]> Pileus Git - ~andy/linux/blob - drivers/regulator/core.c
Merge tag 'arm64-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/cmarinas...
[~andy/linux] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39
40 #define rdev_crit(rdev, fmt, ...)                                       \
41         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...)                                        \
43         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...)                                       \
45         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...)                                       \
47         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...)                                        \
49         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static LIST_HEAD(regulator_ena_gpio_list);
55 static bool has_full_constraints;
56 static bool board_wants_dummy_regulator;
57
58 static struct dentry *debugfs_root;
59
60 /*
61  * struct regulator_map
62  *
63  * Used to provide symbolic supply names to devices.
64  */
65 struct regulator_map {
66         struct list_head list;
67         const char *dev_name;   /* The dev_name() for the consumer */
68         const char *supply;
69         struct regulator_dev *regulator;
70 };
71
72 /*
73  * struct regulator_enable_gpio
74  *
75  * Management for shared enable GPIO pin
76  */
77 struct regulator_enable_gpio {
78         struct list_head list;
79         int gpio;
80         u32 enable_count;       /* a number of enabled shared GPIO */
81         u32 request_count;      /* a number of requested shared GPIO */
82         unsigned int ena_gpio_invert:1;
83 };
84
85 /*
86  * struct regulator
87  *
88  * One for each consumer device.
89  */
90 struct regulator {
91         struct device *dev;
92         struct list_head list;
93         unsigned int always_on:1;
94         unsigned int bypass:1;
95         int uA_load;
96         int min_uV;
97         int max_uV;
98         char *supply_name;
99         struct device_attribute dev_attr;
100         struct regulator_dev *rdev;
101         struct dentry *debugfs;
102 };
103
104 static int _regulator_is_enabled(struct regulator_dev *rdev);
105 static int _regulator_disable(struct regulator_dev *rdev);
106 static int _regulator_get_voltage(struct regulator_dev *rdev);
107 static int _regulator_get_current_limit(struct regulator_dev *rdev);
108 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
109 static void _notifier_call_chain(struct regulator_dev *rdev,
110                                   unsigned long event, void *data);
111 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
112                                      int min_uV, int max_uV);
113 static struct regulator *create_regulator(struct regulator_dev *rdev,
114                                           struct device *dev,
115                                           const char *supply_name);
116
117 static const char *rdev_get_name(struct regulator_dev *rdev)
118 {
119         if (rdev->constraints && rdev->constraints->name)
120                 return rdev->constraints->name;
121         else if (rdev->desc->name)
122                 return rdev->desc->name;
123         else
124                 return "";
125 }
126
127 /**
128  * of_get_regulator - get a regulator device node based on supply name
129  * @dev: Device pointer for the consumer (of regulator) device
130  * @supply: regulator supply name
131  *
132  * Extract the regulator device node corresponding to the supply name.
133  * returns the device node corresponding to the regulator if found, else
134  * returns NULL.
135  */
136 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
137 {
138         struct device_node *regnode = NULL;
139         char prop_name[32]; /* 32 is max size of property name */
140
141         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
142
143         snprintf(prop_name, 32, "%s-supply", supply);
144         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
145
146         if (!regnode) {
147                 dev_dbg(dev, "Looking up %s property in node %s failed",
148                                 prop_name, dev->of_node->full_name);
149                 return NULL;
150         }
151         return regnode;
152 }
153
154 static int _regulator_can_change_status(struct regulator_dev *rdev)
155 {
156         if (!rdev->constraints)
157                 return 0;
158
159         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
160                 return 1;
161         else
162                 return 0;
163 }
164
165 /* Platform voltage constraint check */
166 static int regulator_check_voltage(struct regulator_dev *rdev,
167                                    int *min_uV, int *max_uV)
168 {
169         BUG_ON(*min_uV > *max_uV);
170
171         if (!rdev->constraints) {
172                 rdev_err(rdev, "no constraints\n");
173                 return -ENODEV;
174         }
175         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
176                 rdev_err(rdev, "operation not allowed\n");
177                 return -EPERM;
178         }
179
180         if (*max_uV > rdev->constraints->max_uV)
181                 *max_uV = rdev->constraints->max_uV;
182         if (*min_uV < rdev->constraints->min_uV)
183                 *min_uV = rdev->constraints->min_uV;
184
185         if (*min_uV > *max_uV) {
186                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
187                          *min_uV, *max_uV);
188                 return -EINVAL;
189         }
190
191         return 0;
192 }
193
194 /* Make sure we select a voltage that suits the needs of all
195  * regulator consumers
196  */
197 static int regulator_check_consumers(struct regulator_dev *rdev,
198                                      int *min_uV, int *max_uV)
199 {
200         struct regulator *regulator;
201
202         list_for_each_entry(regulator, &rdev->consumer_list, list) {
203                 /*
204                  * Assume consumers that didn't say anything are OK
205                  * with anything in the constraint range.
206                  */
207                 if (!regulator->min_uV && !regulator->max_uV)
208                         continue;
209
210                 if (*max_uV > regulator->max_uV)
211                         *max_uV = regulator->max_uV;
212                 if (*min_uV < regulator->min_uV)
213                         *min_uV = regulator->min_uV;
214         }
215
216         if (*min_uV > *max_uV) {
217                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
218                         *min_uV, *max_uV);
219                 return -EINVAL;
220         }
221
222         return 0;
223 }
224
225 /* current constraint check */
226 static int regulator_check_current_limit(struct regulator_dev *rdev,
227                                         int *min_uA, int *max_uA)
228 {
229         BUG_ON(*min_uA > *max_uA);
230
231         if (!rdev->constraints) {
232                 rdev_err(rdev, "no constraints\n");
233                 return -ENODEV;
234         }
235         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
236                 rdev_err(rdev, "operation not allowed\n");
237                 return -EPERM;
238         }
239
240         if (*max_uA > rdev->constraints->max_uA)
241                 *max_uA = rdev->constraints->max_uA;
242         if (*min_uA < rdev->constraints->min_uA)
243                 *min_uA = rdev->constraints->min_uA;
244
245         if (*min_uA > *max_uA) {
246                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
247                          *min_uA, *max_uA);
248                 return -EINVAL;
249         }
250
251         return 0;
252 }
253
254 /* operating mode constraint check */
255 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
256 {
257         switch (*mode) {
258         case REGULATOR_MODE_FAST:
259         case REGULATOR_MODE_NORMAL:
260         case REGULATOR_MODE_IDLE:
261         case REGULATOR_MODE_STANDBY:
262                 break;
263         default:
264                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
265                 return -EINVAL;
266         }
267
268         if (!rdev->constraints) {
269                 rdev_err(rdev, "no constraints\n");
270                 return -ENODEV;
271         }
272         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
273                 rdev_err(rdev, "operation not allowed\n");
274                 return -EPERM;
275         }
276
277         /* The modes are bitmasks, the most power hungry modes having
278          * the lowest values. If the requested mode isn't supported
279          * try higher modes. */
280         while (*mode) {
281                 if (rdev->constraints->valid_modes_mask & *mode)
282                         return 0;
283                 *mode /= 2;
284         }
285
286         return -EINVAL;
287 }
288
289 /* dynamic regulator mode switching constraint check */
290 static int regulator_check_drms(struct regulator_dev *rdev)
291 {
292         if (!rdev->constraints) {
293                 rdev_err(rdev, "no constraints\n");
294                 return -ENODEV;
295         }
296         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
297                 rdev_err(rdev, "operation not allowed\n");
298                 return -EPERM;
299         }
300         return 0;
301 }
302
303 static ssize_t regulator_uV_show(struct device *dev,
304                                 struct device_attribute *attr, char *buf)
305 {
306         struct regulator_dev *rdev = dev_get_drvdata(dev);
307         ssize_t ret;
308
309         mutex_lock(&rdev->mutex);
310         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
311         mutex_unlock(&rdev->mutex);
312
313         return ret;
314 }
315 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
316
317 static ssize_t regulator_uA_show(struct device *dev,
318                                 struct device_attribute *attr, char *buf)
319 {
320         struct regulator_dev *rdev = dev_get_drvdata(dev);
321
322         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
323 }
324 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
325
326 static ssize_t regulator_name_show(struct device *dev,
327                              struct device_attribute *attr, char *buf)
328 {
329         struct regulator_dev *rdev = dev_get_drvdata(dev);
330
331         return sprintf(buf, "%s\n", rdev_get_name(rdev));
332 }
333
334 static ssize_t regulator_print_opmode(char *buf, int mode)
335 {
336         switch (mode) {
337         case REGULATOR_MODE_FAST:
338                 return sprintf(buf, "fast\n");
339         case REGULATOR_MODE_NORMAL:
340                 return sprintf(buf, "normal\n");
341         case REGULATOR_MODE_IDLE:
342                 return sprintf(buf, "idle\n");
343         case REGULATOR_MODE_STANDBY:
344                 return sprintf(buf, "standby\n");
345         }
346         return sprintf(buf, "unknown\n");
347 }
348
349 static ssize_t regulator_opmode_show(struct device *dev,
350                                     struct device_attribute *attr, char *buf)
351 {
352         struct regulator_dev *rdev = dev_get_drvdata(dev);
353
354         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
355 }
356 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
357
358 static ssize_t regulator_print_state(char *buf, int state)
359 {
360         if (state > 0)
361                 return sprintf(buf, "enabled\n");
362         else if (state == 0)
363                 return sprintf(buf, "disabled\n");
364         else
365                 return sprintf(buf, "unknown\n");
366 }
367
368 static ssize_t regulator_state_show(struct device *dev,
369                                    struct device_attribute *attr, char *buf)
370 {
371         struct regulator_dev *rdev = dev_get_drvdata(dev);
372         ssize_t ret;
373
374         mutex_lock(&rdev->mutex);
375         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
376         mutex_unlock(&rdev->mutex);
377
378         return ret;
379 }
380 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
381
382 static ssize_t regulator_status_show(struct device *dev,
383                                    struct device_attribute *attr, char *buf)
384 {
385         struct regulator_dev *rdev = dev_get_drvdata(dev);
386         int status;
387         char *label;
388
389         status = rdev->desc->ops->get_status(rdev);
390         if (status < 0)
391                 return status;
392
393         switch (status) {
394         case REGULATOR_STATUS_OFF:
395                 label = "off";
396                 break;
397         case REGULATOR_STATUS_ON:
398                 label = "on";
399                 break;
400         case REGULATOR_STATUS_ERROR:
401                 label = "error";
402                 break;
403         case REGULATOR_STATUS_FAST:
404                 label = "fast";
405                 break;
406         case REGULATOR_STATUS_NORMAL:
407                 label = "normal";
408                 break;
409         case REGULATOR_STATUS_IDLE:
410                 label = "idle";
411                 break;
412         case REGULATOR_STATUS_STANDBY:
413                 label = "standby";
414                 break;
415         case REGULATOR_STATUS_BYPASS:
416                 label = "bypass";
417                 break;
418         case REGULATOR_STATUS_UNDEFINED:
419                 label = "undefined";
420                 break;
421         default:
422                 return -ERANGE;
423         }
424
425         return sprintf(buf, "%s\n", label);
426 }
427 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
428
429 static ssize_t regulator_min_uA_show(struct device *dev,
430                                     struct device_attribute *attr, char *buf)
431 {
432         struct regulator_dev *rdev = dev_get_drvdata(dev);
433
434         if (!rdev->constraints)
435                 return sprintf(buf, "constraint not defined\n");
436
437         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
438 }
439 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
440
441 static ssize_t regulator_max_uA_show(struct device *dev,
442                                     struct device_attribute *attr, char *buf)
443 {
444         struct regulator_dev *rdev = dev_get_drvdata(dev);
445
446         if (!rdev->constraints)
447                 return sprintf(buf, "constraint not defined\n");
448
449         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
450 }
451 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
452
453 static ssize_t regulator_min_uV_show(struct device *dev,
454                                     struct device_attribute *attr, char *buf)
455 {
456         struct regulator_dev *rdev = dev_get_drvdata(dev);
457
458         if (!rdev->constraints)
459                 return sprintf(buf, "constraint not defined\n");
460
461         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
462 }
463 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
464
465 static ssize_t regulator_max_uV_show(struct device *dev,
466                                     struct device_attribute *attr, char *buf)
467 {
468         struct regulator_dev *rdev = dev_get_drvdata(dev);
469
470         if (!rdev->constraints)
471                 return sprintf(buf, "constraint not defined\n");
472
473         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
474 }
475 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
476
477 static ssize_t regulator_total_uA_show(struct device *dev,
478                                       struct device_attribute *attr, char *buf)
479 {
480         struct regulator_dev *rdev = dev_get_drvdata(dev);
481         struct regulator *regulator;
482         int uA = 0;
483
484         mutex_lock(&rdev->mutex);
485         list_for_each_entry(regulator, &rdev->consumer_list, list)
486                 uA += regulator->uA_load;
487         mutex_unlock(&rdev->mutex);
488         return sprintf(buf, "%d\n", uA);
489 }
490 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
491
492 static ssize_t regulator_num_users_show(struct device *dev,
493                                       struct device_attribute *attr, char *buf)
494 {
495         struct regulator_dev *rdev = dev_get_drvdata(dev);
496         return sprintf(buf, "%d\n", rdev->use_count);
497 }
498
499 static ssize_t regulator_type_show(struct device *dev,
500                                   struct device_attribute *attr, char *buf)
501 {
502         struct regulator_dev *rdev = dev_get_drvdata(dev);
503
504         switch (rdev->desc->type) {
505         case REGULATOR_VOLTAGE:
506                 return sprintf(buf, "voltage\n");
507         case REGULATOR_CURRENT:
508                 return sprintf(buf, "current\n");
509         }
510         return sprintf(buf, "unknown\n");
511 }
512
513 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
514                                 struct device_attribute *attr, char *buf)
515 {
516         struct regulator_dev *rdev = dev_get_drvdata(dev);
517
518         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
519 }
520 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
521                 regulator_suspend_mem_uV_show, NULL);
522
523 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
524                                 struct device_attribute *attr, char *buf)
525 {
526         struct regulator_dev *rdev = dev_get_drvdata(dev);
527
528         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
529 }
530 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
531                 regulator_suspend_disk_uV_show, NULL);
532
533 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
534                                 struct device_attribute *attr, char *buf)
535 {
536         struct regulator_dev *rdev = dev_get_drvdata(dev);
537
538         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
539 }
540 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
541                 regulator_suspend_standby_uV_show, NULL);
542
543 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
544                                 struct device_attribute *attr, char *buf)
545 {
546         struct regulator_dev *rdev = dev_get_drvdata(dev);
547
548         return regulator_print_opmode(buf,
549                 rdev->constraints->state_mem.mode);
550 }
551 static DEVICE_ATTR(suspend_mem_mode, 0444,
552                 regulator_suspend_mem_mode_show, NULL);
553
554 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
555                                 struct device_attribute *attr, char *buf)
556 {
557         struct regulator_dev *rdev = dev_get_drvdata(dev);
558
559         return regulator_print_opmode(buf,
560                 rdev->constraints->state_disk.mode);
561 }
562 static DEVICE_ATTR(suspend_disk_mode, 0444,
563                 regulator_suspend_disk_mode_show, NULL);
564
565 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
566                                 struct device_attribute *attr, char *buf)
567 {
568         struct regulator_dev *rdev = dev_get_drvdata(dev);
569
570         return regulator_print_opmode(buf,
571                 rdev->constraints->state_standby.mode);
572 }
573 static DEVICE_ATTR(suspend_standby_mode, 0444,
574                 regulator_suspend_standby_mode_show, NULL);
575
576 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
577                                    struct device_attribute *attr, char *buf)
578 {
579         struct regulator_dev *rdev = dev_get_drvdata(dev);
580
581         return regulator_print_state(buf,
582                         rdev->constraints->state_mem.enabled);
583 }
584 static DEVICE_ATTR(suspend_mem_state, 0444,
585                 regulator_suspend_mem_state_show, NULL);
586
587 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
588                                    struct device_attribute *attr, char *buf)
589 {
590         struct regulator_dev *rdev = dev_get_drvdata(dev);
591
592         return regulator_print_state(buf,
593                         rdev->constraints->state_disk.enabled);
594 }
595 static DEVICE_ATTR(suspend_disk_state, 0444,
596                 regulator_suspend_disk_state_show, NULL);
597
598 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
599                                    struct device_attribute *attr, char *buf)
600 {
601         struct regulator_dev *rdev = dev_get_drvdata(dev);
602
603         return regulator_print_state(buf,
604                         rdev->constraints->state_standby.enabled);
605 }
606 static DEVICE_ATTR(suspend_standby_state, 0444,
607                 regulator_suspend_standby_state_show, NULL);
608
609 static ssize_t regulator_bypass_show(struct device *dev,
610                                      struct device_attribute *attr, char *buf)
611 {
612         struct regulator_dev *rdev = dev_get_drvdata(dev);
613         const char *report;
614         bool bypass;
615         int ret;
616
617         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
618
619         if (ret != 0)
620                 report = "unknown";
621         else if (bypass)
622                 report = "enabled";
623         else
624                 report = "disabled";
625
626         return sprintf(buf, "%s\n", report);
627 }
628 static DEVICE_ATTR(bypass, 0444,
629                    regulator_bypass_show, NULL);
630
631 /*
632  * These are the only attributes are present for all regulators.
