]> Pileus Git - ~andy/linux/blob - drivers/regulator/core.c
regulator: When constraining modes fall back to higher power modes
[~andy/linux] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #define pr_fmt(fmt) "%s: " fmt, __func__
17
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/slab.h>
23 #include <linux/err.h>
24 #include <linux/mutex.h>
25 #include <linux/suspend.h>
26 #include <linux/delay.h>
27 #include <linux/regulator/consumer.h>
28 #include <linux/regulator/driver.h>
29 #include <linux/regulator/machine.h>
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/regulator.h>
33
34 #include "dummy.h"
35
36 #define rdev_err(rdev, fmt, ...)                                        \
37         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_warn(rdev, fmt, ...)                                       \
39         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_info(rdev, fmt, ...)                                       \
41         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_dbg(rdev, fmt, ...)                                        \
43         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44
45 static DEFINE_MUTEX(regulator_list_mutex);
46 static LIST_HEAD(regulator_list);
47 static LIST_HEAD(regulator_map_list);
48 static bool has_full_constraints;
49 static bool board_wants_dummy_regulator;
50
51 #ifdef CONFIG_DEBUG_FS
52 static struct dentry *debugfs_root;
53 #endif
54
55 /*
56  * struct regulator_map
57  *
58  * Used to provide symbolic supply names to devices.
59  */
60 struct regulator_map {
61         struct list_head list;
62         const char *dev_name;   /* The dev_name() for the consumer */
63         const char *supply;
64         struct regulator_dev *regulator;
65 };
66
67 /*
68  * struct regulator
69  *
70  * One for each consumer device.
71  */
72 struct regulator {
73         struct device *dev;
74         struct list_head list;
75         int uA_load;
76         int min_uV;
77         int max_uV;
78         char *supply_name;
79         struct device_attribute dev_attr;
80         struct regulator_dev *rdev;
81 };
82
83 static int _regulator_is_enabled(struct regulator_dev *rdev);
84 static int _regulator_disable(struct regulator_dev *rdev,
85                 struct regulator_dev **supply_rdev_ptr);
86 static int _regulator_get_voltage(struct regulator_dev *rdev);
87 static int _regulator_get_current_limit(struct regulator_dev *rdev);
88 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89 static void _notifier_call_chain(struct regulator_dev *rdev,
90                                   unsigned long event, void *data);
91 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92                                      int min_uV, int max_uV);
93
94 static const char *rdev_get_name(struct regulator_dev *rdev)
95 {
96         if (rdev->constraints && rdev->constraints->name)
97                 return rdev->constraints->name;
98         else if (rdev->desc->name)
99                 return rdev->desc->name;
100         else
101                 return "";
102 }
103
104 /* gets the regulator for a given consumer device */
105 static struct regulator *get_device_regulator(struct device *dev)
106 {
107         struct regulator *regulator = NULL;
108         struct regulator_dev *rdev;
109
110         mutex_lock(&regulator_list_mutex);
111         list_for_each_entry(rdev, &regulator_list, list) {
112                 mutex_lock(&rdev->mutex);
113                 list_for_each_entry(regulator, &rdev->consumer_list, list) {
114                         if (regulator->dev == dev) {
115                                 mutex_unlock(&rdev->mutex);
116                                 mutex_unlock(&regulator_list_mutex);
117                                 return regulator;
118                         }
119                 }
120                 mutex_unlock(&rdev->mutex);
121         }
122         mutex_unlock(&regulator_list_mutex);
123         return NULL;
124 }
125
126 /* Platform voltage constraint check */
127 static int regulator_check_voltage(struct regulator_dev *rdev,
128                                    int *min_uV, int *max_uV)
129 {
130         BUG_ON(*min_uV > *max_uV);
131
132         if (!rdev->constraints) {
133                 rdev_err(rdev, "no constraints\n");
134                 return -ENODEV;
135         }
136         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
137                 rdev_err(rdev, "operation not allowed\n");
138                 return -EPERM;
139         }
140
141         if (*max_uV > rdev->constraints->max_uV)
142                 *max_uV = rdev->constraints->max_uV;
143         if (*min_uV < rdev->constraints->min_uV)
144                 *min_uV = rdev->constraints->min_uV;
145
146         if (*min_uV > *max_uV)
147                 return -EINVAL;
148
149         return 0;
150 }
151
152 /* Make sure we select a voltage that suits the needs of all
153  * regulator consumers
154  */
155 static int regulator_check_consumers(struct regulator_dev *rdev,
156                                      int *min_uV, int *max_uV)
157 {
158         struct regulator *regulator;
159
160         list_for_each_entry(regulator, &rdev->consumer_list, list) {
161                 if (*max_uV > regulator->max_uV)
162                         *max_uV = regulator->max_uV;
163                 if (*min_uV < regulator->min_uV)
164                         *min_uV = regulator->min_uV;
165         }
166
167         if (*min_uV > *max_uV)
168                 return -EINVAL;
169
170         return 0;
171 }
172
173 /* current constraint check */
174 static int regulator_check_current_limit(struct regulator_dev *rdev,
175                                         int *min_uA, int *max_uA)
176 {
177         BUG_ON(*min_uA > *max_uA);
178
179         if (!rdev->constraints) {
180                 rdev_err(rdev, "no constraints\n");
181                 return -ENODEV;
182         }
183         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
184                 rdev_err(rdev, "operation not allowed\n");
185                 return -EPERM;
186         }
187
188         if (*max_uA > rdev->constraints->max_uA)
189                 *max_uA = rdev->constraints->max_uA;
190         if (*min_uA < rdev->constraints->min_uA)
191                 *min_uA = rdev->constraints->min_uA;
192
193         if (*min_uA > *max_uA)
194                 return -EINVAL;
195
196         return 0;
197 }
198
199 /* operating mode constraint check */
200 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
201 {
202         switch (*mode) {
203         case REGULATOR_MODE_FAST:
204         case REGULATOR_MODE_NORMAL:
205         case REGULATOR_MODE_IDLE:
206         case REGULATOR_MODE_STANDBY:
207                 break;
208         default:
209                 return -EINVAL;
210         }
211
212         if (!rdev->constraints) {
213                 rdev_err(rdev, "no constraints\n");
214                 return -ENODEV;
215         }
216         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
217                 rdev_err(rdev, "operation not allowed\n");
218                 return -EPERM;
219         }
220
221         /* The modes are bitmasks, the most power hungry modes having
222          * the lowest values. If the requested mode isn't supported
223          * try higher modes. */
224         while (*mode) {
225                 if (rdev->constraints->valid_modes_mask & *mode)
226                         return 0;
227                 *mode /= 2;
228         }
229
230         return -EINVAL;
231 }
232
233 /* dynamic regulator mode switching constraint check */
234 static int regulator_check_drms(struct regulator_dev *rdev)
235 {
236         if (!rdev->constraints) {
237                 rdev_err(rdev, "no constraints\n");
238                 return -ENODEV;
239         }
240         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
241                 rdev_err(rdev, "operation not allowed\n");
242                 return -EPERM;
243         }
244         return 0;
245 }
246
247 static ssize_t device_requested_uA_show(struct device *dev,
248                              struct device_attribute *attr, char *buf)
249 {
250         struct regulator *regulator;
251
252         regulator = get_device_regulator(dev);
253         if (regulator == NULL)
254                 return 0;
255
256         return sprintf(buf, "%d\n", regulator->uA_load);
257 }
258
259 static ssize_t regulator_uV_show(struct device *dev,
260                                 struct device_attribute *attr, char *buf)
261 {
262         struct regulator_dev *rdev = dev_get_drvdata(dev);
263         ssize_t ret;
264
265         mutex_lock(&rdev->mutex);
266         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
267         mutex_unlock(&rdev->mutex);
268
269         return ret;
270 }
271 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
272
273 static ssize_t regulator_uA_show(struct device *dev,
274                                 struct device_attribute *attr, char *buf)
275 {
276         struct regulator_dev *rdev = dev_get_drvdata(dev);
277
278         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
279 }
280 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
281
282 static ssize_t regulator_name_show(struct device *dev,
283                              struct device_attribute *attr, char *buf)
284 {
285         struct regulator_dev *rdev = dev_get_drvdata(dev);
286
287         return sprintf(buf, "%s\n", rdev_get_name(rdev));
288 }
289
290 static ssize_t regulator_print_opmode(char *buf, int mode)
291 {
292         switch (mode) {
293         case REGULATOR_MODE_FAST:
294                 return sprintf(buf, "fast\n");
295         case REGULATOR_MODE_NORMAL:
296                 return sprintf(buf, "normal\n");
297         case REGULATOR_MODE_IDLE:
298                 return sprintf(buf, "idle\n");
299         case REGULATOR_MODE_STANDBY:
300                 return sprintf(buf, "standby\n");
301         }
302         return sprintf(buf, "unknown\n");
303 }
304
305 static ssize_t regulator_opmode_show(struct device *dev,
306                                     struct device_attribute *attr, char *buf)
307 {
308         struct regulator_dev *rdev = dev_get_drvdata(dev);
309
310         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
311 }
312 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
313
314 static ssize_t regulator_print_state(char *buf, int state)
315 {
316         if (state > 0)
317                 return sprintf(buf, "enabled\n");
318         else if (state == 0)
319                 return sprintf(buf, "disabled\n");
320         else
321                 return sprintf(buf, "unknown\n");
322 }
323
324 static ssize_t regulator_state_show(struct device *dev,
325                                    struct device_attribute *attr, char *buf)
326 {
327         struct regulator_dev *rdev = dev_get_drvdata(dev);
328         ssize_t ret;
329
330         mutex_lock(&rdev->mutex);
331         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
332         mutex_unlock(&rdev->mutex);
333
334         return ret;
335 }
336 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
337
338 static ssize_t regulator_status_show(struct device *dev,
339                                    struct device_attribute *attr, char *buf)
340 {
341         struct regulator_dev *rdev = dev_get_drvdata(dev);
342         int status;
343         char *label;
344
345         status = rdev->desc->ops->get_status(rdev);
346         if (status < 0)
347                 return status;
348
349         switch (status) {
350         case REGULATOR_STATUS_OFF:
351                 label = "off";
352                 break;
353         case REGULATOR_STATUS_ON:
354                 label = "on";
355                 break;
356         case REGULATOR_STATUS_ERROR:
357                 label = "error";
358                 break;
359         case REGULATOR_STATUS_FAST:
360                 label = "fast";
361                 break;
362         case REGULATOR_STATUS_NORMAL:
363                 label = "normal";
364                 break;
365         case REGULATOR_STATUS_IDLE:
366                 label = "idle";
367                 break;
368         case REGULATOR_STATUS_STANDBY:
369                 label = "standby";
370                 break;
371         default:
372                 return -ERANGE;
373         }
374
375         return sprintf(buf, "%s\n", label);
376 }
377 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
378
379 static ssize_t regulator_min_uA_show(struct device *dev,
380                                     struct device_attribute *attr, char *buf)
381 {
382         struct regulator_dev *rdev = dev_get_drvdata(dev);
383
384         if (!rdev->constraints)
385                 return sprintf(buf, "constraint not defined\n");
386
387         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
388 }
389 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
390
391 static ssize_t regulator_max_uA_show(struct device *dev,
392                                     struct device_attribute *attr, char *buf)
393 {
394         struct regulator_dev *rdev = dev_get_drvdata(dev);
395
396         if (!rdev->constraints)
397                 return sprintf(buf, "constraint not defined\n");
398
399         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
400 }
401 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
402
403 static ssize_t regulator_min_uV_show(struct device *dev,
404                                     struct device_attribute *attr, char *buf)
405 {
406         struct regulator_dev *rdev = dev_get_drvdata(dev);
407
408         if (!rdev->constraints)
409                 return sprintf(buf, "constraint not defined\n");
410
411         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
412 }
413 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
414
415 static ssize_t regulator_max_uV_show(struct device *dev,
416                                     struct device_attribute *attr, char *buf)
417 {
418         struct regulator_dev *rdev = dev_get_drvdata(dev);
419
420         if (!rdev->constraints)
