]> Pileus Git - ~andy/linux/blob - drivers/regulator/core.c
ASoC: ssm2602: Use core for applying symmetry constraints
[~andy/linux] / drivers / regulator / core.c
1 /*
2  * core.c  --  Voltage/Current Regulator framework.
3  *
4  * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5  * Copyright 2008 SlimLogic Ltd.
6  *
7  * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8  *
9  *  This program is free software; you can redistribute  it and/or modify it
10  *  under  the terms of  the GNU General  Public License as published by the
11  *  Free Software Foundation;  either version 2 of the  License, or (at your
12  *  option) any later version.
13  *
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39 #include "internal.h"
40
41 #define rdev_crit(rdev, fmt, ...)                                       \
42         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
43 #define rdev_err(rdev, fmt, ...)                                        \
44         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
45 #define rdev_warn(rdev, fmt, ...)                                       \
46         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 #define rdev_info(rdev, fmt, ...)                                       \
48         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
49 #define rdev_dbg(rdev, fmt, ...)                                        \
50         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
51
52 static DEFINE_MUTEX(regulator_list_mutex);
53 static LIST_HEAD(regulator_list);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
58
59 static struct dentry *debugfs_root;
60
61 /*
62  * struct regulator_map
63  *
64  * Used to provide symbolic supply names to devices.
65  */
66 struct regulator_map {
67         struct list_head list;
68         const char *dev_name;   /* The dev_name() for the consumer */
69         const char *supply;
70         struct regulator_dev *regulator;
71 };
72
73 /*
74  * struct regulator_enable_gpio
75  *
76  * Management for shared enable GPIO pin
77  */
78 struct regulator_enable_gpio {
79         struct list_head list;
80         int gpio;
81         u32 enable_count;       /* a number of enabled shared GPIO */
82         u32 request_count;      /* a number of requested shared GPIO */
83         unsigned int ena_gpio_invert:1;
84 };
85
86 /*
87  * struct regulator_supply_alias
88  *
89  * Used to map lookups for a supply onto an alternative device.
90  */
91 struct regulator_supply_alias {
92         struct list_head list;
93         struct device *src_dev;
94         const char *src_supply;
95         struct device *alias_dev;
96         const char *alias_supply;
97 };
98
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator_dev *rdev);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static void _notifier_call_chain(struct regulator_dev *rdev,
105                                   unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107                                      int min_uV, int max_uV);
108 static struct regulator *create_regulator(struct regulator_dev *rdev,
109                                           struct device *dev,
110                                           const char *supply_name);
111
112 static const char *rdev_get_name(struct regulator_dev *rdev)
113 {
114         if (rdev->constraints && rdev->constraints->name)
115                 return rdev->constraints->name;
116         else if (rdev->desc->name)
117                 return rdev->desc->name;
118         else
119                 return "";
120 }
121
122 /**
123  * of_get_regulator - get a regulator device node based on supply name
124  * @dev: Device pointer for the consumer (of regulator) device
125  * @supply: regulator supply name
126  *
127  * Extract the regulator device node corresponding to the supply name.
128  * returns the device node corresponding to the regulator if found, else
129  * returns NULL.
130  */
131 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
132 {
133         struct device_node *regnode = NULL;
134         char prop_name[32]; /* 32 is max size of property name */
135
136         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
137
138         snprintf(prop_name, 32, "%s-supply", supply);
139         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
140
141         if (!regnode) {
142                 dev_dbg(dev, "Looking up %s property in node %s failed",
143                                 prop_name, dev->of_node->full_name);
144                 return NULL;
145         }
146         return regnode;
147 }
148
149 static int _regulator_can_change_status(struct regulator_dev *rdev)
150 {
151         if (!rdev->constraints)
152                 return 0;
153
154         if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
155                 return 1;
156         else
157                 return 0;
158 }
159
160 /* Platform voltage constraint check */
161 static int regulator_check_voltage(struct regulator_dev *rdev,
162                                    int *min_uV, int *max_uV)
163 {
164         BUG_ON(*min_uV > *max_uV);
165
166         if (!rdev->constraints) {
167                 rdev_err(rdev, "no constraints\n");
168                 return -ENODEV;
169         }
170         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
171                 rdev_err(rdev, "operation not allowed\n");
172                 return -EPERM;
173         }
174
175         if (*max_uV > rdev->constraints->max_uV)
176                 *max_uV = rdev->constraints->max_uV;
177         if (*min_uV < rdev->constraints->min_uV)
178                 *min_uV = rdev->constraints->min_uV;
179
180         if (*min_uV > *max_uV) {
181                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
182                          *min_uV, *max_uV);
183                 return -EINVAL;
184         }
185
186         return 0;
187 }
188
189 /* Make sure we select a voltage that suits the needs of all
190  * regulator consumers
191  */
192 static int regulator_check_consumers(struct regulator_dev *rdev,
193                                      int *min_uV, int *max_uV)
194 {
195         struct regulator *regulator;
196
197         list_for_each_entry(regulator, &rdev->consumer_list, list) {
198                 /*
199                  * Assume consumers that didn't say anything are OK
200                  * with anything in the constraint range.
201                  */
202                 if (!regulator->min_uV && !regulator->max_uV)
203                         continue;
204
205                 if (*max_uV > regulator->max_uV)
206                         *max_uV = regulator->max_uV;
207                 if (*min_uV < regulator->min_uV)
208                         *min_uV = regulator->min_uV;
209         }
210
211         if (*min_uV > *max_uV) {
212                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
213                         *min_uV, *max_uV);
214                 return -EINVAL;
215         }
216
217         return 0;
218 }
219
220 /* current constraint check */
221 static int regulator_check_current_limit(struct regulator_dev *rdev,
222                                         int *min_uA, int *max_uA)
223 {
224         BUG_ON(*min_uA > *max_uA);
225
226         if (!rdev->constraints) {
227                 rdev_err(rdev, "no constraints\n");
228                 return -ENODEV;
229         }
230         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
231                 rdev_err(rdev, "operation not allowed\n");
232                 return -EPERM;
233         }
234
235         if (*max_uA > rdev->constraints->max_uA)
236                 *max_uA = rdev->constraints->max_uA;
237         if (*min_uA < rdev->constraints->min_uA)
238                 *min_uA = rdev->constraints->min_uA;
239
240         if (*min_uA > *max_uA) {
241                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
242                          *min_uA, *max_uA);
243                 return -EINVAL;
244         }
245
246         return 0;
247 }
248
249 /* operating mode constraint check */
250 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
251 {
252         switch (*mode) {
253         case REGULATOR_MODE_FAST:
254         case REGULATOR_MODE_NORMAL:
255         case REGULATOR_MODE_IDLE:
256         case REGULATOR_MODE_STANDBY:
257                 break;
258         default:
259                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
260                 return -EINVAL;
261         }
262
263         if (!rdev->constraints) {
264                 rdev_err(rdev, "no constraints\n");
265                 return -ENODEV;
266         }
267         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
268                 rdev_err(rdev, "operation not allowed\n");
269                 return -EPERM;
270         }
271
272         /* The modes are bitmasks, the most power hungry modes having
273          * the lowest values. If the requested mode isn't supported
274          * try higher modes. */
275         while (*mode) {
276                 if (rdev->constraints->valid_modes_mask & *mode)
277                         return 0;
278                 *mode /= 2;
279         }
280
281         return -EINVAL;
282 }
283
284 /* dynamic regulator mode switching constraint check */
285 static int regulator_check_drms(struct regulator_dev *rdev)
286 {
287         if (!rdev->constraints) {
288                 rdev_err(rdev, "no constraints\n");
289                 return -ENODEV;
290         }
291         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
292                 rdev_err(rdev, "operation not allowed\n");
293                 return -EPERM;
294         }
295         return 0;
296 }
297
298 static ssize_t regulator_uV_show(struct device *dev,
299                                 struct device_attribute *attr, char *buf)
300 {
301         struct regulator_dev *rdev = dev_get_drvdata(dev);
302         ssize_t ret;
303
304         mutex_lock(&rdev->mutex);
305         ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
306         mutex_unlock(&rdev->mutex);
307
308         return ret;
309 }
310 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
311
312 static ssize_t regulator_uA_show(struct device *dev,
313                                 struct device_attribute *attr, char *buf)
314 {
315         struct regulator_dev *rdev = dev_get_drvdata(dev);
316
317         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
318 }
319 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
320
321 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
322                          char *buf)
323 {
324         struct regulator_dev *rdev = dev_get_drvdata(dev);
325
326         return sprintf(buf, "%s\n", rdev_get_name(rdev));
327 }
328 static DEVICE_ATTR_RO(name);
329
330 static ssize_t regulator_print_opmode(char *buf, int mode)
331 {
332         switch (mode) {
333         case REGULATOR_MODE_FAST:
334                 return sprintf(buf, "fast\n");
335         case REGULATOR_MODE_NORMAL:
336                 return sprintf(buf, "normal\n");
337         case REGULATOR_MODE_IDLE:
338                 return sprintf(buf, "idle\n");
339         case REGULATOR_MODE_STANDBY:
340                 return sprintf(buf, "standby\n");
341         }
342         return sprintf(buf, "unknown\n");
343 }
344
345 static ssize_t regulator_opmode_show(struct device *dev,
346                                     struct device_attribute *attr, char *buf)
347 {
348         struct regulator_dev *rdev = dev_get_drvdata(dev);
349
350         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
351 }
352 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
353
354 static ssize_t regulator_print_state(char *buf, int state)
355 {
356         if (state > 0)
357                 return sprintf(buf, "enabled\n");
358         else if (state == 0)
359                 return sprintf(buf, "disabled\n");
360         else
361                 return sprintf(buf, "unknown\n");
362 }
363
364 static ssize_t regulator_state_show(struct device *dev,
365                                    struct device_attribute *attr, char *buf)
366 {
367         struct regulator_dev *rdev = dev_get_drvdata(dev);
368         ssize_t ret;
369
370         mutex_lock(&rdev->mutex);
371         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
372         mutex_unlock(&rdev->mutex);
373
374         return ret;
375 }
376 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
377
378 static ssize_t regulator_status_show(struct device *dev,
379                                    struct device_attribute *attr, char *buf)
380 {
381         struct regulator_dev *rdev = dev_get_drvdata(dev);
382         int status;
383         char *label;
384
385         status = rdev->desc->ops->get_status(rdev);
386         if (status < 0)
387                 return status;
388
389         switch (status) {
390         case REGULATOR_STATUS_OFF:
391                 label = "off";
392                 break;
393         case REGULATOR_STATUS_ON:
394                 label = "on";
395                 break;
396         case REGULATOR_STATUS_ERROR:
397                 label = "error";
398                 break;
399         case REGULATOR_STATUS_FAST:
400                 label = "fast";
401                 break;
402         case REGULATOR_STATUS_NORMAL:
403                 label = "normal";
404                 break;
405         case REGULATOR_STATUS_IDLE:
406                 label = "idle";
407                 break;
408         case REGULATOR_STATUS_STANDBY:
409                 label = "standby";
410                 break;
411         case REGULATOR_STATUS_BYPASS:
412                 label = "bypass";
413                 break;
414         case REGULATOR_STATUS_UNDEFINED:
415                 label = "undefined";
416                 break;
417         default:
418                 return -ERANGE;
419         }
420
421         return sprintf(buf, "%s\n", label);
422 }
423 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
424
425 static ssize_t regulator_min_uA_show(struct device *dev,
426                                     struct device_attribute *attr, char *buf)
427 {
428         struct regulator_dev *rdev = dev_get_drvdata(dev);
429
430         if (!rdev->constraints)
431                 return sprintf(buf, "constraint not defined\n");
432
433         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
434 }
435 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
436
437 static ssize_t regulator_max_uA_show(struct device *dev,
438                                     struct device_attribute *attr, char *buf)
439 {
440         struct regulator_dev *rdev = dev_get_drvdata(dev);
441
442         if (!rdev->constraints)
443                 return sprintf(buf, "constraint not defined\n");
444
445         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
446 }
447 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
448
449 static ssize_t regulator_min_uV_show(struct device *dev,
450                                     struct device_attribute *attr, char *buf)
451 {
452         struct regulator_dev *rdev = dev_get_drvdata(dev);
453
454         if (!rdev->constraints)
455                 return sprintf(buf, "constraint not defined\n");
456
457         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
458 }
459 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
460
461 static ssize_t regulator_max_uV_show(struct device *dev,
462                                     struct device_attribute *attr, char *buf)
463 {
464         struct regulator_dev *rdev = dev_get_drvdata(dev);
465
466         if (!rdev->constraints)
467                 return sprintf(buf, "constraint not defined\n");
468
469         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
470 }
471 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
472
473 static ssize_t regulator_total_uA_show(struct device *dev,
474                                       struct device_attribute *attr, char *buf)
475 {
476         struct regulator_dev *rdev = dev_get_drvdata(dev);
477         struct regulator *regulator;
478         int uA = 0;
479
480         mutex_lock(&rdev->mutex);
481         list_for_each_entry(regulator, &rdev->consumer_list, list)
482                 uA += regulator->uA_load;
483         mutex_unlock(&rdev->mutex);
484         return sprintf(buf, "%d\n", uA);
485 }
486 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
487
488 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
489                               char *buf)
490 {
491         struct regulator_dev *rdev = dev_get_drvdata(dev);
492         return sprintf(buf, "%d\n", rdev->use_count);
493 }
494 static DEVICE_ATTR_RO(num_users);
495
496 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
497                          char *buf)
498 {
499         struct regulator_dev *rdev = dev_get_drvdata(dev);
500
501         switch (rdev->desc->type) {
502         case REGULATOR_VOLTAGE:
503                 return sprintf(buf, "voltage\n");
504         case REGULATOR_CURRENT:
505                 return sprintf(buf, "current\n");
506         }
507         return sprintf(buf, "unknown\n");
508 }
509 static DEVICE_ATTR_RO(type);
510
511 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
512                                 struct device_attribute *attr, char *buf)
513 {
514         struct regulator_dev *rdev = dev_get_drvdata(dev);
515
516         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
517 }
518 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
519                 regulator_suspend_mem_uV_show, NULL);
520
521 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
522                                 struct device_attribute *attr, char *buf)
523 {
524         struct regulator_dev *rdev = dev_get_drvdata(dev);
525
526         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
527 }
528 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
529                 regulator_suspend_disk_uV_show, NULL);
530
531 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
532                                 struct device_attribute *attr, char *buf)
533 {
534         struct regulator_dev *rdev = dev_get_drvdata(dev);
535
536         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
537 }
538 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
539                 regulator_suspend_standby_uV_show, NULL);
540
541 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
542                                 struct device_attribute *attr, char *buf)
543 {
544         struct regulator_dev *rdev = dev_get_drvdata(dev);
545
546         return regulator_print_opmode(buf,
547                 rdev->constraints->state_mem.mode);
548 }
549 static DEVICE_ATTR(suspend_mem_mode, 0444,
550                 regulator_suspend_mem_mode_show, NULL);
551
552 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
553                                 struct device_attribute *attr, char *buf)
554 {
555         struct regulator_dev *rdev = dev_get_drvdata(dev);
556
557         return regulator_print_opmode(buf,
558                 rdev->constraints->state_disk.mode);
559 }
560 static DEVICE_ATTR(suspend_disk_mode, 0444,
561                 regulator_suspend_disk_mode_show, NULL);
562
563 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
564                                 struct device_attribute *attr, char *buf)
565 {
566         struct regulator_dev *rdev = dev_get_drvdata(dev);
567
568         return regulator_print_opmode(buf,
569                 rdev->constraints->state_standby.mode);
570 }
571 static DEVICE_ATTR(suspend_standby_mode, 0444,
572                 regulator_suspend_standby_mode_show, NULL);
573
574 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
575                                    struct device_attribute *attr, char *buf)
576 {
577         struct regulator_dev *rdev = dev_get_drvdata(dev);
578
579         return regulator_print_state(buf,
580                         rdev->constraints->state_mem.enabled);
581 }
582 static DEVICE_ATTR(suspend_mem_state, 0444,
583                 regulator_suspend_mem_state_show, NULL);
584
585 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
586                                    struct device_attribute *attr, char *buf)
587 {
588         struct regulator_dev *rdev = dev_get_drvdata(dev);
589
590         return regulator_print_state(buf,
591                         rdev->constraints->state_disk.enabled);
592 }
593 static DEVICE_ATTR(suspend_disk_state, 0444,
594                 regulator_suspend_disk_state_show, NULL);
595
596 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
597                                    struct device_attribute *attr, char *buf)
598 {
599         struct regulator_dev *rdev = dev_get_drvdata(dev);
600
601         return regulator_print_state(buf,
602                         rdev->constraints->state_standby.enabled);
603 }
604 static DEVICE_ATTR(suspend_standby_state, 0444,
605                 regulator_suspend_standby_state_show, NULL);
606
607 static ssize_t regulator_bypass_show(struct device *dev,
608                                      struct device_attribute *attr, char *buf)
609 {
610         struct regulator_dev *rdev = dev_get_drvdata(dev);
611         const char *report;
612         bool bypass;
613         int ret;
614
615         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
616
617         if (ret != 0)
618                 report = "unknown";
619         else if (bypass)
620                 report = "enabled";
621         else
622                 report = "disabled";
623
624         return sprintf(buf, "%s\n", report);
625 }
626 static DEVICE_ATTR(bypass, 0444,
627                    regulator_bypass_show, NULL);
628
629 /*
630  * These are the only attributes are present for all regulators.