633  * Other attributes are a function of regulator functionality.
634  */
635 static struct device_attribute regulator_dev_attrs[] = {
636         __ATTR(name, 0444, regulator_name_show, NULL),
637         __ATTR(num_users, 0444, regulator_num_users_show, NULL),
638         __ATTR(type, 0444, regulator_type_show, NULL),
639         __ATTR_NULL,
640 };
641
642 static void regulator_dev_release(struct device *dev)
643 {
644         struct regulator_dev *rdev = dev_get_drvdata(dev);
645         kfree(rdev);
646 }
647
648 static struct class regulator_class = {
649         .name = "regulator",
650         .dev_release = regulator_dev_release,
651         .dev_attrs = regulator_dev_attrs,
652 };
653
654 /* Calculate the new optimum regulator operating mode based on the new total
655  * consumer load. All locks held by caller */
656 static void drms_uA_update(struct regulator_dev *rdev)
657 {
658         struct regulator *sibling;
659         int current_uA = 0, output_uV, input_uV, err;
660         unsigned int mode;
661
662         err = regulator_check_drms(rdev);
663         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
664             (!rdev->desc->ops->get_voltage &&
665              !rdev->desc->ops->get_voltage_sel) ||
666             !rdev->desc->ops->set_mode)
667                 return;
668
669         /* get output voltage */
670         output_uV = _regulator_get_voltage(rdev);
671         if (output_uV <= 0)
672                 return;
673
674         /* get input voltage */
675         input_uV = 0;
676         if (rdev->supply)
677                 input_uV = regulator_get_voltage(rdev->supply);
678         if (input_uV <= 0)
679                 input_uV = rdev->constraints->input_uV;
680         if (input_uV <= 0)
681                 return;
682
683         /* calc total requested load */
684         list_for_each_entry(sibling, &rdev->consumer_list, list)
685                 current_uA += sibling->uA_load;
686
687         /* now get the optimum mode for our new total regulator load */
688         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
689                                                   output_uV, current_uA);
690
691         /* check the new mode is allowed */
692         err = regulator_mode_constrain(rdev, &mode);
693         if (err == 0)
694                 rdev->desc->ops->set_mode(rdev, mode);
695 }
696
697 static int suspend_set_state(struct regulator_dev *rdev,
698         struct regulator_state *rstate)
699 {
700         int ret = 0;
701
702         /* If we have no suspend mode configration don't set anything;
703          * only warn if the driver implements set_suspend_voltage or
704          * set_suspend_mode callback.
705          */
706         if (!rstate->enabled && !rstate->disabled) {
707                 if (rdev->desc->ops->set_suspend_voltage ||
708                     rdev->desc->ops->set_suspend_mode)
709                         rdev_warn(rdev, "No configuration\n");
710                 return 0;
711         }
712
713         if (rstate->enabled && rstate->disabled) {
714                 rdev_err(rdev, "invalid configuration\n");
715                 return -EINVAL;
716         }
717
718         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
719                 ret = rdev->desc->ops->set_suspend_enable(rdev);
720         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
721                 ret = rdev->desc->ops->set_suspend_disable(rdev);
722         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
723                 ret = 0;
724
725         if (ret < 0) {
726                 rdev_err(rdev, "failed to enabled/disable\n");
727                 return ret;
728         }
729
730         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
731                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
732                 if (ret < 0) {
733                         rdev_err(rdev, "failed to set voltage\n");
734                         return ret;
735                 }
736         }
737
738         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
739                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
740                 if (ret < 0) {
741                         rdev_err(rdev, "failed to set mode\n");
742                         return ret;
743                 }
744         }
745         return ret;
746 }
747
748 /* locks held by caller */
749 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
750 {
751         if (!rdev->constraints)
752                 return -EINVAL;
753
754         switch (state) {
755         case PM_SUSPEND_STANDBY:
756                 return suspend_set_state(rdev,
757                         &rdev->constraints->state_standby);
758         case PM_SUSPEND_MEM:
759                 return suspend_set_state(rdev,
760                         &rdev->constraints->state_mem);
761         case PM_SUSPEND_MAX:
762                 return suspend_set_state(rdev,
763                         &rdev->constraints->state_disk);
764         default:
765                 return -EINVAL;
766         }
767 }
768
769 static void print_constraints(struct regulator_dev *rdev)
770 {
771         struct regulation_constraints *constraints = rdev->constraints;
772         char buf[80] = "";
773         int count = 0;
774         int ret;
775
776         if (constraints->min_uV && constraints->max_uV) {
777                 if (constraints->min_uV == constraints->max_uV)
778                         count += sprintf(buf + count, "%d mV ",
779                                          constraints->min_uV / 1000);
780                 else
781                         count += sprintf(buf + count, "%d <--> %d mV ",
782                                          constraints->min_uV / 1000,
783                                          constraints->max_uV / 1000);
784         }
785
786         if (!constraints->min_uV ||
787             constraints->min_uV != constraints->max_uV) {
788                 ret = _regulator_get_voltage(rdev);
789                 if (ret > 0)
790                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
791         }
792
793         if (constraints->uV_offset)
794                 count += sprintf(buf, "%dmV offset ",
795                                  constraints->uV_offset / 1000);
796
797         if (constraints->min_uA && constraints->max_uA) {
798                 if (constraints->min_uA == constraints->max_uA)
799                         count += sprintf(buf + count, "%d mA ",
800                                          constraints->min_uA / 1000);
801                 else
802                         count += sprintf(buf + count, "%d <--> %d mA ",
803                                          constraints->min_uA / 1000,
804                                          constraints->max_uA / 1000);
805         }
806
807         if (!constraints->min_uA ||
808             constraints->min_uA != constraints->max_uA) {
809                 ret = _regulator_get_current_limit(rdev);
810                 if (ret > 0)
811                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
812         }
813
814         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
815                 count += sprintf(buf + count, "fast ");
816         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
817                 count += sprintf(buf + count, "normal ");
818         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
819                 count += sprintf(buf + count, "idle ");
820         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
821                 count += sprintf(buf + count, "standby");
822
823         if (!count)
824                 sprintf(buf, "no parameters");
825
826         rdev_info(rdev, "%s\n", buf);
827
828         if ((constraints->min_uV != constraints->max_uV) &&
829             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
830                 rdev_warn(rdev,
831                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
832 }
833
834 static int machine_constraints_voltage(struct regulator_dev *rdev,
835         struct regulation_constraints *constraints)
836 {
837         struct regulator_ops *ops = rdev->desc->ops;
838         int ret;
839
840         /* do we need to apply the constraint voltage */
841         if (rdev->constraints->apply_uV &&
842             rdev->constraints->min_uV == rdev->constraints->max_uV) {
843                 ret = _regulator_do_set_voltage(rdev,
844                                                 rdev->constraints->min_uV,
845                                                 rdev->constraints->max_uV);
846                 if (ret < 0) {
847                         rdev_err(rdev, "failed to apply %duV constraint\n",
848                                  rdev->constraints->min_uV);
849                         return ret;
850                 }
851         }
852
853         /* constrain machine-level voltage specs to fit
854          * the actual range supported by this regulator.
855          */
856         if (ops->list_voltage && rdev->desc->n_voltages) {
857                 int     count = rdev->desc->n_voltages;
858                 int     i;
859                 int     min_uV = INT_MAX;
860                 int     max_uV = INT_MIN;
861                 int     cmin = constraints->min_uV;
862                 int     cmax = constraints->max_uV;
863
864                 /* it's safe to autoconfigure fixed-voltage supplies
865                    and the constraints are used by list_voltage. */
866                 if (count == 1 && !cmin) {
867                         cmin = 1;
868                         cmax = INT_MAX;
869                         constraints->min_uV = cmin;
870                         constraints->max_uV = cmax;
871                 }
872
873                 /* voltage constraints are optional */
874                 if ((cmin == 0) && (cmax == 0))
875                         return 0;
876
877                 /* else require explicit machine-level constraints */
878                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
879                         rdev_err(rdev, "invalid voltage constraints\n");
880                         return -EINVAL;
881                 }
882
883                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
884                 for (i = 0; i < count; i++) {
885                         int     value;
886
887                         value = ops->list_voltage(rdev, i);
888                         if (value <= 0)
889                                 continue;
890
891                         /* maybe adjust [min_uV..max_uV] */
892                         if (value >= cmin && value < min_uV)
893                                 min_uV = value;
894                         if (value <= cmax && value > max_uV)
895                                 max_uV = value;
896                 }
897
898                 /* final: [min_uV..max_uV] valid iff constraints valid */
899                 if (max_uV < min_uV) {
900                         rdev_err(rdev,
901                                  "unsupportable voltage constraints %u-%uuV\n",
902                                  min_uV, max_uV);
903                         return -EINVAL;
904                 }
905
906                 /* use regulator's subset of machine constraints */
907                 if (constraints->min_uV < min_uV) {
908                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
909                                  constraints->min_uV, min_uV);
910                         constraints->min_uV = min_uV;
911                 }
912                 if (constraints->max_uV > max_uV) {
913                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
914                                  constraints->max_uV, max_uV);
915                         constraints->max_uV = max_uV;
916                 }
917         }
918
919         return 0;
920 }
921
922 /**
923  * set_machine_constraints - sets regulator constraints
924  * @rdev: regulator source
925  * @constraints: constraints to apply
926  *
927  * Allows platform initialisation code to define and constrain
928  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
929  * Constraints *must* be set by platform code in order for some
930  * regulator operations to proceed i.e. set_voltage, set_current_limit,
931  * set_mode.
932  */
933 static int set_machine_constraints(struct regulator_dev *rdev,
934         const struct regulation_constraints *constraints)
935 {
936         int ret = 0;
937         struct regulator_ops *ops = rdev->desc->ops;
938
939         if (constraints)
940                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
941                                             GFP_KERNEL);
942         else
943                 rdev->constraints = kzalloc(sizeof(*constraints),
944                                             GFP_KERNEL);
945         if (!rdev->constraints)
946                 return -ENOMEM;
947
948         ret = machine_constraints_voltage(rdev, rdev->constraints);
949         if (ret != 0)
950                 goto out;
951
952         /* do we need to setup our suspend state */
953         if (rdev->constraints->initial_state) {
954                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
955                 if (ret < 0) {
956                         rdev_err(rdev, "failed to set suspend state\n");
957                         goto out;
958                 }
959         }
960
961         if (rdev->constraints->initial_mode) {
962                 if (!ops->set_mode) {
963                         rdev_err(rdev, "no set_mode operation\n");
964                         ret = -EINVAL;
965                         goto out;
966                 }
967
968                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
969                 if (ret < 0) {
970                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
971                         goto out;
972                 }
973         }
974
975         /* If the constraints say the regulator should be on at this point
976          * and we have control then make sure it is enabled.
977          */
978         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
979             ops->enable) {
980                 ret = ops->enable(rdev);
981                 if (ret < 0) {
982                         rdev_err(rdev, "failed to enable\n");
983                         goto out;
984                 }
985         }
986
987         if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
988                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
989                 if (ret < 0) {
990                         rdev_err(rdev, "failed to set ramp_delay\n");
991                         goto out;
992                 }
993         }
994
995         print_constraints(rdev);
996         return 0;
997 out:
998         kfree(rdev->constraints);
999         rdev->constraints = NULL;
1000         return ret;
1001 }
1002
1003 /**
1004  * set_supply - set regulator supply regulator
1005  * @rdev: regulator name
1006  * @supply_rdev: supply regulator name
1007  *
1008  * Called by platform initialisation code to set the supply regulator for this
1009  * regulator. This ensures that a regulators supply will also be enabled by the
1010  * core if it's child is enabled.
1011  */
1012 static int set_supply(struct regulator_dev *rdev,
1013                       struct regulator_dev *supply_rdev)
1014 {
1015         int err;
1016
1017         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1018
1019         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1020         if (rdev->supply == NULL) {
1021                 err = -ENOMEM;
1022                 return err;
1023         }
1024         supply_rdev->open_count++;
1025
1026         return 0;
1027 }
1028
1029 /**
1030  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1031  * @rdev:         regulator source
1032  * @consumer_dev_name: dev_name() string for device supply applies to
1033  * @supply:       symbolic name for supply
1034  *
1035  * Allows platform initialisation code to map physical regulator
1036  * sources to symbolic names for supplies for use by devices.  Devices
1037  * should use these symbolic names to request regulators, avoiding the
1038  * need to provide board-specific regulator names as platform data.
