]> Pileus Git - ~andy/linux/blob - drivers/scsi/hpsa.c
[SCSI] hpsa: expose controller firmware revision via /sys.
[~andy/linux] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp_lock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <asm/atomic.h>
51 #include <linux/kthread.h>
52 #include "hpsa_cmd.h"
53 #include "hpsa.h"
54
55 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
56 #define HPSA_DRIVER_VERSION "2.0.2-1"
57 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
58
59 /* How long to wait (in milliseconds) for board to go into simple mode */
60 #define MAX_CONFIG_WAIT 30000
61 #define MAX_IOCTL_CONFIG_WAIT 1000
62
63 /*define how many times we will try a command because of bus resets */
64 #define MAX_CMD_RETRIES 3
65
66 /* Embedded module documentation macros - see modules.h */
67 MODULE_AUTHOR("Hewlett-Packard Company");
68 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
69         HPSA_DRIVER_VERSION);
70 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
71 MODULE_VERSION(HPSA_DRIVER_VERSION);
72 MODULE_LICENSE("GPL");
73
74 static int hpsa_allow_any;
75 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
76 MODULE_PARM_DESC(hpsa_allow_any,
77                 "Allow hpsa driver to access unknown HP Smart Array hardware");
78
79 /* define the PCI info for the cards we can control */
80 static const struct pci_device_id hpsa_pci_device_id[] = {
81         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
82         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
83         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
84         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
85         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
89 #define PCI_DEVICE_ID_HP_CISSF 0x333f
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x333F},
91         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,             PCI_ANY_ID, PCI_ANY_ID,
92                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
93         {0,}
94 };
95
96 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
97
98 /*  board_id = Subsystem Device ID & Vendor ID
99  *  product = Marketing Name for the board
100  *  access = Address of the struct of function pointers
101  */
102 static struct board_type products[] = {
103         {0x3241103C, "Smart Array P212", &SA5_access},
104         {0x3243103C, "Smart Array P410", &SA5_access},
105         {0x3245103C, "Smart Array P410i", &SA5_access},
106         {0x3247103C, "Smart Array P411", &SA5_access},
107         {0x3249103C, "Smart Array P812", &SA5_access},
108         {0x324a103C, "Smart Array P712m", &SA5_access},
109         {0x324b103C, "Smart Array P711m", &SA5_access},
110         {0x3233103C, "StorageWorks P1210m", &SA5_access},
111         {0x333F103C, "StorageWorks P1210m", &SA5_access},
112         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
113 };
114
115 static int number_of_controllers;
116
117 static irqreturn_t do_hpsa_intr(int irq, void *dev_id);
118 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
119 static void start_io(struct ctlr_info *h);
120
121 #ifdef CONFIG_COMPAT
122 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
123 #endif
124
125 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
126 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
127 static struct CommandList *cmd_alloc(struct ctlr_info *h);
128 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
129 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
130         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
131         int cmd_type);
132
133 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
134                 void (*done)(struct scsi_cmnd *));
135 static void hpsa_scan_start(struct Scsi_Host *);
136 static int hpsa_scan_finished(struct Scsi_Host *sh,
137         unsigned long elapsed_time);
138 static int hpsa_change_queue_depth(struct scsi_device *sdev,
139         int qdepth, int reason);
140
141 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
142 static int hpsa_slave_alloc(struct scsi_device *sdev);
143 static void hpsa_slave_destroy(struct scsi_device *sdev);
144
145 static ssize_t raid_level_show(struct device *dev,
146         struct device_attribute *attr, char *buf);
147 static ssize_t lunid_show(struct device *dev,
148         struct device_attribute *attr, char *buf);
149 static ssize_t unique_id_show(struct device *dev,
150         struct device_attribute *attr, char *buf);
151 static ssize_t host_show_firmware_revision(struct device *dev,
152              struct device_attribute *attr, char *buf);
153 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
154 static ssize_t host_store_rescan(struct device *dev,
155          struct device_attribute *attr, const char *buf, size_t count);
156 static int check_for_unit_attention(struct ctlr_info *h,
157         struct CommandList *c);
158 static void check_ioctl_unit_attention(struct ctlr_info *h,
159         struct CommandList *c);
160 /* performant mode helper functions */
161 static void calc_bucket_map(int *bucket, int num_buckets,
162         int nsgs, int *bucket_map);
163 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
164 static inline u32 next_command(struct ctlr_info *h);
165
166 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
167 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
168 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
169 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
170 static DEVICE_ATTR(firmware_revision, S_IRUGO,
171         host_show_firmware_revision, NULL);
172
173 static struct device_attribute *hpsa_sdev_attrs[] = {
174         &dev_attr_raid_level,
175         &dev_attr_lunid,
176         &dev_attr_unique_id,
177         NULL,
178 };
179
180 static struct device_attribute *hpsa_shost_attrs[] = {
181         &dev_attr_rescan,
182         &dev_attr_firmware_revision,
183         NULL,
184 };
185
186 static struct scsi_host_template hpsa_driver_template = {
187         .module                 = THIS_MODULE,
188         .name                   = "hpsa",
189         .proc_name              = "hpsa",
190         .queuecommand           = hpsa_scsi_queue_command,
191         .scan_start             = hpsa_scan_start,
192         .scan_finished          = hpsa_scan_finished,
193         .change_queue_depth     = hpsa_change_queue_depth,
194         .this_id                = -1,
195         .use_clustering         = ENABLE_CLUSTERING,
196         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
197         .ioctl                  = hpsa_ioctl,
198         .slave_alloc            = hpsa_slave_alloc,
199         .slave_destroy          = hpsa_slave_destroy,
200 #ifdef CONFIG_COMPAT
201         .compat_ioctl           = hpsa_compat_ioctl,
202 #endif
203         .sdev_attrs = hpsa_sdev_attrs,
204         .shost_attrs = hpsa_shost_attrs,
205 };
206
207 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
208 {
209         unsigned long *priv = shost_priv(sdev->host);
210         return (struct ctlr_info *) *priv;
211 }
212
213 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
214 {
215         unsigned long *priv = shost_priv(sh);
216         return (struct ctlr_info *) *priv;
217 }
218
219 static int check_for_unit_attention(struct ctlr_info *h,
220         struct CommandList *c)
221 {
222         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
223                 return 0;
224
225         switch (c->err_info->SenseInfo[12]) {
226         case STATE_CHANGED:
227                 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
228                         "detected, command retried\n", h->ctlr);
229                 break;
230         case LUN_FAILED:
231                 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
232                         "detected, action required\n", h->ctlr);
233                 break;
234         case REPORT_LUNS_CHANGED:
235                 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
236                         "changed, action required\n", h->ctlr);
237         /*
238          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
239          */
240                 break;
241         case POWER_OR_RESET:
242                 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
243                         "or device reset detected\n", h->ctlr);
244                 break;
245         case UNIT_ATTENTION_CLEARED:
246                 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
247                     "cleared by another initiator\n", h->ctlr);
248                 break;
249         default:
250                 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
251                         "unit attention detected\n", h->ctlr);
252                 break;
253         }
254         return 1;
255 }
256
257 static ssize_t host_store_rescan(struct device *dev,
258                                  struct device_attribute *attr,
259                                  const char *buf, size_t count)
260 {
261         struct ctlr_info *h;
262         struct Scsi_Host *shost = class_to_shost(dev);
263         h = shost_to_hba(shost);
264         hpsa_scan_start(h->scsi_host);
265         return count;
266 }
267
268 static ssize_t host_show_firmware_revision(struct device *dev,
269              struct device_attribute *attr, char *buf)
270 {
271         struct ctlr_info *h;
272         struct Scsi_Host *shost = class_to_shost(dev);
273         unsigned char *fwrev;
274
275         h = shost_to_hba(shost);
276         if (!h->hba_inquiry_data)
277                 return 0;
278         fwrev = &h->hba_inquiry_data[32];
279         return snprintf(buf, 20, "%c%c%c%c\n",
280                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
281 }
282
283 /* Enqueuing and dequeuing functions for cmdlists. */
284 static inline void addQ(struct hlist_head *list, struct CommandList *c)
285 {
286         hlist_add_head(&c->list, list);
287 }
288
289 static inline u32 next_command(struct ctlr_info *h)
290 {
291         u32 a;
292
293         if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
294                 return h->access.command_completed(h);
295
296         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
297                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
298                 (h->reply_pool_head)++;
299                 h->commands_outstanding--;
300         } else {
301                 a = FIFO_EMPTY;
302         }
303         /* Check for wraparound */
304         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
305                 h->reply_pool_head = h->reply_pool;
306                 h->reply_pool_wraparound ^= 1;
307         }
308         return a;
309 }
310
311 /* set_performant_mode: Modify the tag for cciss performant
312  * set bit 0 for pull model, bits 3-1 for block fetch
313  * register number
314  */
315 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
316 {
317         if (likely(h->transMethod == CFGTBL_Trans_Performant))
318                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
319 }
320
321 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
322         struct CommandList *c)
323 {
324         unsigned long flags;
325
326         set_performant_mode(h, c);
327         spin_lock_irqsave(&h->lock, flags);
328         addQ(&h->reqQ, c);
329         h->Qdepth++;
330         start_io(h);
331         spin_unlock_irqrestore(&h->lock, flags);
332 }
333
334 static inline void removeQ(struct CommandList *c)
335 {
336         if (WARN_ON(hlist_unhashed(&c->list)))
337                 return;
338         hlist_del_init(&c->list);
339 }
340
341 static inline int is_hba_lunid(unsigned char scsi3addr[])
342 {
343         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
344 }
345
346 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
347 {
348         return (scsi3addr[3] & 0xC0) == 0x40;
349 }
350
351 static inline int is_scsi_rev_5(struct ctlr_info *h)
352 {
353         if (!h->hba_inquiry_data)
354                 return 0;
355         if ((h->hba_inquiry_data[2] & 0x07) == 5)
356                 return 1;
357         return 0;
358 }
359
360 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
361         "UNKNOWN"
362 };
363 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
364
365 static ssize_t raid_level_show(struct device *dev,
366              struct device_attribute *attr, char *buf)
367 {
368         ssize_t l = 0;
369         unsigned char rlevel;
370         struct ctlr_info *h;
371         struct scsi_device *sdev;
372         struct hpsa_scsi_dev_t *hdev;
373         unsigned long flags;
374
375         sdev = to_scsi_device(dev);
376         h = sdev_to_hba(sdev);
377         spin_lock_irqsave(&h->lock, flags);
378         hdev = sdev->hostdata;
379         if (!hdev) {
380                 spin_unlock_irqrestore(&h->lock, flags);
381                 return -ENODEV;
382         }
383
384         /* Is this even a logical drive? */
385         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
386                 spin_unlock_irqrestore(&h->lock, flags);
387                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
388                 return l;
389         }
390
391         rlevel = hdev->raid_level;
392         spin_unlock_irqrestore(&h->lock, flags);
393         if (rlevel > RAID_UNKNOWN)
394                 rlevel = RAID_UNKNOWN;
395         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
396         return l;
397 }
398
399 static ssize_t lunid_show(struct device *dev,
400              struct device_attribute *attr, char *buf)
401 {
402         struct ctlr_info *h;
403         struct scsi_device *sdev;
404         struct hpsa_scsi_dev_t *hdev;
405         unsigned long flags;
406         unsigned char lunid[8];
407
408         sdev = to_scsi_device(dev);
409         h = sdev_to_hba(sdev);
410         spin_lock_irqsave(&h->lock, flags);
411         hdev = sdev->hostdata;
412         if (!hdev) {
413                 spin_unlock_irqrestore(&h->lock, flags);
414                 return -ENODEV;
415         }
416         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
417         spin_unlock_irqrestore(&h->lock, flags);
418         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
419                 lunid[0], lunid[1], lunid[2], lunid[3],
420                 lunid[4], lunid[5], lunid[6], lunid[7]);
421 }
422
423 static ssize_t unique_id_show(struct device *dev,
424              struct device_attribute *attr, char *buf)
425 {
426         struct ctlr_info *h;
427         struct scsi_device *sdev;
428         struct hpsa_scsi_dev_t *hdev;
429         unsigned long flags;
430         unsigned char sn[16];
431
432         sdev = to_scsi_device(dev);
433         h = sdev_to_hba(sdev);
434         spin_lock_irqsave(&h->lock, flags);
435         hdev = sdev->hostdata;
436         if (!hdev) {
437                 spin_unlock_irqrestore(&h->lock, flags);
438                 return -ENODEV;
439         }
440         memcpy(sn, hdev->device_id, sizeof(sn));
441         spin_unlock_irqrestore(&h->lock, flags);
442         return snprintf(buf, 16 * 2 + 2,
443                         "%02X%02X%02X%02X%02X%02X%02X%02X"
444                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
445                         sn[0], sn[1], sn[2], sn[3],
446                         sn[4], sn[5], sn[6], sn[7],
447                         sn[8], sn[9], sn[10], sn[11],
448                         sn[12], sn[13], sn[14], sn[15]);
449 }
450
451 static int hpsa_find_target_lun(struct ctlr_info *h,
452         unsigned char scsi3addr[], int bus, int *target, int *lun)
453 {
454         /* finds an unused bus, target, lun for a new physical device
455          * assumes h->devlock is held
456          */
457         int i, found = 0;
458         DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
459
460         memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
461
462         for (i = 0; i < h->ndevices; i++) {
463                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
464                         set_bit(h->dev[i]->target, lun_taken);
465         }
466
467         for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
468                 if (!test_bit(i, lun_taken)) {
469                         /* *bus = 1; */
470                         *target = i;
471                         *lun = 0;
472                         found = 1;
473                         break;
474                 }
475         }
476         return !found;
477 }
478
479 /* Add an entry into h->dev[] array. */
480 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
481                 struct hpsa_scsi_dev_t *device,
482                 struct hpsa_scsi_dev_t *added[], int *nadded)
483 {
484         /* assumes h->devlock is held */
485         int n = h->ndevices;
486         int i;
487         unsigned char addr1[8], addr2[8];
488         struct hpsa_scsi_dev_t *sd;
489
490         if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
491                 dev_err(&h->pdev->dev, "too many devices, some will be "
492                         "inaccessible.\n");
493                 return -1;
494         }
495
496         /* physical devices do not have lun or target assigned until now. */
497         if (device->lun != -1)
498                 /* Logical device, lun is already assigned. */
499                 goto lun_assigned;
500
501         /* If this device a non-zero lun of a multi-lun device
502          * byte 4 of the 8-byte LUN addr will contain the logical
503          * unit no, zero otherise.
504          */
505         if (device->scsi3addr[4] == 0) {
506                 /* This is not a non-zero lun of a multi-lun device */
507                 if (hpsa_find_target_lun(h, device->scsi3addr,
508                         device->bus, &device->target, &device->lun) != 0)
509                         return -1;
510                 goto lun_assigned;
511         }
512
513         /* This is a non-zero lun of a multi-lun device.
514          * Search through our list and find the device which
515          * has the same 8 byte LUN address, excepting byte 4.
516          * Assign the same bus and target for this new LUN.
517          * Use the logical unit number from the firmware.