631  * Other attributes are a function of regulator functionality.
632  */
633 static struct attribute *regulator_dev_attrs[] = {
634         &dev_attr_name.attr,
635         &dev_attr_num_users.attr,
636         &dev_attr_type.attr,
637         NULL,
638 };
639 ATTRIBUTE_GROUPS(regulator_dev);
640
641 static void regulator_dev_release(struct device *dev)
642 {
643         struct regulator_dev *rdev = dev_get_drvdata(dev);
644         kfree(rdev);
645 }
646
647 static struct class regulator_class = {
648         .name = "regulator",
649         .dev_release = regulator_dev_release,
650         .dev_groups = regulator_dev_groups,
651 };
652
653 /* Calculate the new optimum regulator operating mode based on the new total
654  * consumer load. All locks held by caller */
655 static void drms_uA_update(struct regulator_dev *rdev)
656 {
657         struct regulator *sibling;
658         int current_uA = 0, output_uV, input_uV, err;
659         unsigned int mode;
660
661         err = regulator_check_drms(rdev);
662         if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
663             (!rdev->desc->ops->get_voltage &&
664              !rdev->desc->ops->get_voltage_sel) ||
665             !rdev->desc->ops->set_mode)
666                 return;
667
668         /* get output voltage */
669         output_uV = _regulator_get_voltage(rdev);
670         if (output_uV <= 0)
671                 return;
672
673         /* get input voltage */
674         input_uV = 0;
675         if (rdev->supply)
676                 input_uV = regulator_get_voltage(rdev->supply);
677         if (input_uV <= 0)
678                 input_uV = rdev->constraints->input_uV;
679         if (input_uV <= 0)
680                 return;
681
682         /* calc total requested load */
683         list_for_each_entry(sibling, &rdev->consumer_list, list)
684                 current_uA += sibling->uA_load;
685
686         /* now get the optimum mode for our new total regulator load */
687         mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
688                                                   output_uV, current_uA);
689
690         /* check the new mode is allowed */
691         err = regulator_mode_constrain(rdev, &mode);
692         if (err == 0)
693                 rdev->desc->ops->set_mode(rdev, mode);
694 }
695
696 static int suspend_set_state(struct regulator_dev *rdev,
697         struct regulator_state *rstate)
698 {
699         int ret = 0;
700
701         /* If we have no suspend mode configration don't set anything;
702          * only warn if the driver implements set_suspend_voltage or
703          * set_suspend_mode callback.
704          */
705         if (!rstate->enabled && !rstate->disabled) {
706                 if (rdev->desc->ops->set_suspend_voltage ||
707                     rdev->desc->ops->set_suspend_mode)
708                         rdev_warn(rdev, "No configuration\n");
709                 return 0;
710         }
711
712         if (rstate->enabled && rstate->disabled) {
713                 rdev_err(rdev, "invalid configuration\n");
714                 return -EINVAL;
715         }
716
717         if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
718                 ret = rdev->desc->ops->set_suspend_enable(rdev);
719         else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
720                 ret = rdev->desc->ops->set_suspend_disable(rdev);
721         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
722                 ret = 0;
723
724         if (ret < 0) {
725                 rdev_err(rdev, "failed to enabled/disable\n");
726                 return ret;
727         }
728
729         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
730                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
731                 if (ret < 0) {
732                         rdev_err(rdev, "failed to set voltage\n");
733                         return ret;
734                 }
735         }
736
737         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
738                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
739                 if (ret < 0) {
740                         rdev_err(rdev, "failed to set mode\n");
741                         return ret;
742                 }
743         }
744         return ret;
745 }
746
747 /* locks held by caller */
748 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
749 {
750         if (!rdev->constraints)
751                 return -EINVAL;
752
753         switch (state) {
754         case PM_SUSPEND_STANDBY:
755                 return suspend_set_state(rdev,
756                         &rdev->constraints->state_standby);
757         case PM_SUSPEND_MEM:
758                 return suspend_set_state(rdev,
759                         &rdev->constraints->state_mem);
760         case PM_SUSPEND_MAX:
761                 return suspend_set_state(rdev,
762                         &rdev->constraints->state_disk);
763         default:
764                 return -EINVAL;
765         }
766 }
767
768 static void print_constraints(struct regulator_dev *rdev)
769 {
770         struct regulation_constraints *constraints = rdev->constraints;
771         char buf[80] = "";
772         int count = 0;
773         int ret;
774
775         if (constraints->min_uV && constraints->max_uV) {
776                 if (constraints->min_uV == constraints->max_uV)
777                         count += sprintf(buf + count, "%d mV ",
778                                          constraints->min_uV / 1000);
779                 else
780                         count += sprintf(buf + count, "%d <--> %d mV ",
781                                          constraints->min_uV / 1000,
782                                          constraints->max_uV / 1000);
783         }
784
785         if (!constraints->min_uV ||
786             constraints->min_uV != constraints->max_uV) {
787                 ret = _regulator_get_voltage(rdev);
788                 if (ret > 0)
789                         count += sprintf(buf + count, "at %d mV ", ret / 1000);
790         }
791
792         if (constraints->uV_offset)
793                 count += sprintf(buf, "%dmV offset ",
794                                  constraints->uV_offset / 1000);
795
796         if (constraints->min_uA && constraints->max_uA) {
797                 if (constraints->min_uA == constraints->max_uA)
798                         count += sprintf(buf + count, "%d mA ",
799                                          constraints->min_uA / 1000);
800                 else
801                         count += sprintf(buf + count, "%d <--> %d mA ",
802                                          constraints->min_uA / 1000,
803                                          constraints->max_uA / 1000);
804         }
805
806         if (!constraints->min_uA ||
807             constraints->min_uA != constraints->max_uA) {
808                 ret = _regulator_get_current_limit(rdev);
809                 if (ret > 0)
810                         count += sprintf(buf + count, "at %d mA ", ret / 1000);
811         }
812
813         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
814                 count += sprintf(buf + count, "fast ");
815         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
816                 count += sprintf(buf + count, "normal ");
817         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
818                 count += sprintf(buf + count, "idle ");
819         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
820                 count += sprintf(buf + count, "standby");
821
822         if (!count)
823                 sprintf(buf, "no parameters");
824
825         rdev_info(rdev, "%s\n", buf);
826
827         if ((constraints->min_uV != constraints->max_uV) &&
828             !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
829                 rdev_warn(rdev,
830                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
831 }
832
833 static int machine_constraints_voltage(struct regulator_dev *rdev,
834         struct regulation_constraints *constraints)
835 {
836         struct regulator_ops *ops = rdev->desc->ops;
837         int ret;
838
839         /* do we need to apply the constraint voltage */
840         if (rdev->constraints->apply_uV &&
841             rdev->constraints->min_uV == rdev->constraints->max_uV) {
842                 ret = _regulator_do_set_voltage(rdev,
843                                                 rdev->constraints->min_uV,
844                                                 rdev->constraints->max_uV);
845                 if (ret < 0) {
846                         rdev_err(rdev, "failed to apply %duV constraint\n",
847                                  rdev->constraints->min_uV);
848                         return ret;
849                 }
850         }
851
852         /* constrain machine-level voltage specs to fit
853          * the actual range supported by this regulator.
854          */
855         if (ops->list_voltage && rdev->desc->n_voltages) {
856                 int     count = rdev->desc->n_voltages;
857                 int     i;
858                 int     min_uV = INT_MAX;
859                 int     max_uV = INT_MIN;
860                 int     cmin = constraints->min_uV;
861                 int     cmax = constraints->max_uV;
862
863                 /* it's safe to autoconfigure fixed-voltage supplies
864                    and the constraints are used by list_voltage. */
865                 if (count == 1 && !cmin) {
866                         cmin = 1;
867                         cmax = INT_MAX;
868                         constraints->min_uV = cmin;
869                         constraints->max_uV = cmax;
870                 }
871
872                 /* voltage constraints are optional */
873                 if ((cmin == 0) && (cmax == 0))
874                         return 0;
875
876                 /* else require explicit machine-level constraints */
877                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
878                         rdev_err(rdev, "invalid voltage constraints\n");
879                         return -EINVAL;
880                 }
881
882                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
883                 for (i = 0; i < count; i++) {
884                         int     value;
885
886                         value = ops->list_voltage(rdev, i);
887                         if (value <= 0)
888                                 continue;
889
890                         /* maybe adjust [min_uV..max_uV] */
891                         if (value >= cmin && value < min_uV)
892                                 min_uV = value;
893                         if (value <= cmax && value > max_uV)
894                                 max_uV = value;
895                 }
896
897                 /* final: [min_uV..max_uV] valid iff constraints valid */
898                 if (max_uV < min_uV) {
899                         rdev_err(rdev,
900                                  "unsupportable voltage constraints %u-%uuV\n",
901                                  min_uV, max_uV);
902                         return -EINVAL;
903                 }
904
905                 /* use regulator's subset of machine constraints */
906                 if (constraints->min_uV < min_uV) {
907                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
908                                  constraints->min_uV, min_uV);
909                         constraints->min_uV = min_uV;
910                 }
911                 if (constraints->max_uV > max_uV) {
912                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
913                                  constraints->max_uV, max_uV);
914                         constraints->max_uV = max_uV;
915                 }
916         }
917
918         return 0;
919 }
920
921 static int machine_constraints_current(struct regulator_dev *rdev,
922         struct regulation_constraints *constraints)
923 {
924         struct regulator_ops *ops = rdev->desc->ops;
925         int ret;
926
927         if (!constraints->min_uA && !constraints->max_uA)
928                 return 0;
929
930         if (constraints->min_uA > constraints->max_uA) {
931                 rdev_err(rdev, "Invalid current constraints\n");
932                 return -EINVAL;
933         }
934
935         if (!ops->set_current_limit || !ops->get_current_limit) {
936                 rdev_warn(rdev, "Operation of current configuration missing\n");
937                 return 0;
938         }
939
940         /* Set regulator current in constraints range */
941         ret = ops->set_current_limit(rdev, constraints->min_uA,
942                         constraints->max_uA);
943         if (ret < 0) {
944                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
945                 return ret;
946         }
947
948         return 0;
949 }
950
951 /**
952  * set_machine_constraints - sets regulator constraints
953  * @rdev: regulator source
954  * @constraints: constraints to apply
955  *
956  * Allows platform initialisation code to define and constrain
957  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
958  * Constraints *must* be set by platform code in order for some
959  * regulator operations to proceed i.e. set_voltage, set_current_limit,
960  * set_mode.
961  */
962 static int set_machine_constraints(struct regulator_dev *rdev,
963         const struct regulation_constraints *constraints)
964 {
965         int ret = 0;
966         struct regulator_ops *ops = rdev->desc->ops;
967
968         if (constraints)
969                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
970                                             GFP_KERNEL);
971         else
972                 rdev->constraints = kzalloc(sizeof(*constraints),
973                                             GFP_KERNEL);
974         if (!rdev->constraints)
975                 return -ENOMEM;
976
977         ret = machine_constraints_voltage(rdev, rdev->constraints);
978         if (ret != 0)
979                 goto out;
980
981         ret = machine_constraints_current(rdev, rdev->constraints);
982         if (ret != 0)
983                 goto out;
984
985         /* do we need to setup our suspend state */
986         if (rdev->constraints->initial_state) {
987                 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
988                 if (ret < 0) {
989                         rdev_err(rdev, "failed to set suspend state\n");
990                         goto out;
991                 }
992         }
993
994         if (rdev->constraints->initial_mode) {
995                 if (!ops->set_mode) {
996                         rdev_err(rdev, "no set_mode operation\n");
997                         ret = -EINVAL;
998                         goto out;
999                 }
1000
1001                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1002                 if (ret < 0) {
1003                         rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1004                         goto out;
1005                 }
1006         }
1007
1008         /* If the constraints say the regulator should be on at this point
1009          * and we have control then make sure it is enabled.
