool);
1794                 kmem_cache_destroy(sgp->slab);
1795         }
1796 }
1797
1798 /**
1799  *      scsi_mode_select - issue a mode select
1800  *      @sdev:  SCSI device to be queried
1801  *      @pf:    Page format bit (1 == standard, 0 == vendor specific)
1802  *      @sp:    Save page bit (0 == don't save, 1 == save)
1803  *      @modepage: mode page being requested
1804  *      @buffer: request buffer (may not be smaller than eight bytes)
1805  *      @len:   length of request buffer.
1806  *      @timeout: command timeout
1807  *      @retries: number of retries before failing
1808  *      @data: returns a structure abstracting the mode header data
1809  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1810  *              must be SCSI_SENSE_BUFFERSIZE big.
1811  *
1812  *      Returns zero if successful; negative error number or scsi
1813  *      status on error
1814  *
1815  */
1816 int
1817 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1818                  unsigned char *buffer, int len, int timeout, int retries,
1819                  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1820 {
1821         unsigned char cmd[10];
1822         unsigned char *real_buffer;
1823         int ret;
1824
1825         memset(cmd, 0, sizeof(cmd));
1826         cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1827
1828         if (sdev->use_10_for_ms) {
1829                 if (len > 65535)
1830                         return -EINVAL;
1831                 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1832                 if (!real_buffer)
1833                         return -ENOMEM;
1834                 memcpy(real_buffer + 8, buffer, len);
1835                 len += 8;
1836                 real_buffer[0] = 0;
1837                 real_buffer[1] = 0;
1838                 real_buffer[2] = data->medium_type;
1839                 real_buffer[3] = data->device_specific;
1840                 real_buffer[4] = data->longlba ? 0x01 : 0;
1841                 real_buffer[5] = 0;
1842                 real_buffer[6] = data->block_descriptor_length >> 8;
1843                 real_buffer[7] = data->block_descriptor_length;
1844
1845                 cmd[0] = MODE_SELECT_10;
1846                 cmd[7] = len >> 8;
1847                 cmd[8] = len;
1848         } else {
1849                 if (len > 255 || data->block_descriptor_length > 255 ||
1850                     data->longlba)
1851                         return -EINVAL;
1852
1853                 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1854                 if (!real_buffer)
1855                         return -ENOMEM;
1856                 memcpy(real_buffer + 4, buffer, len);
1857                 len += 4;
1858                 real_buffer[0] = 0;
1859                 real_buffer[1] = data->medium_type;
1860                 real_buffer[2] = data->device_specific;
1861                 real_buffer[3] = data->block_descriptor_length;
1862                 
1863
1864                 cmd[0] = MODE_SELECT;
1865                 cmd[4] = len;
1866         }
1867
1868         ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1869                                sshdr, timeout, retries);
1870         kfree(real_buffer);
1871         return ret;
1872 }
1873 EXPORT_SYMBOL_GPL(scsi_mode_select);
1874
1875 /**
1876  *      scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1877  *      @sdev:  SCSI device to be queried
1878  *      @dbd:   set if mode sense will allow block descriptors to be returned
1879  *      @modepage: mode page being requested
1880  *      @buffer: request buffer (may not be smaller than eight bytes)
1881  *      @len:   length of request buffer.
1882  *      @timeout: command timeout
1883  *      @retries: number of retries before failing
1884  *      @data: returns a structure abstracting the mode header data
1885  *      @sshdr: place to put sense data (or NULL if no sense to be collected).
1886  *              must be SCSI_SENSE_BUFFERSIZE big.
1887  *
1888  *      Returns zero if unsuccessful, or the header offset (either 4
1889  *      or 8 depending on whether a six or ten byte command was
1890  *      issued) if successful.
