]> Pileus Git - ~andy/linux/blob - drivers/scsi/hpsa.c
[SCSI] hpsa: Make "hpsa_allow_any=1" boot param enable Compaq Smart Arrays.
[~andy/linux] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp_lock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <asm/atomic.h>
51 #include <linux/kthread.h>
52 #include "hpsa_cmd.h"
53 #include "hpsa.h"
54
55 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
56 #define HPSA_DRIVER_VERSION "2.0.2-1"
57 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
58
59 /* How long to wait (in milliseconds) for board to go into simple mode */
60 #define MAX_CONFIG_WAIT 30000
61 #define MAX_IOCTL_CONFIG_WAIT 1000
62
63 /*define how many times we will try a command because of bus resets */
64 #define MAX_CMD_RETRIES 3
65
66 /* Embedded module documentation macros - see modules.h */
67 MODULE_AUTHOR("Hewlett-Packard Company");
68 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
69         HPSA_DRIVER_VERSION);
70 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
71 MODULE_VERSION(HPSA_DRIVER_VERSION);
72 MODULE_LICENSE("GPL");
73
74 static int hpsa_allow_any;
75 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
76 MODULE_PARM_DESC(hpsa_allow_any,
77                 "Allow hpsa driver to access unknown HP Smart Array hardware");
78
79 /* define the PCI info for the cards we can control */
80 static const struct pci_device_id hpsa_pci_device_id[] = {
81         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
82         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
83         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
84         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
85         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3250},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3251},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3252},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3253},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3254},
94 #define PCI_DEVICE_ID_HP_CISSF 0x333f
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x333F},
96         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,             PCI_ANY_ID, PCI_ANY_ID,
97                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
98         {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,             PCI_ANY_ID, PCI_ANY_ID,
99                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
100         {0,}
101 };
102
103 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
104
105 /*  board_id = Subsystem Device ID & Vendor ID
106  *  product = Marketing Name for the board
107  *  access = Address of the struct of function pointers
108  */
109 static struct board_type products[] = {
110         {0x3241103C, "Smart Array P212", &SA5_access},
111         {0x3243103C, "Smart Array P410", &SA5_access},
112         {0x3245103C, "Smart Array P410i", &SA5_access},
113         {0x3247103C, "Smart Array P411", &SA5_access},
114         {0x3249103C, "Smart Array P812", &SA5_access},
115         {0x324a103C, "Smart Array P712m", &SA5_access},
116         {0x324b103C, "Smart Array P711m", &SA5_access},
117         {0x3233103C, "StorageWorks P1210m", &SA5_access},
118         {0x333F103C, "StorageWorks P1210m", &SA5_access},
119         {0x3250103C, "Smart Array", &SA5_access},
120         {0x3250113C, "Smart Array", &SA5_access},
121         {0x3250123C, "Smart Array", &SA5_access},
122         {0x3250133C, "Smart Array", &SA5_access},
123         {0x3250143C, "Smart Array", &SA5_access},
124         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
125 };
126
127 static int number_of_controllers;
128
129 static irqreturn_t do_hpsa_intr(int irq, void *dev_id);
130 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
131 static void start_io(struct ctlr_info *h);
132
133 #ifdef CONFIG_COMPAT
134 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
135 #endif
136
137 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
138 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
139 static struct CommandList *cmd_alloc(struct ctlr_info *h);
140 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
141 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
142         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
143         int cmd_type);
144
145 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
146                 void (*done)(struct scsi_cmnd *));
147 static void hpsa_scan_start(struct Scsi_Host *);
148 static int hpsa_scan_finished(struct Scsi_Host *sh,
149         unsigned long elapsed_time);
150 static int hpsa_change_queue_depth(struct scsi_device *sdev,
151         int qdepth, int reason);
152
153 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
154 static int hpsa_slave_alloc(struct scsi_device *sdev);
155 static void hpsa_slave_destroy(struct scsi_device *sdev);
156
157 static ssize_t raid_level_show(struct device *dev,
158         struct device_attribute *attr, char *buf);
159 static ssize_t lunid_show(struct device *dev,
160         struct device_attribute *attr, char *buf);
161 static ssize_t unique_id_show(struct device *dev,
162         struct device_attribute *attr, char *buf);
163 static ssize_t host_show_firmware_revision(struct device *dev,
164              struct device_attribute *attr, char *buf);
165 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
166 static ssize_t host_store_rescan(struct device *dev,
167          struct device_attribute *attr, const char *buf, size_t count);
168 static int check_for_unit_attention(struct ctlr_info *h,
169         struct CommandList *c);
170 static void check_ioctl_unit_attention(struct ctlr_info *h,
171         struct CommandList *c);
172 /* performant mode helper functions */
173 static void calc_bucket_map(int *bucket, int num_buckets,
174         int nsgs, int *bucket_map);
175 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
176 static inline u32 next_command(struct ctlr_info *h);
177
178 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
179 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
180 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
181 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
182 static DEVICE_ATTR(firmware_revision, S_IRUGO,
183         host_show_firmware_revision, NULL);
184
185 static struct device_attribute *hpsa_sdev_attrs[] = {
186         &dev_attr_raid_level,
187         &dev_attr_lunid,
188         &dev_attr_unique_id,
189         NULL,
190 };
191
192 static struct device_attribute *hpsa_shost_attrs[] = {
193         &dev_attr_rescan,
194         &dev_attr_firmware_revision,
195         NULL,
196 };
197
198 static struct scsi_host_template hpsa_driver_template = {
199         .module                 = THIS_MODULE,
200         .name                   = "hpsa",
201         .proc_name              = "hpsa",
202         .queuecommand           = hpsa_scsi_queue_command,
203         .scan_start             = hpsa_scan_start,
204         .scan_finished          = hpsa_scan_finished,
205         .change_queue_depth     = hpsa_change_queue_depth,
206         .this_id                = -1,
207         .use_clustering         = ENABLE_CLUSTERING,
208         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
209         .ioctl                  = hpsa_ioctl,
210         .slave_alloc            = hpsa_slave_alloc,
211         .slave_destroy          = hpsa_slave_destroy,
212 #ifdef CONFIG_COMPAT
213         .compat_ioctl           = hpsa_compat_ioctl,
214 #endif
215         .sdev_attrs = hpsa_sdev_attrs,
216         .shost_attrs = hpsa_shost_attrs,
217 };
218
219 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
220 {
221         unsigned long *priv = shost_priv(sdev->host);
222         return (struct ctlr_info *) *priv;
223 }
224
225 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
226 {
227         unsigned long *priv = shost_priv(sh);
228         return (struct ctlr_info *) *priv;
229 }
230
231 static int check_for_unit_attention(struct ctlr_info *h,
232         struct CommandList *c)
233 {
234         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
235                 return 0;
236
237         switch (c->err_info->SenseInfo[12]) {
238         case STATE_CHANGED:
239                 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
240                         "detected, command retried\n", h->ctlr);
241                 break;
242         case LUN_FAILED:
243                 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
244                         "detected, action required\n", h->ctlr);
245                 break;
246         case REPORT_LUNS_CHANGED:
247                 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
248                         "changed, action required\n", h->ctlr);
249         /*
250          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
251          */
252                 break;
253         case POWER_OR_RESET:
254                 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
255                         "or device reset detected\n", h->ctlr);
256                 break;
257         case UNIT_ATTENTION_CLEARED:
258                 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
259                     "cleared by another initiator\n", h->ctlr);
260                 break;
261         default:
262                 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
263                         "unit attention detected\n", h->ctlr);
264                 break;
265         }
266         return 1;
267 }
268
269 static ssize_t host_store_rescan(struct device *dev,
270                                  struct device_attribute *attr,
271                                  const char *buf, size_t count)
272 {
273         struct ctlr_info *h;
274         struct Scsi_Host *shost = class_to_shost(dev);
275         h = shost_to_hba(shost);
276         hpsa_scan_start(h->scsi_host);
277         return count;
278 }
279
280 static ssize_t host_show_firmware_revision(struct device *dev,
281              struct device_attribute *attr, char *buf)
282 {
283         struct ctlr_info *h;
284         struct Scsi_Host *shost = class_to_shost(dev);
285         unsigned char *fwrev;
286
287         h = shost_to_hba(shost);
288         if (!h->hba_inquiry_data)
289                 return 0;
290         fwrev = &h->hba_inquiry_data[32];
291         return snprintf(buf, 20, "%c%c%c%c\n",
292                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
293 }
294
295 /* Enqueuing and dequeuing functions for cmdlists. */
296 static inline void addQ(struct hlist_head *list, struct CommandList *c)
297 {
298         hlist_add_head(&c->list, list);
299 }
300
301 static inline u32 next_command(struct ctlr_info *h)
302 {
303         u32 a;
304
305         if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
306                 return h->access.command_completed(h);
307
308         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
309                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
310                 (h->reply_pool_head)++;
311                 h->commands_outstanding--;
312         } else {
313                 a = FIFO_EMPTY;
314         }
315         /* Check for wraparound */
316         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
317                 h->reply_pool_head = h->reply_pool;
318                 h->reply_pool_wraparound ^= 1;
319         }
320         return a;
321 }
322
323 /* set_performant_mode: Modify the tag for cciss performant
324  * set bit 0 for pull model, bits 3-1 for block fetch
325  * register number
326  */
327 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
328 {
329         if (likely(h->transMethod == CFGTBL_Trans_Performant))
330                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
331 }
332
333 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
334         struct CommandList *c)
335 {
336         unsigned long flags;
337
338         set_performant_mode(h, c);
339         spin_lock_irqsave(&h->lock, flags);
340         addQ(&h->reqQ, c);
341         h->Qdepth++;
342         start_io(h);
343         spin_unlock_irqrestore(&h->lock, flags);
344 }
345
346 static inline void removeQ(struct CommandList *c)
347 {
348         if (WARN_ON(hlist_unhashed(&c->list)))
349                 return;
350         hlist_del_init(&c->list);
351 }
352
353 static inline int is_hba_lunid(unsigned char scsi3addr[])
354 {
355         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
356 }
357
358 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
359 {
360         return (scsi3addr[3] & 0xC0) == 0x40;
361 }
362
363 static inline int is_scsi_rev_5(struct ctlr_info *h)
364 {
365         if (!h->hba_inquiry_data)
366                 return 0;
367         if ((h->hba_inquiry_data[2] & 0x07) == 5)
368                 return 1;
369         return 0;
370 }
371
372 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
373         "UNKNOWN"
374 };
375 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
376
377 static ssize_t raid_level_show(struct device *dev,
378              struct device_attribute *attr, char *buf)
379 {
380         ssize_t l = 0;
381         unsigned char rlevel;
382         struct ctlr_info *h;
383         struct scsi_device *sdev;
384         struct hpsa_scsi_dev_t *hdev;
385         unsigned long flags;
386
387         sdev = to_scsi_device(dev);
388         h = sdev_to_hba(sdev);
389         spin_lock_irqsave(&h->lock, flags);
390         hdev = sdev->hostdata;
391         if (!hdev) {
392                 spin_unlock_irqrestore(&h->lock, flags);
393                 return -ENODEV;
394         }
395
396         /* Is this even a logical drive? */
397         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
398                 spin_unlock_irqrestore(&h->lock, flags);
399                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
400                 return l;
401         }
402
403         rlevel = hdev->raid_level;
404         spin_unlock_irqrestore(&h->lock, flags);
405         if (rlevel > RAID_UNKNOWN)
406                 rlevel = RAID_UNKNOWN;
407         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
408         return l;
409 }
410
411 static ssize_t lunid_show(struct device *dev,
412              struct device_attribute *attr, char *buf)
413 {
414         struct ctlr_info *h;
415         struct scsi_device *sdev;
416         struct hpsa_scsi_dev_t *hdev;
417         unsigned long flags;
418         unsigned char lunid[8];
419
420         sdev = to_scsi_device(dev);
421         h = sdev_to_hba(sdev);
422         spin_lock_irqsave(&h->lock, flags);
423         hdev = sdev->hostdata;
424         if (!hdev) {
425                 spin_unlock_irqrestore(&h->lock, flags);
426                 return -ENODEV;
427         }
428         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
429         spin_unlock_irqrestore(&h->lock, flags);
430         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
431                 lunid[0], lunid[1], lunid[2], lunid[3],
432                 lunid[4], lunid[5], lunid[6], lunid[7]);
433 }
434
435 static ssize_t unique_id_show(struct device *dev,
436              struct device_attribute *attr, char *buf)
437 {
438         struct ctlr_info *h;
439         struct scsi_device *sdev;
440         struct hpsa_scsi_dev_t *hdev;
441         unsigned long flags;
442         unsigned char sn[16];
443
444         sdev = to_scsi_device(dev);
445         h = sdev_to_hba(sdev);
446         spin_lock_irqsave(&h->lock, flags);
447         hdev = sdev->hostdata;
448         if (!hdev) {
449                 spin_unlock_irqrestore(&h->lock, flags);
450                 return -ENODEV;
451         }
452         memcpy(sn, hdev->device_id, sizeof(sn));
453         spin_unlock_irqrestore(&h->lock, flags);
454         return snprintf(buf, 16 * 2 + 2,
455                         "%02X%02X%02X%02X%02X%02X%02X%02X"
456                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
457                         sn[0], sn[1], sn[2], sn[3],
458                         sn[4], sn[5], sn[6], sn[7],
459                         sn[8], sn[9], sn[10], sn[11],
460                         sn[12], sn[13], sn[14], sn[15]);
461 }
462
463 static int hpsa_find_target_lun(struct ctlr_info *h,
464         unsigned char scsi3addr[], int bus, int *target, int *lun)
465 {
466         /* finds an unused bus, target, lun for a new physical device
467          * assumes h->devlock is held
468          */
469         int i, found = 0;
470         DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
471
472         memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
473
474         for (i = 0; i < h->ndevices; i++) {
475                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
476                         set_bit(h->dev[i]->target, lun_taken);
477         }
478
479         for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
480                 if (!test_bit(i, lun_taken)) {
481                         /* *bus = 1; */
482                         *target = i;
483                         *lun = 0;
484                         found = 1;
485                         break;
486                 }
487         }
488         return !found;
489 }
490
491 /* Add an entry into h->dev[] array. */
492 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
493                 struct hpsa_scsi_dev_t *device,
494                 struct hpsa_scsi_dev_t *added[], int *nadded)
495 {
496         /* assumes h->devlock is held */
497         int n = h->ndevices;
498         int i;
499         unsigned char addr1[8], addr2[8];
500         struct hpsa_scsi_dev_t *sd;
501
502         if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
503                 dev_err(&h->pdev->dev, "too many devices, some will be "
504                         "inaccessible.\n");
505                 return -1;
506         }
507
508         /* physical devices do not have lun or target assigned until now. */
509         if (device->lun != -1)
510                 /* Logical device, lun is already assigned. */
511                 goto lun_assigned;
512
513         /* If this device a non-zero lun of a multi-lun device
514          * byte 4 of the 8-byte LUN addr will contain the logical
515          * unit no, zero otherise.
516          */
517         if (device->scsi3addr[4] == 0) {
518                 /* This is not a non-zero lun of a multi-lun device */
519                 if (hpsa_find_target_lun(h, device->scsi3addr,
520                         device->bus, &device->target, &device->lun) != 0)
521                         return -1;
522                 goto lun_assigned;
523         }
524
525         /* This is a non-zero lun of a multi-lun device.
526          * Search through our list and find the device which
527          * has the same 8 byte LUN address, excepting byte 4.
528          * Assign the same bus and target for this new LUN.
529          * Use the logical unit number from the firmware.