1010          */
1011         if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
1012             ops->enable) {
1013                 ret = ops->enable(rdev);
1014                 if (ret < 0) {
1015                         rdev_err(rdev, "failed to enable\n");
1016                         goto out;
1017                 }
1018         }
1019
1020         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1021                 && ops->set_ramp_delay) {
1022                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1023                 if (ret < 0) {
1024                         rdev_err(rdev, "failed to set ramp_delay\n");
1025                         goto out;
1026                 }
1027         }
1028
1029         print_constraints(rdev);
1030         return 0;
1031 out:
1032         kfree(rdev->constraints);
1033         rdev->constraints = NULL;
1034         return ret;
1035 }
1036
1037 /**
1038  * set_supply - set regulator supply regulator
1039  * @rdev: regulator name
1040  * @supply_rdev: supply regulator name
1041  *
1042  * Called by platform initialisation code to set the supply regulator for this
1043  * regulator. This ensures that a regulators supply will also be enabled by the
1044  * core if it's child is enabled.
1045  */
1046 static int set_supply(struct regulator_dev *rdev,
1047                       struct regulator_dev *supply_rdev)
1048 {
1049         int err;
1050
1051         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1052
1053         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1054         if (rdev->supply == NULL) {
1055                 err = -ENOMEM;
1056                 return err;
1057         }
1058         supply_rdev->open_count++;
1059
1060         return 0;
1061 }
1062
1063 /**
1064  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1065  * @rdev:         regulator source
1066  * @consumer_dev_name: dev_name() string for device supply applies to
1067  * @supply:       symbolic name for supply
1068  *
1069  * Allows platform initialisation code to map physical regulator
1070  * sources to symbolic names for supplies for use by devices.  Devices
1071  * should use these symbolic names to request regulators, avoiding the
1072  * need to provide board-specific regulator names as platform data.
1073  */
1074 static int set_consumer_device_supply(struct regulator_dev *rdev,
1075                                       const char *consumer_dev_name,
1076                                       const char *supply)
1077 {
1078         struct regulator_map *node;
1079         int has_dev;
1080
1081         if (supply == NULL)
1082                 return -EINVAL;
1083
1084         if (consumer_dev_name != NULL)
1085                 has_dev = 1;
1086         else
1087                 has_dev = 0;
1088
1089         list_for_each_entry(node, &regulator_map_list, list) {
1090                 if (node->dev_name && consumer_dev_name) {
1091                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1092                                 continue;
1093                 } else if (node->dev_name || consumer_dev_name) {
1094                         continue;
1095                 }
1096
1097                 if (strcmp(node->supply, supply) != 0)
1098                         continue;
1099
1100                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1101                          consumer_dev_name,
1102                          dev_name(&node->regulator->dev),
1103                          node->regulator->desc->name,
1104                          supply,
1105                          dev_name(&rdev->dev), rdev_get_name(rdev));
1106                 return -EBUSY;
1107         }
1108
1109         node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1110         if (node == NULL)
1111                 return -ENOMEM;
1112
1113         node->regulator = rdev;
1114         node->supply = supply;
1115
1116         if (has_dev) {
1117                 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1118                 if (node->dev_name == NULL) {
1119                         kfree(node);
1120                         return -ENOMEM;
1121                 }
1122         }
1123
1124         list_add(&node->list, &regulator_map_list);
1125         return 0;
1126 }
1127
1128 static void unset_regulator_supplies(struct regulator_dev *rdev)
1129 {
1130         struct regulator_map *node, *n;
1131
1132         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1133                 if (rdev == node->regulator) {
1134                         list_del(&node->list);
1135                         kfree(node->dev_name);
1136                         kfree(node);
1137                 }
1138         }
1139 }
1140
1141 #define REG_STR_SIZE    64
1142
1143 static struct regulator *create_regulator(struct regulator_dev *rdev,
1144                                           struct device *dev,
1145                                           const char *supply_name)
1146 {
1147         struct regulator *regulator;
1148         char buf[REG_STR_SIZE];
1149         int err, size;
1150
1151         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1152         if (regulator == NULL)
1153                 return NULL;
1154
1155         mutex_lock(&rdev->mutex);
1156         regulator->rdev = rdev;
1157         list_add(&regulator->list, &rdev->consumer_list);
1158
1159         if (dev) {
1160                 regulator->dev = dev;
1161
1162                 /* Add a link to the device sysfs entry */
1163                 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1164                                  dev->kobj.name, supply_name);
1165                 if (size >= REG_STR_SIZE)
1166                         goto overflow_err;
1167
1168                 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1169                 if (regulator->supply_name == NULL)
1170                         goto overflow_err;
1171
1172                 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1173                                         buf);
1174                 if (err) {
1175                         rdev_warn(rdev, "could not add device link %s err %d\n",
1176                                   dev->kobj.name, err);
1177                         /* non-fatal */
1178                 }
1179         } else {
1180                 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1181                 if (regulator->supply_name == NULL)
1182                         goto overflow_err;
1183         }
1184
1185         regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1186                                                 rdev->debugfs);
1187         if (!regulator->debugfs) {
1188                 rdev_warn(rdev, "Failed to create debugfs directory\n");
1189         } else {
1190                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1191                                    &regulator->uA_load);
1192                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1193                                    &regulator->min_uV);
1194                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1195                                    &regulator->max_uV);
1196         }
1197
1198         /*
1199          * Check now if the regulator is an always on regulator - if
1200          * it is then we don't need to do nearly so much work for
1201          * enable/disable calls.
1202          */
1203         if (!_regulator_can_change_status(rdev) &&
1204             _regulator_is_enabled(rdev))
1205                 regulator->always_on = true;
1206
1207         mutex_unlock(&rdev->mutex);
1208         return regulator;
1209 overflow_err:
1210         list_del(&regulator->list);
1211         kfree(regulator);
1212         mutex_unlock(&rdev->mutex);
1213         return NULL;
1214 }
1215
1216 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1217 {
1218         if (rdev->constraints && rdev->constraints->enable_time)
1219                 return rdev->constraints->enable_time;
1220         if (!rdev->desc->ops->enable_time)
1221                 return rdev->desc->enable_time;
1222         return rdev->desc->ops->enable_time(rdev);
1223 }
1224
1225 static struct regulator_supply_alias *regulator_find_supply_alias(
1226                 struct device *dev, const char *supply)
1227 {
1228         struct regulator_supply_alias *map;
1229
1230         list_for_each_entry(map, &regulator_supply_alias_list, list)
1231                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1232                         return map;
1233
1234         return NULL;
1235 }
1236
1237 static void regulator_supply_alias(struct device **dev, const char **supply)
1238 {
1239         struct regulator_supply_alias *map;
1240
1241         map = regulator_find_supply_alias(*dev, *supply);
1242         if (map) {
1243                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1244                                 *supply, map->alias_supply,
1245                                 dev_name(map->alias_dev));
1246                 *dev = map->alias_dev;
1247                 *supply = map->alias_supply;
1248         }
1249 }
1250
1251 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1252                                                   const char *supply,
1253                                                   int *ret)
1254 {
1255         struct regulator_dev *r;
1256         struct device_node *node;
1257         struct regulator_map *map;
1258         const char *devname = NULL;
1259
1260         regulator_supply_alias(&dev, &supply);
1261
1262         /* first do a dt based lookup */
1263         if (dev && dev->of_node) {
1264                 node = of_get_regulator(dev, supply);
1265                 if (node) {
1266                         list_for_each_entry(r, &regulator_list, list)
1267                                 if (r->dev.parent &&
1268                                         node == r->dev.of_node)
1269                                         return r;
1270                 } else {
1271                         /*
1272                          * If we couldn't even get the node then it's
1273                          * not just that the device didn't register
1274                          * yet, there's no node and we'll never
1275                          * succeed.
1276                          */
1277                         *ret = -ENODEV;
1278                 }
1279         }
1280
1281         /* if not found, try doing it non-dt way */
1282         if (dev)
1283                 devname = dev_name(dev);
1284
1285         list_for_each_entry(r, &regulator_list, list)
1286                 if (strcmp(rdev_get_name(r), supply) == 0)
1287                         return r;
1288
1289         list_for_each_entry(map, &regulator_map_list, list) {
1290                 /* If the mapping has a device set up it must match */
1291                 if (map->dev_name &&
1292                     (!devname || strcmp(map->dev_name, devname)))
1293                         continue;
1294
1295                 if (strcmp(map->supply, supply) == 0)
1296                         return map->regulator;
1297         }
1298
1299
1300         return NULL;
1301 }
1302
1303 /* Internal regulator request function */
1304 static struct regulator *_regulator_get(struct device *dev, const char *id,
1305                                         bool exclusive, bool allow_dummy)
1306 {
1307         struct regulator_dev *rdev;
1308         struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1309         const char *devname = NULL;
1310         int ret = -EPROBE_DEFER;
1311
1312         if (id == NULL) {
1313                 pr_err("get() with no identifier\n");
1314                 return ERR_PTR(-EINVAL);
1315         }
1316
1317         if (dev)
1318                 devname = dev_name(dev);
1319
1320         mutex_lock(&regulator_list_mutex);
1321
1322         rdev = regulator_dev_lookup(dev, id, &ret);
1323         if (rdev)
1324                 goto found;
1325
1326         regulator = ERR_PTR(ret);
1327
1328         /*
1329          * If we have return value from dev_lookup fail, we do not expect to
1330          * succeed, so, quit with appropriate error value
1331          */
1332         if (ret && ret != -ENODEV) {
1333                 goto out;
1334         }
1335
1336         if (!devname)
1337                 devname = "deviceless";
1338
1339         /*
1340          * Assume that a regulator is physically present and enabled
1341          * even if it isn't hooked up and just provide a dummy.
1342          */
1343         if (has_full_constraints && allow_dummy) {
1344                 pr_warn("%s supply %s not found, using dummy regulator\n",
1345                         devname, id);
1346
1347                 rdev = dummy_regulator_rdev;
1348                 goto found;
1349         } else {
1350                 dev_err(dev, "dummy supplies not allowed\n");
1351         }
1352
1353         mutex_unlock(&regulator_list_mutex);
1354         return regulator;
1355
1356 found:
1357         if (rdev->exclusive) {
1358                 regulator = ERR_PTR(-EPERM);
1359                 goto out;
1360         }
1361
1362         if (exclusive && rdev->open_count) {
1363                 regulator = ERR_PTR(-EBUSY);
1364                 goto out;
1365         }
1366
1367         if (!try_module_get(rdev->owner))
1368                 goto out;
1369
1370         regulator = create_regulator(rdev, dev, id);
1371         if (regulator == NULL) {
1372                 regulator = ERR_PTR(-ENOMEM);
1373                 module_put(rdev->owner);
1374                 goto out;
1375         }
1376
1377         rdev->open_count++;
1378         if (exclusive) {
1379                 rdev->exclusive = 1;
1380
1381                 ret = _regulator_is_enabled(rdev);
1382                 if (ret > 0)
1383                         rdev->use_count = 1;
1384                 else
1385                         rdev->use_count = 0;
1386         }
1387
1388 out:
1389         mutex_unlock(&regulator_list_mutex);
1390
1391         return regulator;
1392 }
1393
1394 /**
1395  * regulator_get - lookup and obtain a reference to a regulator.
1396  * @dev: device for regulator "consumer"
1397  * @id: Supply name or regulator ID.
1398  *
1399  * Returns a struct regulator corresponding to the regulator producer,
1400  * or IS_ERR() condition containing errno.
1401  *
1402  * Use of supply names configured via regulator_set_device_supply() is
1403  * strongly encouraged.  It is recommended that the supply name used
1404  * should match the name used for the supply and/or the relevant
1405  * device pins in the datasheet.
1406  */
1407 struct regulator *regulator_get(struct device *dev, const char *id)
1408 {
1409         return _regulator_get(dev, id, false, true);
1410 }
1411 EXPORT_SYMBOL_GPL(regulator_get);
1412
1413 /**
1414  * regulator_get_exclusive - obtain exclusive access to a regulator.
1415  * @dev: device for regulator "consumer"
1416  * @id: Supply name or regulator ID.
1417  *
1418  * Returns a struct regulator corresponding to the regulator producer,
1419  * or IS_ERR() condition containing errno.  Other consumers will be
1420  * unable to obtain this reference is held and the use count for the
1421  * regulator will be initialised to reflect the current state of the
1422  * regulator.
1423  *
1424  * This is intended for use by consumers which cannot tolerate shared
1425  * use of the regulator such as those which need to force the
1426  * regulator off for correct operation of the hardware they are
1427  * controlling.
1428  *
1429  * Use of supply names configured via regulator_set_device_supply() is
1430  * strongly encouraged.  It is recommended that the supply name used
1431  * should match the name used for the supply and/or the relevant
1432  * device pins in the datasheet.
1433  */
1434 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1435 {
1436         return _regulator_get(dev, id, true, false);
1437 }
1438 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1439
1440 /**
1441  * regulator_get_optional - obtain optional access to a regulator.
1442  * @dev: device for regulator "consumer"
1443  * @id: Supply name or regulator ID.
1444  *
1445  * Returns a struct regulator corresponding to the regulator producer,
1446  * or IS_ERR() condition containing errno.  Other consumers will be
1447  * unable to obtain this reference is held and the use count for the
1448  * regulator will be initialised to reflect the current state of the
1449  * regulator.
1450  *
1451  * This is intended for use by consumers for devices which can have
1452  * some supplies unconnected in normal use, such as some MMC devices.
1453  * It can allow the regulator core to provide stub supplies for other
1454  * supplies requested using normal regulator_get() calls without
1455  * disrupting the operation of drivers that can handle absent
1456  * supplies.
1457  *
1458  * Use of supply names configured via regulator_set_device_supply() is
1459  * strongly encouraged.  It is recommended that the supply name used
1460  * should match the name used for the supply and/or the relevant
1461  * device pins in the datasheet.
1462  */
1463 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1464 {
1465         return _regulator_get(dev, id, false, false);
1466 }
1467 EXPORT_SYMBOL_GPL(regulator_get_optional);
1468
1469 /* Locks held by regulator_put() */
1470 static void _regulator_put(struct regulator *regulator)
1471 {
1472         struct regulator_dev *rdev;
1473
1474         if (regulator == NULL || IS_ERR(regulator))
1475                 return;
1476
1477         rdev = regulator->rdev;
1478
1479         debugfs_remove_recursive(regulator->debugfs);
1480
1481         /* remove any sysfs entries */
1482         if (regulator->dev)
1483                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1484         kfree(regulator->supply_name);
1485         list_del(&regulator->list);
1486         kfree(regulator);
1487
1488         rdev->open_count--;
1489         rdev->exclusive = 0;
1490
1491         module_put(rdev->owner);
1492 }
1493
1494 /**
1495  * regulator_put - "free" the regulator source
1496  * @regulator: regulator source
1497  *
1498  * Note: drivers must ensure that all regulator_enable calls made on this
1499  * regulator source are balanced by regulator_disable calls prior to calling
1500  * this function.