421                 return sprintf(buf, "constraint not defined\n");
422
423         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
424 }
425 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
426
427 static ssize_t regulator_total_uA_show(struct device *dev,
428                                       struct device_attribute *attr, char *buf)
429 {
430         struct regulator_dev *rdev = dev_get_drvdata(dev);
431         struct regulator *regulator;
432         int uA = 0;
433
434         mutex_lock(&rdev->mutex);
435         list_for_each_entry(regulator, &rdev->consumer_list, list)
436                 uA += regulator->uA_load;
437         mutex_unlock(&rdev->mutex);
438         return sprintf(buf, "%d\n", uA);
439 }
440 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
441
442 static ssize_t regulator_num_users_show(struct device *dev,
443                                       struct device_attribute *attr, char *buf)
444 {
445         struct regulator_dev *rdev = dev_get_drvdata(dev);
446         return sprintf(buf, "%d\n", rdev->use_count);
447 }
448
449 static ssize_t regulator_type_show(struct device *dev,
450                                   struct device_attribute *attr, char *buf)
451 {
452         struct regulator_dev *rdev = dev_get_drvdata(dev);
453
454         switch (rdev->desc->type) {
455         case REGULATOR_VOLTAGE:
456                 return sprintf(buf, "voltage\n");
457         case REGULATOR_CURRENT:
458                 return sprintf(buf, "current\n");
459         }
460         return sprintf(buf, "unknown\n");
461 }
462
463 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
464                                 struct device_attribute *attr, char *buf)
465 {
466         struct regulator_dev *rdev = dev_get_drvdata(dev);
467
468         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
469 }
470 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
471                 regulator_suspend_mem_uV_show, NULL);
472
473 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
474                                 struct device_attribute *attr, char *buf)
475 {
476         struct regulator_dev *rdev = dev_get_drvdata(dev);
477
478         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
479 }
480 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
481                 regulator_suspend_disk_uV_show, NULL);
482
483 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
484                                 struct device_attribute *attr, char *buf)
485 {
486         struct regulator_dev *rdev = dev_get_drvdata(dev);
487
488         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
489 }
490 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
491                 regulator_suspend_standby_uV_show, NULL);
492
493 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
494                                 struct device_attribute *attr, char *buf)
495 {
496         struct regulator_dev *rdev = dev_get_drvdata(dev);
497
498         return regulator_print_opmode(buf,
499                 rdev->constraints->state_mem.mode);
500 }
501 static DEVICE_ATTR(suspend_mem_mode, 0444,
502                 regulator_suspend_mem_mode_show, NULL);
503
504 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
505                                 struct device_attribute *attr, char *buf)
506 {
507         struct regulator_dev *rdev = dev_get_drvdata(dev);
508
509         return regulator_print_opmode(buf,
510                 rdev->constraints->state_disk.mode);
511 }
512 static DEVICE_ATTR(suspend_disk_mode, 0444,
513                 regulator_suspend_disk_mode_show, NULL);
514
515 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
516                                 struct device_attribute *attr, char *buf)
517 {
518         struct regulator_dev *rdev = dev_get_drvdata(dev);
519
520         return regulator_print_opmode(buf,
521                 rdev->constraints->state_standby.mode);
522 }
523 static DEVICE_ATTR(suspend_standby_mode, 0444,
524                 regulator_suspend_standby_mode_show, NULL);
525
526 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
527                                    struct device_attribute *attr, char *buf)
528 {
529         struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531         return regulator_print_state(buf,
532                         rdev->constraints->state_mem.enabled);
533 }
534 static DEVICE_ATTR(suspend_mem_state, 0444,
535                 regulator_suspend_mem_state_show, NULL);
536
537 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
538                                    struct device_attribute *attr, char *buf)
539 {
540         struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542         return regulator_print_state(buf,
543                         rdev->constraints->state_disk.enabled);
544 }
545 static DEVICE_ATTR(suspend_disk_state, 0444,
546                 regulator_suspend_disk_state_show, NULL);
547
548 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
549                                    struct device_attribute *attr, char *buf)
550 {
551         struct regulator_dev *rdev = dev_get_drvdata(dev);
552
553         return regulator_print_state(buf,
554                         rdev->constraints->state_standby.enabled);
555 }
556 static DEVICE_ATTR(suspend_standby_state, 0444,
557                 regulator_suspend_standby_state_show, NULL);
558
559
560 /*
561  * These are the only attributes are present for all regulators.
562  * Other attributes are a function of regulator functionality.
563  */
564 static struct device_attribute regulator_dev_attrs[] = {
565         __ATTR(name, 0444, regulator_name_show, NULL),
566         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
567         __ATTR(type, 0444, regulator_type_show, NULL),
568         __ATTR_NULL,
569 };
570
571 static void regulator_dev_release(struct device *dev)
572 {
573         struct regulator_dev *rdev = dev_get_drvdata(dev);
574         kfree(rdev);
575 }
576
577 static struct class regulator_class = {
578         .name = "regulator",
579         .dev_release = regulator_dev_release,
580         .dev_attrs = regulator_dev_attrs,
581 };
582
583 /* Calculate the new optimum regulator operating mode based on the new total
584  * consumer load. All locks held by caller */
585 static void drms_uA_update(struct regulator_dev *rdev)
586 {
587         struct regulator *sibling;
588         int current_uA = 0, output_uV, input_uV, err;
589         unsigned int mode;
590
591         err = regulator_check_drms(rdev);
592         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
593             (!rdev->desc->ops->get_voltage &&
594              !rdev->desc->ops->get_voltage_sel) ||
595             !rdev->desc->ops->set_mode)
596                 return;
597
598         /* get output voltage */
599         output_uV = _regulator_get_voltage(rdev);
600         if (output_uV <= 0)
601                 return;
602
603         /* get input voltage */
604         input_uV = 0;
605         if (rdev->supply)
606                 input_uV = _regulator_get_voltage(rdev);
607         if (input_uV <= 0)
608                 input_uV = rdev->constraints->input_uV;
609         if (input_uV <= 0)
610                 return;
611
612         /* calc total requested load */
613         list_for_each_entry(sibling, &rdev->consumer_list, list)
614                 current_uA += sibling->uA_load;
615
616         /* now get the optimum mode for our new total regulator load */
617         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
618                                                   output_uV, current_uA);
619
620         /* check the new mode is allowed */
621         err = regulator_mode_constrain(rdev, &mode);
622         if (err == 0)
623                 rdev->desc->ops->set_mode(rdev, mode);
624 }
625
626 static int suspend_set_state(struct regulator_dev *rdev,
627         struct regulator_state *rstate)
628 {
629         int ret = 0;
630         bool can_set_state;
631
632         can_set_state = rdev->desc->ops->set_suspend_enable &&
633                 rdev->desc->ops->set_suspend_disable;
634
635         /* If we have no suspend mode configration don't set anything;
636          * only warn if the driver actually makes the suspend mode
637          * configurable.
638          */
639         if (!rstate->enabled && !rstate->disabled) {
640                 if (can_set_state)
641                         rdev_warn(rdev, "No configuration\n");
642                 return 0;
643         }
644
645         if (rstate->enabled && rstate->disabled) {
646                 rdev_err(rdev, "invalid configuration\n");
647                 return -EINVAL;
648         }
649
650         if (!can_set_state) {
651                 rdev_err(rdev, "no way to set suspend state\n");
652                 return -EINVAL;
653         }
654
655         if (rstate->enabled)
656                 ret = rdev->desc->ops->set_suspend_enable(rdev);
657         else
658                 ret = rdev->desc->ops->set_suspend_disable(rdev);
659         if (ret < 0) {
660                 rdev_err(rdev, "failed to enabled/disable\n");
661                 return ret;
662         }
663
664         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
665                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
666                 if (ret < 0) {
667                         rdev_err(rdev, "failed to set voltage\n");
668                         return ret;
669                 }
670         }
671
672         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
673                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
674                 if (ret < 0) {
675                         rdev_err(rdev, "failed to set mode\n");
676                         return ret;
677                 }
678         }
679         return ret;
680 }
681
682 /* locks held by caller */
683 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
684 {
685         if (!rdev->constraints)
686                 return -EINVAL;
687
688         switch (state) {
689         case PM_SUSPEND_STANDBY:
690                 return suspend_set_state(rdev,
691                         &rdev->constraints->state_standby);
692         case PM_SUSPEND_MEM:
693                 return suspend_set_state(rdev,
694                         &rdev->constraints->state_mem);
695         case PM_SUSPEND_MAX:
696                 return suspend_set_state(rdev,
697                         &rdev->constraints->state_disk);
698         default:
699                 return -EINVAL;
700         }
701 }
702
703 static void print_constraints(struct regulator_dev *rdev)
704 {
705         struct regulation_constraints *constraints = rdev->constraints;
706         char buf[80] = "";
707         int count = 0;
708         int ret;
709
710         if (constraints->min_uV && constraints->max_uV) {
711                 if (constraints->min_uV == constraints->max_uV)
712                         count += sprintf(buf + count, "%d mV ",
713                                          constraints->min_uV / 1000);
714                 else
715                         count += sprintf(buf + count, "%d <--> %d mV ",
716                                          constraints->min_uV / 1000,
717                                          constraints->max_uV / 1000);
718         }
719
720         if (!constraints->min_uV ||
721             constraints->min_uV != constraints->max_uV) {
722                 ret = _regulator_get_voltage(rdev);
723                 if (ret > 0)
724                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
725         }
726
727         if (constraints->min_uA && constraints->max_uA) {
728                 if (constraints->min_uA == constraints->max_uA)
729                         count += sprintf(buf + count, "%d mA ",
730                                          constraints->min_uA / 1000);
731                 else
732                         count += sprintf(buf + count, "%d <--> %d mA ",
733                                          constraints->min_uA / 1000,
734                                          constraints->max_uA / 1000);
735         }
736
737         if (!constraints->min_uA ||
738             constraints->min_uA != constraints->max_uA) {
739                 ret = _regulator_get_current_limit(rdev);
740                 if (ret > 0)
741                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
742         }
743
744         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
745                 count += sprintf(buf + count, "fast ");
746         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
747                 count += sprintf(buf + count, "normal ");
748         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
749                 count += sprintf(buf + count, "idle ");
750         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
751                 count += sprintf(buf + count, "standby");
752
753         rdev_info(rdev, "%s\n", buf);
754 }
755
756 static int machine_constraints_voltage(struct regulator_dev *rdev,
757         struct regulation_constraints *constraints)
758 {
759         struct regulator_ops *ops = rdev->desc->ops;
760         int ret;
761
762         /* do we need to apply the constraint voltage */
763         if (rdev->constraints->apply_uV &&
764             rdev->constraints->min_uV == rdev->constraints->max_uV) {
765                 ret = _regulator_do_set_voltage(rdev,
766                                                 rdev->constraints->min_uV,
767                                                 rdev->constraints->max_uV);
768                 if (ret < 0) {
769                         rdev_err(rdev, "failed to apply %duV constraint\n",
770                                  rdev->constraints->min_uV);
771                         rdev->constraints = NULL;
772                         return ret;
773                 }
774         }
775
776         /* constrain machine-level voltage specs to fit
777          * the actual range supported by this regulator.
