]> Pileus Git - ~andy/linux/blob - drivers/net/wireless/zd1211rw/zd_usb.c
[PATCH] zd1211rw: Add ID for ZyXEL G-220
[~andy/linux] / drivers / net / wireless / zd1211rw / zd_usb.c
1 /* zd_usb.c
2  *
3  * This program is free software; you can redistribute it and/or modify
4  * it under the terms of the GNU General Public License as published by
5  * the Free Software Foundation; either version 2 of the License, or
6  * (at your option) any later version.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
16  */
17
18 #include <asm/unaligned.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/firmware.h>
23 #include <linux/device.h>
24 #include <linux/errno.h>
25 #include <linux/skbuff.h>
26 #include <linux/usb.h>
27 #include <linux/workqueue.h>
28 #include <net/ieee80211.h>
29
30 #include "zd_def.h"
31 #include "zd_netdev.h"
32 #include "zd_mac.h"
33 #include "zd_usb.h"
34 #include "zd_util.h"
35
36 static struct usb_device_id usb_ids[] = {
37         /* ZD1211 */
38         { USB_DEVICE(0x0ace, 0x1211), .driver_info = DEVICE_ZD1211 },
39         { USB_DEVICE(0x07b8, 0x6001), .driver_info = DEVICE_ZD1211 },
40         { USB_DEVICE(0x126f, 0xa006), .driver_info = DEVICE_ZD1211 },
41         { USB_DEVICE(0x6891, 0xa727), .driver_info = DEVICE_ZD1211 },
42         { USB_DEVICE(0x0df6, 0x9071), .driver_info = DEVICE_ZD1211 },
43         { USB_DEVICE(0x157e, 0x300b), .driver_info = DEVICE_ZD1211 },
44         { USB_DEVICE(0x079b, 0x004a), .driver_info = DEVICE_ZD1211 },
45         { USB_DEVICE(0x1740, 0x2000), .driver_info = DEVICE_ZD1211 },
46         { USB_DEVICE(0x157e, 0x3204), .driver_info = DEVICE_ZD1211 },
47         { USB_DEVICE(0x0586, 0x3402), .driver_info = DEVICE_ZD1211 },
48         { USB_DEVICE(0x0b3b, 0x5630), .driver_info = DEVICE_ZD1211 },
49         { USB_DEVICE(0x0b05, 0x170c), .driver_info = DEVICE_ZD1211 },
50         { USB_DEVICE(0x1435, 0x0711), .driver_info = DEVICE_ZD1211 },
51         { USB_DEVICE(0x0586, 0x3409), .driver_info = DEVICE_ZD1211 },
52         { USB_DEVICE(0x0b3b, 0x1630), .driver_info = DEVICE_ZD1211 },
53         { USB_DEVICE(0x0586, 0x3401), .driver_info = DEVICE_ZD1211 },
54         /* ZD1211B */
55         { USB_DEVICE(0x0ace, 0x1215), .driver_info = DEVICE_ZD1211B },
56         { USB_DEVICE(0x157e, 0x300d), .driver_info = DEVICE_ZD1211B },
57         { USB_DEVICE(0x079b, 0x0062), .driver_info = DEVICE_ZD1211B },
58         { USB_DEVICE(0x1582, 0x6003), .driver_info = DEVICE_ZD1211B },
59         /* "Driverless" devices that need ejecting */
60         { USB_DEVICE(0x0ace, 0x2011), .driver_info = DEVICE_INSTALLER },
61         {}
62 };
63
64 MODULE_LICENSE("GPL");
65 MODULE_DESCRIPTION("USB driver for devices with the ZD1211 chip.");
66 MODULE_AUTHOR("Ulrich Kunitz");
67 MODULE_AUTHOR("Daniel Drake");
68 MODULE_VERSION("1.0");
69 MODULE_DEVICE_TABLE(usb, usb_ids);
70
71 #define FW_ZD1211_PREFIX        "zd1211/zd1211_"
72 #define FW_ZD1211B_PREFIX       "zd1211/zd1211b_"
73
74 /* register address handling */
75
76 #ifdef DEBUG
77 static int check_addr(struct zd_usb *usb, zd_addr_t addr)
78 {
79         u32 base = ZD_ADDR_BASE(addr);
80         u32 offset = ZD_OFFSET(addr);
81
82         if ((u32)addr & ADDR_ZERO_MASK)
83                 goto invalid_address;
84         switch (base) {
85         case USB_BASE:
86                 break;
87         case CR_BASE:
88                 if (offset > CR_MAX_OFFSET) {
89                         dev_dbg(zd_usb_dev(usb),
90                                 "CR offset %#010x larger than"
91                                 " CR_MAX_OFFSET %#10x\n",