1501  */
1502 void regulator_put(struct regulator *regulator)
1503 {
1504         mutex_lock(&regulator_list_mutex);
1505         _regulator_put(regulator);
1506         mutex_unlock(&regulator_list_mutex);
1507 }
1508 EXPORT_SYMBOL_GPL(regulator_put);
1509
1510 /**
1511  * regulator_register_supply_alias - Provide device alias for supply lookup
1512  *
1513  * @dev: device that will be given as the regulator "consumer"
1514  * @id: Supply name or regulator ID
1515  * @alias_dev: device that should be used to lookup the supply
1516  * @alias_id: Supply name or regulator ID that should be used to lookup the
1517  * supply
1518  *
1519  * All lookups for id on dev will instead be conducted for alias_id on
1520  * alias_dev.
1521  */
1522 int regulator_register_supply_alias(struct device *dev, const char *id,
1523                                     struct device *alias_dev,
1524                                     const char *alias_id)
1525 {
1526         struct regulator_supply_alias *map;
1527
1528         map = regulator_find_supply_alias(dev, id);
1529         if (map)
1530                 return -EEXIST;
1531
1532         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1533         if (!map)
1534                 return -ENOMEM;
1535
1536         map->src_dev = dev;
1537         map->src_supply = id;
1538         map->alias_dev = alias_dev;
1539         map->alias_supply = alias_id;
1540
1541         list_add(&map->list, &regulator_supply_alias_list);
1542
1543         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1544                 id, dev_name(dev), alias_id, dev_name(alias_dev));
1545
1546         return 0;
1547 }
1548 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1549
1550 /**
1551  * regulator_unregister_supply_alias - Remove device alias
1552  *
1553  * @dev: device that will be given as the regulator "consumer"
1554  * @id: Supply name or regulator ID
1555  *
1556  * Remove a lookup alias if one exists for id on dev.
1557  */
1558 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1559 {
1560         struct regulator_supply_alias *map;
1561
1562         map = regulator_find_supply_alias(dev, id);
1563         if (map) {
1564                 list_del(&map->list);
1565                 kfree(map);
1566         }
1567 }
1568 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1569
1570 /**
1571  * regulator_bulk_register_supply_alias - register multiple aliases
1572  *
1573  * @dev: device that will be given as the regulator "consumer"
1574  * @id: List of supply names or regulator IDs
1575  * @alias_dev: device that should be used to lookup the supply
1576  * @alias_id: List of supply names or regulator IDs that should be used to
1577  * lookup the supply
1578  * @num_id: Number of aliases to register
1579  *
1580  * @return 0 on success, an errno on failure.
1581  *
1582  * This helper function allows drivers to register several supply
1583  * aliases in one operation.  If any of the aliases cannot be
1584  * registered any aliases that were registered will be removed
1585  * before returning to the caller.
1586  */
1587 int regulator_bulk_register_supply_alias(struct device *dev, const char **id,
1588                                          struct device *alias_dev,
1589                                          const char **alias_id,
1590                                          int num_id)
1591 {
1592         int i;
1593         int ret;
1594
1595         for (i = 0; i < num_id; ++i) {
1596                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1597                                                       alias_id[i]);
1598                 if (ret < 0)
1599                         goto err;
1600         }
1601
1602         return 0;
1603
1604 err:
1605         dev_err(dev,
1606                 "Failed to create supply alias %s,%s -> %s,%s\n",
1607                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1608
1609         while (--i >= 0)
1610                 regulator_unregister_supply_alias(dev, id[i]);
1611
1612         return ret;
1613 }
1614 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1615
1616 /**
1617  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1618  *
1619  * @dev: device that will be given as the regulator "consumer"
1620  * @id: List of supply names or regulator IDs
1621  * @num_id: Number of aliases to unregister
1622  *
1623  * This helper function allows drivers to unregister several supply
1624  * aliases in one operation.
1625  */
1626 void regulator_bulk_unregister_supply_alias(struct device *dev,
1627                                             const char **id,
1628                                             int num_id)
1629 {
1630         int i;
1631
1632         for (i = 0; i < num_id; ++i)
1633                 regulator_unregister_supply_alias(dev, id[i]);
1634 }
1635 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1636
1637
1638 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1639 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1640                                 const struct regulator_config *config)
1641 {
1642         struct regulator_enable_gpio *pin;
1643         int ret;
1644
1645         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1646                 if (pin->gpio == config->ena_gpio) {
1647                         rdev_dbg(rdev, "GPIO %d is already used\n",
1648                                 config->ena_gpio);
1649                         goto update_ena_gpio_to_rdev;
1650                 }
1651         }
1652
1653         ret = gpio_request_one(config->ena_gpio,
1654                                 GPIOF_DIR_OUT | config->ena_gpio_flags,
1655                                 rdev_get_name(rdev));
1656         if (ret)
1657                 return ret;
1658
1659         pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1660         if (pin == NULL) {
1661                 gpio_free(config->ena_gpio);
1662                 return -ENOMEM;
1663         }
1664
1665         pin->gpio = config->ena_gpio;
1666         pin->ena_gpio_invert = config->ena_gpio_invert;
1667         list_add(&pin->list, &regulator_ena_gpio_list);
1668
1669 update_ena_gpio_to_rdev:
1670         pin->request_count++;
1671         rdev->ena_pin = pin;
1672         return 0;
1673 }
1674
1675 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1676 {
1677         struct regulator_enable_gpio *pin, *n;
1678
1679         if (!rdev->ena_pin)
1680                 return;
1681
1682         /* Free the GPIO only in case of no use */
1683         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1684                 if (pin->gpio == rdev->ena_pin->gpio) {
1685                         if (pin->request_count <= 1) {
1686                                 pin->request_count = 0;
1687                                 gpio_free(pin->gpio);
1688                                 list_del(&pin->list);
1689                                 kfree(pin);
1690                         } else {
1691                                 pin->request_count--;
1692                         }
1693                 }
1694         }
1695 }
1696
1697 /**
1698  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1699  * @rdev: regulator_dev structure
1700  * @enable: enable GPIO at initial use?
1701  *
1702  * GPIO is enabled in case of initial use. (enable_count is 0)
1703  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1704  */
1705 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1706 {
1707         struct regulator_enable_gpio *pin = rdev->ena_pin;
1708
1709         if (!pin)
1710                 return -EINVAL;
1711
1712         if (enable) {
1713                 /* Enable GPIO at initial use */
1714                 if (pin->enable_count == 0)
1715                         gpio_set_value_cansleep(pin->gpio,
1716                                                 !pin->ena_gpio_invert);
1717
1718                 pin->enable_count++;
1719         } else {
1720                 if (pin->enable_count > 1) {
1721                         pin->enable_count--;
1722                         return 0;
1723                 }
1724
1725                 /* Disable GPIO if not used */
1726                 if (pin->enable_count <= 1) {
1727                         gpio_set_value_cansleep(pin->gpio,
1728                                                 pin->ena_gpio_invert);
1729                         pin->enable_count = 0;
1730                 }
1731         }
1732
1733         return 0;
1734 }
1735
1736 static int _regulator_do_enable(struct regulator_dev *rdev)
1737 {
1738         int ret, delay;
1739
1740         /* Query before enabling in case configuration dependent.  */
1741         ret = _regulator_get_enable_time(rdev);
1742         if (ret >= 0) {
1743                 delay = ret;
1744         } else {
1745                 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1746                 delay = 0;
1747         }
1748
1749         trace_regulator_enable(rdev_get_name(rdev));
1750
1751         if (rdev->ena_pin) {
1752                 ret = regulator_ena_gpio_ctrl(rdev, true);
1753                 if (ret < 0)
1754                         return ret;
1755                 rdev->ena_gpio_state = 1;
1756         } else if (rdev->desc->ops->enable) {
1757                 ret = rdev->desc->ops->enable(rdev);
1758                 if (ret < 0)
1759                         return ret;
1760         } else {
1761                 return -EINVAL;
1762         }
1763
1764         /* Allow the regulator to ramp; it would be useful to extend
1765          * this for bulk operations so that the regulators can ramp
1766          * together.  */
1767         trace_regulator_enable_delay(rdev_get_name(rdev));
1768
1769         /*
1770          * Delay for the requested amount of time as per the guidelines in:
1771          *
1772          *     Documentation/timers/timers-howto.txt
1773          *
1774          * The assumption here is that regulators will never be enabled in
1775          * atomic context and therefore sleeping functions can be used.
1776          */
1777         if (delay) {
1778                 unsigned int ms = delay / 1000;
1779                 unsigned int us = delay % 1000;
1780
1781                 if (ms > 0) {
1782                         /*
1783                          * For small enough values, handle super-millisecond
1784                          * delays in the usleep_range() call below.
1785                          */
1786                         if (ms < 20)
1787                                 us += ms * 1000;
1788                         else
1789                                 msleep(ms);
1790                 }
1791
1792                 /*
1793                  * Give the scheduler some room to coalesce with any other
1794                  * wakeup sources. For delays shorter than 10 us, don't even
1795                  * bother setting up high-resolution timers and just busy-
1796                  * loop.
1797                  */
1798                 if (us >= 10)
1799                         usleep_range(us, us + 100);
1800                 else
1801                         udelay(us);
1802         }
1803
1804         trace_regulator_enable_complete(rdev_get_name(rdev));
1805
1806         return 0;
1807 }
1808
1809 /* locks held by regulator_enable() */
1810 static int _regulator_enable(struct regulator_dev *rdev)
1811 {
1812         int ret;
1813
1814         /* check voltage and requested load before enabling */
1815         if (rdev->constraints &&
1816             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1817                 drms_uA_update(rdev);
1818
1819         if (rdev->use_count == 0) {
1820                 /* The regulator may on if it's not switchable or left on */
1821                 ret = _regulator_is_enabled(rdev);
1822                 if (ret == -EINVAL || ret == 0) {
1823                         if (!_regulator_can_change_status(rdev))
1824                                 return -EPERM;
1825
1826                         ret = _regulator_do_enable(rdev);
1827                         if (ret < 0)
1828                                 return ret;
1829
1830                 } else if (ret < 0) {
1831                         rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1832                         return ret;
1833                 }
1834                 /* Fallthrough on positive return values - already enabled */
1835         }
1836
1837         rdev->use_count++;
1838
1839         return 0;
1840 }
1841
1842 /**
1843  * regulator_enable - enable regulator output
1844  * @regulator: regulator source
1845  *
1846  * Request that the regulator be enabled with the regulator output at
1847  * the predefined voltage or current value.  Calls to regulator_enable()
1848  * must be balanced with calls to regulator_disable().
1849  *
1850  * NOTE: the output value can be set by other drivers, boot loader or may be
1851  * hardwired in the regulator.
1852  */
1853 int regulator_enable(struct regulator *regulator)
1854 {
1855         struct regulator_dev *rdev = regulator->rdev;
1856         int ret = 0;
1857
1858         if (regulator->always_on)
1859                 return 0;
1860
1861         if (rdev->supply) {
1862                 ret = regulator_enable(rdev->supply);
1863                 if (ret != 0)
1864                         return ret;
1865         }
1866
1867         mutex_lock(&rdev->mutex);
1868         ret = _regulator_enable(rdev);
1869         mutex_unlock(&rdev->mutex);
1870
1871         if (ret != 0 && rdev->supply)
1872                 regulator_disable(rdev->supply);
1873
1874         return ret;
1875 }
1876 EXPORT_SYMBOL_GPL(regulator_enable);
1877
1878 static int _regulator_do_disable(struct regulator_dev *rdev)
1879 {
1880         int ret;
1881
1882         trace_regulator_disable(rdev_get_name(rdev));
1883
1884         if (rdev->ena_pin) {
1885                 ret = regulator_ena_gpio_ctrl(rdev, false);
1886                 if (ret < 0)
1887                         return ret;
1888                 rdev->ena_gpio_state = 0;
1889
1890         } else if (rdev->desc->ops->disable) {
1891                 ret = rdev->desc->ops->disable(rdev);
1892                 if (ret != 0)
1893                         return ret;
1894         }
1895
1896         trace_regulator_disable_complete(rdev_get_name(rdev));
1897
1898         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1899                              NULL);
1900         return 0;
1901 }
1902
1903 /* locks held by regulator_disable() */
1904 static int _regulator_disable(struct regulator_dev *rdev)
1905 {
1906         int ret = 0;
1907
1908         if (WARN(rdev->use_count <= 0,
1909                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
1910                 return -EIO;
1911
1912         /* are we the last user and permitted to disable ? */
1913         if (rdev->use_count == 1 &&
1914             (rdev->constraints && !rdev->constraints->always_on)) {
1915
1916                 /* we are last user */
1917                 if (_regulator_can_change_status(rdev)) {
1918                         ret = _regulator_do_disable(rdev);
1919                         if (ret < 0) {
1920                                 rdev_err(rdev, "failed to disable\n");
1921                                 return ret;
1922                         }
1923                 }
1924
1925                 rdev->use_count = 0;
1926         } else if (rdev->use_count > 1) {
1927
1928                 if (rdev->constraints &&
1929                         (rdev->constraints->valid_ops_mask &
1930                         REGULATOR_CHANGE_DRMS))
1931                         drms_uA_update(rdev);
1932
1933                 rdev->use_count--;
1934         }
1935
1936         return ret;
1937 }
1938
1939 /**
1940  * regulator_disable - disable regulator output
1941  * @regulator: regulator source
1942  *
1943  * Disable the regulator output voltage or current.  Calls to
1944  * regulator_enable() must be balanced with calls to
1945  * regulator_disable().
1946  *
1947  * NOTE: this will only disable the regulator output if no other consumer
1948  * devices have it enabled, the regulator device supports disabling and
1949  * machine constraints permit this operation.
1950  */
1951 int regulator_disable(struct regulator *regulator)
1952 {
1953         struct regulator_dev *rdev = regulator->rdev;
1954         int ret = 0;
1955
1956         if (regulator->always_on)
1957                 return 0;
1958
1959         mutex_lock(&rdev->mutex);
1960         ret = _regulator_disable(rdev);
1961         mutex_unlock(&rdev->mutex);
1962
1963         if (ret == 0 && rdev->supply)
1964                 regulator_disable(rdev->supply);
1965
1966         return ret;
1967 }
1968 EXPORT_SYMBOL_GPL(regulator_disable);
1969
1970 /* locks held by regulator_force_disable() */
1971 static int _regulator_force_disable(struct regulator_dev *rdev)
1972 {
1973         int ret = 0;
1974
1975         /* force disable */
1976         if (rdev->desc->ops->disable) {
1977                 /* ah well, who wants to live forever... */
1978                 ret = rdev->desc->ops->disable(rdev);
1979                 if (ret < 0) {
1980                         rdev_err(rdev, "failed to force disable\n");
1981                         return ret;
1982                 }
1983                 /* notify other consumers that power has been forced off */
1984                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1985                         REGULATOR_EVENT_DISABLE, NULL);
1986         }
1987
1988         return ret;
1989 }
1990
1991 /**
1992  * regulator_force_disable - force disable regulator output
1993  * @regulator: regulator source
1994  *
1995  * Forcibly disable the regulator output voltage or current.