530          */
531         memcpy(addr1, device->scsi3addr, 8);
532         addr1[4] = 0;
533         for (i = 0; i < n; i++) {
534                 sd = h->dev[i];
535                 memcpy(addr2, sd->scsi3addr, 8);
536                 addr2[4] = 0;
537                 /* differ only in byte 4? */
538                 if (memcmp(addr1, addr2, 8) == 0) {
539                         device->bus = sd->bus;
540                         device->target = sd->target;
541                         device->lun = device->scsi3addr[4];
542                         break;
543                 }
544         }
545         if (device->lun == -1) {
546                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
547                         " suspect firmware bug or unsupported hardware "
548                         "configuration.\n");
549                         return -1;
550         }
551
552 lun_assigned:
553
554         h->dev[n] = device;
555         h->ndevices++;
556         added[*nadded] = device;
557         (*nadded)++;
558
559         /* initially, (before registering with scsi layer) we don't
560          * know our hostno and we don't want to print anything first
561          * time anyway (the scsi layer's inquiries will show that info)
562          */
563         /* if (hostno != -1) */
564                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
565                         scsi_device_type(device->devtype), hostno,
566                         device->bus, device->target, device->lun);
567         return 0;
568 }
569
570 /* Replace an entry from h->dev[] array. */
571 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
572         int entry, struct hpsa_scsi_dev_t *new_entry,
573         struct hpsa_scsi_dev_t *added[], int *nadded,
574         struct hpsa_scsi_dev_t *removed[], int *nremoved)
575 {
576         /* assumes h->devlock is held */
577         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
578         removed[*nremoved] = h->dev[entry];
579         (*nremoved)++;
580         h->dev[entry] = new_entry;
581         added[*nadded] = new_entry;
582         (*nadded)++;
583         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
584                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
585                         new_entry->target, new_entry->lun);
586 }
587
588 /* Remove an entry from h->dev[] array. */
589 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
590         struct hpsa_scsi_dev_t *removed[], int *nremoved)
591 {
592         /* assumes h->devlock is held */
593         int i;
594         struct hpsa_scsi_dev_t *sd;
595
596         BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
597
598         sd = h->dev[entry];
599         removed[*nremoved] = h->dev[entry];
600         (*nremoved)++;
601
602         for (i = entry; i < h->ndevices-1; i++)
603                 h->dev[i] = h->dev[i+1];
604         h->ndevices--;
605         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
606                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
607                 sd->lun);
608 }
609
610 #define SCSI3ADDR_EQ(a, b) ( \
611         (a)[7] == (b)[7] && \
612         (a)[6] == (b)[6] && \
613         (a)[5] == (b)[5] && \
614         (a)[4] == (b)[4] && \
615         (a)[3] == (b)[3] && \
616         (a)[2] == (b)[2] && \
617         (a)[1] == (b)[1] && \
618         (a)[0] == (b)[0])
619
620 static void fixup_botched_add(struct ctlr_info *h,
621         struct hpsa_scsi_dev_t *added)
622 {
623         /* called when scsi_add_device fails in order to re-adjust
624          * h->dev[] to match the mid layer's view.
625          */
626         unsigned long flags;
627         int i, j;
628
629         spin_lock_irqsave(&h->lock, flags);
630         for (i = 0; i < h->ndevices; i++) {
631                 if (h->dev[i] == added) {
632                         for (j = i; j < h->ndevices-1; j++)
633                                 h->dev[j] = h->dev[j+1];
634                         h->ndevices--;
635                         break;
636                 }
637         }
638         spin_unlock_irqrestore(&h->lock, flags);
639         kfree(added);
640 }
641
642 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
643         struct hpsa_scsi_dev_t *dev2)
644 {
645         if ((is_logical_dev_addr_mode(dev1->scsi3addr) ||
646                 (dev1->lun != -1 && dev2->lun != -1)) &&
647                 dev1->devtype != 0x0C)
648                 return (memcmp(dev1, dev2, sizeof(*dev1)) == 0);
649
650         /* we compare everything except lun and target as these
651          * are not yet assigned.  Compare parts likely
652          * to differ first
653          */
654         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
655                 sizeof(dev1->scsi3addr)) != 0)
656                 return 0;
657         if (memcmp(dev1->device_id, dev2->device_id,
658                 sizeof(dev1->device_id)) != 0)
659                 return 0;
660         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
661                 return 0;
662         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
663                 return 0;
664         if (memcmp(dev1->revision, dev2->revision, sizeof(dev1->revision)) != 0)
665                 return 0;
666         if (dev1->devtype != dev2->devtype)
667                 return 0;
668         if (dev1->raid_level != dev2->raid_level)
669                 return 0;
670         if (dev1->bus != dev2->bus)
671                 return 0;
672         return 1;
673 }
674
675 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
676  * and return needle location in *index.  If scsi3addr matches, but not
677  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
678  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
679  */
680 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
681         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
682         int *index)
683 {
684         int i;
685 #define DEVICE_NOT_FOUND 0
686 #define DEVICE_CHANGED 1
687 #define DEVICE_SAME 2
688         for (i = 0; i < haystack_size; i++) {
689                 if (haystack[i] == NULL) /* previously removed. */
690                         continue;
691                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
692                         *index = i;
693                         if (device_is_the_same(needle, haystack[i]))
694                                 return DEVICE_SAME;
695                         else
696                                 return DEVICE_CHANGED;
697                 }
698         }
699         *index = -1;
700         return DEVICE_NOT_FOUND;
701 }
702
703 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
704         struct hpsa_scsi_dev_t *sd[], int nsds)
705 {
706         /* sd contains scsi3 addresses and devtypes, and inquiry
707          * data.  This function takes what's in sd to be the current
708          * reality and updates h->dev[] to reflect that reality.
709          */
710         int i, entry, device_change, changes = 0;
711         struct hpsa_scsi_dev_t *csd;
712         unsigned long flags;
713         struct hpsa_scsi_dev_t **added, **removed;
714         int nadded, nremoved;
715         struct Scsi_Host *sh = NULL;
716
717         added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
718                 GFP_KERNEL);
719         removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
720                 GFP_KERNEL);
721
722         if (!added || !removed) {
723                 dev_warn(&h->pdev->dev, "out of memory in "
724                         "adjust_hpsa_scsi_table\n");
725                 goto free_and_out;
726         }
727
728         spin_lock_irqsave(&h->devlock, flags);
729
730         /* find any devices in h->dev[] that are not in
731          * sd[] and remove them from h->dev[], and for any
732          * devices which have changed, remove the old device
733          * info and add the new device info.
734          */
735         i = 0;
736         nremoved = 0;
737         nadded = 0;
738         while (i < h->ndevices) {
739                 csd = h->dev[i];
740                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
741                 if (device_change == DEVICE_NOT_FOUND) {
742                         changes++;
743                         hpsa_scsi_remove_entry(h, hostno, i,
744                                 removed, &nremoved);
745                         continue; /* remove ^^^, hence i not incremented */
746                 } else if (device_change == DEVICE_CHANGED) {
747                         changes++;
748                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
749                                 added, &nadded, removed, &nremoved);
750                         /* Set it to NULL to prevent it from being freed
751                          * at the bottom of hpsa_update_scsi_devices()
752                          */
753                         sd[entry] = NULL;
754                 }
755                 i++;
756         }
757
758         /* Now, make sure every device listed in sd[] is also
759          * listed in h->dev[], adding them if they aren't found
760          */
761
762         for (i = 0; i < nsds; i++) {
763                 if (!sd[i]) /* if already added above. */
764                         continue;
765                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
766                                         h->ndevices, &entry);
767                 if (device_change == DEVICE_NOT_FOUND) {
768                         changes++;
769                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
770                                 added, &nadded) != 0)
771                                 break;
772                         sd[i] = NULL; /* prevent from being freed later. */
773                 } else if (device_change == DEVICE_CHANGED) {
774                         /* should never happen... */
775                         changes++;
776                         dev_warn(&h->pdev->dev,
777                                 "device unexpectedly changed.\n");
778                         /* but if it does happen, we just ignore that device */
779                 }
780         }
781         spin_unlock_irqrestore(&h->devlock, flags);
782
783         /* Don't notify scsi mid layer of any changes the first time through
784          * (or if there are no changes) scsi_scan_host will do it later the
785          * first time through.
786          */
787         if (hostno == -1 || !changes)
788                 goto free_and_out;
789
790         sh = h->scsi_host;
791         /* Notify scsi mid layer of any removed devices */
792         for (i = 0; i < nremoved; i++) {
793                 struct scsi_device *sdev =
794                         scsi_device_lookup(sh, removed[i]->bus,
795                                 removed[i]->target, removed[i]->lun);
796                 if (sdev != NULL) {
797                         scsi_remove_device(sdev);
798                         scsi_device_put(sdev);
799                 } else {
800                         /* We don't expect to get here.
801                          * future cmds to this device will get selection
802                          * timeout as if the device was gone.
803                          */
804                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
805                                 " for removal.", hostno, removed[i]->bus,
806                                 removed[i]->target, removed[i]->lun);
807                 }
808                 kfree(removed[i]);
809                 removed[i] = NULL;
810         }
811
812         /* Notify scsi mid layer of any added devices */
813         for (i = 0; i < nadded; i++) {
814                 if (scsi_add_device(sh, added[i]->bus,
815                         added[i]->target, added[i]->lun) == 0)
816                         continue;
817                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
818                         "device not added.\n", hostno, added[i]->bus,
819                         added[i]->target, added[i]->lun);
820                 /* now we have to remove it from h->dev,
821                  * since it didn't get added to scsi mid layer
822                  */
823                 fixup_botched_add(h, added[i]);
824         }
825
826 free_and_out:
827         kfree(added);
828         kfree(removed);
829 }
830
831 /*
832  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
833  * Assume's h->devlock is held.
834  */
835 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
836         int bus, int target, int lun)
837 {
838         int i;
839         struct hpsa_scsi_dev_t *sd;
840
841         for (i = 0; i < h->ndevices; i++) {
842                 sd = h->dev[i];
843                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
844                         return sd;
845         }
846         return NULL;
847 }
848
849 /* link sdev->hostdata to our per-device structure. */
850 static int hpsa_slave_alloc(struct scsi_device *sdev)
851 {
852         struct hpsa_scsi_dev_t *sd;
853         unsigned long flags;
854         struct ctlr_info *h;
855
856         h = sdev_to_hba(sdev);
857         spin_lock_irqsave(&h->devlock, flags);
858         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
859                 sdev_id(sdev), sdev->lun);
860         if (sd != NULL)
861                 sdev->hostdata = sd;
862         spin_unlock_irqrestore(&h->devlock, flags);
863         return 0;
864 }
865
866 static void hpsa_slave_destroy(struct scsi_device *sdev)
867 {
868         /* nothing to do. */
869 }
870
871 static void hpsa_scsi_setup(struct ctlr_info *h)
872 {
873         h->ndevices = 0;
874         h->scsi_host = NULL;
875         spin_lock_init(&h->devlock);
876 }
877
878 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
879 {
880         int i;
881
882         if (!h->cmd_sg_list)
883                 return;
884         for (i = 0; i < h->nr_cmds; i++) {
885                 kfree(h->cmd_sg_list[i]);
886                 h->cmd_sg_list[i] = NULL;
887         }
888         kfree(h->cmd_sg_list);
889         h->cmd_sg_list = NULL;
890 }
891
892 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
893 {
894         int i;
895
896         if (h->chainsize <= 0)
897                 return 0;
898
899         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
900                                 GFP_KERNEL);
901         if (!h->cmd_sg_list)
902                 return -ENOMEM;
903         for (i = 0; i < h->nr_cmds; i++) {
904                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
905                                                 h->chainsize, GFP_KERNEL);
906                 if (!h->cmd_sg_list[i])
907                         goto clean;
908         }
909         return 0;
910
911 clean:
912         hpsa_free_sg_chain_blocks(h);
913         return -ENOMEM;
914 }
915
916 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
917         struct CommandList *c)
918 {
919         struct SGDescriptor *chain_sg, *chain_block;
920         u64 temp64;
921
922         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
923         chain_block = h->cmd_sg_list[c->cmdindex];
924         chain_sg->Ext = HPSA_SG_CHAIN;
925         chain_sg->Len = sizeof(*chain_sg) *
926                 (c->Header.SGTotal - h->max_cmd_sg_entries);
927         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
928                                 PCI_DMA_TODEVICE);
929         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
930         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
931 }
932
933 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
934         struct CommandList *c)
935 {
936         struct SGDescriptor *chain_sg;
937         union u64bit temp64;
938
939         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
940                 return;
941
942         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
943         temp64.val32.lower = chain_sg->Addr.lower;
944         temp64.val32.upper = chain_sg->Addr.upper;
945         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
946 }
947
948 static void complete_scsi_command(struct CommandList *cp,
949         int timeout, u32 tag)
950 {
951         struct scsi_cmnd *cmd;
952         struct ctlr_info *h;
953         struct ErrorInfo *ei;
954
955         unsigned char sense_key;
956         unsigned char asc;      /* additional sense code */
957         unsigned char ascq;     /* additional sense code qualifier */
958
959         ei = cp->err_info;
960         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
961         h = cp->h;
962
963         scsi_dma_unmap(cmd); /* undo the DMA mappings */
964         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
965                 hpsa_unmap_sg_chain_block(h, cp);
966
967         cmd->result = (DID_OK << 16);           /* host byte */
968         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
969         cmd->result |= ei->ScsiStatus;
970
971         /* copy the sense data whether we need to or not. */
972         memcpy(cmd->sense_buffer, ei->SenseInfo,
973                 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
974                         SCSI_SENSE_BUFFERSIZE :
975                         ei->SenseLen);
976         scsi_set_resid(cmd, ei->ResidualCnt);
977
978         if (ei->CommandStatus == 0) {
979                 cmd->scsi_done(cmd);
980                 cmd_free(h, cp);
981                 return;
982         }
983
984         /* an error has occurred */
985         switch (ei->CommandStatus) {
986
987         case CMD_TARGET_STATUS:
988                 if (ei->ScsiStatus) {
989                         /* Get sense key */
990                         sense_key = 0xf & ei->SenseInfo[2];
991                         /* Get additional sense code */
992                         asc = ei->SenseInfo[12];
993                         /* Get addition sense code qualifier */
994                         ascq = ei->SenseInfo[13];
995                 }
996
997                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
998                         if (check_for_unit_attention(h, cp)) {
999                                 cmd->result = DID_SOFT_ERROR << 16;
1000                                 break;
1001                         }
1002                         if (sense_key == ILLEGAL_REQUEST) {
1003                                 /*
1004                                  * SCSI REPORT_LUNS is commonly unsupported on
1005                                  * Smart Array.  Suppress noisy complaint.
1006                                  */
1007                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1008                                         break;
1009
1010                                 /* If ASC/ASCQ indicate Logical Unit
1011                                  * Not Supported condition,
1012                                  */
1013                                 if ((asc == 0x25) && (ascq == 0x0)) {
1014                                         dev_warn(&h->pdev->dev, "cp %p "
1015                                                 "has check condition\n", cp);
1016                                         break;
1017                                 }
1018                         }
1019
1020                         if (sense_key == NOT_READY) {
1021                                 /* If Sense is Not Ready, Logical Unit
1022                                  * Not ready, Manual Intervention
1023                                  * required
1024                                  */
1025                                 if ((asc == 0x04) && (ascq == 0x03)) {
1026                                         dev_warn(&h->pdev->dev, "cp %p "
1027                                                 "has check condition: unit "
1028                                                 "not ready, manual "
1029                                                 "intervention required\n", cp);
1030                                         break;
1031                                 }
1032                         }
1033                         if (sense_key == ABORTED_COMMAND) {
1034                                 /* Aborted command is retryable */
1035                                 dev_warn(&h->pdev->dev, "cp %p "
1036                                         "has check condition: aborted command: "
1037                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1038                                         cp, asc, ascq);
1039                                 cmd->result = DID_SOFT_ERROR << 16;
1040                                 break;
1041                         }
1042                         /* Must be some other type of check condition */
1043                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1044                                         "unknown type: "
1045                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1046                                         "Returning result: 0x%x, "
1047                                         "cmd=[%02x %02x %02x %02x %02x "
1048                                         "%02x %02x %02x %02x %02x %02x "
1049                                         "%02x %02x %02x %02x %02x]\n",
1050                                         cp, sense_key, asc, ascq,
1051                                         cmd->result,
1052                                         cmd->cmnd[0], cmd->cmnd[1],
1053                                         cmd->cmnd[2], cmd->cmnd[3],
1054                                         cmd->cmnd[4], cmd->cmnd[5],
1055                                         cmd->cmnd[6], cmd->cmnd[7],
1056                                         cmd->cmnd[8], cmd->cmnd[9],
1057                                         cmd->cmnd[10], cmd->cmnd[11],
1058                                         cmd->cmnd[12], cmd->cmnd[13],
1059                                         cmd->cmnd[14], cmd->cmnd[15]);
1060                         break;
1061                 }
1062
1063
1064                 /* Problem was not a check condition
1065                  * Pass it up to the upper layers...