1039  */
1040 static int set_consumer_device_supply(struct regulator_dev *rdev,
1041                                       const char *consumer_dev_name,
1042                                       const char *supply)
1043 {
1044         struct regulator_map *node;
1045         int has_dev;
1046
1047         if (supply == NULL)
1048                 return -EINVAL;
1049
1050         if (consumer_dev_name != NULL)
1051                 has_dev = 1;
1052         else
1053                 has_dev = 0;
1054
1055         list_for_each_entry(node, &regulator_map_list, list) {
1056                 if (node->dev_name && consumer_dev_name) {
1057                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1058                                 continue;
1059                 } else if (node->dev_name || consumer_dev_name) {
1060                         continue;
1061                 }
1062
1063                 if (strcmp(node->supply, supply) != 0)
1064                         continue;
1065
1066                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1067                          consumer_dev_name,
1068                          dev_name(&node->regulator->dev),
1069                          node->regulator->desc->name,
1070                          supply,
1071                          dev_name(&rdev->dev), rdev_get_name(rdev));
1072                 return -EBUSY;
1073         }
1074
1075         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1076         if (node == NULL)
1077                 return -ENOMEM;
1078
1079         node->regulator = rdev;
1080         node->supply = supply;
1081
1082         if (has_dev) {
1083                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1084                 if (node->dev_name == NULL) {
1085                         kfree(node);
1086                         return -ENOMEM;
1087                 }
1088         }
1089
1090         list_add(&node->list, &regulator_map_list);
1091         return 0;
1092 }
1093
1094 static void unset_regulator_supplies(struct regulator_dev *rdev)
1095 {
1096         struct regulator_map *node, *n;
1097
1098         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1099                 if (rdev == node->regulator) {
1100                         list_del(&node->list);
1101                         kfree(node->dev_name);
1102                         kfree(node);
1103                 }
1104         }
1105 }
1106
1107 #define REG_STR_SIZE    64
1108
1109 static struct regulator *create_regulator(struct regulator_dev *rdev,
1110                                           struct device *dev,
1111                                           const char *supply_name)
1112 {
1113         struct regulator *regulator;
1114         char buf[REG_STR_SIZE];
1115         int err, size;
1116
1117         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1118         if (regulator == NULL)
1119                 return NULL;
1120
1121         mutex_lock(&rdev->mutex);
1122         regulator->rdev = rdev;
1123         list_add(&regulator->list, &rdev->consumer_list);
1124
1125         if (dev) {
1126                 regulator->dev = dev;
1127
1128                 /* Add a link to the device sysfs entry */
1129                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1130                                  dev->kobj.name, supply_name);
1131                 if (size >= REG_STR_SIZE)
1132                         goto overflow_err;
1133
1134                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1135                 if (regulator->supply_name == NULL)
1136                         goto overflow_err;
1137
1138                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1139                                         buf);
1140                 if (err) {
1141                         rdev_warn(rdev, "could not add device link %s err %d\n",
1142                                   dev->kobj.name, err);
1143                         /* non-fatal */
1144                 }
1145         } else {
1146                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1147                 if (regulator->supply_name == NULL)
1148                         goto overflow_err;
1149         }
1150
1151         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1152                                                 rdev->debugfs);
1153         if (!regulator->debugfs) {
1154                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1155         } else {
1156                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1157                                    &regulator->uA_load);
1158                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1159                                    &regulator->min_uV);
1160                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1161                                    &regulator->max_uV);
1162         }
1163
1164         /*
1165          * Check now if the regulator is an always on regulator - if
1166          * it is then we don't need to do nearly so much work for
1167          * enable/disable calls.
1168          */
1169         if (!_regulator_can_change_status(rdev) &&
1170             _regulator_is_enabled(rdev))
1171                 regulator->always_on = true;
1172
1173         mutex_unlock(&rdev->mutex);
1174         return regulator;
1175 overflow_err:
1176         list_del(&regulator->list);
1177         kfree(regulator);
1178         mutex_unlock(&rdev->mutex);
1179         return NULL;
1180 }
1181
1182 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1183 {
1184         if (!rdev->desc->ops->enable_time)
1185                 return rdev->desc->enable_time;
1186         return rdev->desc->ops->enable_time(rdev);
1187 }
1188
1189 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1190                                                   const char *supply,
1191                                                   int *ret)
1192 {
1193         struct regulator_dev *r;
1194         struct device_node *node;
1195         struct regulator_map *map;
1196         const char *devname = NULL;
1197
1198         /* first do a dt based lookup */
1199         if (dev && dev->of_node) {
1200                 node = of_get_regulator(dev, supply);
1201                 if (node) {
1202                         list_for_each_entry(r, &regulator_list, list)
1203                                 if (r->dev.parent &&
1204                                         node == r->dev.of_node)
1205                                         return r;
1206                 } else {
1207                         /*
1208                          * If we couldn't even get the node then it's
1209                          * not just that the device didn't register
1210                          * yet, there's no node and we'll never
1211                          * succeed.
1212                          */
1213                         *ret = -ENODEV;
1214                 }
1215         }
1216
1217         /* if not found, try doing it non-dt way */
1218         if (dev)
1219                 devname = dev_name(dev);
1220
1221         list_for_each_entry(r, &regulator_list, list)
1222                 if (strcmp(rdev_get_name(r), supply) == 0)
1223                         return r;
1224
1225         list_for_each_entry(map, &regulator_map_list, list) {
1226                 /* If the mapping has a device set up it must match */
1227                 if (map->dev_name &&
1228                     (!devname || strcmp(map->dev_name, devname)))
1229                         continue;
1230
1231                 if (strcmp(map->supply, supply) == 0)
1232                         return map->regulator;
1233         }
1234
1235
1236         return NULL;
1237 }
1238
1239 /* Internal regulator request function */
1240 static struct regulator *_regulator_get(struct device *dev, const char *id,
1241                                         int exclusive)
1242 {
1243         struct regulator_dev *rdev;
1244         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1245         const char *devname = NULL;
1246         int ret = 0;
1247
1248         if (id == NULL) {
1249                 pr_err("get() with no identifier\n");
1250                 return regulator;
1251         }
1252
1253         if (dev)
1254                 devname = dev_name(dev);
1255
1256         mutex_lock(&regulator_list_mutex);
1257
1258         rdev = regulator_dev_lookup(dev, id, &ret);
1259         if (rdev)
1260                 goto found;
1261
1262         /*
1263          * If we have return value from dev_lookup fail, we do not expect to
1264          * succeed, so, quit with appropriate error value
1265          */
1266         if (ret) {
1267                 regulator = ERR_PTR(ret);
1268                 goto out;
1269         }
1270
1271         if (board_wants_dummy_regulator) {
1272                 rdev = dummy_regulator_rdev;
1273                 goto found;
1274         }
1275
1276 #ifdef CONFIG_REGULATOR_DUMMY
1277         if (!devname)
1278                 devname = "deviceless";
1279
1280         /* If the board didn't flag that it was fully constrained then
1281          * substitute in a dummy regulator so consumers can continue.
1282          */
1283         if (!has_full_constraints) {
1284                 pr_warn("%s supply %s not found, using dummy regulator\n",
1285                         devname, id);
1286                 rdev = dummy_regulator_rdev;
1287                 goto found;
1288         }
1289 #endif
1290
1291         mutex_unlock(&regulator_list_mutex);
1292         return regulator;
1293
1294 found:
1295         if (rdev->exclusive) {
1296                 regulator = ERR_PTR(-EPERM);
1297                 goto out;
1298         }
1299
1300         if (exclusive && rdev->open_count) {
1301                 regulator = ERR_PTR(-EBUSY);
1302                 goto out;
1303         }
1304
1305         if (!try_module_get(rdev->owner))
1306                 goto out;
1307
1308         regulator = create_regulator(rdev, dev, id);
1309         if (regulator == NULL) {
1310                 regulator = ERR_PTR(-ENOMEM);
1311                 module_put(rdev->owner);
1312                 goto out;
1313         }
1314
1315         rdev->open_count++;
1316         if (exclusive) {
1317                 rdev->exclusive = 1;
1318
1319                 ret = _regulator_is_enabled(rdev);
1320                 if (ret > 0)
1321                         rdev->use_count = 1;
1322                 else
1323                         rdev->use_count = 0;
1324         }
1325
1326 out:
1327         mutex_unlock(&regulator_list_mutex);
1328
1329         return regulator;
1330 }
1331
1332 /**
1333  * regulator_get - lookup and obtain a reference to a regulator.
1334  * @dev: device for regulator "consumer"
1335  * @id: Supply name or regulator ID.
1336  *
1337  * Returns a struct regulator corresponding to the regulator producer,
1338  * or IS_ERR() condition containing errno.
1339  *
1340  * Use of supply names configured via regulator_set_device_supply() is
1341  * strongly encouraged.  It is recommended that the supply name used
1342  * should match the name used for the supply and/or the relevant
1343  * device pins in the datasheet.
1344  */
1345 struct regulator *regulator_get(struct device *dev, const char *id)
1346 {
1347         return _regulator_get(dev, id, 0);
1348 }
1349 EXPORT_SYMBOL_GPL(regulator_get);
1350
1351 static void devm_regulator_release(struct device *dev, void *res)
1352 {
1353         regulator_put(*(struct regulator **)res);
1354 }
1355
1356 /**
1357  * devm_regulator_get - Resource managed regulator_get()
1358  * @dev: device for regulator "consumer"
1359  * @id: Supply name or regulator ID.
1360  *
1361  * Managed regulator_get(). Regulators returned from this function are
1362  * automatically regulator_put() on driver detach. See regulator_get() for more
1363  * information.
1364  */
1365 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1366 {
1367         struct regulator **ptr, *regulator;
1368
1369         ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1370         if (!ptr)
1371                 return ERR_PTR(-ENOMEM);
1372
1373         regulator = regulator_get(dev, id);
1374         if (!IS_ERR(regulator)) {
1375                 *ptr = regulator;
1376                 devres_add(dev, ptr);
1377         } else {
1378                 devres_free(ptr);
1379         }
1380
1381         return regulator;
1382 }
1383 EXPORT_SYMBOL_GPL(devm_regulator_get);
1384
1385 /**
1386  * regulator_get_exclusive - obtain exclusive access to a regulator.
1387  * @dev: device for regulator "consumer"
1388  * @id: Supply name or regulator ID.
1389  *
1390  * Returns a struct regulator corresponding to the regulator producer,
1391  * or IS_ERR() condition containing errno.  Other consumers will be
1392  * unable to obtain this reference is held and the use count for the
1393  * regulator will be initialised to reflect the current state of the
1394  * regulator.
1395  *
1396  * This is intended for use by consumers which cannot tolerate shared
1397  * use of the regulator such as those which need to force the
1398  * regulator off for correct operation of the hardware they are
1399  * controlling.
1400  *
1401  * Use of supply names configured via regulator_set_device_supply() is
1402  * strongly encouraged.  It is recommended that the supply name used
1403  * should match the name used for the supply and/or the relevant
1404  * device pins in the datasheet.
1405  */
1406 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1407 {
1408         return _regulator_get(dev, id, 1);
1409 }
1410 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1411
1412 /* Locks held by regulator_put() */
1413 static void _regulator_put(struct regulator *regulator)
1414 {
1415         struct regulator_dev *rdev;
1416
1417         if (regulator == NULL || IS_ERR(regulator))
1418                 return;
1419
1420         rdev = regulator->rdev;
1421
1422         debugfs_remove_recursive(regulator->debugfs);
1423
1424         /* remove any sysfs entries */
1425         if (regulator->dev)
1426                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1427         kfree(regulator->supply_name);
1428         list_del(&regulator->list);
1429         kfree(regulator);
1430
1431         rdev->open_count--;
1432         rdev->exclusive = 0;
1433
1434         module_put(rdev->owner);
1435 }
1436
1437 /**
1438  * regulator_put - "free" the regulator source
1439  * @regulator: regulator source
1440  *
1441  * Note: drivers must ensure that all regulator_enable calls made on this
1442  * regulator source are balanced by regulator_disable calls prior to calling
1443  * this function.
1444  */
1445 void regulator_put(struct regulator *regulator)
1446 {
1447         mutex_lock(&regulator_list_mutex);
1448         _regulator_put(regulator);
1449         mutex_unlock(&regulator_list_mutex);
1450 }
1451 EXPORT_SYMBOL_GPL(regulator_put);
1452
1453 static int devm_regulator_match(struct device *dev, void *res, void *data)
1454 {
1455         struct regulator **r = res;
1456         if (!r || !*r) {
1457                 WARN_ON(!r || !*r);
1458                 return 0;
1459         }
1460         return *r == data;
1461 }
1462
1463 /**
1464  * devm_regulator_put - Resource managed regulator_put()
1465  * @regulator: regulator to free
1466  *
1467  * Deallocate a regulator allocated with devm_regulator_get(). Normally
1468  * this function will not need to be called and the resource management
1469  * code will ensure that the resource is freed.
1470  */
1471 void devm_regulator_put(struct regulator *regulator)
1472 {
1473         int rc;
1474
1475         rc = devres_release(regulator->dev, devm_regulator_release,
1476                             devm_regulator_match, regulator);
1477         if (rc != 0)
1478                 WARN_ON(rc);
1479 }
1480 EXPORT_SYMBOL_GPL(devm_regulator_put);
1481
1482 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1483 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1484                                 const struct regulator_config *config)
1485 {
1486         struct regulator_enable_gpio *pin;
1487         int ret;
1488
1489         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1490                 if (pin->gpio == config->ena_gpio) {
1491                         rdev_dbg(rdev, "GPIO %d is already used\n",
1492                                 config->ena_gpio);
1493                         goto update_ena_gpio_to_rdev;
1494                 }
1495         }
1496
1497         ret = gpio_request_one(config->ena_gpio,
1498                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1499                                 rdev_get_name(rdev));
1500         if (ret)
1501                 return ret;
1502
1503         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1504         if (pin == NULL) {
1505                 gpio_free(config->ena_gpio);
1506                 return -ENOMEM;
1507         }
1508
1509         pin->gpio = config->ena_gpio;
1510         pin->ena_gpio_invert = config->ena_gpio_invert;
1511         list_add(&pin->list, &regulator_ena_gpio_list);
1512
1513 update_ena_gpio_to_rdev:
1514         pin->request_count++;
1515         rdev->ena_pin = pin;
1516         return 0;
1517 }
1518
1519 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1520 {
1521         struct regulator_enable_gpio *pin, *n;
1522
1523         if (!rdev->ena_pin)
1524                 return;
1525
1526         /* Free the GPIO only in case of no use */
1527         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1528                 if (pin->gpio == rdev->ena_pin->gpio) {
1529                         if (pin->request_count <= 1) {
1530                                 pin->request_count = 0;
1531                                 gpio_free(pin->gpio);
1532                                 list_del(&pin->list);
1533                                 kfree(pin);
1534                         } else {
1535                                 pin->request_count--;
1536                         }
1537                 }
1538         }
1539 }
1540
1541 /**
1542  * Balance enable_count of each GPIO and actual GPIO pin control.