1996  * NOTE: this *will* disable the regulator output even if other consumer
1997  * devices have it enabled. This should be used for situations when device
1998  * damage will likely occur if the regulator is not disabled (e.g. over temp).
1999  */
2000 int regulator_force_disable(struct regulator *regulator)
2001 {
2002         struct regulator_dev *rdev = regulator->rdev;
2003         int ret;
2004
2005         mutex_lock(&rdev->mutex);
2006         regulator->uA_load = 0;
2007         ret = _regulator_force_disable(regulator->rdev);
2008         mutex_unlock(&rdev->mutex);
2009
2010         if (rdev->supply)
2011                 while (rdev->open_count--)
2012                         regulator_disable(rdev->supply);
2013
2014         return ret;
2015 }
2016 EXPORT_SYMBOL_GPL(regulator_force_disable);
2017
2018 static void regulator_disable_work(struct work_struct *work)
2019 {
2020         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2021                                                   disable_work.work);
2022         int count, i, ret;
2023
2024         mutex_lock(&rdev->mutex);
2025
2026         BUG_ON(!rdev->deferred_disables);
2027
2028         count = rdev->deferred_disables;
2029         rdev->deferred_disables = 0;
2030
2031         for (i = 0; i < count; i++) {
2032                 ret = _regulator_disable(rdev);
2033                 if (ret != 0)
2034                         rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2035         }
2036
2037         mutex_unlock(&rdev->mutex);
2038
2039         if (rdev->supply) {
2040                 for (i = 0; i < count; i++) {
2041                         ret = regulator_disable(rdev->supply);
2042                         if (ret != 0) {
2043                                 rdev_err(rdev,
2044                                          "Supply disable failed: %d\n", ret);
2045                         }
2046                 }
2047         }
2048 }
2049
2050 /**
2051  * regulator_disable_deferred - disable regulator output with delay
2052  * @regulator: regulator source
2053  * @ms: miliseconds until the regulator is disabled
2054  *
2055  * Execute regulator_disable() on the regulator after a delay.  This
2056  * is intended for use with devices that require some time to quiesce.
2057  *
2058  * NOTE: this will only disable the regulator output if no other consumer
2059  * devices have it enabled, the regulator device supports disabling and
2060  * machine constraints permit this operation.
2061  */
2062 int regulator_disable_deferred(struct regulator *regulator, int ms)
2063 {
2064         struct regulator_dev *rdev = regulator->rdev;
2065         int ret;
2066
2067         if (regulator->always_on)
2068                 return 0;
2069
2070         if (!ms)
2071                 return regulator_disable(regulator);
2072
2073         mutex_lock(&rdev->mutex);
2074         rdev->deferred_disables++;
2075         mutex_unlock(&rdev->mutex);
2076
2077         ret = queue_delayed_work(system_power_efficient_wq,
2078                                  &rdev->disable_work,
2079                                  msecs_to_jiffies(ms));
2080         if (ret < 0)
2081                 return ret;
2082         else
2083                 return 0;
2084 }
2085 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2086
2087 static int _regulator_is_enabled(struct regulator_dev *rdev)
2088 {
2089         /* A GPIO control always takes precedence */
2090         if (rdev->ena_pin)
2091                 return rdev->ena_gpio_state;
2092
2093         /* If we don't know then assume that the regulator is always on */
2094         if (!rdev->desc->ops->is_enabled)
2095                 return 1;
2096
2097         return rdev->desc->ops->is_enabled(rdev);
2098 }
2099
2100 /**
2101  * regulator_is_enabled - is the regulator output enabled
2102  * @regulator: regulator source
2103  *
2104  * Returns positive if the regulator driver backing the source/client
2105  * has requested that the device be enabled, zero if it hasn't, else a
2106  * negative errno code.
2107  *
2108  * Note that the device backing this regulator handle can have multiple
2109  * users, so it might be enabled even if regulator_enable() was never
2110  * called for this particular source.
2111  */
2112 int regulator_is_enabled(struct regulator *regulator)
2113 {
2114         int ret;
2115
2116         if (regulator->always_on)
2117                 return 1;
2118
2119         mutex_lock(&regulator->rdev->mutex);
2120         ret = _regulator_is_enabled(regulator->rdev);
2121         mutex_unlock(&regulator->rdev->mutex);
2122
2123         return ret;
2124 }
2125 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2126
2127 /**
2128  * regulator_can_change_voltage - check if regulator can change voltage
2129  * @regulator: regulator source
2130  *
2131  * Returns positive if the regulator driver backing the source/client
2132  * can change its voltage, false otherwise. Usefull for detecting fixed
2133  * or dummy regulators and disabling voltage change logic in the client
2134  * driver.
2135  */
2136 int regulator_can_change_voltage(struct regulator *regulator)
2137 {
2138         struct regulator_dev    *rdev = regulator->rdev;
2139
2140         if (rdev->constraints &&
2141             (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2142                 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2143                         return 1;
2144
2145                 if (rdev->desc->continuous_voltage_range &&
2146                     rdev->constraints->min_uV && rdev->constraints->max_uV &&
2147                     rdev->constraints->min_uV != rdev->constraints->max_uV)
2148                         return 1;
2149         }
2150
2151         return 0;
2152 }
2153 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2154
2155 /**
2156  * regulator_count_voltages - count regulator_list_voltage() selectors
2157  * @regulator: regulator source
2158  *
2159  * Returns number of selectors, or negative errno.  Selectors are
2160  * numbered starting at zero, and typically correspond to bitfields
2161  * in hardware registers.
2162  */
2163 int regulator_count_voltages(struct regulator *regulator)
2164 {
2165         struct regulator_dev    *rdev = regulator->rdev;
2166
2167         return rdev->desc->n_voltages ? : -EINVAL;
2168 }
2169 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2170
2171 /**
2172  * regulator_list_voltage - enumerate supported voltages
2173  * @regulator: regulator source
2174  * @selector: identify voltage to list
2175  * Context: can sleep
2176  *
2177  * Returns a voltage that can be passed to @regulator_set_voltage(),
2178  * zero if this selector code can't be used on this system, or a
2179  * negative errno.
2180  */
2181 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2182 {
2183         struct regulator_dev    *rdev = regulator->rdev;
2184         struct regulator_ops    *ops = rdev->desc->ops;
2185         int                     ret;
2186
2187         if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
2188                 return -EINVAL;
2189
2190         mutex_lock(&rdev->mutex);
2191         ret = ops->list_voltage(rdev, selector);
2192         mutex_unlock(&rdev->mutex);
2193
2194         if (ret > 0) {
2195                 if (ret < rdev->constraints->min_uV)
2196                         ret = 0;
2197                 else if (ret > rdev->constraints->max_uV)
2198                         ret = 0;
2199         }
2200
2201         return ret;
2202 }
2203 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2204
2205 /**
2206  * regulator_get_linear_step - return the voltage step size between VSEL values
2207  * @regulator: regulator source
2208  *
2209  * Returns the voltage step size between VSEL values for linear
2210  * regulators, or return 0 if the regulator isn't a linear regulator.
2211  */
2212 unsigned int regulator_get_linear_step(struct regulator *regulator)
2213 {
2214         struct regulator_dev *rdev = regulator->rdev;
2215
2216         return rdev->desc->uV_step;
2217 }
2218 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2219
2220 /**
2221  * regulator_is_supported_voltage - check if a voltage range can be supported
2222  *
2223  * @regulator: Regulator to check.
2224  * @min_uV: Minimum required voltage in uV.
2225  * @max_uV: Maximum required voltage in uV.
2226  *
2227  * Returns a boolean or a negative error code.
2228  */
2229 int regulator_is_supported_voltage(struct regulator *regulator,
2230                                    int min_uV, int max_uV)
2231 {
2232         struct regulator_dev *rdev = regulator->rdev;
2233         int i, voltages, ret;
2234
2235         /* If we can't change voltage check the current voltage */
2236         if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2237                 ret = regulator_get_voltage(regulator);
2238                 if (ret >= 0)
2239                         return (min_uV <= ret && ret <= max_uV);
2240                 else
2241                         return ret;
2242         }
2243
2244         /* Any voltage within constrains range is fine? */
2245         if (rdev->desc->continuous_voltage_range)
2246                 return min_uV >= rdev->constraints->min_uV &&
2247                                 max_uV <= rdev->constraints->max_uV;
2248
2249         ret = regulator_count_voltages(regulator);
2250         if (ret < 0)
2251                 return ret;
2252         voltages = ret;
2253
2254         for (i = 0; i < voltages; i++) {
2255                 ret = regulator_list_voltage(regulator, i);
2256
2257                 if (ret >= min_uV && ret <= max_uV)
2258                         return 1;
2259         }
2260
2261         return 0;
2262 }
2263 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2264
2265 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2266                                      int min_uV, int max_uV)
2267 {
2268         int ret;
2269         int delay = 0;
2270         int best_val = 0;
2271         unsigned int selector;
2272         int old_selector = -1;
2273
2274         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2275
2276         min_uV += rdev->constraints->uV_offset;
2277         max_uV += rdev->constraints->uV_offset;
2278
2279         /*
2280          * If we can't obtain the old selector there is not enough
2281          * info to call set_voltage_time_sel().
2282          */
2283         if (_regulator_is_enabled(rdev) &&
2284             rdev->desc->ops->set_voltage_time_sel &&
2285             rdev->desc->ops->get_voltage_sel) {
2286                 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2287                 if (old_selector < 0)
2288                         return old_selector;
2289         }
2290
2291         if (rdev->desc->ops->set_voltage) {
2292                 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2293                                                    &selector);
2294
2295                 if (ret >= 0) {
2296                         if (rdev->desc->ops->list_voltage)
2297                                 best_val = rdev->desc->ops->list_voltage(rdev,
2298                                                                          selector);
2299                         else
2300                                 best_val = _regulator_get_voltage(rdev);
2301                 }
2302
2303         } else if (rdev->desc->ops->set_voltage_sel) {
2304                 if (rdev->desc->ops->map_voltage) {
2305                         ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2306                                                            max_uV);
2307                 } else {
2308                         if (rdev->desc->ops->list_voltage ==
2309                             regulator_list_voltage_linear)
2310                                 ret = regulator_map_voltage_linear(rdev,
2311                                                                 min_uV, max_uV);
2312                         else
2313                                 ret = regulator_map_voltage_iterate(rdev,
2314                                                                 min_uV, max_uV);
2315                 }
2316
2317                 if (ret >= 0) {
2318                         best_val = rdev->desc->ops->list_voltage(rdev, ret);
2319                         if (min_uV <= best_val && max_uV >= best_val) {
2320                                 selector = ret;
2321                                 if (old_selector == selector)
2322                                         ret = 0;
2323                                 else
2324                                         ret = rdev->desc->ops->set_voltage_sel(
2325                                                                 rdev, ret);
2326                         } else {
2327                                 ret = -EINVAL;
2328                         }
2329                 }
2330         } else {
2331                 ret = -EINVAL;
2332         }
2333
2334         /* Call set_voltage_time_sel if successfully obtained old_selector */
2335         if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2336                 && old_selector != selector) {
2337
2338                 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2339                                                 old_selector, selector);
2340                 if (delay < 0) {
2341                         rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2342                                   delay);
2343                         delay = 0;
2344                 }
2345
2346                 /* Insert any necessary delays */
2347                 if (delay >= 1000) {
2348                         mdelay(delay / 1000);
2349                         udelay(delay % 1000);
2350                 } else if (delay) {
2351                         udelay(delay);
2352                 }
2353         }
2354
2355         if (ret == 0 && best_val >= 0) {
2356                 unsigned long data = best_val;
2357
2358                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2359                                      (void *)data);
2360         }
2361
2362         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2363
2364         return ret;
2365 }
2366
2367 /**
2368  * regulator_set_voltage - set regulator output voltage
2369  * @regulator: regulator source
2370  * @min_uV: Minimum required voltage in uV
2371  * @max_uV: Maximum acceptable voltage in uV
2372  *
2373  * Sets a voltage regulator to the desired output voltage. This can be set
2374  * during any regulator state. IOW, regulator can be disabled or enabled.
2375  *
2376  * If the regulator is enabled then the voltage will change to the new value
2377  * immediately otherwise if the regulator is disabled the regulator will
2378  * output at the new voltage when enabled.
2379  *
2380  * NOTE: If the regulator is shared between several devices then the lowest
2381  * request voltage that meets the system constraints will be used.
2382  * Regulator system constraints must be set for this regulator before
2383  * calling this function otherwise this call will fail.
2384  */
2385 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2386 {
2387         struct regulator_dev *rdev = regulator->rdev;
2388         int ret = 0;
2389         int old_min_uV, old_max_uV;
2390
2391         mutex_lock(&rdev->mutex);
2392
2393         /* If we're setting the same range as last time the change
2394          * should be a noop (some cpufreq implementations use the same
2395          * voltage for multiple frequencies, for example).
2396          */
2397         if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2398                 goto out;
2399
2400         /* sanity check */
2401         if (!rdev->desc->ops->set_voltage &&
2402             !rdev->desc->ops->set_voltage_sel) {
2403                 ret = -EINVAL;
2404                 goto out;
2405         }
2406
2407         /* constraints check */
2408         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2409         if (ret < 0)
2410                 goto out;
2411         
2412         /* restore original values in case of error */
2413         old_min_uV = regulator->min_uV;
2414         old_max_uV = regulator->max_uV;
2415         regulator->min_uV = min_uV;
2416         regulator->max_uV = max_uV;
2417
2418         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2419         if (ret < 0)
2420                 goto out2;
2421
2422         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2423         if (ret < 0)
2424                 goto out2;
2425         
2426 out:
2427         mutex_unlock(&rdev->mutex);
2428         return ret;
2429 out2:
2430         regulator->min_uV = old_min_uV;
2431         regulator->max_uV = old_max_uV;
2432         mutex_unlock(&rdev->mutex);
2433         return ret;
2434 }
2435 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2436
2437 /**
2438  * regulator_set_voltage_time - get raise/fall time
2439  * @regulator: regulator source
2440  * @old_uV: starting voltage in microvolts
2441  * @new_uV: target voltage in microvolts
2442  *
2443  * Provided with the starting and ending voltage, this function attempts to
2444  * calculate the time in microseconds required to rise or fall to this new
2445  * voltage.