778          */
779         if (ops->list_voltage && rdev->desc->n_voltages) {
780                 int     count = rdev->desc->n_voltages;
781                 int     i;
782                 int     min_uV = INT_MAX;
783                 int     max_uV = INT_MIN;
784                 int     cmin = constraints->min_uV;
785                 int     cmax = constraints->max_uV;
786
787                 /* it's safe to autoconfigure fixed-voltage supplies
788                    and the constraints are used by list_voltage. */
789                 if (count == 1 && !cmin) {
790                         cmin = 1;
791                         cmax = INT_MAX;
792                         constraints->min_uV = cmin;
793                         constraints->max_uV = cmax;
794                 }
795
796                 /* voltage constraints are optional */
797                 if ((cmin == 0) && (cmax == 0))
798                         return 0;
799
800                 /* else require explicit machine-level constraints */
801                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
802                         rdev_err(rdev, "invalid voltage constraints\n");
803                         return -EINVAL;
804                 }
805
806                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
807                 for (i = 0; i < count; i++) {
808                         int     value;
809
810                         value = ops->list_voltage(rdev, i);
811                         if (value <= 0)
812                                 continue;
813
814                         /* maybe adjust [min_uV..max_uV] */
815                         if (value >= cmin && value < min_uV)
816                                 min_uV = value;
817                         if (value <= cmax && value > max_uV)
818                                 max_uV = value;
819                 }
820
821                 /* final: [min_uV..max_uV] valid iff constraints valid */
822                 if (max_uV < min_uV) {
823                         rdev_err(rdev, "unsupportable voltage constraints\n");
824                         return -EINVAL;
825                 }
826
827                 /* use regulator's subset of machine constraints */
828                 if (constraints->min_uV < min_uV) {
829                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
830                                  constraints->min_uV, min_uV);
831                         constraints->min_uV = min_uV;
832                 }
833                 if (constraints->max_uV > max_uV) {
834                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
835                                  constraints->max_uV, max_uV);
836                         constraints->max_uV = max_uV;
837                 }
838         }
839
840         return 0;
841 }
842
843 /**
844  * set_machine_constraints - sets regulator constraints
845  * @rdev: regulator source
846  * @constraints: constraints to apply
847  *
848  * Allows platform initialisation code to define and constrain
849  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
850  * Constraints *must* be set by platform code in order for some
851  * regulator operations to proceed i.e. set_voltage, set_current_limit,
852  * set_mode.
853  */
854 static int set_machine_constraints(struct regulator_dev *rdev,
855         const struct regulation_constraints *constraints)
856 {
857         int ret = 0;
858         struct regulator_ops *ops = rdev->desc->ops;
859
860         rdev->constraints = kmemdup(constraints, sizeof(*constraints),
861                                     GFP_KERNEL);
862         if (!rdev->constraints)
863                 return -ENOMEM;
864
865         ret = machine_constraints_voltage(rdev, rdev->constraints);
866         if (ret != 0)
867                 goto out;
868
869         /* do we need to setup our suspend state */
870         if (constraints->initial_state) {
871                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
872                 if (ret < 0) {
873                         rdev_err(rdev, "failed to set suspend state\n");
874                         rdev->constraints = NULL;
875                         goto out;
876                 }
877         }
878
879         if (constraints->initial_mode) {
880                 if (!ops->set_mode) {
881                         rdev_err(rdev, "no set_mode operation\n");
882                         ret = -EINVAL;
883                         goto out;
884                 }
885
886                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
887                 if (ret < 0) {
888                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
889                         goto out;
890                 }
891         }
892
893         /* If the constraints say the regulator should be on at this point
894          * and we have control then make sure it is enabled.
895          */
896         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
897             ops->enable) {
898                 ret = ops->enable(rdev);
899                 if (ret < 0) {
900                         rdev_err(rdev, "failed to enable\n");
901                         rdev->constraints = NULL;
902                         goto out;
903                 }
904         }
905
906         print_constraints(rdev);
907 out:
908         return ret;
909 }
910
911 /**
912  * set_supply - set regulator supply regulator
913  * @rdev: regulator name
914  * @supply_rdev: supply regulator name
915  *
916  * Called by platform initialisation code to set the supply regulator for this
917  * regulator. This ensures that a regulators supply will also be enabled by the
918  * core if it's child is enabled.
919  */
920 static int set_supply(struct regulator_dev *rdev,
921         struct regulator_dev *supply_rdev)
922 {
923         int err;
924
925         err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
926                                 "supply");
927         if (err) {
928                 rdev_err(rdev, "could not add device link %s err %d\n",
929                          supply_rdev->dev.kobj.name, err);
930                        goto out;
931         }
932         rdev->supply = supply_rdev;
933         list_add(&rdev->slist, &supply_rdev->supply_list);
934 out:
935         return err;
936 }
937
938 /**
939  * set_consumer_device_supply - Bind a regulator to a symbolic supply
940  * @rdev:         regulator source
941  * @consumer_dev: device the supply applies to
942  * @consumer_dev_name: dev_name() string for device supply applies to
943  * @supply:       symbolic name for supply
944  *
945  * Allows platform initialisation code to map physical regulator
946  * sources to symbolic names for supplies for use by devices.  Devices
947  * should use these symbolic names to request regulators, avoiding the
948  * need to provide board-specific regulator names as platform data.
949  *
950  * Only one of consumer_dev and consumer_dev_name may be specified.
951  */
952 static int set_consumer_device_supply(struct regulator_dev *rdev,
953         struct device *consumer_dev, const char *consumer_dev_name,
954         const char *supply)
955 {
956         struct regulator_map *node;
957         int has_dev;
958
959         if (consumer_dev && consumer_dev_name)
960                 return -EINVAL;
961
962         if (!consumer_dev_name && consumer_dev)
963                 consumer_dev_name = dev_name(consumer_dev);
964
965         if (supply == NULL)
966                 return -EINVAL;
967
968         if (consumer_dev_name != NULL)
969                 has_dev = 1;
970         else
971                 has_dev = 0;
972
973         list_for_each_entry(node, &regulator_map_list, list) {
974                 if (node->dev_name && consumer_dev_name) {
975                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
976                                 continue;
977                 } else if (node->dev_name || consumer_dev_name) {
978                         continue;
979                 }
980
981                 if (strcmp(node->supply, supply) != 0)
982                         continue;
983
984                 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
985                         dev_name(&node->regulator->dev),
986                         node->regulator->desc->name,
987                         supply,
988                         dev_name(&rdev->dev), rdev_get_name(rdev));
989                 return -EBUSY;
990         }
991
992         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
993         if (node == NULL)
994                 return -ENOMEM;
995
996         node->regulator = rdev;
997         node->supply = supply;
998
999         if (has_dev) {
1000                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1001                 if (node->dev_name == NULL) {
1002                         kfree(node);
1003                         return -ENOMEM;
1004                 }
1005         }
1006
1007         list_add(&node->list, &regulator_map_list);
1008         return 0;
1009 }
1010
1011 static void unset_regulator_supplies(struct regulator_dev *rdev)
1012 {
1013         struct regulator_map *node, *n;
1014
1015         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1016                 if (rdev == node->regulator) {
1017                         list_del(&node->list);
1018                         kfree(node->dev_name);
1019                         kfree(node);
1020                 }
1021         }
1022 }
1023
1024 #define REG_STR_SIZE    32
1025
1026 static struct regulator *create_regulator(struct regulator_dev *rdev,
1027                                           struct device *dev,
1028                                           const char *supply_name)
1029 {
1030         struct regulator *regulator;
1031         char buf[REG_STR_SIZE];
1032         int err, size;
1033
1034         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1035         if (regulator == NULL)
1036                 return NULL;
1037
1038         mutex_lock(&rdev->mutex);
1039         regulator->rdev = rdev;
1040         list_add(&regulator->list, &rdev->consumer_list);
1041
1042         if (dev) {
1043                 /* create a 'requested_microamps_name' sysfs entry */
1044                 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
1045                         supply_name);
1046                 if (size >= REG_STR_SIZE)
1047                         goto overflow_err;
1048
1049                 regulator->dev = dev;
1050                 sysfs_attr_init(&regulator->dev_attr.attr);
1051                 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1052                 if (regulator->dev_attr.attr.name == NULL)
1053                         goto attr_name_err;
1054
1055                 regulator->dev_attr.attr.mode = 0444;
1056                 regulator->dev_attr.show = device_requested_uA_show;
1057                 err = device_create_file(dev, &regulator->dev_attr);
1058                 if (err < 0) {
1059                         rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1060                         goto attr_name_err;
1061                 }
1062
1063                 /* also add a link to the device sysfs entry */
1064                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1065                                  dev->kobj.name, supply_name);
1066                 if (size >= REG_STR_SIZE)
1067                         goto attr_err;
1068
1069                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1070                 if (regulator->supply_name == NULL)
1071                         goto attr_err;
1072
1073                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1074                                         buf);
1075                 if (err) {
1076                         rdev_warn(rdev, "could not add device link %s err %d\n",
1077                                   dev->kobj.name, err);
1078                         goto link_name_err;
1079                 }
1080         }
1081         mutex_unlock(&rdev->mutex);
1082         return regulator;
1083 link_name_err:
1084         kfree(regulator->supply_name);
1085 attr_err:
1086         device_remove_file(regulator->dev, &regulator->dev_attr);
1087 attr_name_err:
1088         kfree(regulator->dev_attr.attr.name);
1089 overflow_err:
1090         list_del(&regulator->list);
1091         kfree(regulator);
1092         mutex_unlock(&rdev->mutex);
1093         return NULL;
1094 }
1095
1096 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1097 {
1098         if (!rdev->desc->ops->enable_time)
1099                 return 0;
1100         return rdev->desc->ops->enable_time(rdev);
1101 }
1102
1103 /* Internal regulator request function */
1104 static struct regulator *_regulator_get(struct device *dev, const char *id,
1105                                         int exclusive)
1106 {
1107         struct regulator_dev *rdev;
1108         struct regulator_map *map;
1109         struct regulator *regulator = ERR_PTR(-ENODEV);
1110         const char *devname = NULL;
1111         int ret;
1112
1113         if (id == NULL) {
1114                 pr_err("get() with no identifier\n");
1115                 return regulator;
1116         }
1117
1118         if (dev)
1119                 devname = dev_name(dev);
1120
1121         mutex_lock(&regulator_list_mutex);
1122
1123         list_for_each_entry(map, &regulator_map_list, list) {
1124                 /* If the mapping has a device set up it must match */
1125                 if (map->dev_name &&
1126                     (!devname || strcmp(map->dev_name, devname)))
1127                         continue;
1128
1129                 if (strcmp(map->supply, id) == 0) {
1130                         rdev = map->regulator;
1131                         goto found;
1132                 }
1133         }
1134
1135         if (board_wants_dummy_regulator) {
1136                 rdev = dummy_regulator_rdev;
1137                 goto found;
1138         }
1139
1140 #ifdef CONFIG_REGULATOR_DUMMY
1141         if (!devname)
1142                 devname = "deviceless";
1143
1144         /* If the board didn't flag that it was fully constrained then
1145          * substitute in a dummy regulator so consumers can continue.