1543  * GPIO is enabled in case of initial use. (enable_count is 0)
1544  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1545  */
1546 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1547 {
1548         struct regulator_enable_gpio *pin = rdev->ena_pin;
1549
1550         if (!pin)
1551                 return -EINVAL;
1552
1553         if (enable) {
1554                 /* Enable GPIO at initial use */
1555                 if (pin->enable_count == 0)
1556                         gpio_set_value_cansleep(pin->gpio,
1557                                                 !pin->ena_gpio_invert);
1558
1559                 pin->enable_count++;
1560         } else {
1561                 if (pin->enable_count > 1) {
1562                         pin->enable_count--;
1563                         return 0;
1564                 }
1565
1566                 /* Disable GPIO if not used */
1567                 if (pin->enable_count <= 1) {
1568                         gpio_set_value_cansleep(pin->gpio,
1569                                                 pin->ena_gpio_invert);
1570                         pin->enable_count = 0;
1571                 }
1572         }
1573
1574         return 0;
1575 }
1576
1577 static int _regulator_do_enable(struct regulator_dev *rdev)
1578 {
1579         int ret, delay;
1580
1581         /* Query before enabling in case configuration dependent.  */
1582         ret = _regulator_get_enable_time(rdev);
1583         if (ret >= 0) {
1584                 delay = ret;
1585         } else {
1586                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1587                 delay = 0;
1588         }
1589
1590         trace_regulator_enable(rdev_get_name(rdev));
1591
1592         if (rdev->ena_pin) {
1593                 ret = regulator_ena_gpio_ctrl(rdev, true);
1594                 if (ret < 0)
1595                         return ret;
1596                 rdev->ena_gpio_state = 1;
1597         } else if (rdev->desc->ops->enable) {
1598                 ret = rdev->desc->ops->enable(rdev);
1599                 if (ret < 0)
1600                         return ret;
1601         } else {
1602                 return -EINVAL;
1603         }
1604
1605         /* Allow the regulator to ramp; it would be useful to extend
1606          * this for bulk operations so that the regulators can ramp
1607          * together.  */
1608         trace_regulator_enable_delay(rdev_get_name(rdev));
1609
1610         if (delay >= 1000) {
1611                 mdelay(delay / 1000);
1612                 udelay(delay % 1000);
1613         } else if (delay) {
1614                 udelay(delay);
1615         }
1616
1617         trace_regulator_enable_complete(rdev_get_name(rdev));
1618
1619         return 0;
1620 }
1621
1622 /* locks held by regulator_enable() */
1623 static int _regulator_enable(struct regulator_dev *rdev)
1624 {
1625         int ret;
1626
1627         /* check voltage and requested load before enabling */
1628         if (rdev->constraints &&
1629             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1630                 drms_uA_update(rdev);
1631
1632         if (rdev->use_count == 0) {
1633                 /* The regulator may on if it's not switchable or left on */
1634                 ret = _regulator_is_enabled(rdev);
1635                 if (ret == -EINVAL || ret == 0) {
1636                         if (!_regulator_can_change_status(rdev))
1637                                 return -EPERM;
1638
1639                         ret = _regulator_do_enable(rdev);
1640                         if (ret < 0)
1641                                 return ret;
1642
1643                 } else if (ret < 0) {
1644                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1645                         return ret;
1646                 }
1647                 /* Fallthrough on positive return values - already enabled */
1648         }
1649
1650         rdev->use_count++;
1651
1652         return 0;
1653 }
1654
1655 /**
1656  * regulator_enable - enable regulator output
1657  * @regulator: regulator source
1658  *
1659  * Request that the regulator be enabled with the regulator output at
1660  * the predefined voltage or current value.  Calls to regulator_enable()
1661  * must be balanced with calls to regulator_disable().
1662  *
1663  * NOTE: the output value can be set by other drivers, boot loader or may be
1664  * hardwired in the regulator.
1665  */
1666 int regulator_enable(struct regulator *regulator)
1667 {
1668         struct regulator_dev *rdev = regulator->rdev;
1669         int ret = 0;
1670
1671         if (regulator->always_on)
1672                 return 0;
1673
1674         if (rdev->supply) {
1675                 ret = regulator_enable(rdev->supply);
1676                 if (ret != 0)
1677                         return ret;
1678         }
1679
1680         mutex_lock(&rdev->mutex);
1681         ret = _regulator_enable(rdev);
1682         mutex_unlock(&rdev->mutex);
1683
1684         if (ret != 0 && rdev->supply)
1685                 regulator_disable(rdev->supply);
1686
1687         return ret;
1688 }
1689 EXPORT_SYMBOL_GPL(regulator_enable);
1690
1691 static int _regulator_do_disable(struct regulator_dev *rdev)
1692 {
1693         int ret;
1694
1695         trace_regulator_disable(rdev_get_name(rdev));
1696
1697         if (rdev->ena_pin) {
1698                 ret = regulator_ena_gpio_ctrl(rdev, false);
1699                 if (ret < 0)
1700                         return ret;
1701                 rdev->ena_gpio_state = 0;
1702
1703         } else if (rdev->desc->ops->disable) {
1704                 ret = rdev->desc->ops->disable(rdev);
1705                 if (ret != 0)
1706                         return ret;
1707         }
1708
1709         trace_regulator_disable_complete(rdev_get_name(rdev));
1710
1711         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1712                              NULL);
1713         return 0;
1714 }
1715
1716 /* locks held by regulator_disable() */
1717 static int _regulator_disable(struct regulator_dev *rdev)
1718 {
1719         int ret = 0;
1720
1721         if (WARN(rdev->use_count <= 0,
1722                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1723                 return -EIO;
1724
1725         /* are we the last user and permitted to disable ? */
1726         if (rdev->use_count == 1 &&
1727             (rdev->constraints && !rdev->constraints->always_on)) {
1728
1729                 /* we are last user */
1730                 if (_regulator_can_change_status(rdev)) {
1731                         ret = _regulator_do_disable(rdev);
1732                         if (ret < 0) {
1733                                 rdev_err(rdev, "failed to disable\n");
1734                                 return ret;
1735                         }
1736                 }
1737
1738                 rdev->use_count = 0;
1739         } else if (rdev->use_count > 1) {
1740
1741                 if (rdev->constraints &&
1742                         (rdev->constraints->valid_ops_mask &
1743                         REGULATOR_CHANGE_DRMS))
1744                         drms_uA_update(rdev);
1745
1746                 rdev->use_count--;
1747         }
1748
1749         return ret;
1750 }
1751
1752 /**
1753  * regulator_disable - disable regulator output
1754  * @regulator: regulator source
1755  *
1756  * Disable the regulator output voltage or current.  Calls to
1757  * regulator_enable() must be balanced with calls to
1758  * regulator_disable().
1759  *
1760  * NOTE: this will only disable the regulator output if no other consumer
1761  * devices have it enabled, the regulator device supports disabling and
1762  * machine constraints permit this operation.
1763  */
1764 int regulator_disable(struct regulator *regulator)
1765 {
1766         struct regulator_dev *rdev = regulator->rdev;
1767         int ret = 0;
1768
1769         if (regulator->always_on)
1770                 return 0;
1771
1772         mutex_lock(&rdev->mutex);
1773         ret = _regulator_disable(rdev);
1774         mutex_unlock(&rdev->mutex);
1775
1776         if (ret == 0 && rdev->supply)
1777                 regulator_disable(rdev->supply);
1778
1779         return ret;
1780 }
1781 EXPORT_SYMBOL_GPL(regulator_disable);
1782
1783 /* locks held by regulator_force_disable() */
1784 static int _regulator_force_disable(struct regulator_dev *rdev)
1785 {
1786         int ret = 0;
1787
1788         /* force disable */
1789         if (rdev->desc->ops->disable) {
1790                 /* ah well, who wants to live forever... */
1791                 ret = rdev->desc->ops->disable(rdev);
1792                 if (ret < 0) {
1793                         rdev_err(rdev, "failed to force disable\n");
1794                         return ret;
1795                 }
1796                 /* notify other consumers that power has been forced off */
1797                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1798                         REGULATOR_EVENT_DISABLE, NULL);
1799         }
1800
1801         return ret;
1802 }
1803
1804 /**
1805  * regulator_force_disable - force disable regulator output
1806  * @regulator: regulator source
1807  *
1808  * Forcibly disable the regulator output voltage or current.
1809  * NOTE: this *will* disable the regulator output even if other consumer
1810  * devices have it enabled. This should be used for situations when device
1811  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1812  */
1813 int regulator_force_disable(struct regulator *regulator)
1814 {
1815         struct regulator_dev *rdev = regulator->rdev;
1816         int ret;
1817
1818         mutex_lock(&rdev->mutex);
1819         regulator->uA_load = 0;
1820         ret = _regulator_force_disable(regulator->rdev);
1821         mutex_unlock(&rdev->mutex);
1822
1823         if (rdev->supply)
1824                 while (rdev->open_count--)
1825                         regulator_disable(rdev->supply);
1826
1827         return ret;
1828 }
1829 EXPORT_SYMBOL_GPL(regulator_force_disable);
1830
1831 static void regulator_disable_work(struct work_struct *work)
1832 {
1833         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1834                                                   disable_work.work);
1835         int count, i, ret;
1836
1837         mutex_lock(&rdev->mutex);
1838
1839         BUG_ON(!rdev->deferred_disables);
1840
1841         count = rdev->deferred_disables;
1842         rdev->deferred_disables = 0;
1843
1844         for (i = 0; i < count; i++) {
1845                 ret = _regulator_disable(rdev);
1846                 if (ret != 0)
1847                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1848         }
1849
1850         mutex_unlock(&rdev->mutex);
1851
1852         if (rdev->supply) {
1853                 for (i = 0; i < count; i++) {
1854                         ret = regulator_disable(rdev->supply);
1855                         if (ret != 0) {
1856                                 rdev_err(rdev,
1857                                          "Supply disable failed: %d\n", ret);
1858                         }
1859                 }
1860         }
1861 }
1862
1863 /**
1864  * regulator_disable_deferred - disable regulator output with delay
1865  * @regulator: regulator source
1866  * @ms: miliseconds until the regulator is disabled
1867  *
1868  * Execute regulator_disable() on the regulator after a delay.  This
1869  * is intended for use with devices that require some time to quiesce.
1870  *
1871  * NOTE: this will only disable the regulator output if no other consumer
1872  * devices have it enabled, the regulator device supports disabling and
1873  * machine constraints permit this operation.
1874  */
1875 int regulator_disable_deferred(struct regulator *regulator, int ms)
1876 {
1877         struct regulator_dev *rdev = regulator->rdev;
1878         int ret;
1879
1880         if (regulator->always_on)
1881                 return 0;
1882
1883         if (!ms)
1884                 return regulator_disable(regulator);
1885
1886         mutex_lock(&rdev->mutex);
1887         rdev->deferred_disables++;
1888         mutex_unlock(&rdev->mutex);
1889
1890         ret = schedule_delayed_work(&rdev->disable_work,
1891                                     msecs_to_jiffies(ms));
1892         if (ret < 0)
1893                 return ret;
1894         else
1895                 return 0;
1896 }
1897 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1898
1899 /**
1900  * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1901  *
1902  * @rdev: regulator to operate on
1903  *
1904  * Regulators that use regmap for their register I/O can set the
1905  * enable_reg and enable_mask fields in their descriptor and then use
1906  * this as their is_enabled operation, saving some code.
1907  */
1908 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1909 {
1910         unsigned int val;
1911         int ret;
1912
1913         ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1914         if (ret != 0)
1915                 return ret;
1916
1917         if (rdev->desc->enable_is_inverted)
1918                 return (val & rdev->desc->enable_mask) == 0;
1919         else
1920                 return (val & rdev->desc->enable_mask) != 0;
1921 }
1922 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1923
1924 /**
1925  * regulator_enable_regmap - standard enable() for regmap users
1926  *
1927  * @rdev: regulator to operate on
1928  *
1929  * Regulators that use regmap for their register I/O can set the
1930  * enable_reg and enable_mask fields in their descriptor and then use
1931  * this as their enable() operation, saving some code.
1932  */
1933 int regulator_enable_regmap(struct regulator_dev *rdev)
1934 {
1935         unsigned int val;
1936
1937         if (rdev->desc->enable_is_inverted)
1938                 val = 0;
1939         else
1940                 val = rdev->desc->enable_mask;
1941
1942         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1943                                   rdev->desc->enable_mask, val);
1944 }
1945 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1946
1947 /**
1948  * regulator_disable_regmap - standard disable() for regmap users
1949  *
1950  * @rdev: regulator to operate on
1951  *
1952  * Regulators that use regmap for their register I/O can set the
1953  * enable_reg and enable_mask fields in their descriptor and then use
1954  * this as their disable() operation, saving some code.
1955  */
1956 int regulator_disable_regmap(struct regulator_dev *rdev)
1957 {
1958         unsigned int val;
1959
1960         if (rdev->desc->enable_is_inverted)
1961                 val = rdev->desc->enable_mask;
1962         else
1963                 val = 0;
1964
1965         return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1966                                   rdev->desc->enable_mask, val);
1967 }
1968 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1969
1970 static int _regulator_is_enabled(struct regulator_dev *rdev)
1971 {
1972         /* A GPIO control always takes precedence */
1973         if (rdev->ena_pin)
1974                 return rdev->ena_gpio_state;
1975
1976         /* If we don't know then assume that the regulator is always on */
1977         if (!rdev->desc->ops->is_enabled)
1978                 return 1;
1979
1980         return rdev->desc->ops->is_enabled(rdev);
1981 }
1982
1983 /**
1984  * regulator_is_enabled - is the regulator output enabled
1985  * @regulator: regulator source
1986  *
1987  * Returns positive if the regulator driver backing the source/client
1988  * has requested that the device be enabled, zero if it hasn't, else a
1989  * negative errno code.
1990  *
1991  * Note that the device backing this regulator handle can have multiple
1992  * users, so it might be enabled even if regulator_enable() was never
1993  * called for this particular source.
1994  */
1995 int regulator_is_enabled(struct regulator *regulator)
1996 {
1997         int ret;
1998
1999         if (regulator->always_on)
2000                 return 1;
2001
2002         mutex_lock(&regulator->rdev->mutex);
2003         ret = _regulator_is_enabled(regulator->rdev);
2004         mutex_unlock(&regulator->rdev->mutex);
2005
2006         return ret;
2007 }
2008 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2009
2010 /**
2011  * regulator_can_change_voltage - check if regulator can change voltage
2012  * @regulator: regulator source
2013  *
2014  * Returns positive if the regulator driver backing the source/client
2015  * can change its voltage, false otherwise. Usefull for detecting fixed
2016  * or dummy regulators and disabling voltage change logic in the client
2017  * driver.
2018  */
2019 int regulator_can_change_voltage(struct regulator *regulator)
2020 {
2021         struct regulator_dev    *rdev = regulator->rdev;
2022
2023         if (rdev->constraints &&
2024             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2025                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2026                         return 1;
2027
2028                 if (rdev->desc->continuous_voltage_range &&
2029                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2030                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2031                         return 1;
2032         }
2033
2034         return 0;
2035 }
2036 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2037
2038 /**
2039  * regulator_count_voltages - count regulator_list_voltage() selectors
2040  * @regulator: regulator source
2041  *
2042  * Returns number of selectors, or negative errno.  Selectors are
2043  * numbered starting at zero, and typically correspond to bitfields
2044  * in hardware registers.