2446  */
2447 int regulator_set_voltage_time(struct regulator *regulator,
2448                                int old_uV, int new_uV)
2449 {
2450         struct regulator_dev    *rdev = regulator->rdev;
2451         struct regulator_ops    *ops = rdev->desc->ops;
2452         int old_sel = -1;
2453         int new_sel = -1;
2454         int voltage;
2455         int i;
2456
2457         /* Currently requires operations to do this */
2458         if (!ops->list_voltage || !ops->set_voltage_time_sel
2459             || !rdev->desc->n_voltages)
2460                 return -EINVAL;
2461
2462         for (i = 0; i < rdev->desc->n_voltages; i++) {
2463                 /* We only look for exact voltage matches here */
2464                 voltage = regulator_list_voltage(regulator, i);
2465                 if (voltage < 0)
2466                         return -EINVAL;
2467                 if (voltage == 0)
2468                         continue;
2469                 if (voltage == old_uV)
2470                         old_sel = i;
2471                 if (voltage == new_uV)
2472                         new_sel = i;
2473         }
2474
2475         if (old_sel < 0 || new_sel < 0)
2476                 return -EINVAL;
2477
2478         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2479 }
2480 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2481
2482 /**
2483  * regulator_set_voltage_time_sel - get raise/fall time
2484  * @rdev: regulator source device
2485  * @old_selector: selector for starting voltage
2486  * @new_selector: selector for target voltage
2487  *
2488  * Provided with the starting and target voltage selectors, this function
2489  * returns time in microseconds required to rise or fall to this new voltage
2490  *
2491  * Drivers providing ramp_delay in regulation_constraints can use this as their
2492  * set_voltage_time_sel() operation.
2493  */
2494 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2495                                    unsigned int old_selector,
2496                                    unsigned int new_selector)
2497 {
2498         unsigned int ramp_delay = 0;
2499         int old_volt, new_volt;
2500
2501         if (rdev->constraints->ramp_delay)
2502                 ramp_delay = rdev->constraints->ramp_delay;
2503         else if (rdev->desc->ramp_delay)
2504                 ramp_delay = rdev->desc->ramp_delay;
2505
2506         if (ramp_delay == 0) {
2507                 rdev_warn(rdev, "ramp_delay not set\n");
2508                 return 0;
2509         }
2510
2511         /* sanity check */
2512         if (!rdev->desc->ops->list_voltage)
2513                 return -EINVAL;
2514
2515         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2516         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2517
2518         return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2519 }
2520 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2521
2522 /**
2523  * regulator_sync_voltage - re-apply last regulator output voltage
2524  * @regulator: regulator source
2525  *
2526  * Re-apply the last configured voltage.  This is intended to be used
2527  * where some external control source the consumer is cooperating with
2528  * has caused the configured voltage to change.
2529  */
2530 int regulator_sync_voltage(struct regulator *regulator)
2531 {
2532         struct regulator_dev *rdev = regulator->rdev;
2533         int ret, min_uV, max_uV;
2534
2535         mutex_lock(&rdev->mutex);
2536
2537         if (!rdev->desc->ops->set_voltage &&
2538             !rdev->desc->ops->set_voltage_sel) {
2539                 ret = -EINVAL;
2540                 goto out;
2541         }
2542
2543         /* This is only going to work if we've had a voltage configured. */
2544         if (!regulator->min_uV && !regulator->max_uV) {
2545                 ret = -EINVAL;
2546                 goto out;
2547         }
2548
2549         min_uV = regulator->min_uV;
2550         max_uV = regulator->max_uV;
2551
2552         /* This should be a paranoia check... */
2553         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2554         if (ret < 0)
2555                 goto out;
2556
2557         ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2558         if (ret < 0)
2559                 goto out;
2560
2561         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2562
2563 out:
2564         mutex_unlock(&rdev->mutex);
2565         return ret;
2566 }
2567 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2568
2569 static int _regulator_get_voltage(struct regulator_dev *rdev)
2570 {
2571         int sel, ret;
2572
2573         if (rdev->desc->ops->get_voltage_sel) {
2574                 sel = rdev->desc->ops->get_voltage_sel(rdev);
2575                 if (sel < 0)
2576                         return sel;
2577                 ret = rdev->desc->ops->list_voltage(rdev, sel);
2578         } else if (rdev->desc->ops->get_voltage) {
2579                 ret = rdev->desc->ops->get_voltage(rdev);
2580         } else if (rdev->desc->ops->list_voltage) {
2581                 ret = rdev->desc->ops->list_voltage(rdev, 0);
2582         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2583                 ret = rdev->desc->fixed_uV;
2584         } else {
2585                 return -EINVAL;
2586         }
2587
2588         if (ret < 0)
2589                 return ret;
2590         return ret - rdev->constraints->uV_offset;
2591 }
2592
2593 /**
2594  * regulator_get_voltage - get regulator output voltage
2595  * @regulator: regulator source
2596  *
2597  * This returns the current regulator voltage in uV.
2598  *
2599  * NOTE: If the regulator is disabled it will return the voltage value. This
2600  * function should not be used to determine regulator state.
2601  */
2602 int regulator_get_voltage(struct regulator *regulator)
2603 {
2604         int ret;
2605
2606         mutex_lock(&regulator->rdev->mutex);
2607
2608         ret = _regulator_get_voltage(regulator->rdev);
2609
2610         mutex_unlock(&regulator->rdev->mutex);
2611
2612         return ret;
2613 }
2614 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2615
2616 /**
2617  * regulator_set_current_limit - set regulator output current limit
2618  * @regulator: regulator source
2619  * @min_uA: Minimum supported current in uA
2620  * @max_uA: Maximum supported current in uA
2621  *
2622  * Sets current sink to the desired output current. This can be set during
2623  * any regulator state. IOW, regulator can be disabled or enabled.
2624  *
2625  * If the regulator is enabled then the current will change to the new value
2626  * immediately otherwise if the regulator is disabled the regulator will
2627  * output at the new current when enabled.
2628  *
2629  * NOTE: Regulator system constraints must be set for this regulator before
2630  * calling this function otherwise this call will fail.
2631  */
2632 int regulator_set_current_limit(struct regulator *regulator,
2633                                int min_uA, int max_uA)
2634 {
2635         struct regulator_dev *rdev = regulator->rdev;
2636         int ret;
2637
2638         mutex_lock(&rdev->mutex);
2639
2640         /* sanity check */
2641         if (!rdev->desc->ops->set_current_limit) {
2642                 ret = -EINVAL;
2643                 goto out;
2644         }
2645
2646         /* constraints check */
2647         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2648         if (ret < 0)
2649                 goto out;
2650
2651         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2652 out:
2653         mutex_unlock(&rdev->mutex);
2654         return ret;
2655 }
2656 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2657
2658 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2659 {
2660         int ret;
2661
2662         mutex_lock(&rdev->mutex);
2663
2664         /* sanity check */
2665         if (!rdev->desc->ops->get_current_limit) {
2666                 ret = -EINVAL;
2667                 goto out;
2668         }
2669
2670         ret = rdev->desc->ops->get_current_limit(rdev);
2671 out:
2672         mutex_unlock(&rdev->mutex);
2673         return ret;
2674 }
2675
2676 /**
2677  * regulator_get_current_limit - get regulator output current
2678  * @regulator: regulator source
2679  *
2680  * This returns the current supplied by the specified current sink in uA.
2681  *
2682  * NOTE: If the regulator is disabled it will return the current value. This
2683  * function should not be used to determine regulator state.
2684  */
2685 int regulator_get_current_limit(struct regulator *regulator)
2686 {
2687         return _regulator_get_current_limit(regulator->rdev);
2688 }
2689 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2690
2691 /**
2692  * regulator_set_mode - set regulator operating mode
2693  * @regulator: regulator source
2694  * @mode: operating mode - one of the REGULATOR_MODE constants
2695  *
2696  * Set regulator operating mode to increase regulator efficiency or improve
2697  * regulation performance.
2698  *
2699  * NOTE: Regulator system constraints must be set for this regulator before
2700  * calling this function otherwise this call will fail.
2701  */
2702 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2703 {
2704         struct regulator_dev *rdev = regulator->rdev;
2705         int ret;
2706         int regulator_curr_mode;
2707
2708         mutex_lock(&rdev->mutex);
2709
2710         /* sanity check */
2711         if (!rdev->desc->ops->set_mode) {
2712                 ret = -EINVAL;
2713                 goto out;
2714         }
2715
2716         /* return if the same mode is requested */
2717         if (rdev->desc->ops->get_mode) {
2718                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2719                 if (regulator_curr_mode == mode) {
2720                         ret = 0;
2721                         goto out;
2722                 }
2723         }
2724
2725         /* constraints check */
2726         ret = regulator_mode_constrain(rdev, &mode);
2727         if (ret < 0)
2728                 goto out;
2729
2730         ret = rdev->desc->ops->set_mode(rdev, mode);
2731 out:
2732         mutex_unlock(&rdev->mutex);
2733         return ret;
2734 }
2735 EXPORT_SYMBOL_GPL(regulator_set_mode);
2736
2737 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2738 {
2739         int ret;
2740
2741         mutex_lock(&rdev->mutex);
2742
2743         /* sanity check */
2744         if (!rdev->desc->ops->get_mode) {
2745                 ret = -EINVAL;
2746                 goto out;
2747         }
2748
2749         ret = rdev->desc->ops->get_mode(rdev);
2750 out:
2751         mutex_unlock(&rdev->mutex);
2752         return ret;
2753 }
2754
2755 /**
2756  * regulator_get_mode - get regulator operating mode
2757  * @regulator: regulator source
2758  *
2759  * Get the current regulator operating mode.
2760  */
2761 unsigned int regulator_get_mode(struct regulator *regulator)
2762 {
2763         return _regulator_get_mode(regulator->rdev);
2764 }
2765 EXPORT_SYMBOL_GPL(regulator_get_mode);
2766
2767 /**
2768  * regulator_set_optimum_mode - set regulator optimum operating mode
2769  * @regulator: regulator source
2770  * @uA_load: load current
2771  *
2772  * Notifies the regulator core of a new device load. This is then used by
2773  * DRMS (if enabled by constraints) to set the most efficient regulator
2774  * operating mode for the new regulator loading.
2775  *
2776  * Consumer devices notify their supply regulator of the maximum power
2777  * they will require (can be taken from device datasheet in the power
2778  * consumption tables) when they change operational status and hence power
2779  * state. Examples of operational state changes that can affect power
2780  * consumption are :-
2781  *
2782  *    o Device is opened / closed.
2783  *    o Device I/O is about to begin or has just finished.
2784  *    o Device is idling in between work.
2785  *
2786  * This information is also exported via sysfs to userspace.
2787  *
2788  * DRMS will sum the total requested load on the regulator and change
2789  * to the most efficient operating mode if platform constraints allow.
2790  *
2791  * Returns the new regulator mode or error.
2792  */
2793 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2794 {
2795         struct regulator_dev *rdev = regulator->rdev;
2796         struct regulator *consumer;
2797         int ret, output_uV, input_uV = 0, total_uA_load = 0;
2798         unsigned int mode;
2799
2800         if (rdev->supply)
2801                 input_uV = regulator_get_voltage(rdev->supply);
2802
2803         mutex_lock(&rdev->mutex);
2804
2805         /*
2806          * first check to see if we can set modes at all, otherwise just
2807          * tell the consumer everything is OK.
2808          */
2809         regulator->uA_load = uA_load;
2810         ret = regulator_check_drms(rdev);
2811         if (ret < 0) {
2812                 ret = 0;
2813                 goto out;
2814         }
2815
2816         if (!rdev->desc->ops->get_optimum_mode)
2817                 goto out;
2818
2819         /*
2820          * we can actually do this so any errors are indicators of
2821          * potential real failure.
2822          */
2823         ret = -EINVAL;
2824
2825         if (!rdev->desc->ops->set_mode)
2826                 goto out;
2827
2828         /* get output voltage */
2829         output_uV = _regulator_get_voltage(rdev);
2830         if (output_uV <= 0) {
2831                 rdev_err(rdev, "invalid output voltage found\n");
2832                 goto out;
2833         }
2834
2835         /* No supply? Use constraint voltage */
2836         if (input_uV <= 0)
2837                 input_uV = rdev->constraints->input_uV;
2838         if (input_uV <= 0) {
2839                 rdev_err(rdev, "invalid input voltage found\n");
2840                 goto out;
2841         }
2842
2843         /* calc total requested load for this regulator */
2844         list_for_each_entry(consumer, &rdev->consumer_list, list)
2845                 total_uA_load += consumer->uA_load;
2846
2847         mode = rdev->desc->ops->get_optimum_mode(rdev,
2848                                                  input_uV, output_uV,
2849                                                  total_uA_load);
2850         ret = regulator_mode_constrain(rdev, &mode);
2851         if (ret < 0) {
2852                 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2853                          total_uA_load, input_uV, output_uV);
2854                 goto out;
2855         }
2856
2857         ret = rdev->desc->ops->set_mode(rdev, mode);
2858         if (ret < 0) {
2859                 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2860                 goto out;
2861         }
2862         ret = mode;
2863 out:
2864         mutex_unlock(&rdev->mutex);
2865         return ret;
2866 }
2867 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2868
2869 /**
2870  * regulator_allow_bypass - allow the regulator to go into bypass mode
2871  *
2872  * @regulator: Regulator to configure
2873  * @enable: enable or disable bypass mode
2874  *
2875  * Allow the regulator to go into bypass mode if all other consumers
2876  * for the regulator also enable bypass mode and the machine
2877  * constraints allow this.  Bypass mode means that the regulator is
2878  * simply passing the input directly to the output with no regulation.
2879  */
2880 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2881 {
2882         struct regulator_dev *rdev = regulator->rdev;
2883         int ret = 0;
2884
2885         if (!rdev->desc->ops->set_bypass)
2886                 return 0;
2887
2888         if (rdev->constraints &&
2889             !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2890                 return 0;
2891
2892         mutex_lock(&rdev->mutex);
2893
2894         if (enable && !regulator->bypass) {
2895                 rdev->bypass_count++;
2896
2897                 if (rdev->bypass_count == rdev->open_count) {
2898                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2899                         if (ret != 0)
2900                                 rdev->bypass_count--;
2901                 }
2902
2903         } else if (!enable && regulator->bypass) {
2904                 rdev->bypass_count--;
2905
2906                 if (rdev->bypass_count != rdev->open_count) {
2907                         ret = rdev->desc->ops->set_bypass(rdev, enable);
2908                         if (ret != 0)
2909                                 rdev->bypass_count++;
2910                 }
2911         }
2912
2913         if (ret == 0)
2914                 regulator->bypass = enable;
2915
2916         mutex_unlock(&rdev->mutex);
2917
2918         return ret;
2919 }
2920 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2921
2922 /**
2923  * regulator_register_notifier - register regulator event notifier
2924  * @regulator: regulator source
2925  * @nb: notifier block
2926  *
2927  * Register notifier block to receive regulator events.