1146          */
1147         if (!has_full_constraints) {
1148                 pr_warn("%s supply %s not found, using dummy regulator\n",
1149                         devname, id);
1150                 rdev = dummy_regulator_rdev;
1151                 goto found;
1152         }
1153 #endif
1154
1155         mutex_unlock(&regulator_list_mutex);
1156         return regulator;
1157
1158 found:
1159         if (rdev->exclusive) {
1160                 regulator = ERR_PTR(-EPERM);
1161                 goto out;
1162         }
1163
1164         if (exclusive && rdev->open_count) {
1165                 regulator = ERR_PTR(-EBUSY);
1166                 goto out;
1167         }
1168
1169         if (!try_module_get(rdev->owner))
1170                 goto out;
1171
1172         regulator = create_regulator(rdev, dev, id);
1173         if (regulator == NULL) {
1174                 regulator = ERR_PTR(-ENOMEM);
1175                 module_put(rdev->owner);
1176         }
1177
1178         rdev->open_count++;
1179         if (exclusive) {
1180                 rdev->exclusive = 1;
1181
1182                 ret = _regulator_is_enabled(rdev);
1183                 if (ret > 0)
1184                         rdev->use_count = 1;
1185                 else
1186                         rdev->use_count = 0;
1187         }
1188
1189 out:
1190         mutex_unlock(&regulator_list_mutex);
1191
1192         return regulator;
1193 }
1194
1195 /**
1196  * regulator_get - lookup and obtain a reference to a regulator.
1197  * @dev: device for regulator "consumer"
1198  * @id: Supply name or regulator ID.
1199  *
1200  * Returns a struct regulator corresponding to the regulator producer,
1201  * or IS_ERR() condition containing errno.
1202  *
1203  * Use of supply names configured via regulator_set_device_supply() is
1204  * strongly encouraged.  It is recommended that the supply name used
1205  * should match the name used for the supply and/or the relevant
1206  * device pins in the datasheet.
1207  */
1208 struct regulator *regulator_get(struct device *dev, const char *id)
1209 {
1210         return _regulator_get(dev, id, 0);
1211 }
1212 EXPORT_SYMBOL_GPL(regulator_get);
1213
1214 /**
1215  * regulator_get_exclusive - obtain exclusive access to a regulator.
1216  * @dev: device for regulator "consumer"
1217  * @id: Supply name or regulator ID.
1218  *
1219  * Returns a struct regulator corresponding to the regulator producer,
1220  * or IS_ERR() condition containing errno.  Other consumers will be
1221  * unable to obtain this reference is held and the use count for the
1222  * regulator will be initialised to reflect the current state of the
1223  * regulator.
1224  *
1225  * This is intended for use by consumers which cannot tolerate shared
1226  * use of the regulator such as those which need to force the
1227  * regulator off for correct operation of the hardware they are
1228  * controlling.
1229  *
1230  * Use of supply names configured via regulator_set_device_supply() is
1231  * strongly encouraged.  It is recommended that the supply name used
1232  * should match the name used for the supply and/or the relevant
1233  * device pins in the datasheet.
1234  */
1235 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1236 {
1237         return _regulator_get(dev, id, 1);
1238 }
1239 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1240
1241 /**
1242  * regulator_put - "free" the regulator source
1243  * @regulator: regulator source
1244  *
1245  * Note: drivers must ensure that all regulator_enable calls made on this
1246  * regulator source are balanced by regulator_disable calls prior to calling
1247  * this function.
1248  */
1249 void regulator_put(struct regulator *regulator)
1250 {
1251         struct regulator_dev *rdev;
1252
1253         if (regulator == NULL || IS_ERR(regulator))
1254                 return;
1255
1256         mutex_lock(&regulator_list_mutex);
1257         rdev = regulator->rdev;
1258
1259         /* remove any sysfs entries */
1260         if (regulator->dev) {
1261                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1262                 kfree(regulator->supply_name);
1263                 device_remove_file(regulator->dev, &regulator->dev_attr);
1264                 kfree(regulator->dev_attr.attr.name);
1265         }
1266         list_del(&regulator->list);
1267         kfree(regulator);
1268
1269         rdev->open_count--;
1270         rdev->exclusive = 0;
1271
1272         module_put(rdev->owner);
1273         mutex_unlock(&regulator_list_mutex);
1274 }
1275 EXPORT_SYMBOL_GPL(regulator_put);
1276
1277 static int _regulator_can_change_status(struct regulator_dev *rdev)
1278 {
1279         if (!rdev->constraints)
1280                 return 0;
1281
1282         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1283                 return 1;
1284         else
1285                 return 0;
1286 }
1287
1288 /* locks held by regulator_enable() */
1289 static int _regulator_enable(struct regulator_dev *rdev)
1290 {
1291         int ret, delay;
1292
1293         if (rdev->use_count == 0) {
1294                 /* do we need to enable the supply regulator first */
1295                 if (rdev->supply) {
1296                         mutex_lock(&rdev->supply->mutex);
1297                         ret = _regulator_enable(rdev->supply);
1298                         mutex_unlock(&rdev->supply->mutex);
1299                         if (ret < 0) {
1300                                 rdev_err(rdev, "failed to enable: %d\n", ret);
1301                                 return ret;
1302                         }
1303                 }
1304         }
1305
1306         /* check voltage and requested load before enabling */
1307         if (rdev->constraints &&
1308             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1309                 drms_uA_update(rdev);
1310
1311         if (rdev->use_count == 0) {
1312                 /* The regulator may on if it's not switchable or left on */
1313                 ret = _regulator_is_enabled(rdev);
1314                 if (ret == -EINVAL || ret == 0) {
1315                         if (!_regulator_can_change_status(rdev))
1316                                 return -EPERM;
1317
1318                         if (!rdev->desc->ops->enable)
1319                                 return -EINVAL;
1320
1321                         /* Query before enabling in case configuration
1322                          * dependent.  */
1323                         ret = _regulator_get_enable_time(rdev);
1324                         if (ret >= 0) {
1325                                 delay = ret;
1326                         } else {
1327                                 rdev_warn(rdev, "enable_time() failed: %d\n",
1328                                            ret);
1329                                 delay = 0;
1330                         }
1331
1332                         trace_regulator_enable(rdev_get_name(rdev));
1333
1334                         /* Allow the regulator to ramp; it would be useful
1335                          * to extend this for bulk operations so that the
1336                          * regulators can ramp together.  */
1337                         ret = rdev->desc->ops->enable(rdev);
1338                         if (ret < 0)
1339                                 return ret;
1340
1341                         trace_regulator_enable_delay(rdev_get_name(rdev));
1342
1343                         if (delay >= 1000) {
1344                                 mdelay(delay / 1000);
1345                                 udelay(delay % 1000);
1346                         } else if (delay) {
1347                                 udelay(delay);
1348                         }
1349
1350                         trace_regulator_enable_complete(rdev_get_name(rdev));
1351
1352                 } else if (ret < 0) {
1353                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1354                         return ret;
1355                 }
1356                 /* Fallthrough on positive return values - already enabled */
1357         }
1358
1359         rdev->use_count++;
1360
1361         return 0;
1362 }
1363
1364 /**
1365  * regulator_enable - enable regulator output
1366  * @regulator: regulator source
1367  *
1368  * Request that the regulator be enabled with the regulator output at
1369  * the predefined voltage or current value.  Calls to regulator_enable()
1370  * must be balanced with calls to regulator_disable().
1371  *
1372  * NOTE: the output value can be set by other drivers, boot loader or may be
1373  * hardwired in the regulator.
1374  */
1375 int regulator_enable(struct regulator *regulator)
1376 {
1377         struct regulator_dev *rdev = regulator->rdev;
1378         int ret = 0;
1379
1380         mutex_lock(&rdev->mutex);
1381         ret = _regulator_enable(rdev);
1382         mutex_unlock(&rdev->mutex);
1383         return ret;
1384 }
1385 EXPORT_SYMBOL_GPL(regulator_enable);
1386
1387 /* locks held by regulator_disable() */
1388 static int _regulator_disable(struct regulator_dev *rdev,
1389                 struct regulator_dev **supply_rdev_ptr)
1390 {
1391         int ret = 0;
1392         *supply_rdev_ptr = NULL;
1393
1394         if (WARN(rdev->use_count <= 0,
1395                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1396                 return -EIO;
1397
1398         /* are we the last user and permitted to disable ? */
1399         if (rdev->use_count == 1 &&
1400             (rdev->constraints && !rdev->constraints->always_on)) {
1401
1402                 /* we are last user */
1403                 if (_regulator_can_change_status(rdev) &&
1404                     rdev->desc->ops->disable) {
1405                         trace_regulator_disable(rdev_get_name(rdev));
1406
1407                         ret = rdev->desc->ops->disable(rdev);
1408                         if (ret < 0) {
1409                                 rdev_err(rdev, "failed to disable\n");
1410                                 return ret;
1411                         }
1412
1413                         trace_regulator_disable_complete(rdev_get_name(rdev));
1414
1415                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1416                                              NULL);
1417                 }
1418
1419                 /* decrease our supplies ref count and disable if required */
1420                 *supply_rdev_ptr = rdev->supply;
1421
1422                 rdev->use_count = 0;
1423         } else if (rdev->use_count > 1) {
1424
1425                 if (rdev->constraints &&
1426                         (rdev->constraints->valid_ops_mask &
1427                         REGULATOR_CHANGE_DRMS))
1428                         drms_uA_update(rdev);
1429
1430                 rdev->use_count--;
1431         }
1432         return ret;
1433 }
1434
1435 /**
1436  * regulator_disable - disable regulator output
1437  * @regulator: regulator source
1438  *
1439  * Disable the regulator output voltage or current.  Calls to
1440  * regulator_enable() must be balanced with calls to
1441  * regulator_disable().
1442  *
1443  * NOTE: this will only disable the regulator output if no other consumer
1444  * devices have it enabled, the regulator device supports disabling and
1445  * machine constraints permit this operation.
1446  */
1447 int regulator_disable(struct regulator *regulator)
1448 {
1449         struct regulator_dev *rdev = regulator->rdev;
1450         struct regulator_dev *supply_rdev = NULL;
1451         int ret = 0;
1452
1453         mutex_lock(&rdev->mutex);
1454         ret = _regulator_disable(rdev, &supply_rdev);
1455         mutex_unlock(&rdev->mutex);
1456
1457         /* decrease our supplies ref count and disable if required */
1458         while (supply_rdev != NULL) {
1459                 rdev = supply_rdev;
1460
1461                 mutex_lock(&rdev->mutex);
1462                 _regulator_disable(rdev, &supply_rdev);
1463                 mutex_unlock(&rdev->mutex);
1464         }
1465
1466         return ret;
1467 }
1468 EXPORT_SYMBOL_GPL(regulator_disable);
1469
1470 /* locks held by regulator_force_disable() */
1471 static int _regulator_force_disable(struct regulator_dev *rdev,
1472                 struct regulator_dev **supply_rdev_ptr)
1473 {
1474         int ret = 0;
1475
1476         /* force disable */
1477         if (rdev->desc->ops->disable) {
1478                 /* ah well, who wants to live forever... */
1479                 ret = rdev->desc->ops->disable(rdev);
1480                 if (ret < 0) {
1481                         rdev_err(rdev, "failed to force disable\n");
1482                         return ret;
1483                 }
1484                 /* notify other consumers that power has been forced off */
1485                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1486                         REGULATOR_EVENT_DISABLE, NULL);
1487         }
1488
1489         /* decrease our supplies ref count and disable if required */
1490         *supply_rdev_ptr = rdev->supply;
1491
1492         rdev->use_count = 0;
1493         return ret;
1494 }
1495
1496 /**
1497  * regulator_force_disable - force disable regulator output
1498  * @regulator: regulator source
1499  *
1500  * Forcibly disable the regulator output voltage or current.