518          */
519         memcpy(addr1, device->scsi3addr, 8);
520         addr1[4] = 0;
521         for (i = 0; i < n; i++) {
522                 sd = h->dev[i];
523                 memcpy(addr2, sd->scsi3addr, 8);
524                 addr2[4] = 0;
525                 /* differ only in byte 4? */
526                 if (memcmp(addr1, addr2, 8) == 0) {
527                         device->bus = sd->bus;
528                         device->target = sd->target;
529                         device->lun = device->scsi3addr[4];
530                         break;
531                 }
532         }
533         if (device->lun == -1) {
534                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
535                         " suspect firmware bug or unsupported hardware "
536                         "configuration.\n");
537                         return -1;
538         }
539
540 lun_assigned:
541
542         h->dev[n] = device;
543         h->ndevices++;
544         added[*nadded] = device;
545         (*nadded)++;
546
547         /* initially, (before registering with scsi layer) we don't
548          * know our hostno and we don't want to print anything first
549          * time anyway (the scsi layer's inquiries will show that info)
550          */
551         /* if (hostno != -1) */
552                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
553                         scsi_device_type(device->devtype), hostno,
554                         device->bus, device->target, device->lun);
555         return 0;
556 }
557
558 /* Replace an entry from h->dev[] array. */
559 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
560         int entry, struct hpsa_scsi_dev_t *new_entry,
561         struct hpsa_scsi_dev_t *added[], int *nadded,
562         struct hpsa_scsi_dev_t *removed[], int *nremoved)
563 {
564         /* assumes h->devlock is held */
565         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
566         removed[*nremoved] = h->dev[entry];
567         (*nremoved)++;
568         h->dev[entry] = new_entry;
569         added[*nadded] = new_entry;
570         (*nadded)++;
571         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
572                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
573                         new_entry->target, new_entry->lun);
574 }
575
576 /* Remove an entry from h->dev[] array. */
577 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
578         struct hpsa_scsi_dev_t *removed[], int *nremoved)
579 {
580         /* assumes h->devlock is held */
581         int i;
582         struct hpsa_scsi_dev_t *sd;
583
584         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
585
586         sd = h->dev[entry];
587         removed[*nremoved] = h->dev[entry];
588         (*nremoved)++;
589
590         for (i = entry; i < h->ndevices-1; i++)
591                 h->dev[i] = h->dev[i+1];
592         h->ndevices--;
593         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
594                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
595                 sd->lun);
596 }
597
598 #define SCSI3ADDR_EQ(a, b) ( \
599         (a)[7] == (b)[7] && \
600         (a)[6] == (b)[6] && \
601         (a)[5] == (b)[5] && \
602         (a)[4] == (b)[4] && \
603         (a)[3] == (b)[3] && \
604         (a)[2] == (b)[2] && \
605         (a)[1] == (b)[1] && \
606         (a)[0] == (b)[0])
607
608 static void fixup_botched_add(struct ctlr_info *h,
609         struct hpsa_scsi_dev_t *added)
610 {
611         /* called when scsi_add_device fails in order to re-adjust
612          * h->dev[] to match the mid layer's view.
613          */
614         unsigned long flags;
615         int i, j;
616
617         spin_lock_irqsave(&h->lock, flags);
618         for (i = 0; i < h->ndevices; i++) {
619                 if (h->dev[i] == added) {
620                         for (j = i; j < h->ndevices-1; j++)
621                                 h->dev[j] = h->dev[j+1];
622                         h->ndevices--;
623                         break;
624                 }
625         }
626         spin_unlock_irqrestore(&h->lock, flags);
627         kfree(added);
628 }
629
630 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
631         struct hpsa_scsi_dev_t *dev2)
632 {
633         if ((is_logical_dev_addr_mode(dev1->scsi3addr) ||
634                 (dev1->lun != -1 && dev2->lun != -1)) &&
635                 dev1->devtype != 0x0C)
636                 return (memcmp(dev1, dev2, sizeof(*dev1)) == 0);
637
638         /* we compare everything except lun and target as these
639          * are not yet assigned.  Compare parts likely
640          * to differ first
641          */
642         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
643                 sizeof(dev1->scsi3addr)) != 0)
644                 return 0;
645         if (memcmp(dev1->device_id, dev2->device_id,
646                 sizeof(dev1->device_id)) != 0)
647                 return 0;
648         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
649                 return 0;
650         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
651                 return 0;
652         if (memcmp(dev1->revision, dev2->revision, sizeof(dev1->revision)) != 0)
653                 return 0;
654         if (dev1->devtype != dev2->devtype)
655                 return 0;
656         if (dev1->raid_level != dev2->raid_level)
657                 return 0;
658         if (dev1->bus != dev2->bus)
659                 return 0;
660         return 1;
661 }
662
663 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
664  * and return needle location in *index.  If scsi3addr matches, but not
665  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
666  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
667  */
668 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
669         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
670         int *index)
671 {
672         int i;
673 #define DEVICE_NOT_FOUND 0
674 #define DEVICE_CHANGED 1
675 #define DEVICE_SAME 2
676         for (i = 0; i < haystack_size; i++) {
677                 if (haystack[i] == NULL) /* previously removed. */
678                         continue;
679                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
680                         *index = i;
681                         if (device_is_the_same(needle, haystack[i]))
682                                 return DEVICE_SAME;
683                         else
684                                 return DEVICE_CHANGED;
685                 }
686         }
687         *index = -1;
688         return DEVICE_NOT_FOUND;
689 }
690
691 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
692         struct hpsa_scsi_dev_t *sd[], int nsds)
693 {
694         /* sd contains scsi3 addresses and devtypes, and inquiry
695          * data.  This function takes what's in sd to be the current
696          * reality and updates h->dev[] to reflect that reality.
697          */
698         int i, entry, device_change, changes = 0;
699         struct hpsa_scsi_dev_t *csd;
700         unsigned long flags;
701         struct hpsa_scsi_dev_t **added, **removed;
702         int nadded, nremoved;
703         struct Scsi_Host *sh = NULL;
704
705         added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
706                 GFP_KERNEL);
707         removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
708                 GFP_KERNEL);
709
710         if (!added || !removed) {
711                 dev_warn(&h->pdev->dev, "out of memory in "
712                         "adjust_hpsa_scsi_table\n");
713                 goto free_and_out;
714         }
715
716         spin_lock_irqsave(&h->devlock, flags);
717
718         /* find any devices in h->dev[] that are not in
719          * sd[] and remove them from h->dev[], and for any
720          * devices which have changed, remove the old device
721          * info and add the new device info.
722          */
723         i = 0;
724         nremoved = 0;
725         nadded = 0;
726         while (i < h->ndevices) {
727                 csd = h->dev[i];
728                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
729                 if (device_change == DEVICE_NOT_FOUND) {
730                         changes++;
731                         hpsa_scsi_remove_entry(h, hostno, i,
732                                 removed, &nremoved);
733                         continue; /* remove ^^^, hence i not incremented */
734                 } else if (device_change == DEVICE_CHANGED) {
735                         changes++;
736                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
737                                 added, &nadded, removed, &nremoved);
738                         /* Set it to NULL to prevent it from being freed
739                          * at the bottom of hpsa_update_scsi_devices()
740                          */
741                         sd[entry] = NULL;
742                 }
743                 i++;
744         }
745
746         /* Now, make sure every device listed in sd[] is also
747          * listed in h->dev[], adding them if they aren't found
748          */
749
750         for (i = 0; i < nsds; i++) {
751                 if (!sd[i]) /* if already added above. */
752                         continue;
753                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
754                                         h->ndevices, &entry);
755                 if (device_change == DEVICE_NOT_FOUND) {
756                         changes++;
757                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
758                                 added, &nadded) != 0)
759                                 break;
760                         sd[i] = NULL; /* prevent from being freed later. */
761                 } else if (device_change == DEVICE_CHANGED) {
762                         /* should never happen... */
763                         changes++;
764                         dev_warn(&h->pdev->dev,
765                                 "device unexpectedly changed.\n");
766                         /* but if it does happen, we just ignore that device */
767                 }
768         }
769         spin_unlock_irqrestore(&h->devlock, flags);
770
771         /* Don't notify scsi mid layer of any changes the first time through
772          * (or if there are no changes) scsi_scan_host will do it later the
773          * first time through.
774          */
775         if (hostno == -1 || !changes)
776                 goto free_and_out;
777
778         sh = h->scsi_host;
779         /* Notify scsi mid layer of any removed devices */
780         for (i = 0; i < nremoved; i++) {
781                 struct scsi_device *sdev =
782                         scsi_device_lookup(sh, removed[i]->bus,
783                                 removed[i]->target, removed[i]->lun);
784                 if (sdev != NULL) {
785                         scsi_remove_device(sdev);
786                         scsi_device_put(sdev);
787                 } else {
788                         /* We don't expect to get here.
789                          * future cmds to this device will get selection
790                          * timeout as if the device was gone.
791                          */
792                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
793                                 " for removal.", hostno, removed[i]->bus,
794                                 removed[i]->target, removed[i]->lun);
795                 }
796                 kfree(removed[i]);
797                 removed[i] = NULL;
798         }
799
800         /* Notify scsi mid layer of any added devices */
801         for (i = 0; i < nadded; i++) {
802                 if (scsi_add_device(sh, added[i]->bus,
803                         added[i]->target, added[i]->lun) == 0)
804                         continue;
805                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
806                         "device not added.\n", hostno, added[i]->bus,
807                         added[i]->target, added[i]->lun);
808                 /* now we have to remove it from h->dev,
809                  * since it didn't get added to scsi mid layer
810                  */
811                 fixup_botched_add(h, added[i]);
812         }
813
814 free_and_out:
815         kfree(added);
816         kfree(removed);
817 }
818
819 /*
820  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
821  * Assume's h->devlock is held.
822  */
823 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
824         int bus, int target, int lun)
825 {
826         int i;
827         struct hpsa_scsi_dev_t *sd;
828
829         for (i = 0; i < h->ndevices; i++) {
830                 sd = h->dev[i];
831                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
832                         return sd;
833         }
834         return NULL;
835 }
836
837 /* link sdev->hostdata to our per-device structure. */
838 static int hpsa_slave_alloc(struct scsi_device *sdev)
839 {
840         struct hpsa_scsi_dev_t *sd;
841         unsigned long flags;
842         struct ctlr_info *h;
843
844         h = sdev_to_hba(sdev);
845         spin_lock_irqsave(&h->devlock, flags);
846         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
847                 sdev_id(sdev), sdev->lun);
848         if (sd != NULL)
849                 sdev->hostdata = sd;
850         spin_unlock_irqrestore(&h->devlock, flags);
851         return 0;
852 }
853
854 static void hpsa_slave_destroy(struct scsi_device *sdev)
855 {
856         /* nothing to do. */
857 }
858
859 static void hpsa_scsi_setup(struct ctlr_info *h)
860 {
861         h->ndevices = 0;
862         h->scsi_host = NULL;
863         spin_lock_init(&h->devlock);
864 }
865
866 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
867 {
868         int i;
869
870         if (!h->cmd_sg_list)
871                 return;
872         for (i = 0; i < h->nr_cmds; i++) {
873                 kfree(h->cmd_sg_list[i]);
874                 h->cmd_sg_list[i] = NULL;
875         }
876         kfree(h->cmd_sg_list);
877         h->cmd_sg_list = NULL;
878 }
879
880 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
881 {
882         int i;
883
884         if (h->chainsize <= 0)
885                 return 0;
886
887         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
888                                 GFP_KERNEL);
889         if (!h->cmd_sg_list)
890                 return -ENOMEM;
891         for (i = 0; i < h->nr_cmds; i++) {
892                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
893                                                 h->chainsize, GFP_KERNEL);
894                 if (!h->cmd_sg_list[i])
895                         goto clean;
896         }
897         return 0;
898
899 clean:
900         hpsa_free_sg_chain_blocks(h);
901         return -ENOMEM;
902 }
903
904 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
905         struct CommandList *c)
906 {
907         struct SGDescriptor *chain_sg, *chain_block;
908         u64 temp64;
909
910         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
911         chain_block = h->cmd_sg_list[c->cmdindex];
912         chain_sg->Ext = HPSA_SG_CHAIN;
913         chain_sg->Len = sizeof(*chain_sg) *
914                 (c->Header.SGTotal - h->max_cmd_sg_entries);
915         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
916                                 PCI_DMA_TODEVICE);
917         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
918         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
919 }
920
921 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
922         struct CommandList *c)
923 {
924         struct SGDescriptor *chain_sg;
925         union u64bit temp64;
926
927         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
928                 return;
929
930         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
931         temp64.val32.lower = chain_sg->Addr.lower;
932         temp64.val32.upper = chain_sg->Addr.upper;
933         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
934 }
935
936 static void complete_scsi_command(struct CommandList *cp,
937         int timeout, u32 tag)
938 {
939         struct scsi_cmnd *cmd;
940         struct ctlr_info *h;
941         struct ErrorInfo *ei;
942
943         unsigned char sense_key;
944         unsigned char asc;      /* additional sense code */
945         unsigned char ascq;     /* additional sense code qualifier */
946
947         ei = cp->err_info;
948         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
949         h = cp->h;
950
951         scsi_dma_unmap(cmd); /* undo the DMA mappings */
952         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
953                 hpsa_unmap_sg_chain_block(h, cp);
954
955         cmd->result = (DID_OK << 16);           /* host byte */
956         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
957         cmd->result |= ei->ScsiStatus;
958
959         /* copy the sense data whether we need to or not. */
960         memcpy(cmd->sense_buffer, ei->SenseInfo,
961                 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
962                         SCSI_SENSE_BUFFERSIZE :
963                         ei->SenseLen);
964         scsi_set_resid(cmd, ei->ResidualCnt);
965
966         if (ei->CommandStatus == 0) {
967                 cmd->scsi_done(cmd);
968                 cmd_free(h, cp);
969                 return;
970         }
971
972         /* an error has occurred */
973         switch (ei->CommandStatus) {
974
975         case CMD_TARGET_STATUS:
976                 if (ei->ScsiStatus) {
977                         /* Get sense key */
978                         sense_key = 0xf & ei->SenseInfo[2];
979                         /* Get additional sense code */
980                         asc = ei->SenseInfo[12];
981                         /* Get addition sense code qualifier */
982                         ascq = ei->SenseInfo[13];
983                 }
984
985                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
986                         if (check_for_unit_attention(h, cp)) {
987                                 cmd->result = DID_SOFT_ERROR << 16;
988                                 break;
989                         }
990                         if (sense_key == ILLEGAL_REQUEST) {
991                                 /*
992                                  * SCSI REPORT_LUNS is commonly unsupported on
993                                  * Smart Array.  Suppress noisy complaint.
994                                  */
995                                 if (cp->Request.CDB[0] == REPORT_LUNS)
996                                         break;
997
998                                 /* If ASC/ASCQ indicate Logical Unit
999                                  * Not Supported condition,
1000                                  */
1001                                 if ((asc == 0x25) && (ascq == 0x0)) {
1002                                         dev_warn(&h->pdev->dev, "cp %p "
1003                                                 "has check condition\n", cp);
1004                                         break;
1005                                 }
1006                         }
1007
1008                         if (sense_key == NOT_READY) {
1009                                 /* If Sense is Not Ready, Logical Unit
1010                                  * Not ready, Manual Intervention
1011                                  * required
1012                                  */
1013                                 if ((asc == 0x04) && (ascq == 0x03)) {
1014                                         dev_warn(&h->pdev->dev, "cp %p "
1015                                                 "has check condition: unit "
1016                                                 "not ready, manual "
1017                                                 "intervention required\n", cp);
1018                                         break;
1019                                 }
1020                         }
1021                         if (sense_key == ABORTED_COMMAND) {
1022                                 /* Aborted command is retryable */
1023                                 dev_warn(&h->pdev->dev, "cp %p "
1024                                         "has check condition: aborted command: "
1025                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1026                                         cp, asc, ascq);
1027                                 cmd->result = DID_SOFT_ERROR << 16;
1028                                 break;
1029                         }
1030                         /* Must be some other type of check condition */
1031                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1032                                         "unknown type: "
1033                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1034                                         "Returning result: 0x%x, "
1035                                         "cmd=[%02x %02x %02x %02x %02x "
1036                                         "%02x %02x %02x %02x %02x %02x "
1037                                         "%02x %02x %02x %02x %02x]\n",
1038                                         cp, sense_key, asc, ascq,
1039                                         cmd->result,
1040                                         cmd->cmnd[0], cmd->cmnd[1],
1041                                         cmd->cmnd[2], cmd->cmnd[3],
1042                                         cmd->cmnd[4], cmd->cmnd[5],
1043                                         cmd->cmnd[6], cmd->cmnd[7],
1044                                         cmd->cmnd[8], cmd->cmnd[9],
1045                                         cmd->cmnd[10], cmd->cmnd[11],
1046                                         cmd->cmnd[12], cmd->cmnd[13],
1047                                         cmd->cmnd[14], cmd->cmnd[15]);
1048                         break;
1049                 }
1050
1051
1052                 /* Problem was not a check condition
1053                  * Pass it up to the upper layers...
