]> Pileus Git - ~andy/linux/blob - drivers/scsi/hpsa.c
Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[~andy/linux] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  *    This program is free software; you can redistribute it and/or modify
6  *    it under the terms of the GNU General Public License as published by
7  *    the Free Software Foundation; version 2 of the License.
8  *
9  *    This program is distributed in the hope that it will be useful,
10  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
11  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
13  *
14  *    You should have received a copy of the GNU General Public License
15  *    along with this program; if not, write to the Free Software
16  *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  *    Questions/Comments/Bugfixes to iss_storagedev@hp.com
19  *
20  */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "2.0.2-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59
60 /* How long to wait (in milliseconds) for board to go into simple mode */
61 #define MAX_CONFIG_WAIT 30000
62 #define MAX_IOCTL_CONFIG_WAIT 1000
63
64 /*define how many times we will try a command because of bus resets */
65 #define MAX_CMD_RETRIES 3
66
67 /* Embedded module documentation macros - see modules.h */
68 MODULE_AUTHOR("Hewlett-Packard Company");
69 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
70         HPSA_DRIVER_VERSION);
71 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
72 MODULE_VERSION(HPSA_DRIVER_VERSION);
73 MODULE_LICENSE("GPL");
74
75 static int hpsa_allow_any;
76 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
77 MODULE_PARM_DESC(hpsa_allow_any,
78                 "Allow hpsa driver to access unknown HP Smart Array hardware");
79 static int hpsa_simple_mode;
80 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
81 MODULE_PARM_DESC(hpsa_simple_mode,
82         "Use 'simple mode' rather than 'performant mode'");
83
84 /* define the PCI info for the cards we can control */
85 static const struct pci_device_id hpsa_pci_device_id[] = {
86         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
87         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
88         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
89         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
90         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
91         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324a},
92         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324b},
93         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
94         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
101         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
102                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
103         {0,}
104 };
105
106 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
107
108 /*  board_id = Subsystem Device ID & Vendor ID
109  *  product = Marketing Name for the board
110  *  access = Address of the struct of function pointers
111  */
112 static struct board_type products[] = {
113         {0x3241103C, "Smart Array P212", &SA5_access},
114         {0x3243103C, "Smart Array P410", &SA5_access},
115         {0x3245103C, "Smart Array P410i", &SA5_access},
116         {0x3247103C, "Smart Array P411", &SA5_access},
117         {0x3249103C, "Smart Array P812", &SA5_access},
118         {0x324a103C, "Smart Array P712m", &SA5_access},
119         {0x324b103C, "Smart Array P711m", &SA5_access},
120         {0x3350103C, "Smart Array", &SA5_access},
121         {0x3351103C, "Smart Array", &SA5_access},
122         {0x3352103C, "Smart Array", &SA5_access},
123         {0x3353103C, "Smart Array", &SA5_access},
124         {0x3354103C, "Smart Array", &SA5_access},
125         {0x3355103C, "Smart Array", &SA5_access},
126         {0x3356103C, "Smart Array", &SA5_access},
127         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
128 };
129
130 static int number_of_controllers;
131
132 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
133 static spinlock_t lockup_detector_lock;
134 static struct task_struct *hpsa_lockup_detector;
135
136 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
137 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
138 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
139 static void start_io(struct ctlr_info *h);
140
141 #ifdef CONFIG_COMPAT
142 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
143 #endif
144
145 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
146 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
147 static struct CommandList *cmd_alloc(struct ctlr_info *h);
148 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
149 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
150         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
151         int cmd_type);
152
153 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
154 static void hpsa_scan_start(struct Scsi_Host *);
155 static int hpsa_scan_finished(struct Scsi_Host *sh,
156         unsigned long elapsed_time);
157 static int hpsa_change_queue_depth(struct scsi_device *sdev,
158         int qdepth, int reason);
159
160 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
161 static int hpsa_slave_alloc(struct scsi_device *sdev);
162 static void hpsa_slave_destroy(struct scsi_device *sdev);
163
164 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
165 static int check_for_unit_attention(struct ctlr_info *h,
166         struct CommandList *c);
167 static void check_ioctl_unit_attention(struct ctlr_info *h,
168         struct CommandList *c);
169 /* performant mode helper functions */
170 static void calc_bucket_map(int *bucket, int num_buckets,
171         int nsgs, int *bucket_map);
172 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
173 static inline u32 next_command(struct ctlr_info *h);
174 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
175         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
176         u64 *cfg_offset);
177 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
178         unsigned long *memory_bar);
179 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
180 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
181         void __iomem *vaddr, int wait_for_ready);
182 #define BOARD_NOT_READY 0
183 #define BOARD_READY 1
184
185 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
186 {
187         unsigned long *priv = shost_priv(sdev->host);
188         return (struct ctlr_info *) *priv;
189 }
190
191 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
192 {
193         unsigned long *priv = shost_priv(sh);
194         return (struct ctlr_info *) *priv;
195 }
196
197 static int check_for_unit_attention(struct ctlr_info *h,
198         struct CommandList *c)
199 {
200         if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
201                 return 0;
202
203         switch (c->err_info->SenseInfo[12]) {
204         case STATE_CHANGED:
205                 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
206                         "detected, command retried\n", h->ctlr);
207                 break;
208         case LUN_FAILED:
209                 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
210                         "detected, action required\n", h->ctlr);
211                 break;
212         case REPORT_LUNS_CHANGED:
213                 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
214                         "changed, action required\n", h->ctlr);
215         /*
216          * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
217          */
218                 break;
219         case POWER_OR_RESET:
220                 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
221                         "or device reset detected\n", h->ctlr);
222                 break;
223         case UNIT_ATTENTION_CLEARED:
224                 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
225                     "cleared by another initiator\n", h->ctlr);
226                 break;
227         default:
228                 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
229                         "unit attention detected\n", h->ctlr);
230                 break;
231         }
232         return 1;
233 }
234
235 static ssize_t host_store_rescan(struct device *dev,
236                                  struct device_attribute *attr,
237                                  const char *buf, size_t count)
238 {
239         struct ctlr_info *h;
240         struct Scsi_Host *shost = class_to_shost(dev);
241         h = shost_to_hba(shost);
242         hpsa_scan_start(h->scsi_host);
243         return count;
244 }
245
246 static ssize_t host_show_firmware_revision(struct device *dev,
247              struct device_attribute *attr, char *buf)
248 {
249         struct ctlr_info *h;
250         struct Scsi_Host *shost = class_to_shost(dev);
251         unsigned char *fwrev;
252
253         h = shost_to_hba(shost);
254         if (!h->hba_inquiry_data)
255                 return 0;
256         fwrev = &h->hba_inquiry_data[32];
257         return snprintf(buf, 20, "%c%c%c%c\n",
258                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
259 }
260
261 static ssize_t host_show_commands_outstanding(struct device *dev,
262              struct device_attribute *attr, char *buf)
263 {
264         struct Scsi_Host *shost = class_to_shost(dev);
265         struct ctlr_info *h = shost_to_hba(shost);
266
267         return snprintf(buf, 20, "%d\n", h->commands_outstanding);
268 }
269
270 static ssize_t host_show_transport_mode(struct device *dev,
271         struct device_attribute *attr, char *buf)
272 {
273         struct ctlr_info *h;
274         struct Scsi_Host *shost = class_to_shost(dev);
275
276         h = shost_to_hba(shost);
277         return snprintf(buf, 20, "%s\n",
278                 h->transMethod & CFGTBL_Trans_Performant ?
279                         "performant" : "simple");
280 }
281
282 /* List of controllers which cannot be hard reset on kexec with reset_devices */
283 static u32 unresettable_controller[] = {
284         0x324a103C, /* Smart Array P712m */
285         0x324b103C, /* SmartArray P711m */
286         0x3223103C, /* Smart Array P800 */
287         0x3234103C, /* Smart Array P400 */
288         0x3235103C, /* Smart Array P400i */
289         0x3211103C, /* Smart Array E200i */
290         0x3212103C, /* Smart Array E200 */
291         0x3213103C, /* Smart Array E200i */
292         0x3214103C, /* Smart Array E200i */
293         0x3215103C, /* Smart Array E200i */
294         0x3237103C, /* Smart Array E500 */
295         0x323D103C, /* Smart Array P700m */
296         0x40800E11, /* Smart Array 5i */
297         0x409C0E11, /* Smart Array 6400 */
298         0x409D0E11, /* Smart Array 6400 EM */
299 };
300
301 /* List of controllers which cannot even be soft reset */
302 static u32 soft_unresettable_controller[] = {
303         0x40800E11, /* Smart Array 5i */
304         /* Exclude 640x boards.  These are two pci devices in one slot
305          * which share a battery backed cache module.  One controls the
306          * cache, the other accesses the cache through the one that controls
307          * it.  If we reset the one controlling the cache, the other will
308          * likely not be happy.  Just forbid resetting this conjoined mess.
309          * The 640x isn't really supported by hpsa anyway.
310          */
311         0x409C0E11, /* Smart Array 6400 */
312         0x409D0E11, /* Smart Array 6400 EM */
313 };
314
315 static int ctlr_is_hard_resettable(u32 board_id)
316 {
317         int i;
318
319         for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
320                 if (unresettable_controller[i] == board_id)
321                         return 0;
322         return 1;
323 }
324
325 static int ctlr_is_soft_resettable(u32 board_id)
326 {
327         int i;
328
329         for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
330                 if (soft_unresettable_controller[i] == board_id)
331                         return 0;
332         return 1;
333 }
334
335 static int ctlr_is_resettable(u32 board_id)
336 {
337         return ctlr_is_hard_resettable(board_id) ||
338                 ctlr_is_soft_resettable(board_id);
339 }
340
341 static ssize_t host_show_resettable(struct device *dev,
342         struct device_attribute *attr, char *buf)
343 {
344         struct ctlr_info *h;
345         struct Scsi_Host *shost = class_to_shost(dev);
346
347         h = shost_to_hba(shost);
348         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
349 }
350
351 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
352 {
353         return (scsi3addr[3] & 0xC0) == 0x40;
354 }
355
356 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
357         "UNKNOWN"
358 };
359 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
360
361 static ssize_t raid_level_show(struct device *dev,
362              struct device_attribute *attr, char *buf)
363 {
364         ssize_t l = 0;
365         unsigned char rlevel;
366         struct ctlr_info *h;
367         struct scsi_device *sdev;
368         struct hpsa_scsi_dev_t *hdev;
369         unsigned long flags;
370
371         sdev = to_scsi_device(dev);
372         h = sdev_to_hba(sdev);
373         spin_lock_irqsave(&h->lock, flags);
374         hdev = sdev->hostdata;
375         if (!hdev) {
376                 spin_unlock_irqrestore(&h->lock, flags);
377                 return -ENODEV;
378         }
379
380         /* Is this even a logical drive? */
381         if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
382                 spin_unlock_irqrestore(&h->lock, flags);
383                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
384                 return l;
385         }
386
387         rlevel = hdev->raid_level;
388         spin_unlock_irqrestore(&h->lock, flags);
389         if (rlevel > RAID_UNKNOWN)
390                 rlevel = RAID_UNKNOWN;
391         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
392         return l;
393 }
394
395 static ssize_t lunid_show(struct device *dev,
396              struct device_attribute *attr, char *buf)
397 {
398         struct ctlr_info *h;
399         struct scsi_device *sdev;
400         struct hpsa_scsi_dev_t *hdev;
401         unsigned long flags;
402         unsigned char lunid[8];
403
404         sdev = to_scsi_device(dev);
405         h = sdev_to_hba(sdev);
406         spin_lock_irqsave(&h->lock, flags);
407         hdev = sdev->hostdata;
408         if (!hdev) {
409                 spin_unlock_irqrestore(&h->lock, flags);
410                 return -ENODEV;
411         }
412         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
413         spin_unlock_irqrestore(&h->lock, flags);
414         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
415                 lunid[0], lunid[1], lunid[2], lunid[3],
416                 lunid[4], lunid[5], lunid[6], lunid[7]);
417 }
418
419 static ssize_t unique_id_show(struct device *dev,
420              struct device_attribute *attr, char *buf)
421 {
422         struct ctlr_info *h;
423         struct scsi_device *sdev;
424         struct hpsa_scsi_dev_t *hdev;
425         unsigned long flags;
426         unsigned char sn[16];
427
428         sdev = to_scsi_device(dev);
429         h = sdev_to_hba(sdev);
430         spin_lock_irqsave(&h->lock, flags);
431         hdev = sdev->hostdata;
432         if (!hdev) {
433                 spin_unlock_irqrestore(&h->lock, flags);
434                 return -ENODEV;
435         }
436         memcpy(sn, hdev->device_id, sizeof(sn));
437         spin_unlock_irqrestore(&h->lock, flags);
438         return snprintf(buf, 16 * 2 + 2,
439                         "%02X%02X%02X%02X%02X%02X%02X%02X"
440                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
441                         sn[0], sn[1], sn[2], sn[3],
442                         sn[4], sn[5], sn[6], sn[7],
443                         sn[8], sn[9], sn[10], sn[11],
444                         sn[12], sn[13], sn[14], sn[15]);
445 }
446
447 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
448 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
449 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
450 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
451 static DEVICE_ATTR(firmware_revision, S_IRUGO,
452         host_show_firmware_revision, NULL);
453 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
454         host_show_commands_outstanding, NULL);
455 static DEVICE_ATTR(transport_mode, S_IRUGO,
456         host_show_transport_mode, NULL);
457 static DEVICE_ATTR(resettable, S_IRUGO,
458         host_show_resettable, NULL);
459
460 static struct device_attribute *hpsa_sdev_attrs[] = {
461         &dev_attr_raid_level,
462         &dev_attr_lunid,
463         &dev_attr_unique_id,
464         NULL,
465 };
466
467 static struct device_attribute *hpsa_shost_attrs[] = {
468         &dev_attr_rescan,
469         &dev_attr_firmware_revision,
470         &dev_attr_commands_outstanding,
471         &dev_attr_transport_mode,
472         &dev_attr_resettable,
473         NULL,
474 };
475
476 static struct scsi_host_template hpsa_driver_template = {
477         .module                 = THIS_MODULE,
478         .name                   = "hpsa",
479         .proc_name              = "hpsa",
480         .queuecommand           = hpsa_scsi_queue_command,
481         .scan_start             = hpsa_scan_start,
482         .scan_finished          = hpsa_scan_finished,
483         .change_queue_depth     = hpsa_change_queue_depth,
484         .this_id                = -1,
485         .use_clustering         = ENABLE_CLUSTERING,
486         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
487         .ioctl                  = hpsa_ioctl,
488         .slave_alloc            = hpsa_slave_alloc,
489         .slave_destroy          = hpsa_slave_destroy,
490 #ifdef CONFIG_COMPAT
491         .compat_ioctl           = hpsa_compat_ioctl,
492 #endif
493         .sdev_attrs = hpsa_sdev_attrs,
494         .shost_attrs = hpsa_shost_attrs,
495         .max_sectors = 8192,
496 };
497
498
499 /* Enqueuing and dequeuing functions for cmdlists. */
500 static inline void addQ(struct list_head *list, struct CommandList *c)
501 {
502         list_add_tail(&c->list, list);
503 }
504
505 static inline u32 next_command(struct ctlr_info *h)
506 {
507         u32 a;
508
509         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
510                 return h->access.command_completed(h);
511
512         if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
513                 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
514                 (h->reply_pool_head)++;
515                 h->commands_outstanding--;
516         } else {
517                 a = FIFO_EMPTY;
518         }
519         /* Check for wraparound */
520         if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
521                 h->reply_pool_head = h->reply_pool;
522                 h->reply_pool_wraparound ^= 1;
523         }
524         return a;
525 }
526
527 /* set_performant_mode: Modify the tag for cciss performant
528  * set bit 0 for pull model, bits 3-1 for block fetch
529  * register number
530  */
531 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
532 {
533         if (likely(h->transMethod & CFGTBL_Trans_Performant))
534                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
535 }
536
537 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
538         struct CommandList *c)
539 {
540         unsigned long flags;
541
542         set_performant_mode(h, c);
543         spin_lock_irqsave(&h->lock, flags);
544         addQ(&h->reqQ, c);
545         h->Qdepth++;
546         start_io(h);
547         spin_unlock_irqrestore(&h->lock, flags);
548 }
549
550 static inline void removeQ(struct CommandList *c)
551 {
552         if (WARN_ON(list_empty(&c->list)))
553                 return;
554         list_del_init(&c->list);
555 }
556
557 static inline int is_hba_lunid(unsigned char scsi3addr[])
558 {
559         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
560 }
561
562 static inline int is_scsi_rev_5(struct ctlr_info *h)
563 {
564         if (!h->hba_inquiry_data)
565                 return 0;
566         if ((h->hba_inquiry_data[2] & 0x07) == 5)
567                 return 1;
568         return 0;
569 }
570
571 static int hpsa_find_target_lun(struct ctlr_info *h,
572         unsigned char scsi3addr[], int bus, int *target, int *lun)
573 {
574         /* finds an unused bus, target, lun for a new physical device
575          * assumes h->devlock is held
576          */
577         int i, found = 0;
578         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
579
580         memset(&lun_taken[0], 0, HPSA_MAX_DEVICES >> 3);
581
582         for (i = 0; i < h->ndevices; i++) {
583                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
584                         set_bit(h->dev[i]->target, lun_taken);
585         }
586
587         for (i = 0; i < HPSA_MAX_DEVICES; i++) {
588                 if (!test_bit(i, lun_taken)) {
589                         /* *bus = 1; */
590                         *target = i;
591                         *lun = 0;
592                         found = 1;
593                         break;
594                 }
595         }
596         return !found;
597 }
598
599 /* Add an entry into h->dev[] array. */
600 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
601                 struct hpsa_scsi_dev_t *device,
602                 struct hpsa_scsi_dev_t *added[], int *nadded)
603 {
604         /* assumes h->devlock is held */
605         int n = h->ndevices;
606         int i;
607         unsigned char addr1[8], addr2[8];
608         struct hpsa_scsi_dev_t *sd;
609
610         if (n >= HPSA_MAX_DEVICES) {
611                 dev_err(&h->pdev->dev, "too many devices, some will be "
612                         "inaccessible.\n");
613                 return -1;
614         }
615
616         /* physical devices do not have lun or target assigned until now. */
617         if (device->lun != -1)
618                 /* Logical device, lun is already assigned. */
619                 goto lun_assigned;
620
621         /* If this device a non-zero lun of a multi-lun device
622          * byte 4 of the 8-byte LUN addr will contain the logical
623          * unit no, zero otherise.
624          */
625         if (device->scsi3addr[4] == 0) {
626                 /* This is not a non-zero lun of a multi-lun device */
627                 if (hpsa_find_target_lun(h, device->scsi3addr,
628                         device->bus, &device->target, &device->lun) != 0)
629                         return -1;
630                 goto lun_assigned;
631         }
632
633         /* This is a non-zero lun of a multi-lun device.
634          * Search through our list and find the device which
635          * has the same 8 byte LUN address, excepting byte 4.
636          * Assign the same bus and target for this new LUN.