1066                  */
1067                 if (ei->ScsiStatus) {
1068                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1069                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1070                                 "Returning result: 0x%x\n",
1071                                 cp, ei->ScsiStatus,
1072                                 sense_key, asc, ascq,
1073                                 cmd->result);
1074                 } else {  /* scsi status is zero??? How??? */
1075                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1076                                 "Returning no connection.\n", cp),
1077
1078                         /* Ordinarily, this case should never happen,
1079                          * but there is a bug in some released firmware
1080                          * revisions that allows it to happen if, for
1081                          * example, a 4100 backplane loses power and
1082                          * the tape drive is in it.  We assume that
1083                          * it's a fatal error of some kind because we
1084                          * can't show that it wasn't. We will make it
1085                          * look like selection timeout since that is
1086                          * the most common reason for this to occur,
1087                          * and it's severe enough.
1088                          */
1089
1090                         cmd->result = DID_NO_CONNECT << 16;
1091                 }
1092                 break;
1093
1094         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1095                 break;
1096         case CMD_DATA_OVERRUN:
1097                 dev_warn(&h->pdev->dev, "cp %p has"
1098                         " completed with data overrun "
1099                         "reported\n", cp);
1100                 break;
1101         case CMD_INVALID: {
1102                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1103                 print_cmd(cp); */
1104                 /* We get CMD_INVALID if you address a non-existent device
1105                  * instead of a selection timeout (no response).  You will
1106                  * see this if you yank out a drive, then try to access it.
1107                  * This is kind of a shame because it means that any other
1108                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1109                  * missing target. */
1110                 cmd->result = DID_NO_CONNECT << 16;
1111         }
1112                 break;
1113         case CMD_PROTOCOL_ERR:
1114                 dev_warn(&h->pdev->dev, "cp %p has "
1115                         "protocol error \n", cp);
1116                 break;
1117         case CMD_HARDWARE_ERR:
1118                 cmd->result = DID_ERROR << 16;
1119                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1120                 break;
1121         case CMD_CONNECTION_LOST:
1122                 cmd->result = DID_ERROR << 16;
1123                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1124                 break;
1125         case CMD_ABORTED:
1126                 cmd->result = DID_ABORT << 16;
1127                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1128                                 cp, ei->ScsiStatus);
1129                 break;
1130         case CMD_ABORT_FAILED:
1131                 cmd->result = DID_ERROR << 16;
1132                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1133                 break;
1134         case CMD_UNSOLICITED_ABORT:
1135                 cmd->result = DID_RESET << 16;
1136                 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1137                         "abort\n", cp);
1138                 break;
1139         case CMD_TIMEOUT:
1140                 cmd->result = DID_TIME_OUT << 16;
1141                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1142                 break;
1143         default:
1144                 cmd->result = DID_ERROR << 16;
1145                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1146                                 cp, ei->CommandStatus);
1147         }
1148         cmd->scsi_done(cmd);
1149         cmd_free(h, cp);
1150 }
1151
1152 static int hpsa_scsi_detect(struct ctlr_info *h)
1153 {
1154         struct Scsi_Host *sh;
1155         int error;
1156
1157         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1158         if (sh == NULL)
1159                 goto fail;
1160
1161         sh->io_port = 0;
1162         sh->n_io_port = 0;
1163         sh->this_id = -1;
1164         sh->max_channel = 3;
1165         sh->max_cmd_len = MAX_COMMAND_SIZE;
1166         sh->max_lun = HPSA_MAX_LUN;
1167         sh->max_id = HPSA_MAX_LUN;
1168         sh->can_queue = h->nr_cmds;
1169         sh->cmd_per_lun = h->nr_cmds;
1170         sh->sg_tablesize = h->maxsgentries;
1171         h->scsi_host = sh;
1172         sh->hostdata[0] = (unsigned long) h;
1173         sh->irq = h->intr[PERF_MODE_INT];
1174         sh->unique_id = sh->irq;
1175         error = scsi_add_host(sh, &h->pdev->dev);
1176         if (error)
1177                 goto fail_host_put;
1178         scsi_scan_host(sh);
1179         return 0;
1180
1181  fail_host_put:
1182         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1183                 " failed for controller %d\n", h->ctlr);
1184         scsi_host_put(sh);
1185         return error;
1186  fail:
1187         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1188                 " failed for controller %d\n", h->ctlr);
1189         return -ENOMEM;
1190 }
1191
1192 static void hpsa_pci_unmap(struct pci_dev *pdev,
1193         struct CommandList *c, int sg_used, int data_direction)
1194 {
1195         int i;
1196         union u64bit addr64;
1197
1198         for (i = 0; i < sg_used; i++) {
1199                 addr64.val32.lower = c->SG[i].Addr.lower;
1200                 addr64.val32.upper = c->SG[i].Addr.upper;
1201                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1202                         data_direction);
1203         }
1204 }
1205
1206 static void hpsa_map_one(struct pci_dev *pdev,
1207                 struct CommandList *cp,
1208                 unsigned char *buf,
1209                 size_t buflen,
1210                 int data_direction)
1211 {
1212         u64 addr64;
1213
1214         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1215                 cp->Header.SGList = 0;
1216                 cp->Header.SGTotal = 0;
1217                 return;
1218         }
1219
1220         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1221         cp->SG[0].Addr.lower =
1222           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1223         cp->SG[0].Addr.upper =
1224           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1225         cp->SG[0].Len = buflen;
1226         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1227         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1228 }
1229
1230 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1231         struct CommandList *c)
1232 {
1233         DECLARE_COMPLETION_ONSTACK(wait);
1234
1235         c->waiting = &wait;
1236         enqueue_cmd_and_start_io(h, c);
1237         wait_for_completion(&wait);
1238 }
1239
1240 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1241         struct CommandList *c, int data_direction)
1242 {
1243         int retry_count = 0;
1244
1245         do {
1246                 memset(c->err_info, 0, sizeof(c->err_info));
1247                 hpsa_scsi_do_simple_cmd_core(h, c);
1248                 retry_count++;
1249         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1250         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1251 }
1252
1253 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1254 {
1255         struct ErrorInfo *ei;
1256         struct device *d = &cp->h->pdev->dev;
1257
1258         ei = cp->err_info;
1259         switch (ei->CommandStatus) {
1260         case CMD_TARGET_STATUS:
1261                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1262                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1263                                 ei->ScsiStatus);
1264                 if (ei->ScsiStatus == 0)
1265                         dev_warn(d, "SCSI status is abnormally zero.  "
1266                         "(probably indicates selection timeout "
1267                         "reported incorrectly due to a known "
1268                         "firmware bug, circa July, 2001.)\n");
1269                 break;
1270         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1271                         dev_info(d, "UNDERRUN\n");
1272                 break;
1273         case CMD_DATA_OVERRUN:
1274                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1275                 break;
1276         case CMD_INVALID: {
1277                 /* controller unfortunately reports SCSI passthru's
1278                  * to non-existent targets as invalid commands.
1279                  */
1280                 dev_warn(d, "cp %p is reported invalid (probably means "
1281                         "target device no longer present)\n", cp);
1282                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1283                 print_cmd(cp);  */
1284                 }
1285                 break;
1286         case CMD_PROTOCOL_ERR:
1287                 dev_warn(d, "cp %p has protocol error \n", cp);
1288                 break;
1289         case CMD_HARDWARE_ERR:
1290                 /* cmd->result = DID_ERROR << 16; */
1291                 dev_warn(d, "cp %p had hardware error\n", cp);
1292                 break;
1293         case CMD_CONNECTION_LOST:
1294                 dev_warn(d, "cp %p had connection lost\n", cp);
1295                 break;
1296         case CMD_ABORTED:
1297                 dev_warn(d, "cp %p was aborted\n", cp);
1298                 break;
1299         case CMD_ABORT_FAILED:
1300                 dev_warn(d, "cp %p reports abort failed\n", cp);
1301                 break;
1302         case CMD_UNSOLICITED_ABORT:
1303                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1304                 break;
1305         case CMD_TIMEOUT:
1306                 dev_warn(d, "cp %p timed out\n", cp);
1307                 break;
1308         default:
1309                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1310                                 ei->CommandStatus);
1311         }
1312 }
1313
1314 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1315                         unsigned char page, unsigned char *buf,
1316                         unsigned char bufsize)
1317 {
1318         int rc = IO_OK;
1319         struct CommandList *c;
1320         struct ErrorInfo *ei;
1321
1322         c = cmd_special_alloc(h);
1323
1324         if (c == NULL) {                        /* trouble... */
1325                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1326                 return -ENOMEM;
1327         }
1328
1329         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1330         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1331         ei = c->err_info;
1332         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1333                 hpsa_scsi_interpret_error(c);
1334                 rc = -1;
1335         }
1336         cmd_special_free(h, c);
1337         return rc;
1338 }
1339
1340 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1341 {
1342         int rc = IO_OK;
1343         struct CommandList *c;
1344         struct ErrorInfo *ei;
1345
1346         c = cmd_special_alloc(h);
1347
1348         if (c == NULL) {                        /* trouble... */
1349                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1350                 return -ENOMEM;
1351         }
1352
1353         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1354         hpsa_scsi_do_simple_cmd_core(h, c);
1355         /* no unmap needed here because no data xfer. */
1356
1357         ei = c->err_info;
1358         if (ei->CommandStatus != 0) {
1359                 hpsa_scsi_interpret_error(c);
1360                 rc = -1;
1361         }
1362         cmd_special_free(h, c);
1363         return rc;
1364 }
1365
1366 static void hpsa_get_raid_level(struct ctlr_info *h,
1367         unsigned char *scsi3addr, unsigned char *raid_level)
1368 {
1369         int rc;
1370         unsigned char *buf;
1371
1372         *raid_level = RAID_UNKNOWN;
1373         buf = kzalloc(64, GFP_KERNEL);
1374         if (!buf)
1375                 return;
1376         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1377         if (rc == 0)
1378                 *raid_level = buf[8];
1379         if (*raid_level > RAID_UNKNOWN)
1380                 *raid_level = RAID_UNKNOWN;
1381         kfree(buf);
1382         return;
1383 }
1384
1385 /* Get the device id from inquiry page 0x83 */
1386 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1387         unsigned char *device_id, int buflen)
1388 {
1389         int rc;
1390         unsigned char *buf;
1391
1392         if (buflen > 16)
1393                 buflen = 16;
1394         buf = kzalloc(64, GFP_KERNEL);
1395         if (!buf)
1396                 return -1;
1397         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1398         if (rc == 0)
1399                 memcpy(device_id, &buf[8], buflen);
1400         kfree(buf);
1401         return rc != 0;
1402 }
1403
1404 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1405                 struct ReportLUNdata *buf, int bufsize,
1406                 int extended_response)
1407 {
1408         int rc = IO_OK;
1409         struct CommandList *c;
1410         unsigned char scsi3addr[8];
1411         struct ErrorInfo *ei;
1412
1413         c = cmd_special_alloc(h);
1414         if (c == NULL) {                        /* trouble... */
1415                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1416                 return -1;
1417         }
1418         /* address the controller */
1419         memset(scsi3addr, 0, sizeof(scsi3addr));
1420         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1421                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1422         if (extended_response)
1423                 c->Request.CDB[1] = extended_response;
1424         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1425         ei = c->err_info;
1426         if (ei->CommandStatus != 0 &&
1427             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1428                 hpsa_scsi_interpret_error(c);
1429                 rc = -1;
1430         }
1431         cmd_special_free(h, c);
1432         return rc;
1433 }
1434
1435 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1436                 struct ReportLUNdata *buf,
1437                 int bufsize, int extended_response)
1438 {
1439         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1440 }
1441
1442 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1443                 struct ReportLUNdata *buf, int bufsize)
1444 {
1445         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1446 }
1447
1448 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1449         int bus, int target, int lun)
1450 {
1451         device->bus = bus;
1452         device->target = target;
1453         device->lun = lun;
1454 }
1455
1456 static int hpsa_update_device_info(struct ctlr_info *h,
1457         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1458 {
1459 #define OBDR_TAPE_INQ_SIZE 49
1460         unsigned char *inq_buff;
1461
1462         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1463         if (!inq_buff)
1464                 goto bail_out;
1465
1466         /* Do an inquiry to the device to see what it is. */
1467         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1468                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1469                 /* Inquiry failed (msg printed already) */
1470                 dev_err(&h->pdev->dev,
1471                         "hpsa_update_device_info: inquiry failed\n");
1472                 goto bail_out;
1473         }
1474
1475         this_device->devtype = (inq_buff[0] & 0x1f);
1476         memcpy(this_device->scsi3addr, scsi3addr, 8);
1477         memcpy(this_device->vendor, &inq_buff[8],
1478                 sizeof(this_device->vendor));
1479         memcpy(this_device->model, &inq_buff[16],
1480                 sizeof(this_device->model));
1481         memcpy(this_device->revision, &inq_buff[32],
1482                 sizeof(this_device->revision));
1483         memset(this_device->device_id, 0,
1484                 sizeof(this_device->device_id));
1485         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1486                 sizeof(this_device->device_id));
1487
1488         if (this_device->devtype == TYPE_DISK &&
1489                 is_logical_dev_addr_mode(scsi3addr))
1490                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1491         else
1492                 this_device->raid_level = RAID_UNKNOWN;
1493
1494         kfree(inq_buff);
1495         return 0;
1496
1497 bail_out:
1498         kfree(inq_buff);
1499         return 1;
1500 }
1501
1502 static unsigned char *msa2xxx_model[] = {
1503         "MSA2012",
1504         "MSA2024",
1505         "MSA2312",
1506         "MSA2324",
1507         NULL,
1508 };
1509
1510 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1511 {
1512         int i;
1513
1514         for (i = 0; msa2xxx_model[i]; i++)
1515                 if (strncmp(device->model, msa2xxx_model[i],
1516                         strlen(msa2xxx_model[i])) == 0)
1517                         return 1;
1518         return 0;
1519 }
1520
1521 /* Helper function to assign bus, target, lun mapping of devices.
1522  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1523  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1524  * Logical drive target and lun are assigned at this time, but
1525  * physical device lun and target assignment are deferred (assigned
1526  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1527  */
1528 static void figure_bus_target_lun(struct ctlr_info *h,
1529         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1530         struct hpsa_scsi_dev_t *device)
1531 {
1532         u32 lunid;
1533
1534         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1535                 /* logical device */
1536                 if (unlikely(is_scsi_rev_5(h))) {
1537                         /* p1210m, logical drives lun assignments
1538                          * match SCSI REPORT LUNS data.
1539                          */
1540                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1541                         *bus = 0;
1542                         *target = 0;
1543                         *lun = (lunid & 0x3fff) + 1;
1544                 } else {
1545                         /* not p1210m... */
1546                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1547                         if (is_msa2xxx(h, device)) {
1548                                 /* msa2xxx way, put logicals on bus 1
1549                                  * and match target/lun numbers box
1550                                  * reports.