1054                  */
1055                 if (ei->ScsiStatus) {
1056                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1057                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1058                                 "Returning result: 0x%x\n",
1059                                 cp, ei->ScsiStatus,
1060                                 sense_key, asc, ascq,
1061                                 cmd->result);
1062                 } else {  /* scsi status is zero??? How??? */
1063                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1064                                 "Returning no connection.\n", cp),
1065
1066                         /* Ordinarily, this case should never happen,
1067                          * but there is a bug in some released firmware
1068                          * revisions that allows it to happen if, for
1069                          * example, a 4100 backplane loses power and
1070                          * the tape drive is in it.  We assume that
1071                          * it's a fatal error of some kind because we
1072                          * can't show that it wasn't. We will make it
1073                          * look like selection timeout since that is
1074                          * the most common reason for this to occur,
1075                          * and it's severe enough.
1076                          */
1077
1078                         cmd->result = DID_NO_CONNECT << 16;
1079                 }
1080                 break;
1081
1082         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1083                 break;
1084         case CMD_DATA_OVERRUN:
1085                 dev_warn(&h->pdev->dev, "cp %p has"
1086                         " completed with data overrun "
1087                         "reported\n", cp);
1088                 break;
1089         case CMD_INVALID: {
1090                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1091                 print_cmd(cp); */
1092                 /* We get CMD_INVALID if you address a non-existent device
1093                  * instead of a selection timeout (no response).  You will
1094                  * see this if you yank out a drive, then try to access it.
1095                  * This is kind of a shame because it means that any other
1096                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1097                  * missing target. */
1098                 cmd->result = DID_NO_CONNECT << 16;
1099         }
1100                 break;
1101         case CMD_PROTOCOL_ERR:
1102                 dev_warn(&h->pdev->dev, "cp %p has "
1103                         "protocol error \n", cp);
1104                 break;
1105         case CMD_HARDWARE_ERR:
1106                 cmd->result = DID_ERROR << 16;
1107                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1108                 break;
1109         case CMD_CONNECTION_LOST:
1110                 cmd->result = DID_ERROR << 16;
1111                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1112                 break;
1113         case CMD_ABORTED:
1114                 cmd->result = DID_ABORT << 16;
1115                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1116                                 cp, ei->ScsiStatus);
1117                 break;
1118         case CMD_ABORT_FAILED:
1119                 cmd->result = DID_ERROR << 16;
1120                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1121                 break;
1122         case CMD_UNSOLICITED_ABORT:
1123                 cmd->result = DID_RESET << 16;
1124                 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1125                         "abort\n", cp);
1126                 break;
1127         case CMD_TIMEOUT:
1128                 cmd->result = DID_TIME_OUT << 16;
1129                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1130                 break;
1131         default:
1132                 cmd->result = DID_ERROR << 16;
1133                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1134                                 cp, ei->CommandStatus);
1135         }
1136         cmd->scsi_done(cmd);
1137         cmd_free(h, cp);
1138 }
1139
1140 static int hpsa_scsi_detect(struct ctlr_info *h)
1141 {
1142         struct Scsi_Host *sh;
1143         int error;
1144
1145         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1146         if (sh == NULL)
1147                 goto fail;
1148
1149         sh->io_port = 0;
1150         sh->n_io_port = 0;
1151         sh->this_id = -1;
1152         sh->max_channel = 3;
1153         sh->max_cmd_len = MAX_COMMAND_SIZE;
1154         sh->max_lun = HPSA_MAX_LUN;
1155         sh->max_id = HPSA_MAX_LUN;
1156         sh->can_queue = h->nr_cmds;
1157         sh->cmd_per_lun = h->nr_cmds;
1158         sh->sg_tablesize = h->maxsgentries;
1159         h->scsi_host = sh;
1160         sh->hostdata[0] = (unsigned long) h;
1161         sh->irq = h->intr[PERF_MODE_INT];
1162         sh->unique_id = sh->irq;
1163         error = scsi_add_host(sh, &h->pdev->dev);
1164         if (error)
1165                 goto fail_host_put;
1166         scsi_scan_host(sh);
1167         return 0;
1168
1169  fail_host_put:
1170         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1171                 " failed for controller %d\n", h->ctlr);
1172         scsi_host_put(sh);
1173         return error;
1174  fail:
1175         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1176                 " failed for controller %d\n", h->ctlr);
1177         return -ENOMEM;
1178 }
1179
1180 static void hpsa_pci_unmap(struct pci_dev *pdev,
1181         struct CommandList *c, int sg_used, int data_direction)
1182 {
1183         int i;
1184         union u64bit addr64;
1185
1186         for (i = 0; i < sg_used; i++) {
1187                 addr64.val32.lower = c->SG[i].Addr.lower;
1188                 addr64.val32.upper = c->SG[i].Addr.upper;
1189                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1190                         data_direction);
1191         }
1192 }
1193
1194 static void hpsa_map_one(struct pci_dev *pdev,
1195                 struct CommandList *cp,
1196                 unsigned char *buf,
1197                 size_t buflen,
1198                 int data_direction)
1199 {
1200         u64 addr64;
1201
1202         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1203                 cp->Header.SGList = 0;
1204                 cp->Header.SGTotal = 0;
1205                 return;
1206         }
1207
1208         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1209         cp->SG[0].Addr.lower =
1210           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1211         cp->SG[0].Addr.upper =
1212           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1213         cp->SG[0].Len = buflen;
1214         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1215         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1216 }
1217
1218 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1219         struct CommandList *c)
1220 {
1221         DECLARE_COMPLETION_ONSTACK(wait);
1222
1223         c->waiting = &wait;
1224         enqueue_cmd_and_start_io(h, c);
1225         wait_for_completion(&wait);
1226 }
1227
1228 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1229         struct CommandList *c, int data_direction)
1230 {
1231         int retry_count = 0;
1232
1233         do {
1234                 memset(c->err_info, 0, sizeof(c->err_info));
1235                 hpsa_scsi_do_simple_cmd_core(h, c);
1236                 retry_count++;
1237         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1238         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1239 }
1240
1241 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1242 {
1243         struct ErrorInfo *ei;
1244         struct device *d = &cp->h->pdev->dev;
1245
1246         ei = cp->err_info;
1247         switch (ei->CommandStatus) {
1248         case CMD_TARGET_STATUS:
1249                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1250                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1251                                 ei->ScsiStatus);
1252                 if (ei->ScsiStatus == 0)
1253                         dev_warn(d, "SCSI status is abnormally zero.  "
1254                         "(probably indicates selection timeout "
1255                         "reported incorrectly due to a known "
1256                         "firmware bug, circa July, 2001.)\n");
1257                 break;
1258         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1259                         dev_info(d, "UNDERRUN\n");
1260                 break;
1261         case CMD_DATA_OVERRUN:
1262                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1263                 break;
1264         case CMD_INVALID: {
1265                 /* controller unfortunately reports SCSI passthru's
1266                  * to non-existent targets as invalid commands.
1267                  */
1268                 dev_warn(d, "cp %p is reported invalid (probably means "
1269                         "target device no longer present)\n", cp);
1270                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1271                 print_cmd(cp);  */
1272                 }
1273                 break;
1274         case CMD_PROTOCOL_ERR:
1275                 dev_warn(d, "cp %p has protocol error \n", cp);
1276                 break;
1277         case CMD_HARDWARE_ERR:
1278                 /* cmd->result = DID_ERROR << 16; */
1279                 dev_warn(d, "cp %p had hardware error\n", cp);
1280                 break;
1281         case CMD_CONNECTION_LOST:
1282                 dev_warn(d, "cp %p had connection lost\n", cp);
1283                 break;
1284         case CMD_ABORTED:
1285                 dev_warn(d, "cp %p was aborted\n", cp);
1286                 break;
1287         case CMD_ABORT_FAILED:
1288                 dev_warn(d, "cp %p reports abort failed\n", cp);
1289                 break;
1290         case CMD_UNSOLICITED_ABORT:
1291                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1292                 break;
1293         case CMD_TIMEOUT:
1294                 dev_warn(d, "cp %p timed out\n", cp);
1295                 break;
1296         default:
1297                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1298                                 ei->CommandStatus);
1299         }
1300 }
1301
1302 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1303                         unsigned char page, unsigned char *buf,
1304                         unsigned char bufsize)
1305 {
1306         int rc = IO_OK;
1307         struct CommandList *c;
1308         struct ErrorInfo *ei;
1309
1310         c = cmd_special_alloc(h);
1311
1312         if (c == NULL) {                        /* trouble... */
1313                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1314                 return -ENOMEM;
1315         }
1316
1317         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1318         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1319         ei = c->err_info;
1320         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1321                 hpsa_scsi_interpret_error(c);
1322                 rc = -1;
1323         }
1324         cmd_special_free(h, c);
1325         return rc;
1326 }
1327
1328 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1329 {
1330         int rc = IO_OK;
1331         struct CommandList *c;
1332         struct ErrorInfo *ei;
1333
1334         c = cmd_special_alloc(h);
1335
1336         if (c == NULL) {                        /* trouble... */
1337                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1338                 return -ENOMEM;
1339         }
1340
1341         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1342         hpsa_scsi_do_simple_cmd_core(h, c);
1343         /* no unmap needed here because no data xfer. */
1344
1345         ei = c->err_info;
1346         if (ei->CommandStatus != 0) {
1347                 hpsa_scsi_interpret_error(c);
1348                 rc = -1;
1349         }
1350         cmd_special_free(h, c);
1351         return rc;
1352 }
1353
1354 static void hpsa_get_raid_level(struct ctlr_info *h,
1355         unsigned char *scsi3addr, unsigned char *raid_level)
1356 {
1357         int rc;
1358         unsigned char *buf;
1359
1360         *raid_level = RAID_UNKNOWN;
1361         buf = kzalloc(64, GFP_KERNEL);
1362         if (!buf)
1363                 return;
1364         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1365         if (rc == 0)
1366                 *raid_level = buf[8];
1367         if (*raid_level > RAID_UNKNOWN)
1368                 *raid_level = RAID_UNKNOWN;
1369         kfree(buf);
1370         return;
1371 }
1372
1373 /* Get the device id from inquiry page 0x83 */
1374 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1375         unsigned char *device_id, int buflen)
1376 {
1377         int rc;
1378         unsigned char *buf;
1379
1380         if (buflen > 16)
1381                 buflen = 16;
1382         buf = kzalloc(64, GFP_KERNEL);
1383         if (!buf)
1384                 return -1;
1385         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1386         if (rc == 0)
1387                 memcpy(device_id, &buf[8], buflen);
1388         kfree(buf);
1389         return rc != 0;
1390 }
1391
1392 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1393                 struct ReportLUNdata *buf, int bufsize,
1394                 int extended_response)
1395 {
1396         int rc = IO_OK;
1397         struct CommandList *c;
1398         unsigned char scsi3addr[8];
1399         struct ErrorInfo *ei;
1400
1401         c = cmd_special_alloc(h);
1402         if (c == NULL) {                        /* trouble... */
1403                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1404                 return -1;
1405         }
1406         /* address the controller */
1407         memset(scsi3addr, 0, sizeof(scsi3addr));
1408         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1409                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1410         if (extended_response)
1411                 c->Request.CDB[1] = extended_response;
1412         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1413         ei = c->err_info;
1414         if (ei->CommandStatus != 0 &&
1415             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1416                 hpsa_scsi_interpret_error(c);
1417                 rc = -1;
1418         }
1419         cmd_special_free(h, c);
1420         return rc;
1421 }
1422
1423 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1424                 struct ReportLUNdata *buf,
1425                 int bufsize, int extended_response)
1426 {
1427         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1428 }
1429
1430 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1431                 struct ReportLUNdata *buf, int bufsize)
1432 {
1433         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1434 }
1435
1436 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1437         int bus, int target, int lun)
1438 {
1439         device->bus = bus;
1440         device->target = target;
1441         device->lun = lun;
1442 }
1443
1444 static int hpsa_update_device_info(struct ctlr_info *h,
1445         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1446 {
1447 #define OBDR_TAPE_INQ_SIZE 49
1448         unsigned char *inq_buff;
1449
1450         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1451         if (!inq_buff)
1452                 goto bail_out;
1453
1454         /* Do an inquiry to the device to see what it is. */
1455         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1456                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1457                 /* Inquiry failed (msg printed already) */
1458                 dev_err(&h->pdev->dev,
1459                         "hpsa_update_device_info: inquiry failed\n");
1460                 goto bail_out;
1461         }
1462
1463         this_device->devtype = (inq_buff[0] & 0x1f);
1464         memcpy(this_device->scsi3addr, scsi3addr, 8);
1465         memcpy(this_device->vendor, &inq_buff[8],
1466                 sizeof(this_device->vendor));
1467         memcpy(this_device->model, &inq_buff[16],
1468                 sizeof(this_device->model));
1469         memcpy(this_device->revision, &inq_buff[32],
1470                 sizeof(this_device->revision));
1471         memset(this_device->device_id, 0,
1472                 sizeof(this_device->device_id));
1473         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1474                 sizeof(this_device->device_id));
1475
1476         if (this_device->devtype == TYPE_DISK &&
1477                 is_logical_dev_addr_mode(scsi3addr))
1478                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1479         else
1480                 this_device->raid_level = RAID_UNKNOWN;
1481
1482         kfree(inq_buff);
1483         return 0;
1484
1485 bail_out:
1486         kfree(inq_buff);
1487         return 1;
1488 }
1489
1490 static unsigned char *msa2xxx_model[] = {
1491         "MSA2012",
1492         "MSA2024",
1493         "MSA2312",
1494         "MSA2324",
1495         NULL,
1496 };
1497
1498 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1499 {
1500         int i;
1501
1502         for (i = 0; msa2xxx_model[i]; i++)
1503                 if (strncmp(device->model, msa2xxx_model[i],
1504                         strlen(msa2xxx_model[i])) == 0)
1505                         return 1;
1506         return 0;
1507 }
1508
1509 /* Helper function to assign bus, target, lun mapping of devices.
1510  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1511  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1512  * Logical drive target and lun are assigned at this time, but
1513  * physical device lun and target assignment are deferred (assigned
1514  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1515  */
1516 static void figure_bus_target_lun(struct ctlr_info *h,
1517         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1518         struct hpsa_scsi_dev_t *device)
1519 {
1520         u32 lunid;
1521
1522         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1523                 /* logical device */
1524                 if (unlikely(is_scsi_rev_5(h))) {
1525                         /* p1210m, logical drives lun assignments
1526                          * match SCSI REPORT LUNS data.
1527                          */
1528                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1529                         *bus = 0;
1530                         *target = 0;
1531                         *lun = (lunid & 0x3fff) + 1;
1532                 } else {
1533                         /* not p1210m... */
1534                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1535                         if (is_msa2xxx(h, device)) {
1536                                 /* msa2xxx way, put logicals on bus 1
1537                                  * and match target/lun numbers box
1538                                  * reports.