92                                 offset, CR_MAX_OFFSET);
93                         goto invalid_address;
94                 }
95                 if (offset & 1) {
96                         dev_dbg(zd_usb_dev(usb),
97                                 "CR offset %#010x is not a multiple of 2\n",
98                                 offset);
99                         goto invalid_address;
100                 }
101                 break;
102         case E2P_BASE:
103                 if (offset > E2P_MAX_OFFSET) {
104                         dev_dbg(zd_usb_dev(usb),
105                                 "E2P offset %#010x larger than"
106                                 " E2P_MAX_OFFSET %#010x\n",
107                                 offset, E2P_MAX_OFFSET);
108                         goto invalid_address;
109                 }
110                 break;
111         case FW_BASE:
112                 if (!usb->fw_base_offset) {
113                         dev_dbg(zd_usb_dev(usb),
114                                "ERROR: fw base offset has not been set\n");
115                         return -EAGAIN;
116                 }
117                 if (offset > FW_MAX_OFFSET) {
118                         dev_dbg(zd_usb_dev(usb),
119                                 "FW offset %#10x is larger than"
120                                 " FW_MAX_OFFSET %#010x\n",
121                                 offset, FW_MAX_OFFSET);
122                         goto invalid_address;
123                 }
124                 break;
125         default:
126                 dev_dbg(zd_usb_dev(usb),
127                         "address has unsupported base %#010x\n", addr);
128                 goto invalid_address;
129         }
130
131         return 0;
132 invalid_address:
133         dev_dbg(zd_usb_dev(usb),
134                 "ERROR: invalid address: %#010x\n", addr);
135         return -EINVAL;
136 }
137 #endif /* DEBUG */
138
139 static u16 usb_addr(struct zd_usb *usb, zd_addr_t addr)
140 {
141         u32 base;
142         u16 offset;
143
144         base = ZD_ADDR_BASE(addr);
145         offset = ZD_OFFSET(addr);
146
147         ZD_ASSERT(check_addr(usb, addr) == 0);
148
149         switch (base) {
150         case CR_BASE:
151                 offset += CR_BASE_OFFSET;
152                 break;
153         case E2P_BASE:
154                 offset += E2P_BASE_OFFSET;
155                 break;
156         case FW_BASE:
157                 offset += usb->fw_base_offset;
158                 break;
159         }
160
161         return offset;
162 }
163
164 /* USB device initialization */
165
166 static int request_fw_file(
167         const struct firmware **fw, const char *name, struct device *device)
168 {
169         int r;
170
171         dev_dbg_f(device, "fw name %s\n", name);
172
173         r = request_firmware(fw, name, device);
174         if (r)
175                 dev_err(device,
176                        "Could not load firmware file %s. Error number %d\n",
177                        name, r);
178         return r;
179 }
180
181 static inline u16 get_bcdDevice(const struct usb_device *udev)
182 {
183         return le16_to_cpu(udev->descriptor.bcdDevice);
184 }
185
186 enum upload_code_flags {
187         REBOOT = 1,
188 };
189
190 /* Ensures that MAX_TRANSFER_SIZE is even. */
191 #define MAX_TRANSFER_SIZE (USB_MAX_TRANSFER_SIZE & ~1)
192
193 static int upload_code(struct usb_device *udev,
194         const u8 *data, size_t size, u16 code_offset, int flags)
195 {
196         u8 *p;
197         int r;
198
199         /* USB request blocks need "kmalloced" buffers.