1501  * NOTE: this *will* disable the regulator output even if other consumer
1502  * devices have it enabled. This should be used for situations when device
1503  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1504  */
1505 int regulator_force_disable(struct regulator *regulator)
1506 {
1507         struct regulator_dev *supply_rdev = NULL;
1508         int ret;
1509
1510         mutex_lock(&regulator->rdev->mutex);
1511         regulator->uA_load = 0;
1512         ret = _regulator_force_disable(regulator->rdev, &supply_rdev);
1513         mutex_unlock(&regulator->rdev->mutex);
1514
1515         if (supply_rdev)
1516                 regulator_disable(get_device_regulator(rdev_get_dev(supply_rdev)));
1517
1518         return ret;
1519 }
1520 EXPORT_SYMBOL_GPL(regulator_force_disable);
1521
1522 static int _regulator_is_enabled(struct regulator_dev *rdev)
1523 {
1524         /* If we don't know then assume that the regulator is always on */
1525         if (!rdev->desc->ops->is_enabled)
1526                 return 1;
1527
1528         return rdev->desc->ops->is_enabled(rdev);
1529 }
1530
1531 /**
1532  * regulator_is_enabled - is the regulator output enabled
1533  * @regulator: regulator source
1534  *
1535  * Returns positive if the regulator driver backing the source/client
1536  * has requested that the device be enabled, zero if it hasn't, else a
1537  * negative errno code.
1538  *
1539  * Note that the device backing this regulator handle can have multiple
1540  * users, so it might be enabled even if regulator_enable() was never
1541  * called for this particular source.
1542  */
1543 int regulator_is_enabled(struct regulator *regulator)
1544 {
1545         int ret;
1546
1547         mutex_lock(&regulator->rdev->mutex);
1548         ret = _regulator_is_enabled(regulator->rdev);
1549         mutex_unlock(&regulator->rdev->mutex);
1550
1551         return ret;
1552 }
1553 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1554
1555 /**
1556  * regulator_count_voltages - count regulator_list_voltage() selectors
1557  * @regulator: regulator source
1558  *
1559  * Returns number of selectors, or negative errno.  Selectors are
1560  * numbered starting at zero, and typically correspond to bitfields
1561  * in hardware registers.
1562  */
1563 int regulator_count_voltages(struct regulator *regulator)
1564 {
1565         struct regulator_dev    *rdev = regulator->rdev;
1566
1567         return rdev->desc->n_voltages ? : -EINVAL;
1568 }
1569 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1570
1571 /**
1572  * regulator_list_voltage - enumerate supported voltages
1573  * @regulator: regulator source
1574  * @selector: identify voltage to list
1575  * Context: can sleep
1576  *
1577  * Returns a voltage that can be passed to @regulator_set_voltage(),
1578  * zero if this selector code can't be used on this system, or a
1579  * negative errno.
1580  */
1581 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1582 {
1583         struct regulator_dev    *rdev = regulator->rdev;
1584         struct regulator_ops    *ops = rdev->desc->ops;
1585         int                     ret;
1586
1587         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1588                 return -EINVAL;
1589
1590         mutex_lock(&rdev->mutex);
1591         ret = ops->list_voltage(rdev, selector);
1592         mutex_unlock(&rdev->mutex);
1593
1594         if (ret > 0) {
1595                 if (ret < rdev->constraints->min_uV)
1596                         ret = 0;
1597                 else if (ret > rdev->constraints->max_uV)
1598                         ret = 0;
1599         }
1600
1601         return ret;
1602 }
1603 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1604
1605 /**
1606  * regulator_is_supported_voltage - check if a voltage range can be supported
1607  *
1608  * @regulator: Regulator to check.
1609  * @min_uV: Minimum required voltage in uV.
1610  * @max_uV: Maximum required voltage in uV.
1611  *
1612  * Returns a boolean or a negative error code.
1613  */
1614 int regulator_is_supported_voltage(struct regulator *regulator,
1615                                    int min_uV, int max_uV)
1616 {
1617         int i, voltages, ret;
1618
1619         ret = regulator_count_voltages(regulator);
1620         if (ret < 0)
1621                 return ret;
1622         voltages = ret;
1623
1624         for (i = 0; i < voltages; i++) {
1625                 ret = regulator_list_voltage(regulator, i);
1626
1627                 if (ret >= min_uV && ret <= max_uV)
1628                         return 1;
1629         }
1630
1631         return 0;
1632 }
1633
1634 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1635                                      int min_uV, int max_uV)
1636 {
1637         int ret;
1638         int delay = 0;
1639         unsigned int selector;
1640
1641         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1642
1643         if (rdev->desc->ops->set_voltage) {
1644                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1645                                                    &selector);
1646
1647                 if (rdev->desc->ops->list_voltage)
1648                         selector = rdev->desc->ops->list_voltage(rdev,
1649                                                                  selector);
1650                 else
1651                         selector = -1;
1652         } else if (rdev->desc->ops->set_voltage_sel) {
1653                 int best_val = INT_MAX;
1654                 int i;
1655
1656                 selector = 0;
1657
1658                 /* Find the smallest voltage that falls within the specified
1659                  * range.
1660                  */
1661                 for (i = 0; i < rdev->desc->n_voltages; i++) {
1662                         ret = rdev->desc->ops->list_voltage(rdev, i);
1663                         if (ret < 0)
1664                                 continue;
1665
1666                         if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1667                                 best_val = ret;
1668                                 selector = i;
1669                         }
1670                 }
1671
1672                 /*
1673                  * If we can't obtain the old selector there is not enough
1674                  * info to call set_voltage_time_sel().
1675                  */
1676                 if (rdev->desc->ops->set_voltage_time_sel &&
1677                     rdev->desc->ops->get_voltage_sel) {
1678                         unsigned int old_selector = 0;
1679
1680                         ret = rdev->desc->ops->get_voltage_sel(rdev);
1681                         if (ret < 0)
1682                                 return ret;
1683                         old_selector = ret;
1684                         delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1685                                                 old_selector, selector);
1686                 }
1687
1688                 if (best_val != INT_MAX) {
1689                         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1690                         selector = best_val;
1691                 } else {
1692                         ret = -EINVAL;
1693                 }
1694         } else {
1695                 ret = -EINVAL;
1696         }
1697
1698         /* Insert any necessary delays */
1699         if (delay >= 1000) {
1700                 mdelay(delay / 1000);
1701                 udelay(delay % 1000);
1702         } else if (delay) {
1703                 udelay(delay);
1704         }
1705
1706         if (ret == 0)
1707                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1708                                      NULL);
1709
1710         trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1711
1712         return ret;
1713 }
1714
1715 /**
1716  * regulator_set_voltage - set regulator output voltage
1717  * @regulator: regulator source
1718  * @min_uV: Minimum required voltage in uV
1719  * @max_uV: Maximum acceptable voltage in uV
1720  *
1721  * Sets a voltage regulator to the desired output voltage. This can be set
1722  * during any regulator state. IOW, regulator can be disabled or enabled.
1723  *
1724  * If the regulator is enabled then the voltage will change to the new value
1725  * immediately otherwise if the regulator is disabled the regulator will
1726  * output at the new voltage when enabled.
1727  *
1728  * NOTE: If the regulator is shared between several devices then the lowest
1729  * request voltage that meets the system constraints will be used.
1730  * Regulator system constraints must be set for this regulator before
1731  * calling this function otherwise this call will fail.
1732  */
1733 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1734 {
1735         struct regulator_dev *rdev = regulator->rdev;
1736         int ret = 0;
1737
1738         mutex_lock(&rdev->mutex);
1739
1740         /* If we're setting the same range as last time the change
1741          * should be a noop (some cpufreq implementations use the same
1742          * voltage for multiple frequencies, for example).
1743          */
1744         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1745                 goto out;
1746
1747         /* sanity check */
1748         if (!rdev->desc->ops->set_voltage &&
1749             !rdev->desc->ops->set_voltage_sel) {
1750                 ret = -EINVAL;
1751                 goto out;
1752         }
1753
1754         /* constraints check */
1755         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1756         if (ret < 0)
1757                 goto out;
1758         regulator->min_uV = min_uV;
1759         regulator->max_uV = max_uV;
1760
1761         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1762         if (ret < 0)
1763                 goto out;
1764
1765         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1766
1767 out:
1768         mutex_unlock(&rdev->mutex);
1769         return ret;
1770 }
1771 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1772
1773 /**
1774  * regulator_set_voltage_time - get raise/fall time
1775  * @regulator: regulator source
1776  * @old_uV: starting voltage in microvolts
1777  * @new_uV: target voltage in microvolts
1778  *
1779  * Provided with the starting and ending voltage, this function attempts to
1780  * calculate the time in microseconds required to rise or fall to this new
1781  * voltage.
1782  */
1783 int regulator_set_voltage_time(struct regulator *regulator,
1784                                int old_uV, int new_uV)
1785 {
1786         struct regulator_dev    *rdev = regulator->rdev;
1787         struct regulator_ops    *ops = rdev->desc->ops;
1788         int old_sel = -1;
1789         int new_sel = -1;
1790         int voltage;
1791         int i;
1792
1793         /* Currently requires operations to do this */
1794         if (!ops->list_voltage || !ops->set_voltage_time_sel
1795             || !rdev->desc->n_voltages)
1796                 return -EINVAL;
1797
1798         for (i = 0; i < rdev->desc->n_voltages; i++) {
1799                 /* We only look for exact voltage matches here */
1800                 voltage = regulator_list_voltage(regulator, i);
1801                 if (voltage < 0)
1802                         return -EINVAL;
1803                 if (voltage == 0)
1804                         continue;
1805                 if (voltage == old_uV)
1806                         old_sel = i;
1807                 if (voltage == new_uV)
1808                         new_sel = i;
1809         }
1810
1811         if (old_sel < 0 || new_sel < 0)
1812                 return -EINVAL;
1813
1814         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1815 }
1816 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1817
1818 /**
1819  * regulator_sync_voltage - re-apply last regulator output voltage
1820  * @regulator: regulator source
1821  *
1822  * Re-apply the last configured voltage.  This is intended to be used
1823  * where some external control source the consumer is cooperating with
1824  * has caused the configured voltage to change.
1825  */
1826 int regulator_sync_voltage(struct regulator *regulator)
1827 {
1828         struct regulator_dev *rdev = regulator->rdev;
1829         int ret, min_uV, max_uV;
1830
1831         mutex_lock(&rdev->mutex);
1832
1833         if (!rdev->desc->ops->set_voltage &&
1834             !rdev->desc->ops->set_voltage_sel) {
1835                 ret = -EINVAL;
1836                 goto out;
1837         }
1838
1839         /* This is only going to work if we've had a voltage configured. */
1840         if (!regulator->min_uV && !regulator->max_uV) {
1841                 ret = -EINVAL;
1842                 goto out;
1843         }
1844
1845         min_uV = regulator->min_uV;
1846         max_uV = regulator->max_uV;
1847
1848         /* This should be a paranoia check... */
1849         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1850         if (ret < 0)
1851                 goto out;
1852
1853         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1854         if (ret < 0)
1855                 goto out;
1856
1857         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1858
1859 out:
1860         mutex_unlock(&rdev->mutex);
1861         return ret;
1862 }
1863 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
1864
1865 static int _regulator_get_voltage(struct regulator_dev *rdev)
1866 {
1867         int sel;
1868
1869         if (rdev->desc->ops->get_voltage_sel) {
1870                 sel = rdev->desc->ops->get_voltage_sel(rdev);
1871                 if (sel < 0)
1872                         return sel;
1873                 return rdev->desc->ops->list_voltage(rdev, sel);
1874         }
1875         if (rdev->desc->ops->get_voltage)
1876                 return rdev->desc->ops->get_voltage(rdev);
1877         else
1878                 return -EINVAL;
1879 }
1880
1881 /**
1882  * regulator_get_voltage - get regulator output voltage
1883  * @regulator: regulator source
1884  *
1885  * This returns the current regulator voltage in uV.