1551                                  */
1552                                 *bus = 1;
1553                                 *target = (lunid >> 16) & 0x3fff;
1554                                 *lun = lunid & 0x00ff;
1555                         } else {
1556                                 /* Traditional smart array way. */
1557                                 *bus = 0;
1558                                 *lun = 0;
1559                                 *target = lunid & 0x3fff;
1560                         }
1561                 }
1562         } else {
1563                 /* physical device */
1564                 if (is_hba_lunid(lunaddrbytes))
1565                         if (unlikely(is_scsi_rev_5(h))) {
1566                                 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1567                                 *target = 0;
1568                                 *lun = 0;
1569                                 return;
1570                         } else
1571                                 *bus = 3; /* traditional smartarray */
1572                 else
1573                         *bus = 2; /* physical disk */
1574                 *target = -1;
1575                 *lun = -1; /* we will fill these in later. */
1576         }
1577 }
1578
1579 /*
1580  * If there is no lun 0 on a target, linux won't find any devices.
1581  * For the MSA2xxx boxes, we have to manually detect the enclosure
1582  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1583  * it for some reason.  *tmpdevice is the target we're adding,
1584  * this_device is a pointer into the current element of currentsd[]
1585  * that we're building up in update_scsi_devices(), below.
1586  * lunzerobits is a bitmap that tracks which targets already have a
1587  * lun 0 assigned.
1588  * Returns 1 if an enclosure was added, 0 if not.
1589  */
1590 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1591         struct hpsa_scsi_dev_t *tmpdevice,
1592         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1593         int bus, int target, int lun, unsigned long lunzerobits[],
1594         int *nmsa2xxx_enclosures)
1595 {
1596         unsigned char scsi3addr[8];
1597
1598         if (test_bit(target, lunzerobits))
1599                 return 0; /* There is already a lun 0 on this target. */
1600
1601         if (!is_logical_dev_addr_mode(lunaddrbytes))
1602                 return 0; /* It's the logical targets that may lack lun 0. */
1603
1604         if (!is_msa2xxx(h, tmpdevice))
1605                 return 0; /* It's only the MSA2xxx that have this problem. */
1606
1607         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1608                 return 0;
1609
1610         if (is_hba_lunid(scsi3addr))
1611                 return 0; /* Don't add the RAID controller here. */
1612
1613         if (is_scsi_rev_5(h))
1614                 return 0; /* p1210m doesn't need to do this. */
1615
1616 #define MAX_MSA2XXX_ENCLOSURES 32
1617         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1618                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1619                         "enclosures exceeded.  Check your hardware "
1620                         "configuration.");
1621                 return 0;
1622         }
1623
1624         memset(scsi3addr, 0, 8);
1625         scsi3addr[3] = target;
1626         if (hpsa_update_device_info(h, scsi3addr, this_device))
1627                 return 0;
1628         (*nmsa2xxx_enclosures)++;
1629         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1630         set_bit(target, lunzerobits);
1631         return 1;
1632 }
1633
1634 /*
1635  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1636  * logdev.  The number of luns in physdev and logdev are returned in
1637  * *nphysicals and *nlogicals, respectively.
1638  * Returns 0 on success, -1 otherwise.
1639  */
1640 static int hpsa_gather_lun_info(struct ctlr_info *h,
1641         int reportlunsize,
1642         struct ReportLUNdata *physdev, u32 *nphysicals,
1643         struct ReportLUNdata *logdev, u32 *nlogicals)
1644 {
1645         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1646                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1647                 return -1;
1648         }
1649         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1650         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1651                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1652                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1653                         *nphysicals - HPSA_MAX_PHYS_LUN);
1654                 *nphysicals = HPSA_MAX_PHYS_LUN;
1655         }
1656         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1657                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1658                 return -1;
1659         }
1660         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1661         /* Reject Logicals in excess of our max capability. */
1662         if (*nlogicals > HPSA_MAX_LUN) {
1663                 dev_warn(&h->pdev->dev,
1664                         "maximum logical LUNs (%d) exceeded.  "
1665                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1666                         *nlogicals - HPSA_MAX_LUN);
1667                         *nlogicals = HPSA_MAX_LUN;
1668         }
1669         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1670                 dev_warn(&h->pdev->dev,
1671                         "maximum logical + physical LUNs (%d) exceeded. "
1672                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1673                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1674                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1675         }
1676         return 0;
1677 }
1678
1679 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1680         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1681         struct ReportLUNdata *logdev_list)
1682 {
1683         /* Helper function, figure out where the LUN ID info is coming from
1684          * given index i, lists of physical and logical devices, where in
1685          * the list the raid controller is supposed to appear (first or last)
1686          */
1687
1688         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1689         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1690
1691         if (i == raid_ctlr_position)
1692                 return RAID_CTLR_LUNID;
1693
1694         if (i < logicals_start)
1695                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1696
1697         if (i < last_device)
1698                 return &logdev_list->LUN[i - nphysicals -
1699                         (raid_ctlr_position == 0)][0];
1700         BUG();
1701         return NULL;
1702 }
1703
1704 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1705 {
1706         /* the idea here is we could get notified
1707          * that some devices have changed, so we do a report
1708          * physical luns and report logical luns cmd, and adjust
1709          * our list of devices accordingly.
1710          *
1711          * The scsi3addr's of devices won't change so long as the
1712          * adapter is not reset.  That means we can rescan and
1713          * tell which devices we already know about, vs. new
1714          * devices, vs.  disappearing devices.
1715          */
1716         struct ReportLUNdata *physdev_list = NULL;
1717         struct ReportLUNdata *logdev_list = NULL;
1718         unsigned char *inq_buff = NULL;
1719         u32 nphysicals = 0;
1720         u32 nlogicals = 0;
1721         u32 ndev_allocated = 0;
1722         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1723         int ncurrent = 0;
1724         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1725         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1726         int bus, target, lun;
1727         int raid_ctlr_position;
1728         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1729
1730         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1731                 GFP_KERNEL);
1732         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1733         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1734         inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1735         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1736
1737         if (!currentsd || !physdev_list || !logdev_list ||
1738                 !inq_buff || !tmpdevice) {
1739                 dev_err(&h->pdev->dev, "out of memory\n");
1740                 goto out;
1741         }
1742         memset(lunzerobits, 0, sizeof(lunzerobits));
1743
1744         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1745                         logdev_list, &nlogicals))
1746                 goto out;
1747
1748         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1749          * but each of them 4 times through different paths.  The plus 1
1750          * is for the RAID controller.
1751          */
1752         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1753
1754         /* Allocate the per device structures */
1755         for (i = 0; i < ndevs_to_allocate; i++) {
1756                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1757                 if (!currentsd[i]) {
1758                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1759                                 __FILE__, __LINE__);
1760                         goto out;
1761                 }
1762                 ndev_allocated++;
1763         }
1764
1765         if (unlikely(is_scsi_rev_5(h)))
1766                 raid_ctlr_position = 0;
1767         else
1768                 raid_ctlr_position = nphysicals + nlogicals;
1769
1770         /* adjust our table of devices */
1771         nmsa2xxx_enclosures = 0;
1772         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1773                 u8 *lunaddrbytes;
1774
1775                 /* Figure out where the LUN ID info is coming from */
1776                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1777                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1778                 /* skip masked physical devices. */
1779                 if (lunaddrbytes[3] & 0xC0 &&
1780                         i < nphysicals + (raid_ctlr_position == 0))
1781                         continue;
1782
1783                 /* Get device type, vendor, model, device id */
1784                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1785                         continue; /* skip it if we can't talk to it. */
1786                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1787                         tmpdevice);
1788                 this_device = currentsd[ncurrent];
1789
1790                 /*
1791                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1792                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1793                  * is nonetheless an enclosure device there.  We have to
1794                  * present that otherwise linux won't find anything if
1795                  * there is no lun 0.
1796                  */
1797                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1798                                 lunaddrbytes, bus, target, lun, lunzerobits,
1799                                 &nmsa2xxx_enclosures)) {
1800                         ncurrent++;
1801                         this_device = currentsd[ncurrent];
1802                 }
1803
1804                 *this_device = *tmpdevice;
1805                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1806
1807                 switch (this_device->devtype) {
1808                 case TYPE_ROM: {
1809                         /* We don't *really* support actual CD-ROM devices,
1810                          * just "One Button Disaster Recovery" tape drive
1811                          * which temporarily pretends to be a CD-ROM drive.
1812                          * So we check that the device is really an OBDR tape
1813                          * device by checking for "$DR-10" in bytes 43-48 of
1814                          * the inquiry data.
1815                          */
1816                                 char obdr_sig[7];
1817 #define OBDR_TAPE_SIG "$DR-10"
1818                                 strncpy(obdr_sig, &inq_buff[43], 6);
1819                                 obdr_sig[6] = '\0';
1820                                 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1821                                         /* Not OBDR device, ignore it. */
1822                                         break;
1823                         }
1824                         ncurrent++;
1825                         break;
1826                 case TYPE_DISK:
1827                         if (i < nphysicals)
1828                                 break;
1829                         ncurrent++;
1830                         break;
1831                 case TYPE_TAPE:
1832                 case TYPE_MEDIUM_CHANGER:
1833                         ncurrent++;
1834                         break;
1835                 case TYPE_RAID:
1836                         /* Only present the Smartarray HBA as a RAID controller.
1837                          * If it's a RAID controller other than the HBA itself
1838                          * (an external RAID controller, MSA500 or similar)
1839                          * don't present it.
1840                          */
1841                         if (!is_hba_lunid(lunaddrbytes))
1842                                 break;
1843                         ncurrent++;
1844                         break;
1845                 default:
1846                         break;
1847                 }
1848                 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1849                         break;
1850         }
1851         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1852 out:
1853         kfree(tmpdevice);
1854         for (i = 0; i < ndev_allocated; i++)
1855                 kfree(currentsd[i]);
1856         kfree(currentsd);
1857         kfree(inq_buff);
1858         kfree(physdev_list);
1859         kfree(logdev_list);
1860 }
1861
1862 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1863  * dma mapping  and fills in the scatter gather entries of the
1864  * hpsa command, cp.
1865  */
1866 static int hpsa_scatter_gather(struct ctlr_info *h,
1867                 struct CommandList *cp,
1868                 struct scsi_cmnd *cmd)
1869 {
1870         unsigned int len;
1871         struct scatterlist *sg;
1872         u64 addr64;
1873         int use_sg, i, sg_index, chained;
1874         struct SGDescriptor *curr_sg;
1875
1876         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1877
1878         use_sg = scsi_dma_map(cmd);
1879         if (use_sg < 0)
1880                 return use_sg;
1881
1882         if (!use_sg)
1883                 goto sglist_finished;
1884
1885         curr_sg = cp->SG;
1886         chained = 0;
1887         sg_index = 0;
1888         scsi_for_each_sg(cmd, sg, use_sg, i) {
1889                 if (i == h->max_cmd_sg_entries - 1 &&
1890                         use_sg > h->max_cmd_sg_entries) {
1891                         chained = 1;
1892                         curr_sg = h->cmd_sg_list[cp->cmdindex];
1893                         sg_index = 0;
1894                 }
1895                 addr64 = (u64) sg_dma_address(sg);
1896                 len  = sg_dma_len(sg);
1897                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1898                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1899                 curr_sg->Len = len;
1900                 curr_sg->Ext = 0;  /* we are not chaining */
1901                 curr_sg++;
1902         }
1903
1904         if (use_sg + chained > h->maxSG)
1905                 h->maxSG = use_sg + chained;
1906
1907         if (chained) {
1908                 cp->Header.SGList = h->max_cmd_sg_entries;
1909                 cp->Header.SGTotal = (u16) (use_sg + 1);
1910                 hpsa_map_sg_chain_block(h, cp);
1911                 return 0;
1912         }
1913
1914 sglist_finished:
1915
1916         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
1917         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1918         return 0;
1919 }
1920
1921
1922 static int hpsa_scsi_queue_command(struct scsi_cmnd *cmd,
1923         void (*done)(struct scsi_cmnd *))
1924 {
1925         struct ctlr_info *h;
1926         struct hpsa_scsi_dev_t *dev;
1927         unsigned char scsi3addr[8];
1928         struct CommandList *c;
1929         unsigned long flags;
1930
1931         /* Get the ptr to our adapter structure out of cmd->host. */
1932         h = sdev_to_hba(cmd->device);
1933         dev = cmd->device->hostdata;
1934         if (!dev) {
1935                 cmd->result = DID_NO_CONNECT << 16;
1936                 done(cmd);
1937                 return 0;
1938         }
1939         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1940
1941         /* Need a lock as this is being allocated from the pool */
1942         spin_lock_irqsave(&h->lock, flags);
1943         c = cmd_alloc(h);
1944         spin_unlock_irqrestore(&h->lock, flags);
1945         if (c == NULL) {                        /* trouble... */
1946                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
1947                 return SCSI_MLQUEUE_HOST_BUSY;
1948         }
1949
1950         /* Fill in the command list header */
1951
1952         cmd->scsi_done = done;    /* save this for use by completion code */
1953
1954         /* save c in case we have to abort it  */
1955         cmd->host_scribble = (unsigned char *) c;
1956
1957         c->cmd_type = CMD_SCSI;
1958         c->scsi_cmd = cmd;
1959         c->Header.ReplyQueue = 0;  /* unused in simple mode */
1960         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
1961         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
1962         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
1963
1964         /* Fill in the request block... */
1965
1966         c->Request.Timeout = 0;
1967         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
1968         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
1969         c->Request.CDBLen = cmd->cmd_len;
1970         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
1971         c->Request.Type.Type = TYPE_CMD;
1972         c->Request.Type.Attribute = ATTR_SIMPLE;
1973         switch (cmd->sc_data_direction) {
1974         case DMA_TO_DEVICE:
1975                 c->Request.Type.Direction = XFER_WRITE;
1976                 break;
1977         case DMA_FROM_DEVICE:
1978                 c->Request.Type.Direction = XFER_READ;
1979                 break;
1980         case DMA_NONE:
1981                 c->Request.Type.Direction = XFER_NONE;
1982                 break;
1983         case DMA_BIDIRECTIONAL:
1984                 /* This can happen if a buggy application does a scsi passthru
1985                  * and sets both inlen and outlen to non-zero. ( see
1986                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
1987                  */
1988
1989                 c->Request.Type.Direction = XFER_RSVD;
1990                 /* This is technically wrong, and hpsa controllers should
1991                  * reject it with CMD_INVALID, which is the most correct
1992                  * response, but non-fibre backends appear to let it
1993                  * slide by, and give the same results as if this field
1994                  * were set correctly.  Either way is acceptable for
1995                  * our purposes here.
1996                  */
1997
1998                 break;
1999
2000         default:
2001                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2002                         cmd->sc_data_direction);
2003                 BUG();
2004                 break;
2005         }
2006
2007         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2008                 cmd_free(h, c);
2009                 return SCSI_MLQUEUE_HOST_BUSY;
2010         }
2011         enqueue_cmd_and_start_io(h, c);
2012         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2013         return 0;
2014 }
2015
2016 static void hpsa_scan_start(struct Scsi_Host *sh)
2017 {
2018         struct ctlr_info *h = shost_to_hba(sh);
2019         unsigned long flags;
2020
2021         /* wait until any scan already in progress is finished. */
2022         while (1) {
2023                 spin_lock_irqsave(&h->scan_lock, flags);
2024                 if (h->scan_finished)
2025                         break;
2026                 spin_unlock_irqrestore(&h->scan_lock, flags);
2027                 wait_event(h->scan_wait_queue, h->scan_finished);
2028                 /* Note: We don't need to worry about a race between this
2029                  * thread and driver unload because the midlayer will
2030                  * have incremented the reference count, so unload won't
2031                  * happen if we're in here.