637          * Use the logical unit number from the firmware.
638          */
639         memcpy(addr1, device->scsi3addr, 8);
640         addr1[4] = 0;
641         for (i = 0; i < n; i++) {
642                 sd = h->dev[i];
643                 memcpy(addr2, sd->scsi3addr, 8);
644                 addr2[4] = 0;
645                 /* differ only in byte 4? */
646                 if (memcmp(addr1, addr2, 8) == 0) {
647                         device->bus = sd->bus;
648                         device->target = sd->target;
649                         device->lun = device->scsi3addr[4];
650                         break;
651                 }
652         }
653         if (device->lun == -1) {
654                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
655                         " suspect firmware bug or unsupported hardware "
656                         "configuration.\n");
657                         return -1;
658         }
659
660 lun_assigned:
661
662         h->dev[n] = device;
663         h->ndevices++;
664         added[*nadded] = device;
665         (*nadded)++;
666
667         /* initially, (before registering with scsi layer) we don't
668          * know our hostno and we don't want to print anything first
669          * time anyway (the scsi layer's inquiries will show that info)
670          */
671         /* if (hostno != -1) */
672                 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
673                         scsi_device_type(device->devtype), hostno,
674                         device->bus, device->target, device->lun);
675         return 0;
676 }
677
678 /* Replace an entry from h->dev[] array. */
679 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
680         int entry, struct hpsa_scsi_dev_t *new_entry,
681         struct hpsa_scsi_dev_t *added[], int *nadded,
682         struct hpsa_scsi_dev_t *removed[], int *nremoved)
683 {
684         /* assumes h->devlock is held */
685         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
686         removed[*nremoved] = h->dev[entry];
687         (*nremoved)++;
688
689         /*
690          * New physical devices won't have target/lun assigned yet
691          * so we need to preserve the values in the slot we are replacing.
692          */
693         if (new_entry->target == -1) {
694                 new_entry->target = h->dev[entry]->target;
695                 new_entry->lun = h->dev[entry]->lun;
696         }
697
698         h->dev[entry] = new_entry;
699         added[*nadded] = new_entry;
700         (*nadded)++;
701         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
702                 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
703                         new_entry->target, new_entry->lun);
704 }
705
706 /* Remove an entry from h->dev[] array. */
707 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
708         struct hpsa_scsi_dev_t *removed[], int *nremoved)
709 {
710         /* assumes h->devlock is held */
711         int i;
712         struct hpsa_scsi_dev_t *sd;
713
714         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
715
716         sd = h->dev[entry];
717         removed[*nremoved] = h->dev[entry];
718         (*nremoved)++;
719
720         for (i = entry; i < h->ndevices-1; i++)
721                 h->dev[i] = h->dev[i+1];
722         h->ndevices--;
723         dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
724                 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
725                 sd->lun);
726 }
727
728 #define SCSI3ADDR_EQ(a, b) ( \
729         (a)[7] == (b)[7] && \
730         (a)[6] == (b)[6] && \
731         (a)[5] == (b)[5] && \
732         (a)[4] == (b)[4] && \
733         (a)[3] == (b)[3] && \
734         (a)[2] == (b)[2] && \
735         (a)[1] == (b)[1] && \
736         (a)[0] == (b)[0])
737
738 static void fixup_botched_add(struct ctlr_info *h,
739         struct hpsa_scsi_dev_t *added)
740 {
741         /* called when scsi_add_device fails in order to re-adjust
742          * h->dev[] to match the mid layer's view.
743          */
744         unsigned long flags;
745         int i, j;
746
747         spin_lock_irqsave(&h->lock, flags);
748         for (i = 0; i < h->ndevices; i++) {
749                 if (h->dev[i] == added) {
750                         for (j = i; j < h->ndevices-1; j++)
751                                 h->dev[j] = h->dev[j+1];
752                         h->ndevices--;
753                         break;
754                 }
755         }
756         spin_unlock_irqrestore(&h->lock, flags);
757         kfree(added);
758 }
759
760 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
761         struct hpsa_scsi_dev_t *dev2)
762 {
763         /* we compare everything except lun and target as these
764          * are not yet assigned.  Compare parts likely
765          * to differ first
766          */
767         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
768                 sizeof(dev1->scsi3addr)) != 0)
769                 return 0;
770         if (memcmp(dev1->device_id, dev2->device_id,
771                 sizeof(dev1->device_id)) != 0)
772                 return 0;
773         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
774                 return 0;
775         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
776                 return 0;
777         if (dev1->devtype != dev2->devtype)
778                 return 0;
779         if (dev1->bus != dev2->bus)
780                 return 0;
781         return 1;
782 }
783
784 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
785  * and return needle location in *index.  If scsi3addr matches, but not
786  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
787  * location in *index.  If needle not found, return DEVICE_NOT_FOUND.
788  */
789 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
790         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
791         int *index)
792 {
793         int i;
794 #define DEVICE_NOT_FOUND 0
795 #define DEVICE_CHANGED 1
796 #define DEVICE_SAME 2
797         for (i = 0; i < haystack_size; i++) {
798                 if (haystack[i] == NULL) /* previously removed. */
799                         continue;
800                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
801                         *index = i;
802                         if (device_is_the_same(needle, haystack[i]))
803                                 return DEVICE_SAME;
804                         else
805                                 return DEVICE_CHANGED;
806                 }
807         }
808         *index = -1;
809         return DEVICE_NOT_FOUND;
810 }
811
812 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
813         struct hpsa_scsi_dev_t *sd[], int nsds)
814 {
815         /* sd contains scsi3 addresses and devtypes, and inquiry
816          * data.  This function takes what's in sd to be the current
817          * reality and updates h->dev[] to reflect that reality.
818          */
819         int i, entry, device_change, changes = 0;
820         struct hpsa_scsi_dev_t *csd;
821         unsigned long flags;
822         struct hpsa_scsi_dev_t **added, **removed;
823         int nadded, nremoved;
824         struct Scsi_Host *sh = NULL;
825
826         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
827         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
828
829         if (!added || !removed) {
830                 dev_warn(&h->pdev->dev, "out of memory in "
831                         "adjust_hpsa_scsi_table\n");
832                 goto free_and_out;
833         }
834
835         spin_lock_irqsave(&h->devlock, flags);
836
837         /* find any devices in h->dev[] that are not in
838          * sd[] and remove them from h->dev[], and for any
839          * devices which have changed, remove the old device
840          * info and add the new device info.
841          */
842         i = 0;
843         nremoved = 0;
844         nadded = 0;
845         while (i < h->ndevices) {
846                 csd = h->dev[i];
847                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
848                 if (device_change == DEVICE_NOT_FOUND) {
849                         changes++;
850                         hpsa_scsi_remove_entry(h, hostno, i,
851                                 removed, &nremoved);
852                         continue; /* remove ^^^, hence i not incremented */
853                 } else if (device_change == DEVICE_CHANGED) {
854                         changes++;
855                         hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
856                                 added, &nadded, removed, &nremoved);
857                         /* Set it to NULL to prevent it from being freed
858                          * at the bottom of hpsa_update_scsi_devices()
859                          */
860                         sd[entry] = NULL;
861                 }
862                 i++;
863         }
864
865         /* Now, make sure every device listed in sd[] is also
866          * listed in h->dev[], adding them if they aren't found
867          */
868
869         for (i = 0; i < nsds; i++) {
870                 if (!sd[i]) /* if already added above. */
871                         continue;
872                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
873                                         h->ndevices, &entry);
874                 if (device_change == DEVICE_NOT_FOUND) {
875                         changes++;
876                         if (hpsa_scsi_add_entry(h, hostno, sd[i],
877                                 added, &nadded) != 0)
878                                 break;
879                         sd[i] = NULL; /* prevent from being freed later. */
880                 } else if (device_change == DEVICE_CHANGED) {
881                         /* should never happen... */
882                         changes++;
883                         dev_warn(&h->pdev->dev,
884                                 "device unexpectedly changed.\n");
885                         /* but if it does happen, we just ignore that device */
886                 }
887         }
888         spin_unlock_irqrestore(&h->devlock, flags);
889
890         /* Don't notify scsi mid layer of any changes the first time through
891          * (or if there are no changes) scsi_scan_host will do it later the
892          * first time through.
893          */
894         if (hostno == -1 || !changes)
895                 goto free_and_out;
896
897         sh = h->scsi_host;
898         /* Notify scsi mid layer of any removed devices */
899         for (i = 0; i < nremoved; i++) {
900                 struct scsi_device *sdev =
901                         scsi_device_lookup(sh, removed[i]->bus,
902                                 removed[i]->target, removed[i]->lun);
903                 if (sdev != NULL) {
904                         scsi_remove_device(sdev);
905                         scsi_device_put(sdev);
906                 } else {
907                         /* We don't expect to get here.
908                          * future cmds to this device will get selection
909                          * timeout as if the device was gone.
910                          */
911                         dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
912                                 " for removal.", hostno, removed[i]->bus,
913                                 removed[i]->target, removed[i]->lun);
914                 }
915                 kfree(removed[i]);
916                 removed[i] = NULL;
917         }
918
919         /* Notify scsi mid layer of any added devices */
920         for (i = 0; i < nadded; i++) {
921                 if (scsi_add_device(sh, added[i]->bus,
922                         added[i]->target, added[i]->lun) == 0)
923                         continue;
924                 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
925                         "device not added.\n", hostno, added[i]->bus,
926                         added[i]->target, added[i]->lun);
927                 /* now we have to remove it from h->dev,
928                  * since it didn't get added to scsi mid layer
929                  */
930                 fixup_botched_add(h, added[i]);
931         }
932
933 free_and_out:
934         kfree(added);
935         kfree(removed);
936 }
937
938 /*
939  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
940  * Assume's h->devlock is held.
941  */
942 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
943         int bus, int target, int lun)
944 {
945         int i;
946         struct hpsa_scsi_dev_t *sd;
947
948         for (i = 0; i < h->ndevices; i++) {
949                 sd = h->dev[i];
950                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
951                         return sd;
952         }
953         return NULL;
954 }
955
956 /* link sdev->hostdata to our per-device structure. */
957 static int hpsa_slave_alloc(struct scsi_device *sdev)
958 {
959         struct hpsa_scsi_dev_t *sd;
960         unsigned long flags;
961         struct ctlr_info *h;
962
963         h = sdev_to_hba(sdev);
964         spin_lock_irqsave(&h->devlock, flags);
965         sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
966                 sdev_id(sdev), sdev->lun);
967         if (sd != NULL)
968                 sdev->hostdata = sd;
969         spin_unlock_irqrestore(&h->devlock, flags);
970         return 0;
971 }
972
973 static void hpsa_slave_destroy(struct scsi_device *sdev)
974 {
975         /* nothing to do. */
976 }
977
978 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
979 {
980         int i;
981
982         if (!h->cmd_sg_list)
983                 return;
984         for (i = 0; i < h->nr_cmds; i++) {
985                 kfree(h->cmd_sg_list[i]);
986                 h->cmd_sg_list[i] = NULL;
987         }
988         kfree(h->cmd_sg_list);
989         h->cmd_sg_list = NULL;
990 }
991
992 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
993 {
994         int i;
995
996         if (h->chainsize <= 0)
997                 return 0;
998
999         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1000                                 GFP_KERNEL);
1001         if (!h->cmd_sg_list)
1002                 return -ENOMEM;
1003         for (i = 0; i < h->nr_cmds; i++) {
1004                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1005                                                 h->chainsize, GFP_KERNEL);
1006                 if (!h->cmd_sg_list[i])
1007                         goto clean;
1008         }
1009         return 0;
1010
1011 clean:
1012         hpsa_free_sg_chain_blocks(h);
1013         return -ENOMEM;
1014 }
1015
1016 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1017         struct CommandList *c)
1018 {
1019         struct SGDescriptor *chain_sg, *chain_block;
1020         u64 temp64;
1021
1022         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1023         chain_block = h->cmd_sg_list[c->cmdindex];
1024         chain_sg->Ext = HPSA_SG_CHAIN;
1025         chain_sg->Len = sizeof(*chain_sg) *
1026                 (c->Header.SGTotal - h->max_cmd_sg_entries);
1027         temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1028                                 PCI_DMA_TODEVICE);
1029         chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1030         chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1031 }
1032
1033 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1034         struct CommandList *c)
1035 {
1036         struct SGDescriptor *chain_sg;
1037         union u64bit temp64;
1038
1039         if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1040                 return;
1041
1042         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1043         temp64.val32.lower = chain_sg->Addr.lower;
1044         temp64.val32.upper = chain_sg->Addr.upper;
1045         pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1046 }
1047
1048 static void complete_scsi_command(struct CommandList *cp)
1049 {
1050         struct scsi_cmnd *cmd;
1051         struct ctlr_info *h;
1052         struct ErrorInfo *ei;
1053
1054         unsigned char sense_key;
1055         unsigned char asc;      /* additional sense code */
1056         unsigned char ascq;     /* additional sense code qualifier */
1057         unsigned long sense_data_size;
1058
1059         ei = cp->err_info;
1060         cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1061         h = cp->h;
1062
1063         scsi_dma_unmap(cmd); /* undo the DMA mappings */
1064         if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1065                 hpsa_unmap_sg_chain_block(h, cp);
1066
1067         cmd->result = (DID_OK << 16);           /* host byte */
1068         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1069         cmd->result |= ei->ScsiStatus;
1070
1071         /* copy the sense data whether we need to or not. */
1072         if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1073                 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1074         else
1075                 sense_data_size = sizeof(ei->SenseInfo);
1076         if (ei->SenseLen < sense_data_size)
1077                 sense_data_size = ei->SenseLen;
1078
1079         memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1080         scsi_set_resid(cmd, ei->ResidualCnt);
1081
1082         if (ei->CommandStatus == 0) {
1083                 cmd->scsi_done(cmd);
1084                 cmd_free(h, cp);
1085                 return;
1086         }
1087
1088         /* an error has occurred */
1089         switch (ei->CommandStatus) {
1090
1091         case CMD_TARGET_STATUS:
1092                 if (ei->ScsiStatus) {
1093                         /* Get sense key */
1094                         sense_key = 0xf & ei->SenseInfo[2];
1095                         /* Get additional sense code */
1096                         asc = ei->SenseInfo[12];
1097                         /* Get addition sense code qualifier */
1098                         ascq = ei->SenseInfo[13];
1099                 }
1100
1101                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1102                         if (check_for_unit_attention(h, cp)) {
1103                                 cmd->result = DID_SOFT_ERROR << 16;
1104                                 break;
1105                         }
1106                         if (sense_key == ILLEGAL_REQUEST) {
1107                                 /*
1108                                  * SCSI REPORT_LUNS is commonly unsupported on
1109                                  * Smart Array.  Suppress noisy complaint.
1110                                  */
1111                                 if (cp->Request.CDB[0] == REPORT_LUNS)
1112                                         break;
1113
1114                                 /* If ASC/ASCQ indicate Logical Unit
1115                                  * Not Supported condition,
1116                                  */
1117                                 if ((asc == 0x25) && (ascq == 0x0)) {
1118                                         dev_warn(&h->pdev->dev, "cp %p "
1119                                                 "has check condition\n", cp);
1120                                         break;
1121                                 }
1122                         }
1123
1124                         if (sense_key == NOT_READY) {
1125                                 /* If Sense is Not Ready, Logical Unit
1126                                  * Not ready, Manual Intervention
1127                                  * required
1128                                  */
1129                                 if ((asc == 0x04) && (ascq == 0x03)) {
1130                                         dev_warn(&h->pdev->dev, "cp %p "
1131                                                 "has check condition: unit "
1132                                                 "not ready, manual "
1133                                                 "intervention required\n", cp);
1134                                         break;
1135                                 }
1136                         }
1137                         if (sense_key == ABORTED_COMMAND) {
1138                                 /* Aborted command is retryable */
1139                                 dev_warn(&h->pdev->dev, "cp %p "
1140                                         "has check condition: aborted command: "
1141                                         "ASC: 0x%x, ASCQ: 0x%x\n",
1142                                         cp, asc, ascq);
1143                                 cmd->result = DID_SOFT_ERROR << 16;
1144                                 break;
1145                         }
1146                         /* Must be some other type of check condition */
1147                         dev_warn(&h->pdev->dev, "cp %p has check condition: "
1148                                         "unknown type: "
1149                                         "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1150                                         "Returning result: 0x%x, "
1151                                         "cmd=[%02x %02x %02x %02x %02x "
1152                                         "%02x %02x %02x %02x %02x %02x "
1153                                         "%02x %02x %02x %02x %02x]\n",
1154                                         cp, sense_key, asc, ascq,
1155                                         cmd->result,
1156                                         cmd->cmnd[0], cmd->cmnd[1],
1157                                         cmd->cmnd[2], cmd->cmnd[3],
1158                                         cmd->cmnd[4], cmd->cmnd[5],
1159                                         cmd->cmnd[6], cmd->cmnd[7],
1160                                         cmd->cmnd[8], cmd->cmnd[9],
1161                                         cmd->cmnd[10], cmd->cmnd[11],
1162                                         cmd->cmnd[12], cmd->cmnd[13],
1163                                         cmd->cmnd[14], cmd->cmnd[15]);
1164                         break;
1165                 }
1166
1167
1168                 /* Problem was not a check condition
1169                  * Pass it up to the upper layers...
1170                  */
1171                 if (ei->ScsiStatus) {
1172                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1173                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1174                                 "Returning result: 0x%x\n",
1175                                 cp, ei->ScsiStatus,
1176                                 sense_key, asc, ascq,
1177                                 cmd->result);
1178                 } else {  /* scsi status is zero??? How??? */
1179                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1180                                 "Returning no connection.\n", cp),
1181
1182                         /* Ordinarily, this case should never happen,
1183                          * but there is a bug in some released firmware
1184                          * revisions that allows it to happen if, for
1185                          * example, a 4100 backplane loses power and
1186                          * the tape drive is in it.  We assume that
1187                          * it's a fatal error of some kind because we
1188                          * can't show that it wasn't. We will make it
1189                          * look like selection timeout since that is
1190                          * the most common reason for this to occur,
1191                          * and it's severe enough.
1192                          */
1193
1194                         cmd->result = DID_NO_CONNECT << 16;
1195                 }
1196                 break;
1197
1198         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1199                 break;
1200         case CMD_DATA_OVERRUN:
1201                 dev_warn(&h->pdev->dev, "cp %p has"
1202                         " completed with data overrun "
1203                         "reported\n", cp);
1204                 break;
1205         case CMD_INVALID: {
1206                 /* print_bytes(cp, sizeof(*cp), 1, 0);
1207                 print_cmd(cp); */
1208                 /* We get CMD_INVALID if you address a non-existent device
1209                  * instead of a selection timeout (no response).  You will
1210                  * see this if you yank out a drive, then try to access it.