1891  */
1892 int
1893 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1894                   unsigned char *buffer, int len, int timeout, int retries,
1895                   struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1896 {
1897         unsigned char cmd[12];
1898         int use_10_for_ms;
1899         int header_length;
1900         int result;
1901         struct scsi_sense_hdr my_sshdr;
1902
1903         memset(data, 0, sizeof(*data));
1904         memset(&cmd[0], 0, 12);
1905         cmd[1] = dbd & 0x18;    /* allows DBD and LLBA bits */
1906         cmd[2] = modepage;
1907
1908         /* caller might not be interested in sense, but we need it */
1909         if (!sshdr)
1910                 sshdr = &my_sshdr;
1911
1912  retry:
1913         use_10_for_ms = sdev->use_10_for_ms;
1914
1915         if (use_10_for_ms) {
1916                 if (len < 8)
1917                         len = 8;
1918
1919                 cmd[0] = MODE_SENSE_10;
1920                 cmd[8] = len;
1921                 header_length = 8;
1922         } else {
1923                 if (len < 4)
1924                         len = 4;
1925
1926                 cmd[0] = MODE_SENSE;
1927                 cmd[4] = len;
1928                 header_length = 4;
1929         }
1930
1931         memset(buffer, 0, len);
1932
1933         result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1934                                   sshdr, timeout, retries);
1935
1936         /* This code looks awful: what it's doing is making sure an
1937          * ILLEGAL REQUEST sense return identifies the actual command
1938          * byte as the problem.  MODE_SENSE commands can return
1939          * ILLEGAL REQUEST if the code page isn't supported */
1940
1941         if (use_10_for_ms && !scsi_status_is_good(result) &&
1942             (driver_byte(result) & DRIVER_SENSE)) {
1943                 if (scsi_sense_valid(sshdr)) {
1944                         if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1945                             (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1946                                 /* 
1947                                  * Invalid command operation code
1948                                  */
1949                                 sdev->use_10_for_ms = 0;
1950                                 goto retry;
1951                         }
1952                 }
1953         }
1954
1955         if(scsi_status_is_good(result)) {
1956                 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1957                              (modepage == 6 || modepage == 8))) {
1958                         /* Initio breakage? */
1959                         header_length = 0;
1960                         data->length = 13;
1961                         data->medium_type = 0;
1962                         data->device_specific = 0;
1963                         data->longlba = 0;
1964                         data->block_descriptor_length = 0;
1965                 } else if(use_10_for_ms) {
1966                         data->length = buffer[0]*256 + buffer[1] + 2;
1967                         data->medium_type = buffer[2];
1968                         data->device_specific = buffer[3];
1969                         data->longlba = buffer[4] & 0x01;
1970                         data->block_descriptor_length = buffer[6]*256
1971                                 + buffer[7];
1972                 } else {
1973                         data->length = buffer[0] + 1;
1974                         data->medium_type = buffer[1];
1975                         data->device_specific = buffer[2];
1976                         data->block_descriptor_length = buffer[3];
1977                 }
1978                 data->header_length = header_length;
1979         }
1980
1981         return result;
1982 }
1983 EXPORT_SYMBOL(scsi_mode_sense);
1984
1985 int
1986 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries)
1987 {
1988         char cmd[] = {
1989                 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1990         };
1991         struct scsi_sense_hdr sshdr;
1992         int result;
1993         
1994         result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, &sshdr,
1995                                   timeout, retries);
1996
1997         if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1998
1999                 if ((scsi_sense_valid(&sshdr)) &&
2000                     ((sshdr.sense_key == UNIT_ATTENTION) ||
2001                      (sshdr.sense_key == NOT_READY))) {
2002                         sdev->changed = 1;
2003                         result = 0;
2004                 }
2005         }
2006         return result;
2007 }
2008 EXPORT_SYMBOL(scsi_test_unit_ready);
2009
2010 /**
2011  *      scsi_device_set_state - Take the given device through the device state model.
2012  *      @sdev:  scsi device to change the state of.
2013  *      @state: state to change to.
2014  *
2015  *      Returns zero if unsuccessful or an error if the requested 
2016  *      transition is illegal.