1539                                  */
1540                                 *bus = 1;
1541                                 *target = (lunid >> 16) & 0x3fff;
1542                                 *lun = lunid & 0x00ff;
1543                         } else {
1544                                 /* Traditional smart array way. */
1545                                 *bus = 0;
1546                                 *lun = 0;
1547                                 *target = lunid & 0x3fff;
1548                         }
1549                 }
1550         } else {
1551                 /* physical device */
1552                 if (is_hba_lunid(lunaddrbytes))
1553                         if (unlikely(is_scsi_rev_5(h))) {
1554                                 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1555                                 *target = 0;
1556                                 *lun = 0;
1557                                 return;
1558                         } else
1559                                 *bus = 3; /* traditional smartarray */
1560                 else
1561                         *bus = 2; /* physical disk */
1562                 *target = -1;
1563                 *lun = -1; /* we will fill these in later. */
1564         }
1565 }
1566
1567 /*
1568  * If there is no lun 0 on a target, linux won't find any devices.
1569  * For the MSA2xxx boxes, we have to manually detect the enclosure
1570  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1571  * it for some reason.  *tmpdevice is the target we're adding,
1572  * this_device is a pointer into the current element of currentsd[]
1573  * that we're building up in update_scsi_devices(), below.
1574  * lunzerobits is a bitmap that tracks which targets already have a
1575  * lun 0 assigned.
1576  * Returns 1 if an enclosure was added, 0 if not.
1577  */
1578 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1579         struct hpsa_scsi_dev_t *tmpdevice,
1580         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1581         int bus, int target, int lun, unsigned long lunzerobits[],
1582         int *nmsa2xxx_enclosures)
1583 {
1584         unsigned char scsi3addr[8];
1585
1586         if (test_bit(target, lunzerobits))
1587                 return 0; /* There is already a lun 0 on this target. */
1588
1589         if (!is_logical_dev_addr_mode(lunaddrbytes))
1590                 return 0; /* It's the logical targets that may lack lun 0. */
1591
1592         if (!is_msa2xxx(h, tmpdevice))
1593                 return 0; /* It's only the MSA2xxx that have this problem. */
1594
1595         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1596                 return 0;
1597
1598         if (is_hba_lunid(scsi3addr))
1599                 return 0; /* Don't add the RAID controller here. */
1600
1601         if (is_scsi_rev_5(h))
1602                 return 0; /* p1210m doesn't need to do this. */
1603
1604 #define MAX_MSA2XXX_ENCLOSURES 32
1605         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1606                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1607                         "enclosures exceeded.  Check your hardware "
1608                         "configuration.");
1609                 return 0;
1610         }
1611
1612         memset(scsi3addr, 0, 8);
1613         scsi3addr[3] = target;
1614         if (hpsa_update_device_info(h, scsi3addr, this_device))
1615                 return 0;
1616         (*nmsa2xxx_enclosures)++;
1617         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1618         set_bit(target, lunzerobits);
1619         return 1;
1620 }
1621
1622 /*
1623  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1624  * logdev.  The number of luns in physdev and logdev are returned in
1625  * *nphysicals and *nlogicals, respectively.
1626  * Returns 0 on success, -1 otherwise.
1627  */
1628 static int hpsa_gather_lun_info(struct ctlr_info *h,
1629         int reportlunsize,
1630         struct ReportLUNdata *physdev, u32 *nphysicals,
1631         struct ReportLUNdata *logdev, u32 *nlogicals)
1632 {
1633         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1634                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1635                 return -1;
1636         }
1637         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1638         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1639                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1640                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1641                         *nphysicals - HPSA_MAX_PHYS_LUN);
1642                 *nphysicals = HPSA_MAX_PHYS_LUN;
1643         }
1644         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1645                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1646                 return -1;
1647         }
1648         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1649         /* Reject Logicals in excess of our max capability. */
1650         if (*nlogicals > HPSA_MAX_LUN) {
1651                 dev_warn(&h->pdev->dev,
1652                         "maximum logical LUNs (%d) exceeded.  "
1653                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1654                         *nlogicals - HPSA_MAX_LUN);
1655                         *nlogicals = HPSA_MAX_LUN;
1656         }
1657         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1658                 dev_warn(&h->pdev->dev,
1659                         "maximum logical + physical LUNs (%d) exceeded. "
1660                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1661                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1662                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1663         }
1664         return 0;
1665 }
1666
1667 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1668         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1669         struct ReportLUNdata *logdev_list)
1670 {
1671         /* Helper function, figure out where the LUN ID info is coming from
1672          * given index i, lists of physical and logical devices, where in
1673          * the list the raid controller is supposed to appear (first or last)
1674          */
1675
1676         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1677         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1678
1679         if (i == raid_ctlr_position)
1680                 return RAID_CTLR_LUNID;
1681
1682         if (i < logicals_start)
1683                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1684
1685         if (i < last_device)
1686                 return &logdev_list->LUN[i - nphysicals -
1687                         (raid_ctlr_position == 0)][0];
1688         BUG();
1689         return NULL;
1690 }
1691
1692 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1693 {
1694         /* the idea here is we could get notified
1695          * that some devices have changed, so we do a report
1696          * physical luns and report logical luns cmd, and adjust
1697          * our list of devices accordingly.
1698          *
1699          * The scsi3addr's of devices won't change so long as the
1700          * adapter is not reset.  That means we can rescan and
1701          * tell which devices we already know about, vs. new
1702          * devices, vs.  disappearing devices.
1703          */
1704         struct ReportLUNdata *physdev_list = NULL;
1705         struct ReportLUNdata *logdev_list = NULL;
1706         unsigned char *inq_buff = NULL;
1707         u32 nphysicals = 0;
1708         u32 nlogicals = 0;
1709         u32 ndev_allocated = 0;
1710         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1711         int ncurrent = 0;
1712         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1713         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1714         int bus, target, lun;
1715         int raid_ctlr_position;
1716         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1717
1718         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1719                 GFP_KERNEL);
1720         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1721         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1722         inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1723         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1724
1725         if (!currentsd || !physdev_list || !logdev_list ||
1726                 !inq_buff || !tmpdevice) {
1727                 dev_err(&h->pdev->dev, "out of memory\n");
1728                 goto out;
1729         }
1730         memset(lunzerobits, 0, sizeof(lunzerobits));
1731
1732         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1733                         logdev_list, &nlogicals))
1734                 goto out;
1735
1736         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1737          * but each of them 4 times through different paths.  The plus 1
1738          * is for the RAID controller.
1739          */
1740         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1741
1742         /* Allocate the per device structures */
1743         for (i = 0; i < ndevs_to_allocate; i++) {
1744                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1745                 if (!currentsd[i]) {
1746                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1747                                 __FILE__, __LINE__);
1748                         goto out;
1749                 }
1750                 ndev_allocated++;
1751         }
1752
1753         if (unlikely(is_scsi_rev_5(h)))
1754                 raid_ctlr_position = 0;
1755         else
1756                 raid_ctlr_position = nphysicals + nlogicals;
1757
1758         /* adjust our table of devices */
1759         nmsa2xxx_enclosures = 0;
1760         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1761                 u8 *lunaddrbytes;
1762
1763                 /* Figure out where the LUN ID info is coming from */
1764                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1765                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1766                 /* skip masked physical devices. */
1767                 if (lunaddrbytes[3] & 0xC0 &&
1768                         i < nphysicals + (raid_ctlr_position == 0))
1769                         continue;
1770
1771                 /* Get device type, vendor, model, device id */
1772                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1773                         continue; /* skip it if we can't talk to it. */
1774                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1775                         tmpdevice);
1776                 this_device = currentsd[ncurrent];
1777
1778                 /*
1779                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1780                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1781                  * is nonetheless an enclosure device there.  We have to
1782                  * present that otherwise linux won't find anything if
1783                  * there is no lun 0.
1784                  */
1785                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1786                                 lunaddrbytes, bus, target, lun, lunzerobits,
1787                                 &nmsa2xxx_enclosures)) {
1788                         ncurrent++;
1789                         this_device = currentsd[ncurrent];
1790                 }
1791
1792                 *this_device = *tmpdevice;
1793                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1794
1795                 switch (this_device->devtype) {
1796                 case TYPE_ROM: {
1797                         /* We don't *really* support actual CD-ROM devices,
1798                          * just "One Button Disaster Recovery" tape drive
1799                          * which temporarily pretends to be a CD-ROM drive.
1800                          * So we check that the device is really an OBDR tape
1801                          * device by checking for "$DR-10" in bytes 43-48 of
1802                          * the inquiry data.
1803                          */
1804                                 char obdr_sig[7];
1805 #define OBDR_TAPE_SIG "$DR-10"
1806                                 strncpy(obdr_sig, &inq_buff[43], 6);
1807                                 obdr_sig[6] = '\0';
1808                                 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1809                                         /* Not OBDR device, ignore it. */
1810                                         break;
1811                         }
1812                         ncurrent++;
1813                         break;
1814                 case TYPE_DISK:
1815                         if (i < nphysicals)
1816                                 break;
1817                         ncurrent++;
1818                         break;
1819                 case TYPE_TAPE:
1820                 case TYPE_MEDIUM_CHANGER:
1821                         ncurrent++;
1822                         break;
1823                 case TYPE_RAID:
1824                         /* Only present the Smartarray HBA as a RAID controller.
1825                          * If it's a RAID controller other than the HBA itself
1826                          * (an external RAID controller, MSA500 or similar)
1827                          * don't present it.
1828                          */
1829                         if (!is_hba_lunid(lunaddrbytes))
1830                                 break;
1831                         ncurrent++;
1832                         break;
1833                 default:
1834                         break;
1835                 }
1836                 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1837                         break;
1838         }
1839         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1840 out:
1841         kfree(tmpdevice);
1842         for (i = 0; i < ndev_allocated; i++)
1843                 kfree(currentsd[i]);
1844         kfree(currentsd);
1845         kfree(inq_buff);
1846         kfree(physdev_list);
1847         kfree(logdev_list);
1848 }
1849
1850 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1851  * dma mapping  and fills in the scatter gather entries of the
1852  * hpsa command, cp.
1853  */
1854 static int hpsa_scatter_gather(struct ctlr_info *h,
1855                 struct CommandList *cp,
1856                 struct scsi_cmnd *cmd)
1857 {
1858         unsigned int len;
1859         struct scatterlist *sg;
1860         u64 addr64;
1861         int use_sg, i, sg_index, chained;
1862         struct SGDescriptor *curr_sg;
1863
1864         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1865
1866         use_sg = scsi_dma_map(cmd);
1867         if (use_sg < 0)
1868                 return use_sg;
1869
1870         if (!use_sg)
1871                 goto sglist_finished;
1872
1873         curr_sg = cp->SG;
1874         chained = 0;
1875         sg_index = 0;
1876         scsi_for_each_sg(cmd, sg, use_sg, i) {
1877                 if (i == h->max_cmd_sg_entries - 1 &&
1878                         use_sg > h->max_cmd_sg_entries) {
1879                         chained = 1;
1880                         curr_sg = h->cmd_sg_list[cp->cmdindex];
1881                         sg_index = 0;
1882                 }
1883                 addr64 = (u64) sg_dma_address(sg);
1884                 len  = sg_dma_len(sg);
1885                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1886                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1887                 curr_sg->Len = len;
1888                 curr_sg->Ext = 0;  /* we are not chaining */
1889                 curr_sg++;
1890         }
1891
1892         if (use_sg + chained > h->maxSG)
1893                 h->maxSG = use_sg + chained;
1894
1895         if (chained) {
1896                 cp->Header.SGList = h->max_cmd_sg_entries;
1897                 cp->Header.SGTotal = (u16) (use_sg + 1);
1898                 hpsa_map_sg_chain_block(h, cp);
1899                 return 0;
1900         }
1901
1902 sglist_finished:
1903
1904         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
1905         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1906         return 0;
1907 }
1908
1909
1910 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
1911         void (*done)(struct scsi_cmnd *))
1912 {
1913         struct ctlr_info *h;
1914         struct hpsa_scsi_dev_t *dev;
1915         unsigned char scsi3addr[8];
1916         struct CommandList *c;
1917         unsigned long flags;
1918
1919         /* Get the ptr to our adapter structure out of cmd->host. */
1920         h = sdev_to_hba(cmd->device);
1921         dev = cmd->device->hostdata;
1922         if (!dev) {
1923                 cmd->result = DID_NO_CONNECT << 16;
1924                 done(cmd);
1925                 return 0;
1926         }
1927         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1928
1929         /* Need a lock as this is being allocated from the pool */
1930         spin_lock_irqsave(&h->lock, flags);
1931         c = cmd_alloc(h);
1932         spin_unlock_irqrestore(&h->lock, flags);
1933         if (c == NULL) {                        /* trouble... */
1934                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
1935                 return SCSI_MLQUEUE_HOST_BUSY;
1936         }
1937
1938         /* Fill in the command list header */
1939
1940         cmd->scsi_done = done;    /* save this for use by completion code */
1941
1942         /* save c in case we have to abort it  */
1943         cmd->host_scribble = (unsigned char *) c;
1944
1945         c->cmd_type = CMD_SCSI;
1946         c->scsi_cmd = cmd;
1947         c->Header.ReplyQueue = 0;  /* unused in simple mode */
1948         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
1949         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
1950         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
1951
1952         /* Fill in the request block... */
1953
1954         c->Request.Timeout = 0;
1955         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
1956         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
1957         c->Request.CDBLen = cmd->cmd_len;
1958         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
1959         c->Request.Type.Type = TYPE_CMD;
1960         c->Request.Type.Attribute = ATTR_SIMPLE;
1961         switch (cmd->sc_data_direction) {
1962         case DMA_TO_DEVICE:
1963                 c->Request.Type.Direction = XFER_WRITE;
1964                 break;
1965         case DMA_FROM_DEVICE:
1966                 c->Request.Type.Direction = XFER_READ;
1967                 break;
1968         case DMA_NONE:
1969                 c->Request.Type.Direction = XFER_NONE;
1970                 break;
1971         case DMA_BIDIRECTIONAL:
1972                 /* This can happen if a buggy application does a scsi passthru
1973                  * and sets both inlen and outlen to non-zero. ( see
1974                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
1975                  */
1976
1977                 c->Request.Type.Direction = XFER_RSVD;
1978                 /* This is technically wrong, and hpsa controllers should
1979                  * reject it with CMD_INVALID, which is the most correct
1980                  * response, but non-fibre backends appear to let it
1981                  * slide by, and give the same results as if this field
1982                  * were set correctly.  Either way is acceptable for
1983                  * our purposes here.
1984                  */
1985
1986                 break;
1987
1988         default:
1989                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
1990                         cmd->sc_data_direction);
1991                 BUG();
1992                 break;
1993         }
1994
1995         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
1996                 cmd_free(h, c);
1997                 return SCSI_MLQUEUE_HOST_BUSY;
1998         }
1999         enqueue_cmd_and_start_io(h, c);
2000         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2001         return 0;
2002 }
2003
2004 static void hpsa_scan_start(struct Scsi_Host *sh)
2005 {
2006         struct ctlr_info *h = shost_to_hba(sh);
2007         unsigned long flags;
2008
2009         /* wait until any scan already in progress is finished. */
2010         while (1) {
2011                 spin_lock_irqsave(&h->scan_lock, flags);
2012                 if (h->scan_finished)
2013                         break;
2014                 spin_unlock_irqrestore(&h->scan_lock, flags);
2015                 wait_event(h->scan_wait_queue, h->scan_finished);
2016                 /* Note: We don't need to worry about a race between this
2017                  * thread and driver unload because the midlayer will
2018                  * have incremented the reference count, so unload won't
2019                  * happen if we're in here.