2928  */
2929 int regulator_register_notifier(struct regulator *regulator,
2930                               struct notifier_block *nb)
2931 {
2932         return blocking_notifier_chain_register(&regulator->rdev->notifier,
2933                                                 nb);
2934 }
2935 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2936
2937 /**
2938  * regulator_unregister_notifier - unregister regulator event notifier
2939  * @regulator: regulator source
2940  * @nb: notifier block
2941  *
2942  * Unregister regulator event notifier block.
2943  */
2944 int regulator_unregister_notifier(struct regulator *regulator,
2945                                 struct notifier_block *nb)
2946 {
2947         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2948                                                   nb);
2949 }
2950 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2951
2952 /* notify regulator consumers and downstream regulator consumers.
2953  * Note mutex must be held by caller.
2954  */
2955 static void _notifier_call_chain(struct regulator_dev *rdev,
2956                                   unsigned long event, void *data)
2957 {
2958         /* call rdev chain first */
2959         blocking_notifier_call_chain(&rdev->notifier, event, data);
2960 }
2961
2962 /**
2963  * regulator_bulk_get - get multiple regulator consumers
2964  *
2965  * @dev:           Device to supply
2966  * @num_consumers: Number of consumers to register
2967  * @consumers:     Configuration of consumers; clients are stored here.
2968  *
2969  * @return 0 on success, an errno on failure.
2970  *
2971  * This helper function allows drivers to get several regulator
2972  * consumers in one operation.  If any of the regulators cannot be
2973  * acquired then any regulators that were allocated will be freed
2974  * before returning to the caller.
2975  */
2976 int regulator_bulk_get(struct device *dev, int num_consumers,
2977                        struct regulator_bulk_data *consumers)
2978 {
2979         int i;
2980         int ret;
2981
2982         for (i = 0; i < num_consumers; i++)
2983                 consumers[i].consumer = NULL;
2984
2985         for (i = 0; i < num_consumers; i++) {
2986                 consumers[i].consumer = regulator_get(dev,
2987                                                       consumers[i].supply);
2988                 if (IS_ERR(consumers[i].consumer)) {
2989                         ret = PTR_ERR(consumers[i].consumer);
2990                         dev_err(dev, "Failed to get supply '%s': %d\n",
2991                                 consumers[i].supply, ret);
2992                         consumers[i].consumer = NULL;
2993                         goto err;
2994                 }
2995         }
2996
2997         return 0;
2998
2999 err:
3000         while (--i >= 0)
3001                 regulator_put(consumers[i].consumer);
3002
3003         return ret;
3004 }
3005 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3006
3007 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3008 {
3009         struct regulator_bulk_data *bulk = data;
3010
3011         bulk->ret = regulator_enable(bulk->consumer);
3012 }
3013
3014 /**
3015  * regulator_bulk_enable - enable multiple regulator consumers
3016  *
3017  * @num_consumers: Number of consumers
3018  * @consumers:     Consumer data; clients are stored here.
3019  * @return         0 on success, an errno on failure
3020  *
3021  * This convenience API allows consumers to enable multiple regulator
3022  * clients in a single API call.  If any consumers cannot be enabled
3023  * then any others that were enabled will be disabled again prior to
3024  * return.
3025  */
3026 int regulator_bulk_enable(int num_consumers,
3027                           struct regulator_bulk_data *consumers)
3028 {
3029         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3030         int i;
3031         int ret = 0;
3032
3033         for (i = 0; i < num_consumers; i++) {
3034                 if (consumers[i].consumer->always_on)
3035                         consumers[i].ret = 0;
3036                 else
3037                         async_schedule_domain(regulator_bulk_enable_async,
3038                                               &consumers[i], &async_domain);
3039         }
3040
3041         async_synchronize_full_domain(&async_domain);
3042
3043         /* If any consumer failed we need to unwind any that succeeded */
3044         for (i = 0; i < num_consumers; i++) {
3045                 if (consumers[i].ret != 0) {
3046                         ret = consumers[i].ret;
3047                         goto err;
3048                 }
3049         }
3050
3051         return 0;
3052
3053 err:
3054         for (i = 0; i < num_consumers; i++) {
3055                 if (consumers[i].ret < 0)
3056                         pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3057                                consumers[i].ret);
3058                 else
3059                         regulator_disable(consumers[i].consumer);
3060         }
3061
3062         return ret;
3063 }
3064 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3065
3066 /**
3067  * regulator_bulk_disable - disable multiple regulator consumers
3068  *
3069  * @num_consumers: Number of consumers
3070  * @consumers:     Consumer data; clients are stored here.
3071  * @return         0 on success, an errno on failure
3072  *
3073  * This convenience API allows consumers to disable multiple regulator
3074  * clients in a single API call.  If any consumers cannot be disabled
3075  * then any others that were disabled will be enabled again prior to
3076  * return.
3077  */
3078 int regulator_bulk_disable(int num_consumers,
3079                            struct regulator_bulk_data *consumers)
3080 {
3081         int i;
3082         int ret, r;
3083
3084         for (i = num_consumers - 1; i >= 0; --i) {
3085                 ret = regulator_disable(consumers[i].consumer);
3086                 if (ret != 0)
3087                         goto err;
3088         }
3089
3090         return 0;
3091
3092 err:
3093         pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3094         for (++i; i < num_consumers; ++i) {
3095                 r = regulator_enable(consumers[i].consumer);
3096                 if (r != 0)
3097                         pr_err("Failed to reename %s: %d\n",
3098                                consumers[i].supply, r);
3099         }
3100
3101         return ret;
3102 }
3103 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3104
3105 /**
3106  * regulator_bulk_force_disable - force disable multiple regulator consumers
3107  *
3108  * @num_consumers: Number of consumers
3109  * @consumers:     Consumer data; clients are stored here.
3110  * @return         0 on success, an errno on failure
3111  *
3112  * This convenience API allows consumers to forcibly disable multiple regulator
3113  * clients in a single API call.
3114  * NOTE: This should be used for situations when device damage will
3115  * likely occur if the regulators are not disabled (e.g. over temp).
3116  * Although regulator_force_disable function call for some consumers can
3117  * return error numbers, the function is called for all consumers.
3118  */
3119 int regulator_bulk_force_disable(int num_consumers,
3120                            struct regulator_bulk_data *consumers)
3121 {
3122         int i;
3123         int ret;
3124
3125         for (i = 0; i < num_consumers; i++)
3126                 consumers[i].ret =
3127                             regulator_force_disable(consumers[i].consumer);
3128
3129         for (i = 0; i < num_consumers; i++) {
3130                 if (consumers[i].ret != 0) {
3131                         ret = consumers[i].ret;
3132                         goto out;
3133                 }
3134         }
3135
3136         return 0;
3137 out:
3138         return ret;
3139 }
3140 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3141
3142 /**
3143  * regulator_bulk_free - free multiple regulator consumers
3144  *
3145  * @num_consumers: Number of consumers
3146  * @consumers:     Consumer data; clients are stored here.
3147  *
3148  * This convenience API allows consumers to free multiple regulator
3149  * clients in a single API call.
3150  */
3151 void regulator_bulk_free(int num_consumers,
3152                          struct regulator_bulk_data *consumers)
3153 {
3154         int i;
3155
3156         for (i = 0; i < num_consumers; i++) {
3157                 regulator_put(consumers[i].consumer);
3158                 consumers[i].consumer = NULL;
3159         }
3160 }
3161 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3162
3163 /**
3164  * regulator_notifier_call_chain - call regulator event notifier
3165  * @rdev: regulator source
3166  * @event: notifier block
3167  * @data: callback-specific data.
3168  *
3169  * Called by regulator drivers to notify clients a regulator event has
3170  * occurred. We also notify regulator clients downstream.
3171  * Note lock must be held by caller.
3172  */
3173 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3174                                   unsigned long event, void *data)
3175 {
3176         _notifier_call_chain(rdev, event, data);
3177         return NOTIFY_DONE;
3178
3179 }
3180 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3181
3182 /**
3183  * regulator_mode_to_status - convert a regulator mode into a status
3184  *
3185  * @mode: Mode to convert
3186  *
3187  * Convert a regulator mode into a status.
3188  */
3189 int regulator_mode_to_status(unsigned int mode)
3190 {
3191         switch (mode) {
3192         case REGULATOR_MODE_FAST:
3193                 return REGULATOR_STATUS_FAST;
3194         case REGULATOR_MODE_NORMAL:
3195                 return REGULATOR_STATUS_NORMAL;
3196         case REGULATOR_MODE_IDLE:
3197                 return REGULATOR_STATUS_IDLE;
3198         case REGULATOR_MODE_STANDBY:
3199                 return REGULATOR_STATUS_STANDBY;
3200         default:
3201                 return REGULATOR_STATUS_UNDEFINED;
3202         }
3203 }
3204 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3205
3206 /*
3207  * To avoid cluttering sysfs (and memory) with useless state, only
3208  * create attributes that can be meaningfully displayed.
3209  */
3210 static int add_regulator_attributes(struct regulator_dev *rdev)
3211 {
3212         struct device           *dev = &rdev->dev;
3213         struct regulator_ops    *ops = rdev->desc->ops;
3214         int                     status = 0;
3215
3216         /* some attributes need specific methods to be displayed */
3217         if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3218             (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3219             (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3220                 (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1))) {
3221                 status = device_create_file(dev, &dev_attr_microvolts);
3222                 if (status < 0)
3223                         return status;
3224         }
3225         if (ops->get_current_limit) {
3226                 status = device_create_file(dev, &dev_attr_microamps);
3227                 if (status < 0)
3228                         return status;
3229         }
3230         if (ops->get_mode) {
3231                 status = device_create_file(dev, &dev_attr_opmode);
3232                 if (status < 0)
3233                         return status;
3234         }
3235         if (rdev->ena_pin || ops->is_enabled) {
3236                 status = device_create_file(dev, &dev_attr_state);
3237                 if (status < 0)
3238                         return status;
3239         }
3240         if (ops->get_status) {
3241                 status = device_create_file(dev, &dev_attr_status);
3242                 if (status < 0)
3243                         return status;
3244         }
3245         if (ops->get_bypass) {
3246                 status = device_create_file(dev, &dev_attr_bypass);
3247                 if (status < 0)
3248                         return status;
3249         }
3250
3251         /* some attributes are type-specific */
3252         if (rdev->desc->type == REGULATOR_CURRENT) {
3253                 status = device_create_file(dev, &dev_attr_requested_microamps);
3254                 if (status < 0)
3255                         return status;
3256         }
3257
3258         /* all the other attributes exist to support constraints;
3259          * don't show them if there are no constraints, or if the
3260          * relevant supporting methods are missing.
3261          */
3262         if (!rdev->constraints)
3263                 return status;
3264
3265         /* constraints need specific supporting methods */
3266         if (ops->set_voltage || ops->set_voltage_sel) {
3267                 status = device_create_file(dev, &dev_attr_min_microvolts);
3268                 if (status < 0)
3269                         return status;
3270                 status = device_create_file(dev, &dev_attr_max_microvolts);
3271                 if (status < 0)
3272                         return status;
3273         }
3274         if (ops->set_current_limit) {
3275                 status = device_create_file(dev, &dev_attr_min_microamps);
3276                 if (status < 0)
3277                         return status;
3278                 status = device_create_file(dev, &dev_attr_max_microamps);
3279                 if (status < 0)
3280                         return status;
3281         }
3282
3283         status = device_create_file(dev, &dev_attr_suspend_standby_state);
3284         if (status < 0)
3285                 return status;
3286         status = device_create_file(dev, &dev_attr_suspend_mem_state);
3287         if (status < 0)
3288                 return status;
3289         status = device_create_file(dev, &dev_attr_suspend_disk_state);
3290         if (status < 0)
3291                 return status;
3292
3293         if (ops->set_suspend_voltage) {
3294                 status = device_create_file(dev,
3295                                 &dev_attr_suspend_standby_microvolts);
3296                 if (status < 0)
3297                         return status;
3298                 status = device_create_file(dev,
3299                                 &dev_attr_suspend_mem_microvolts);
3300                 if (status < 0)
3301                         return status;
3302                 status = device_create_file(dev,
3303                                 &dev_attr_suspend_disk_microvolts);
3304                 if (status < 0)
3305                         return status;
3306         }
3307
3308         if (ops->set_suspend_mode) {
3309                 status = device_create_file(dev,
3310                                 &dev_attr_suspend_standby_mode);
3311                 if (status < 0)
3312                         return status;
3313                 status = device_create_file(dev,
3314                                 &dev_attr_suspend_mem_mode);
3315                 if (status < 0)
3316                         return status;
3317                 status = device_create_file(dev,
3318                                 &dev_attr_suspend_disk_mode);
3319                 if (status < 0)
3320                         return status;
3321         }
3322
3323         return status;
3324 }
3325
3326 static void rdev_init_debugfs(struct regulator_dev *rdev)
3327 {
3328         rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3329         if (!rdev->debugfs) {
3330                 rdev_warn(rdev, "Failed to create debugfs directory\n");
3331                 return;
3332         }
3333
3334         debugfs_create_u32("use_count", 0444, rdev->debugfs,
3335                            &rdev->use_count);
3336         debugfs_create_u32("open_count", 0444, rdev->debugfs,
3337                            &rdev->open_count);
3338         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3339                            &rdev->bypass_count);
3340 }
3341
3342 /**
3343  * regulator_register - register regulator
3344  * @regulator_desc: regulator to register
3345  * @config: runtime configuration for regulator
3346  *
3347  * Called by regulator drivers to register a regulator.
3348  * Returns a valid pointer to struct regulator_dev on success
3349  * or an ERR_PTR() on error.