1886  *
1887  * NOTE: If the regulator is disabled it will return the voltage value. This
1888  * function should not be used to determine regulator state.
1889  */
1890 int regulator_get_voltage(struct regulator *regulator)
1891 {
1892         int ret;
1893
1894         mutex_lock(&regulator->rdev->mutex);
1895
1896         ret = _regulator_get_voltage(regulator->rdev);
1897
1898         mutex_unlock(&regulator->rdev->mutex);
1899
1900         return ret;
1901 }
1902 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1903
1904 /**
1905  * regulator_set_current_limit - set regulator output current limit
1906  * @regulator: regulator source
1907  * @min_uA: Minimuum supported current in uA
1908  * @max_uA: Maximum supported current in uA
1909  *
1910  * Sets current sink to the desired output current. This can be set during
1911  * any regulator state. IOW, regulator can be disabled or enabled.
1912  *
1913  * If the regulator is enabled then the current will change to the new value
1914  * immediately otherwise if the regulator is disabled the regulator will
1915  * output at the new current when enabled.
1916  *
1917  * NOTE: Regulator system constraints must be set for this regulator before
1918  * calling this function otherwise this call will fail.
1919  */
1920 int regulator_set_current_limit(struct regulator *regulator,
1921                                int min_uA, int max_uA)
1922 {
1923         struct regulator_dev *rdev = regulator->rdev;
1924         int ret;
1925
1926         mutex_lock(&rdev->mutex);
1927
1928         /* sanity check */
1929         if (!rdev->desc->ops->set_current_limit) {
1930                 ret = -EINVAL;
1931                 goto out;
1932         }
1933
1934         /* constraints check */
1935         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1936         if (ret < 0)
1937                 goto out;
1938
1939         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1940 out:
1941         mutex_unlock(&rdev->mutex);
1942         return ret;
1943 }
1944 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1945
1946 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1947 {
1948         int ret;
1949
1950         mutex_lock(&rdev->mutex);
1951
1952         /* sanity check */
1953         if (!rdev->desc->ops->get_current_limit) {
1954                 ret = -EINVAL;
1955                 goto out;
1956         }
1957
1958         ret = rdev->desc->ops->get_current_limit(rdev);
1959 out:
1960         mutex_unlock(&rdev->mutex);
1961         return ret;
1962 }
1963
1964 /**
1965  * regulator_get_current_limit - get regulator output current
1966  * @regulator: regulator source
1967  *
1968  * This returns the current supplied by the specified current sink in uA.
1969  *
1970  * NOTE: If the regulator is disabled it will return the current value. This
1971  * function should not be used to determine regulator state.
1972  */
1973 int regulator_get_current_limit(struct regulator *regulator)
1974 {
1975         return _regulator_get_current_limit(regulator->rdev);
1976 }
1977 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1978
1979 /**
1980  * regulator_set_mode - set regulator operating mode
1981  * @regulator: regulator source
1982  * @mode: operating mode - one of the REGULATOR_MODE constants
1983  *
1984  * Set regulator operating mode to increase regulator efficiency or improve
1985  * regulation performance.
1986  *
1987  * NOTE: Regulator system constraints must be set for this regulator before
1988  * calling this function otherwise this call will fail.
1989  */
1990 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1991 {
1992         struct regulator_dev *rdev = regulator->rdev;
1993         int ret;
1994         int regulator_curr_mode;
1995
1996         mutex_lock(&rdev->mutex);
1997
1998         /* sanity check */
1999         if (!rdev->desc->ops->set_mode) {
2000                 ret = -EINVAL;
2001                 goto out;
2002         }
2003
2004         /* return if the same mode is requested */
2005         if (rdev->desc->ops->get_mode) {
2006                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2007                 if (regulator_curr_mode == mode) {
2008                         ret = 0;
2009                         goto out;
2010                 }
2011         }
2012
2013         /* constraints check */
2014         ret = regulator_mode_constrain(rdev, mode);
2015         if (ret < 0)
2016                 goto out;
2017
2018         ret = rdev->desc->ops->set_mode(rdev, mode);
2019 out:
2020         mutex_unlock(&rdev->mutex);
2021         return ret;
2022 }
2023 EXPORT_SYMBOL_GPL(regulator_set_mode);
2024
2025 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2026 {
2027         int ret;
2028
2029         mutex_lock(&rdev->mutex);
2030
2031         /* sanity check */
2032         if (!rdev->desc->ops->get_mode) {
2033                 ret = -EINVAL;
2034                 goto out;
2035         }
2036
2037         ret = rdev->desc->ops->get_mode(rdev);
2038 out:
2039         mutex_unlock(&rdev->mutex);
2040         return ret;
2041 }
2042
2043 /**
2044  * regulator_get_mode - get regulator operating mode
2045  * @regulator: regulator source
2046  *
2047  * Get the current regulator operating mode.
2048  */
2049 unsigned int regulator_get_mode(struct regulator *regulator)
2050 {
2051         return _regulator_get_mode(regulator->rdev);
2052 }
2053 EXPORT_SYMBOL_GPL(regulator_get_mode);
2054
2055 /**
2056  * regulator_set_optimum_mode - set regulator optimum operating mode
2057  * @regulator: regulator source
2058  * @uA_load: load current
2059  *
2060  * Notifies the regulator core of a new device load. This is then used by
2061  * DRMS (if enabled by constraints) to set the most efficient regulator
2062  * operating mode for the new regulator loading.
2063  *
2064  * Consumer devices notify their supply regulator of the maximum power
2065  * they will require (can be taken from device datasheet in the power
2066  * consumption tables) when they change operational status and hence power
2067  * state. Examples of operational state changes that can affect power
2068  * consumption are :-
2069  *
2070  *    o Device is opened / closed.
2071  *    o Device I/O is about to begin or has just finished.
2072  *    o Device is idling in between work.
2073  *
2074  * This information is also exported via sysfs to userspace.
2075  *
2076  * DRMS will sum the total requested load on the regulator and change
2077  * to the most efficient operating mode if platform constraints allow.
2078  *
2079  * Returns the new regulator mode or error.
2080  */
2081 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2082 {
2083         struct regulator_dev *rdev = regulator->rdev;
2084         struct regulator *consumer;
2085         int ret, output_uV, input_uV, total_uA_load = 0;
2086         unsigned int mode;
2087
2088         mutex_lock(&rdev->mutex);
2089
2090         regulator->uA_load = uA_load;
2091         ret = regulator_check_drms(rdev);
2092         if (ret < 0)
2093                 goto out;
2094         ret = -EINVAL;
2095
2096         /* sanity check */
2097         if (!rdev->desc->ops->get_optimum_mode)
2098                 goto out;
2099
2100         /* get output voltage */
2101         output_uV = _regulator_get_voltage(rdev);
2102         if (output_uV <= 0) {
2103                 rdev_err(rdev, "invalid output voltage found\n");
2104                 goto out;
2105         }
2106
2107         /* get input voltage */
2108         input_uV = 0;
2109         if (rdev->supply)
2110                 input_uV = _regulator_get_voltage(rdev->supply);
2111         if (input_uV <= 0)
2112                 input_uV = rdev->constraints->input_uV;
2113         if (input_uV <= 0) {
2114                 rdev_err(rdev, "invalid input voltage found\n");
2115                 goto out;
2116         }
2117
2118         /* calc total requested load for this regulator */
2119         list_for_each_entry(consumer, &rdev->consumer_list, list)
2120                 total_uA_load += consumer->uA_load;
2121
2122         mode = rdev->desc->ops->get_optimum_mode(rdev,
2123                                                  input_uV, output_uV,
2124                                                  total_uA_load);
2125         ret = regulator_mode_constrain(rdev, &mode);
2126         if (ret < 0) {
2127                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2128                          total_uA_load, input_uV, output_uV);
2129                 goto out;
2130         }
2131
2132         ret = rdev->desc->ops->set_mode(rdev, mode);
2133         if (ret < 0) {
2134                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2135                 goto out;
2136         }
2137         ret = mode;
2138 out:
2139         mutex_unlock(&rdev->mutex);
2140         return ret;
2141 }
2142 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2143
2144 /**
2145  * regulator_register_notifier - register regulator event notifier
2146  * @regulator: regulator source
2147  * @nb: notifier block
2148  *
2149  * Register notifier block to receive regulator events.
2150  */
2151 int regulator_register_notifier(struct regulator *regulator,
2152                               struct notifier_block *nb)
2153 {
2154         return blocking_notifier_chain_register(&regulator->rdev->notifier,
2155                                                 nb);
2156 }
2157 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2158
2159 /**
2160  * regulator_unregister_notifier - unregister regulator event notifier
2161  * @regulator: regulator source
2162  * @nb: notifier block
2163  *
2164  * Unregister regulator event notifier block.
2165  */
2166 int regulator_unregister_notifier(struct regulator *regulator,
2167                                 struct notifier_block *nb)
2168 {
2169         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2170                                                   nb);
2171 }
2172 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2173
2174 /* notify regulator consumers and downstream regulator consumers.
2175  * Note mutex must be held by caller.
2176  */
2177 static void _notifier_call_chain(struct regulator_dev *rdev,
2178                                   unsigned long event, void *data)
2179 {
2180         struct regulator_dev *_rdev;
2181
2182         /* call rdev chain first */
2183         blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2184
2185         /* now notify regulator we supply */
2186         list_for_each_entry(_rdev, &rdev->supply_list, slist) {
2187                 mutex_lock(&_rdev->mutex);
2188                 _notifier_call_chain(_rdev, event, data);
2189                 mutex_unlock(&_rdev->mutex);
2190         }
2191 }
2192
2193 /**
2194  * regulator_bulk_get - get multiple regulator consumers
2195  *
2196  * @dev:           Device to supply
2197  * @num_consumers: Number of consumers to register
2198  * @consumers:     Configuration of consumers; clients are stored here.
2199  *
2200  * @return 0 on success, an errno on failure.
2201  *
2202  * This helper function allows drivers to get several regulator
2203  * consumers in one operation.  If any of the regulators cannot be
2204  * acquired then any regulators that were allocated will be freed
2205  * before returning to the caller.
2206  */
2207 int regulator_bulk_get(struct device *dev, int num_consumers,
2208                        struct regulator_bulk_data *consumers)
2209 {
2210         int i;
2211         int ret;
2212
2213         for (i = 0; i < num_consumers; i++)
2214                 consumers[i].consumer = NULL;
2215
2216         for (i = 0; i < num_consumers; i++) {
2217                 consumers[i].consumer = regulator_get(dev,
2218                                                       consumers[i].supply);
2219                 if (IS_ERR(consumers[i].consumer)) {
2220                         ret = PTR_ERR(consumers[i].consumer);
2221                         dev_err(dev, "Failed to get supply '%s': %d\n",
2222                                 consumers[i].supply, ret);
2223                         consumers[i].consumer = NULL;
2224                         goto err;
2225                 }
2226         }
2227
2228         return 0;
2229
2230 err:
2231         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2232                 regulator_put(consumers[i].consumer);
2233
2234         return ret;
2235 }
2236 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2237
2238 /**
2239  * regulator_bulk_enable - enable multiple regulator consumers
2240  *
2241  * @num_consumers: Number of consumers
2242  * @consumers:     Consumer data; clients are stored here.