2020                  */
2021         }
2022         h->scan_finished = 0; /* mark scan as in progress */
2023         spin_unlock_irqrestore(&h->scan_lock, flags);
2024
2025         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2026
2027         spin_lock_irqsave(&h->scan_lock, flags);
2028         h->scan_finished = 1; /* mark scan as finished. */
2029         wake_up_all(&h->scan_wait_queue);
2030         spin_unlock_irqrestore(&h->scan_lock, flags);
2031 }
2032
2033 static int hpsa_scan_finished(struct Scsi_Host *sh,
2034         unsigned long elapsed_time)
2035 {
2036         struct ctlr_info *h = shost_to_hba(sh);
2037         unsigned long flags;
2038         int finished;
2039
2040         spin_lock_irqsave(&h->scan_lock, flags);
2041         finished = h->scan_finished;
2042         spin_unlock_irqrestore(&h->scan_lock, flags);
2043         return finished;
2044 }
2045
2046 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2047         int qdepth, int reason)
2048 {
2049         struct ctlr_info *h = sdev_to_hba(sdev);
2050
2051         if (reason != SCSI_QDEPTH_DEFAULT)
2052                 return -ENOTSUPP;
2053
2054         if (qdepth < 1)
2055                 qdepth = 1;
2056         else
2057                 if (qdepth > h->nr_cmds)
2058                         qdepth = h->nr_cmds;
2059         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2060         return sdev->queue_depth;
2061 }
2062
2063 static void hpsa_unregister_scsi(struct ctlr_info *h)
2064 {
2065         /* we are being forcibly unloaded, and may not refuse. */
2066         scsi_remove_host(h->scsi_host);
2067         scsi_host_put(h->scsi_host);
2068         h->scsi_host = NULL;
2069 }
2070
2071 static int hpsa_register_scsi(struct ctlr_info *h)
2072 {
2073         int rc;
2074
2075         rc = hpsa_scsi_detect(h);
2076         if (rc != 0)
2077                 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2078                         " hpsa_scsi_detect(), rc is %d\n", rc);
2079         return rc;
2080 }
2081
2082 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2083         unsigned char lunaddr[])
2084 {
2085         int rc = 0;
2086         int count = 0;
2087         int waittime = 1; /* seconds */
2088         struct CommandList *c;
2089
2090         c = cmd_special_alloc(h);
2091         if (!c) {
2092                 dev_warn(&h->pdev->dev, "out of memory in "
2093                         "wait_for_device_to_become_ready.\n");
2094                 return IO_ERROR;
2095         }
2096
2097         /* Send test unit ready until device ready, or give up. */
2098         while (count < HPSA_TUR_RETRY_LIMIT) {
2099
2100                 /* Wait for a bit.  do this first, because if we send
2101                  * the TUR right away, the reset will just abort it.
2102                  */
2103                 msleep(1000 * waittime);
2104                 count++;
2105
2106                 /* Increase wait time with each try, up to a point. */
2107                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2108                         waittime = waittime * 2;
2109
2110                 /* Send the Test Unit Ready */
2111                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2112                 hpsa_scsi_do_simple_cmd_core(h, c);
2113                 /* no unmap needed here because no data xfer. */
2114
2115                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2116                         break;
2117
2118                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2119                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2120                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2121                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2122                         break;
2123
2124                 dev_warn(&h->pdev->dev, "waiting %d secs "
2125                         "for device to become ready.\n", waittime);
2126                 rc = 1; /* device not ready. */
2127         }
2128
2129         if (rc)
2130                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2131         else
2132                 dev_warn(&h->pdev->dev, "device is ready.\n");
2133
2134         cmd_special_free(h, c);
2135         return rc;
2136 }
2137
2138 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2139  * complaining.  Doing a host- or bus-reset can't do anything good here.
2140  */
2141 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2142 {
2143         int rc;
2144         struct ctlr_info *h;
2145         struct hpsa_scsi_dev_t *dev;
2146
2147         /* find the controller to which the command to be aborted was sent */
2148         h = sdev_to_hba(scsicmd->device);
2149         if (h == NULL) /* paranoia */
2150                 return FAILED;
2151         dev = scsicmd->device->hostdata;
2152         if (!dev) {
2153                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2154                         "device lookup failed.\n");
2155                 return FAILED;
2156         }
2157         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2158                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2159         /* send a reset to the SCSI LUN which the command was sent to */
2160         rc = hpsa_send_reset(h, dev->scsi3addr);
2161         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2162                 return SUCCESS;
2163
2164         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2165         return FAILED;
2166 }
2167
2168 /*
2169  * For operations that cannot sleep, a command block is allocated at init,
2170  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2171  * which ones are free or in use.  Lock must be held when calling this.
2172  * cmd_free() is the complement.
2173  */
2174 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2175 {
2176         struct CommandList *c;
2177         int i;
2178         union u64bit temp64;
2179         dma_addr_t cmd_dma_handle, err_dma_handle;
2180
2181         do {
2182                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2183                 if (i == h->nr_cmds)
2184                         return NULL;
2185         } while (test_and_set_bit
2186                  (i & (BITS_PER_LONG - 1),
2187                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2188         c = h->cmd_pool + i;
2189         memset(c, 0, sizeof(*c));
2190         cmd_dma_handle = h->cmd_pool_dhandle
2191             + i * sizeof(*c);
2192         c->err_info = h->errinfo_pool + i;
2193         memset(c->err_info, 0, sizeof(*c->err_info));
2194         err_dma_handle = h->errinfo_pool_dhandle
2195             + i * sizeof(*c->err_info);
2196         h->nr_allocs++;
2197
2198         c->cmdindex = i;
2199
2200         INIT_HLIST_NODE(&c->list);
2201         c->busaddr = (u32) cmd_dma_handle;
2202         temp64.val = (u64) err_dma_handle;
2203         c->ErrDesc.Addr.lower = temp64.val32.lower;
2204         c->ErrDesc.Addr.upper = temp64.val32.upper;
2205         c->ErrDesc.Len = sizeof(*c->err_info);
2206
2207         c->h = h;
2208         return c;
2209 }
2210
2211 /* For operations that can wait for kmalloc to possibly sleep,
2212  * this routine can be called. Lock need not be held to call
2213  * cmd_special_alloc. cmd_special_free() is the complement.
2214  */
2215 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2216 {
2217         struct CommandList *c;
2218         union u64bit temp64;
2219         dma_addr_t cmd_dma_handle, err_dma_handle;
2220
2221         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2222         if (c == NULL)
2223                 return NULL;
2224         memset(c, 0, sizeof(*c));
2225
2226         c->cmdindex = -1;
2227
2228         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2229                     &err_dma_handle);
2230
2231         if (c->err_info == NULL) {
2232                 pci_free_consistent(h->pdev,
2233                         sizeof(*c), c, cmd_dma_handle);
2234                 return NULL;
2235         }
2236         memset(c->err_info, 0, sizeof(*c->err_info));
2237
2238         INIT_HLIST_NODE(&c->list);
2239         c->busaddr = (u32) cmd_dma_handle;
2240         temp64.val = (u64) err_dma_handle;
2241         c->ErrDesc.Addr.lower = temp64.val32.lower;
2242         c->ErrDesc.Addr.upper = temp64.val32.upper;
2243         c->ErrDesc.Len = sizeof(*c->err_info);
2244
2245         c->h = h;
2246         return c;
2247 }
2248
2249 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2250 {
2251         int i;
2252
2253         i = c - h->cmd_pool;
2254         clear_bit(i & (BITS_PER_LONG - 1),
2255                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2256         h->nr_frees++;
2257 }
2258
2259 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2260 {
2261         union u64bit temp64;
2262
2263         temp64.val32.lower = c->ErrDesc.Addr.lower;
2264         temp64.val32.upper = c->ErrDesc.Addr.upper;
2265         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2266                             c->err_info, (dma_addr_t) temp64.val);
2267         pci_free_consistent(h->pdev, sizeof(*c),
2268                             c, (dma_addr_t) c->busaddr);
2269 }
2270
2271 #ifdef CONFIG_COMPAT
2272
2273 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2274 {
2275         IOCTL32_Command_struct __user *arg32 =
2276             (IOCTL32_Command_struct __user *) arg;
2277         IOCTL_Command_struct arg64;
2278         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2279         int err;
2280         u32 cp;
2281
2282         err = 0;
2283         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2284                            sizeof(arg64.LUN_info));
2285         err |= copy_from_user(&arg64.Request, &arg32->Request,
2286                            sizeof(arg64.Request));
2287         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2288                            sizeof(arg64.error_info));
2289         err |= get_user(arg64.buf_size, &arg32->buf_size);
2290         err |= get_user(cp, &arg32->buf);
2291         arg64.buf = compat_ptr(cp);
2292         err |= copy_to_user(p, &arg64, sizeof(arg64));
2293
2294         if (err)
2295                 return -EFAULT;
2296
2297         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2298         if (err)
2299                 return err;
2300         err |= copy_in_user(&arg32->error_info, &p->error_info,
2301                          sizeof(arg32->error_info));
2302         if (err)
2303                 return -EFAULT;
2304         return err;
2305 }
2306
2307 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2308         int cmd, void *arg)
2309 {
2310         BIG_IOCTL32_Command_struct __user *arg32 =
2311             (BIG_IOCTL32_Command_struct __user *) arg;
2312         BIG_IOCTL_Command_struct arg64;
2313         BIG_IOCTL_Command_struct __user *p =
2314             compat_alloc_user_space(sizeof(arg64));
2315         int err;
2316         u32 cp;
2317
2318         err = 0;
2319         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2320                            sizeof(arg64.LUN_info));
2321         err |= copy_from_user(&arg64.Request, &arg32->Request,
2322                            sizeof(arg64.Request));
2323         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2324                            sizeof(arg64.error_info));
2325         err |= get_user(arg64.buf_size, &arg32->buf_size);
2326         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2327         err |= get_user(cp, &arg32->buf);
2328         arg64.buf = compat_ptr(cp);
2329         err |= copy_to_user(p, &arg64, sizeof(arg64));
2330
2331         if (err)
2332                 return -EFAULT;
2333
2334         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2335         if (err)
2336                 return err;
2337         err |= copy_in_user(&arg32->error_info, &p->error_info,
2338                          sizeof(arg32->error_info));
2339         if (err)
2340                 return -EFAULT;
2341         return err;
2342 }
2343
2344 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2345 {
2346         switch (cmd) {
2347         case CCISS_GETPCIINFO:
2348         case CCISS_GETINTINFO:
2349         case CCISS_SETINTINFO:
2350         case CCISS_GETNODENAME:
2351         case CCISS_SETNODENAME:
2352         case CCISS_GETHEARTBEAT:
2353         case CCISS_GETBUSTYPES:
2354         case CCISS_GETFIRMVER:
2355         case CCISS_GETDRIVVER:
2356         case CCISS_REVALIDVOLS:
2357         case CCISS_DEREGDISK:
2358         case CCISS_REGNEWDISK:
2359         case CCISS_REGNEWD:
2360         case CCISS_RESCANDISK:
2361         case CCISS_GETLUNINFO:
2362                 return hpsa_ioctl(dev, cmd, arg);
2363
2364         case CCISS_PASSTHRU32:
2365                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2366         case CCISS_BIG_PASSTHRU32:
2367                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2368
2369         default:
2370                 return -ENOIOCTLCMD;
2371         }
2372 }
2373 #endif
2374
2375 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2376 {
2377         struct hpsa_pci_info pciinfo;
2378
2379         if (!argp)
2380                 return -EINVAL;
2381         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2382         pciinfo.bus = h->pdev->bus->number;
2383         pciinfo.dev_fn = h->pdev->devfn;
2384         pciinfo.board_id = h->board_id;
2385         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2386                 return -EFAULT;
2387         return 0;
2388 }
2389
2390 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2391 {
2392         DriverVer_type DriverVer;
2393         unsigned char vmaj, vmin, vsubmin;
2394         int rc;
2395
2396         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2397                 &vmaj, &vmin, &vsubmin);
2398         if (rc != 3) {
2399                 dev_info(&h->pdev->dev, "driver version string '%s' "
2400                         "unrecognized.", HPSA_DRIVER_VERSION);
2401                 vmaj = 0;
2402                 vmin = 0;
2403                 vsubmin = 0;
2404         }
2405         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2406         if (!argp)
2407                 return -EINVAL;
2408         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2409                 return -EFAULT;
2410         return 0;
2411 }
2412
2413 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2414 {
2415         IOCTL_Command_struct iocommand;
2416         struct CommandList *c;
2417         char *buff = NULL;
2418         union u64bit temp64;
2419
2420         if (!argp)
2421                 return -EINVAL;
2422         if (!capable(CAP_SYS_RAWIO))
2423                 return -EPERM;
2424         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2425                 return -EFAULT;
2426         if ((iocommand.buf_size < 1) &&
2427             (iocommand.Request.Type.Direction != XFER_NONE)) {
2428                 return -EINVAL;
2429         }
2430         if (iocommand.buf_size > 0) {
2431                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2432                 if (buff == NULL)
2433                         return -EFAULT;
2434         }
2435         if (iocommand.Request.Type.Direction == XFER_WRITE) {
2436                 /* Copy the data into the buffer we created */
2437                 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
2438                         kfree(buff);
2439                         return -EFAULT;
2440                 }
2441         } else
2442                 memset(buff, 0, iocommand.buf_size);
2443         c = cmd_special_alloc(h);
2444         if (c == NULL) {
2445                 kfree(buff);
2446                 return -ENOMEM;
2447         }
2448         /* Fill in the command type */
2449         c->cmd_type = CMD_IOCTL_PEND;
2450         /* Fill in Command Header */
2451         c->Header.ReplyQueue = 0; /* unused in simple mode */
2452         if (iocommand.buf_size > 0) {   /* buffer to fill */
2453                 c->Header.SGList = 1;
2454                 c->Header.SGTotal = 1;
2455         } else  { /* no buffers to fill */
2456                 c->Header.SGList = 0;
2457                 c->Header.SGTotal = 0;
2458         }
2459         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2460         /* use the kernel address the cmd block for tag */
2461         c->Header.Tag.lower = c->busaddr;
2462
2463         /* Fill in Request block */
2464         memcpy(&c->Request, &iocommand.Request,
2465                 sizeof(c->Request));
2466
2467         /* Fill in the scatter gather information */
2468         if (iocommand.buf_size > 0) {
2469                 temp64.val = pci_map_single(h->pdev, buff,
2470                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2471                 c->SG[0].Addr.lower = temp64.val32.lower;
2472                 c->SG[0].Addr.upper = temp64.val32.upper;
2473                 c->SG[0].Len = iocommand.buf_size;
2474                 c->SG[0].Ext = 0; /* we are not chaining*/
2475         }
2476         hpsa_scsi_do_simple_cmd_core(h, c);
2477         hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2478         check_ioctl_unit_attention(h, c);
2479
2480         /* Copy the error information out */
2481         memcpy(&iocommand.error_info, c->err_info,
2482                 sizeof(iocommand.error_info));
2483         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2484                 kfree(buff);
2485                 cmd_special_free(h, c);
2486                 return -EFAULT;
2487         }
2488
2489         if (iocommand.Request.Type.Direction == XFER_READ) {
2490                 /* Copy the data out of the buffer we created */
2491                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2492                         kfree(buff);
2493                         cmd_special_free(h, c);
2494                         return -EFAULT;
2495                 }
2496         }
2497         kfree(buff);
2498         cmd_special_free(h, c);
2499         return 0;
2500 }
2501
2502 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2503 {
2504         BIG_IOCTL_Command_struct *ioc;
2505         struct CommandList *c;
2506         unsigned char **buff = NULL;