2017  */
2018 int
2019 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2020 {
2021         enum scsi_device_state oldstate = sdev->sdev_state;
2022
2023         if (state == oldstate)
2024                 return 0;
2025
2026         switch (state) {
2027         case SDEV_CREATED:
2028                 /* There are no legal states that come back to
2029                  * created.  This is the manually initialised start
2030                  * state */
2031                 goto illegal;
2032                         
2033         case SDEV_RUNNING:
2034                 switch (oldstate) {
2035                 case SDEV_CREATED:
2036                 case SDEV_OFFLINE:
2037                 case SDEV_QUIESCE:
2038                 case SDEV_BLOCK:
2039                         break;
2040                 default:
2041                         goto illegal;
2042                 }
2043                 break;
2044
2045         case SDEV_QUIESCE:
2046                 switch (oldstate) {
2047                 case SDEV_RUNNING:
2048                 case SDEV_OFFLINE:
2049                         break;
2050                 default:
2051                         goto illegal;
2052                 }
2053                 break;
2054
2055         case SDEV_OFFLINE:
2056                 switch (oldstate) {
2057                 case SDEV_CREATED:
2058                 case SDEV_RUNNING:
2059                 case SDEV_QUIESCE:
2060                 case SDEV_BLOCK:
2061                         break;
2062                 default:
2063                         goto illegal;
2064                 }
2065                 break;
2066
2067         case SDEV_BLOCK:
2068                 switch (oldstate) {
2069                 case SDEV_CREATED:
2070                 case SDEV_RUNNING:
2071                         break;
2072                 default:
2073                         goto illegal;
2074                 }
2075                 break;
2076
2077         case SDEV_CANCEL:
2078                 switch (oldstate) {
2079                 case SDEV_CREATED:
2080                 case SDEV_RUNNING:
2081                 case SDEV_QUIESCE:
2082                 case SDEV_OFFLINE:
2083                 case SDEV_BLOCK:
2084                         break;
2085                 default:
2086                         goto illegal;
2087                 }
2088                 break;
2089
2090         case SDEV_DEL:
2091                 switch (oldstate) {
2092                 case SDEV_CREATED:
2093                 case SDEV_RUNNING:
2094                 case SDEV_OFFLINE:
2095                 case SDEV_CANCEL:
2096                         break;
2097                 default:
2098                         goto illegal;
2099                 }
2100                 break;
2101
2102         }
2103         sdev->sdev_state = state;
2104         return 0;
2105
2106  illegal:
2107         SCSI_LOG_ERROR_RECOVERY(1, 
2108                                 sdev_printk(KERN_ERR, sdev,
2109                                             "Illegal state transition %s->%s\n",
2110                                             scsi_device_state_name(oldstate),
2111                                             scsi_device_state_name(state))
2112                                 );
2113         return -EINVAL;
2114 }
2115 EXPORT_SYMBOL(scsi_device_set_state);
2116
2117 /**
2118  *      sdev_evt_emit - emit a single SCSI device uevent
2119  *      @sdev: associated SCSI device
2120  *      @evt: event to emit
2121  *
2122  *      Send a single uevent (scsi_event) to the associated scsi_device.
2123  */
2124 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2125 {
2126         int idx = 0;
2127         char *envp[3];
2128
2129         switch (evt->evt_type) {
2130         case SDEV_EVT_MEDIA_CHANGE:
2131                 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2132                 break;
2133
2134         default:
2135                 /* do nothing */
2136                 break;
2137         }
2138
2139         envp[idx++] = NULL;
2140
2141         kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2142 }
2143
2144 /**
2145  *      sdev_evt_thread - send a uevent for each scsi event
2146  *      @work: work struct for scsi_device
2147  *
2148  *      Dispatch queued events to their associated scsi_device kobjects
2149  *      as uevents.