2032                  */
2033         }
2034         h->scan_finished = 0; /* mark scan as in progress */
2035         spin_unlock_irqrestore(&h->scan_lock, flags);
2036
2037         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2038
2039         spin_lock_irqsave(&h->scan_lock, flags);
2040         h->scan_finished = 1; /* mark scan as finished. */
2041         wake_up_all(&h->scan_wait_queue);
2042         spin_unlock_irqrestore(&h->scan_lock, flags);
2043 }
2044
2045 static int hpsa_scan_finished(struct Scsi_Host *sh,
2046         unsigned long elapsed_time)
2047 {
2048         struct ctlr_info *h = shost_to_hba(sh);
2049         unsigned long flags;
2050         int finished;
2051
2052         spin_lock_irqsave(&h->scan_lock, flags);
2053         finished = h->scan_finished;
2054         spin_unlock_irqrestore(&h->scan_lock, flags);
2055         return finished;
2056 }
2057
2058 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2059         int qdepth, int reason)
2060 {
2061         struct ctlr_info *h = sdev_to_hba(sdev);
2062
2063         if (reason != SCSI_QDEPTH_DEFAULT)
2064                 return -ENOTSUPP;
2065
2066         if (qdepth < 1)
2067                 qdepth = 1;
2068         else
2069                 if (qdepth > h->nr_cmds)
2070                         qdepth = h->nr_cmds;
2071         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2072         return sdev->queue_depth;
2073 }
2074
2075 static void hpsa_unregister_scsi(struct ctlr_info *h)
2076 {
2077         /* we are being forcibly unloaded, and may not refuse. */
2078         scsi_remove_host(h->scsi_host);
2079         scsi_host_put(h->scsi_host);
2080         h->scsi_host = NULL;
2081 }
2082
2083 static int hpsa_register_scsi(struct ctlr_info *h)
2084 {
2085         int rc;
2086
2087         rc = hpsa_scsi_detect(h);
2088         if (rc != 0)
2089                 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2090                         " hpsa_scsi_detect(), rc is %d\n", rc);
2091         return rc;
2092 }
2093
2094 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2095         unsigned char lunaddr[])
2096 {
2097         int rc = 0;
2098         int count = 0;
2099         int waittime = 1; /* seconds */
2100         struct CommandList *c;
2101
2102         c = cmd_special_alloc(h);
2103         if (!c) {
2104                 dev_warn(&h->pdev->dev, "out of memory in "
2105                         "wait_for_device_to_become_ready.\n");
2106                 return IO_ERROR;
2107         }
2108
2109         /* Send test unit ready until device ready, or give up. */
2110         while (count < HPSA_TUR_RETRY_LIMIT) {
2111
2112                 /* Wait for a bit.  do this first, because if we send
2113                  * the TUR right away, the reset will just abort it.
2114                  */
2115                 msleep(1000 * waittime);
2116                 count++;
2117
2118                 /* Increase wait time with each try, up to a point. */
2119                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2120                         waittime = waittime * 2;
2121
2122                 /* Send the Test Unit Ready */
2123                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2124                 hpsa_scsi_do_simple_cmd_core(h, c);
2125                 /* no unmap needed here because no data xfer. */
2126
2127                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2128                         break;
2129
2130                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2131                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2132                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2133                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2134                         break;
2135
2136                 dev_warn(&h->pdev->dev, "waiting %d secs "
2137                         "for device to become ready.\n", waittime);
2138                 rc = 1; /* device not ready. */
2139         }
2140
2141         if (rc)
2142                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2143         else
2144                 dev_warn(&h->pdev->dev, "device is ready.\n");
2145
2146         cmd_special_free(h, c);
2147         return rc;
2148 }
2149
2150 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2151  * complaining.  Doing a host- or bus-reset can't do anything good here.
2152  */
2153 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2154 {
2155         int rc;
2156         struct ctlr_info *h;
2157         struct hpsa_scsi_dev_t *dev;
2158
2159         /* find the controller to which the command to be aborted was sent */
2160         h = sdev_to_hba(scsicmd->device);
2161         if (h == NULL) /* paranoia */
2162                 return FAILED;
2163         dev = scsicmd->device->hostdata;
2164         if (!dev) {
2165                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2166                         "device lookup failed.\n");
2167                 return FAILED;
2168         }
2169         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2170                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2171         /* send a reset to the SCSI LUN which the command was sent to */
2172         rc = hpsa_send_reset(h, dev->scsi3addr);
2173         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2174                 return SUCCESS;
2175
2176         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2177         return FAILED;
2178 }
2179
2180 /*
2181  * For operations that cannot sleep, a command block is allocated at init,
2182  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2183  * which ones are free or in use.  Lock must be held when calling this.
2184  * cmd_free() is the complement.
2185  */
2186 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2187 {
2188         struct CommandList *c;
2189         int i;
2190         union u64bit temp64;
2191         dma_addr_t cmd_dma_handle, err_dma_handle;
2192
2193         do {
2194                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2195                 if (i == h->nr_cmds)
2196                         return NULL;
2197         } while (test_and_set_bit
2198                  (i & (BITS_PER_LONG - 1),
2199                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2200         c = h->cmd_pool + i;
2201         memset(c, 0, sizeof(*c));
2202         cmd_dma_handle = h->cmd_pool_dhandle
2203             + i * sizeof(*c);
2204         c->err_info = h->errinfo_pool + i;
2205         memset(c->err_info, 0, sizeof(*c->err_info));
2206         err_dma_handle = h->errinfo_pool_dhandle
2207             + i * sizeof(*c->err_info);
2208         h->nr_allocs++;
2209
2210         c->cmdindex = i;
2211
2212         INIT_HLIST_NODE(&c->list);
2213         c->busaddr = (u32) cmd_dma_handle;
2214         temp64.val = (u64) err_dma_handle;
2215         c->ErrDesc.Addr.lower = temp64.val32.lower;
2216         c->ErrDesc.Addr.upper = temp64.val32.upper;
2217         c->ErrDesc.Len = sizeof(*c->err_info);
2218
2219         c->h = h;
2220         return c;
2221 }
2222
2223 /* For operations that can wait for kmalloc to possibly sleep,
2224  * this routine can be called. Lock need not be held to call
2225  * cmd_special_alloc. cmd_special_free() is the complement.
2226  */
2227 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2228 {
2229         struct CommandList *c;
2230         union u64bit temp64;
2231         dma_addr_t cmd_dma_handle, err_dma_handle;
2232
2233         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2234         if (c == NULL)
2235                 return NULL;
2236         memset(c, 0, sizeof(*c));
2237
2238         c->cmdindex = -1;
2239
2240         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2241                     &err_dma_handle);
2242
2243         if (c->err_info == NULL) {
2244                 pci_free_consistent(h->pdev,
2245                         sizeof(*c), c, cmd_dma_handle);
2246                 return NULL;
2247         }
2248         memset(c->err_info, 0, sizeof(*c->err_info));
2249
2250         INIT_HLIST_NODE(&c->list);
2251         c->busaddr = (u32) cmd_dma_handle;
2252         temp64.val = (u64) err_dma_handle;
2253         c->ErrDesc.Addr.lower = temp64.val32.lower;
2254         c->ErrDesc.Addr.upper = temp64.val32.upper;
2255         c->ErrDesc.Len = sizeof(*c->err_info);
2256
2257         c->h = h;
2258         return c;
2259 }
2260
2261 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2262 {
2263         int i;
2264
2265         i = c - h->cmd_pool;
2266         clear_bit(i & (BITS_PER_LONG - 1),
2267                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2268         h->nr_frees++;
2269 }
2270
2271 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2272 {
2273         union u64bit temp64;
2274
2275         temp64.val32.lower = c->ErrDesc.Addr.lower;
2276         temp64.val32.upper = c->ErrDesc.Addr.upper;
2277         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2278                             c->err_info, (dma_addr_t) temp64.val);
2279         pci_free_consistent(h->pdev, sizeof(*c),
2280                             c, (dma_addr_t) c->busaddr);
2281 }
2282
2283 #ifdef CONFIG_COMPAT
2284
2285 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2286 {
2287         IOCTL32_Command_struct __user *arg32 =
2288             (IOCTL32_Command_struct __user *) arg;
2289         IOCTL_Command_struct arg64;
2290         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2291         int err;
2292         u32 cp;
2293
2294         err = 0;
2295         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2296                            sizeof(arg64.LUN_info));
2297         err |= copy_from_user(&arg64.Request, &arg32->Request,
2298                            sizeof(arg64.Request));
2299         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2300                            sizeof(arg64.error_info));
2301         err |= get_user(arg64.buf_size, &arg32->buf_size);
2302         err |= get_user(cp, &arg32->buf);
2303         arg64.buf = compat_ptr(cp);
2304         err |= copy_to_user(p, &arg64, sizeof(arg64));
2305
2306         if (err)
2307                 return -EFAULT;
2308
2309         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2310         if (err)
2311                 return err;
2312         err |= copy_in_user(&arg32->error_info, &p->error_info,
2313                          sizeof(arg32->error_info));
2314         if (err)
2315                 return -EFAULT;
2316         return err;
2317 }
2318
2319 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2320         int cmd, void *arg)
2321 {
2322         BIG_IOCTL32_Command_struct __user *arg32 =
2323             (BIG_IOCTL32_Command_struct __user *) arg;
2324         BIG_IOCTL_Command_struct arg64;
2325         BIG_IOCTL_Command_struct __user *p =
2326             compat_alloc_user_space(sizeof(arg64));
2327         int err;
2328         u32 cp;
2329
2330         err = 0;
2331         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2332                            sizeof(arg64.LUN_info));
2333         err |= copy_from_user(&arg64.Request, &arg32->Request,
2334                            sizeof(arg64.Request));
2335         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2336                            sizeof(arg64.error_info));
2337         err |= get_user(arg64.buf_size, &arg32->buf_size);
2338         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2339         err |= get_user(cp, &arg32->buf);
2340         arg64.buf = compat_ptr(cp);
2341         err |= copy_to_user(p, &arg64, sizeof(arg64));
2342
2343         if (err)
2344                 return -EFAULT;
2345
2346         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2347         if (err)
2348                 return err;
2349         err |= copy_in_user(&arg32->error_info, &p->error_info,
2350                          sizeof(arg32->error_info));
2351         if (err)
2352                 return -EFAULT;
2353         return err;
2354 }
2355
2356 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2357 {
2358         switch (cmd) {
2359         case CCISS_GETPCIINFO:
2360         case CCISS_GETINTINFO:
2361         case CCISS_SETINTINFO:
2362         case CCISS_GETNODENAME:
2363         case CCISS_SETNODENAME:
2364         case CCISS_GETHEARTBEAT:
2365         case CCISS_GETBUSTYPES:
2366         case CCISS_GETFIRMVER:
2367         case CCISS_GETDRIVVER:
2368         case CCISS_REVALIDVOLS:
2369         case CCISS_DEREGDISK:
2370         case CCISS_REGNEWDISK:
2371         case CCISS_REGNEWD:
2372         case CCISS_RESCANDISK:
2373         case CCISS_GETLUNINFO:
2374                 return hpsa_ioctl(dev, cmd, arg);
2375
2376         case CCISS_PASSTHRU32:
2377                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2378         case CCISS_BIG_PASSTHRU32:
2379                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2380
2381         default:
2382                 return -ENOIOCTLCMD;
2383         }
2384 }
2385 #endif
2386
2387 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2388 {
2389         struct hpsa_pci_info pciinfo;
2390
2391         if (!argp)
2392                 return -EINVAL;
2393         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2394         pciinfo.bus = h->pdev->bus->number;
2395         pciinfo.dev_fn = h->pdev->devfn;
2396         pciinfo.board_id = h->board_id;
2397         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2398                 return -EFAULT;
2399         return 0;
2400 }
2401
2402 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2403 {
2404         DriverVer_type DriverVer;
2405         unsigned char vmaj, vmin, vsubmin;
2406         int rc;
2407
2408         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2409                 &vmaj, &vmin, &vsubmin);
2410         if (rc != 3) {
2411                 dev_info(&h->pdev->dev, "driver version string '%s' "
2412                         "unrecognized.", HPSA_DRIVER_VERSION);
2413                 vmaj = 0;
2414                 vmin = 0;
2415                 vsubmin = 0;
2416         }
2417         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2418         if (!argp)
2419                 return -EINVAL;
2420         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2421                 return -EFAULT;
2422         return 0;
2423 }
2424
2425 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2426 {
2427         IOCTL_Command_struct iocommand;
2428         struct CommandList *c;
2429         char *buff = NULL;
2430         union u64bit temp64;
2431
2432         if (!argp)
2433                 return -EINVAL;
2434         if (!capable(CAP_SYS_RAWIO))
2435                 return -EPERM;
2436         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2437                 return -EFAULT;
2438         if ((iocommand.buf_size < 1) &&
2439             (iocommand.Request.Type.Direction != XFER_NONE)) {
2440                 return -EINVAL;
2441         }
2442         if (iocommand.buf_size > 0) {
2443                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2444                 if (buff == NULL)
2445                         return -EFAULT;
2446         }
2447         if (iocommand.Request.Type.Direction == XFER_WRITE) {
2448                 /* Copy the data into the buffer we created */
2449                 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
2450                         kfree(buff);
2451                         return -EFAULT;
2452                 }
2453         } else
2454                 memset(buff, 0, iocommand.buf_size);
2455         c = cmd_special_alloc(h);
2456         if (c == NULL) {
2457                 kfree(buff);
2458                 return -ENOMEM;
2459         }
2460         /* Fill in the command type */
2461         c->cmd_type = CMD_IOCTL_PEND;
2462         /* Fill in Command Header */
2463         c->Header.ReplyQueue = 0; /* unused in simple mode */
2464         if (iocommand.buf_size > 0) {   /* buffer to fill */
2465                 c->Header.SGList = 1;
2466                 c->Header.SGTotal = 1;
2467         } else  { /* no buffers to fill */
2468                 c->Header.SGList = 0;
2469                 c->Header.SGTotal = 0;
2470         }
2471         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2472         /* use the kernel address the cmd block for tag */
2473         c->Header.Tag.lower = c->busaddr;
2474
2475         /* Fill in Request block */
2476         memcpy(&c->Request, &iocommand.Request,
2477                 sizeof(c->Request));
2478
2479         /* Fill in the scatter gather information */
2480         if (iocommand.buf_size > 0) {
2481                 temp64.val = pci_map_single(h->pdev, buff,
2482                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2483                 c->SG[0].Addr.lower = temp64.val32.lower;
2484                 c->SG[0].Addr.upper = temp64.val32.upper;
2485                 c->SG[0].Len = iocommand.buf_size;
2486                 c->SG[0].Ext = 0; /* we are not chaining*/
2487         }
2488         hpsa_scsi_do_simple_cmd_core(h, c);
2489         hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2490         check_ioctl_unit_attention(h, c);
2491
2492         /* Copy the error information out */
2493         memcpy(&iocommand.error_info, c->err_info,
2494                 sizeof(iocommand.error_info));
2495         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2496                 kfree(buff);
2497                 cmd_special_free(h, c);
2498                 return -EFAULT;
2499         }
2500
2501         if (iocommand.Request.Type.Direction == XFER_READ) {
2502                 /* Copy the data out of the buffer we created */
2503                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2504                         kfree(buff);
2505                         cmd_special_free(h, c);
2506                         return -EFAULT;
2507                 }
2508         }
2509         kfree(buff);
2510         cmd_special_free(h, c);
2511         return 0;
2512 }
2513
2514 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2515 {
2516         BIG_IOCTL_Command_struct *ioc;
2517         struct CommandList *c;
2518         unsigned char **buff = NULL;