2507         int *buff_size = NULL;
2508         union u64bit temp64;
2509         BYTE sg_used = 0;
2510         int status = 0;
2511         int i;
2512         u32 left;
2513         u32 sz;
2514         BYTE __user *data_ptr;
2515
2516         if (!argp)
2517                 return -EINVAL;
2518         if (!capable(CAP_SYS_RAWIO))
2519                 return -EPERM;
2520         ioc = (BIG_IOCTL_Command_struct *)
2521             kmalloc(sizeof(*ioc), GFP_KERNEL);
2522         if (!ioc) {
2523                 status = -ENOMEM;
2524                 goto cleanup1;
2525         }
2526         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2527                 status = -EFAULT;
2528                 goto cleanup1;
2529         }
2530         if ((ioc->buf_size < 1) &&
2531             (ioc->Request.Type.Direction != XFER_NONE)) {
2532                 status = -EINVAL;
2533                 goto cleanup1;
2534         }
2535         /* Check kmalloc limits  using all SGs */
2536         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2537                 status = -EINVAL;
2538                 goto cleanup1;
2539         }
2540         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2541                 status = -EINVAL;
2542                 goto cleanup1;
2543         }
2544         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2545         if (!buff) {
2546                 status = -ENOMEM;
2547                 goto cleanup1;
2548         }
2549         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2550         if (!buff_size) {
2551                 status = -ENOMEM;
2552                 goto cleanup1;
2553         }
2554         left = ioc->buf_size;
2555         data_ptr = ioc->buf;
2556         while (left) {
2557                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2558                 buff_size[sg_used] = sz;
2559                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2560                 if (buff[sg_used] == NULL) {
2561                         status = -ENOMEM;
2562                         goto cleanup1;
2563                 }
2564                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2565                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2566                                 status = -ENOMEM;
2567                                 goto cleanup1;
2568                         }
2569                 } else
2570                         memset(buff[sg_used], 0, sz);
2571                 left -= sz;
2572                 data_ptr += sz;
2573                 sg_used++;
2574         }
2575         c = cmd_special_alloc(h);
2576         if (c == NULL) {
2577                 status = -ENOMEM;
2578                 goto cleanup1;
2579         }
2580         c->cmd_type = CMD_IOCTL_PEND;
2581         c->Header.ReplyQueue = 0;
2582
2583         if (ioc->buf_size > 0) {
2584                 c->Header.SGList = sg_used;
2585                 c->Header.SGTotal = sg_used;
2586         } else {
2587                 c->Header.SGList = 0;
2588                 c->Header.SGTotal = 0;
2589         }
2590         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2591         c->Header.Tag.lower = c->busaddr;
2592         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2593         if (ioc->buf_size > 0) {
2594                 int i;
2595                 for (i = 0; i < sg_used; i++) {
2596                         temp64.val = pci_map_single(h->pdev, buff[i],
2597                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2598                         c->SG[i].Addr.lower = temp64.val32.lower;
2599                         c->SG[i].Addr.upper = temp64.val32.upper;
2600                         c->SG[i].Len = buff_size[i];
2601                         /* we are not chaining */
2602                         c->SG[i].Ext = 0;
2603                 }
2604         }
2605         hpsa_scsi_do_simple_cmd_core(h, c);
2606         hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2607         check_ioctl_unit_attention(h, c);
2608         /* Copy the error information out */
2609         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2610         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2611                 cmd_special_free(h, c);
2612                 status = -EFAULT;
2613                 goto cleanup1;
2614         }
2615         if (ioc->Request.Type.Direction == XFER_READ) {
2616                 /* Copy the data out of the buffer we created */
2617                 BYTE __user *ptr = ioc->buf;
2618                 for (i = 0; i < sg_used; i++) {
2619                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2620                                 cmd_special_free(h, c);
2621                                 status = -EFAULT;
2622                                 goto cleanup1;
2623                         }
2624                         ptr += buff_size[i];
2625                 }
2626         }
2627         cmd_special_free(h, c);
2628         status = 0;
2629 cleanup1:
2630         if (buff) {
2631                 for (i = 0; i < sg_used; i++)
2632                         kfree(buff[i]);
2633                 kfree(buff);
2634         }
2635         kfree(buff_size);
2636         kfree(ioc);
2637         return status;
2638 }
2639
2640 static void check_ioctl_unit_attention(struct ctlr_info *h,
2641         struct CommandList *c)
2642 {
2643         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2644                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2645                 (void) check_for_unit_attention(h, c);
2646 }
2647 /*
2648  * ioctl
2649  */
2650 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2651 {
2652         struct ctlr_info *h;
2653         void __user *argp = (void __user *)arg;
2654
2655         h = sdev_to_hba(dev);
2656
2657         switch (cmd) {
2658         case CCISS_DEREGDISK:
2659         case CCISS_REGNEWDISK:
2660         case CCISS_REGNEWD:
2661                 hpsa_scan_start(h->scsi_host);
2662                 return 0;
2663         case CCISS_GETPCIINFO:
2664                 return hpsa_getpciinfo_ioctl(h, argp);
2665         case CCISS_GETDRIVVER:
2666                 return hpsa_getdrivver_ioctl(h, argp);
2667         case CCISS_PASSTHRU:
2668                 return hpsa_passthru_ioctl(h, argp);
2669         case CCISS_BIG_PASSTHRU:
2670                 return hpsa_big_passthru_ioctl(h, argp);
2671         default:
2672                 return -ENOTTY;
2673         }
2674 }
2675
2676 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2677         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2678         int cmd_type)
2679 {
2680         int pci_dir = XFER_NONE;
2681
2682         c->cmd_type = CMD_IOCTL_PEND;
2683         c->Header.ReplyQueue = 0;
2684         if (buff != NULL && size > 0) {
2685                 c->Header.SGList = 1;
2686                 c->Header.SGTotal = 1;
2687         } else {
2688                 c->Header.SGList = 0;
2689                 c->Header.SGTotal = 0;
2690         }
2691         c->Header.Tag.lower = c->busaddr;
2692         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2693
2694         c->Request.Type.Type = cmd_type;
2695         if (cmd_type == TYPE_CMD) {
2696                 switch (cmd) {
2697                 case HPSA_INQUIRY:
2698                         /* are we trying to read a vital product page */
2699                         if (page_code != 0) {
2700                                 c->Request.CDB[1] = 0x01;
2701                                 c->Request.CDB[2] = page_code;
2702                         }
2703                         c->Request.CDBLen = 6;
2704                         c->Request.Type.Attribute = ATTR_SIMPLE;
2705                         c->Request.Type.Direction = XFER_READ;
2706                         c->Request.Timeout = 0;
2707                         c->Request.CDB[0] = HPSA_INQUIRY;
2708                         c->Request.CDB[4] = size & 0xFF;
2709                         break;
2710                 case HPSA_REPORT_LOG:
2711                 case HPSA_REPORT_PHYS:
2712                         /* Talking to controller so It's a physical command
2713                            mode = 00 target = 0.  Nothing to write.
2714                          */
2715                         c->Request.CDBLen = 12;
2716                         c->Request.Type.Attribute = ATTR_SIMPLE;
2717                         c->Request.Type.Direction = XFER_READ;
2718                         c->Request.Timeout = 0;
2719                         c->Request.CDB[0] = cmd;
2720                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2721                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2722                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2723                         c->Request.CDB[9] = size & 0xFF;
2724                         break;
2725                 case HPSA_CACHE_FLUSH:
2726                         c->Request.CDBLen = 12;
2727                         c->Request.Type.Attribute = ATTR_SIMPLE;
2728                         c->Request.Type.Direction = XFER_WRITE;
2729                         c->Request.Timeout = 0;
2730                         c->Request.CDB[0] = BMIC_WRITE;
2731                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2732                         break;
2733                 case TEST_UNIT_READY:
2734                         c->Request.CDBLen = 6;
2735                         c->Request.Type.Attribute = ATTR_SIMPLE;
2736                         c->Request.Type.Direction = XFER_NONE;
2737                         c->Request.Timeout = 0;
2738                         break;
2739                 default:
2740                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2741                         BUG();
2742                         return;
2743                 }
2744         } else if (cmd_type == TYPE_MSG) {
2745                 switch (cmd) {
2746
2747                 case  HPSA_DEVICE_RESET_MSG:
2748                         c->Request.CDBLen = 16;
2749                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2750                         c->Request.Type.Attribute = ATTR_SIMPLE;
2751                         c->Request.Type.Direction = XFER_NONE;
2752                         c->Request.Timeout = 0; /* Don't time out */
2753                         c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */
2754                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2755                         /* If bytes 4-7 are zero, it means reset the */
2756                         /* LunID device */
2757                         c->Request.CDB[4] = 0x00;
2758                         c->Request.CDB[5] = 0x00;
2759                         c->Request.CDB[6] = 0x00;
2760                         c->Request.CDB[7] = 0x00;
2761                 break;
2762
2763                 default:
2764                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2765                                 cmd);
2766                         BUG();
2767                 }
2768         } else {
2769                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2770                 BUG();
2771         }
2772
2773         switch (c->Request.Type.Direction) {
2774         case XFER_READ:
2775                 pci_dir = PCI_DMA_FROMDEVICE;
2776                 break;
2777         case XFER_WRITE:
2778                 pci_dir = PCI_DMA_TODEVICE;
2779                 break;
2780         case XFER_NONE:
2781                 pci_dir = PCI_DMA_NONE;
2782                 break;
2783         default:
2784                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2785         }
2786
2787         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2788
2789         return;
2790 }
2791
2792 /*
2793  * Map (physical) PCI mem into (virtual) kernel space
2794  */
2795 static void __iomem *remap_pci_mem(ulong base, ulong size)
2796 {
2797         ulong page_base = ((ulong) base) & PAGE_MASK;
2798         ulong page_offs = ((ulong) base) - page_base;
2799         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2800
2801         return page_remapped ? (page_remapped + page_offs) : NULL;
2802 }
2803
2804 /* Takes cmds off the submission queue and sends them to the hardware,
2805  * then puts them on the queue of cmds waiting for completion.
2806  */
2807 static void start_io(struct ctlr_info *h)
2808 {
2809         struct CommandList *c;
2810
2811         while (!hlist_empty(&h->reqQ)) {
2812                 c = hlist_entry(h->reqQ.first, struct CommandList, list);
2813                 /* can't do anything if fifo is full */
2814                 if ((h->access.fifo_full(h))) {
2815                         dev_warn(&h->pdev->dev, "fifo full\n");
2816                         break;
2817                 }
2818
2819                 /* Get the first entry from the Request Q */
2820                 removeQ(c);
2821                 h->Qdepth--;
2822
2823                 /* Tell the controller execute command */
2824                 h->access.submit_command(h, c);
2825
2826                 /* Put job onto the completed Q */
2827                 addQ(&h->cmpQ, c);
2828         }
2829 }
2830
2831 static inline unsigned long get_next_completion(struct ctlr_info *h)
2832 {
2833         return h->access.command_completed(h);
2834 }
2835
2836 static inline bool interrupt_pending(struct ctlr_info *h)
2837 {
2838         return h->access.intr_pending(h);
2839 }
2840
2841 static inline long interrupt_not_for_us(struct ctlr_info *h)
2842 {
2843         return !(h->msi_vector || h->msix_vector) &&
2844                 ((h->access.intr_pending(h) == 0) ||
2845                 (h->interrupts_enabled == 0));
2846 }
2847
2848 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2849         u32 raw_tag)
2850 {
2851         if (unlikely(tag_index >= h->nr_cmds)) {
2852                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2853                 return 1;
2854         }
2855         return 0;
2856 }
2857
2858 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2859 {
2860         removeQ(c);
2861         if (likely(c->cmd_type == CMD_SCSI))
2862                 complete_scsi_command(c, 0, raw_tag);
2863         else if (c->cmd_type == CMD_IOCTL_PEND)
2864                 complete(c->waiting);
2865 }
2866
2867 static inline u32 hpsa_tag_contains_index(u32 tag)
2868 {
2869 #define DIRECT_LOOKUP_BIT 0x10
2870         return tag & DIRECT_LOOKUP_BIT;
2871 }
2872
2873 static inline u32 hpsa_tag_to_index(u32 tag)
2874 {
2875 #define DIRECT_LOOKUP_SHIFT 5
2876         return tag >> DIRECT_LOOKUP_SHIFT;
2877 }
2878
2879 static inline u32 hpsa_tag_discard_error_bits(u32 tag)
2880 {
2881 #define HPSA_ERROR_BITS 0x03
2882         return tag & ~HPSA_ERROR_BITS;
2883 }
2884
2885 /* process completion of an indexed ("direct lookup") command */
2886 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2887         u32 raw_tag)
2888 {
2889         u32 tag_index;
2890         struct CommandList *c;
2891
2892         tag_index = hpsa_tag_to_index(raw_tag);
2893         if (bad_tag(h, tag_index, raw_tag))
2894                 return next_command(h);
2895         c = h->cmd_pool + tag_index;
2896         finish_cmd(c, raw_tag);
2897         return next_command(h);
2898 }
2899
2900 /* process completion of a non-indexed command */
2901 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2902         u32 raw_tag)
2903 {
2904         u32 tag;
2905         struct CommandList *c = NULL;
2906         struct hlist_node *tmp;
2907
2908         tag = hpsa_tag_discard_error_bits(raw_tag);
2909         hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
2910                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2911                         finish_cmd(c, raw_tag);
2912                         return next_command(h);
2913                 }
2914         }
2915         bad_tag(h, h->nr_cmds + 1, raw_tag);
2916         return next_command(h);
2917 }
2918
2919 static irqreturn_t do_hpsa_intr(int irq, void *dev_id)
2920 {
2921         struct ctlr_info *h = dev_id;
2922         unsigned long flags;
2923         u32 raw_tag;
2924
2925         if (interrupt_not_for_us(h))
2926                 return IRQ_NONE;
2927         spin_lock_irqsave(&h->lock, flags);
2928         raw_tag = get_next_completion(h);
2929         while (raw_tag != FIFO_EMPTY) {
2930                 if (hpsa_tag_contains_index(raw_tag))
2931                         raw_tag = process_indexed_cmd(h, raw_tag);
2932                 else
2933                         raw_tag = process_nonindexed_cmd(h, raw_tag);
2934         }
2935         spin_unlock_irqrestore(&h->lock, flags);
2936         return IRQ_HANDLED;
2937 }
2938
2939 /* Send a message CDB to the firmware. */
2940 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
2941                                                 unsigned char type)
2942 {
2943         struct Command {
2944                 struct CommandListHeader CommandHeader;
2945                 struct RequestBlock Request;
2946                 struct ErrDescriptor ErrorDescriptor;
2947         };
2948         struct Command *cmd;
2949         static const size_t cmd_sz = sizeof(*cmd) +
2950                                         sizeof(cmd->ErrorDescriptor);
2951         dma_addr_t paddr64;
2952         uint32_t paddr32, tag;
2953         void __iomem *vaddr;
2954         int i, err;
2955
2956         vaddr = pci_ioremap_bar(pdev, 0);
2957         if (vaddr == NULL)
2958                 return -ENOMEM;
2959
2960         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
2961          * CCISS commands, so they must be allocated from the lower 4GiB of
2962          * memory.
2963          */
2964         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2965         if (err) {
2966                 iounmap(vaddr);
2967                 return -ENOMEM;
2968         }
2969
2970         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
2971         if (cmd == NULL) {
2972                 iounmap(vaddr);
2973                 return -ENOMEM;
2974         }
2975
2976         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
2977          * although there's no guarantee, we assume that the address is at
2978          * least 4-byte aligned (most likely, it's page-aligned).