2150  */
2151 void scsi_evt_thread(struct work_struct *work)
2152 {
2153         struct scsi_device *sdev;
2154         LIST_HEAD(event_list);
2155
2156         sdev = container_of(work, struct scsi_device, event_work);
2157
2158         while (1) {
2159                 struct scsi_event *evt;
2160                 struct list_head *this, *tmp;
2161                 unsigned long flags;
2162
2163                 spin_lock_irqsave(&sdev->list_lock, flags);
2164                 list_splice_init(&sdev->event_list, &event_list);
2165                 spin_unlock_irqrestore(&sdev->list_lock, flags);
2166
2167                 if (list_empty(&event_list))
2168                         break;
2169
2170                 list_for_each_safe(this, tmp, &event_list) {
2171                         evt = list_entry(this, struct scsi_event, node);
2172                         list_del(&evt->node);
2173                         scsi_evt_emit(sdev, evt);
2174                         kfree(evt);
2175                 }
2176         }
2177 }
2178
2179 /**
2180  *      sdev_evt_send - send asserted event to uevent thread
2181  *      @sdev: scsi_device event occurred on
2182  *      @evt: event to send
2183  *
2184  *      Assert scsi device event asynchronously.
2185  */
2186 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2187 {
2188         unsigned long flags;
2189
2190         if (!test_bit(evt->evt_type, sdev->supported_events)) {
2191                 kfree(evt);
2192                 return;
2193         }
2194
2195         spin_lock_irqsave(&sdev->list_lock, flags);
2196         list_add_tail(&evt->node, &sdev->event_list);
2197         schedule_work(&sdev->event_work);
2198         spin_unlock_irqrestore(&sdev->list_lock, flags);
2199 }
2200 EXPORT_SYMBOL_GPL(sdev_evt_send);
2201
2202 /**
2203  *      sdev_evt_alloc - allocate a new scsi event
2204  *      @evt_type: type of event to allocate
2205  *      @gfpflags: GFP flags for allocation
2206  *
2207  *      Allocates and returns a new scsi_event.
2208  */
2209 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2210                                   gfp_t gfpflags)
2211 {
2212         struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2213         if (!evt)
2214                 return NULL;
2215
2216         evt->evt_type = evt_type;
2217         INIT_LIST_HEAD(&evt->node);
2218
2219         /* evt_type-specific initialization, if any */
2220         switch (evt_type) {
2221         case SDEV_EVT_MEDIA_CHANGE:
2222         default:
2223                 /* do nothing */
2224                 break;
2225         }
2226
2227         return evt;
2228 }
2229 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2230
2231 /**
2232  *      sdev_evt_send_simple - send asserted event to uevent thread
2233  *      @sdev: scsi_device event occurred on
2234  *      @evt_type: type of event to send
2235  *      @gfpflags: GFP flags for allocation
2236  *
2237  *      Assert scsi device event asynchronously, given an event type.
2238  */
2239 void sdev_evt_send_simple(struct scsi_device *sdev,
2240                           enum scsi_device_event evt_type, gfp_t gfpflags)
2241 {
2242         struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2243         if (!evt) {
2244                 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2245                             evt_type);
2246                 return;
2247         }
2248
2249         sdev_evt_send(sdev, evt);
2250 }
2251 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2252
2253 /**
2254  *      scsi_device_quiesce - Block user issued commands.
2255  *      @sdev:  scsi device to quiesce.
2256  *
2257  *      This works by trying to transition to the SDEV_QUIESCE state
2258  *      (which must be a legal transition).  When the device is in this
2259  *      state, only special requests will be accepted, all others will
2260  *      be deferred.  Since special requests may also be requeued requests,
2261  *      a successful return doesn't guarantee the device will be 
2262  *      totally quiescent.
2263  *
2264  *      Must be called with user context, may sleep.
2265  *
2266  *      Returns zero if unsuccessful or an error if not.