2519         int *buff_size = NULL;
2520         union u64bit temp64;
2521         BYTE sg_used = 0;
2522         int status = 0;
2523         int i;
2524         u32 left;
2525         u32 sz;
2526         BYTE __user *data_ptr;
2527
2528         if (!argp)
2529                 return -EINVAL;
2530         if (!capable(CAP_SYS_RAWIO))
2531                 return -EPERM;
2532         ioc = (BIG_IOCTL_Command_struct *)
2533             kmalloc(sizeof(*ioc), GFP_KERNEL);
2534         if (!ioc) {
2535                 status = -ENOMEM;
2536                 goto cleanup1;
2537         }
2538         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2539                 status = -EFAULT;
2540                 goto cleanup1;
2541         }
2542         if ((ioc->buf_size < 1) &&
2543             (ioc->Request.Type.Direction != XFER_NONE)) {
2544                 status = -EINVAL;
2545                 goto cleanup1;
2546         }
2547         /* Check kmalloc limits  using all SGs */
2548         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2549                 status = -EINVAL;
2550                 goto cleanup1;
2551         }
2552         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2553                 status = -EINVAL;
2554                 goto cleanup1;
2555         }
2556         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2557         if (!buff) {
2558                 status = -ENOMEM;
2559                 goto cleanup1;
2560         }
2561         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2562         if (!buff_size) {
2563                 status = -ENOMEM;
2564                 goto cleanup1;
2565         }
2566         left = ioc->buf_size;
2567         data_ptr = ioc->buf;
2568         while (left) {
2569                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2570                 buff_size[sg_used] = sz;
2571                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2572                 if (buff[sg_used] == NULL) {
2573                         status = -ENOMEM;
2574                         goto cleanup1;
2575                 }
2576                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2577                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2578                                 status = -ENOMEM;
2579                                 goto cleanup1;
2580                         }
2581                 } else
2582                         memset(buff[sg_used], 0, sz);
2583                 left -= sz;
2584                 data_ptr += sz;
2585                 sg_used++;
2586         }
2587         c = cmd_special_alloc(h);
2588         if (c == NULL) {
2589                 status = -ENOMEM;
2590                 goto cleanup1;
2591         }
2592         c->cmd_type = CMD_IOCTL_PEND;
2593         c->Header.ReplyQueue = 0;
2594
2595         if (ioc->buf_size > 0) {
2596                 c->Header.SGList = sg_used;
2597                 c->Header.SGTotal = sg_used;
2598         } else {
2599                 c->Header.SGList = 0;
2600                 c->Header.SGTotal = 0;
2601         }
2602         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2603         c->Header.Tag.lower = c->busaddr;
2604         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2605         if (ioc->buf_size > 0) {
2606                 int i;
2607                 for (i = 0; i < sg_used; i++) {
2608                         temp64.val = pci_map_single(h->pdev, buff[i],
2609                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2610                         c->SG[i].Addr.lower = temp64.val32.lower;
2611                         c->SG[i].Addr.upper = temp64.val32.upper;
2612                         c->SG[i].Len = buff_size[i];
2613                         /* we are not chaining */
2614                         c->SG[i].Ext = 0;
2615                 }
2616         }
2617         hpsa_scsi_do_simple_cmd_core(h, c);
2618         hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2619         check_ioctl_unit_attention(h, c);
2620         /* Copy the error information out */
2621         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2622         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2623                 cmd_special_free(h, c);
2624                 status = -EFAULT;
2625                 goto cleanup1;
2626         }
2627         if (ioc->Request.Type.Direction == XFER_READ) {
2628                 /* Copy the data out of the buffer we created */
2629                 BYTE __user *ptr = ioc->buf;
2630                 for (i = 0; i < sg_used; i++) {
2631                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2632                                 cmd_special_free(h, c);
2633                                 status = -EFAULT;
2634                                 goto cleanup1;
2635                         }
2636                         ptr += buff_size[i];
2637                 }
2638         }
2639         cmd_special_free(h, c);
2640         status = 0;
2641 cleanup1:
2642         if (buff) {
2643                 for (i = 0; i < sg_used; i++)
2644                         kfree(buff[i]);
2645                 kfree(buff);
2646         }
2647         kfree(buff_size);
2648         kfree(ioc);
2649         return status;
2650 }
2651
2652 static void check_ioctl_unit_attention(struct ctlr_info *h,
2653         struct CommandList *c)
2654 {
2655         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2656                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2657                 (void) check_for_unit_attention(h, c);
2658 }
2659 /*
2660  * ioctl
2661  */
2662 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2663 {
2664         struct ctlr_info *h;
2665         void __user *argp = (void __user *)arg;
2666
2667         h = sdev_to_hba(dev);
2668
2669         switch (cmd) {
2670         case CCISS_DEREGDISK:
2671         case CCISS_REGNEWDISK:
2672         case CCISS_REGNEWD:
2673                 hpsa_scan_start(h->scsi_host);
2674                 return 0;
2675         case CCISS_GETPCIINFO:
2676                 return hpsa_getpciinfo_ioctl(h, argp);
2677         case CCISS_GETDRIVVER:
2678                 return hpsa_getdrivver_ioctl(h, argp);
2679         case CCISS_PASSTHRU:
2680                 return hpsa_passthru_ioctl(h, argp);
2681         case CCISS_BIG_PASSTHRU:
2682                 return hpsa_big_passthru_ioctl(h, argp);
2683         default:
2684                 return -ENOTTY;
2685         }
2686 }
2687
2688 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2689         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2690         int cmd_type)
2691 {
2692         int pci_dir = XFER_NONE;
2693
2694         c->cmd_type = CMD_IOCTL_PEND;
2695         c->Header.ReplyQueue = 0;
2696         if (buff != NULL && size > 0) {
2697                 c->Header.SGList = 1;
2698                 c->Header.SGTotal = 1;
2699         } else {
2700                 c->Header.SGList = 0;
2701                 c->Header.SGTotal = 0;
2702         }
2703         c->Header.Tag.lower = c->busaddr;
2704         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2705
2706         c->Request.Type.Type = cmd_type;
2707         if (cmd_type == TYPE_CMD) {
2708                 switch (cmd) {
2709                 case HPSA_INQUIRY:
2710                         /* are we trying to read a vital product page */
2711                         if (page_code != 0) {
2712                                 c->Request.CDB[1] = 0x01;
2713                                 c->Request.CDB[2] = page_code;
2714                         }
2715                         c->Request.CDBLen = 6;
2716                         c->Request.Type.Attribute = ATTR_SIMPLE;
2717                         c->Request.Type.Direction = XFER_READ;
2718                         c->Request.Timeout = 0;
2719                         c->Request.CDB[0] = HPSA_INQUIRY;
2720                         c->Request.CDB[4] = size & 0xFF;
2721                         break;
2722                 case HPSA_REPORT_LOG:
2723                 case HPSA_REPORT_PHYS:
2724                         /* Talking to controller so It's a physical command
2725                            mode = 00 target = 0.  Nothing to write.
2726                          */
2727                         c->Request.CDBLen = 12;
2728                         c->Request.Type.Attribute = ATTR_SIMPLE;
2729                         c->Request.Type.Direction = XFER_READ;
2730                         c->Request.Timeout = 0;
2731                         c->Request.CDB[0] = cmd;
2732                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2733                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2734                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2735                         c->Request.CDB[9] = size & 0xFF;
2736                         break;
2737                 case HPSA_CACHE_FLUSH:
2738                         c->Request.CDBLen = 12;
2739                         c->Request.Type.Attribute = ATTR_SIMPLE;
2740                         c->Request.Type.Direction = XFER_WRITE;
2741                         c->Request.Timeout = 0;
2742                         c->Request.CDB[0] = BMIC_WRITE;
2743                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2744                         break;
2745                 case TEST_UNIT_READY:
2746                         c->Request.CDBLen = 6;
2747                         c->Request.Type.Attribute = ATTR_SIMPLE;
2748                         c->Request.Type.Direction = XFER_NONE;
2749                         c->Request.Timeout = 0;
2750                         break;
2751                 default:
2752                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2753                         BUG();
2754                         return;
2755                 }
2756         } else if (cmd_type == TYPE_MSG) {
2757                 switch (cmd) {
2758
2759                 case  HPSA_DEVICE_RESET_MSG:
2760                         c->Request.CDBLen = 16;
2761                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2762                         c->Request.Type.Attribute = ATTR_SIMPLE;
2763                         c->Request.Type.Direction = XFER_NONE;
2764                         c->Request.Timeout = 0; /* Don't time out */
2765                         c->Request.CDB[0] =  0x01; /* RESET_MSG is 0x01 */
2766                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2767                         /* If bytes 4-7 are zero, it means reset the */
2768                         /* LunID device */
2769                         c->Request.CDB[4] = 0x00;
2770                         c->Request.CDB[5] = 0x00;
2771                         c->Request.CDB[6] = 0x00;
2772                         c->Request.CDB[7] = 0x00;
2773                 break;
2774
2775                 default:
2776                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2777                                 cmd);
2778                         BUG();
2779                 }
2780         } else {
2781                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2782                 BUG();
2783         }
2784
2785         switch (c->Request.Type.Direction) {
2786         case XFER_READ:
2787                 pci_dir = PCI_DMA_FROMDEVICE;
2788                 break;
2789         case XFER_WRITE:
2790                 pci_dir = PCI_DMA_TODEVICE;
2791                 break;
2792         case XFER_NONE:
2793                 pci_dir = PCI_DMA_NONE;
2794                 break;
2795         default:
2796                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2797         }
2798
2799         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2800
2801         return;
2802 }
2803
2804 /*
2805  * Map (physical) PCI mem into (virtual) kernel space
2806  */
2807 static void __iomem *remap_pci_mem(ulong base, ulong size)
2808 {
2809         ulong page_base = ((ulong) base) & PAGE_MASK;
2810         ulong page_offs = ((ulong) base) - page_base;
2811         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2812
2813         return page_remapped ? (page_remapped + page_offs) : NULL;
2814 }
2815
2816 /* Takes cmds off the submission queue and sends them to the hardware,
2817  * then puts them on the queue of cmds waiting for completion.
2818  */
2819 static void start_io(struct ctlr_info *h)
2820 {
2821         struct CommandList *c;
2822
2823         while (!hlist_empty(&h->reqQ)) {
2824                 c = hlist_entry(h->reqQ.first, struct CommandList, list);
2825                 /* can't do anything if fifo is full */
2826                 if ((h->access.fifo_full(h))) {
2827                         dev_warn(&h->pdev->dev, "fifo full\n");
2828                         break;
2829                 }
2830
2831                 /* Get the first entry from the Request Q */
2832                 removeQ(c);
2833                 h->Qdepth--;
2834
2835                 /* Tell the controller execute command */
2836                 h->access.submit_command(h, c);
2837
2838                 /* Put job onto the completed Q */
2839                 addQ(&h->cmpQ, c);
2840         }
2841 }
2842
2843 static inline unsigned long get_next_completion(struct ctlr_info *h)
2844 {
2845         return h->access.command_completed(h);
2846 }
2847
2848 static inline bool interrupt_pending(struct ctlr_info *h)
2849 {
2850         return h->access.intr_pending(h);
2851 }
2852
2853 static inline long interrupt_not_for_us(struct ctlr_info *h)
2854 {
2855         return !(h->msi_vector || h->msix_vector) &&
2856                 ((h->access.intr_pending(h) == 0) ||
2857                 (h->interrupts_enabled == 0));
2858 }
2859
2860 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2861         u32 raw_tag)
2862 {
2863         if (unlikely(tag_index >= h->nr_cmds)) {
2864                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2865                 return 1;
2866         }
2867         return 0;
2868 }
2869
2870 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2871 {
2872         removeQ(c);
2873         if (likely(c->cmd_type == CMD_SCSI))
2874                 complete_scsi_command(c, 0, raw_tag);
2875         else if (c->cmd_type == CMD_IOCTL_PEND)
2876                 complete(c->waiting);
2877 }
2878
2879 static inline u32 hpsa_tag_contains_index(u32 tag)
2880 {
2881 #define DIRECT_LOOKUP_BIT 0x10
2882         return tag & DIRECT_LOOKUP_BIT;
2883 }
2884
2885 static inline u32 hpsa_tag_to_index(u32 tag)
2886 {
2887 #define DIRECT_LOOKUP_SHIFT 5
2888         return tag >> DIRECT_LOOKUP_SHIFT;
2889 }
2890
2891 static inline u32 hpsa_tag_discard_error_bits(u32 tag)
2892 {
2893 #define HPSA_ERROR_BITS 0x03
2894         return tag & ~HPSA_ERROR_BITS;
2895 }
2896
2897 /* process completion of an indexed ("direct lookup") command */
2898 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2899         u32 raw_tag)
2900 {
2901         u32 tag_index;
2902         struct CommandList *c;
2903
2904         tag_index = hpsa_tag_to_index(raw_tag);
2905         if (bad_tag(h, tag_index, raw_tag))
2906                 return next_command(h);
2907         c = h->cmd_pool + tag_index;
2908         finish_cmd(c, raw_tag);
2909         return next_command(h);
2910 }
2911
2912 /* process completion of a non-indexed command */
2913 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2914         u32 raw_tag)
2915 {
2916         u32 tag;
2917         struct CommandList *c = NULL;
2918         struct hlist_node *tmp;
2919
2920         tag = hpsa_tag_discard_error_bits(raw_tag);
2921         hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
2922                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2923                         finish_cmd(c, raw_tag);
2924                         return next_command(h);
2925                 }
2926         }
2927         bad_tag(h, h->nr_cmds + 1, raw_tag);
2928         return next_command(h);
2929 }
2930
2931 static irqreturn_t do_hpsa_intr(int irq, void *dev_id)
2932 {
2933         struct ctlr_info *h = dev_id;
2934         unsigned long flags;
2935         u32 raw_tag;
2936
2937         if (interrupt_not_for_us(h))
2938                 return IRQ_NONE;
2939         spin_lock_irqsave(&h->lock, flags);
2940         raw_tag = get_next_completion(h);
2941         while (raw_tag != FIFO_EMPTY) {
2942                 if (hpsa_tag_contains_index(raw_tag))
2943                         raw_tag = process_indexed_cmd(h, raw_tag);
2944                 else
2945                         raw_tag = process_nonindexed_cmd(h, raw_tag);
2946         }
2947         spin_unlock_irqrestore(&h->lock, flags);
2948         return IRQ_HANDLED;
2949 }
2950
2951 /* Send a message CDB to the firmware. */
2952 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
2953                                                 unsigned char type)
2954 {
2955         struct Command {
2956                 struct CommandListHeader CommandHeader;
2957                 struct RequestBlock Request;
2958                 struct ErrDescriptor ErrorDescriptor;
2959         };
2960         struct Command *cmd;
2961         static const size_t cmd_sz = sizeof(*cmd) +
2962                                         sizeof(cmd->ErrorDescriptor);
2963         dma_addr_t paddr64;
2964         uint32_t paddr32, tag;
2965         void __iomem *vaddr;
2966         int i, err;
2967
2968         vaddr = pci_ioremap_bar(pdev, 0);
2969         if (vaddr == NULL)
2970                 return -ENOMEM;
2971
2972         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
2973          * CCISS commands, so they must be allocated from the lower 4GiB of
2974          * memory.
2975          */
2976         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2977         if (err) {
2978                 iounmap(vaddr);
2979                 return -ENOMEM;
2980         }
2981
2982         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
2983         if (cmd == NULL) {
2984                 iounmap(vaddr);
2985                 return -ENOMEM;
2986         }
2987
2988         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
2989          * although there's no guarantee, we assume that the address is at
2990          * least 4-byte aligned (most likely, it's page-aligned).