2243  * @return         0 on success, an errno on failure
2244  *
2245  * This convenience API allows consumers to enable multiple regulator
2246  * clients in a single API call.  If any consumers cannot be enabled
2247  * then any others that were enabled will be disabled again prior to
2248  * return.
2249  */
2250 int regulator_bulk_enable(int num_consumers,
2251                           struct regulator_bulk_data *consumers)
2252 {
2253         int i;
2254         int ret;
2255
2256         for (i = 0; i < num_consumers; i++) {
2257                 ret = regulator_enable(consumers[i].consumer);
2258                 if (ret != 0)
2259                         goto err;
2260         }
2261
2262         return 0;
2263
2264 err:
2265         pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2266         for (--i; i >= 0; --i)
2267                 regulator_disable(consumers[i].consumer);
2268
2269         return ret;
2270 }
2271 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2272
2273 /**
2274  * regulator_bulk_disable - disable multiple regulator consumers
2275  *
2276  * @num_consumers: Number of consumers
2277  * @consumers:     Consumer data; clients are stored here.
2278  * @return         0 on success, an errno on failure
2279  *
2280  * This convenience API allows consumers to disable multiple regulator
2281  * clients in a single API call.  If any consumers cannot be enabled
2282  * then any others that were disabled will be disabled again prior to
2283  * return.
2284  */
2285 int regulator_bulk_disable(int num_consumers,
2286                            struct regulator_bulk_data *consumers)
2287 {
2288         int i;
2289         int ret;
2290
2291         for (i = 0; i < num_consumers; i++) {
2292                 ret = regulator_disable(consumers[i].consumer);
2293                 if (ret != 0)
2294                         goto err;
2295         }
2296
2297         return 0;
2298
2299 err:
2300         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2301         for (--i; i >= 0; --i)
2302                 regulator_enable(consumers[i].consumer);
2303
2304         return ret;
2305 }
2306 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2307
2308 /**
2309  * regulator_bulk_free - free multiple regulator consumers
2310  *
2311  * @num_consumers: Number of consumers
2312  * @consumers:     Consumer data; clients are stored here.
2313  *
2314  * This convenience API allows consumers to free multiple regulator
2315  * clients in a single API call.
2316  */
2317 void regulator_bulk_free(int num_consumers,
2318                          struct regulator_bulk_data *consumers)
2319 {
2320         int i;
2321
2322         for (i = 0; i < num_consumers; i++) {
2323                 regulator_put(consumers[i].consumer);
2324                 consumers[i].consumer = NULL;
2325         }
2326 }
2327 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2328
2329 /**
2330  * regulator_notifier_call_chain - call regulator event notifier
2331  * @rdev: regulator source
2332  * @event: notifier block
2333  * @data: callback-specific data.
2334  *
2335  * Called by regulator drivers to notify clients a regulator event has
2336  * occurred. We also notify regulator clients downstream.
2337  * Note lock must be held by caller.
2338  */
2339 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2340                                   unsigned long event, void *data)
2341 {
2342         _notifier_call_chain(rdev, event, data);
2343         return NOTIFY_DONE;
2344
2345 }
2346 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2347
2348 /**
2349  * regulator_mode_to_status - convert a regulator mode into a status
2350  *
2351  * @mode: Mode to convert
2352  *
2353  * Convert a regulator mode into a status.
2354  */
2355 int regulator_mode_to_status(unsigned int mode)
2356 {
2357         switch (mode) {
2358         case REGULATOR_MODE_FAST:
2359                 return REGULATOR_STATUS_FAST;
2360         case REGULATOR_MODE_NORMAL:
2361                 return REGULATOR_STATUS_NORMAL;
2362         case REGULATOR_MODE_IDLE:
2363                 return REGULATOR_STATUS_IDLE;
2364         case REGULATOR_STATUS_STANDBY:
2365                 return REGULATOR_STATUS_STANDBY;
2366         default:
2367                 return 0;
2368         }
2369 }
2370 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2371
2372 /*
2373  * To avoid cluttering sysfs (and memory) with useless state, only
2374  * create attributes that can be meaningfully displayed.
2375  */
2376 static int add_regulator_attributes(struct regulator_dev *rdev)
2377 {
2378         struct device           *dev = &rdev->dev;
2379         struct regulator_ops    *ops = rdev->desc->ops;
2380         int                     status = 0;
2381
2382         /* some attributes need specific methods to be displayed */
2383         if (ops->get_voltage || ops->get_voltage_sel) {
2384                 status = device_create_file(dev, &dev_attr_microvolts);
2385                 if (status < 0)
2386                         return status;
2387         }
2388         if (ops->get_current_limit) {
2389                 status = device_create_file(dev, &dev_attr_microamps);
2390                 if (status < 0)
2391                         return status;
2392         }
2393         if (ops->get_mode) {
2394                 status = device_create_file(dev, &dev_attr_opmode);
2395                 if (status < 0)
2396                         return status;
2397         }
2398         if (ops->is_enabled) {
2399                 status = device_create_file(dev, &dev_attr_state);
2400                 if (status < 0)
2401                         return status;
2402         }
2403         if (ops->get_status) {
2404                 status = device_create_file(dev, &dev_attr_status);
2405                 if (status < 0)
2406                         return status;
2407         }
2408
2409         /* some attributes are type-specific */
2410         if (rdev->desc->type == REGULATOR_CURRENT) {
2411                 status = device_create_file(dev, &dev_attr_requested_microamps);
2412                 if (status < 0)
2413                         return status;
2414         }
2415
2416         /* all the other attributes exist to support constraints;
2417          * don't show them if there are no constraints, or if the
2418          * relevant supporting methods are missing.
2419          */
2420         if (!rdev->constraints)
2421                 return status;
2422
2423         /* constraints need specific supporting methods */
2424         if (ops->set_voltage || ops->set_voltage_sel) {
2425                 status = device_create_file(dev, &dev_attr_min_microvolts);
2426                 if (status < 0)
2427                         return status;
2428                 status = device_create_file(dev, &dev_attr_max_microvolts);
2429                 if (status < 0)
2430                         return status;
2431         }
2432         if (ops->set_current_limit) {
2433                 status = device_create_file(dev, &dev_attr_min_microamps);
2434                 if (status < 0)
2435                         return status;
2436                 status = device_create_file(dev, &dev_attr_max_microamps);
2437                 if (status < 0)
2438                         return status;
2439         }
2440
2441         /* suspend mode constraints need multiple supporting methods */
2442         if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2443                 return status;
2444
2445         status = device_create_file(dev, &dev_attr_suspend_standby_state);
2446         if (status < 0)
2447                 return status;
2448         status = device_create_file(dev, &dev_attr_suspend_mem_state);
2449         if (status < 0)
2450                 return status;
2451         status = device_create_file(dev, &dev_attr_suspend_disk_state);
2452         if (status < 0)
2453                 return status;
2454
2455         if (ops->set_suspend_voltage) {
2456                 status = device_create_file(dev,
2457                                 &dev_attr_suspend_standby_microvolts);
2458                 if (status < 0)
2459                         return status;
2460                 status = device_create_file(dev,
2461                                 &dev_attr_suspend_mem_microvolts);
2462                 if (status < 0)
2463                         return status;
2464                 status = device_create_file(dev,
2465                                 &dev_attr_suspend_disk_microvolts);
2466                 if (status < 0)
2467                         return status;
2468         }
2469
2470         if (ops->set_suspend_mode) {
2471                 status = device_create_file(dev,
2472                                 &dev_attr_suspend_standby_mode);
2473                 if (status < 0)
2474                         return status;
2475                 status = device_create_file(dev,
2476                                 &dev_attr_suspend_mem_mode);
2477                 if (status < 0)
2478                         return status;
2479                 status = device_create_file(dev,
2480                                 &dev_attr_suspend_disk_mode);
2481                 if (status < 0)
2482                         return status;
2483         }
2484
2485         return status;
2486 }
2487
2488 static void rdev_init_debugfs(struct regulator_dev *rdev)
2489 {
2490 #ifdef CONFIG_DEBUG_FS
2491         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2492         if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2493                 rdev_warn(rdev, "Failed to create debugfs directory\n");
2494                 rdev->debugfs = NULL;
2495                 return;
2496         }
2497
2498         debugfs_create_u32("use_count", 0444, rdev->debugfs,
2499                            &rdev->use_count);
2500         debugfs_create_u32("open_count", 0444, rdev->debugfs,
2501                            &rdev->open_count);
2502 #endif
2503 }
2504
2505 /**
2506  * regulator_register - register regulator
2507  * @regulator_desc: regulator to register
2508  * @dev: struct device for the regulator
2509  * @init_data: platform provided init data, passed through by driver
2510  * @driver_data: private regulator data
2511  *
2512  * Called by regulator drivers to register a regulator.
2513  * Returns 0 on success.