2267  */
2268 int
2269 scsi_device_quiesce(struct scsi_device *sdev)
2270 {
2271         int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2272         if (err)
2273                 return err;
2274
2275         scsi_run_queue(sdev->request_queue);
2276         while (sdev->device_busy) {
2277                 msleep_interruptible(200);
2278                 scsi_run_queue(sdev->request_queue);
2279         }
2280         return 0;
2281 }
2282 EXPORT_SYMBOL(scsi_device_quiesce);
2283
2284 /**
2285  *      scsi_device_resume - Restart user issued commands to a quiesced device.
2286  *      @sdev:  scsi device to resume.
2287  *
2288  *      Moves the device from quiesced back to running and restarts the
2289  *      queues.
2290  *
2291  *      Must be called with user context, may sleep.
2292  */
2293 void
2294 scsi_device_resume(struct scsi_device *sdev)
2295 {
2296         if(scsi_device_set_state(sdev, SDEV_RUNNING))
2297                 return;
2298         scsi_run_queue(sdev->request_queue);
2299 }
2300 EXPORT_SYMBOL(scsi_device_resume);
2301
2302 static void
2303 device_quiesce_fn(struct scsi_device *sdev, void *data)
2304 {
2305         scsi_device_quiesce(sdev);
2306 }
2307
2308 void
2309 scsi_target_quiesce(struct scsi_target *starget)
2310 {
2311         starget_for_each_device(starget, NULL, device_quiesce_fn);
2312 }
2313 EXPORT_SYMBOL(scsi_target_quiesce);
2314
2315 static void
2316 device_resume_fn(struct scsi_device *sdev, void *data)
2317 {
2318         scsi_device_resume(sdev);
2319 }
2320
2321 void
2322 scsi_target_resume(struct scsi_target *starget)
2323 {
2324         starget_for_each_device(starget, NULL, device_resume_fn);
2325 }
2326 EXPORT_SYMBOL(scsi_target_resume);
2327
2328 /**
2329  * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2330  * @sdev:       device to block
2331  *
2332  * Block request made by scsi lld's to temporarily stop all
2333  * scsi commands on the specified device.  Called from interrupt
2334  * or normal process context.
2335  *
2336  * Returns zero if successful or error if not
2337  *
2338  * Notes:       
2339  *      This routine transitions the device to the SDEV_BLOCK state
2340  *      (which must be a legal transition).  When the device is in this
2341  *      state, all commands are deferred until the scsi lld reenables
2342  *      the device with scsi_device_unblock or device_block_tmo fires.
2343  *      This routine assumes the host_lock is held on entry.
2344  */
2345 int
2346 scsi_internal_device_block(struct scsi_device *sdev)
2347 {
2348         struct request_queue *q = sdev->request_queue;
2349         unsigned long flags;
2350         int err = 0;
2351
2352         err = scsi_device_set_state(sdev, SDEV_BLOCK);
2353         if (err)
2354                 return err;
2355
2356         /* 
2357          * The device has transitioned to SDEV_BLOCK.  Stop the
2358          * block layer from calling the midlayer with this device's
2359          * request queue. 
2360          */
2361         spin_lock_irqsave(q->queue_lock, flags);
2362         blk_stop_queue(q);
2363         spin_unlock_irqrestore(q->queue_lock, flags);
2364
2365         return 0;
2366 }
2367 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2368  
2369 /**
2370  * scsi_internal_device_unblock - resume a device after a block request
2371  * @sdev:       device to resume
2372  *
2373  * Called by scsi lld's or the midlayer to restart the device queue
2374  * for the previously suspended scsi device.  Called from interrupt or
2375  * normal process context.
2376  *
2377  * Returns zero if successful or error if not.
2378  *
2379  * Notes:       
2380  *      This routine transitions the device to the SDEV_RUNNING state
2381  *      (which must be a legal transition) allowing the midlayer to
2382  *      goose the queue for this device.  This routine assumes the 
2383  *      host_lock is held upon entry.
2384  */
2385 int
2386 scsi_internal_device_unblock(struct scsi_device *sdev)
2387 {
2388         struct request_queue *q = sdev->request_queue; 
2389         int err;
2390         unsigned long flags;
2391         
2392         /* 
2393          * Try to transition the scsi device to SDEV_RUNNING
2394          * and goose the device queue if successful.  