2045  */
2046 int regulator_count_voltages(struct regulator *regulator)
2047 {
2048         struct regulator_dev    *rdev = regulator->rdev;
2049
2050         return rdev->desc->n_voltages ? : -EINVAL;
2051 }
2052 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2053
2054 /**
2055  * regulator_list_voltage_linear - List voltages with simple calculation
2056  *
2057  * @rdev: Regulator device
2058  * @selector: Selector to convert into a voltage
2059  *
2060  * Regulators with a simple linear mapping between voltages and
2061  * selectors can set min_uV and uV_step in the regulator descriptor
2062  * and then use this function as their list_voltage() operation,
2063  */
2064 int regulator_list_voltage_linear(struct regulator_dev *rdev,
2065                                   unsigned int selector)
2066 {
2067         if (selector >= rdev->desc->n_voltages)
2068                 return -EINVAL;
2069         if (selector < rdev->desc->linear_min_sel)
2070                 return 0;
2071
2072         selector -= rdev->desc->linear_min_sel;
2073
2074         return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
2075 }
2076 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
2077
2078 /**
2079  * regulator_list_voltage_table - List voltages with table based mapping
2080  *
2081  * @rdev: Regulator device
2082  * @selector: Selector to convert into a voltage
2083  *
2084  * Regulators with table based mapping between voltages and
2085  * selectors can set volt_table in the regulator descriptor
2086  * and then use this function as their list_voltage() operation.
2087  */
2088 int regulator_list_voltage_table(struct regulator_dev *rdev,
2089                                  unsigned int selector)
2090 {
2091         if (!rdev->desc->volt_table) {
2092                 BUG_ON(!rdev->desc->volt_table);
2093                 return -EINVAL;
2094         }
2095
2096         if (selector >= rdev->desc->n_voltages)
2097                 return -EINVAL;
2098
2099         return rdev->desc->volt_table[selector];
2100 }
2101 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
2102
2103 /**
2104  * regulator_list_voltage - enumerate supported voltages
2105  * @regulator: regulator source
2106  * @selector: identify voltage to list
2107  * Context: can sleep
2108  *
2109  * Returns a voltage that can be passed to @regulator_set_voltage(),
2110  * zero if this selector code can't be used on this system, or a
2111  * negative errno.
2112  */
2113 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2114 {
2115         struct regulator_dev    *rdev = regulator->rdev;
2116         struct regulator_ops    *ops = rdev->desc->ops;
2117         int                     ret;
2118
2119         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2120                 return -EINVAL;
2121
2122         mutex_lock(&rdev->mutex);
2123         ret = ops->list_voltage(rdev, selector);
2124         mutex_unlock(&rdev->mutex);
2125
2126         if (ret > 0) {
2127                 if (ret < rdev->constraints->min_uV)
2128                         ret = 0;
2129                 else if (ret > rdev->constraints->max_uV)
2130                         ret = 0;
2131         }
2132
2133         return ret;
2134 }
2135 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2136
2137 /**
2138  * regulator_is_supported_voltage - check if a voltage range can be supported
2139  *
2140  * @regulator: Regulator to check.
2141  * @min_uV: Minimum required voltage in uV.
2142  * @max_uV: Maximum required voltage in uV.
2143  *
2144  * Returns a boolean or a negative error code.
2145  */
2146 int regulator_is_supported_voltage(struct regulator *regulator,
2147                                    int min_uV, int max_uV)
2148 {
2149         struct regulator_dev *rdev = regulator->rdev;
2150         int i, voltages, ret;
2151
2152         /* If we can't change voltage check the current voltage */
2153         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2154                 ret = regulator_get_voltage(regulator);
2155                 if (ret >= 0)
2156                         return (min_uV <= ret && ret <= max_uV);
2157                 else
2158                         return ret;
2159         }
2160
2161         /* Any voltage within constrains range is fine? */
2162         if (rdev->desc->continuous_voltage_range)
2163                 return min_uV >= rdev->constraints->min_uV &&
2164                                 max_uV <= rdev->constraints->max_uV;
2165
2166         ret = regulator_count_voltages(regulator);
2167         if (ret < 0)
2168                 return ret;
2169         voltages = ret;
2170
2171         for (i = 0; i < voltages; i++) {
2172                 ret = regulator_list_voltage(regulator, i);
2173
2174                 if (ret >= min_uV && ret <= max_uV)
2175                         return 1;
2176         }
2177
2178         return 0;
2179 }
2180 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2181
2182 /**
2183  * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2184  *
2185  * @rdev: regulator to operate on
2186  *
2187  * Regulators that use regmap for their register I/O can set the
2188  * vsel_reg and vsel_mask fields in their descriptor and then use this
2189  * as their get_voltage_vsel operation, saving some code.
2190  */
2191 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2192 {
2193         unsigned int val;
2194         int ret;
2195
2196         ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2197         if (ret != 0)
2198                 return ret;
2199
2200         val &= rdev->desc->vsel_mask;
2201         val >>= ffs(rdev->desc->vsel_mask) - 1;
2202
2203         return val;
2204 }
2205 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2206
2207 /**
2208  * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2209  *
2210  * @rdev: regulator to operate on
2211  * @sel: Selector to set
2212  *
2213  * Regulators that use regmap for their register I/O can set the
2214  * vsel_reg and vsel_mask fields in their descriptor and then use this
2215  * as their set_voltage_vsel operation, saving some code.
2216  */
2217 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2218 {
2219         int ret;
2220
2221         sel <<= ffs(rdev->desc->vsel_mask) - 1;
2222
2223         ret = regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2224                                   rdev->desc->vsel_mask, sel);
2225         if (ret)
2226                 return ret;
2227
2228         if (rdev->desc->apply_bit)
2229                 ret = regmap_update_bits(rdev->regmap, rdev->desc->apply_reg,
2230                                          rdev->desc->apply_bit,
2231                                          rdev->desc->apply_bit);
2232         return ret;
2233 }
2234 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2235
2236 /**
2237  * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2238  *
2239  * @rdev: Regulator to operate on
2240  * @min_uV: Lower bound for voltage
2241  * @max_uV: Upper bound for voltage
2242  *
2243  * Drivers implementing set_voltage_sel() and list_voltage() can use
2244  * this as their map_voltage() operation.  It will find a suitable
2245  * voltage by calling list_voltage() until it gets something in bounds
2246  * for the requested voltages.
2247  */
2248 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2249                                   int min_uV, int max_uV)
2250 {
2251         int best_val = INT_MAX;
2252         int selector = 0;
2253         int i, ret;
2254
2255         /* Find the smallest voltage that falls within the specified
2256          * range.
2257          */
2258         for (i = 0; i < rdev->desc->n_voltages; i++) {
2259                 ret = rdev->desc->ops->list_voltage(rdev, i);
2260                 if (ret < 0)
2261                         continue;
2262
2263                 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2264                         best_val = ret;
2265                         selector = i;
2266                 }
2267         }
2268
2269         if (best_val != INT_MAX)
2270                 return selector;
2271         else
2272                 return -EINVAL;
2273 }
2274 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2275
2276 /**
2277  * regulator_map_voltage_ascend - map_voltage() for ascendant voltage list
2278  *
2279  * @rdev: Regulator to operate on
2280  * @min_uV: Lower bound for voltage
2281  * @max_uV: Upper bound for voltage
2282  *
2283  * Drivers that have ascendant voltage list can use this as their
2284  * map_voltage() operation.
2285  */
2286 int regulator_map_voltage_ascend(struct regulator_dev *rdev,
2287                                  int min_uV, int max_uV)
2288 {
2289         int i, ret;
2290
2291         for (i = 0; i < rdev->desc->n_voltages; i++) {
2292                 ret = rdev->desc->ops->list_voltage(rdev, i);
2293                 if (ret < 0)
2294                         continue;
2295
2296                 if (ret > max_uV)
2297                         break;
2298
2299                 if (ret >= min_uV && ret <= max_uV)
2300                         return i;
2301         }
2302
2303         return -EINVAL;
2304 }
2305 EXPORT_SYMBOL_GPL(regulator_map_voltage_ascend);
2306
2307 /**
2308  * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2309  *
2310  * @rdev: Regulator to operate on
2311  * @min_uV: Lower bound for voltage
2312  * @max_uV: Upper bound for voltage
2313  *
2314  * Drivers providing min_uV and uV_step in their regulator_desc can
2315  * use this as their map_voltage() operation.
2316  */
2317 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2318                                  int min_uV, int max_uV)
2319 {
2320         int ret, voltage;
2321
2322         /* Allow uV_step to be 0 for fixed voltage */
2323         if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2324                 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2325                         return 0;
2326                 else
2327                         return -EINVAL;
2328         }
2329
2330         if (!rdev->desc->uV_step) {
2331                 BUG_ON(!rdev->desc->uV_step);
2332                 return -EINVAL;
2333         }
2334
2335         if (min_uV < rdev->desc->min_uV)
2336                 min_uV = rdev->desc->min_uV;
2337
2338         ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2339         if (ret < 0)
2340                 return ret;
2341
2342         ret += rdev->desc->linear_min_sel;
2343
2344         /* Map back into a voltage to verify we're still in bounds */
2345         voltage = rdev->desc->ops->list_voltage(rdev, ret);
2346         if (voltage < min_uV || voltage > max_uV)
2347                 return -EINVAL;
2348
2349         return ret;
2350 }
2351 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2352
2353 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2354                                      int min_uV, int max_uV)
2355 {
2356         int ret;
2357         int delay = 0;
2358         int best_val = 0;
2359         unsigned int selector;
2360         int old_selector = -1;
2361
2362         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2363
2364         min_uV += rdev->constraints->uV_offset;
2365         max_uV += rdev->constraints->uV_offset;
2366
2367         /*
2368          * If we can't obtain the old selector there is not enough
2369          * info to call set_voltage_time_sel().
2370          */
2371         if (_regulator_is_enabled(rdev) &&
2372             rdev->desc->ops->set_voltage_time_sel &&
2373             rdev->desc->ops->get_voltage_sel) {
2374                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2375                 if (old_selector < 0)
2376                         return old_selector;
2377         }
2378
2379         if (rdev->desc->ops->set_voltage) {
2380                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2381                                                    &selector);
2382
2383                 if (ret >= 0) {
2384                         if (rdev->desc->ops->list_voltage)
2385                                 best_val = rdev->desc->ops->list_voltage(rdev,
2386                                                                          selector);
2387                         else
2388                                 best_val = _regulator_get_voltage(rdev);
2389                 }
2390
2391         } else if (rdev->desc->ops->set_voltage_sel) {
2392                 if (rdev->desc->ops->map_voltage) {
2393                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2394                                                            max_uV);
2395                 } else {
2396                         if (rdev->desc->ops->list_voltage ==
2397                             regulator_list_voltage_linear)
2398                                 ret = regulator_map_voltage_linear(rdev,
2399                                                                 min_uV, max_uV);
2400                         else
2401                                 ret = regulator_map_voltage_iterate(rdev,
2402                                                                 min_uV, max_uV);
2403                 }
2404
2405                 if (ret >= 0) {
2406                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2407                         if (min_uV <= best_val && max_uV >= best_val) {
2408                                 selector = ret;
2409                                 if (old_selector == selector)
2410                                         ret = 0;
2411                                 else
2412                                         ret = rdev->desc->ops->set_voltage_sel(
2413                                                                 rdev, ret);
2414                         } else {
2415                                 ret = -EINVAL;
2416                         }
2417                 }
2418         } else {
2419                 ret = -EINVAL;
2420         }
2421
2422         /* Call set_voltage_time_sel if successfully obtained old_selector */
2423         if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2424             old_selector != selector && rdev->desc->ops->set_voltage_time_sel) {
2425
2426                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2427                                                 old_selector, selector);
2428                 if (delay < 0) {
2429                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2430                                   delay);
2431                         delay = 0;
2432                 }
2433
2434                 /* Insert any necessary delays */
2435                 if (delay >= 1000) {
2436                         mdelay(delay / 1000);
2437                         udelay(delay % 1000);
2438                 } else if (delay) {
2439                         udelay(delay);
2440                 }
2441         }
2442
2443         if (ret == 0 && best_val >= 0) {
2444                 unsigned long data = best_val;
2445
2446                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2447                                      (void *)data);
2448         }
2449
2450         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2451
2452         return ret;
2453 }
2454
2455 /**
2456  * regulator_set_voltage - set regulator output voltage
2457  * @regulator: regulator source
2458  * @min_uV: Minimum required voltage in uV
2459  * @max_uV: Maximum acceptable voltage in uV
2460  *
2461  * Sets a voltage regulator to the desired output voltage. This can be set
2462  * during any regulator state. IOW, regulator can be disabled or enabled.
2463  *
2464  * If the regulator is enabled then the voltage will change to the new value
2465  * immediately otherwise if the regulator is disabled the regulator will
2466  * output at the new voltage when enabled.
2467  *
2468  * NOTE: If the regulator is shared between several devices then the lowest
2469  * request voltage that meets the system constraints will be used.
2470  * Regulator system constraints must be set for this regulator before
2471  * calling this function otherwise this call will fail.
2472  */
2473 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2474 {
2475         struct regulator_dev *rdev = regulator->rdev;
2476         int ret = 0;
2477         int old_min_uV, old_max_uV;
2478
2479         mutex_lock(&rdev->mutex);
2480
2481         /* If we're setting the same range as last time the change
2482          * should be a noop (some cpufreq implementations use the same
2483          * voltage for multiple frequencies, for example).
2484          */
2485         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2486                 goto out;
2487
2488         /* sanity check */
2489         if (!rdev->desc->ops->set_voltage &&
2490             !rdev->desc->ops->set_voltage_sel) {
2491                 ret = -EINVAL;
2492                 goto out;
2493         }
2494
2495         /* constraints check */
2496         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2497         if (ret < 0)
2498                 goto out;
2499         
2500         /* restore original values in case of error */
2501         old_min_uV = regulator->min_uV;
2502         old_max_uV = regulator->max_uV;
2503         regulator->min_uV = min_uV;
2504         regulator->max_uV = max_uV;
2505
2506         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2507         if (ret < 0)
2508                 goto out2;
2509
2510         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2511         if (ret < 0)
2512                 goto out2;
2513         
2514 out:
2515         mutex_unlock(&rdev->mutex);
2516         return ret;
2517 out2:
2518         regulator->min_uV = old_min_uV;
2519         regulator->max_uV = old_max_uV;
2520         mutex_unlock(&rdev->mutex);
2521         return ret;
2522 }
2523 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2524
2525 /**
2526  * regulator_set_voltage_time - get raise/fall time
2527  * @regulator: regulator source
2528  * @old_uV: starting voltage in microvolts
2529  * @new_uV: target voltage in microvolts
2530  *
2531  * Provided with the starting and ending voltage, this function attempts to
2532  * calculate the time in microseconds required to rise or fall to this new
2533  * voltage.
2534  */
2535 int regulator_set_voltage_time(struct regulator *regulator,
2536                                int old_uV, int new_uV)
2537 {
2538         struct regulator_dev    *rdev = regulator->rdev;
2539         struct regulator_ops    *ops = rdev->desc->ops;
2540         int old_sel = -1;
2541         int new_sel = -1;
2542         int voltage;
2543         int i;
2544
2545         /* Currently requires operations to do this */
2546         if (!ops->list_voltage || !ops->set_voltage_time_sel
2547             || !rdev->desc->n_voltages)
2548                 return -EINVAL;
2549
2550         for (i = 0; i < rdev->desc->n_voltages; i++) {
2551                 /* We only look for exact voltage matches here */
2552                 voltage = regulator_list_voltage(regulator, i);
2553                 if (voltage < 0)
2554                         return -EINVAL;
2555                 if (voltage == 0)
2556                         continue;
2557                 if (voltage == old_uV)
2558                         old_sel = i;
2559                 if (voltage == new_uV)
2560                         new_sel = i;
2561         }
2562
2563         if (old_sel < 0 || new_sel < 0)
2564                 return -EINVAL;
2565
2566         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2567 }
2568 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2569
2570 /**
2571  * regulator_set_voltage_time_sel - get raise/fall time
2572  * @rdev: regulator source device
2573  * @old_selector: selector for starting voltage
2574  * @new_selector: selector for target voltage
2575  *
2576  * Provided with the starting and target voltage selectors, this function
2577  * returns time in microseconds required to rise or fall to this new voltage
2578  *
2579  * Drivers providing ramp_delay in regulation_constraints can use this as their
2580  * set_voltage_time_sel() operation.