200          */
201         p = kmalloc(MAX_TRANSFER_SIZE, GFP_KERNEL);
202         if (!p) {
203                 dev_err(&udev->dev, "out of memory\n");
204                 r = -ENOMEM;
205                 goto error;
206         }
207
208         size &= ~1;
209         while (size > 0) {
210                 size_t transfer_size = size <= MAX_TRANSFER_SIZE ?
211                         size : MAX_TRANSFER_SIZE;
212
213                 dev_dbg_f(&udev->dev, "transfer size %zu\n", transfer_size);
214
215                 memcpy(p, data, transfer_size);
216                 r = usb_control_msg(udev, usb_sndctrlpipe(udev, 0),
217                         USB_REQ_FIRMWARE_DOWNLOAD,
218                         USB_DIR_OUT | USB_TYPE_VENDOR,
219                         code_offset, 0, p, transfer_size, 1000 /* ms */);
220                 if (r < 0) {
221                         dev_err(&udev->dev,
222                                "USB control request for firmware upload"
223                                " failed. Error number %d\n", r);
224                         goto error;
225                 }
226                 transfer_size = r & ~1;
227
228                 size -= transfer_size;
229                 data += transfer_size;
230                 code_offset += transfer_size/sizeof(u16);
231         }
232
233         if (flags & REBOOT) {
234                 u8 ret;
235
236                 r = usb_control_msg(udev, usb_rcvctrlpipe(udev, 0),
237                         USB_REQ_FIRMWARE_CONFIRM,
238                         USB_DIR_IN | USB_TYPE_VENDOR,
239                         0, 0, &ret, sizeof(ret), 5000 /* ms */);
240                 if (r != sizeof(ret)) {
241                         dev_err(&udev->dev,
242                                 "control request firmeware confirmation failed."
243                                 " Return value %d\n", r);
244                         if (r >= 0)
245                                 r = -ENODEV;
246                         goto error;
247                 }
248                 if (ret & 0x80) {
249                         dev_err(&udev->dev,
250                                 "Internal error while downloading."
251                                 " Firmware confirm return value %#04x\n",
252                                 (unsigned int)ret);
253                         r = -ENODEV;
254                         goto error;
255                 }
256                 dev_dbg_f(&udev->dev, "firmware confirm return value %#04x\n",
257                         (unsigned int)ret);
258         }
259
260         r = 0;
261 error:
262         kfree(p);
263         return r;
264 }
265
266 static u16 get_word(const void *data, u16 offset)
267 {
268         const __le16 *p = data;
269         return le16_to_cpu(p[offset]);
270 }
271
272 static char *get_fw_name(char *buffer, size_t size, u8 device_type,
273                        const char* postfix)
274 {
275         scnprintf(buffer, size, "%s%s",
276                 device_type == DEVICE_ZD1211B ?