2991          */
2992         paddr32 = paddr64;
2993
2994         cmd->CommandHeader.ReplyQueue = 0;
2995         cmd->CommandHeader.SGList = 0;
2996         cmd->CommandHeader.SGTotal = 0;
2997         cmd->CommandHeader.Tag.lower = paddr32;
2998         cmd->CommandHeader.Tag.upper = 0;
2999         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3000
3001         cmd->Request.CDBLen = 16;
3002         cmd->Request.Type.Type = TYPE_MSG;
3003         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3004         cmd->Request.Type.Direction = XFER_NONE;
3005         cmd->Request.Timeout = 0; /* Don't time out */
3006         cmd->Request.CDB[0] = opcode;
3007         cmd->Request.CDB[1] = type;
3008         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3009         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3010         cmd->ErrorDescriptor.Addr.upper = 0;
3011         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3012
3013         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3014
3015         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3016                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3017                 if (hpsa_tag_discard_error_bits(tag) == paddr32)
3018                         break;
3019                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3020         }
3021
3022         iounmap(vaddr);
3023
3024         /* we leak the DMA buffer here ... no choice since the controller could
3025          *  still complete the command.
3026          */
3027         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3028                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3029                         opcode, type);
3030                 return -ETIMEDOUT;
3031         }
3032
3033         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3034
3035         if (tag & HPSA_ERROR_BIT) {
3036                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3037                         opcode, type);
3038                 return -EIO;
3039         }
3040
3041         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3042                 opcode, type);
3043         return 0;
3044 }
3045
3046 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
3047 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3048
3049 static __devinit int hpsa_reset_msi(struct pci_dev *pdev)
3050 {
3051 /* the #defines are stolen from drivers/pci/msi.h. */
3052 #define msi_control_reg(base)           (base + PCI_MSI_FLAGS)
3053 #define PCI_MSIX_FLAGS_ENABLE           (1 << 15)
3054
3055         int pos;
3056         u16 control = 0;
3057
3058         pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
3059         if (pos) {
3060                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3061                 if (control & PCI_MSI_FLAGS_ENABLE) {
3062                         dev_info(&pdev->dev, "resetting MSI\n");
3063                         pci_write_config_word(pdev, msi_control_reg(pos),
3064                                         control & ~PCI_MSI_FLAGS_ENABLE);
3065                 }
3066         }
3067
3068         pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
3069         if (pos) {
3070                 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3071                 if (control & PCI_MSIX_FLAGS_ENABLE) {
3072                         dev_info(&pdev->dev, "resetting MSI-X\n");
3073                         pci_write_config_word(pdev, msi_control_reg(pos),
3074                                         control & ~PCI_MSIX_FLAGS_ENABLE);
3075                 }
3076         }
3077
3078         return 0;
3079 }
3080
3081 /* This does a hard reset of the controller using PCI power management
3082  * states.
3083  */
3084 static __devinit int hpsa_hard_reset_controller(struct pci_dev *pdev)
3085 {
3086         u16 pmcsr, saved_config_space[32];
3087         int i, pos;
3088
3089         dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3090
3091         /* This is very nearly the same thing as
3092          *
3093          * pci_save_state(pci_dev);
3094          * pci_set_power_state(pci_dev, PCI_D3hot);
3095          * pci_set_power_state(pci_dev, PCI_D0);
3096          * pci_restore_state(pci_dev);
3097          *
3098          * but we can't use these nice canned kernel routines on
3099          * kexec, because they also check the MSI/MSI-X state in PCI
3100          * configuration space and do the wrong thing when it is
3101          * set/cleared.  Also, the pci_save/restore_state functions
3102          * violate the ordering requirements for restoring the
3103          * configuration space from the CCISS document (see the
3104          * comment below).  So we roll our own ....
3105          */
3106
3107         for (i = 0; i < 32; i++)
3108                 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
3109
3110         pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3111         if (pos == 0) {
3112                 dev_err(&pdev->dev,
3113                         "hpsa_reset_controller: PCI PM not supported\n");
3114                 return -ENODEV;
3115         }
3116
3117         /* Quoting from the Open CISS Specification: "The Power
3118          * Management Control/Status Register (CSR) controls the power
3119          * state of the device.  The normal operating state is D0,
3120          * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3121          * the controller, place the interface device in D3 then to
3122          * D0, this causes a secondary PCI reset which will reset the
3123          * controller."
3124          */
3125
3126         /* enter the D3hot power management state */
3127         pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3128         pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3129         pmcsr |= PCI_D3hot;
3130         pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3131
3132         msleep(500);
3133
3134         /* enter the D0 power management state */
3135         pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3136         pmcsr |= PCI_D0;
3137         pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3138
3139         msleep(500);
3140
3141         /* Restore the PCI configuration space.  The Open CISS
3142          * Specification says, "Restore the PCI Configuration
3143          * Registers, offsets 00h through 60h. It is important to
3144          * restore the command register, 16-bits at offset 04h,
3145          * last. Do not restore the configuration status register,
3146          * 16-bits at offset 06h."  Note that the offset is 2*i.
3147          */
3148         for (i = 0; i < 32; i++) {
3149                 if (i == 2 || i == 3)
3150                         continue;
3151                 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
3152         }
3153         wmb();
3154         pci_write_config_word(pdev, 4, saved_config_space[2]);
3155
3156         return 0;
3157 }
3158
3159 /*
3160  *  We cannot read the structure directly, for portability we must use
3161  *   the io functions.
3162  *   This is for debug only.
3163  */
3164 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3165 {
3166 #ifdef HPSA_DEBUG
3167         int i;
3168         char temp_name[17];
3169
3170         dev_info(dev, "Controller Configuration information\n");
3171         dev_info(dev, "------------------------------------\n");
3172         for (i = 0; i < 4; i++)
3173                 temp_name[i] = readb(&(tb->Signature[i]));
3174         temp_name[4] = '\0';
3175         dev_info(dev, "   Signature = %s\n", temp_name);
3176         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3177         dev_info(dev, "   Transport methods supported = 0x%x\n",
3178                readl(&(tb->TransportSupport)));
3179         dev_info(dev, "   Transport methods active = 0x%x\n",
3180                readl(&(tb->TransportActive)));
3181         dev_info(dev, "   Requested transport Method = 0x%x\n",
3182                readl(&(tb->HostWrite.TransportRequest)));
3183         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3184                readl(&(tb->HostWrite.CoalIntDelay)));
3185         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3186                readl(&(tb->HostWrite.CoalIntCount)));
3187         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3188                readl(&(tb->CmdsOutMax)));
3189         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3190         for (i = 0; i < 16; i++)
3191                 temp_name[i] = readb(&(tb->ServerName[i]));
3192         temp_name[16] = '\0';
3193         dev_info(dev, "   Server Name = %s\n", temp_name);
3194         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3195                 readl(&(tb->HeartBeat)));
3196 #endif                          /* HPSA_DEBUG */
3197 }
3198
3199 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3200 {
3201         int i, offset, mem_type, bar_type;
3202
3203         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3204                 return 0;
3205         offset = 0;
3206         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3207                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3208                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3209                         offset += 4;
3210                 else {
3211                         mem_type = pci_resource_flags(pdev, i) &
3212                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3213                         switch (mem_type) {
3214                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3215                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3216                                 offset += 4;    /* 32 bit */
3217                                 break;
3218                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3219                                 offset += 8;
3220                                 break;
3221                         default:        /* reserved in PCI 2.2 */
3222                                 dev_warn(&pdev->dev,
3223                                        "base address is invalid\n");
3224                                 return -1;
3225                                 break;
3226                         }
3227                 }
3228                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3229                         return i + 1;
3230         }
3231         return -1;
3232 }
3233
3234 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3235  * controllers that are capable. If not, we use IO-APIC mode.
3236  */
3237
3238 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3239 {
3240 #ifdef CONFIG_PCI_MSI
3241         int err;
3242         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3243         {0, 2}, {0, 3}
3244         };
3245
3246         /* Some boards advertise MSI but don't really support it */
3247         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3248             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3249                 goto default_int_mode;
3250         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3251                 dev_info(&h->pdev->dev, "MSIX\n");
3252                 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3253                 if (!err) {
3254                         h->intr[0] = hpsa_msix_entries[0].vector;
3255                         h->intr[1] = hpsa_msix_entries[1].vector;
3256                         h->intr[2] = hpsa_msix_entries[2].vector;
3257                         h->intr[3] = hpsa_msix_entries[3].vector;
3258                         h->msix_vector = 1;
3259                         return;
3260                 }
3261                 if (err > 0) {
3262                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3263                                "available\n", err);
3264                         goto default_int_mode;
3265                 } else {
3266                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3267                                err);
3268                         goto default_int_mode;
3269                 }
3270         }
3271         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3272                 dev_info(&h->pdev->dev, "MSI\n");
3273                 if (!pci_enable_msi(h->pdev))
3274                         h->msi_vector = 1;
3275                 else
3276                         dev_warn(&h->pdev->dev, "MSI init failed\n");
3277         }
3278 default_int_mode:
3279 #endif                          /* CONFIG_PCI_MSI */
3280         /* if we get here we're going to use the default interrupt mode */
3281         h->intr[PERF_MODE_INT] = h->pdev->irq;
3282 }
3283
3284 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3285 {
3286         int i;
3287         u32 subsystem_vendor_id, subsystem_device_id;
3288
3289         subsystem_vendor_id = pdev->subsystem_vendor;
3290         subsystem_device_id = pdev->subsystem_device;
3291         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3292                     subsystem_vendor_id;
3293
3294         for (i = 0; i < ARRAY_SIZE(products); i++)
3295                 if (*board_id == products[i].board_id)
3296                         return i;
3297
3298         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3299                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3300                 !hpsa_allow_any) {
3301                 dev_warn(&pdev->dev, "unrecognized board ID: "
3302                         "0x%08x, ignoring.\n", *board_id);
3303                         return -ENODEV;
3304         }
3305         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3306 }
3307
3308 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3309 {
3310         u16 command;
3311
3312         (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3313         return ((command & PCI_COMMAND_MEMORY) == 0);
3314 }
3315
3316 static int __devinit hpsa_pci_find_memory_BAR(struct ctlr_info *h,
3317         unsigned long *memory_bar)
3318 {
3319         int i;
3320
3321         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3322                 if (pci_resource_flags(h->pdev, i) & IORESOURCE_MEM) {
3323                         /* addressing mode bits already removed */
3324                         *memory_bar = pci_resource_start(h->pdev, i);
3325                         dev_dbg(&h->pdev->dev, "memory BAR = %lx\n",
3326                                 *memory_bar);
3327                         return 0;
3328                 }
3329         dev_warn(&h->pdev->dev, "no memory BAR found\n");
3330         return -ENODEV;
3331 }
3332
3333 static int __devinit hpsa_wait_for_board_ready(struct ctlr_info *h)
3334 {
3335         int i;
3336         u32 scratchpad;
3337
3338         for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) {
3339                 scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
3340                 if (scratchpad == HPSA_FIRMWARE_READY)
3341                         return 0;
3342                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3343         }
3344         dev_warn(&h->pdev->dev, "board not ready, timed out.\n");
3345         return -ENODEV;
3346 }
3347
3348 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3349 {
3350         u64 cfg_offset;
3351         u32 cfg_base_addr;
3352         u64 cfg_base_addr_index;
3353         u32 trans_offset;
3354
3355         /* get the address index number */
3356         cfg_base_addr = readl(h->vaddr + SA5_CTCFG_OFFSET);
3357         cfg_base_addr &= (u32) 0x0000ffff;
3358         cfg_base_addr_index = find_PCI_BAR_index(h->pdev, cfg_base_addr);
3359         if (cfg_base_addr_index == -1) {
3360                 dev_warn(&h->pdev->dev, "cannot find cfg_base_addr_index\n");
3361                 return -ENODEV;
3362         }
3363         cfg_offset = readl(h->vaddr + SA5_CTMEM_OFFSET);
3364         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3365                                cfg_base_addr_index) + cfg_offset,
3366                                 sizeof(h->cfgtable));
3367         if (!h->cfgtable)
3368                 return -ENOMEM;
3369         /* Find performant mode table. */
3370         trans_offset = readl(&(h->cfgtable->TransMethodOffset));
3371         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3372                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3373                                 sizeof(*h->transtable));
3374         if (!h->transtable)
3375                 return -ENOMEM;
3376         return 0;
3377 }
3378
3379 /* Interrogate the hardware for some limits:
3380  * max commands, max SG elements without chaining, and with chaining,
3381  * SG chain block size, etc.
3382  */
3383 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3384 {
3385         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3386         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3387         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3388         /*
3389          * Limit in-command s/g elements to 32 save dma'able memory.
3390          * Howvever spec says if 0, use 31
3391          */
3392         h->max_cmd_sg_entries = 31;
3393         if (h->maxsgentries > 512) {
3394                 h->max_cmd_sg_entries = 32;
3395                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3396                 h->maxsgentries--; /* save one for chain pointer */
3397         } else {
3398                 h->maxsgentries = 31; /* default to traditional values */
3399                 h->chainsize = 0;
3400         }
3401 }
3402
3403 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3404 {
3405         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3406             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3407             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3408             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3409                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3410                 return false;
3411         }
3412         return true;
3413 }
3414
3415 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3416 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3417 {
3418 #ifdef CONFIG_X86
3419         u32 prefetch;
3420
3421         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3422         prefetch |= 0x100;
3423         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3424 #endif
3425 }
3426
3427 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3428  * in a prefetch beyond physical memory.
3429  */
3430 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3431 {
3432         u32 dma_prefetch;
3433
3434         if (h->board_id != 0x3225103C)
3435                 return;
3436         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3437         dma_prefetch |= 0x8000;
3438         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3439 }
3440
3441 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3442 {
3443         int i;
3444
3445         /* under certain very rare conditions, this can take awhile.
3446          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3447          * as we enter this code.)
3448          */
3449         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3450                 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3451                         break;
3452                 /* delay and try again */
3453                 msleep(10);
3454         }
3455 }
3456
3457 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3458 {
3459         u32 trans_support;
3460
3461         trans_support = readl(&(h->cfgtable->TransportSupport));
3462         if (!(trans_support & SIMPLE_MODE))
3463                 return -ENOTSUPP;
3464
3465         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3466         /* Update the field, and then ring the doorbell */
3467         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3468         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3469         hpsa_wait_for_mode_change_ack(h);
3470         print_cfg_table(&h->pdev->dev, h->cfgtable);
3471         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3472                 dev_warn(&h->pdev->dev,
3473                         "unable to get board into simple mode\n");
3474                 return -ENODEV;
3475         }
3476         return 0;
3477 }
3478
3479 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3480 {
3481         int prod_index, err;
3482
3483         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3484         if (prod_index < 0)
3485                 return -ENODEV;
3486         h->product_name = products[prod_index].product_name;
3487         h->access = *(products[prod_index].access);
3488
3489         if (hpsa_board_disabled(h->pdev)) {
3490                 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3491                 return -ENODEV;
3492         }
3493         err = pci_enable_device(h->pdev);
3494         if (err) {
3495                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3496                 return err;
3497         }
3498
3499         err = pci_request_regions(h->pdev, "hpsa");
3500         if (err) {
3501                 dev_err(&h->pdev->dev,
3502                         "cannot obtain PCI resources, aborting\n");
3503                 return err;
3504         }
3505         hpsa_interrupt_mode(h);
3506         err = hpsa_pci_find_memory_BAR(h, &h->paddr);
3507         if (err)
3508                 goto err_out_free_res;
3509         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3510         if (!h->vaddr) {
3511                 err = -ENOMEM;
3512                 goto err_out_free_res;
3513         }
3514         err = hpsa_wait_for_board_ready(h);
3515         if (err)
3516                 goto err_out_free_res;
3517         err = hpsa_find_cfgtables(h);
3518         if (err)
3519                 goto err_out_free_res;
3520         hpsa_find_board_params(h);
3521
3522         if (!hpsa_CISS_signature_present(h)) {
3523                 err = -ENODEV;
3524                 goto err_out_free_res;
3525         }
3526         hpsa_enable_scsi_prefetch(h);
3527         hpsa_p600_dma_prefetch_quirk(h);
3528         err = hpsa_enter_simple_mode(h);
3529         if (err)
3530                 goto err_out_free_res;
3531         return 0;
3532
3533 err_out_free_res:
3534         if (h->transtable)
3535                 iounmap(h->transtable);
3536         if (h->cfgtable)
3537                 iounmap(h->cfgtable);
3538         if (h->vaddr)
3539                 iounmap(h->vaddr);
3540         /*
3541          * Deliberately omit pci_disable_device(): it does something nasty to
3542          * Smart Array controllers that pci_enable_device does not undo
3543          */
3544         pci_release_regions(h->pdev);
3545         return err;
3546 }
3547
3548 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3549 {
3550         int rc;
3551
3552 #define HBA_INQUIRY_BYTE_COUNT 64
3553         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3554         if (!h->hba_inquiry_data)
3555                 return;
3556         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3557                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3558         if (rc != 0) {
3559                 kfree(h->hba_inquiry_data);
3560                 h->hba_inquiry_data = NULL;
3561         }
3562 }
3563
3564 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3565                                     const struct pci_device_id *ent)
3566 {
3567         int i, rc;
3568         int dac;
3569         struct ctlr_info *h;
3570
3571         if (number_of_controllers == 0)
3572                 printk(KERN_INFO DRIVER_NAME "\n");
3573         if (reset_devices) {
3574                 /* Reset the controller with a PCI power-cycle */
3575                 if (hpsa_hard_reset_controller(pdev) || hpsa_reset_msi(pdev))
3576                         return -ENODEV;
3577
3578                 /* Some devices (notably the HP Smart Array 5i Controller)
3579                    need a little pause here */
3580                 msleep(HPSA_POST_RESET_PAUSE_MSECS);
3581
3582                 /* Now try to get the controller to respond to a no-op */
3583                 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3584                         if (hpsa_noop(pdev) == 0)
3585                                 break;
3586                         else
3587                                 dev_warn(&pdev->dev, "no-op failed%s\n",
3588                                                 (i < 11 ? "; re-trying" : ""));
3589                 }
3590         }
3591
3592         /* Command structures must be aligned on a 32-byte boundary because
3593          * the 5 lower bits of the address are used by the hardware. and by
3594          * the driver.  See comments in hpsa.h for more info.