2395          */
2396         err = scsi_device_set_state(sdev, SDEV_RUNNING);
2397         if (err)
2398                 return err;
2399
2400         spin_lock_irqsave(q->queue_lock, flags);
2401         blk_start_queue(q);
2402         spin_unlock_irqrestore(q->queue_lock, flags);
2403
2404         return 0;
2405 }
2406 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2407
2408 static void
2409 device_block(struct scsi_device *sdev, void *data)
2410 {
2411         scsi_internal_device_block(sdev);
2412 }
2413
2414 static int
2415 target_block(struct device *dev, void *data)
2416 {
2417         if (scsi_is_target_device(dev))
2418                 starget_for_each_device(to_scsi_target(dev), NULL,
2419                                         device_block);
2420         return 0;
2421 }
2422
2423 void
2424 scsi_target_block(struct device *dev)
2425 {
2426         if (scsi_is_target_device(dev))
2427                 starget_for_each_device(to_scsi_target(dev), NULL,
2428                                         device_block);
2429         else
2430                 device_for_each_child(dev, NULL, target_block);
2431 }
2432 EXPORT_SYMBOL_GPL(scsi_target_block);
2433
2434 static void
2435 device_unblock(struct scsi_device *sdev, void *data)
2436 {
2437         scsi_internal_device_unblock(sdev);
2438 }
2439
2440 static int
2441 target_unblock(struct device *dev, void *data)
2442 {
2443         if (scsi_is_target_device(dev))
2444                 starget_for_each_device(to_scsi_target(dev), NULL,
2445                                         device_unblock);
2446         return 0;
2447 }
2448
2449 void
2450 scsi_target_unblock(struct device *dev)
2451 {
2452         if (scsi_is_target_device(dev))
2453                 starget_for_each_device(to_scsi_target(dev), NULL,
2454                                         device_unblock);
2455         else
2456                 device_for_each_child(dev, NULL, target_unblock);
2457 }
2458 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2459
2460 /**
2461  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2462  * @sgl:        scatter-gather list
2463  * @sg_count:   number of segments in sg
2464  * @offset:     offset in bytes into sg, on return offset into the mapped area
2465  * @len:        bytes to map, on return number of bytes mapped
2466  *
2467  * Returns virtual address of the start of the mapped page
2468  */
2469 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2470                           size_t *offset, size_t *len)
2471 {
2472         int i;
2473         size_t sg_len = 0, len_complete = 0;
2474         struct scatterlist *sg;
2475         struct page *page;
2476
2477         WARN_ON(!irqs_disabled());
2478
2479         for_each_sg(sgl, sg, sg_count, i) {
2480                 len_complete = sg_len; /* Complete sg-entries */
2481                 sg_len += sg->length;
2482                 if (sg_len > *offset)
2483                         break;
2484         }
2485
2486         if (unlikely(i == sg_count)) {
2487                 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2488                         "elements %d\n",
2489                        __FUNCTION__, sg_len, *offset, sg_count);
2490                 WARN_ON(1);
2491                 return NULL;
2492         }
2493
2494         /* Offset starting from the beginning of first page in this sg-entry */
2495         *offset = *offset - len_complete + sg->offset;
2496
2497         /* Assumption: contiguous pages can be accessed as "page + i" */
2498         page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2499         *offset &= ~PAGE_MASK;
2500
2501         /* Bytes in this sg-entry from *offset to the end of the page */
2502         sg_len = PAGE_SIZE - *offset;
2503         if (*len > sg_len)
2504                 *len = sg_len;
2505
2506         return kmap_atomic(page, KM_BIO_SRC_IRQ);
2507 }
2508 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2509
2510 /**
2511  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2512  * @virt:       virtual address to be unmapped
2513  */
2514 void scsi_kunmap_atomic_sg(void *virt)
2515 {
2516         kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2517 }
2518 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);