2581  */
2582 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2583                                    unsigned int old_selector,
2584                                    unsigned int new_selector)
2585 {
2586         unsigned int ramp_delay = 0;
2587         int old_volt, new_volt;
2588
2589         if (rdev->constraints->ramp_delay)
2590                 ramp_delay = rdev->constraints->ramp_delay;
2591         else if (rdev->desc->ramp_delay)
2592                 ramp_delay = rdev->desc->ramp_delay;
2593
2594         if (ramp_delay == 0) {
2595                 rdev_warn(rdev, "ramp_delay not set\n");
2596                 return 0;
2597         }
2598
2599         /* sanity check */
2600         if (!rdev->desc->ops->list_voltage)
2601                 return -EINVAL;
2602
2603         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2604         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2605
2606         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2607 }
2608 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2609
2610 /**
2611  * regulator_sync_voltage - re-apply last regulator output voltage
2612  * @regulator: regulator source
2613  *
2614  * Re-apply the last configured voltage.  This is intended to be used
2615  * where some external control source the consumer is cooperating with
2616  * has caused the configured voltage to change.
2617  */
2618 int regulator_sync_voltage(struct regulator *regulator)
2619 {
2620         struct regulator_dev *rdev = regulator->rdev;
2621         int ret, min_uV, max_uV;
2622
2623         mutex_lock(&rdev->mutex);
2624
2625         if (!rdev->desc->ops->set_voltage &&
2626             !rdev->desc->ops->set_voltage_sel) {
2627                 ret = -EINVAL;
2628                 goto out;
2629         }
2630
2631         /* This is only going to work if we've had a voltage configured. */
2632         if (!regulator->min_uV && !regulator->max_uV) {
2633                 ret = -EINVAL;
2634                 goto out;
2635         }
2636
2637         min_uV = regulator->min_uV;
2638         max_uV = regulator->max_uV;
2639
2640         /* This should be a paranoia check... */
2641         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2642         if (ret < 0)
2643                 goto out;
2644
2645         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2646         if (ret < 0)
2647                 goto out;
2648
2649         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2650
2651 out:
2652         mutex_unlock(&rdev->mutex);
2653         return ret;
2654 }
2655 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2656
2657 static int _regulator_get_voltage(struct regulator_dev *rdev)
2658 {
2659         int sel, ret;
2660
2661         if (rdev->desc->ops->get_voltage_sel) {
2662                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2663                 if (sel < 0)
2664                         return sel;
2665                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2666         } else if (rdev->desc->ops->get_voltage) {
2667                 ret = rdev->desc->ops->get_voltage(rdev);
2668         } else if (rdev->desc->ops->list_voltage) {
2669                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2670         } else {
2671                 return -EINVAL;
2672         }
2673
2674         if (ret < 0)
2675                 return ret;
2676         return ret - rdev->constraints->uV_offset;
2677 }
2678
2679 /**
2680  * regulator_get_voltage - get regulator output voltage
2681  * @regulator: regulator source
2682  *
2683  * This returns the current regulator voltage in uV.
2684  *
2685  * NOTE: If the regulator is disabled it will return the voltage value. This
2686  * function should not be used to determine regulator state.
2687  */
2688 int regulator_get_voltage(struct regulator *regulator)
2689 {
2690         int ret;
2691
2692         mutex_lock(&regulator->rdev->mutex);
2693
2694         ret = _regulator_get_voltage(regulator->rdev);
2695
2696         mutex_unlock(&regulator->rdev->mutex);
2697
2698         return ret;
2699 }
2700 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2701
2702 /**
2703  * regulator_set_current_limit - set regulator output current limit
2704  * @regulator: regulator source
2705  * @min_uA: Minimuum supported current in uA
2706  * @max_uA: Maximum supported current in uA
2707  *
2708  * Sets current sink to the desired output current. This can be set during
2709  * any regulator state. IOW, regulator can be disabled or enabled.
2710  *
2711  * If the regulator is enabled then the current will change to the new value
2712  * immediately otherwise if the regulator is disabled the regulator will
2713  * output at the new current when enabled.
2714  *
2715  * NOTE: Regulator system constraints must be set for this regulator before
2716  * calling this function otherwise this call will fail.
2717  */
2718 int regulator_set_current_limit(struct regulator *regulator,
2719                                int min_uA, int max_uA)
2720 {
2721         struct regulator_dev *rdev = regulator->rdev;
2722         int ret;
2723
2724         mutex_lock(&rdev->mutex);
2725
2726         /* sanity check */
2727         if (!rdev->desc->ops->set_current_limit) {
2728                 ret = -EINVAL;
2729                 goto out;
2730         }
2731
2732         /* constraints check */
2733         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2734         if (ret < 0)
2735                 goto out;
2736
2737         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2738 out:
2739         mutex_unlock(&rdev->mutex);
2740         return ret;
2741 }
2742 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2743
2744 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2745 {
2746         int ret;
2747
2748         mutex_lock(&rdev->mutex);
2749
2750         /* sanity check */
2751         if (!rdev->desc->ops->get_current_limit) {
2752                 ret = -EINVAL;
2753                 goto out;
2754         }
2755
2756         ret = rdev->desc->ops->get_current_limit(rdev);
2757 out:
2758         mutex_unlock(&rdev->mutex);
2759         return ret;
2760 }
2761
2762 /**
2763  * regulator_get_current_limit - get regulator output current
2764  * @regulator: regulator source
2765  *
2766  * This returns the current supplied by the specified current sink in uA.
2767  *
2768  * NOTE: If the regulator is disabled it will return the current value. This
2769  * function should not be used to determine regulator state.
2770  */
2771 int regulator_get_current_limit(struct regulator *regulator)
2772 {
2773         return _regulator_get_current_limit(regulator->rdev);
2774 }
2775 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2776
2777 /**
2778  * regulator_set_mode - set regulator operating mode
2779  * @regulator: regulator source
2780  * @mode: operating mode - one of the REGULATOR_MODE constants
2781  *
2782  * Set regulator operating mode to increase regulator efficiency or improve
2783  * regulation performance.
2784  *
2785  * NOTE: Regulator system constraints must be set for this regulator before
2786  * calling this function otherwise this call will fail.
2787  */
2788 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2789 {
2790         struct regulator_dev *rdev = regulator->rdev;
2791         int ret;
2792         int regulator_curr_mode;
2793
2794         mutex_lock(&rdev->mutex);
2795
2796         /* sanity check */
2797         if (!rdev->desc->ops->set_mode) {
2798                 ret = -EINVAL;
2799                 goto out;
2800         }
2801
2802         /* return if the same mode is requested */
2803         if (rdev->desc->ops->get_mode) {
2804                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2805                 if (regulator_curr_mode == mode) {
2806                         ret = 0;
2807                         goto out;
2808                 }
2809         }
2810
2811         /* constraints check */
2812         ret = regulator_mode_constrain(rdev, &mode);
2813         if (ret < 0)
2814                 goto out;
2815
2816         ret = rdev->desc->ops->set_mode(rdev, mode);
2817 out:
2818         mutex_unlock(&rdev->mutex);
2819         return ret;
2820 }
2821 EXPORT_SYMBOL_GPL(regulator_set_mode);
2822
2823 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2824 {
2825         int ret;
2826
2827         mutex_lock(&rdev->mutex);
2828
2829         /* sanity check */
2830         if (!rdev->desc->ops->get_mode) {
2831                 ret = -EINVAL;
2832                 goto out;
2833         }
2834
2835         ret = rdev->desc->ops->get_mode(rdev);
2836 out:
2837         mutex_unlock(&rdev->mutex);
2838         return ret;
2839 }
2840
2841 /**
2842  * regulator_get_mode - get regulator operating mode
2843  * @regulator: regulator source
2844  *
2845  * Get the current regulator operating mode.
2846  */
2847 unsigned int regulator_get_mode(struct regulator *regulator)
2848 {
2849         return _regulator_get_mode(regulator->rdev);
2850 }
2851 EXPORT_SYMBOL_GPL(regulator_get_mode);
2852
2853 /**
2854  * regulator_set_optimum_mode - set regulator optimum operating mode
2855  * @regulator: regulator source
2856  * @uA_load: load current
2857  *
2858  * Notifies the regulator core of a new device load. This is then used by
2859  * DRMS (if enabled by constraints) to set the most efficient regulator
2860  * operating mode for the new regulator loading.
2861  *
2862  * Consumer devices notify their supply regulator of the maximum power
2863  * they will require (can be taken from device datasheet in the power
2864  * consumption tables) when they change operational status and hence power
2865  * state. Examples of operational state changes that can affect power
2866  * consumption are :-
2867  *
2868  *    o Device is opened / closed.
2869  *    o Device I/O is about to begin or has just finished.
2870  *    o Device is idling in between work.
2871  *
2872  * This information is also exported via sysfs to userspace.
2873  *
2874  * DRMS will sum the total requested load on the regulator and change
2875  * to the most efficient operating mode if platform constraints allow.
2876  *
2877  * Returns the new regulator mode or error.
2878  */
2879 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2880 {
2881         struct regulator_dev *rdev = regulator->rdev;
2882         struct regulator *consumer;
2883         int ret, output_uV, input_uV = 0, total_uA_load = 0;
2884         unsigned int mode;
2885
2886         if (rdev->supply)
2887                 input_uV = regulator_get_voltage(rdev->supply);
2888
2889         mutex_lock(&rdev->mutex);
2890
2891         /*
2892          * first check to see if we can set modes at all, otherwise just
2893          * tell the consumer everything is OK.
2894          */
2895         regulator->uA_load = uA_load;
2896         ret = regulator_check_drms(rdev);
2897         if (ret < 0) {
2898                 ret = 0;
2899                 goto out;
2900         }
2901
2902         if (!rdev->desc->ops->get_optimum_mode)
2903                 goto out;
2904
2905         /*
2906          * we can actually do this so any errors are indicators of
2907          * potential real failure.
2908          */
2909         ret = -EINVAL;
2910
2911         if (!rdev->desc->ops->set_mode)
2912                 goto out;
2913
2914         /* get output voltage */
2915         output_uV = _regulator_get_voltage(rdev);
2916         if (output_uV <= 0) {
2917                 rdev_err(rdev, "invalid output voltage found\n");
2918                 goto out;
2919         }
2920
2921         /* No supply? Use constraint voltage */
2922         if (input_uV <= 0)
2923                 input_uV = rdev->constraints->input_uV;
2924         if (input_uV <= 0) {
2925                 rdev_err(rdev, "invalid input voltage found\n");
2926                 goto out;
2927         }
2928
2929         /* calc total requested load for this regulator */
2930         list_for_each_entry(consumer, &rdev->consumer_list, list)
2931                 total_uA_load += consumer->uA_load;
2932
2933         mode = rdev->desc->ops->get_optimum_mode(rdev,
2934                                                  input_uV, output_uV,
2935                                                  total_uA_load);
2936         ret = regulator_mode_constrain(rdev, &mode);
2937         if (ret < 0) {
2938                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2939                          total_uA_load, input_uV, output_uV);
2940                 goto out;
2941         }
2942
2943         ret = rdev->desc->ops->set_mode(rdev, mode);
2944         if (ret < 0) {
2945                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2946                 goto out;
2947         }
2948         ret = mode;
2949 out:
2950         mutex_unlock(&rdev->mutex);
2951         return ret;
2952 }
2953 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2954
2955 /**
2956  * regulator_set_bypass_regmap - Default set_bypass() using regmap
2957  *
2958  * @rdev: device to operate on.
2959  * @enable: state to set.
2960  */
2961 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2962 {
2963         unsigned int val;
2964
2965         if (enable)
2966                 val = rdev->desc->bypass_mask;
2967         else
2968                 val = 0;
2969
2970         return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2971                                   rdev->desc->bypass_mask, val);
2972 }
2973 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2974
2975 /**
2976  * regulator_get_bypass_regmap - Default get_bypass() using regmap
2977  *
2978  * @rdev: device to operate on.
2979  * @enable: current state.
2980  */
2981 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2982 {
2983         unsigned int val;
2984         int ret;
2985
2986         ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2987         if (ret != 0)
2988                 return ret;
2989
2990         *enable = val & rdev->desc->bypass_mask;
2991
2992         return 0;
2993 }
2994 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
2995
2996 /**
2997  * regulator_allow_bypass - allow the regulator to go into bypass mode
2998  *
2999  * @regulator: Regulator to configure
3000  * @enable: enable or disable bypass mode
3001  *
3002  * Allow the regulator to go into bypass mode if all other consumers
3003  * for the regulator also enable bypass mode and the machine
3004  * constraints allow this.  Bypass mode means that the regulator is
3005  * simply passing the input directly to the output with no regulation.
3006  */
3007 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3008 {
3009         struct regulator_dev *rdev = regulator->rdev;
3010         int ret = 0;
3011
3012         if (!rdev->desc->ops->set_bypass)
3013                 return 0;
3014
3015         if (rdev->constraints &&
3016             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3017                 return 0;
3018
3019         mutex_lock(&rdev->mutex);
3020
3021         if (enable && !regulator->bypass) {
3022                 rdev->bypass_count++;
3023
3024                 if (rdev->bypass_count == rdev->open_count) {
3025                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3026                         if (ret != 0)
3027                                 rdev->bypass_count--;
3028                 }
3029
3030         } else if (!enable && regulator->bypass) {
3031                 rdev->bypass_count--;
3032
3033                 if (rdev->bypass_count != rdev->open_count) {
3034                         ret = rdev->desc->ops->set_bypass(rdev, enable);
3035                         if (ret != 0)
3036                                 rdev->bypass_count++;
3037                 }
3038         }
3039
3040         if (ret == 0)
3041                 regulator->bypass = enable;
3042
3043         mutex_unlock(&rdev->mutex);
3044
3045         return ret;
3046 }
3047 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3048
3049 /**
3050  * regulator_register_notifier - register regulator event notifier
3051  * @regulator: regulator source
3052  * @nb: notifier block
3053  *
3054  * Register notifier block to receive regulator events.
3055  */
3056 int regulator_register_notifier(struct regulator *regulator,
3057                               struct notifier_block *nb)
3058 {
3059         return blocking_notifier_chain_register(&regulator->rdev->notifier,
3060                                                 nb);
3061 }
3062 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3063
3064 /**
3065  * regulator_unregister_notifier - unregister regulator event notifier
3066  * @regulator: regulator source
3067  * @nb: notifier block
3068  *
3069  * Unregister regulator event notifier block.
3070  */
3071 int regulator_unregister_notifier(struct regulator *regulator,
3072                                 struct notifier_block *nb)
3073 {
3074         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3075                                                   nb);
3076 }
3077 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3078
3079 /* notify regulator consumers and downstream regulator consumers.