1211                  * This is kind of a shame because it means that any other
1212                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1213                  * missing target. */
1214                 cmd->result = DID_NO_CONNECT << 16;
1215         }
1216                 break;
1217         case CMD_PROTOCOL_ERR:
1218                 dev_warn(&h->pdev->dev, "cp %p has "
1219                         "protocol error \n", cp);
1220                 break;
1221         case CMD_HARDWARE_ERR:
1222                 cmd->result = DID_ERROR << 16;
1223                 dev_warn(&h->pdev->dev, "cp %p had  hardware error\n", cp);
1224                 break;
1225         case CMD_CONNECTION_LOST:
1226                 cmd->result = DID_ERROR << 16;
1227                 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1228                 break;
1229         case CMD_ABORTED:
1230                 cmd->result = DID_ABORT << 16;
1231                 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1232                                 cp, ei->ScsiStatus);
1233                 break;
1234         case CMD_ABORT_FAILED:
1235                 cmd->result = DID_ERROR << 16;
1236                 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1237                 break;
1238         case CMD_UNSOLICITED_ABORT:
1239                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1240                 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1241                         "abort\n", cp);
1242                 break;
1243         case CMD_TIMEOUT:
1244                 cmd->result = DID_TIME_OUT << 16;
1245                 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1246                 break;
1247         case CMD_UNABORTABLE:
1248                 cmd->result = DID_ERROR << 16;
1249                 dev_warn(&h->pdev->dev, "Command unabortable\n");
1250                 break;
1251         default:
1252                 cmd->result = DID_ERROR << 16;
1253                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1254                                 cp, ei->CommandStatus);
1255         }
1256         cmd->scsi_done(cmd);
1257         cmd_free(h, cp);
1258 }
1259
1260 static int hpsa_scsi_detect(struct ctlr_info *h)
1261 {
1262         struct Scsi_Host *sh;
1263         int error;
1264
1265         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1266         if (sh == NULL)
1267                 goto fail;
1268
1269         sh->io_port = 0;
1270         sh->n_io_port = 0;
1271         sh->this_id = -1;
1272         sh->max_channel = 3;
1273         sh->max_cmd_len = MAX_COMMAND_SIZE;
1274         sh->max_lun = HPSA_MAX_LUN;
1275         sh->max_id = HPSA_MAX_LUN;
1276         sh->can_queue = h->nr_cmds;
1277         sh->cmd_per_lun = h->nr_cmds;
1278         sh->sg_tablesize = h->maxsgentries;
1279         h->scsi_host = sh;
1280         sh->hostdata[0] = (unsigned long) h;
1281         sh->irq = h->intr[h->intr_mode];
1282         sh->unique_id = sh->irq;
1283         error = scsi_add_host(sh, &h->pdev->dev);
1284         if (error)
1285                 goto fail_host_put;
1286         scsi_scan_host(sh);
1287         return 0;
1288
1289  fail_host_put:
1290         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1291                 " failed for controller %d\n", h->ctlr);
1292         scsi_host_put(sh);
1293         return error;
1294  fail:
1295         dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1296                 " failed for controller %d\n", h->ctlr);
1297         return -ENOMEM;
1298 }
1299
1300 static void hpsa_pci_unmap(struct pci_dev *pdev,
1301         struct CommandList *c, int sg_used, int data_direction)
1302 {
1303         int i;
1304         union u64bit addr64;
1305
1306         for (i = 0; i < sg_used; i++) {
1307                 addr64.val32.lower = c->SG[i].Addr.lower;
1308                 addr64.val32.upper = c->SG[i].Addr.upper;
1309                 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1310                         data_direction);
1311         }
1312 }
1313
1314 static void hpsa_map_one(struct pci_dev *pdev,
1315                 struct CommandList *cp,
1316                 unsigned char *buf,
1317                 size_t buflen,
1318                 int data_direction)
1319 {
1320         u64 addr64;
1321
1322         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1323                 cp->Header.SGList = 0;
1324                 cp->Header.SGTotal = 0;
1325                 return;
1326         }
1327
1328         addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1329         cp->SG[0].Addr.lower =
1330           (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1331         cp->SG[0].Addr.upper =
1332           (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1333         cp->SG[0].Len = buflen;
1334         cp->Header.SGList = (u8) 1;   /* no. SGs contig in this cmd */
1335         cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1336 }
1337
1338 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1339         struct CommandList *c)
1340 {
1341         DECLARE_COMPLETION_ONSTACK(wait);
1342
1343         c->waiting = &wait;
1344         enqueue_cmd_and_start_io(h, c);
1345         wait_for_completion(&wait);
1346 }
1347
1348 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1349         struct CommandList *c)
1350 {
1351         unsigned long flags;
1352
1353         /* If controller lockup detected, fake a hardware error. */
1354         spin_lock_irqsave(&h->lock, flags);
1355         if (unlikely(h->lockup_detected)) {
1356                 spin_unlock_irqrestore(&h->lock, flags);
1357                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1358         } else {
1359                 spin_unlock_irqrestore(&h->lock, flags);
1360                 hpsa_scsi_do_simple_cmd_core(h, c);
1361         }
1362 }
1363
1364 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1365         struct CommandList *c, int data_direction)
1366 {
1367         int retry_count = 0;
1368
1369         do {
1370                 memset(c->err_info, 0, sizeof(*c->err_info));
1371                 hpsa_scsi_do_simple_cmd_core(h, c);
1372                 retry_count++;
1373         } while (check_for_unit_attention(h, c) && retry_count <= 3);
1374         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1375 }
1376
1377 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1378 {
1379         struct ErrorInfo *ei;
1380         struct device *d = &cp->h->pdev->dev;
1381
1382         ei = cp->err_info;
1383         switch (ei->CommandStatus) {
1384         case CMD_TARGET_STATUS:
1385                 dev_warn(d, "cmd %p has completed with errors\n", cp);
1386                 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1387                                 ei->ScsiStatus);
1388                 if (ei->ScsiStatus == 0)
1389                         dev_warn(d, "SCSI status is abnormally zero.  "
1390                         "(probably indicates selection timeout "
1391                         "reported incorrectly due to a known "
1392                         "firmware bug, circa July, 2001.)\n");
1393                 break;
1394         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1395                         dev_info(d, "UNDERRUN\n");
1396                 break;
1397         case CMD_DATA_OVERRUN:
1398                 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1399                 break;
1400         case CMD_INVALID: {
1401                 /* controller unfortunately reports SCSI passthru's
1402                  * to non-existent targets as invalid commands.
1403                  */
1404                 dev_warn(d, "cp %p is reported invalid (probably means "
1405                         "target device no longer present)\n", cp);
1406                 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1407                 print_cmd(cp);  */
1408                 }
1409                 break;
1410         case CMD_PROTOCOL_ERR:
1411                 dev_warn(d, "cp %p has protocol error \n", cp);
1412                 break;
1413         case CMD_HARDWARE_ERR:
1414                 /* cmd->result = DID_ERROR << 16; */
1415                 dev_warn(d, "cp %p had hardware error\n", cp);
1416                 break;
1417         case CMD_CONNECTION_LOST:
1418                 dev_warn(d, "cp %p had connection lost\n", cp);
1419                 break;
1420         case CMD_ABORTED:
1421                 dev_warn(d, "cp %p was aborted\n", cp);
1422                 break;
1423         case CMD_ABORT_FAILED:
1424                 dev_warn(d, "cp %p reports abort failed\n", cp);
1425                 break;
1426         case CMD_UNSOLICITED_ABORT:
1427                 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1428                 break;
1429         case CMD_TIMEOUT:
1430                 dev_warn(d, "cp %p timed out\n", cp);
1431                 break;
1432         case CMD_UNABORTABLE:
1433                 dev_warn(d, "Command unabortable\n");
1434                 break;
1435         default:
1436                 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1437                                 ei->CommandStatus);
1438         }
1439 }
1440
1441 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1442                         unsigned char page, unsigned char *buf,
1443                         unsigned char bufsize)
1444 {
1445         int rc = IO_OK;
1446         struct CommandList *c;
1447         struct ErrorInfo *ei;
1448
1449         c = cmd_special_alloc(h);
1450
1451         if (c == NULL) {                        /* trouble... */
1452                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1453                 return -ENOMEM;
1454         }
1455
1456         fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1457         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1458         ei = c->err_info;
1459         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1460                 hpsa_scsi_interpret_error(c);
1461                 rc = -1;
1462         }
1463         cmd_special_free(h, c);
1464         return rc;
1465 }
1466
1467 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1468 {
1469         int rc = IO_OK;
1470         struct CommandList *c;
1471         struct ErrorInfo *ei;
1472
1473         c = cmd_special_alloc(h);
1474
1475         if (c == NULL) {                        /* trouble... */
1476                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1477                 return -ENOMEM;
1478         }
1479
1480         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1481         hpsa_scsi_do_simple_cmd_core(h, c);
1482         /* no unmap needed here because no data xfer. */
1483
1484         ei = c->err_info;
1485         if (ei->CommandStatus != 0) {
1486                 hpsa_scsi_interpret_error(c);
1487                 rc = -1;
1488         }
1489         cmd_special_free(h, c);
1490         return rc;
1491 }
1492
1493 static void hpsa_get_raid_level(struct ctlr_info *h,
1494         unsigned char *scsi3addr, unsigned char *raid_level)
1495 {
1496         int rc;
1497         unsigned char *buf;
1498
1499         *raid_level = RAID_UNKNOWN;
1500         buf = kzalloc(64, GFP_KERNEL);
1501         if (!buf)
1502                 return;
1503         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1504         if (rc == 0)
1505                 *raid_level = buf[8];
1506         if (*raid_level > RAID_UNKNOWN)
1507                 *raid_level = RAID_UNKNOWN;
1508         kfree(buf);
1509         return;
1510 }
1511
1512 /* Get the device id from inquiry page 0x83 */
1513 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1514         unsigned char *device_id, int buflen)
1515 {
1516         int rc;
1517         unsigned char *buf;
1518
1519         if (buflen > 16)
1520                 buflen = 16;
1521         buf = kzalloc(64, GFP_KERNEL);
1522         if (!buf)
1523                 return -1;
1524         rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1525         if (rc == 0)
1526                 memcpy(device_id, &buf[8], buflen);
1527         kfree(buf);
1528         return rc != 0;
1529 }
1530
1531 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1532                 struct ReportLUNdata *buf, int bufsize,
1533                 int extended_response)
1534 {
1535         int rc = IO_OK;
1536         struct CommandList *c;
1537         unsigned char scsi3addr[8];
1538         struct ErrorInfo *ei;
1539
1540         c = cmd_special_alloc(h);
1541         if (c == NULL) {                        /* trouble... */
1542                 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1543                 return -1;
1544         }
1545         /* address the controller */
1546         memset(scsi3addr, 0, sizeof(scsi3addr));
1547         fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1548                 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1549         if (extended_response)
1550                 c->Request.CDB[1] = extended_response;
1551         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1552         ei = c->err_info;
1553         if (ei->CommandStatus != 0 &&
1554             ei->CommandStatus != CMD_DATA_UNDERRUN) {
1555                 hpsa_scsi_interpret_error(c);
1556                 rc = -1;
1557         }
1558         cmd_special_free(h, c);
1559         return rc;
1560 }
1561
1562 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1563                 struct ReportLUNdata *buf,
1564                 int bufsize, int extended_response)
1565 {
1566         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1567 }
1568
1569 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1570                 struct ReportLUNdata *buf, int bufsize)
1571 {
1572         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1573 }
1574
1575 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1576         int bus, int target, int lun)
1577 {
1578         device->bus = bus;
1579         device->target = target;
1580         device->lun = lun;
1581 }
1582
1583 static int hpsa_update_device_info(struct ctlr_info *h,
1584         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1585         unsigned char *is_OBDR_device)
1586 {
1587
1588 #define OBDR_SIG_OFFSET 43
1589 #define OBDR_TAPE_SIG "$DR-10"
1590 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1591 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1592
1593         unsigned char *inq_buff;
1594         unsigned char *obdr_sig;
1595
1596         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1597         if (!inq_buff)
1598                 goto bail_out;
1599
1600         /* Do an inquiry to the device to see what it is. */
1601         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1602                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1603                 /* Inquiry failed (msg printed already) */
1604                 dev_err(&h->pdev->dev,
1605                         "hpsa_update_device_info: inquiry failed\n");
1606                 goto bail_out;
1607         }
1608
1609         this_device->devtype = (inq_buff[0] & 0x1f);
1610         memcpy(this_device->scsi3addr, scsi3addr, 8);
1611         memcpy(this_device->vendor, &inq_buff[8],
1612                 sizeof(this_device->vendor));
1613         memcpy(this_device->model, &inq_buff[16],
1614                 sizeof(this_device->model));
1615         memset(this_device->device_id, 0,
1616                 sizeof(this_device->device_id));
1617         hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1618                 sizeof(this_device->device_id));
1619
1620         if (this_device->devtype == TYPE_DISK &&
1621                 is_logical_dev_addr_mode(scsi3addr))
1622                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1623         else
1624                 this_device->raid_level = RAID_UNKNOWN;
1625
1626         if (is_OBDR_device) {
1627                 /* See if this is a One-Button-Disaster-Recovery device
1628                  * by looking for "$DR-10" at offset 43 in inquiry data.
1629                  */
1630                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1631                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1632                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
1633                                                 OBDR_SIG_LEN) == 0);
1634         }
1635
1636         kfree(inq_buff);
1637         return 0;
1638
1639 bail_out:
1640         kfree(inq_buff);
1641         return 1;
1642 }
1643
1644 static unsigned char *msa2xxx_model[] = {
1645         "MSA2012",
1646         "MSA2024",
1647         "MSA2312",
1648         "MSA2324",
1649         "P2000 G3 SAS",
1650         NULL,
1651 };
1652
1653 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1654 {
1655         int i;
1656
1657         for (i = 0; msa2xxx_model[i]; i++)
1658                 if (strncmp(device->model, msa2xxx_model[i],
1659                         strlen(msa2xxx_model[i])) == 0)
1660                         return 1;
1661         return 0;
1662 }
1663
1664 /* Helper function to assign bus, target, lun mapping of devices.
1665  * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1666  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1667  * Logical drive target and lun are assigned at this time, but
1668  * physical device lun and target assignment are deferred (assigned
1669  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1670  */
1671 static void figure_bus_target_lun(struct ctlr_info *h,
1672         u8 *lunaddrbytes, int *bus, int *target, int *lun,
1673         struct hpsa_scsi_dev_t *device)
1674 {
1675         u32 lunid;
1676
1677         if (is_logical_dev_addr_mode(lunaddrbytes)) {
1678                 /* logical device */
1679                 if (unlikely(is_scsi_rev_5(h))) {
1680                         /* p1210m, logical drives lun assignments
1681                          * match SCSI REPORT LUNS data.
1682                          */
1683                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1684                         *bus = 0;
1685                         *target = 0;
1686                         *lun = (lunid & 0x3fff) + 1;
1687                 } else {
1688                         /* not p1210m... */
1689                         lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1690                         if (is_msa2xxx(h, device)) {
1691                                 /* msa2xxx way, put logicals on bus 1
1692                                  * and match target/lun numbers box
1693                                  * reports.
1694                                  */
1695                                 *bus = 1;
1696                                 *target = (lunid >> 16) & 0x3fff;
1697                                 *lun = lunid & 0x00ff;
1698                         } else {
1699                                 /* Traditional smart array way. */
1700                                 *bus = 0;
1701                                 *lun = 0;
1702                                 *target = lunid & 0x3fff;
1703                         }
1704                 }
1705         } else {
1706                 /* physical device */
1707                 if (is_hba_lunid(lunaddrbytes))
1708                         if (unlikely(is_scsi_rev_5(h))) {
1709                                 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1710                                 *target = 0;
1711                                 *lun = 0;
1712                                 return;
1713                         } else
1714                                 *bus = 3; /* traditional smartarray */
1715                 else
1716                         *bus = 2; /* physical disk */
1717                 *target = -1;
1718                 *lun = -1; /* we will fill these in later. */
1719         }
1720 }
1721
1722 /*
1723  * If there is no lun 0 on a target, linux won't find any devices.
1724  * For the MSA2xxx boxes, we have to manually detect the enclosure
1725  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1726  * it for some reason.  *tmpdevice is the target we're adding,
1727  * this_device is a pointer into the current element of currentsd[]
1728  * that we're building up in update_scsi_devices(), below.
1729  * lunzerobits is a bitmap that tracks which targets already have a
1730  * lun 0 assigned.
1731  * Returns 1 if an enclosure was added, 0 if not.
1732  */
1733 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1734         struct hpsa_scsi_dev_t *tmpdevice,
1735         struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1736         int bus, int target, int lun, unsigned long lunzerobits[],
1737         int *nmsa2xxx_enclosures)
1738 {
1739         unsigned char scsi3addr[8];
1740
1741         if (test_bit(target, lunzerobits))
1742                 return 0; /* There is already a lun 0 on this target. */
1743
1744         if (!is_logical_dev_addr_mode(lunaddrbytes))
1745                 return 0; /* It's the logical targets that may lack lun 0. */
1746
1747         if (!is_msa2xxx(h, tmpdevice))
1748                 return 0; /* It's only the MSA2xxx that have this problem. */
1749
1750         if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1751                 return 0;
1752
1753         memset(scsi3addr, 0, 8);
1754         scsi3addr[3] = target;
1755         if (is_hba_lunid(scsi3addr))
1756                 return 0; /* Don't add the RAID controller here. */
1757
1758         if (is_scsi_rev_5(h))
1759                 return 0; /* p1210m doesn't need to do this. */
1760
1761         if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1762                 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1763                         "enclosures exceeded.  Check your hardware "
1764                         "configuration.");
1765                 return 0;
1766         }
1767
1768         if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1769                 return 0;
1770         (*nmsa2xxx_enclosures)++;
1771         hpsa_set_bus_target_lun(this_device, bus, target, 0);
1772         set_bit(target, lunzerobits);
1773         return 1;
1774 }
1775
1776 /*
1777  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
1778  * logdev.  The number of luns in physdev and logdev are returned in
1779  * *nphysicals and *nlogicals, respectively.
1780  * Returns 0 on success, -1 otherwise.
1781  */
1782 static int hpsa_gather_lun_info(struct ctlr_info *h,
1783         int reportlunsize,
1784         struct ReportLUNdata *physdev, u32 *nphysicals,
1785         struct ReportLUNdata *logdev, u32 *nlogicals)
1786 {
1787         if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1788                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1789                 return -1;
1790         }
1791         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1792         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1793                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1794                         "  %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1795                         *nphysicals - HPSA_MAX_PHYS_LUN);
1796                 *nphysicals = HPSA_MAX_PHYS_LUN;
1797         }
1798         if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1799                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1800                 return -1;
1801         }
1802         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1803         /* Reject Logicals in excess of our max capability. */
1804         if (*nlogicals > HPSA_MAX_LUN) {
1805                 dev_warn(&h->pdev->dev,
1806                         "maximum logical LUNs (%d) exceeded.  "
1807                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
1808                         *nlogicals - HPSA_MAX_LUN);
1809                         *nlogicals = HPSA_MAX_LUN;
1810         }
1811         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1812                 dev_warn(&h->pdev->dev,
1813                         "maximum logical + physical LUNs (%d) exceeded. "
1814                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1815                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1816                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1817         }
1818         return 0;
1819 }
1820
1821 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1822         int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1823         struct ReportLUNdata *logdev_list)
1824 {
1825         /* Helper function, figure out where the LUN ID info is coming from
1826          * given index i, lists of physical and logical devices, where in
1827          * the list the raid controller is supposed to appear (first or last)
1828          */
1829
1830         int logicals_start = nphysicals + (raid_ctlr_position == 0);
1831         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1832
1833         if (i == raid_ctlr_position)
1834                 return RAID_CTLR_LUNID;
1835
1836         if (i < logicals_start)
1837                 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1838
1839         if (i < last_device)
1840                 return &logdev_list->LUN[i - nphysicals -
1841                         (raid_ctlr_position == 0)][0];
1842         BUG();
1843         return NULL;
1844 }
1845
1846 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1847 {
1848         /* the idea here is we could get notified
1849          * that some devices have changed, so we do a report
1850          * physical luns and report logical luns cmd, and adjust
1851          * our list of devices accordingly.