277                         FW_ZD1211B_PREFIX : FW_ZD1211_PREFIX,
278                 postfix);
279         return buffer;
280 }
281
282 static int handle_version_mismatch(struct usb_device *udev, u8 device_type,
283         const struct firmware *ub_fw)
284 {
285         const struct firmware *ur_fw = NULL;
286         int offset;
287         int r = 0;
288         char fw_name[128];
289
290         r = request_fw_file(&ur_fw,
291                 get_fw_name(fw_name, sizeof(fw_name), device_type, "ur"),
292                 &udev->dev);
293         if (r)
294                 goto error;
295
296         r = upload_code(udev, ur_fw->data, ur_fw->size, FW_START_OFFSET,
297                 REBOOT);
298         if (r)
299                 goto error;
300
301         offset = ((EEPROM_REGS_OFFSET + EEPROM_REGS_SIZE) * sizeof(u16));
302         r = upload_code(udev, ub_fw->data + offset, ub_fw->size - offset,
303                 E2P_BASE_OFFSET + EEPROM_REGS_SIZE, REBOOT);
304
305         /* At this point, the vendor driver downloads the whole firmware
306          * image, hacks around with version IDs, and uploads it again,
307          * completely overwriting the boot code. We do not do this here as
308          * it is not required on any tested devices, and it is suspected to
309          * cause problems. */
310 error:
311         release_firmware(ur_fw);
312         return r;
313 }
314
315 static int upload_firmware(struct usb_device *udev, u8 device_type)
316 {
317         int r;
318         u16 fw_bcdDevice;
319         u16 bcdDevice;
320         const struct firmware *ub_fw = NULL;
321         const struct firmware *uph_fw = NULL;
322         char fw_name[128];
323
324         bcdDevice = get_bcdDevice(udev);
325
326         r = request_fw_file(&ub_fw,
327                 get_fw_name(fw_name, sizeof(fw_name), device_type,  "ub"),
328                 &udev->dev);
329         if (r)
330                 goto error;
331
332         fw_bcdDevice = get_word(ub_fw->data, EEPROM_REGS_OFFSET);
333
334         if (fw_bcdDevice != bcdDevice) {
335                 dev_info(&udev->dev,
336                         "firmware version %#06x and device bootcode version "
337                         "%#06x differ\n", fw_bcdDevice, bcdDevice);
338                 if (bcdDevice <= 0x4313)
339                         dev_warn(&udev->dev, "device has old bootcode, please "
340                                 "report success or failure\n");
341
342                 r = handle_version_mismatch(udev, device_type, ub_fw);
343                 if (r)
344                         goto error;
345         } else {
346                 dev_dbg_f(&udev->dev,
347                         "firmware device id %#06x is equal to the "
348                         "actual device id\n", fw_bcdDevice);
349         }
350
351
352         r = request_fw_file(&uph_fw,
353                 get_fw_name(fw_name, sizeof(fw_name), device_type, "uphr"),
354                 &udev->dev);
355         if (r)
356                 goto error;
357
358         r = upload_code(udev, uph_fw->data, uph_fw->size, FW_START_OFFSET,
359                         REBOOT);
360         if (r) {
361                 dev_err(&udev->dev,
362                         "Could not upload firmware code uph. Error number %d\n",
363                         r);
364         }
365
366         /* FALL-THROUGH */
367 error:
368         release_firmware(ub_fw);
369         release_firmware(uph_fw);
370         return r;
371 }
372
373 #define urb_dev(urb) (&(urb)->dev->dev)
374
375 static inline void handle_regs_int(struct urb *urb)
376 {
377         struct zd_usb *usb = urb->context;
378         struct zd_usb_interrupt *intr = &usb->intr;
379         int len;
380
381         ZD_ASSERT(in_interrupt());
382         spin_lock(&intr->lock);
383
384         if (intr->read_regs_enabled) {
385                 intr->read_regs.length = len = urb->actual_length;
386
387                 if (len > sizeof(intr->read_regs.buffer))
388                         len = sizeof(intr->read_regs.buffer);