2979          */
2980         paddr32 = paddr64;
2981
2982         cmd->CommandHeader.ReplyQueue = 0;
2983         cmd->CommandHeader.SGList = 0;
2984         cmd->CommandHeader.SGTotal = 0;
2985         cmd->CommandHeader.Tag.lower = paddr32;
2986         cmd->CommandHeader.Tag.upper = 0;
2987         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
2988
2989         cmd->Request.CDBLen = 16;
2990         cmd->Request.Type.Type = TYPE_MSG;
2991         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
2992         cmd->Request.Type.Direction = XFER_NONE;
2993         cmd->Request.Timeout = 0; /* Don't time out */
2994         cmd->Request.CDB[0] = opcode;
2995         cmd->Request.CDB[1] = type;
2996         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
2997         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
2998         cmd->ErrorDescriptor.Addr.upper = 0;
2999         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3000
3001         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3002
3003         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3004                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3005                 if (hpsa_tag_discard_error_bits(tag) == paddr32)
3006                         break;
3007                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3008         }
3009
3010         iounmap(vaddr);
3011
3012         /* we leak the DMA buffer here ... no choice since the controller could
3013          *  still complete the command.
3014          */
3015         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3016                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3017                         opcode, type);
3018                 return -ETIMEDOUT;
3019         }
3020
3021         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3022
3023         if (tag & HPSA_ERROR_BIT) {
3024                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3025                         opcode, type);
3026                 return -EIO;
3027         }
3028
3029         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3030                 opcode, type);
3031         return 0;
3032 }
3033
3034 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
3035 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3036
3037 static __devinit int hpsa_reset_msi(struct pci_dev *pdev)
3038 {
3039 /* the #defines are stolen from drivers/pci/msi.h. */
3040 #define msi_control_reg(base)           (base + PCI_MSI_FLAGS)
3041 #define PCI_MSIX_FLAGS_ENABLE           (1 << 15)
3042
3043         int pos;
3044         u16 control = 0;
3045
3046         pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
3047         if (pos) {
3048                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3049                 if (control & PCI_MSI_FLAGS_ENABLE) {
3050                         dev_info(&pdev->dev, "resetting MSI\n");
3051                         pci_write_config_word(pdev, msi_control_reg(pos),
3052                                         control & ~PCI_MSI_FLAGS_ENABLE);
3053                 }
3054         }
3055
3056         pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
3057         if (pos) {
3058                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3059                 if (control & PCI_MSIX_FLAGS_ENABLE) {
3060                         dev_info(&pdev->dev, "resetting MSI-X\n");
3061                         pci_write_config_word(pdev, msi_control_reg(pos),
3062                                         control & ~PCI_MSIX_FLAGS_ENABLE);
3063                 }
3064         }
3065
3066         return 0;
3067 }
3068
3069 /* This does a hard reset of the controller using PCI power management
3070  * states.
3071  */
3072 static __devinit int hpsa_hard_reset_controller(struct pci_dev *pdev)
3073 {
3074         u16 pmcsr, saved_config_space[32];
3075         int i, pos;
3076
3077         dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3078
3079         /* This is very nearly the same thing as
3080          *
3081          * pci_save_state(pci_dev);
3082          * pci_set_power_state(pci_dev, PCI_D3hot);
3083          * pci_set_power_state(pci_dev, PCI_D0);
3084          * pci_restore_state(pci_dev);
3085          *
3086          * but we can't use these nice canned kernel routines on
3087          * kexec, because they also check the MSI/MSI-X state in PCI
3088          * configuration space and do the wrong thing when it is
3089          * set/cleared.  Also, the pci_save/restore_state functions
3090          * violate the ordering requirements for restoring the
3091          * configuration space from the CCISS document (see the
3092          * comment below).  So we roll our own ....
3093          */
3094
3095         for (i = 0; i < 32; i++)
3096                 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
3097
3098         pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3099         if (pos == 0) {
3100                 dev_err(&pdev->dev,
3101                         "hpsa_reset_controller: PCI PM not supported\n");
3102                 return -ENODEV;
3103         }
3104
3105         /* Quoting from the Open CISS Specification: "The Power
3106          * Management Control/Status Register (CSR) controls the power
3107          * state of the device.  The normal operating state is D0,
3108          * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3109          * the controller, place the interface device in D3 then to
3110          * D0, this causes a secondary PCI reset which will reset the
3111          * controller."
3112          */
3113
3114         /* enter the D3hot power management state */
3115         pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3116         pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3117         pmcsr |= PCI_D3hot;
3118         pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3119
3120         msleep(500);
3121
3122         /* enter the D0 power management state */
3123         pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3124         pmcsr |= PCI_D0;
3125         pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3126
3127         msleep(500);
3128
3129         /* Restore the PCI configuration space.  The Open CISS
3130          * Specification says, "Restore the PCI Configuration
3131          * Registers, offsets 00h through 60h. It is important to
3132          * restore the command register, 16-bits at offset 04h,
3133          * last. Do not restore the configuration status register,
3134          * 16-bits at offset 06h."  Note that the offset is 2*i.
3135          */
3136         for (i = 0; i < 32; i++) {
3137                 if (i == 2 || i == 3)
3138                         continue;
3139                 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
3140         }
3141         wmb();
3142         pci_write_config_word(pdev, 4, saved_config_space[2]);
3143
3144         return 0;
3145 }
3146
3147 /*
3148  *  We cannot read the structure directly, for portability we must use
3149  *   the io functions.
3150  *   This is for debug only.
3151  */
3152 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3153 {
3154 #ifdef HPSA_DEBUG
3155         int i;
3156         char temp_name[17];
3157
3158         dev_info(dev, "Controller Configuration information\n");
3159         dev_info(dev, "------------------------------------\n");
3160         for (i = 0; i < 4; i++)
3161                 temp_name[i] = readb(&(tb->Signature[i]));
3162         temp_name[4] = '\0';
3163         dev_info(dev, "   Signature = %s\n", temp_name);
3164         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3165         dev_info(dev, "   Transport methods supported = 0x%x\n",
3166                readl(&(tb->TransportSupport)));
3167         dev_info(dev, "   Transport methods active = 0x%x\n",
3168                readl(&(tb->TransportActive)));
3169         dev_info(dev, "   Requested transport Method = 0x%x\n",
3170                readl(&(tb->HostWrite.TransportRequest)));
3171         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3172                readl(&(tb->HostWrite.CoalIntDelay)));
3173         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3174                readl(&(tb->HostWrite.CoalIntCount)));
3175         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3176                readl(&(tb->CmdsOutMax)));
3177         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3178         for (i = 0; i < 16; i++)
3179                 temp_name[i] = readb(&(tb->ServerName[i]));
3180         temp_name[16] = '\0';
3181         dev_info(dev, "   Server Name = %s\n", temp_name);
3182         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3183                 readl(&(tb->HeartBeat)));
3184 #endif                          /* HPSA_DEBUG */
3185 }
3186
3187 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3188 {
3189         int i, offset, mem_type, bar_type;
3190
3191         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3192                 return 0;
3193         offset = 0;
3194         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3195                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3196                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3197                         offset += 4;
3198                 else {
3199                         mem_type = pci_resource_flags(pdev, i) &
3200                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3201                         switch (mem_type) {
3202                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3203                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3204                                 offset += 4;    /* 32 bit */
3205                                 break;
3206                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3207                                 offset += 8;
3208                                 break;
3209                         default:        /* reserved in PCI 2.2 */
3210                                 dev_warn(&pdev->dev,
3211                                        "base address is invalid\n");
3212                                 return -1;
3213                                 break;
3214                         }
3215                 }
3216                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3217                         return i + 1;
3218         }
3219         return -1;
3220 }
3221
3222 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3223  * controllers that are capable. If not, we use IO-APIC mode.
3224  */
3225
3226 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3227 {
3228 #ifdef CONFIG_PCI_MSI
3229         int err;
3230         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3231         {0, 2}, {0, 3}
3232         };
3233
3234         /* Some boards advertise MSI but don't really support it */
3235         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3236             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3237                 goto default_int_mode;
3238         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3239                 dev_info(&h->pdev->dev, "MSIX\n");
3240                 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3241                 if (!err) {
3242                         h->intr[0] = hpsa_msix_entries[0].vector;
3243                         h->intr[1] = hpsa_msix_entries[1].vector;
3244                         h->intr[2] = hpsa_msix_entries[2].vector;
3245                         h->intr[3] = hpsa_msix_entries[3].vector;
3246                         h->msix_vector = 1;
3247                         return;
3248                 }
3249                 if (err > 0) {
3250                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3251                                "available\n", err);
3252                         goto default_int_mode;
3253                 } else {
3254                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3255                                err);
3256                         goto default_int_mode;
3257                 }
3258         }
3259         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3260                 dev_info(&h->pdev->dev, "MSI\n");
3261                 if (!pci_enable_msi(h->pdev))
3262                         h->msi_vector = 1;
3263                 else
3264                         dev_warn(&h->pdev->dev, "MSI init failed\n");
3265         }
3266 default_int_mode:
3267 #endif                          /* CONFIG_PCI_MSI */
3268         /* if we get here we're going to use the default interrupt mode */
3269         h->intr[PERF_MODE_INT] = h->pdev->irq;
3270 }
3271
3272 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3273 {
3274         int i;
3275         u32 subsystem_vendor_id, subsystem_device_id;
3276
3277         subsystem_vendor_id = pdev->subsystem_vendor;
3278         subsystem_device_id = pdev->subsystem_device;
3279         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3280                     subsystem_vendor_id;
3281
3282         for (i = 0; i < ARRAY_SIZE(products); i++)
3283                 if (*board_id == products[i].board_id)
3284                         return i;
3285
3286         if (subsystem_vendor_id != PCI_VENDOR_ID_HP || !hpsa_allow_any) {
3287                 dev_warn(&pdev->dev, "unrecognized board ID: "
3288                         "0x%08x, ignoring.\n", *board_id);
3289                         return -ENODEV;
3290         }
3291         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3292 }
3293
3294 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3295 {
3296         u16 command;
3297
3298         (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3299         return ((command & PCI_COMMAND_MEMORY) == 0);
3300 }
3301
3302 static int __devinit hpsa_pci_find_memory_BAR(struct ctlr_info *h,
3303         unsigned long *memory_bar)
3304 {
3305         int i;
3306
3307         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3308                 if (pci_resource_flags(h->pdev, i) & IORESOURCE_MEM) {
3309                         /* addressing mode bits already removed */
3310                         *memory_bar = pci_resource_start(h->pdev, i);
3311                         dev_dbg(&h->pdev->dev, "memory BAR = %lx\n",
3312                                 *memory_bar);
3313                         return 0;
3314                 }
3315         dev_warn(&h->pdev->dev, "no memory BAR found\n");
3316         return -ENODEV;
3317 }
3318
3319 static int __devinit hpsa_wait_for_board_ready(struct ctlr_info *h)
3320 {
3321         int i;
3322         u32 scratchpad;
3323
3324         for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) {
3325                 scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
3326                 if (scratchpad == HPSA_FIRMWARE_READY)
3327                         return 0;
3328                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3329         }
3330         dev_warn(&h->pdev->dev, "board not ready, timed out.\n");
3331         return -ENODEV;
3332 }
3333
3334 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3335 {
3336         u64 cfg_offset;
3337         u32 cfg_base_addr;
3338         u64 cfg_base_addr_index;
3339         u32 trans_offset;
3340
3341         /* get the address index number */
3342         cfg_base_addr = readl(h->vaddr + SA5_CTCFG_OFFSET);
3343         cfg_base_addr &= (u32) 0x0000ffff;
3344         cfg_base_addr_index = find_PCI_BAR_index(h->pdev, cfg_base_addr);
3345         if (cfg_base_addr_index == -1) {
3346                 dev_warn(&h->pdev->dev, "cannot find cfg_base_addr_index\n");
3347                 return -ENODEV;
3348         }
3349         cfg_offset = readl(h->vaddr + SA5_CTMEM_OFFSET);
3350         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3351                                cfg_base_addr_index) + cfg_offset,
3352                                 sizeof(h->cfgtable));
3353         if (!h->cfgtable)
3354                 return -ENOMEM;
3355         /* Find performant mode table. */
3356         trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3357         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3358                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3359                                 sizeof(*h->transtable));
3360         if (!h->transtable)
3361                 return -ENOMEM;
3362         return 0;
3363 }
3364
3365 /* Interrogate the hardware for some limits:
3366  * max commands, max SG elements without chaining, and with chaining,
3367  * SG chain block size, etc.
3368  */
3369 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3370 {
3371         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3372         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3373         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3374         /*
3375          * Limit in-command s/g elements to 32 save dma'able memory.
3376          * Howvever spec says if 0, use 31
3377          */
3378         h->max_cmd_sg_entries = 31;
3379         if (h->maxsgentries > 512) {
3380                 h->max_cmd_sg_entries = 32;
3381                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3382                 h->maxsgentries--; /* save one for chain pointer */
3383         } else {
3384                 h->maxsgentries = 31; /* default to traditional values */
3385                 h->chainsize = 0;
3386         }
3387 }
3388
3389 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3390 {
3391         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3392             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3393             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3394             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3395                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3396                 return false;
3397         }
3398         return true;
3399 }
3400
3401 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3402 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3403 {
3404 #ifdef CONFIG_X86
3405         u32 prefetch;
3406
3407         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3408         prefetch |= 0x100;
3409         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3410 #endif
3411 }
3412
3413 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3414  * in a prefetch beyond physical memory.
3415  */
3416 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3417 {
3418         u32 dma_prefetch;
3419
3420         if (h->board_id != 0x3225103C)
3421                 return;
3422         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3423         dma_prefetch |= 0x8000;
3424         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3425 }
3426
3427 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3428 {
3429         int i;
3430
3431         /* under certain very rare conditions, this can take awhile.
3432          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3433          * as we enter this code.)