3350  */
3351 struct regulator_dev *
3352 regulator_register(const struct regulator_desc *regulator_desc,
3353                    const struct regulator_config *config)
3354 {
3355         const struct regulation_constraints *constraints = NULL;
3356         const struct regulator_init_data *init_data;
3357         static atomic_t regulator_no = ATOMIC_INIT(0);
3358         struct regulator_dev *rdev;
3359         struct device *dev;
3360         int ret, i;
3361         const char *supply = NULL;
3362
3363         if (regulator_desc == NULL || config == NULL)
3364                 return ERR_PTR(-EINVAL);
3365
3366         dev = config->dev;
3367         WARN_ON(!dev);
3368
3369         if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3370                 return ERR_PTR(-EINVAL);
3371
3372         if (regulator_desc->type != REGULATOR_VOLTAGE &&
3373             regulator_desc->type != REGULATOR_CURRENT)
3374                 return ERR_PTR(-EINVAL);
3375
3376         /* Only one of each should be implemented */
3377         WARN_ON(regulator_desc->ops->get_voltage &&
3378                 regulator_desc->ops->get_voltage_sel);
3379         WARN_ON(regulator_desc->ops->set_voltage &&
3380                 regulator_desc->ops->set_voltage_sel);
3381
3382         /* If we're using selectors we must implement list_voltage. */
3383         if (regulator_desc->ops->get_voltage_sel &&
3384             !regulator_desc->ops->list_voltage) {
3385                 return ERR_PTR(-EINVAL);
3386         }
3387         if (regulator_desc->ops->set_voltage_sel &&
3388             !regulator_desc->ops->list_voltage) {
3389                 return ERR_PTR(-EINVAL);
3390         }
3391
3392         init_data = config->init_data;
3393
3394         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3395         if (rdev == NULL)
3396                 return ERR_PTR(-ENOMEM);
3397
3398         mutex_lock(&regulator_list_mutex);
3399
3400         mutex_init(&rdev->mutex);
3401         rdev->reg_data = config->driver_data;
3402         rdev->owner = regulator_desc->owner;
3403         rdev->desc = regulator_desc;
3404         if (config->regmap)
3405                 rdev->regmap = config->regmap;
3406         else if (dev_get_regmap(dev, NULL))
3407                 rdev->regmap = dev_get_regmap(dev, NULL);
3408         else if (dev->parent)
3409                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3410         INIT_LIST_HEAD(&rdev->consumer_list);
3411         INIT_LIST_HEAD(&rdev->list);
3412         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3413         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3414
3415         /* preform any regulator specific init */
3416         if (init_data && init_data->regulator_init) {
3417                 ret = init_data->regulator_init(rdev->reg_data);
3418                 if (ret < 0)
3419                         goto clean;
3420         }
3421
3422         /* register with sysfs */
3423         rdev->dev.class = &regulator_class;
3424         rdev->dev.of_node = config->of_node;
3425         rdev->dev.parent = dev;
3426         dev_set_name(&rdev->dev, "regulator.%d",
3427                      atomic_inc_return(&regulator_no) - 1);
3428         ret = device_register(&rdev->dev);
3429         if (ret != 0) {
3430                 put_device(&rdev->dev);
3431                 goto clean;
3432         }
3433
3434         dev_set_drvdata(&rdev->dev, rdev);
3435
3436         if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3437                 ret = regulator_ena_gpio_request(rdev, config);
3438                 if (ret != 0) {
3439                         rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3440                                  config->ena_gpio, ret);
3441                         goto wash;
3442                 }
3443
3444                 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3445                         rdev->ena_gpio_state = 1;
3446
3447                 if (config->ena_gpio_invert)
3448                         rdev->ena_gpio_state = !rdev->ena_gpio_state;
3449         }
3450
3451         /* set regulator constraints */
3452         if (init_data)
3453                 constraints = &init_data->constraints;
3454
3455         ret = set_machine_constraints(rdev, constraints);
3456         if (ret < 0)
3457                 goto scrub;
3458
3459         /* add attributes supported by this regulator */
3460         ret = add_regulator_attributes(rdev);
3461         if (ret < 0)
3462                 goto scrub;
3463
3464         if (init_data && init_data->supply_regulator)
3465                 supply = init_data->supply_regulator;
3466         else if (regulator_desc->supply_name)
3467                 supply = regulator_desc->supply_name;
3468
3469         if (supply) {
3470                 struct regulator_dev *r;
3471
3472                 r = regulator_dev_lookup(dev, supply, &ret);
3473
3474                 if (ret == -ENODEV) {
3475                         /*
3476                          * No supply was specified for this regulator and
3477                          * there will never be one.
3478                          */
3479                         ret = 0;
3480                         goto add_dev;
3481                 } else if (!r) {
3482                         dev_err(dev, "Failed to find supply %s\n", supply);
3483                         ret = -EPROBE_DEFER;
3484                         goto scrub;
3485                 }
3486
3487                 ret = set_supply(rdev, r);
3488                 if (ret < 0)
3489                         goto scrub;
3490
3491                 /* Enable supply if rail is enabled */
3492                 if (_regulator_is_enabled(rdev)) {
3493                         ret = regulator_enable(rdev->supply);
3494                         if (ret < 0)
3495                                 goto scrub;
3496                 }
3497         }
3498
3499 add_dev:
3500         /* add consumers devices */
3501         if (init_data) {
3502                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3503                         ret = set_consumer_device_supply(rdev,
3504                                 init_data->consumer_supplies[i].dev_name,
3505                                 init_data->consumer_supplies[i].supply);
3506                         if (ret < 0) {
3507                                 dev_err(dev, "Failed to set supply %s\n",
3508                                         init_data->consumer_supplies[i].supply);
3509                                 goto unset_supplies;
3510                         }
3511                 }
3512         }
3513
3514         list_add(&rdev->list, &regulator_list);
3515
3516         rdev_init_debugfs(rdev);
3517 out:
3518         mutex_unlock(&regulator_list_mutex);
3519         return rdev;
3520
3521 unset_supplies:
3522         unset_regulator_supplies(rdev);
3523
3524 scrub:
3525         if (rdev->supply)
3526                 _regulator_put(rdev->supply);
3527         regulator_ena_gpio_free(rdev);
3528         kfree(rdev->constraints);
3529 wash:
3530         device_unregister(&rdev->dev);
3531         /* device core frees rdev */
3532         rdev = ERR_PTR(ret);
3533         goto out;
3534
3535 clean:
3536         kfree(rdev);
3537         rdev = ERR_PTR(ret);
3538         goto out;
3539 }
3540 EXPORT_SYMBOL_GPL(regulator_register);
3541
3542 /**
3543  * regulator_unregister - unregister regulator
3544  * @rdev: regulator to unregister
3545  *
3546  * Called by regulator drivers to unregister a regulator.
3547  */
3548 void regulator_unregister(struct regulator_dev *rdev)
3549 {
3550         if (rdev == NULL)
3551                 return;
3552
3553         if (rdev->supply) {
3554                 while (rdev->use_count--)
3555                         regulator_disable(rdev->supply);
3556                 regulator_put(rdev->supply);
3557         }
3558         mutex_lock(&regulator_list_mutex);
3559         debugfs_remove_recursive(rdev->debugfs);
3560         flush_work(&rdev->disable_work.work);
3561         WARN_ON(rdev->open_count);
3562         unset_regulator_supplies(rdev);
3563         list_del(&rdev->list);
3564         kfree(rdev->constraints);
3565         regulator_ena_gpio_free(rdev);
3566         device_unregister(&rdev->dev);
3567         mutex_unlock(&regulator_list_mutex);
3568 }
3569 EXPORT_SYMBOL_GPL(regulator_unregister);
3570
3571 /**
3572  * regulator_suspend_prepare - prepare regulators for system wide suspend
3573  * @state: system suspend state
3574  *
3575  * Configure each regulator with it's suspend operating parameters for state.
3576  * This will usually be called by machine suspend code prior to supending.
3577  */
3578 int regulator_suspend_prepare(suspend_state_t state)
3579 {
3580         struct regulator_dev *rdev;
3581         int ret = 0;
3582
3583         /* ON is handled by regulator active state */
3584         if (state == PM_SUSPEND_ON)
3585                 return -EINVAL;
3586
3587         mutex_lock(&regulator_list_mutex);
3588         list_for_each_entry(rdev, &regulator_list, list) {
3589
3590                 mutex_lock(&rdev->mutex);
3591                 ret = suspend_prepare(rdev, state);
3592                 mutex_unlock(&rdev->mutex);
3593
3594                 if (ret < 0) {
3595                         rdev_err(rdev, "failed to prepare\n");
3596                         goto out;
3597                 }
3598         }
3599 out:
3600         mutex_unlock(&regulator_list_mutex);
3601         return ret;
3602 }
3603 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3604
3605 /**
3606  * regulator_suspend_finish - resume regulators from system wide suspend
3607  *
3608  * Turn on regulators that might be turned off by regulator_suspend_prepare
3609  * and that should be turned on according to the regulators properties.
3610  */
3611 int regulator_suspend_finish(void)
3612 {
3613         struct regulator_dev *rdev;
3614         int ret = 0, error;
3615
3616         mutex_lock(&regulator_list_mutex);
3617         list_for_each_entry(rdev, &regulator_list, list) {
3618                 struct regulator_ops *ops = rdev->desc->ops;
3619
3620                 mutex_lock(&rdev->mutex);
3621                 if ((rdev->use_count > 0  || rdev->constraints->always_on) &&
3622                                 ops->enable) {
3623                         error = ops->enable(rdev);
3624                         if (error)
3625                                 ret = error;
3626                 } else {
3627                         if (!has_full_constraints)
3628                                 goto unlock;
3629                         if (!ops->disable)
3630                                 goto unlock;
3631                         if (!_regulator_is_enabled(rdev))
3632                                 goto unlock;
3633
3634                         error = ops->disable(rdev);
3635                         if (error)
3636                                 ret = error;
3637                 }
3638 unlock:
3639                 mutex_unlock(&rdev->mutex);
3640         }
3641         mutex_unlock(&regulator_list_mutex);
3642         return ret;
3643 }
3644 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3645
3646 /**
3647  * regulator_has_full_constraints - the system has fully specified constraints
3648  *
3649  * Calling this function will cause the regulator API to disable all
3650  * regulators which have a zero use count and don't have an always_on
3651  * constraint in a late_initcall.
3652  *
3653  * The intention is that this will become the default behaviour in a
3654  * future kernel release so users are encouraged to use this facility
3655  * now.
3656  */
3657 void regulator_has_full_constraints(void)
3658 {
3659         has_full_constraints = 1;
3660 }
3661 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3662
3663 /**
3664  * rdev_get_drvdata - get rdev regulator driver data
3665  * @rdev: regulator
3666  *
3667  * Get rdev regulator driver private data. This call can be used in the
3668  * regulator driver context.
3669  */
3670 void *rdev_get_drvdata(struct regulator_dev *rdev)
3671 {
3672         return rdev->reg_data;
3673 }
3674 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3675
3676 /**
3677  * regulator_get_drvdata - get regulator driver data
3678  * @regulator: regulator
3679  *
3680  * Get regulator driver private data. This call can be used in the consumer
3681  * driver context when non API regulator specific functions need to be called.
3682  */
3683 void *regulator_get_drvdata(struct regulator *regulator)
3684 {
3685         return regulator->rdev->reg_data;
3686 }
3687 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3688
3689 /**
3690  * regulator_set_drvdata - set regulator driver data
3691  * @regulator: regulator
3692  * @data: data
3693  */
3694 void regulator_set_drvdata(struct regulator *regulator, void *data)
3695 {
3696         regulator->rdev->reg_data = data;
3697 }
3698 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3699
3700 /**
3701  * regulator_get_id - get regulator ID
3702  * @rdev: regulator
3703  */
3704 int rdev_get_id(struct regulator_dev *rdev)
3705 {
3706         return rdev->desc->id;
3707 }
3708 EXPORT_SYMBOL_GPL(rdev_get_id);
3709
3710 struct device *rdev_get_dev(struct regulator_dev *rdev)
3711 {
3712         return &rdev->dev;
3713 }
3714 EXPORT_SYMBOL_GPL(rdev_get_dev);
3715
3716 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3717 {
3718         return reg_init_data->driver_data;
3719 }
3720 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3721
3722 #ifdef CONFIG_DEBUG_FS
3723 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3724                                     size_t count, loff_t *ppos)
3725 {
3726         char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3727         ssize_t len, ret = 0;
3728         struct regulator_map *map;
3729
3730         if (!buf)
3731                 return -ENOMEM;
3732
3733         list_for_each_entry(map, &regulator_map_list, list) {
3734                 len = snprintf(buf + ret, PAGE_SIZE - ret,
3735                                "%s -> %s.%s\n",
3736                                rdev_get_name(map->regulator), map->dev_name,
3737                                map->supply);
3738                 if (len >= 0)
3739                         ret += len;
3740                 if (ret > PAGE_SIZE) {
3741                         ret = PAGE_SIZE;
3742                         break;
3743                 }
3744         }
3745
3746         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3747
3748         kfree(buf);
3749
3750         return ret;
3751 }
3752 #endif
3753
3754 static const struct file_operations supply_map_fops = {
3755 #ifdef CONFIG_DEBUG_FS
3756         .read = supply_map_read_file,
3757         .llseek = default_llseek,
3758 #endif
3759 };
3760
3761 static int __init regulator_init(void)
3762 {
3763         int ret;
3764
3765         ret = class_register(&regulator_class);
3766
3767         debugfs_root = debugfs_create_dir("regulator", NULL);
3768         if (!debugfs_root)
3769                 pr_warn("regulator: Failed to create debugfs directory\n");
3770
3771         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3772                             &supply_map_fops);
3773
3774         regulator_dummy_init();
3775
3776         return ret;
3777 }
3778
3779 /* init early to allow our consumers to complete system booting */
3780 core_initcall(regulator_init);
3781
3782 static int __init regulator_init_complete(void)
3783 {
3784         struct regulator_dev *rdev;
3785         struct regulator_ops *ops;
3786         struct regulation_constraints *c;
3787         int enabled, ret;
3788
3789         /*
3790          * Since DT doesn't provide an idiomatic mechanism for
3791          * enabling full constraints and since it's much more natural
3792          * with DT to provide them just assume that a DT enabled
3793          * system has full constraints.
3794          */
3795         if (of_have_populated_dt())
3796                 has_full_constraints = true;
3797
3798         mutex_lock(&regulator_list_mutex);
3799
3800         /* If we have a full configuration then disable any regulators
3801          * which are not in use or always_on.  This will become the
3802          * default behaviour in the future.
3803          */
3804         list_for_each_entry(rdev, &regulator_list, list) {
3805                 ops = rdev->desc->ops;
3806                 c = rdev->constraints;
3807
3808                 if (!ops->disable || (c && c->always_on))
3809                         continue;
3810
3811                 mutex_lock(&rdev->mutex);
3812
3813                 if (rdev->use_count)
3814                         goto unlock;
3815
3816                 /* If we can't read the status assume it's on. */
3817                 if (ops->is_enabled)
3818                         enabled = ops->is_enabled(rdev);
3819                 else
3820                         enabled = 1;
3821
3822                 if (!enabled)
3823                         goto unlock;
3824
3825                 if (has_full_constraints) {
3826                         /* We log since this may kill the system if it
3827                          * goes wrong. */
3828                         rdev_info(rdev, "disabling\n");
3829                         ret = ops->disable(rdev);
3830                         if (ret != 0) {
3831                                 rdev_err(rdev, "couldn't disable: %d\n", ret);
3832                         }
3833                 } else {
3834                         /* The intention is that in future we will
3835                          * assume that full constraints are provided
3836                          * so warn even if we aren't going to do
3837                          * anything here.
3838                          */
3839                         rdev_warn(rdev, "incomplete constraints, leaving on\n");
3840                 }
3841
3842 unlock:
3843                 mutex_unlock(&rdev->mutex);
3844         }
3845
3846         mutex_unlock(&regulator_list_mutex);
3847
3848         return 0;
3849 }
3850 late_initcall(regulator_init_complete);