3080  * Note mutex must be held by caller.
3081  */
3082 static void _notifier_call_chain(struct regulator_dev *rdev,
3083                                   unsigned long event, void *data)
3084 {
3085         /* call rdev chain first */
3086         blocking_notifier_call_chain(&rdev->notifier, event, data);
3087 }
3088
3089 /**
3090  * regulator_bulk_get - get multiple regulator consumers
3091  *
3092  * @dev:           Device to supply
3093  * @num_consumers: Number of consumers to register
3094  * @consumers:     Configuration of consumers; clients are stored here.
3095  *
3096  * @return 0 on success, an errno on failure.
3097  *
3098  * This helper function allows drivers to get several regulator
3099  * consumers in one operation.  If any of the regulators cannot be
3100  * acquired then any regulators that were allocated will be freed
3101  * before returning to the caller.
3102  */
3103 int regulator_bulk_get(struct device *dev, int num_consumers,
3104                        struct regulator_bulk_data *consumers)
3105 {
3106         int i;
3107         int ret;
3108
3109         for (i = 0; i < num_consumers; i++)
3110                 consumers[i].consumer = NULL;
3111
3112         for (i = 0; i < num_consumers; i++) {
3113                 consumers[i].consumer = regulator_get(dev,
3114                                                       consumers[i].supply);
3115                 if (IS_ERR(consumers[i].consumer)) {
3116                         ret = PTR_ERR(consumers[i].consumer);
3117                         dev_err(dev, "Failed to get supply '%s': %d\n",
3118                                 consumers[i].supply, ret);
3119                         consumers[i].consumer = NULL;
3120                         goto err;
3121                 }
3122         }
3123
3124         return 0;
3125
3126 err:
3127         while (--i >= 0)
3128                 regulator_put(consumers[i].consumer);
3129
3130         return ret;
3131 }
3132 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3133
3134 /**
3135  * devm_regulator_bulk_get - managed get multiple regulator consumers
3136  *
3137  * @dev:           Device to supply
3138  * @num_consumers: Number of consumers to register
3139  * @consumers:     Configuration of consumers; clients are stored here.
3140  *
3141  * @return 0 on success, an errno on failure.
3142  *
3143  * This helper function allows drivers to get several regulator
3144  * consumers in one operation with management, the regulators will
3145  * automatically be freed when the device is unbound.  If any of the
3146  * regulators cannot be acquired then any regulators that were
3147  * allocated will be freed before returning to the caller.
3148  */
3149 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
3150                             struct regulator_bulk_data *consumers)
3151 {
3152         int i;
3153         int ret;
3154
3155         for (i = 0; i < num_consumers; i++)
3156                 consumers[i].consumer = NULL;
3157
3158         for (i = 0; i < num_consumers; i++) {
3159                 consumers[i].consumer = devm_regulator_get(dev,
3160                                                            consumers[i].supply);
3161                 if (IS_ERR(consumers[i].consumer)) {
3162                         ret = PTR_ERR(consumers[i].consumer);
3163                         dev_err(dev, "Failed to get supply '%s': %d\n",
3164                                 consumers[i].supply, ret);
3165                         consumers[i].consumer = NULL;
3166                         goto err;
3167                 }
3168         }
3169
3170         return 0;
3171
3172 err:
3173         for (i = 0; i < num_consumers && consumers[i].consumer; i++)
3174                 devm_regulator_put(consumers[i].consumer);
3175
3176         return ret;
3177 }
3178 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
3179
3180 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3181 {
3182         struct regulator_bulk_data *bulk = data;
3183
3184         bulk->ret = regulator_enable(bulk->consumer);
3185 }
3186
3187 /**
3188  * regulator_bulk_enable - enable multiple regulator consumers
3189  *
3190  * @num_consumers: Number of consumers
3191  * @consumers:     Consumer data; clients are stored here.
3192  * @return         0 on success, an errno on failure
3193  *
3194  * This convenience API allows consumers to enable multiple regulator
3195  * clients in a single API call.  If any consumers cannot be enabled
3196  * then any others that were enabled will be disabled again prior to
3197  * return.
3198  */
3199 int regulator_bulk_enable(int num_consumers,
3200                           struct regulator_bulk_data *consumers)
3201 {
3202         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3203         int i;
3204         int ret = 0;
3205
3206         for (i = 0; i < num_consumers; i++) {
3207                 if (consumers[i].consumer->always_on)
3208                         consumers[i].ret = 0;
3209                 else
3210                         async_schedule_domain(regulator_bulk_enable_async,
3211                                               &consumers[i], &async_domain);
3212         }
3213
3214         async_synchronize_full_domain(&async_domain);
3215
3216         /* If any consumer failed we need to unwind any that succeeded */
3217         for (i = 0; i < num_consumers; i++) {
3218                 if (consumers[i].ret != 0) {
3219                         ret = consumers[i].ret;
3220                         goto err;
3221                 }
3222         }
3223
3224         return 0;
3225
3226 err:
3227         for (i = 0; i < num_consumers; i++) {
3228                 if (consumers[i].ret < 0)
3229                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3230                                consumers[i].ret);
3231                 else
3232                         regulator_disable(consumers[i].consumer);
3233         }
3234
3235         return ret;
3236 }
3237 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3238
3239 /**
3240  * regulator_bulk_disable - disable multiple regulator consumers
3241  *
3242  * @num_consumers: Number of consumers
3243  * @consumers:     Consumer data; clients are stored here.
3244  * @return         0 on success, an errno on failure
3245  *
3246  * This convenience API allows consumers to disable multiple regulator
3247  * clients in a single API call.  If any consumers cannot be disabled
3248  * then any others that were disabled will be enabled again prior to
3249  * return.
3250  */
3251 int regulator_bulk_disable(int num_consumers,
3252                            struct regulator_bulk_data *consumers)
3253 {
3254         int i;
3255         int ret, r;
3256
3257         for (i = num_consumers - 1; i >= 0; --i) {
3258                 ret = regulator_disable(consumers[i].consumer);
3259                 if (ret != 0)
3260                         goto err;
3261         }
3262
3263         return 0;
3264
3265 err:
3266         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3267         for (++i; i < num_consumers; ++i) {
3268                 r = regulator_enable(consumers[i].consumer);
3269                 if (r != 0)
3270                         pr_err("Failed to reename %s: %d\n",
3271                                consumers[i].supply, r);
3272         }
3273
3274         return ret;
3275 }
3276 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3277
3278 /**
3279  * regulator_bulk_force_disable - force disable multiple regulator consumers
3280  *
3281  * @num_consumers: Number of consumers
3282  * @consumers:     Consumer data; clients are stored here.
3283  * @return         0 on success, an errno on failure
3284  *
3285  * This convenience API allows consumers to forcibly disable multiple regulator
3286  * clients in a single API call.
3287  * NOTE: This should be used for situations when device damage will
3288  * likely occur if the regulators are not disabled (e.g. over temp).
3289  * Although regulator_force_disable function call for some consumers can
3290  * return error numbers, the function is called for all consumers.
3291  */
3292 int regulator_bulk_force_disable(int num_consumers,
3293                            struct regulator_bulk_data *consumers)
3294 {
3295         int i;
3296         int ret;
3297
3298         for (i = 0; i < num_consumers; i++)
3299                 consumers[i].ret =
3300                             regulator_force_disable(consumers[i].consumer);
3301
3302         for (i = 0; i < num_consumers; i++) {
3303                 if (consumers[i].ret != 0) {
3304                         ret = consumers[i].ret;
3305                         goto out;
3306                 }
3307         }
3308
3309         return 0;
3310 out:
3311         return ret;
3312 }
3313 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3314
3315 /**
3316  * regulator_bulk_free - free multiple regulator consumers
3317  *
3318  * @num_consumers: Number of consumers
3319  * @consumers:     Consumer data; clients are stored here.
3320  *
3321  * This convenience API allows consumers to free multiple regulator
3322  * clients in a single API call.
3323  */
3324 void regulator_bulk_free(int num_consumers,
3325                          struct regulator_bulk_data *consumers)
3326 {
3327         int i;
3328
3329         for (i = 0; i < num_consumers; i++) {
3330                 regulator_put(consumers[i].consumer);
3331                 consumers[i].consumer = NULL;
3332         }
3333 }
3334 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3335
3336 /**
3337  * regulator_notifier_call_chain - call regulator event notifier
3338  * @rdev: regulator source
3339  * @event: notifier block
3340  * @data: callback-specific data.
3341  *
3342  * Called by regulator drivers to notify clients a regulator event has
3343  * occurred. We also notify regulator clients downstream.
3344  * Note lock must be held by caller.
3345  */
3346 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3347                                   unsigned long event, void *data)
3348 {
3349         _notifier_call_chain(rdev, event, data);
3350         return NOTIFY_DONE;
3351
3352 }
3353 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3354
3355 /**
3356  * regulator_mode_to_status - convert a regulator mode into a status
3357  *
3358  * @mode: Mode to convert
3359  *
3360  * Convert a regulator mode into a status.
3361  */
3362 int regulator_mode_to_status(unsigned int mode)
3363 {
3364         switch (mode) {
3365         case REGULATOR_MODE_FAST:
3366                 return REGULATOR_STATUS_FAST;
3367         case REGULATOR_MODE_NORMAL:
3368                 return REGULATOR_STATUS_NORMAL;
3369         case REGULATOR_MODE_IDLE:
3370                 return REGULATOR_STATUS_IDLE;
3371         case REGULATOR_MODE_STANDBY:
3372                 return REGULATOR_STATUS_STANDBY;
3373         default:
3374                 return REGULATOR_STATUS_UNDEFINED;
3375         }
3376 }
3377 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3378
3379 /*
3380  * To avoid cluttering sysfs (and memory) with useless state, only
3381  * create attributes that can be meaningfully displayed.
3382  */
3383 static int add_regulator_attributes(struct regulator_dev *rdev)
3384 {
3385         struct device           *dev = &rdev->dev;
3386         struct regulator_ops    *ops = rdev->desc->ops;
3387         int                     status = 0;
3388
3389         /* some attributes need specific methods to be displayed */
3390         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3391             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3392             (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3393                 status = device_create_file(dev, &dev_attr_microvolts);
3394                 if (status < 0)
3395                         return status;
3396         }
3397         if (ops->get_current_limit) {
3398                 status = device_create_file(dev, &dev_attr_microamps);
3399                 if (status < 0)
3400                         return status;
3401         }
3402         if (ops->get_mode) {
3403                 status = device_create_file(dev, &dev_attr_opmode);
3404                 if (status < 0)
3405                         return status;
3406         }
3407         if (rdev->ena_pin || ops->is_enabled) {
3408                 status = device_create_file(dev, &dev_attr_state);
3409                 if (status < 0)
3410                         return status;
3411         }
3412         if (ops->get_status) {
3413                 status = device_create_file(dev, &dev_attr_status);
3414                 if (status < 0)
3415                         return status;
3416         }
3417         if (ops->get_bypass) {
3418                 status = device_create_file(dev, &dev_attr_bypass);
3419                 if (status < 0)
3420                         return status;
3421         }
3422
3423         /* some attributes are type-specific */
3424         if (rdev->desc->type == REGULATOR_CURRENT) {
3425                 status = device_create_file(dev, &dev_attr_requested_microamps);
3426                 if (status < 0)
3427                         return status;
3428         }
3429
3430         /* all the other attributes exist to support constraints;
3431          * don't show them if there are no constraints, or if the
3432          * relevant supporting methods are missing.
3433          */
3434         if (!rdev->constraints)
3435                 return status;
3436
3437         /* constraints need specific supporting methods */
3438         if (ops->set_voltage || ops->set_voltage_sel) {
3439                 status = device_create_file(dev, &dev_attr_min_microvolts);
3440                 if (status < 0)
3441                         return status;
3442                 status = device_create_file(dev, &dev_attr_max_microvolts);
3443                 if (status < 0)
3444                         return status;
3445         }
3446         if (ops->set_current_limit) {
3447                 status = device_create_file(dev, &dev_attr_min_microamps);
3448                 if (status < 0)
3449                         return status;
3450                 status = device_create_file(dev, &dev_attr_max_microamps);
3451                 if (status < 0)
3452                         return status;
3453         }
3454
3455         status = device_create_file(dev, &dev_attr_suspend_standby_state);
3456         if (status < 0)
3457                 return status;
3458         status = device_create_file(dev, &dev_attr_suspend_mem_state);
3459         if (status < 0)
3460                 return status;
3461         status = device_create_file(dev, &dev_attr_suspend_disk_state);
3462         if (status < 0)
3463                 return status;
3464
3465         if (ops->set_suspend_voltage) {
3466                 status = device_create_file(dev,
3467                                 &dev_attr_suspend_standby_microvolts);
3468                 if (status < 0)
3469                         return status;
3470                 status = device_create_file(dev,
3471                                 &dev_attr_suspend_mem_microvolts);
3472                 if (status < 0)
3473                         return status;
3474                 status = device_create_file(dev,
3475                                 &dev_attr_suspend_disk_microvolts);
3476                 if (status < 0)
3477                         return status;
3478         }
3479
3480         if (ops->set_suspend_mode) {
3481                 status = device_create_file(dev,
3482                                 &dev_attr_suspend_standby_mode);
3483                 if (status < 0)
3484                         return status;
3485                 status = device_create_file(dev,
3486                                 &dev_attr_suspend_mem_mode);
3487                 if (status < 0)
3488                         return status;
3489                 status = device_create_file(dev,
3490                                 &dev_attr_suspend_disk_mode);
3491                 if (status < 0)
3492                         return status;
3493         }
3494
3495         return status;
3496 }
3497
3498 static void rdev_init_debugfs(struct regulator_dev *rdev)
3499 {
3500         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3501         if (!rdev->debugfs) {
3502                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3503                 return;
3504         }
3505
3506         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3507                            &rdev->use_count);
3508         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3509                            &rdev->open_count);
3510         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3511                            &rdev->bypass_count);
3512 }
3513
3514 /**
3515  * regulator_register - register regulator
3516  * @regulator_desc: regulator to register
3517  * @config: runtime configuration for regulator
3518  *
3519  * Called by regulator drivers to register a regulator.
3520  * Returns a valid pointer to struct regulator_dev on success
3521  * or an ERR_PTR() on error.