1852          *
1853          * The scsi3addr's of devices won't change so long as the
1854          * adapter is not reset.  That means we can rescan and
1855          * tell which devices we already know about, vs. new
1856          * devices, vs.  disappearing devices.
1857          */
1858         struct ReportLUNdata *physdev_list = NULL;
1859         struct ReportLUNdata *logdev_list = NULL;
1860         u32 nphysicals = 0;
1861         u32 nlogicals = 0;
1862         u32 ndev_allocated = 0;
1863         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1864         int ncurrent = 0;
1865         int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1866         int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1867         int bus, target, lun;
1868         int raid_ctlr_position;
1869         DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1870
1871         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1872         physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1873         logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1874         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1875
1876         if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1877                 dev_err(&h->pdev->dev, "out of memory\n");
1878                 goto out;
1879         }
1880         memset(lunzerobits, 0, sizeof(lunzerobits));
1881
1882         if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1883                         logdev_list, &nlogicals))
1884                 goto out;
1885
1886         /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1887          * but each of them 4 times through different paths.  The plus 1
1888          * is for the RAID controller.
1889          */
1890         ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1891
1892         /* Allocate the per device structures */
1893         for (i = 0; i < ndevs_to_allocate; i++) {
1894                 if (i >= HPSA_MAX_DEVICES) {
1895                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1896                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
1897                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
1898                         break;
1899                 }
1900
1901                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1902                 if (!currentsd[i]) {
1903                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1904                                 __FILE__, __LINE__);
1905                         goto out;
1906                 }
1907                 ndev_allocated++;
1908         }
1909
1910         if (unlikely(is_scsi_rev_5(h)))
1911                 raid_ctlr_position = 0;
1912         else
1913                 raid_ctlr_position = nphysicals + nlogicals;
1914
1915         /* adjust our table of devices */
1916         nmsa2xxx_enclosures = 0;
1917         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1918                 u8 *lunaddrbytes, is_OBDR = 0;
1919
1920                 /* Figure out where the LUN ID info is coming from */
1921                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1922                         i, nphysicals, nlogicals, physdev_list, logdev_list);
1923                 /* skip masked physical devices. */
1924                 if (lunaddrbytes[3] & 0xC0 &&
1925                         i < nphysicals + (raid_ctlr_position == 0))
1926                         continue;
1927
1928                 /* Get device type, vendor, model, device id */
1929                 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1930                                                         &is_OBDR))
1931                         continue; /* skip it if we can't talk to it. */
1932                 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1933                         tmpdevice);
1934                 this_device = currentsd[ncurrent];
1935
1936                 /*
1937                  * For the msa2xxx boxes, we have to insert a LUN 0 which
1938                  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1939                  * is nonetheless an enclosure device there.  We have to
1940                  * present that otherwise linux won't find anything if
1941                  * there is no lun 0.
1942                  */
1943                 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1944                                 lunaddrbytes, bus, target, lun, lunzerobits,
1945                                 &nmsa2xxx_enclosures)) {
1946                         ncurrent++;
1947                         this_device = currentsd[ncurrent];
1948                 }
1949
1950                 *this_device = *tmpdevice;
1951                 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1952
1953                 switch (this_device->devtype) {
1954                 case TYPE_ROM:
1955                         /* We don't *really* support actual CD-ROM devices,
1956                          * just "One Button Disaster Recovery" tape drive
1957                          * which temporarily pretends to be a CD-ROM drive.
1958                          * So we check that the device is really an OBDR tape
1959                          * device by checking for "$DR-10" in bytes 43-48 of
1960                          * the inquiry data.
1961                          */
1962                         if (is_OBDR)
1963                                 ncurrent++;
1964                         break;
1965                 case TYPE_DISK:
1966                         if (i < nphysicals)
1967                                 break;
1968                         ncurrent++;
1969                         break;
1970                 case TYPE_TAPE:
1971                 case TYPE_MEDIUM_CHANGER:
1972                         ncurrent++;
1973                         break;
1974                 case TYPE_RAID:
1975                         /* Only present the Smartarray HBA as a RAID controller.
1976                          * If it's a RAID controller other than the HBA itself
1977                          * (an external RAID controller, MSA500 or similar)
1978                          * don't present it.
1979                          */
1980                         if (!is_hba_lunid(lunaddrbytes))
1981                                 break;
1982                         ncurrent++;
1983                         break;
1984                 default:
1985                         break;
1986                 }
1987                 if (ncurrent >= HPSA_MAX_DEVICES)
1988                         break;
1989         }
1990         adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1991 out:
1992         kfree(tmpdevice);
1993         for (i = 0; i < ndev_allocated; i++)
1994                 kfree(currentsd[i]);
1995         kfree(currentsd);
1996         kfree(physdev_list);
1997         kfree(logdev_list);
1998 }
1999
2000 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2001  * dma mapping  and fills in the scatter gather entries of the
2002  * hpsa command, cp.
2003  */
2004 static int hpsa_scatter_gather(struct ctlr_info *h,
2005                 struct CommandList *cp,
2006                 struct scsi_cmnd *cmd)
2007 {
2008         unsigned int len;
2009         struct scatterlist *sg;
2010         u64 addr64;
2011         int use_sg, i, sg_index, chained;
2012         struct SGDescriptor *curr_sg;
2013
2014         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2015
2016         use_sg = scsi_dma_map(cmd);
2017         if (use_sg < 0)
2018                 return use_sg;
2019
2020         if (!use_sg)
2021                 goto sglist_finished;
2022
2023         curr_sg = cp->SG;
2024         chained = 0;
2025         sg_index = 0;
2026         scsi_for_each_sg(cmd, sg, use_sg, i) {
2027                 if (i == h->max_cmd_sg_entries - 1 &&
2028                         use_sg > h->max_cmd_sg_entries) {
2029                         chained = 1;
2030                         curr_sg = h->cmd_sg_list[cp->cmdindex];
2031                         sg_index = 0;
2032                 }
2033                 addr64 = (u64) sg_dma_address(sg);
2034                 len  = sg_dma_len(sg);
2035                 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2036                 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2037                 curr_sg->Len = len;
2038                 curr_sg->Ext = 0;  /* we are not chaining */
2039                 curr_sg++;
2040         }
2041
2042         if (use_sg + chained > h->maxSG)
2043                 h->maxSG = use_sg + chained;
2044
2045         if (chained) {
2046                 cp->Header.SGList = h->max_cmd_sg_entries;
2047                 cp->Header.SGTotal = (u16) (use_sg + 1);
2048                 hpsa_map_sg_chain_block(h, cp);
2049                 return 0;
2050         }
2051
2052 sglist_finished:
2053
2054         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
2055         cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2056         return 0;
2057 }
2058
2059
2060 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2061         void (*done)(struct scsi_cmnd *))
2062 {
2063         struct ctlr_info *h;
2064         struct hpsa_scsi_dev_t *dev;
2065         unsigned char scsi3addr[8];
2066         struct CommandList *c;
2067         unsigned long flags;
2068
2069         /* Get the ptr to our adapter structure out of cmd->host. */
2070         h = sdev_to_hba(cmd->device);
2071         dev = cmd->device->hostdata;
2072         if (!dev) {
2073                 cmd->result = DID_NO_CONNECT << 16;
2074                 done(cmd);
2075                 return 0;
2076         }
2077         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2078
2079         spin_lock_irqsave(&h->lock, flags);
2080         if (unlikely(h->lockup_detected)) {
2081                 spin_unlock_irqrestore(&h->lock, flags);
2082                 cmd->result = DID_ERROR << 16;
2083                 done(cmd);
2084                 return 0;
2085         }
2086         /* Need a lock as this is being allocated from the pool */
2087         c = cmd_alloc(h);
2088         spin_unlock_irqrestore(&h->lock, flags);
2089         if (c == NULL) {                        /* trouble... */
2090                 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2091                 return SCSI_MLQUEUE_HOST_BUSY;
2092         }
2093
2094         /* Fill in the command list header */
2095
2096         cmd->scsi_done = done;    /* save this for use by completion code */
2097
2098         /* save c in case we have to abort it  */
2099         cmd->host_scribble = (unsigned char *) c;
2100
2101         c->cmd_type = CMD_SCSI;
2102         c->scsi_cmd = cmd;
2103         c->Header.ReplyQueue = 0;  /* unused in simple mode */
2104         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2105         c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2106         c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2107
2108         /* Fill in the request block... */
2109
2110         c->Request.Timeout = 0;
2111         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2112         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2113         c->Request.CDBLen = cmd->cmd_len;
2114         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2115         c->Request.Type.Type = TYPE_CMD;
2116         c->Request.Type.Attribute = ATTR_SIMPLE;
2117         switch (cmd->sc_data_direction) {
2118         case DMA_TO_DEVICE:
2119                 c->Request.Type.Direction = XFER_WRITE;
2120                 break;
2121         case DMA_FROM_DEVICE:
2122                 c->Request.Type.Direction = XFER_READ;
2123                 break;
2124         case DMA_NONE:
2125                 c->Request.Type.Direction = XFER_NONE;
2126                 break;
2127         case DMA_BIDIRECTIONAL:
2128                 /* This can happen if a buggy application does a scsi passthru
2129                  * and sets both inlen and outlen to non-zero. ( see
2130                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2131                  */
2132
2133                 c->Request.Type.Direction = XFER_RSVD;
2134                 /* This is technically wrong, and hpsa controllers should
2135                  * reject it with CMD_INVALID, which is the most correct
2136                  * response, but non-fibre backends appear to let it
2137                  * slide by, and give the same results as if this field
2138                  * were set correctly.  Either way is acceptable for
2139                  * our purposes here.
2140                  */
2141
2142                 break;
2143
2144         default:
2145                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2146                         cmd->sc_data_direction);
2147                 BUG();
2148                 break;
2149         }
2150
2151         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2152                 cmd_free(h, c);
2153                 return SCSI_MLQUEUE_HOST_BUSY;
2154         }
2155         enqueue_cmd_and_start_io(h, c);
2156         /* the cmd'll come back via intr handler in complete_scsi_command()  */
2157         return 0;
2158 }
2159
2160 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2161
2162 static void hpsa_scan_start(struct Scsi_Host *sh)
2163 {
2164         struct ctlr_info *h = shost_to_hba(sh);
2165         unsigned long flags;
2166
2167         /* wait until any scan already in progress is finished. */
2168         while (1) {
2169                 spin_lock_irqsave(&h->scan_lock, flags);
2170                 if (h->scan_finished)
2171                         break;
2172                 spin_unlock_irqrestore(&h->scan_lock, flags);
2173                 wait_event(h->scan_wait_queue, h->scan_finished);
2174                 /* Note: We don't need to worry about a race between this
2175                  * thread and driver unload because the midlayer will
2176                  * have incremented the reference count, so unload won't
2177                  * happen if we're in here.
2178                  */
2179         }
2180         h->scan_finished = 0; /* mark scan as in progress */
2181         spin_unlock_irqrestore(&h->scan_lock, flags);
2182
2183         hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2184
2185         spin_lock_irqsave(&h->scan_lock, flags);
2186         h->scan_finished = 1; /* mark scan as finished. */
2187         wake_up_all(&h->scan_wait_queue);
2188         spin_unlock_irqrestore(&h->scan_lock, flags);
2189 }
2190
2191 static int hpsa_scan_finished(struct Scsi_Host *sh,
2192         unsigned long elapsed_time)
2193 {
2194         struct ctlr_info *h = shost_to_hba(sh);
2195         unsigned long flags;
2196         int finished;
2197
2198         spin_lock_irqsave(&h->scan_lock, flags);
2199         finished = h->scan_finished;
2200         spin_unlock_irqrestore(&h->scan_lock, flags);
2201         return finished;
2202 }
2203
2204 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2205         int qdepth, int reason)
2206 {
2207         struct ctlr_info *h = sdev_to_hba(sdev);
2208
2209         if (reason != SCSI_QDEPTH_DEFAULT)
2210                 return -ENOTSUPP;
2211
2212         if (qdepth < 1)
2213                 qdepth = 1;
2214         else
2215                 if (qdepth > h->nr_cmds)
2216                         qdepth = h->nr_cmds;
2217         scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2218         return sdev->queue_depth;
2219 }
2220
2221 static void hpsa_unregister_scsi(struct ctlr_info *h)
2222 {
2223         /* we are being forcibly unloaded, and may not refuse. */
2224         scsi_remove_host(h->scsi_host);
2225         scsi_host_put(h->scsi_host);
2226         h->scsi_host = NULL;
2227 }
2228
2229 static int hpsa_register_scsi(struct ctlr_info *h)
2230 {
2231         int rc;
2232
2233         rc = hpsa_scsi_detect(h);
2234         if (rc != 0)
2235                 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2236                         " hpsa_scsi_detect(), rc is %d\n", rc);
2237         return rc;
2238 }
2239
2240 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2241         unsigned char lunaddr[])
2242 {
2243         int rc = 0;
2244         int count = 0;
2245         int waittime = 1; /* seconds */
2246         struct CommandList *c;
2247
2248         c = cmd_special_alloc(h);
2249         if (!c) {
2250                 dev_warn(&h->pdev->dev, "out of memory in "
2251                         "wait_for_device_to_become_ready.\n");
2252                 return IO_ERROR;
2253         }
2254
2255         /* Send test unit ready until device ready, or give up. */
2256         while (count < HPSA_TUR_RETRY_LIMIT) {
2257
2258                 /* Wait for a bit.  do this first, because if we send
2259                  * the TUR right away, the reset will just abort it.
2260                  */
2261                 msleep(1000 * waittime);
2262                 count++;
2263
2264                 /* Increase wait time with each try, up to a point. */
2265                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2266                         waittime = waittime * 2;
2267
2268                 /* Send the Test Unit Ready */
2269                 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2270                 hpsa_scsi_do_simple_cmd_core(h, c);
2271                 /* no unmap needed here because no data xfer. */
2272
2273                 if (c->err_info->CommandStatus == CMD_SUCCESS)
2274                         break;
2275
2276                 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2277                         c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2278                         (c->err_info->SenseInfo[2] == NO_SENSE ||
2279                         c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2280                         break;
2281
2282                 dev_warn(&h->pdev->dev, "waiting %d secs "
2283                         "for device to become ready.\n", waittime);
2284                 rc = 1; /* device not ready. */
2285         }
2286
2287         if (rc)
2288                 dev_warn(&h->pdev->dev, "giving up on device.\n");
2289         else
2290                 dev_warn(&h->pdev->dev, "device is ready.\n");
2291
2292         cmd_special_free(h, c);
2293         return rc;
2294 }
2295
2296 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2297  * complaining.  Doing a host- or bus-reset can't do anything good here.
2298  */
2299 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2300 {
2301         int rc;
2302         struct ctlr_info *h;
2303         struct hpsa_scsi_dev_t *dev;
2304
2305         /* find the controller to which the command to be aborted was sent */
2306         h = sdev_to_hba(scsicmd->device);
2307         if (h == NULL) /* paranoia */
2308                 return FAILED;
2309         dev = scsicmd->device->hostdata;
2310         if (!dev) {
2311                 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2312                         "device lookup failed.\n");
2313                 return FAILED;
2314         }
2315         dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2316                 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2317         /* send a reset to the SCSI LUN which the command was sent to */
2318         rc = hpsa_send_reset(h, dev->scsi3addr);
2319         if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2320                 return SUCCESS;
2321
2322         dev_warn(&h->pdev->dev, "resetting device failed.\n");
2323         return FAILED;
2324 }
2325
2326 /*
2327  * For operations that cannot sleep, a command block is allocated at init,
2328  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2329  * which ones are free or in use.  Lock must be held when calling this.
2330  * cmd_free() is the complement.
2331  */
2332 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2333 {
2334         struct CommandList *c;
2335         int i;
2336         union u64bit temp64;
2337         dma_addr_t cmd_dma_handle, err_dma_handle;
2338
2339         do {
2340                 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2341                 if (i == h->nr_cmds)
2342                         return NULL;
2343         } while (test_and_set_bit
2344                  (i & (BITS_PER_LONG - 1),
2345                   h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2346         c = h->cmd_pool + i;
2347         memset(c, 0, sizeof(*c));
2348         cmd_dma_handle = h->cmd_pool_dhandle
2349             + i * sizeof(*c);
2350         c->err_info = h->errinfo_pool + i;
2351         memset(c->err_info, 0, sizeof(*c->err_info));
2352         err_dma_handle = h->errinfo_pool_dhandle
2353             + i * sizeof(*c->err_info);
2354         h->nr_allocs++;
2355
2356         c->cmdindex = i;
2357
2358         INIT_LIST_HEAD(&c->list);
2359         c->busaddr = (u32) cmd_dma_handle;
2360         temp64.val = (u64) err_dma_handle;
2361         c->ErrDesc.Addr.lower = temp64.val32.lower;
2362         c->ErrDesc.Addr.upper = temp64.val32.upper;
2363         c->ErrDesc.Len = sizeof(*c->err_info);
2364
2365         c->h = h;
2366         return c;
2367 }
2368
2369 /* For operations that can wait for kmalloc to possibly sleep,
2370  * this routine can be called. Lock need not be held to call
2371  * cmd_special_alloc. cmd_special_free() is the complement.