3595          */
3596 #define COMMANDLIST_ALIGNMENT 32
3597         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3598         h = kzalloc(sizeof(*h), GFP_KERNEL);
3599         if (!h)
3600                 return -ENOMEM;
3601
3602         h->pdev = pdev;
3603         h->busy_initializing = 1;
3604         INIT_HLIST_HEAD(&h->cmpQ);
3605         INIT_HLIST_HEAD(&h->reqQ);
3606         rc = hpsa_pci_init(h);
3607         if (rc != 0)
3608                 goto clean1;
3609
3610         sprintf(h->devname, "hpsa%d", number_of_controllers);
3611         h->ctlr = number_of_controllers;
3612         number_of_controllers++;
3613
3614         /* configure PCI DMA stuff */
3615         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3616         if (rc == 0) {
3617                 dac = 1;
3618         } else {
3619                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3620                 if (rc == 0) {
3621                         dac = 0;
3622                 } else {
3623                         dev_err(&pdev->dev, "no suitable DMA available\n");
3624                         goto clean1;
3625                 }
3626         }
3627
3628         /* make sure the board interrupts are off */
3629         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3630         rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr,
3631                         IRQF_DISABLED, h->devname, h);
3632         if (rc) {
3633                 dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3634                        h->intr[PERF_MODE_INT], h->devname);
3635                 goto clean2;
3636         }
3637
3638         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3639                h->devname, pdev->device,
3640                h->intr[PERF_MODE_INT], dac ? "" : " not");
3641
3642         h->cmd_pool_bits =
3643             kmalloc(((h->nr_cmds + BITS_PER_LONG -
3644                       1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3645         h->cmd_pool = pci_alloc_consistent(h->pdev,
3646                     h->nr_cmds * sizeof(*h->cmd_pool),
3647                     &(h->cmd_pool_dhandle));
3648         h->errinfo_pool = pci_alloc_consistent(h->pdev,
3649                     h->nr_cmds * sizeof(*h->errinfo_pool),
3650                     &(h->errinfo_pool_dhandle));
3651         if ((h->cmd_pool_bits == NULL)
3652             || (h->cmd_pool == NULL)
3653             || (h->errinfo_pool == NULL)) {
3654                 dev_err(&pdev->dev, "out of memory");
3655                 rc = -ENOMEM;
3656                 goto clean4;
3657         }
3658         if (hpsa_allocate_sg_chain_blocks(h))
3659                 goto clean4;
3660         spin_lock_init(&h->lock);
3661         spin_lock_init(&h->scan_lock);
3662         init_waitqueue_head(&h->scan_wait_queue);
3663         h->scan_finished = 1; /* no scan currently in progress */
3664
3665         pci_set_drvdata(pdev, h);
3666         memset(h->cmd_pool_bits, 0,
3667                ((h->nr_cmds + BITS_PER_LONG -
3668                  1) / BITS_PER_LONG) * sizeof(unsigned long));
3669
3670         hpsa_scsi_setup(h);
3671
3672         /* Turn the interrupts on so we can service requests */
3673         h->access.set_intr_mask(h, HPSA_INTR_ON);
3674
3675         hpsa_put_ctlr_into_performant_mode(h);
3676         hpsa_hba_inquiry(h);
3677         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
3678         h->busy_initializing = 0;
3679         return 1;
3680
3681 clean4:
3682         hpsa_free_sg_chain_blocks(h);
3683         kfree(h->cmd_pool_bits);
3684         if (h->cmd_pool)
3685                 pci_free_consistent(h->pdev,
3686                             h->nr_cmds * sizeof(struct CommandList),
3687                             h->cmd_pool, h->cmd_pool_dhandle);
3688         if (h->errinfo_pool)
3689                 pci_free_consistent(h->pdev,
3690                             h->nr_cmds * sizeof(struct ErrorInfo),
3691                             h->errinfo_pool,
3692                             h->errinfo_pool_dhandle);
3693         free_irq(h->intr[PERF_MODE_INT], h);
3694 clean2:
3695 clean1:
3696         h->busy_initializing = 0;
3697         kfree(h);
3698         return rc;
3699 }
3700
3701 static void hpsa_flush_cache(struct ctlr_info *h)
3702 {
3703         char *flush_buf;
3704         struct CommandList *c;
3705
3706         flush_buf = kzalloc(4, GFP_KERNEL);
3707         if (!flush_buf)
3708                 return;
3709
3710         c = cmd_special_alloc(h);
3711         if (!c) {
3712                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3713                 goto out_of_memory;
3714         }
3715         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3716                 RAID_CTLR_LUNID, TYPE_CMD);
3717         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3718         if (c->err_info->CommandStatus != 0)
3719                 dev_warn(&h->pdev->dev,
3720                         "error flushing cache on controller\n");
3721         cmd_special_free(h, c);
3722 out_of_memory:
3723         kfree(flush_buf);
3724 }
3725
3726 static void hpsa_shutdown(struct pci_dev *pdev)
3727 {
3728         struct ctlr_info *h;
3729
3730         h = pci_get_drvdata(pdev);
3731         /* Turn board interrupts off  and send the flush cache command
3732          * sendcmd will turn off interrupt, and send the flush...
3733          * To write all data in the battery backed cache to disks
3734          */
3735         hpsa_flush_cache(h);
3736         h->access.set_intr_mask(h, HPSA_INTR_OFF);
3737         free_irq(h->intr[PERF_MODE_INT], h);
3738 #ifdef CONFIG_PCI_MSI
3739         if (h->msix_vector)
3740                 pci_disable_msix(h->pdev);
3741         else if (h->msi_vector)
3742                 pci_disable_msi(h->pdev);
3743 #endif                          /* CONFIG_PCI_MSI */
3744 }
3745
3746 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3747 {
3748         struct ctlr_info *h;
3749
3750         if (pci_get_drvdata(pdev) == NULL) {
3751                 dev_err(&pdev->dev, "unable to remove device \n");
3752                 return;
3753         }
3754         h = pci_get_drvdata(pdev);
3755         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
3756         hpsa_shutdown(pdev);
3757         iounmap(h->vaddr);
3758         iounmap(h->transtable);
3759         iounmap(h->cfgtable);
3760         hpsa_free_sg_chain_blocks(h);
3761         pci_free_consistent(h->pdev,
3762                 h->nr_cmds * sizeof(struct CommandList),
3763                 h->cmd_pool, h->cmd_pool_dhandle);
3764         pci_free_consistent(h->pdev,
3765                 h->nr_cmds * sizeof(struct ErrorInfo),
3766                 h->errinfo_pool, h->errinfo_pool_dhandle);
3767         pci_free_consistent(h->pdev, h->reply_pool_size,
3768                 h->reply_pool, h->reply_pool_dhandle);
3769         kfree(h->cmd_pool_bits);
3770         kfree(h->blockFetchTable);
3771         kfree(h->hba_inquiry_data);
3772         /*
3773          * Deliberately omit pci_disable_device(): it does something nasty to
3774          * Smart Array controllers that pci_enable_device does not undo
3775          */
3776         pci_release_regions(pdev);
3777         pci_set_drvdata(pdev, NULL);
3778         kfree(h);
3779 }
3780
3781 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
3782         __attribute__((unused)) pm_message_t state)
3783 {
3784         return -ENOSYS;
3785 }
3786
3787 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
3788 {
3789         return -ENOSYS;
3790 }
3791
3792 static struct pci_driver hpsa_pci_driver = {
3793         .name = "hpsa",
3794         .probe = hpsa_init_one,
3795         .remove = __devexit_p(hpsa_remove_one),
3796         .id_table = hpsa_pci_device_id, /* id_table */
3797         .shutdown = hpsa_shutdown,
3798         .suspend = hpsa_suspend,
3799         .resume = hpsa_resume,
3800 };
3801
3802 /* Fill in bucket_map[], given nsgs (the max number of
3803  * scatter gather elements supported) and bucket[],
3804  * which is an array of 8 integers.  The bucket[] array
3805  * contains 8 different DMA transfer sizes (in 16
3806  * byte increments) which the controller uses to fetch
3807  * commands.  This function fills in bucket_map[], which
3808  * maps a given number of scatter gather elements to one of
3809  * the 8 DMA transfer sizes.  The point of it is to allow the
3810  * controller to only do as much DMA as needed to fetch the
3811  * command, with the DMA transfer size encoded in the lower
3812  * bits of the command address.
3813  */
3814 static void  calc_bucket_map(int bucket[], int num_buckets,
3815         int nsgs, int *bucket_map)
3816 {
3817         int i, j, b, size;
3818
3819         /* even a command with 0 SGs requires 4 blocks */
3820 #define MINIMUM_TRANSFER_BLOCKS 4
3821 #define NUM_BUCKETS 8
3822         /* Note, bucket_map must have nsgs+1 entries. */
3823         for (i = 0; i <= nsgs; i++) {
3824                 /* Compute size of a command with i SG entries */
3825                 size = i + MINIMUM_TRANSFER_BLOCKS;
3826                 b = num_buckets; /* Assume the biggest bucket */
3827                 /* Find the bucket that is just big enough */
3828                 for (j = 0; j < 8; j++) {
3829                         if (bucket[j] >= size) {
3830                                 b = j;
3831                                 break;
3832                         }
3833                 }
3834                 /* for a command with i SG entries, use bucket b. */
3835                 bucket_map[i] = b;
3836         }
3837 }
3838
3839 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h)
3840 {
3841         int i;
3842         unsigned long register_value;
3843
3844         /* This is a bit complicated.  There are 8 registers on
3845          * the controller which we write to to tell it 8 different
3846          * sizes of commands which there may be.  It's a way of
3847          * reducing the DMA done to fetch each command.  Encoded into
3848          * each command's tag are 3 bits which communicate to the controller
3849          * which of the eight sizes that command fits within.  The size of
3850          * each command depends on how many scatter gather entries there are.
3851          * Each SG entry requires 16 bytes.  The eight registers are programmed
3852          * with the number of 16-byte blocks a command of that size requires.
3853          * The smallest command possible requires 5 such 16 byte blocks.
3854          * the largest command possible requires MAXSGENTRIES + 4 16-byte
3855          * blocks.  Note, this only extends to the SG entries contained
3856          * within the command block, and does not extend to chained blocks
3857          * of SG elements.   bft[] contains the eight values we write to
3858          * the registers.  They are not evenly distributed, but have more
3859          * sizes for small commands, and fewer sizes for larger commands.
3860          */
3861         int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
3862         BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
3863         /*  5 = 1 s/g entry or 4k
3864          *  6 = 2 s/g entry or 8k
3865          *  8 = 4 s/g entry or 16k
3866          * 10 = 6 s/g entry or 24k
3867          */
3868
3869         h->reply_pool_wraparound = 1; /* spec: init to 1 */
3870
3871         /* Controller spec: zero out this buffer. */
3872         memset(h->reply_pool, 0, h->reply_pool_size);
3873         h->reply_pool_head = h->reply_pool;
3874
3875         bft[7] = h->max_sg_entries + 4;
3876         calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
3877         for (i = 0; i < 8; i++)
3878                 writel(bft[i], &h->transtable->BlockFetch[i]);
3879
3880         /* size of controller ring buffer */
3881         writel(h->max_commands, &h->transtable->RepQSize);
3882         writel(1, &h->transtable->RepQCount);
3883         writel(0, &h->transtable->RepQCtrAddrLow32);
3884         writel(0, &h->transtable->RepQCtrAddrHigh32);
3885         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
3886         writel(0, &h->transtable->RepQAddr0High32);
3887         writel(CFGTBL_Trans_Performant,
3888                 &(h->cfgtable->HostWrite.TransportRequest));
3889         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3890         hpsa_wait_for_mode_change_ack(h);
3891         register_value = readl(&(h->cfgtable->TransportActive));
3892         if (!(register_value & CFGTBL_Trans_Performant)) {
3893                 dev_warn(&h->pdev->dev, "unable to get board into"
3894                                         " performant mode\n");
3895                 return;
3896         }
3897 }
3898
3899 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
3900 {
3901         u32 trans_support;
3902
3903         trans_support = readl(&(h->cfgtable->TransportSupport));
3904         if (!(trans_support & PERFORMANT_MODE))
3905                 return;
3906
3907         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3908         h->max_sg_entries = 32;
3909         /* Performant mode ring buffer and supporting data structures */
3910         h->reply_pool_size = h->max_commands * sizeof(u64);
3911         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
3912                                 &(h->reply_pool_dhandle));
3913
3914         /* Need a block fetch table for performant mode */
3915         h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
3916                                 sizeof(u32)), GFP_KERNEL);
3917
3918         if ((h->reply_pool == NULL)
3919                 || (h->blockFetchTable == NULL))
3920                 goto clean_up;
3921
3922         hpsa_enter_performant_mode(h);
3923
3924         /* Change the access methods to the performant access methods */
3925         h->access = SA5_performant_access;
3926         h->transMethod = CFGTBL_Trans_Performant;
3927
3928         return;
3929
3930 clean_up:
3931         if (h->reply_pool)
3932                 pci_free_consistent(h->pdev, h->reply_pool_size,
3933                         h->reply_pool, h->reply_pool_dhandle);
3934         kfree(h->blockFetchTable);
3935 }
3936
3937 /*
3938  *  This is it.  Register the PCI driver information for the cards we control
3939  *  the OS will call our registered routines when it finds one of our cards.
3940  */
3941 static int __init hpsa_init(void)
3942 {
3943         return pci_register_driver(&hpsa_pci_driver);
3944 }
3945
3946 static void __exit hpsa_cleanup(void)
3947 {
3948         pci_unregister_driver(&hpsa_pci_driver);
3949 }
3950
3951 module_init(hpsa_init);
3952 module_exit(hpsa_cleanup);