3434          */
3435         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3436                 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3437                         break;
3438                 /* delay and try again */
3439                 msleep(10);
3440         }
3441 }
3442
3443 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3444 {
3445         u32 trans_support;
3446
3447         trans_support = readl(&(h->cfgtable->TransportSupport));
3448         if (!(trans_support & SIMPLE_MODE))
3449                 return -ENOTSUPP;
3450
3451         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3452         /* Update the field, and then ring the doorbell */
3453         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3454         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3455         hpsa_wait_for_mode_change_ack(h);
3456         print_cfg_table(&h->pdev->dev, h->cfgtable);
3457         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3458                 dev_warn(&h->pdev->dev,
3459                         "unable to get board into simple mode\n");
3460                 return -ENODEV;
3461         }
3462         return 0;
3463 }
3464
3465 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3466 {
3467         int prod_index, err;
3468
3469         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3470         if (prod_index < 0)
3471                 return -ENODEV;
3472         h->product_name = products[prod_index].product_name;
3473         h->access = *(products[prod_index].access);
3474
3475         if (hpsa_board_disabled(h->pdev)) {
3476                 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3477                 return -ENODEV;
3478         }
3479         err = pci_enable_device(h->pdev);
3480         if (err) {
3481                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3482                 return err;
3483         }
3484
3485         err = pci_request_regions(h->pdev, "hpsa");
3486         if (err) {
3487                 dev_err(&h->pdev->dev,
3488                         "cannot obtain PCI resources, aborting\n");
3489                 return err;
3490         }
3491         hpsa_interrupt_mode(h);
3492         err = hpsa_pci_find_memory_BAR(h, &h->paddr);
3493         if (err)
3494                 goto err_out_free_res;
3495         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3496         if (!h->vaddr) {
3497                 err = -ENOMEM;
3498                 goto err_out_free_res;
3499         }
3500         err = hpsa_wait_for_board_ready(h);
3501         if (err)
3502                 goto err_out_free_res;
3503         err = hpsa_find_cfgtables(h);
3504         if (err)
3505                 goto err_out_free_res;
3506         hpsa_find_board_params(h);
3507
3508         if (!hpsa_CISS_signature_present(h)) {
3509                 err = -ENODEV;
3510                 goto err_out_free_res;
3511         }
3512         hpsa_enable_scsi_prefetch(h);
3513         hpsa_p600_dma_prefetch_quirk(h);
3514         err = hpsa_enter_simple_mode(h);
3515         if (err)
3516                 goto err_out_free_res;
3517         return 0;
3518
3519 err_out_free_res:
3520         if (h->transtable)
3521                 iounmap(h->transtable);
3522         if (h->cfgtable)
3523                 iounmap(h->cfgtable);
3524         if (h->vaddr)
3525                 iounmap(h->vaddr);
3526         /*
3527          * Deliberately omit pci_disable_device(): it does something nasty to
3528          * Smart Array controllers that pci_enable_device does not undo
3529          */
3530         pci_release_regions(h->pdev);
3531         return err;
3532 }
3533
3534 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3535 {
3536         int rc;
3537
3538 #define HBA_INQUIRY_BYTE_COUNT 64
3539         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3540         if (!h->hba_inquiry_data)
3541                 return;
3542         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3543                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3544         if (rc != 0) {
3545                 kfree(h->hba_inquiry_data);
3546                 h->hba_inquiry_data = NULL;
3547         }
3548 }
3549
3550 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3551                                     const struct pci_device_id *ent)
3552 {
3553         int i, rc;
3554         int dac;
3555         struct ctlr_info *h;
3556
3557         if (number_of_controllers == 0)
3558                 printk(KERN_INFO DRIVER_NAME "\n");
3559         if (reset_devices) {
3560                 /* Reset the controller with a PCI power-cycle */
3561                 if (hpsa_hard_reset_controller(pdev) || hpsa_reset_msi(pdev))
3562                         return -ENODEV;
3563
3564                 /* Some devices (notably the HP Smart Array 5i Controller)
3565                    need a little pause here */
3566                 msleep(HPSA_POST_RESET_PAUSE_MSECS);
3567
3568                 /* Now try to get the controller to respond to a no-op */
3569                 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3570                         if (hpsa_noop(pdev) == 0)
3571                                 break;
3572                         else
3573                                 dev_warn(&pdev->dev, "no-op failed%s\n",
3574                                                 (i < 11 ? "; re-trying" : ""));
3575                 }
3576         }
3577
3578         /* Command structures must be aligned on a 32-byte boundary because
3579          * the 5 lower bits of the address are used by the hardware. and by
3580          * the driver.  See comments in hpsa.h for more info.
3581          */
3582 #define COMMANDLIST_ALIGNMENT 32
3583         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3584         h = kzalloc(sizeof(*h), GFP_KERNEL);
3585         if (!h)
3586                 return -ENOMEM;
3587
3588         h->pdev = pdev;
3589         h->busy_initializing = 1;
3590         INIT_HLIST_HEAD(&h->cmpQ);
3591         INIT_HLIST_HEAD(&h->reqQ);
3592         rc = hpsa_pci_init(h);
3593         if (rc != 0)
3594                 goto clean1;
3595
3596         sprintf(h->devname, "hpsa%d", number_of_controllers);
3597         h->ctlr = number_of_controllers;
3598         number_of_controllers++;
3599
3600         /* configure PCI DMA stuff */
3601         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3602         if (rc == 0) {
3603                 dac = 1;
3604         } else {
3605                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3606                 if (rc == 0) {
3607                         dac = 0;
3608                 } else {
3609                         dev_err(&pdev->dev, "no suitable DMA available\n");
3610                         goto clean1;
3611                 }
3612         }
3613
3614         /* make sure the board interrupts are off */
3615         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3616         rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr,
3617                         IRQF_DISABLED, h->devname, h);
3618         if (rc) {
3619                 dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3620                        h->intr[PERF_MODE_INT], h->devname);
3621                 goto clean2;
3622         }
3623
3624         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3625                h->devname, pdev->device,
3626                h->intr[PERF_MODE_INT], dac ? "" : " not");
3627
3628         h->cmd_pool_bits =
3629             kmalloc(((h->nr_cmds + BITS_PER_LONG -
3630                       1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3631         h->cmd_pool = pci_alloc_consistent(h->pdev,
3632                     h->nr_cmds * sizeof(*h->cmd_pool),
3633                     &(h->cmd_pool_dhandle));
3634         h->errinfo_pool = pci_alloc_consistent(h->pdev,
3635                     h->nr_cmds * sizeof(*h->errinfo_pool),
3636                     &(h->errinfo_pool_dhandle));
3637         if ((h->cmd_pool_bits == NULL)
3638             || (h->cmd_pool == NULL)
3639             || (h->errinfo_pool == NULL)) {
3640                 dev_err(&pdev->dev, "out of memory");
3641                 rc = -ENOMEM;
3642                 goto clean4;
3643         }
3644         if (hpsa_allocate_sg_chain_blocks(h))
3645                 goto clean4;
3646         spin_lock_init(&h->lock);
3647         spin_lock_init(&h->scan_lock);
3648         init_waitqueue_head(&h->scan_wait_queue);
3649         h->scan_finished = 1; /* no scan currently in progress */
3650
3651         pci_set_drvdata(pdev, h);
3652         memset(h->cmd_pool_bits, 0,
3653                ((h->nr_cmds + BITS_PER_LONG -
3654                  1) / BITS_PER_LONG) * sizeof(unsigned long));
3655
3656         hpsa_scsi_setup(h);
3657
3658         /* Turn the interrupts on so we can service requests */
3659         h->access.set_intr_mask(h, HPSA_INTR_ON);
3660
3661         hpsa_put_ctlr_into_performant_mode(h);
3662         hpsa_hba_inquiry(h);
3663         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
3664         h->busy_initializing = 0;
3665         return 1;
3666
3667 clean4:
3668         hpsa_free_sg_chain_blocks(h);
3669         kfree(h->cmd_pool_bits);
3670         if (h->cmd_pool)
3671                 pci_free_consistent(h->pdev,
3672                             h->nr_cmds * sizeof(struct CommandList),
3673                             h->cmd_pool, h->cmd_pool_dhandle);
3674         if (h->errinfo_pool)
3675                 pci_free_consistent(h->pdev,
3676                             h->nr_cmds * sizeof(struct ErrorInfo),
3677                             h->errinfo_pool,
3678                             h->errinfo_pool_dhandle);
3679         free_irq(h->intr[PERF_MODE_INT], h);
3680 clean2:
3681 clean1:
3682         h->busy_initializing = 0;
3683         kfree(h);
3684         return rc;
3685 }
3686
3687 static void hpsa_flush_cache(struct ctlr_info *h)
3688 {
3689         char *flush_buf;
3690         struct CommandList *c;
3691
3692         flush_buf = kzalloc(4, GFP_KERNEL);
3693         if (!flush_buf)
3694                 return;
3695
3696         c = cmd_special_alloc(h);
3697         if (!c) {
3698                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3699                 goto out_of_memory;
3700         }
3701         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3702                 RAID_CTLR_LUNID, TYPE_CMD);
3703         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3704         if (c->err_info->CommandStatus != 0)
3705                 dev_warn(&h->pdev->dev,
3706                         "error flushing cache on controller\n");
3707         cmd_special_free(h, c);
3708 out_of_memory:
3709         kfree(flush_buf);
3710 }
3711
3712 static void hpsa_shutdown(struct pci_dev *pdev)
3713 {
3714         struct ctlr_info *h;
3715
3716         h = pci_get_drvdata(pdev);
3717         /* Turn board interrupts off  and send the flush cache command
3718          * sendcmd will turn off interrupt, and send the flush...
3719          * To write all data in the battery backed cache to disks
3720          */
3721         hpsa_flush_cache(h);
3722         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3723         free_irq(h->intr[PERF_MODE_INT], h);
3724 #ifdef CONFIG_PCI_MSI
3725         if (h->msix_vector)
3726                 pci_disable_msix(h->pdev);
3727         else if (h->msi_vector)
3728                 pci_disable_msi(h->pdev);
3729 #endif                          /* CONFIG_PCI_MSI */
3730 }
3731
3732 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3733 {
3734         struct ctlr_info *h;
3735
3736         if (pci_get_drvdata(pdev) == NULL) {
3737                 dev_err(&pdev->dev, "unable to remove device \n");
3738                 return;
3739         }
3740         h = pci_get_drvdata(pdev);
3741         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
3742         hpsa_shutdown(pdev);
3743         iounmap(h->vaddr);
3744         iounmap(h->transtable);
3745         iounmap(h->cfgtable);
3746         hpsa_free_sg_chain_blocks(h);
3747         pci_free_consistent(h->pdev,
3748                 h->nr_cmds * sizeof(struct CommandList),
3749                 h->cmd_pool, h->cmd_pool_dhandle);
3750         pci_free_consistent(h->pdev,
3751                 h->nr_cmds * sizeof(struct ErrorInfo),
3752                 h->errinfo_pool, h->errinfo_pool_dhandle);
3753         pci_free_consistent(h->pdev, h->reply_pool_size,
3754                 h->reply_pool, h->reply_pool_dhandle);
3755         kfree(h->cmd_pool_bits);
3756         kfree(h->blockFetchTable);
3757         kfree(h->hba_inquiry_data);
3758         /*
3759          * Deliberately omit pci_disable_device(): it does something nasty to
3760          * Smart Array controllers that pci_enable_device does not undo
3761          */
3762         pci_release_regions(pdev);
3763         pci_set_drvdata(pdev, NULL);
3764         kfree(h);
3765 }
3766
3767 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
3768         __attribute__((unused)) pm_message_t state)
3769 {
3770         return -ENOSYS;
3771 }
3772
3773 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
3774 {
3775         return -ENOSYS;
3776 }
3777
3778 static struct pci_driver hpsa_pci_driver = {
3779         .name = "hpsa",
3780         .probe = hpsa_init_one,
3781         .remove = __devexit_p(hpsa_remove_one),
3782         .id_table = hpsa_pci_device_id, /* id_table */
3783         .shutdown = hpsa_shutdown,
3784         .suspend = hpsa_suspend,
3785         .resume = hpsa_resume,
3786 };
3787
3788 /* Fill in bucket_map[], given nsgs (the max number of
3789  * scatter gather elements supported) and bucket[],
3790  * which is an array of 8 integers.  The bucket[] array
3791  * contains 8 different DMA transfer sizes (in 16
3792  * byte increments) which the controller uses to fetch
3793  * commands.  This function fills in bucket_map[], which
3794  * maps a given number of scatter gather elements to one of
3795  * the 8 DMA transfer sizes.  The point of it is to allow the
3796  * controller to only do as much DMA as needed to fetch the
3797  * command, with the DMA transfer size encoded in the lower
3798  * bits of the command address.
3799  */
3800 static void  calc_bucket_map(int bucket[], int num_buckets,
3801         int nsgs, int *bucket_map)
3802 {
3803         int i, j, b, size;
3804
3805         /* even a command with 0 SGs requires 4 blocks */
3806 #define MINIMUM_TRANSFER_BLOCKS 4
3807 #define NUM_BUCKETS 8
3808         /* Note, bucket_map must have nsgs+1 entries. */
3809         for (i = 0; i <= nsgs; i++) {
3810                 /* Compute size of a command with i SG entries */
3811                 size = i + MINIMUM_TRANSFER_BLOCKS;
3812                 b = num_buckets; /* Assume the biggest bucket */
3813                 /* Find the bucket that is just big enough */
3814                 for (j = 0; j < 8; j++) {
3815                         if (bucket[j] >= size) {
3816                                 b = j;
3817                                 break;
3818                         }
3819                 }
3820                 /* for a command with i SG entries, use bucket b. */
3821                 bucket_map[i] = b;
3822         }
3823 }
3824
3825 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h)
3826 {
3827         int i;
3828         unsigned long register_value;
3829         int bft[8] = {5, 6, 8, 10, 12, 20, 28, 35}; /* for scatter/gathers */
3830         /*  5 = 1 s/g entry or 4k
3831          *  6 = 2 s/g entry or 8k
3832          *  8 = 4 s/g entry or 16k
3833          * 10 = 6 s/g entry or 24k
3834          */
3835
3836         h->reply_pool_wraparound = 1; /* spec: init to 1 */
3837
3838         /* Controller spec: zero out this buffer. */
3839         memset(h->reply_pool, 0, h->reply_pool_size);
3840         h->reply_pool_head = h->reply_pool;
3841
3842         bft[7] = h->max_sg_entries + 4;
3843         calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
3844         for (i = 0; i < 8; i++)
3845                 writel(bft[i], &h->transtable->BlockFetch[i]);
3846
3847         /* size of controller ring buffer */
3848         writel(h->max_commands, &h->transtable->RepQSize);
3849         writel(1, &h->transtable->RepQCount);
3850         writel(0, &h->transtable->RepQCtrAddrLow32);
3851         writel(0, &h->transtable->RepQCtrAddrHigh32);
3852         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3853         writel(0, &h->transtable->RepQAddr0High32);
3854         writel(CFGTBL_Trans_Performant,
3855                 &(h->cfgtable->HostWrite.TransportRequest));
3856         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3857         hpsa_wait_for_mode_change_ack(h);
3858         register_value = readl(&(h->cfgtable->TransportActive));
3859         if (!(register_value & CFGTBL_Trans_Performant)) {
3860                 dev_warn(&h->pdev->dev, "unable to get board into"
3861                                         " performant mode\n");
3862                 return;
3863         }
3864 }
3865
3866 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
3867 {
3868         u32 trans_support;
3869
3870         trans_support = readl(&(h->cfgtable->TransportSupport));
3871         if (!(trans_support & PERFORMANT_MODE))
3872                 return;
3873
3874         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3875         h->max_sg_entries = 32;
3876         /* Performant mode ring buffer and supporting data structures */
3877         h->reply_pool_size = h->max_commands * sizeof(u64);
3878         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
3879                                 &(h->reply_pool_dhandle));
3880
3881         /* Need a block fetch table for performant mode */
3882         h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
3883                                 sizeof(u32)), GFP_KERNEL);
3884
3885         if ((h->reply_pool == NULL)
3886                 || (h->blockFetchTable == NULL))
3887                 goto clean_up;
3888
3889         hpsa_enter_performant_mode(h);
3890
3891         /* Change the access methods to the performant access methods */
3892         h->access = SA5_performant_access;
3893         h->transMethod = CFGTBL_Trans_Performant;
3894
3895         return;
3896
3897 clean_up:
3898         if (h->reply_pool)
3899                 pci_free_consistent(h->pdev, h->reply_pool_size,
3900                         h->reply_pool, h->reply_pool_dhandle);
3901         kfree(h->blockFetchTable);
3902 }
3903
3904 /*
3905  *  This is it.  Register the PCI driver information for the cards we control
3906  *  the OS will call our registered routines when it finds one of our cards.
3907  */
3908 static int __init hpsa_init(void)
3909 {
3910         return pci_register_driver(&hpsa_pci_driver);
3911 }
3912
3913 static void __exit hpsa_cleanup(void)
3914 {
3915         pci_unregister_driver(&hpsa_pci_driver);
3916 }
3917
3918 module_init(hpsa_init);
3919 module_exit(hpsa_cleanup);