2372  */
2373 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2374 {
2375         struct CommandList *c;
2376         union u64bit temp64;
2377         dma_addr_t cmd_dma_handle, err_dma_handle;
2378
2379         c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2380         if (c == NULL)
2381                 return NULL;
2382         memset(c, 0, sizeof(*c));
2383
2384         c->cmdindex = -1;
2385
2386         c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2387                     &err_dma_handle);
2388
2389         if (c->err_info == NULL) {
2390                 pci_free_consistent(h->pdev,
2391                         sizeof(*c), c, cmd_dma_handle);
2392                 return NULL;
2393         }
2394         memset(c->err_info, 0, sizeof(*c->err_info));
2395
2396         INIT_LIST_HEAD(&c->list);
2397         c->busaddr = (u32) cmd_dma_handle;
2398         temp64.val = (u64) err_dma_handle;
2399         c->ErrDesc.Addr.lower = temp64.val32.lower;
2400         c->ErrDesc.Addr.upper = temp64.val32.upper;
2401         c->ErrDesc.Len = sizeof(*c->err_info);
2402
2403         c->h = h;
2404         return c;
2405 }
2406
2407 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2408 {
2409         int i;
2410
2411         i = c - h->cmd_pool;
2412         clear_bit(i & (BITS_PER_LONG - 1),
2413                   h->cmd_pool_bits + (i / BITS_PER_LONG));
2414         h->nr_frees++;
2415 }
2416
2417 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2418 {
2419         union u64bit temp64;
2420
2421         temp64.val32.lower = c->ErrDesc.Addr.lower;
2422         temp64.val32.upper = c->ErrDesc.Addr.upper;
2423         pci_free_consistent(h->pdev, sizeof(*c->err_info),
2424                             c->err_info, (dma_addr_t) temp64.val);
2425         pci_free_consistent(h->pdev, sizeof(*c),
2426                             c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2427 }
2428
2429 #ifdef CONFIG_COMPAT
2430
2431 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2432 {
2433         IOCTL32_Command_struct __user *arg32 =
2434             (IOCTL32_Command_struct __user *) arg;
2435         IOCTL_Command_struct arg64;
2436         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2437         int err;
2438         u32 cp;
2439
2440         memset(&arg64, 0, sizeof(arg64));
2441         err = 0;
2442         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2443                            sizeof(arg64.LUN_info));
2444         err |= copy_from_user(&arg64.Request, &arg32->Request,
2445                            sizeof(arg64.Request));
2446         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2447                            sizeof(arg64.error_info));
2448         err |= get_user(arg64.buf_size, &arg32->buf_size);
2449         err |= get_user(cp, &arg32->buf);
2450         arg64.buf = compat_ptr(cp);
2451         err |= copy_to_user(p, &arg64, sizeof(arg64));
2452
2453         if (err)
2454                 return -EFAULT;
2455
2456         err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2457         if (err)
2458                 return err;
2459         err |= copy_in_user(&arg32->error_info, &p->error_info,
2460                          sizeof(arg32->error_info));
2461         if (err)
2462                 return -EFAULT;
2463         return err;
2464 }
2465
2466 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2467         int cmd, void *arg)
2468 {
2469         BIG_IOCTL32_Command_struct __user *arg32 =
2470             (BIG_IOCTL32_Command_struct __user *) arg;
2471         BIG_IOCTL_Command_struct arg64;
2472         BIG_IOCTL_Command_struct __user *p =
2473             compat_alloc_user_space(sizeof(arg64));
2474         int err;
2475         u32 cp;
2476
2477         memset(&arg64, 0, sizeof(arg64));
2478         err = 0;
2479         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2480                            sizeof(arg64.LUN_info));
2481         err |= copy_from_user(&arg64.Request, &arg32->Request,
2482                            sizeof(arg64.Request));
2483         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2484                            sizeof(arg64.error_info));
2485         err |= get_user(arg64.buf_size, &arg32->buf_size);
2486         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2487         err |= get_user(cp, &arg32->buf);
2488         arg64.buf = compat_ptr(cp);
2489         err |= copy_to_user(p, &arg64, sizeof(arg64));
2490
2491         if (err)
2492                 return -EFAULT;
2493
2494         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2495         if (err)
2496                 return err;
2497         err |= copy_in_user(&arg32->error_info, &p->error_info,
2498                          sizeof(arg32->error_info));
2499         if (err)
2500                 return -EFAULT;
2501         return err;
2502 }
2503
2504 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2505 {
2506         switch (cmd) {
2507         case CCISS_GETPCIINFO:
2508         case CCISS_GETINTINFO:
2509         case CCISS_SETINTINFO:
2510         case CCISS_GETNODENAME:
2511         case CCISS_SETNODENAME:
2512         case CCISS_GETHEARTBEAT:
2513         case CCISS_GETBUSTYPES:
2514         case CCISS_GETFIRMVER:
2515         case CCISS_GETDRIVVER:
2516         case CCISS_REVALIDVOLS:
2517         case CCISS_DEREGDISK:
2518         case CCISS_REGNEWDISK:
2519         case CCISS_REGNEWD:
2520         case CCISS_RESCANDISK:
2521         case CCISS_GETLUNINFO:
2522                 return hpsa_ioctl(dev, cmd, arg);
2523
2524         case CCISS_PASSTHRU32:
2525                 return hpsa_ioctl32_passthru(dev, cmd, arg);
2526         case CCISS_BIG_PASSTHRU32:
2527                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2528
2529         default:
2530                 return -ENOIOCTLCMD;
2531         }
2532 }
2533 #endif
2534
2535 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2536 {
2537         struct hpsa_pci_info pciinfo;
2538
2539         if (!argp)
2540                 return -EINVAL;
2541         pciinfo.domain = pci_domain_nr(h->pdev->bus);
2542         pciinfo.bus = h->pdev->bus->number;
2543         pciinfo.dev_fn = h->pdev->devfn;
2544         pciinfo.board_id = h->board_id;
2545         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2546                 return -EFAULT;
2547         return 0;
2548 }
2549
2550 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2551 {
2552         DriverVer_type DriverVer;
2553         unsigned char vmaj, vmin, vsubmin;
2554         int rc;
2555
2556         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2557                 &vmaj, &vmin, &vsubmin);
2558         if (rc != 3) {
2559                 dev_info(&h->pdev->dev, "driver version string '%s' "
2560                         "unrecognized.", HPSA_DRIVER_VERSION);
2561                 vmaj = 0;
2562                 vmin = 0;
2563                 vsubmin = 0;
2564         }
2565         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2566         if (!argp)
2567                 return -EINVAL;
2568         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2569                 return -EFAULT;
2570         return 0;
2571 }
2572
2573 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2574 {
2575         IOCTL_Command_struct iocommand;
2576         struct CommandList *c;
2577         char *buff = NULL;
2578         union u64bit temp64;
2579
2580         if (!argp)
2581                 return -EINVAL;
2582         if (!capable(CAP_SYS_RAWIO))
2583                 return -EPERM;
2584         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2585                 return -EFAULT;
2586         if ((iocommand.buf_size < 1) &&
2587             (iocommand.Request.Type.Direction != XFER_NONE)) {
2588                 return -EINVAL;
2589         }
2590         if (iocommand.buf_size > 0) {
2591                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2592                 if (buff == NULL)
2593                         return -EFAULT;
2594                 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2595                         /* Copy the data into the buffer we created */
2596                         if (copy_from_user(buff, iocommand.buf,
2597                                 iocommand.buf_size)) {
2598                                 kfree(buff);
2599                                 return -EFAULT;
2600                         }
2601                 } else {
2602                         memset(buff, 0, iocommand.buf_size);
2603                 }
2604         }
2605         c = cmd_special_alloc(h);
2606         if (c == NULL) {
2607                 kfree(buff);
2608                 return -ENOMEM;
2609         }
2610         /* Fill in the command type */
2611         c->cmd_type = CMD_IOCTL_PEND;
2612         /* Fill in Command Header */
2613         c->Header.ReplyQueue = 0; /* unused in simple mode */
2614         if (iocommand.buf_size > 0) {   /* buffer to fill */
2615                 c->Header.SGList = 1;
2616                 c->Header.SGTotal = 1;
2617         } else  { /* no buffers to fill */
2618                 c->Header.SGList = 0;
2619                 c->Header.SGTotal = 0;
2620         }
2621         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2622         /* use the kernel address the cmd block for tag */
2623         c->Header.Tag.lower = c->busaddr;
2624
2625         /* Fill in Request block */
2626         memcpy(&c->Request, &iocommand.Request,
2627                 sizeof(c->Request));
2628
2629         /* Fill in the scatter gather information */
2630         if (iocommand.buf_size > 0) {
2631                 temp64.val = pci_map_single(h->pdev, buff,
2632                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2633                 c->SG[0].Addr.lower = temp64.val32.lower;
2634                 c->SG[0].Addr.upper = temp64.val32.upper;
2635                 c->SG[0].Len = iocommand.buf_size;
2636                 c->SG[0].Ext = 0; /* we are not chaining*/
2637         }
2638         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2639         if (iocommand.buf_size > 0)
2640                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2641         check_ioctl_unit_attention(h, c);
2642
2643         /* Copy the error information out */
2644         memcpy(&iocommand.error_info, c->err_info,
2645                 sizeof(iocommand.error_info));
2646         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2647                 kfree(buff);
2648                 cmd_special_free(h, c);
2649                 return -EFAULT;
2650         }
2651         if (iocommand.Request.Type.Direction == XFER_READ &&
2652                 iocommand.buf_size > 0) {
2653                 /* Copy the data out of the buffer we created */
2654                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2655                         kfree(buff);
2656                         cmd_special_free(h, c);
2657                         return -EFAULT;
2658                 }
2659         }
2660         kfree(buff);
2661         cmd_special_free(h, c);
2662         return 0;
2663 }
2664
2665 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2666 {
2667         BIG_IOCTL_Command_struct *ioc;
2668         struct CommandList *c;
2669         unsigned char **buff = NULL;
2670         int *buff_size = NULL;
2671         union u64bit temp64;
2672         BYTE sg_used = 0;
2673         int status = 0;
2674         int i;
2675         u32 left;
2676         u32 sz;
2677         BYTE __user *data_ptr;
2678
2679         if (!argp)
2680                 return -EINVAL;
2681         if (!capable(CAP_SYS_RAWIO))
2682                 return -EPERM;
2683         ioc = (BIG_IOCTL_Command_struct *)
2684             kmalloc(sizeof(*ioc), GFP_KERNEL);
2685         if (!ioc) {
2686                 status = -ENOMEM;
2687                 goto cleanup1;
2688         }
2689         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2690                 status = -EFAULT;
2691                 goto cleanup1;
2692         }
2693         if ((ioc->buf_size < 1) &&
2694             (ioc->Request.Type.Direction != XFER_NONE)) {
2695                 status = -EINVAL;
2696                 goto cleanup1;
2697         }
2698         /* Check kmalloc limits  using all SGs */
2699         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2700                 status = -EINVAL;
2701                 goto cleanup1;
2702         }
2703         if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2704                 status = -EINVAL;
2705                 goto cleanup1;
2706         }
2707         buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2708         if (!buff) {
2709                 status = -ENOMEM;
2710                 goto cleanup1;
2711         }
2712         buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2713         if (!buff_size) {
2714                 status = -ENOMEM;
2715                 goto cleanup1;
2716         }
2717         left = ioc->buf_size;
2718         data_ptr = ioc->buf;
2719         while (left) {
2720                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2721                 buff_size[sg_used] = sz;
2722                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2723                 if (buff[sg_used] == NULL) {
2724                         status = -ENOMEM;
2725                         goto cleanup1;
2726                 }
2727                 if (ioc->Request.Type.Direction == XFER_WRITE) {
2728                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2729                                 status = -ENOMEM;
2730                                 goto cleanup1;
2731                         }
2732                 } else
2733                         memset(buff[sg_used], 0, sz);
2734                 left -= sz;
2735                 data_ptr += sz;
2736                 sg_used++;
2737         }
2738         c = cmd_special_alloc(h);
2739         if (c == NULL) {
2740                 status = -ENOMEM;
2741                 goto cleanup1;
2742         }
2743         c->cmd_type = CMD_IOCTL_PEND;
2744         c->Header.ReplyQueue = 0;
2745         c->Header.SGList = c->Header.SGTotal = sg_used;
2746         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2747         c->Header.Tag.lower = c->busaddr;
2748         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2749         if (ioc->buf_size > 0) {
2750                 int i;
2751                 for (i = 0; i < sg_used; i++) {
2752                         temp64.val = pci_map_single(h->pdev, buff[i],
2753                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
2754                         c->SG[i].Addr.lower = temp64.val32.lower;
2755                         c->SG[i].Addr.upper = temp64.val32.upper;
2756                         c->SG[i].Len = buff_size[i];
2757                         /* we are not chaining */
2758                         c->SG[i].Ext = 0;
2759                 }
2760         }
2761         hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2762         if (sg_used)
2763                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2764         check_ioctl_unit_attention(h, c);
2765         /* Copy the error information out */
2766         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2767         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2768                 cmd_special_free(h, c);
2769                 status = -EFAULT;
2770                 goto cleanup1;
2771         }
2772         if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
2773                 /* Copy the data out of the buffer we created */
2774                 BYTE __user *ptr = ioc->buf;
2775                 for (i = 0; i < sg_used; i++) {
2776                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
2777                                 cmd_special_free(h, c);
2778                                 status = -EFAULT;
2779                                 goto cleanup1;
2780                         }
2781                         ptr += buff_size[i];
2782                 }
2783         }
2784         cmd_special_free(h, c);
2785         status = 0;
2786 cleanup1:
2787         if (buff) {
2788                 for (i = 0; i < sg_used; i++)
2789                         kfree(buff[i]);
2790                 kfree(buff);
2791         }
2792         kfree(buff_size);
2793         kfree(ioc);
2794         return status;
2795 }
2796
2797 static void check_ioctl_unit_attention(struct ctlr_info *h,
2798         struct CommandList *c)
2799 {
2800         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2801                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2802                 (void) check_for_unit_attention(h, c);
2803 }
2804 /*
2805  * ioctl
2806  */
2807 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2808 {
2809         struct ctlr_info *h;
2810         void __user *argp = (void __user *)arg;
2811
2812         h = sdev_to_hba(dev);
2813
2814         switch (cmd) {
2815         case CCISS_DEREGDISK:
2816         case CCISS_REGNEWDISK:
2817         case CCISS_REGNEWD:
2818                 hpsa_scan_start(h->scsi_host);
2819                 return 0;
2820         case CCISS_GETPCIINFO:
2821                 return hpsa_getpciinfo_ioctl(h, argp);
2822         case CCISS_GETDRIVVER:
2823                 return hpsa_getdrivver_ioctl(h, argp);
2824         case CCISS_PASSTHRU:
2825                 return hpsa_passthru_ioctl(h, argp);
2826         case CCISS_BIG_PASSTHRU:
2827                 return hpsa_big_passthru_ioctl(h, argp);
2828         default:
2829                 return -ENOTTY;
2830         }
2831 }
2832
2833 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
2834         unsigned char *scsi3addr, u8 reset_type)
2835 {
2836         struct CommandList *c;
2837
2838         c = cmd_alloc(h);
2839         if (!c)
2840                 return -ENOMEM;
2841         fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
2842                 RAID_CTLR_LUNID, TYPE_MSG);
2843         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
2844         c->waiting = NULL;
2845         enqueue_cmd_and_start_io(h, c);
2846         /* Don't wait for completion, the reset won't complete.  Don't free
2847          * the command either.  This is the last command we will send before
2848          * re-initializing everything, so it doesn't matter and won't leak.
2849          */
2850         return 0;
2851 }
2852
2853 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2854         void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2855         int cmd_type)
2856 {
2857         int pci_dir = XFER_NONE;
2858
2859         c->cmd_type = CMD_IOCTL_PEND;
2860         c->Header.ReplyQueue = 0;
2861         if (buff != NULL && size > 0) {
2862                 c->Header.SGList = 1;
2863                 c->Header.SGTotal = 1;
2864         } else {
2865                 c->Header.SGList = 0;
2866                 c->Header.SGTotal = 0;
2867         }
2868         c->Header.Tag.lower = c->busaddr;
2869         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2870
2871         c->Request.Type.Type = cmd_type;
2872         if (cmd_type == TYPE_CMD) {
2873                 switch (cmd) {
2874                 case HPSA_INQUIRY:
2875                         /* are we trying to read a vital product page */
2876                         if (page_code != 0) {
2877                                 c->Request.CDB[1] = 0x01;
2878                                 c->Request.CDB[2] = page_code;
2879                         }
2880                         c->Request.CDBLen = 6;
2881                         c->Request.Type.Attribute = ATTR_SIMPLE;
2882                         c->Request.Type.Direction = XFER_READ;
2883                         c->Request.Timeout = 0;
2884                         c->Request.CDB[0] = HPSA_INQUIRY;
2885                         c->Request.CDB[4] = size & 0xFF;
2886                         break;
2887                 case HPSA_REPORT_LOG:
2888                 case HPSA_REPORT_PHYS:
2889                         /* Talking to controller so It's a physical command
2890                            mode = 00 target = 0.  Nothing to write.
2891                          */
2892                         c->Request.CDBLen = 12;
2893                         c->Request.Type.Attribute = ATTR_SIMPLE;
2894                         c->Request.Type.Direction = XFER_READ;
2895                         c->Request.Timeout = 0;
2896                         c->Request.CDB[0] = cmd;
2897                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2898                         c->Request.CDB[7] = (size >> 16) & 0xFF;
2899                         c->Request.CDB[8] = (size >> 8) & 0xFF;
2900                         c->Request.CDB[9] = size & 0xFF;
2901                         break;
2902                 case HPSA_CACHE_FLUSH:
2903                         c->Request.CDBLen = 12;
2904                         c->Request.Type.Attribute = ATTR_SIMPLE;
2905                         c->Request.Type.Direction = XFER_WRITE;
2906                         c->Request.Timeout = 0;
2907                         c->Request.CDB[0] = BMIC_WRITE;
2908                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2909                         c->Request.CDB[7] = (size >> 8) & 0xFF;
2910                         c->Request.CDB[8] = size & 0xFF;
2911                         break;
2912                 case TEST_UNIT_READY:
2913                         c->Request.CDBLen = 6;
2914                         c->Request.Type.Attribute = ATTR_SIMPLE;
2915                         c->Request.Type.Direction = XFER_NONE;
2916                         c->Request.Timeout = 0;
2917                         break;
2918                 default:
2919                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2920                         BUG();
2921                         return;
2922                 }
2923         } else if (cmd_type == TYPE_MSG) {
2924                 switch (cmd) {
2925
2926                 case  HPSA_DEVICE_RESET_MSG:
2927                         c->Request.CDBLen = 16;
2928                         c->Request.Type.Type =  1; /* It is a MSG not a CMD */
2929                         c->Request.Type.Attribute = ATTR_SIMPLE;
2930                         c->Request.Type.Direction = XFER_NONE;
2931                         c->Request.Timeout = 0; /* Don't time out */
2932                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2933                         c->Request.CDB[0] =  cmd;
2934                         c->Request.CDB[1] = 0x03;  /* Reset target above */
2935                         /* If bytes 4-7 are zero, it means reset the */
2936                         /* LunID device */
2937                         c->Request.CDB[4] = 0x00;
2938                         c->Request.CDB[5] = 0x00;
2939                         c->Request.CDB[6] = 0x00;
2940                         c->Request.CDB[7] = 0x00;
2941                 break;
2942
2943                 default:
2944                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
2945                                 cmd);
2946                         BUG();
2947                 }
2948         } else {
2949                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2950                 BUG();
2951         }
2952
2953         switch (c->Request.Type.Direction) {
2954         case XFER_READ:
2955                 pci_dir = PCI_DMA_FROMDEVICE;
2956                 break;
2957         case XFER_WRITE:
2958                 pci_dir = PCI_DMA_TODEVICE;
2959                 break;
2960         case XFER_NONE:
2961                 pci_dir = PCI_DMA_NONE;
2962                 break;
2963         default:
2964                 pci_dir = PCI_DMA_BIDIRECTIONAL;
2965         }
2966
2967         hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2968
2969         return;
2970 }
2971
2972 /*
2973  * Map (physical) PCI mem into (virtual) kernel space
2974  */
2975 static void __iomem *remap_pci_mem(ulong base, ulong size)
2976 {
2977         ulong page_base = ((ulong) base) & PAGE_MASK;
2978         ulong page_offs = ((ulong) base) - page_base;
2979         void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2980
2981         return page_remapped ? (page_remapped + page_offs) : NULL;
2982 }
2983
2984 /* Takes cmds off the submission queue and sends them to the hardware,
2985  * then puts them on the queue of cmds waiting for completion.