2514  */
2515 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2516         struct device *dev, const struct regulator_init_data *init_data,
2517         void *driver_data)
2518 {
2519         static atomic_t regulator_no = ATOMIC_INIT(0);
2520         struct regulator_dev *rdev;
2521         int ret, i;
2522
2523         if (regulator_desc == NULL)
2524                 return ERR_PTR(-EINVAL);
2525
2526         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2527                 return ERR_PTR(-EINVAL);
2528
2529         if (regulator_desc->type != REGULATOR_VOLTAGE &&
2530             regulator_desc->type != REGULATOR_CURRENT)
2531                 return ERR_PTR(-EINVAL);
2532
2533         if (!init_data)
2534                 return ERR_PTR(-EINVAL);
2535
2536         /* Only one of each should be implemented */
2537         WARN_ON(regulator_desc->ops->get_voltage &&
2538                 regulator_desc->ops->get_voltage_sel);
2539         WARN_ON(regulator_desc->ops->set_voltage &&
2540                 regulator_desc->ops->set_voltage_sel);
2541
2542         /* If we're using selectors we must implement list_voltage. */
2543         if (regulator_desc->ops->get_voltage_sel &&
2544             !regulator_desc->ops->list_voltage) {
2545                 return ERR_PTR(-EINVAL);
2546         }
2547         if (regulator_desc->ops->set_voltage_sel &&
2548             !regulator_desc->ops->list_voltage) {
2549                 return ERR_PTR(-EINVAL);
2550         }
2551
2552         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2553         if (rdev == NULL)
2554                 return ERR_PTR(-ENOMEM);
2555
2556         mutex_lock(&regulator_list_mutex);
2557
2558         mutex_init(&rdev->mutex);
2559         rdev->reg_data = driver_data;
2560         rdev->owner = regulator_desc->owner;
2561         rdev->desc = regulator_desc;
2562         INIT_LIST_HEAD(&rdev->consumer_list);
2563         INIT_LIST_HEAD(&rdev->supply_list);
2564         INIT_LIST_HEAD(&rdev->list);
2565         INIT_LIST_HEAD(&rdev->slist);
2566         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2567
2568         /* preform any regulator specific init */
2569         if (init_data->regulator_init) {
2570                 ret = init_data->regulator_init(rdev->reg_data);
2571                 if (ret < 0)
2572                         goto clean;
2573         }
2574
2575         /* register with sysfs */
2576         rdev->dev.class = &regulator_class;
2577         rdev->dev.parent = dev;
2578         dev_set_name(&rdev->dev, "regulator.%d",
2579                      atomic_inc_return(&regulator_no) - 1);
2580         ret = device_register(&rdev->dev);
2581         if (ret != 0) {
2582                 put_device(&rdev->dev);
2583                 goto clean;
2584         }
2585
2586         dev_set_drvdata(&rdev->dev, rdev);
2587
2588         /* set regulator constraints */
2589         ret = set_machine_constraints(rdev, &init_data->constraints);
2590         if (ret < 0)
2591                 goto scrub;
2592
2593         /* add attributes supported by this regulator */
2594         ret = add_regulator_attributes(rdev);
2595         if (ret < 0)
2596                 goto scrub;
2597
2598         /* set supply regulator if it exists */
2599         if (init_data->supply_regulator && init_data->supply_regulator_dev) {
2600                 dev_err(dev,
2601                         "Supply regulator specified by both name and dev\n");
2602                 ret = -EINVAL;
2603                 goto scrub;
2604         }
2605
2606         if (init_data->supply_regulator) {
2607                 struct regulator_dev *r;
2608                 int found = 0;
2609
2610                 list_for_each_entry(r, &regulator_list, list) {
2611                         if (strcmp(rdev_get_name(r),
2612                                    init_data->supply_regulator) == 0) {
2613                                 found = 1;
2614                                 break;
2615                         }
2616                 }
2617
2618                 if (!found) {
2619                         dev_err(dev, "Failed to find supply %s\n",
2620                                 init_data->supply_regulator);
2621                         ret = -ENODEV;
2622                         goto scrub;
2623                 }
2624
2625                 ret = set_supply(rdev, r);
2626                 if (ret < 0)
2627                         goto scrub;
2628         }
2629
2630         if (init_data->supply_regulator_dev) {
2631                 dev_warn(dev, "Uses supply_regulator_dev instead of regulator_supply\n");
2632                 ret = set_supply(rdev,
2633                         dev_get_drvdata(init_data->supply_regulator_dev));
2634                 if (ret < 0)
2635                         goto scrub;
2636         }
2637
2638         /* add consumers devices */
2639         for (i = 0; i < init_data->num_consumer_supplies; i++) {
2640                 ret = set_consumer_device_supply(rdev,
2641                         init_data->consumer_supplies[i].dev,
2642                         init_data->consumer_supplies[i].dev_name,
2643                         init_data->consumer_supplies[i].supply);
2644                 if (ret < 0) {
2645                         dev_err(dev, "Failed to set supply %s\n",
2646                                 init_data->consumer_supplies[i].supply);
2647                         goto unset_supplies;
2648                 }
2649         }
2650
2651         list_add(&rdev->list, &regulator_list);
2652
2653         rdev_init_debugfs(rdev);
2654 out:
2655         mutex_unlock(&regulator_list_mutex);
2656         return rdev;
2657
2658 unset_supplies:
2659         unset_regulator_supplies(rdev);
2660
2661 scrub:
2662         device_unregister(&rdev->dev);
2663         /* device core frees rdev */
2664         rdev = ERR_PTR(ret);
2665         goto out;
2666
2667 clean:
2668         kfree(rdev);
2669         rdev = ERR_PTR(ret);
2670         goto out;
2671 }
2672 EXPORT_SYMBOL_GPL(regulator_register);
2673
2674 /**
2675  * regulator_unregister - unregister regulator
2676  * @rdev: regulator to unregister
2677  *
2678  * Called by regulator drivers to unregister a regulator.
2679  */
2680 void regulator_unregister(struct regulator_dev *rdev)
2681 {
2682         if (rdev == NULL)
2683                 return;
2684
2685         mutex_lock(&regulator_list_mutex);
2686 #ifdef CONFIG_DEBUG_FS
2687         debugfs_remove_recursive(rdev->debugfs);
2688 #endif
2689         WARN_ON(rdev->open_count);
2690         unset_regulator_supplies(rdev);
2691         list_del(&rdev->list);
2692         if (rdev->supply)
2693                 sysfs_remove_link(&rdev->dev.kobj, "supply");
2694         device_unregister(&rdev->dev);
2695         kfree(rdev->constraints);
2696         mutex_unlock(&regulator_list_mutex);
2697 }
2698 EXPORT_SYMBOL_GPL(regulator_unregister);
2699
2700 /**
2701  * regulator_suspend_prepare - prepare regulators for system wide suspend
2702  * @state: system suspend state
2703  *
2704  * Configure each regulator with it's suspend operating parameters for state.
2705  * This will usually be called by machine suspend code prior to supending.
2706  */
2707 int regulator_suspend_prepare(suspend_state_t state)
2708 {
2709         struct regulator_dev *rdev;
2710         int ret = 0;
2711
2712         /* ON is handled by regulator active state */
2713         if (state == PM_SUSPEND_ON)
2714                 return -EINVAL;
2715
2716         mutex_lock(&regulator_list_mutex);
2717         list_for_each_entry(rdev, &regulator_list, list) {
2718
2719                 mutex_lock(&rdev->mutex);
2720                 ret = suspend_prepare(rdev, state);
2721                 mutex_unlock(&rdev->mutex);
2722
2723                 if (ret < 0) {
2724                         rdev_err(rdev, "failed to prepare\n");
2725                         goto out;
2726                 }
2727         }
2728 out:
2729         mutex_unlock(&regulator_list_mutex);
2730         return ret;
2731 }
2732 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2733
2734 /**
2735  * regulator_suspend_finish - resume regulators from system wide suspend
2736  *
2737  * Turn on regulators that might be turned off by regulator_suspend_prepare
2738  * and that should be turned on according to the regulators properties.
2739  */
2740 int regulator_suspend_finish(void)
2741 {
2742         struct regulator_dev *rdev;
2743         int ret = 0, error;
2744
2745         mutex_lock(&regulator_list_mutex);
2746         list_for_each_entry(rdev, &regulator_list, list) {
2747                 struct regulator_ops *ops = rdev->desc->ops;
2748
2749                 mutex_lock(&rdev->mutex);
2750                 if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
2751                                 ops->enable) {
2752                         error = ops->enable(rdev);
2753                         if (error)
2754                                 ret = error;
2755                 } else {
2756                         if (!has_full_constraints)
2757                                 goto unlock;
2758                         if (!ops->disable)
2759                                 goto unlock;
2760                         if (ops->is_enabled && !ops->is_enabled(rdev))
2761                                 goto unlock;
2762
2763                         error = ops->disable(rdev);
2764                         if (error)
2765                                 ret = error;
2766                 }
2767 unlock:
2768                 mutex_unlock(&rdev->mutex);
2769         }
2770         mutex_unlock(&regulator_list_mutex);
2771         return ret;
2772 }
2773 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2774
2775 /**
2776  * regulator_has_full_constraints - the system has fully specified constraints
2777  *
2778  * Calling this function will cause the regulator API to disable all
2779  * regulators which have a zero use count and don't have an always_on
2780  * constraint in a late_initcall.
2781  *
2782  * The intention is that this will become the default behaviour in a
2783  * future kernel release so users are encouraged to use this facility
2784  * now.
2785  */
2786 void regulator_has_full_constraints(void)
2787 {
2788         has_full_constraints = 1;
2789 }
2790 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
2791
2792 /**
2793  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
2794  *
2795  * Calling this function will cause the regulator API to provide a
2796  * dummy regulator to consumers if no physical regulator is found,
2797  * allowing most consumers to proceed as though a regulator were
2798  * configured.  This allows systems such as those with software
2799  * controllable regulators for the CPU core only to be brought up more
2800  * readily.
2801  */
2802 void regulator_use_dummy_regulator(void)
2803 {
2804         board_wants_dummy_regulator = true;
2805 }
2806 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
2807
2808 /**
2809  * rdev_get_drvdata - get rdev regulator driver data
2810  * @rdev: regulator
2811  *
2812  * Get rdev regulator driver private data. This call can be used in the
2813  * regulator driver context.
2814  */
2815 void *rdev_get_drvdata(struct regulator_dev *rdev)
2816 {
2817         return rdev->reg_data;
2818 }
2819 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2820
2821 /**
2822  * regulator_get_drvdata - get regulator driver data
2823  * @regulator: regulator
2824  *
2825  * Get regulator driver private data. This call can be used in the consumer
2826  * driver context when non API regulator specific functions need to be called.
2827  */
2828 void *regulator_get_drvdata(struct regulator *regulator)
2829 {
2830         return regulator->rdev->reg_data;
2831 }
2832 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2833
2834 /**
2835  * regulator_set_drvdata - set regulator driver data
2836  * @regulator: regulator
2837  * @data: data
2838  */
2839 void regulator_set_drvdata(struct regulator *regulator, void *data)
2840 {
2841         regulator->rdev->reg_data = data;
2842 }
2843 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2844
2845 /**
2846  * regulator_get_id - get regulator ID
2847  * @rdev: regulator
2848  */
2849 int rdev_get_id(struct regulator_dev *rdev)
2850 {
2851         return rdev->desc->id;
2852 }
2853 EXPORT_SYMBOL_GPL(rdev_get_id);
2854
2855 struct device *rdev_get_dev(struct regulator_dev *rdev)
2856 {
2857         return &rdev->dev;
2858 }
2859 EXPORT_SYMBOL_GPL(rdev_get_dev);
2860
2861 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2862 {
2863         return reg_init_data->driver_data;
2864 }
2865 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2866
2867 static int __init regulator_init(void)
2868 {
2869         int ret;
2870
2871         ret = class_register(&regulator_class);
2872
2873 #ifdef CONFIG_DEBUG_FS
2874         debugfs_root = debugfs_create_dir("regulator", NULL);
2875         if (IS_ERR(debugfs_root) || !debugfs_root) {
2876                 pr_warn("regulator: Failed to create debugfs directory\n");
2877                 debugfs_root = NULL;
2878         }
2879 #endif
2880
2881         regulator_dummy_init();
2882
2883         return ret;
2884 }
2885
2886 /* init early to allow our consumers to complete system booting */
2887 core_initcall(regulator_init);
2888
2889 static int __init regulator_init_complete(void)
2890 {
2891         struct regulator_dev *rdev;
2892         struct regulator_ops *ops;
2893         struct regulation_constraints *c;
2894         int enabled, ret;
2895
2896         mutex_lock(&regulator_list_mutex);
2897
2898         /* If we have a full configuration then disable any regulators
2899          * which are not in use or always_on.  This will become the
2900          * default behaviour in the future.
2901          */
2902         list_for_each_entry(rdev, &regulator_list, list) {
2903                 ops = rdev->desc->ops;
2904                 c = rdev->constraints;
2905
2906                 if (!ops->disable || (c && c->always_on))
2907                         continue;
2908
2909                 mutex_lock(&rdev->mutex);
2910
2911                 if (rdev->use_count)
2912                         goto unlock;
2913
2914                 /* If we can't read the status assume it's on. */
2915                 if (ops->is_enabled)
2916                         enabled = ops->is_enabled(rdev);
2917                 else
2918                         enabled = 1;
2919
2920                 if (!enabled)
2921                         goto unlock;
2922
2923                 if (has_full_constraints) {
2924                         /* We log since this may kill the system if it
2925                          * goes wrong. */
2926                         rdev_info(rdev, "disabling\n");
2927                         ret = ops->disable(rdev);
2928                         if (ret != 0) {
2929                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
2930                         }
2931                 } else {
2932                         /* The intention is that in future we will
2933                          * assume that full constraints are provided
2934                          * so warn even if we aren't going to do
2935                          * anything here.
2936                          */
2937                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
2938                 }
2939
2940 unlock:
2941                 mutex_unlock(&rdev->mutex);
2942         }
2943
2944         mutex_unlock(&regulator_list_mutex);
2945
2946         return 0;
2947 }
2948 late_initcall(regulator_init_complete);