3522  */
3523 struct regulator_dev *
3524 regulator_register(const struct regulator_desc *regulator_desc,
3525                    const struct regulator_config *config)
3526 {
3527         const struct regulation_constraints *constraints = NULL;
3528         const struct regulator_init_data *init_data;
3529         static atomic_t regulator_no = ATOMIC_INIT(0);
3530         struct regulator_dev *rdev;
3531         struct device *dev;
3532         int ret, i;
3533         const char *supply = NULL;
3534
3535         if (regulator_desc == NULL || config == NULL)
3536                 return ERR_PTR(-EINVAL);
3537
3538         dev = config->dev;
3539         WARN_ON(!dev);
3540
3541         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3542                 return ERR_PTR(-EINVAL);
3543
3544         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3545             regulator_desc->type != REGULATOR_CURRENT)
3546                 return ERR_PTR(-EINVAL);
3547
3548         /* Only one of each should be implemented */
3549         WARN_ON(regulator_desc->ops->get_voltage &&
3550                 regulator_desc->ops->get_voltage_sel);
3551         WARN_ON(regulator_desc->ops->set_voltage &&
3552                 regulator_desc->ops->set_voltage_sel);
3553
3554         /* If we're using selectors we must implement list_voltage. */
3555         if (regulator_desc->ops->get_voltage_sel &&
3556             !regulator_desc->ops->list_voltage) {
3557                 return ERR_PTR(-EINVAL);
3558         }
3559         if (regulator_desc->ops->set_voltage_sel &&
3560             !regulator_desc->ops->list_voltage) {
3561                 return ERR_PTR(-EINVAL);
3562         }
3563
3564         init_data = config->init_data;
3565
3566         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3567         if (rdev == NULL)
3568                 return ERR_PTR(-ENOMEM);
3569
3570         mutex_lock(&regulator_list_mutex);
3571
3572         mutex_init(&rdev->mutex);
3573         rdev->reg_data = config->driver_data;
3574         rdev->owner = regulator_desc->owner;
3575         rdev->desc = regulator_desc;
3576         if (config->regmap)
3577                 rdev->regmap = config->regmap;
3578         else if (dev_get_regmap(dev, NULL))
3579                 rdev->regmap = dev_get_regmap(dev, NULL);
3580         else if (dev->parent)
3581                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3582         INIT_LIST_HEAD(&rdev->consumer_list);
3583         INIT_LIST_HEAD(&rdev->list);
3584         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3585         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3586
3587         /* preform any regulator specific init */
3588         if (init_data && init_data->regulator_init) {
3589                 ret = init_data->regulator_init(rdev->reg_data);
3590                 if (ret < 0)
3591                         goto clean;
3592         }
3593
3594         /* register with sysfs */
3595         rdev->dev.class = &regulator_class;
3596         rdev->dev.of_node = config->of_node;
3597         rdev->dev.parent = dev;
3598         dev_set_name(&rdev->dev, "regulator.%d",
3599                      atomic_inc_return(&regulator_no) - 1);
3600         ret = device_register(&rdev->dev);
3601         if (ret != 0) {
3602                 put_device(&rdev->dev);
3603                 goto clean;
3604         }
3605
3606         dev_set_drvdata(&rdev->dev, rdev);
3607
3608         if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3609                 ret = regulator_ena_gpio_request(rdev, config);
3610                 if (ret != 0) {
3611                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3612                                  config->ena_gpio, ret);
3613                         goto wash;
3614                 }
3615
3616                 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3617                         rdev->ena_gpio_state = 1;
3618
3619                 if (config->ena_gpio_invert)
3620                         rdev->ena_gpio_state = !rdev->ena_gpio_state;
3621         }
3622
3623         /* set regulator constraints */
3624         if (init_data)
3625                 constraints = &init_data->constraints;
3626
3627         ret = set_machine_constraints(rdev, constraints);
3628         if (ret < 0)
3629                 goto scrub;
3630
3631         /* add attributes supported by this regulator */
3632         ret = add_regulator_attributes(rdev);
3633         if (ret < 0)
3634                 goto scrub;
3635
3636         if (init_data && init_data->supply_regulator)
3637                 supply = init_data->supply_regulator;
3638         else if (regulator_desc->supply_name)
3639                 supply = regulator_desc->supply_name;
3640
3641         if (supply) {
3642                 struct regulator_dev *r;
3643
3644                 r = regulator_dev_lookup(dev, supply, &ret);
3645
3646                 if (ret == -ENODEV) {
3647                         /*
3648                          * No supply was specified for this regulator and
3649                          * there will never be one.
3650                          */
3651                         ret = 0;
3652                         goto add_dev;
3653                 } else if (!r) {
3654                         dev_err(dev, "Failed to find supply %s\n", supply);
3655                         ret = -EPROBE_DEFER;
3656                         goto scrub;
3657                 }
3658
3659                 ret = set_supply(rdev, r);
3660                 if (ret < 0)
3661                         goto scrub;
3662
3663                 /* Enable supply if rail is enabled */
3664                 if (_regulator_is_enabled(rdev)) {
3665                         ret = regulator_enable(rdev->supply);
3666                         if (ret < 0)
3667                                 goto scrub;
3668                 }
3669         }
3670
3671 add_dev:
3672         /* add consumers devices */
3673         if (init_data) {
3674                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3675                         ret = set_consumer_device_supply(rdev,
3676                                 init_data->consumer_supplies[i].dev_name,
3677                                 init_data->consumer_supplies[i].supply);
3678                         if (ret < 0) {
3679                                 dev_err(dev, "Failed to set supply %s\n",
3680                                         init_data->consumer_supplies[i].supply);
3681                                 goto unset_supplies;
3682                         }
3683                 }
3684         }
3685
3686         list_add(&rdev->list, &regulator_list);
3687
3688         rdev_init_debugfs(rdev);
3689 out:
3690         mutex_unlock(&regulator_list_mutex);
3691         return rdev;
3692
3693 unset_supplies:
3694         unset_regulator_supplies(rdev);
3695
3696 scrub:
3697         if (rdev->supply)
3698                 _regulator_put(rdev->supply);
3699         regulator_ena_gpio_free(rdev);
3700         kfree(rdev->constraints);
3701 wash:
3702         device_unregister(&rdev->dev);
3703         /* device core frees rdev */
3704         rdev = ERR_PTR(ret);
3705         goto out;
3706
3707 clean:
3708         kfree(rdev);
3709         rdev = ERR_PTR(ret);
3710         goto out;
3711 }
3712 EXPORT_SYMBOL_GPL(regulator_register);
3713
3714 /**
3715  * regulator_unregister - unregister regulator
3716  * @rdev: regulator to unregister
3717  *
3718  * Called by regulator drivers to unregister a regulator.
3719  */
3720 void regulator_unregister(struct regulator_dev *rdev)
3721 {
3722         if (rdev == NULL)
3723                 return;
3724
3725         if (rdev->supply)
3726                 regulator_put(rdev->supply);
3727         mutex_lock(&regulator_list_mutex);
3728         debugfs_remove_recursive(rdev->debugfs);
3729         flush_work(&rdev->disable_work.work);
3730         WARN_ON(rdev->open_count);
3731         unset_regulator_supplies(rdev);
3732         list_del(&rdev->list);
3733         kfree(rdev->constraints);
3734         regulator_ena_gpio_free(rdev);
3735         device_unregister(&rdev->dev);
3736         mutex_unlock(&regulator_list_mutex);
3737 }
3738 EXPORT_SYMBOL_GPL(regulator_unregister);
3739
3740 /**
3741  * regulator_suspend_prepare - prepare regulators for system wide suspend
3742  * @state: system suspend state
3743  *
3744  * Configure each regulator with it's suspend operating parameters for state.
3745  * This will usually be called by machine suspend code prior to supending.
3746  */
3747 int regulator_suspend_prepare(suspend_state_t state)
3748 {
3749         struct regulator_dev *rdev;
3750         int ret = 0;
3751
3752         /* ON is handled by regulator active state */
3753         if (state == PM_SUSPEND_ON)
3754                 return -EINVAL;
3755
3756         mutex_lock(&regulator_list_mutex);
3757         list_for_each_entry(rdev, &regulator_list, list) {
3758
3759                 mutex_lock(&rdev->mutex);
3760                 ret = suspend_prepare(rdev, state);
3761                 mutex_unlock(&rdev->mutex);
3762
3763                 if (ret < 0) {
3764                         rdev_err(rdev, "failed to prepare\n");
3765                         goto out;
3766                 }
3767         }
3768 out:
3769         mutex_unlock(&regulator_list_mutex);
3770         return ret;
3771 }
3772 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3773
3774 /**
3775  * regulator_suspend_finish - resume regulators from system wide suspend
3776  *
3777  * Turn on regulators that might be turned off by regulator_suspend_prepare
3778  * and that should be turned on according to the regulators properties.
3779  */
3780 int regulator_suspend_finish(void)
3781 {
3782         struct regulator_dev *rdev;
3783         int ret = 0, error;
3784
3785         mutex_lock(&regulator_list_mutex);
3786         list_for_each_entry(rdev, &regulator_list, list) {
3787                 struct regulator_ops *ops = rdev->desc->ops;
3788
3789                 mutex_lock(&rdev->mutex);
3790                 if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3791                                 ops->enable) {
3792                         error = ops->enable(rdev);
3793                         if (error)
3794                                 ret = error;
3795                 } else {
3796                         if (!has_full_constraints)
3797                                 goto unlock;
3798                         if (!ops->disable)
3799                                 goto unlock;
3800                         if (!_regulator_is_enabled(rdev))
3801                                 goto unlock;
3802
3803                         error = ops->disable(rdev);
3804                         if (error)
3805                                 ret = error;
3806                 }
3807 unlock:
3808                 mutex_unlock(&rdev->mutex);
3809         }
3810         mutex_unlock(&regulator_list_mutex);
3811         return ret;
3812 }
3813 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3814
3815 /**
3816  * regulator_has_full_constraints - the system has fully specified constraints
3817  *
3818  * Calling this function will cause the regulator API to disable all
3819  * regulators which have a zero use count and don't have an always_on
3820  * constraint in a late_initcall.
3821  *
3822  * The intention is that this will become the default behaviour in a
3823  * future kernel release so users are encouraged to use this facility
3824  * now.
3825  */
3826 void regulator_has_full_constraints(void)
3827 {
3828         has_full_constraints = 1;
3829 }
3830 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3831
3832 /**
3833  * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3834  *
3835  * Calling this function will cause the regulator API to provide a
3836  * dummy regulator to consumers if no physical regulator is found,
3837  * allowing most consumers to proceed as though a regulator were
3838  * configured.  This allows systems such as those with software
3839  * controllable regulators for the CPU core only to be brought up more
3840  * readily.
3841  */
3842 void regulator_use_dummy_regulator(void)
3843 {
3844         board_wants_dummy_regulator = true;
3845 }
3846 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3847
3848 /**
3849  * rdev_get_drvdata - get rdev regulator driver data
3850  * @rdev: regulator
3851  *
3852  * Get rdev regulator driver private data. This call can be used in the
3853  * regulator driver context.
3854  */
3855 void *rdev_get_drvdata(struct regulator_dev *rdev)
3856 {
3857         return rdev->reg_data;
3858 }
3859 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3860
3861 /**
3862  * regulator_get_drvdata - get regulator driver data
3863  * @regulator: regulator
3864  *
3865  * Get regulator driver private data. This call can be used in the consumer
3866  * driver context when non API regulator specific functions need to be called.
3867  */
3868 void *regulator_get_drvdata(struct regulator *regulator)
3869 {
3870         return regulator->rdev->reg_data;
3871 }
3872 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3873
3874 /**
3875  * regulator_set_drvdata - set regulator driver data
3876  * @regulator: regulator
3877  * @data: data
3878  */
3879 void regulator_set_drvdata(struct regulator *regulator, void *data)
3880 {
3881         regulator->rdev->reg_data = data;
3882 }
3883 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3884
3885 /**
3886  * regulator_get_id - get regulator ID
3887  * @rdev: regulator
3888  */
3889 int rdev_get_id(struct regulator_dev *rdev)
3890 {
3891         return rdev->desc->id;
3892 }
3893 EXPORT_SYMBOL_GPL(rdev_get_id);
3894
3895 struct device *rdev_get_dev(struct regulator_dev *rdev)
3896 {
3897         return &rdev->dev;
3898 }
3899 EXPORT_SYMBOL_GPL(rdev_get_dev);
3900
3901 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3902 {
3903         return reg_init_data->driver_data;
3904 }
3905 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3906
3907 #ifdef CONFIG_DEBUG_FS
3908 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3909                                     size_t count, loff_t *ppos)
3910 {
3911         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3912         ssize_t len, ret = 0;
3913         struct regulator_map *map;
3914
3915         if (!buf)
3916                 return -ENOMEM;
3917
3918         list_for_each_entry(map, &regulator_map_list, list) {
3919                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3920                                "%s -> %s.%s\n",
3921                                rdev_get_name(map->regulator), map->dev_name,
3922                                map->supply);
3923                 if (len >= 0)
3924                         ret += len;
3925                 if (ret > PAGE_SIZE) {
3926                         ret = PAGE_SIZE;
3927                         break;
3928                 }
3929         }
3930
3931         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3932
3933         kfree(buf);
3934
3935         return ret;
3936 }
3937 #endif
3938
3939 static const struct file_operations supply_map_fops = {
3940 #ifdef CONFIG_DEBUG_FS
3941         .read = supply_map_read_file,
3942         .llseek = default_llseek,
3943 #endif
3944 };
3945
3946 static int __init regulator_init(void)
3947 {
3948         int ret;
3949
3950         ret = class_register(&regulator_class);
3951
3952         debugfs_root = debugfs_create_dir("regulator", NULL);
3953         if (!debugfs_root)
3954                 pr_warn("regulator: Failed to create debugfs directory\n");
3955
3956         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3957                             &supply_map_fops);
3958
3959         regulator_dummy_init();
3960
3961         return ret;
3962 }
3963
3964 /* init early to allow our consumers to complete system booting */
3965 core_initcall(regulator_init);
3966
3967 static int __init regulator_init_complete(void)
3968 {
3969         struct regulator_dev *rdev;
3970         struct regulator_ops *ops;
3971         struct regulation_constraints *c;
3972         int enabled, ret;
3973
3974         /*
3975          * Since DT doesn't provide an idiomatic mechanism for
3976          * enabling full constraints and since it's much more natural
3977          * with DT to provide them just assume that a DT enabled
3978          * system has full constraints.
3979          */
3980         if (of_have_populated_dt())
3981                 has_full_constraints = true;
3982
3983         mutex_lock(&regulator_list_mutex);
3984
3985         /* If we have a full configuration then disable any regulators
3986          * which are not in use or always_on.  This will become the
3987          * default behaviour in the future.
3988          */
3989         list_for_each_entry(rdev, &regulator_list, list) {
3990                 ops = rdev->desc->ops;
3991                 c = rdev->constraints;
3992
3993                 if (!ops->disable || (c && c->always_on))
3994                         continue;
3995
3996                 mutex_lock(&rdev->mutex);
3997
3998                 if (rdev->use_count)
3999                         goto unlock;
4000
4001                 /* If we can't read the status assume it's on. */
4002                 if (ops->is_enabled)
4003                         enabled = ops->is_enabled(rdev);
4004                 else
4005                         enabled = 1;
4006
4007                 if (!enabled)
4008                         goto unlock;
4009
4010                 if (has_full_constraints) {
4011                         /* We log since this may kill the system if it
4012                          * goes wrong. */
4013                         rdev_info(rdev, "disabling\n");
4014                         ret = ops->disable(rdev);
4015                         if (ret != 0) {
4016                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
4017                         }
4018                 } else {
4019                         /* The intention is that in future we will
4020                          * assume that full constraints are provided
4021                          * so warn even if we aren't going to do
4022                          * anything here.
4023                          */
4024                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
4025                 }
4026
4027 unlock:
4028                 mutex_unlock(&rdev->mutex);
4029         }
4030
4031         mutex_unlock(&regulator_list_mutex);
4032
4033         return 0;
4034 }
4035 late_initcall(regulator_init_complete);