2986  */
2987 static void start_io(struct ctlr_info *h)
2988 {
2989         struct CommandList *c;
2990
2991         while (!list_empty(&h->reqQ)) {
2992                 c = list_entry(h->reqQ.next, struct CommandList, list);
2993                 /* can't do anything if fifo is full */
2994                 if ((h->access.fifo_full(h))) {
2995                         dev_warn(&h->pdev->dev, "fifo full\n");
2996                         break;
2997                 }
2998
2999                 /* Get the first entry from the Request Q */
3000                 removeQ(c);
3001                 h->Qdepth--;
3002
3003                 /* Tell the controller execute command */
3004                 h->access.submit_command(h, c);
3005
3006                 /* Put job onto the completed Q */
3007                 addQ(&h->cmpQ, c);
3008         }
3009 }
3010
3011 static inline unsigned long get_next_completion(struct ctlr_info *h)
3012 {
3013         return h->access.command_completed(h);
3014 }
3015
3016 static inline bool interrupt_pending(struct ctlr_info *h)
3017 {
3018         return h->access.intr_pending(h);
3019 }
3020
3021 static inline long interrupt_not_for_us(struct ctlr_info *h)
3022 {
3023         return (h->access.intr_pending(h) == 0) ||
3024                 (h->interrupts_enabled == 0);
3025 }
3026
3027 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3028         u32 raw_tag)
3029 {
3030         if (unlikely(tag_index >= h->nr_cmds)) {
3031                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3032                 return 1;
3033         }
3034         return 0;
3035 }
3036
3037 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
3038 {
3039         removeQ(c);
3040         if (likely(c->cmd_type == CMD_SCSI))
3041                 complete_scsi_command(c);
3042         else if (c->cmd_type == CMD_IOCTL_PEND)
3043                 complete(c->waiting);
3044 }
3045
3046 static inline u32 hpsa_tag_contains_index(u32 tag)
3047 {
3048         return tag & DIRECT_LOOKUP_BIT;
3049 }
3050
3051 static inline u32 hpsa_tag_to_index(u32 tag)
3052 {
3053         return tag >> DIRECT_LOOKUP_SHIFT;
3054 }
3055
3056
3057 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3058 {
3059 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3060 #define HPSA_SIMPLE_ERROR_BITS 0x03
3061         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3062                 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3063         return tag & ~HPSA_PERF_ERROR_BITS;
3064 }
3065
3066 /* process completion of an indexed ("direct lookup") command */
3067 static inline u32 process_indexed_cmd(struct ctlr_info *h,
3068         u32 raw_tag)
3069 {
3070         u32 tag_index;
3071         struct CommandList *c;
3072
3073         tag_index = hpsa_tag_to_index(raw_tag);
3074         if (bad_tag(h, tag_index, raw_tag))
3075                 return next_command(h);
3076         c = h->cmd_pool + tag_index;
3077         finish_cmd(c, raw_tag);
3078         return next_command(h);
3079 }
3080
3081 /* process completion of a non-indexed command */
3082 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
3083         u32 raw_tag)
3084 {
3085         u32 tag;
3086         struct CommandList *c = NULL;
3087
3088         tag = hpsa_tag_discard_error_bits(h, raw_tag);
3089         list_for_each_entry(c, &h->cmpQ, list) {
3090                 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3091                         finish_cmd(c, raw_tag);
3092                         return next_command(h);
3093                 }
3094         }
3095         bad_tag(h, h->nr_cmds + 1, raw_tag);
3096         return next_command(h);
3097 }
3098
3099 /* Some controllers, like p400, will give us one interrupt
3100  * after a soft reset, even if we turned interrupts off.
3101  * Only need to check for this in the hpsa_xxx_discard_completions
3102  * functions.
3103  */
3104 static int ignore_bogus_interrupt(struct ctlr_info *h)
3105 {
3106         if (likely(!reset_devices))
3107                 return 0;
3108
3109         if (likely(h->interrupts_enabled))
3110                 return 0;
3111
3112         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3113                 "(known firmware bug.)  Ignoring.\n");
3114
3115         return 1;
3116 }
3117
3118 static irqreturn_t hpsa_intx_discard_completions(int irq, void *dev_id)
3119 {
3120         struct ctlr_info *h = dev_id;
3121         unsigned long flags;
3122         u32 raw_tag;
3123
3124         if (ignore_bogus_interrupt(h))
3125                 return IRQ_NONE;
3126
3127         if (interrupt_not_for_us(h))
3128                 return IRQ_NONE;
3129         spin_lock_irqsave(&h->lock, flags);
3130         h->last_intr_timestamp = get_jiffies_64();
3131         while (interrupt_pending(h)) {
3132                 raw_tag = get_next_completion(h);
3133                 while (raw_tag != FIFO_EMPTY)
3134                         raw_tag = next_command(h);
3135         }
3136         spin_unlock_irqrestore(&h->lock, flags);
3137         return IRQ_HANDLED;
3138 }
3139
3140 static irqreturn_t hpsa_msix_discard_completions(int irq, void *dev_id)
3141 {
3142         struct ctlr_info *h = dev_id;
3143         unsigned long flags;
3144         u32 raw_tag;
3145
3146         if (ignore_bogus_interrupt(h))
3147                 return IRQ_NONE;
3148
3149         spin_lock_irqsave(&h->lock, flags);
3150         h->last_intr_timestamp = get_jiffies_64();
3151         raw_tag = get_next_completion(h);
3152         while (raw_tag != FIFO_EMPTY)
3153                 raw_tag = next_command(h);
3154         spin_unlock_irqrestore(&h->lock, flags);
3155         return IRQ_HANDLED;
3156 }
3157
3158 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
3159 {
3160         struct ctlr_info *h = dev_id;
3161         unsigned long flags;
3162         u32 raw_tag;
3163
3164         if (interrupt_not_for_us(h))
3165                 return IRQ_NONE;
3166         spin_lock_irqsave(&h->lock, flags);
3167         h->last_intr_timestamp = get_jiffies_64();
3168         while (interrupt_pending(h)) {
3169                 raw_tag = get_next_completion(h);
3170                 while (raw_tag != FIFO_EMPTY) {
3171                         if (hpsa_tag_contains_index(raw_tag))
3172                                 raw_tag = process_indexed_cmd(h, raw_tag);
3173                         else
3174                                 raw_tag = process_nonindexed_cmd(h, raw_tag);
3175                 }
3176         }
3177         spin_unlock_irqrestore(&h->lock, flags);
3178         return IRQ_HANDLED;
3179 }
3180
3181 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
3182 {
3183         struct ctlr_info *h = dev_id;
3184         unsigned long flags;
3185         u32 raw_tag;
3186
3187         spin_lock_irqsave(&h->lock, flags);
3188         h->last_intr_timestamp = get_jiffies_64();
3189         raw_tag = get_next_completion(h);
3190         while (raw_tag != FIFO_EMPTY) {
3191                 if (hpsa_tag_contains_index(raw_tag))
3192                         raw_tag = process_indexed_cmd(h, raw_tag);
3193                 else
3194                         raw_tag = process_nonindexed_cmd(h, raw_tag);
3195         }
3196         spin_unlock_irqrestore(&h->lock, flags);
3197         return IRQ_HANDLED;
3198 }
3199
3200 /* Send a message CDB to the firmware. Careful, this only works
3201  * in simple mode, not performant mode due to the tag lookup.
3202  * We only ever use this immediately after a controller reset.
3203  */
3204 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3205                                                 unsigned char type)
3206 {
3207         struct Command {
3208                 struct CommandListHeader CommandHeader;
3209                 struct RequestBlock Request;
3210                 struct ErrDescriptor ErrorDescriptor;
3211         };
3212         struct Command *cmd;
3213         static const size_t cmd_sz = sizeof(*cmd) +
3214                                         sizeof(cmd->ErrorDescriptor);
3215         dma_addr_t paddr64;
3216         uint32_t paddr32, tag;
3217         void __iomem *vaddr;
3218         int i, err;
3219
3220         vaddr = pci_ioremap_bar(pdev, 0);
3221         if (vaddr == NULL)
3222                 return -ENOMEM;
3223
3224         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3225          * CCISS commands, so they must be allocated from the lower 4GiB of
3226          * memory.
3227          */
3228         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3229         if (err) {
3230                 iounmap(vaddr);
3231                 return -ENOMEM;
3232         }
3233
3234         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3235         if (cmd == NULL) {
3236                 iounmap(vaddr);
3237                 return -ENOMEM;
3238         }
3239
3240         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
3241          * although there's no guarantee, we assume that the address is at
3242          * least 4-byte aligned (most likely, it's page-aligned).
3243          */
3244         paddr32 = paddr64;
3245
3246         cmd->CommandHeader.ReplyQueue = 0;
3247         cmd->CommandHeader.SGList = 0;
3248         cmd->CommandHeader.SGTotal = 0;
3249         cmd->CommandHeader.Tag.lower = paddr32;
3250         cmd->CommandHeader.Tag.upper = 0;
3251         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3252
3253         cmd->Request.CDBLen = 16;
3254         cmd->Request.Type.Type = TYPE_MSG;
3255         cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3256         cmd->Request.Type.Direction = XFER_NONE;
3257         cmd->Request.Timeout = 0; /* Don't time out */
3258         cmd->Request.CDB[0] = opcode;
3259         cmd->Request.CDB[1] = type;
3260         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3261         cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3262         cmd->ErrorDescriptor.Addr.upper = 0;
3263         cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3264
3265         writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3266
3267         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3268                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3269                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3270                         break;
3271                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3272         }
3273
3274         iounmap(vaddr);
3275
3276         /* we leak the DMA buffer here ... no choice since the controller could
3277          *  still complete the command.
3278          */
3279         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3280                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3281                         opcode, type);
3282                 return -ETIMEDOUT;
3283         }
3284
3285         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3286
3287         if (tag & HPSA_ERROR_BIT) {
3288                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3289                         opcode, type);
3290                 return -EIO;
3291         }
3292
3293         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3294                 opcode, type);
3295         return 0;
3296 }
3297
3298 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3299
3300 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3301         void * __iomem vaddr, u32 use_doorbell)
3302 {
3303         u16 pmcsr;
3304         int pos;
3305
3306         if (use_doorbell) {
3307                 /* For everything after the P600, the PCI power state method
3308                  * of resetting the controller doesn't work, so we have this
3309                  * other way using the doorbell register.
3310                  */
3311                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3312                 writel(use_doorbell, vaddr + SA5_DOORBELL);
3313         } else { /* Try to do it the PCI power state way */
3314
3315                 /* Quoting from the Open CISS Specification: "The Power
3316                  * Management Control/Status Register (CSR) controls the power
3317                  * state of the device.  The normal operating state is D0,
3318                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
3319                  * the controller, place the interface device in D3 then to D0,
3320                  * this causes a secondary PCI reset which will reset the
3321                  * controller." */
3322
3323                 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3324                 if (pos == 0) {
3325                         dev_err(&pdev->dev,
3326                                 "hpsa_reset_controller: "
3327                                 "PCI PM not supported\n");
3328                         return -ENODEV;
3329                 }
3330                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3331                 /* enter the D3hot power management state */
3332                 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3333                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3334                 pmcsr |= PCI_D3hot;
3335                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3336
3337                 msleep(500);
3338
3339                 /* enter the D0 power management state */
3340                 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3341                 pmcsr |= PCI_D0;
3342                 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3343
3344                 /*
3345                  * The P600 requires a small delay when changing states.
3346                  * Otherwise we may think the board did not reset and we bail.
3347                  * This for kdump only and is particular to the P600.
3348                  */
3349                 msleep(500);
3350         }
3351         return 0;
3352 }
3353
3354 static __devinit void init_driver_version(char *driver_version, int len)
3355 {
3356         memset(driver_version, 0, len);
3357         strncpy(driver_version, "hpsa " HPSA_DRIVER_VERSION, len - 1);
3358 }
3359
3360 static __devinit int write_driver_ver_to_cfgtable(
3361         struct CfgTable __iomem *cfgtable)
3362 {
3363         char *driver_version;
3364         int i, size = sizeof(cfgtable->driver_version);
3365
3366         driver_version = kmalloc(size, GFP_KERNEL);
3367         if (!driver_version)
3368                 return -ENOMEM;
3369
3370         init_driver_version(driver_version, size);
3371         for (i = 0; i < size; i++)
3372                 writeb(driver_version[i], &cfgtable->driver_version[i]);
3373         kfree(driver_version);
3374         return 0;
3375 }
3376
3377 static __devinit void read_driver_ver_from_cfgtable(
3378         struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3379 {
3380         int i;
3381
3382         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3383                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3384 }
3385
3386 static __devinit int controller_reset_failed(
3387         struct CfgTable __iomem *cfgtable)
3388 {
3389
3390         char *driver_ver, *old_driver_ver;
3391         int rc, size = sizeof(cfgtable->driver_version);
3392
3393         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3394         if (!old_driver_ver)
3395                 return -ENOMEM;
3396         driver_ver = old_driver_ver + size;
3397
3398         /* After a reset, the 32 bytes of "driver version" in the cfgtable
3399          * should have been changed, otherwise we know the reset failed.
3400          */
3401         init_driver_version(old_driver_ver, size);
3402         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3403         rc = !memcmp(driver_ver, old_driver_ver, size);
3404         kfree(old_driver_ver);
3405         return rc;
3406 }
3407 /* This does a hard reset of the controller using PCI power management
3408  * states or the using the doorbell register.
3409  */
3410 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3411 {
3412         u64 cfg_offset;
3413         u32 cfg_base_addr;
3414         u64 cfg_base_addr_index;
3415         void __iomem *vaddr;
3416         unsigned long paddr;
3417         u32 misc_fw_support;
3418         int rc;
3419         struct CfgTable __iomem *cfgtable;
3420         u32 use_doorbell;
3421         u32 board_id;
3422         u16 command_register;
3423
3424         /* For controllers as old as the P600, this is very nearly
3425          * the same thing as
3426          *
3427          * pci_save_state(pci_dev);
3428          * pci_set_power_state(pci_dev, PCI_D3hot);
3429          * pci_set_power_state(pci_dev, PCI_D0);
3430          * pci_restore_state(pci_dev);
3431          *
3432          * For controllers newer than the P600, the pci power state
3433          * method of resetting doesn't work so we have another way
3434          * using the doorbell register.
3435          */
3436
3437         rc = hpsa_lookup_board_id(pdev, &board_id);
3438         if (rc < 0 || !ctlr_is_resettable(board_id)) {
3439                 dev_warn(&pdev->dev, "Not resetting device.\n");
3440                 return -ENODEV;
3441         }
3442
3443         /* if controller is soft- but not hard resettable... */
3444         if (!ctlr_is_hard_resettable(board_id))
3445                 return -ENOTSUPP; /* try soft reset later. */
3446
3447         /* Save the PCI command register */
3448         pci_read_config_word(pdev, 4, &command_register);
3449         /* Turn the board off.  This is so that later pci_restore_state()
3450          * won't turn the board on before the rest of config space is ready.
3451          */
3452         pci_disable_device(pdev);
3453         pci_save_state(pdev);
3454
3455         /* find the first memory BAR, so we can find the cfg table */
3456         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3457         if (rc)
3458                 return rc;
3459         vaddr = remap_pci_mem(paddr, 0x250);
3460         if (!vaddr)
3461                 return -ENOMEM;
3462
3463         /* find cfgtable in order to check if reset via doorbell is supported */
3464         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3465                                         &cfg_base_addr_index, &cfg_offset);
3466         if (rc)
3467                 goto unmap_vaddr;
3468         cfgtable = remap_pci_mem(pci_resource_start(pdev,
3469                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3470         if (!cfgtable) {
3471                 rc = -ENOMEM;
3472                 goto unmap_vaddr;
3473         }
3474         rc = write_driver_ver_to_cfgtable(cfgtable);
3475         if (rc)
3476                 goto unmap_vaddr;
3477
3478         /* If reset via doorbell register is supported, use that.
3479          * There are two such methods.  Favor the newest method.
3480          */
3481         misc_fw_support = readl(&cfgtable->misc_fw_support);
3482         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3483         if (use_doorbell) {
3484                 use_doorbell = DOORBELL_CTLR_RESET2;
3485         } else {
3486                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3487                 if (use_doorbell) {
3488                         dev_warn(&pdev->dev, "Soft reset not supported. "
3489                                 "Firmware update is required.\n");
3490                         rc = -ENOTSUPP; /* try soft reset */
3491                         goto unmap_cfgtable;
3492                 }
3493         }
3494
3495         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3496         if (rc)
3497                 goto unmap_cfgtable;
3498
3499         pci_restore_state(pdev);
3500         rc = pci_enable_device(pdev);
3501         if (rc) {
3502                 dev_warn(&pdev->dev, "failed to enable device.\n");
3503                 goto unmap_cfgtable;
3504         }
3505         pci_write_config_word(pdev, 4, command_register);
3506
3507         /* Some devices (notably the HP Smart Array 5i Controller)
3508            need a little pause here */
3509         msleep(HPSA_POST_RESET_PAUSE_MSECS);
3510
3511         /* Wait for board to become not ready, then ready. */
3512         dev_info(&pdev->dev, "Waiting for board to reset.\n");
3513         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3514         if (rc) {
3515                 dev_warn(&pdev->dev,
3516                         "failed waiting for board to reset."
3517                         " Will try soft reset.\n");
3518                 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3519                 goto unmap_cfgtable;
3520         }
3521         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3522         if (rc) {
3523                 dev_warn(&pdev->dev,
3524                         "failed waiting for board to become ready "
3525                         "after hard reset\n");
3526                 goto unmap_cfgtable;
3527         }
3528
3529         rc = controller_reset_failed(vaddr);
3530         if (rc < 0)
3531                 goto unmap_cfgtable;
3532         if (rc) {
3533                 dev_warn(&pdev->dev, "Unable to successfully reset "
3534                         "controller. Will try soft reset.\n");
3535                 rc = -ENOTSUPP;
3536         } else {
3537                 dev_info(&pdev->dev, "board ready after hard reset.\n");
3538         }
3539
3540 unmap_cfgtable:
3541         iounmap(cfgtable);
3542
3543 unmap_vaddr:
3544         iounmap(vaddr);
3545         return rc;
3546 }
3547
3548 /*
3549  *  We cannot read the structure directly, for portability we must use
3550  *   the io functions.
3551  *   This is for debug only.
3552  */
3553 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3554 {
3555 #ifdef HPSA_DEBUG
3556         int i;
3557         char temp_name[17];
3558
3559         dev_info(dev, "Controller Configuration information\n");
3560         dev_info(dev, "------------------------------------\n");
3561         for (i = 0; i < 4; i++)
3562                 temp_name[i] = readb(&(tb->Signature[i]));
3563         temp_name[4] = '\0';
3564         dev_info(dev, "   Signature = %s\n", temp_name);
3565         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
3566         dev_info(dev, "   Transport methods supported = 0x%x\n",
3567                readl(&(tb->TransportSupport)));
3568         dev_info(dev, "   Transport methods active = 0x%x\n",
3569                readl(&(tb->TransportActive)));
3570         dev_info(dev, "   Requested transport Method = 0x%x\n",
3571                readl(&(tb->HostWrite.TransportRequest)));
3572         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
3573                readl(&(tb->HostWrite.CoalIntDelay)));
3574         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
3575                readl(&(tb->HostWrite.CoalIntCount)));
3576         dev_info(dev, "   Max outstanding commands = 0x%d\n",
3577                readl(&(tb->CmdsOutMax)));
3578         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3579         for (i = 0; i < 16; i++)
3580                 temp_name[i] = readb(&(tb->ServerName[i]));
3581         temp_name[16] = '\0';
3582         dev_info(dev, "   Server Name = %s\n", temp_name);
3583         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
3584                 readl(&(tb->HeartBeat)));
3585 #endif                          /* HPSA_DEBUG */
3586 }
3587
3588 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3589 {
3590         int i, offset, mem_type, bar_type;
3591
3592         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3593                 return 0;
3594         offset = 0;
3595         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3596                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3597                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3598                         offset += 4;
3599                 else {
3600                         mem_type = pci_resource_flags(pdev, i) &
3601                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3602                         switch (mem_type) {
3603                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
3604                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3605                                 offset += 4;    /* 32 bit */
3606                                 break;
3607                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
3608                                 offset += 8;
3609                                 break;
3610                         default:        /* reserved in PCI 2.2 */
3611                                 dev_warn(&pdev->dev,
3612                                        "base address is invalid\n");
3613                                 return -1;
3614                                 break;
3615                         }
3616                 }
3617                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3618                         return i + 1;
3619         }
3620         return -1;
3621 }
3622
3623 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3624  * controllers that are capable. If not, we use IO-APIC mode.
3625  */
3626
3627 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3628 {
3629 #ifdef CONFIG_PCI_MSI
3630         int err;
3631         struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3632         {0, 2}, {0, 3}
3633         };
3634
3635         /* Some boards advertise MSI but don't really support it */
3636         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3637             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3638                 goto default_int_mode;
3639         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3640                 dev_info(&h->pdev->dev, "MSIX\n");
3641                 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3642                 if (!err) {
3643                         h->intr[0] = hpsa_msix_entries[0].vector;
3644                         h->intr[1] = hpsa_msix_entries[1].vector;
3645                         h->intr[2] = hpsa_msix_entries[2].vector;
3646                         h->intr[3] = hpsa_msix_entries[3].vector;
3647                         h->msix_vector = 1;
3648                         return;
3649                 }
3650                 if (err > 0) {
3651                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3652                                "available\n", err);
3653                         goto default_int_mode;
3654                 } else {
3655                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3656                                err);
3657                         goto default_int_mode;
3658                 }
3659         }
3660         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3661                 dev_info(&h->pdev->dev, "MSI\n");
3662                 if (!pci_enable_msi(h->pdev))
3663                         h->msi_vector = 1;
3664                 else
3665                         dev_warn(&h->pdev->dev, "MSI init failed\n");
3666         }
3667 default_int_mode:
3668 #endif                          /* CONFIG_PCI_MSI */
3669         /* if we get here we're going to use the default interrupt mode */
3670         h->intr[h->intr_mode] = h->pdev->irq;
3671 }
3672
3673 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3674 {
3675         int i;
3676         u32 subsystem_vendor_id, subsystem_device_id;
3677
3678         subsystem_vendor_id = pdev->subsystem_vendor;
3679         subsystem_device_id = pdev->subsystem_device;
3680         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3681                     subsystem_vendor_id;
3682
3683         for (i = 0; i < ARRAY_SIZE(products); i++)
3684                 if (*board_id == products[i].board_id)
3685                         return i;
3686
3687         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3688                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3689                 !hpsa_allow_any) {
3690                 dev_warn(&pdev->dev, "unrecognized board ID: "
3691                         "0x%08x, ignoring.\n", *board_id);
3692                         return -ENODEV;
3693         }
3694         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3695 }
3696
3697 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3698 {
3699         u16 command;
3700
3701         (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3702         return ((command & PCI_COMMAND_MEMORY) == 0);
3703 }
3704
3705 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3706         unsigned long *memory_bar)
3707 {
3708         int i;
3709
3710         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3711                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3712                         /* addressing mode bits already removed */
3713                         *memory_bar = pci_resource_start(pdev, i);
3714                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3715                                 *memory_bar);
3716                         return 0;
3717                 }
3718         dev_warn(&pdev->dev, "no memory BAR found\n");
3719         return -ENODEV;
3720 }
3721
3722 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
3723         void __iomem *vaddr, int wait_for_ready)
3724 {
3725         int i, iterations;
3726         u32 scratchpad;
3727         if (wait_for_ready)
3728                 iterations = HPSA_BOARD_READY_ITERATIONS;
3729         else
3730                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
3731
3732         for (i = 0; i < iterations; i++) {
3733                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
3734                 if (wait_for_ready) {
3735                         if (scratchpad == HPSA_FIRMWARE_READY)
3736                                 return 0;
3737                 } else {
3738                         if (scratchpad != HPSA_FIRMWARE_READY)
3739                                 return 0;
3740                 }
3741                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3742         }
3743         dev_warn(&pdev->dev, "board not ready, timed out.\n");
3744         return -ENODEV;
3745 }
3746
3747 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3748         void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3749         u64 *cfg_offset)
3750 {
3751         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3752         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3753         *cfg_base_addr &= (u32) 0x0000ffff;
3754         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3755         if (*cfg_base_addr_index == -1) {
3756                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3757                 return -ENODEV;
3758         }
3759         return 0;
3760 }
3761
3762 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3763 {
3764         u64 cfg_offset;
3765         u32 cfg_base_addr;
3766         u64 cfg_base_addr_index;
3767         u32 trans_offset;
3768         int rc;
3769
3770         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3771                 &cfg_base_addr_index, &cfg_offset);
3772         if (rc)
3773                 return rc;
3774         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3775                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3776         if (!h->cfgtable)
3777                 return -ENOMEM;
3778         rc = write_driver_ver_to_cfgtable(h->cfgtable);
3779         if (rc)
3780                 return rc;
3781         /* Find performant mode table. */
3782         trans_offset = readl(&h->cfgtable->TransMethodOffset);
3783         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3784                                 cfg_base_addr_index)+cfg_offset+trans_offset,
3785                                 sizeof(*h->transtable));
3786         if (!h->transtable)
3787                 return -ENOMEM;
3788         return 0;
3789 }
3790
3791 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3792 {
3793         h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3794
3795         /* Limit commands in memory limited kdump scenario. */
3796         if (reset_devices && h->max_commands > 32)
3797                 h->max_commands = 32;
3798
3799         if (h->max_commands < 16) {
3800                 dev_warn(&h->pdev->dev, "Controller reports "
3801                         "max supported commands of %d, an obvious lie. "
3802                         "Using 16.  Ensure that firmware is up to date.\n",
3803                         h->max_commands);
3804                 h->max_commands = 16;
3805         }
3806 }
3807
3808 /* Interrogate the hardware for some limits:
3809  * max commands, max SG elements without chaining, and with chaining,
3810  * SG chain block size, etc.
3811  */
3812 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3813 {
3814         hpsa_get_max_perf_mode_cmds(h);
3815         h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3816         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3817         /*
3818          * Limit in-command s/g elements to 32 save dma'able memory.
3819          * Howvever spec says if 0, use 31
3820          */
3821         h->max_cmd_sg_entries = 31;
3822         if (h->maxsgentries > 512) {
3823                 h->max_cmd_sg_entries = 32;
3824                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3825                 h->maxsgentries--; /* save one for chain pointer */
3826         } else {
3827                 h->maxsgentries = 31; /* default to traditional values */
3828                 h->chainsize = 0;
3829         }
3830 }
3831
3832 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3833 {
3834         if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3835             (readb(&h->cfgtable->Signature[1]) != 'I') ||
3836             (readb(&h->cfgtable->Signature[2]) != 'S') ||
3837             (readb(&h->cfgtable->Signature[3]) != 'S')) {
3838                 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3839                 return false;
3840         }
3841         return true;
3842 }
3843
3844 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3845 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3846 {
3847 #ifdef CONFIG_X86
3848         u32 prefetch;
3849
3850         prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3851         prefetch |= 0x100;
3852         writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3853 #endif
3854 }
3855
3856 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
3857  * in a prefetch beyond physical memory.
3858  */
3859 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3860 {
3861         u32 dma_prefetch;
3862
3863         if (h->board_id != 0x3225103C)
3864                 return;
3865         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3866         dma_prefetch |= 0x8000;
3867         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3868 }
3869
3870 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3871 {
3872         int i;
3873         u32 doorbell_value;
3874         unsigned long flags;
3875
3876         /* under certain very rare conditions, this can take awhile.
3877          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3878          * as we enter this code.)
3879          */
3880         for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3881                 spin_lock_irqsave(&h->lock, flags);
3882                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
3883                 spin_unlock_irqrestore(&h->lock, flags);
3884                 if (!(doorbell_value & CFGTBL_ChangeReq))
3885                         break;
3886                 /* delay and try again */
3887                 usleep_range(10000, 20000);
3888         }
3889 }
3890
3891 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3892 {
3893         u32 trans_support;
3894
3895         trans_support = readl(&(h->cfgtable->TransportSupport));
3896         if (!(trans_support & SIMPLE_MODE))
3897                 return -ENOTSUPP;
3898
3899         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3900         /* Update the field, and then ring the doorbell */
3901         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3902         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3903         hpsa_wait_for_mode_change_ack(h);
3904         print_cfg_table(&h->pdev->dev, h->cfgtable);
3905         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3906                 dev_warn(&h->pdev->dev,
3907                         "unable to get board into simple mode\n");
3908                 return -ENODEV;
3909         }
3910         h->transMethod = CFGTBL_Trans_Simple;
3911         return 0;
3912 }
3913
3914 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3915 {
3916         int prod_index, err;
3917
3918         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3919         if (prod_index < 0)
3920                 return -ENODEV;
3921         h->product_name = products[prod_index].product_name;
3922         h->access = *(products[prod_index].access);
3923
3924         if (hpsa_board_disabled(h->pdev)) {
3925                 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3926                 return -ENODEV;
3927         }
3928
3929         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
3930                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
3931
3932         err = pci_enable_device(h->pdev);
3933         if (err) {
3934                 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3935                 return err;
3936         }
3937
3938         err = pci_request_regions(h->pdev, "hpsa");
3939         if (err) {
3940                 dev_err(&h->pdev->dev,
3941                         "cannot obtain PCI resources, aborting\n");
3942                 return err;
3943         }
3944         hpsa_interrupt_mode(h);
3945         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3946         if (err)
3947                 goto err_out_free_res;
3948         h->vaddr = remap_pci_mem(h->paddr, 0x250);
3949         if (!h->vaddr) {
3950                 err = -ENOMEM;
3951                 goto err_out_free_res;
3952         }
3953         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
3954         if (err)
3955                 goto err_out_free_res;
3956         err = hpsa_find_cfgtables(h);
3957         if (err)
3958                 goto err_out_free_res;
3959         hpsa_find_board_params(h);
3960
3961         if (!hpsa_CISS_signature_present(h)) {
3962                 err = -ENODEV;
3963                 goto err_out_free_res;
3964         }
3965         hpsa_enable_scsi_prefetch(h);
3966         hpsa_p600_dma_prefetch_quirk(h);
3967         err = hpsa_enter_simple_mode(h);
3968         if (err)
3969                 goto err_out_free_res;
3970         return 0;
3971
3972 err_out_free_res:
3973         if (h->transtable)
3974                 iounmap(h->transtable);
3975         if (h->cfgtable)
3976                 iounmap(h->cfgtable);
3977         if (h->vaddr)
3978                 iounmap(h->vaddr);
3979         /*
3980          * Deliberately omit pci_disable_device(): it does something nasty to
3981          * Smart Array controllers that pci_enable_device does not undo
3982          */
3983         pci_release_regions(h->pdev);
3984         return err;
3985 }
3986
3987 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3988 {
3989         int rc;
3990
3991 #define HBA_INQUIRY_BYTE_COUNT 64
3992         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3993         if (!h->hba_inquiry_data)
3994                 return;
3995         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3996                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3997         if (rc != 0) {
3998                 kfree(h->hba_inquiry_data);
3999                 h->hba_inquiry_data = NULL;
4000         }
4001 }
4002
4003 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
4004 {
4005         int rc, i;
4006
4007         if (!reset_devices)
4008                 return 0;
4009
4010         /* Reset the controller with a PCI power-cycle or via doorbell */
4011         rc = hpsa_kdump_hard_reset_controller(pdev);
4012
4013         /* -ENOTSUPP here means we cannot reset the controller
4014          * but it's already (and still) up and running in
4015          * "performant mode".  Or, it might be 640x, which can't reset
4016          * due to concerns about shared bbwc between 6402/6404 pair.
4017          */
4018         if (rc == -ENOTSUPP)
4019                 return rc; /* just try to do the kdump anyhow. */
4020         if (rc)
4021                 return -ENODEV;
4022
4023         /* Now try to get the controller to respond to a no-op */
4024         dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4025         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4026                 if (hpsa_noop(pdev) == 0)
4027                         break;
4028                 else
4029                         dev_warn(&pdev->dev, "no-op failed%s\n",
4030                                         (i < 11 ? "; re-trying" : ""));
4031         }
4032         return 0;
4033 }
4034
4035 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4036 {
4037         h->cmd_pool_bits = kzalloc(
4038                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4039                 sizeof(unsigned long), GFP_KERNEL);
4040         h->cmd_pool = pci_alloc_consistent(h->pdev,
4041                     h->nr_cmds * sizeof(*h->cmd_pool),
4042                     &(h->cmd_pool_dhandle));
4043         h->errinfo_pool = pci_alloc_consistent(h->pdev,
4044                     h->nr_cmds * sizeof(*h->errinfo_pool),
4045                     &(h->errinfo_pool_dhandle));
4046         if ((h->cmd_pool_bits == NULL)
4047             || (h->cmd_pool == NULL)
4048             || (h->errinfo_pool == NULL)) {
4049                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4050                 return -ENOMEM;
4051         }
4052         return 0;
4053 }
4054
4055 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4056 {
4057         kfree(h->cmd_pool_bits);
4058         if (h->cmd_pool)
4059                 pci_free_consistent(h->pdev,
4060                             h->nr_cmds * sizeof(struct CommandList),
4061                             h->cmd_pool, h->cmd_pool_dhandle);
4062         if (h->errinfo_pool)
4063                 pci_free_consistent(h->pdev,
4064                             h->nr_cmds * sizeof(struct ErrorInfo),
4065                             h->errinfo_pool,
4066                             h->errinfo_pool_dhandle);
4067 }
4068
4069 static int hpsa_request_irq(struct ctlr_info *h,
4070         irqreturn_t (*msixhandler)(int, void *),
4071         irqreturn_t (*intxhandler)(int, void *))
4072 {
4073         int rc;
4074
4075         if (h->msix_vector || h->msi_vector)
4076                 rc = request_irq(h->intr[h->intr_mode], msixhandler,
4077                                 0, h->devname, h);
4078         else
4079                 rc = request_irq(h->intr[h->intr_mode], intxhandler,
4080                                 IRQF_SHARED, h->devname, h);
4081         if (rc) {
4082                 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4083                        h->intr[h->intr_mode], h->devname);
4084                 return -ENODEV;
4085         }
4086         return 0;
4087 }
4088
4089 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4090 {
4091         if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4092                 HPSA_RESET_TYPE_CONTROLLER)) {
4093                 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4094                 return -EIO;
4095         }
4096
4097         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4098         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4099                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4100                 return -1;
4101         }
4102
4103         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4104         if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4105                 dev_warn(&h->pdev->dev, "Board failed to become ready "
4106                         "after soft reset.\n");
4107                 return -1;
4108         }
4109
4110         return 0;
4111 }
4112
4113 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4114 {
4115         free_irq(h->intr[h->intr_mode], h);
4116 #ifdef CONFIG_PCI_MSI
4117         if (h->msix_vector)
4118                 pci_disable_msix(h->pdev);
4119         else if (h->msi_vector)
4120                 pci_disable_msi(h->pdev);
4121 #endif /* CONFIG_PCI_MSI */
4122         hpsa_free_sg_chain_blocks(h);
4123         hpsa_free_cmd_pool(h);
4124         kfree(h->blockFetchTable);
4125         pci_free_consistent(h->pdev, h->reply_pool_size,
4126                 h->reply_pool, h->reply_pool_dhandle);
4127         if (h->vaddr)
4128                 iounmap(h->vaddr);
4129         if (h->transtable)
4130                 iounmap(h->transtable);
4131         if (h->cfgtable)
4132                 iounmap(h->cfgtable);
4133         pci_release_regions(h->pdev);
4134         kfree(h);
4135 }
4136
4137 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4138 {
4139         assert_spin_locked(&lockup_detector_lock);
4140         if (!hpsa_lockup_detector)
4141                 return;
4142         if (h->lockup_detected)
4143                 return; /* already stopped the lockup detector */
4144         list_del(&h->lockup_list);
4145 }
4146
4147 /* Called when controller lockup detected. */
4148 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4149 {
4150         struct CommandList *c = NULL;
4151
4152         assert_spin_locked(&h->lock);
4153         /* Mark all outstanding commands as failed and complete them. */
4154         while (!list_empty(list)) {
4155                 c = list_entry(list->next, struct CommandList, list);
4156                 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4157                 finish_cmd(c, c->Header.Tag.lower);
4158         }
4159 }
4160
4161 static void controller_lockup_detected(struct ctlr_info *h)
4162 {
4163         unsigned long flags;
4164
4165         assert_spin_locked(&lockup_detector_lock);
4166         remove_ctlr_from_lockup_detector_list(h);
4167         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4168         spin_lock_irqsave(&h->lock, flags);
4169         h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4170         spin_unlock_irqrestore(&h->lock, flags);
4171         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4172                         h->lockup_detected);
4173         pci_disable_device(h->pdev);
4174         spin_lock_irqsave(&h->lock, flags);
4175         fail_all_cmds_on_list(h, &h->cmpQ);
4176         fail_all_cmds_on_list(h, &h->reqQ);
4177         spin_unlock_irqrestore(&h->lock, flags);
4178 }
4179
4180 #define HEARTBEAT_SAMPLE_INTERVAL (10 * HZ)
4181 #define HEARTBEAT_CHECK_MINIMUM_INTERVAL (HEARTBEAT_SAMPLE_INTERVAL / 2)
4182
4183 static void detect_controller_lockup(struct ctlr_info *h)
4184 {
4185         u64 now;
4186         u32 heartbeat;
4187         unsigned long flags;
4188
4189         assert_spin_locked(&lockup_detector_lock);
4190         now = get_jiffies_64();
4191         /* If we've received an interrupt recently, we're ok. */
4192         if (time_after64(h->last_intr_timestamp +
4193                                 (HEARTBEAT_CHECK_MINIMUM_INTERVAL), now))
4194                 return;
4195
4196         /*
4197          * If we've already checked the heartbeat recently, we're ok.
4198          * This could happen if someone sends us a signal. We
4199          * otherwise don't care about signals in this thread.
4200          */
4201         if (time_after64(h->last_heartbeat_timestamp +
4202                                 (HEARTBEAT_CHECK_MINIMUM_INTERVAL), now))
4203                 return;
4204
4205         /* If heartbeat has not changed since we last looked, we're not ok. */
4206         spin_lock_irqsave(&h->lock, flags);
4207         heartbeat = readl(&h->cfgtable->HeartBeat);
4208         spin_unlock_irqrestore(&h->lock, flags);
4209         if (h->last_heartbeat == heartbeat) {
4210                 controller_lockup_detected(h);
4211                 return;
4212         }
4213
4214         /* We're ok. */
4215         h->last_heartbeat = heartbeat;
4216         h->last_heartbeat_timestamp = now;
4217 }
4218
4219 static int detect_controller_lockup_thread(void *notused)
4220 {
4221         struct ctlr_info *h;
4222         unsigned long flags;
4223
4224         while (1) {
4225                 struct list_head *this, *tmp;
4226
4227                 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4228                 if (kthread_should_stop())
4229                         break;
4230                 spin_lock_irqsave(&lockup_detector_lock, flags);
4231                 list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4232                         h = list_entry(this, struct ctlr_info, lockup_list);
4233                         detect_controller_lockup(h);
4234                 }
4235                 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4236         }
4237         return 0;
4238 }
4239
4240 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4241 {
4242         unsigned long flags;
4243
4244         spin_lock_irqsave(&lockup_detector_lock, flags);
4245         list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4246         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4247 }
4248
4249 static void start_controller_lockup_detector(struct ctlr_info *h)
4250 {
4251         /* Start the lockup detector thread if not already started */
4252         if (!hpsa_lockup_detector) {
4253                 spin_lock_init(&lockup_detector_lock);
4254                 hpsa_lockup_detector =
4255                         kthread_run(detect_controller_lockup_thread,
4256                                                 NULL, "hpsa");
4257         }
4258         if (!hpsa_lockup_detector) {
4259                 dev_warn(&h->pdev->dev,
4260                         "Could not start lockup detector thread\n");
4261                 return;
4262         }
4263         add_ctlr_to_lockup_detector_list(h);
4264 }
4265
4266 static void stop_controller_lockup_detector(struct ctlr_info *h)
4267 {
4268         unsigned long flags;
4269
4270         spin_lock_irqsave(&lockup_detector_lock, flags);
4271         remove_ctlr_from_lockup_detector_list(h);
4272         /* If the list of ctlr's to monitor is empty, stop the thread */
4273         if (list_empty(&hpsa_ctlr_list)) {
4274                 kthread_stop(hpsa_lockup_detector);
4275                 hpsa_lockup_detector = NULL;
4276         }
4277         spin_unlock_irqrestore(&lockup_detector_lock, flags);
4278 }
4279
4280 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4281                                     const struct pci_device_id *ent)
4282 {
4283         int dac, rc;
4284         struct ctlr_info *h;
4285         int try_soft_reset = 0;
4286         unsigned long flags;
4287
4288         if (number_of_controllers == 0)
4289                 printk(KERN_INFO DRIVER_NAME "\n");
4290
4291         rc = hpsa_init_reset_devices(pdev);
4292         if (rc) {
4293                 if (rc != -ENOTSUPP)
4294                         return rc;
4295                 /* If the reset fails in a particular way (it has no way to do
4296                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
4297                  * a soft reset once we get the controller configured up to the
4298                  * point that it can accept a command.
4299                  */
4300                 try_soft_reset = 1;
4301                 rc = 0;
4302         }
4303
4304 reinit_after_soft_reset:
4305
4306         /* Command structures must be aligned on a 32-byte boundary because
4307          * the 5 lower bits of the address are used by the hardware. and by
4308          * the driver.  See comments in hpsa.h for more info.
4309          */
4310 #define COMMANDLIST_ALIGNMENT 32
4311         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4312         h = kzalloc(sizeof(*h), GFP_KERNEL);
4313         if (!h)
4314                 return -ENOMEM;
4315
4316         h->pdev = pdev;
4317         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4318         INIT_LIST_HEAD(&h->cmpQ);
4319         INIT_LIST_HEAD(&h->reqQ);
4320         spin_lock_init(&h->lock);
4321         spin_lock_init(&h->scan_lock);
4322         rc = hpsa_pci_init(h);
4323         if (rc != 0)
4324                 goto clean1;
4325
4326         sprintf(h->devname, "hpsa%d", number_of_controllers);
4327         h->ctlr = number_of_controllers;
4328         number_of_controllers++;
4329
4330         /* configure PCI DMA stuff */
4331         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4332         if (rc == 0) {
4333                 dac = 1;
4334         } else {
4335                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4336                 if (rc == 0) {
4337                         dac = 0;
4338                 } else {
4339                         dev_err(&pdev->dev, "no suitable DMA available\n");
4340                         goto clean1;
4341                 }
4342         }
4343
4344         /* make sure the board interrupts are off */
4345         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4346
4347         if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4348                 goto clean2;
4349         dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4350                h->devname, pdev->device,
4351                h->intr[h->intr_mode], dac ? "" : " not");
4352         if (hpsa_allocate_cmd_pool(h))
4353                 goto clean4;
4354         if (hpsa_allocate_sg_chain_blocks(h))
4355                 goto clean4;
4356         init_waitqueue_head(&h->scan_wait_queue);
4357         h->scan_finished = 1; /* no scan currently in progress */
4358
4359         pci_set_drvdata(pdev, h);
4360         h->ndevices = 0;
4361         h->scsi_host = NULL;
4362         spin_lock_init(&h->devlock);
4363         hpsa_put_ctlr_into_performant_mode(h);
4364
4365         /* At this point, the controller is ready to take commands.
4366          * Now, if reset_devices and the hard reset didn't work, try
4367          * the soft reset and see if that works.
4368          */
4369         if (try_soft_reset) {
4370
4371                 /* This is kind of gross.  We may or may not get a completion
4372                  * from the soft reset command, and if we do, then the value
4373                  * from the fifo may or may not be valid.  So, we wait 10 secs
4374                  * after the reset throwing away any completions we get during
4375                  * that time.  Unregister the interrupt handler and register
4376                  * fake ones to scoop up any residual completions.
4377                  */
4378                 spin_lock_irqsave(&h->lock, flags);
4379                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4380                 spin_unlock_irqrestore(&h->lock, flags);
4381                 free_irq(h->intr[h->intr_mode], h);
4382                 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4383                                         hpsa_intx_discard_completions);
4384                 if (rc) {
4385                         dev_warn(&h->pdev->dev, "Failed to request_irq after "
4386                                 "soft reset.\n");
4387                         goto clean4;
4388                 }
4389
4390                 rc = hpsa_kdump_soft_reset(h);
4391                 if (rc)
4392                         /* Neither hard nor soft reset worked, we're hosed. */
4393                         goto clean4;
4394
4395                 dev_info(&h->pdev->dev, "Board READY.\n");
4396                 dev_info(&h->pdev->dev,
4397                         "Waiting for stale completions to drain.\n");
4398                 h->access.set_intr_mask(h, HPSA_INTR_ON);
4399                 msleep(10000);
4400                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4401
4402                 rc = controller_reset_failed(h->cfgtable);
4403                 if (rc)
4404                         dev_info(&h->pdev->dev,
4405                                 "Soft reset appears to have failed.\n");
4406
4407                 /* since the controller's reset, we have to go back and re-init
4408                  * everything.  Easiest to just forget what we've done and do it
4409                  * all over again.
4410                  */
4411                 hpsa_undo_allocations_after_kdump_soft_reset(h);
4412                 try_soft_reset = 0;
4413                 if (rc)
4414                         /* don't go to clean4, we already unallocated */
4415                         return -ENODEV;
4416
4417                 goto reinit_after_soft_reset;
4418         }
4419
4420         /* Turn the interrupts on so we can service requests */
4421         h->access.set_intr_mask(h, HPSA_INTR_ON);
4422
4423         hpsa_hba_inquiry(h);
4424         hpsa_register_scsi(h);  /* hook ourselves into SCSI subsystem */
4425         start_controller_lockup_detector(h);
4426         return 1;
4427
4428 clean4:
4429         hpsa_free_sg_chain_blocks(h);
4430         hpsa_free_cmd_pool(h);
4431         free_irq(h->intr[h->intr_mode], h);
4432 clean2:
4433 clean1:
4434         kfree(h);
4435         return rc;
4436 }
4437
4438 static void hpsa_flush_cache(struct ctlr_info *h)
4439 {
4440         char *flush_buf;
4441         struct CommandList *c;
4442
4443         flush_buf = kzalloc(4, GFP_KERNEL);
4444         if (!flush_buf)
4445                 return;
4446
4447         c = cmd_special_alloc(h);
4448         if (!c) {
4449                 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4450                 goto out_of_memory;
4451         }
4452         fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4453                 RAID_CTLR_LUNID, TYPE_CMD);
4454         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4455         if (c->err_info->CommandStatus != 0)
4456                 dev_warn(&h->pdev->dev,
4457                         "error flushing cache on controller\n");
4458         cmd_special_free(h, c);
4459 out_of_memory:
4460         kfree(flush_buf);
4461 }
4462
4463 static void hpsa_shutdown(struct pci_dev *pdev)
4464 {
4465         struct ctlr_info *h;
4466
4467         h = pci_get_drvdata(pdev);
4468         /* Turn board interrupts off  and send the flush cache command
4469          * sendcmd will turn off interrupt, and send the flush...
4470          * To write all data in the battery backed cache to disks
4471          */
4472         hpsa_flush_cache(h);
4473         h->access.set_intr_mask(h, HPSA_INTR_OFF);
4474         free_irq(h->intr[h->intr_mode], h);
4475 #ifdef CONFIG_PCI_MSI
4476         if (h->msix_vector)
4477                 pci_disable_msix(h->pdev);
4478         else if (h->msi_vector)
4479                 pci_disable_msi(h->pdev);
4480 #endif                          /* CONFIG_PCI_MSI */
4481 }
4482
4483 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4484 {
4485         struct ctlr_info *h;
4486
4487         if (pci_get_drvdata(pdev) == NULL) {
4488                 dev_err(&pdev->dev, "unable to remove device\n");
4489                 return;
4490         }
4491         h = pci_get_drvdata(pdev);
4492         stop_controller_lockup_detector(h);
4493         hpsa_unregister_scsi(h);        /* unhook from SCSI subsystem */
4494         hpsa_shutdown(pdev);
4495         iounmap(h->vaddr);
4496         iounmap(h->transtable);
4497         iounmap(h->cfgtable);
4498         hpsa_free_sg_chain_blocks(h);
4499         pci_free_consistent(h->pdev,
4500                 h->nr_cmds * sizeof(struct CommandList),
4501                 h->cmd_pool, h->cmd_pool_dhandle);
4502         pci_free_consistent(h->pdev,
4503                 h->nr_cmds * sizeof(struct ErrorInfo),
4504                 h->errinfo_pool, h->errinfo_pool_dhandle);
4505         pci_free_consistent(h->pdev, h->reply_pool_size,
4506                 h->reply_pool, h->reply_pool_dhandle);
4507         kfree(h->cmd_pool_bits);
4508         kfree(h->blockFetchTable);
4509         kfree(h->hba_inquiry_data);
4510         /*
4511          * Deliberately omit pci_disable_device(): it does something nasty to
4512          * Smart Array controllers that pci_enable_device does not undo
4513          */
4514         pci_release_regions(pdev);
4515         pci_set_drvdata(pdev, NULL);
4516         kfree(h);
4517 }
4518
4519 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4520         __attribute__((unused)) pm_message_t state)
4521 {
4522         return -ENOSYS;
4523 }
4524
4525 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4526 {
4527         return -ENOSYS;
4528 }
4529
4530 static struct pci_driver hpsa_pci_driver = {
4531         .name = "hpsa",
4532         .probe = hpsa_init_one,
4533         .remove = __devexit_p(hpsa_remove_one),
4534         .id_table = hpsa_pci_device_id, /* id_table */
4535         .shutdown = hpsa_shutdown,
4536         .suspend = hpsa_suspend,
4537         .resume = hpsa_resume,
4538 };
4539
4540 /* Fill in bucket_map[], given nsgs (the max number of
4541  * scatter gather elements supported) and bucket[],
4542  * which is an array of 8 integers.  The bucket[] array
4543  * contains 8 different DMA transfer sizes (in 16
4544  * byte increments) which the controller uses to fetch
4545  * commands.  This function fills in bucket_map[], which
4546  * maps a given number of scatter gather elements to one of
4547  * the 8 DMA transfer sizes.  The point of it is to allow the
4548  * controller to only do as much DMA as needed to fetch the
4549  * command, with the DMA transfer size encoded in the lower
4550  * bits of the command address.
4551  */
4552 static void  calc_bucket_map(int bucket[], int num_buckets,
4553         int nsgs, int *bucket_map)
4554 {
4555         int i, j, b, size;
4556
4557         /* even a command with 0 SGs requires 4 blocks */
4558 #define MINIMUM_TRANSFER_BLOCKS 4
4559 #define NUM_BUCKETS 8
4560         /* Note, bucket_map must have nsgs+1 entries. */
4561         for (i = 0; i <= nsgs; i++) {
4562                 /* Compute size of a command with i SG entries */
4563                 size = i + MINIMUM_TRANSFER_BLOCKS;
4564                 b = num_buckets; /* Assume the biggest bucket */
4565                 /* Find the bucket that is just big enough */
4566                 for (j = 0; j < 8; j++) {
4567                         if (bucket[j] >= size) {
4568                                 b = j;
4569                                 break;
4570                         }
4571                 }
4572                 /* for a command with i SG entries, use bucket b. */
4573                 bucket_map[i] = b;
4574         }
4575 }
4576
4577 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
4578         u32 use_short_tags)
4579 {
4580         int i;
4581         unsigned long register_value;
4582
4583         /* This is a bit complicated.  There are 8 registers on
4584          * the controller which we write to to tell it 8 different
4585          * sizes of commands which there may be.  It's a way of
4586          * reducing the DMA done to fetch each command.  Encoded into
4587          * each command's tag are 3 bits which communicate to the controller
4588          * which of the eight sizes that command fits within.  The size of
4589          * each command depends on how many scatter gather entries there are.
4590          * Each SG entry requires 16 bytes.  The eight registers are programmed
4591          * with the number of 16-byte blocks a command of that size requires.
4592          * The smallest command possible requires 5 such 16 byte blocks.
4593          * the largest command possible requires MAXSGENTRIES + 4 16-byte
4594          * blocks.  Note, this only extends to the SG entries contained
4595          * within the command block, and does not extend to chained blocks
4596          * of SG elements.   bft[] contains the eight values we write to
4597          * the registers.  They are not evenly distributed, but have more
4598          * sizes for small commands, and fewer sizes for larger commands.
4599          */
4600         int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4601         BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4602         /*  5 = 1 s/g entry or 4k
4603          *  6 = 2 s/g entry or 8k
4604          *  8 = 4 s/g entry or 16k
4605          * 10 = 6 s/g entry or 24k
4606          */
4607
4608         h->reply_pool_wraparound = 1; /* spec: init to 1 */
4609
4610         /* Controller spec: zero out this buffer. */
4611         memset(h->reply_pool, 0, h->reply_pool_size);
4612         h->reply_pool_head = h->reply_pool;
4613
4614         bft[7] = h->max_sg_entries + 4;
4615         calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4616         for (i = 0; i < 8; i++)
4617                 writel(bft[i], &h->transtable->BlockFetch[i]);
4618
4619         /* size of controller ring buffer */
4620         writel(h->max_commands, &h->transtable->RepQSize);
4621         writel(1, &h->transtable->RepQCount);
4622         writel(0, &h->transtable->RepQCtrAddrLow32);
4623         writel(0, &h->transtable->RepQCtrAddrHigh32);
4624         writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4625         writel(0, &h->transtable->RepQAddr0High32);
4626         writel(CFGTBL_Trans_Performant | use_short_tags,
4627                 &(h->cfgtable->HostWrite.TransportRequest));
4628         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4629         hpsa_wait_for_mode_change_ack(h);
4630         register_value = readl(&(h->cfgtable->TransportActive));
4631         if (!(register_value & CFGTBL_Trans_Performant)) {
4632                 dev_warn(&h->pdev->dev, "unable to get board into"
4633                                         " performant mode\n");
4634                 return;
4635         }
4636         /* Change the access methods to the performant access methods */
4637         h->access = SA5_performant_access;
4638         h->transMethod = CFGTBL_Trans_Performant;
4639 }
4640
4641 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4642 {
4643         u32 trans_support;
4644
4645         if (hpsa_simple_mode)
4646                 return;
4647
4648         trans_support = readl(&(h->cfgtable->TransportSupport));
4649         if (!(trans_support & PERFORMANT_MODE))
4650                 return;
4651
4652         hpsa_get_max_perf_mode_cmds(h);
4653         h->max_sg_entries = 32;
4654         /* Performant mode ring buffer and supporting data structures */
4655         h->reply_pool_size = h->max_commands * sizeof(u64);
4656         h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4657                                 &(h->reply_pool_dhandle));
4658
4659         /* Need a block fetch table for performant mode */
4660         h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4661                                 sizeof(u32)), GFP_KERNEL);
4662
4663         if ((h->reply_pool == NULL)
4664                 || (h->blockFetchTable == NULL))
4665                 goto clean_up;
4666
4667         hpsa_enter_performant_mode(h,
4668                 trans_support & CFGTBL_Trans_use_short_tags);
4669
4670         return;
4671
4672 clean_up:
4673         if (h->reply_pool)
4674                 pci_free_consistent(h->pdev, h->reply_pool_size,
4675                         h->reply_pool, h->reply_pool_dhandle);
4676         kfree(h->blockFetchTable);
4677 }
4678
4679 /*
4680  *  This is it.  Register the PCI driver information for the cards we control
4681  *  the OS will call our registered routines when it finds one of our cards.
4682  */
4683 static int __init hpsa_init(void)
4684 {
4685         return pci_register_driver(&hpsa_pci_driver);
4686 }
4687
4688 static void __exit hpsa_cleanup(void)
4689 {
4690         pci_unregister_driver(&hpsa_pci_driver);
4691 }
4692
4693 module_init(hpsa_init);
4694 module_exit(hpsa_cleanup);