389                 memcpy(intr->read_regs.buffer, urb->transfer_buffer, len);
390                 intr->read_regs_enabled = 0;
391                 complete(&intr->read_regs.completion);
392                 goto out;
393         }
394
395         dev_dbg_f(urb_dev(urb), "regs interrupt ignored\n");
396 out:
397         spin_unlock(&intr->lock);
398 }
399
400 static inline void handle_retry_failed_int(struct urb *urb)
401 {
402         dev_dbg_f(urb_dev(urb), "retry failed interrupt\n");
403 }
404
405
406 static void int_urb_complete(struct urb *urb)
407 {
408         int r;
409         struct usb_int_header *hdr;
410
411         switch (urb->status) {
412         case 0:
413                 break;
414         case -ESHUTDOWN:
415         case -EINVAL:
416         case -ENODEV:
417         case -ENOENT:
418         case -ECONNRESET:
419         case -EPIPE:
420                 goto kfree;
421         default:
422                 goto resubmit;
423         }
424
425         if (urb->actual_length < sizeof(hdr)) {
426                 dev_dbg_f(urb_dev(urb), "error: urb %p to small\n", urb);
427                 goto resubmit;
428         }
429
430         hdr = urb->transfer_buffer;
431         if (hdr->type != USB_INT_TYPE) {
432                 dev_dbg_f(urb_dev(urb), "error: urb %p wrong type\n", urb);
433                 goto resubmit;
434         }
435
436         switch (hdr->id) {
437         case USB_INT_ID_REGS:
438                 handle_regs_int(urb);
439                 break;
440         case USB_INT_ID_RETRY_FAILED:
441                 handle_retry_failed_int(urb);
442                 break;
443         default:
444                 dev_dbg_f(urb_dev(urb), "error: urb %p unknown id %x\n", urb,
445                         (unsigned int)hdr->id);
446                 goto resubmit;
447         }
448
449 resubmit:
450         r = usb_submit_urb(urb, GFP_ATOMIC);
451         if (r) {
452                 dev_dbg_f(urb_dev(urb), "resubmit urb %p\n", urb);
453                 goto kfree;
454         }
455         return;
456 kfree:
457         kfree(urb->transfer_buffer);
458 }
459
460 static inline int int_urb_interval(struct usb_device *udev)
461 {
462         switch (udev->speed) {
463         case USB_SPEED_HIGH:
464                 return 4;
465         case USB_SPEED_LOW:
466                 return 10;
467         case USB_SPEED_FULL:
468         default:
469                 return 1;
470         }
471 }
472
473 static inline int usb_int_enabled(struct zd_usb *usb)
474 {
475         unsigned long flags;
476         struct zd_usb_interrupt *intr = &usb->intr;
477         struct urb *urb;
478
479         spin_lock_irqsave(&intr->lock, flags);
480         urb = intr->urb;
481         spin_unlock_irqrestore(&intr->lock, flags);
482         return urb != NULL;
483 }
484
485 int zd_usb_enable_int(struct zd_usb *usb)
486 {
487         int r;
488         struct usb_device *udev;
489         struct zd_usb_interrupt *intr = &usb->intr;
490         void *transfer_buffer = NULL;
491         struct urb *urb;
492
493         dev_dbg_f(zd_usb_dev(usb), "\n");
494
495         urb = usb_alloc_urb(0, GFP_NOFS);
496         if (!urb) {
497                 r = -ENOMEM;
498                 goto out;
499         }
500
501         ZD_ASSERT(!irqs_disabled());
502         spin_lock_irq(&intr->lock);
503         if (intr->urb) {
504                 spin_unlock_irq(&intr->lock);
505                 r = 0;
506                 goto error_free_urb;
507         }
508         intr->urb = urb;
509         spin_unlock_irq(&intr->lock);
510
511         /* TODO: make it a DMA buffer */
512         r = -ENOMEM;
513         transfer_buffer = kmalloc(USB_MAX_EP_INT_BUFFER, GFP_NOFS);
514         if (!transfer_buffer) {
515                 dev_dbg_f(zd_usb_dev(usb),
516                         "couldn't allocate transfer_buffer\n");
517                 goto error_set_urb_null;
518         }
519
520         udev = zd_usb_to_usbdev(usb);
521         usb_fill_int_urb(urb, udev, usb_rcvintpipe(udev, EP_INT_IN),
522                          transfer_buffer, USB_MAX_EP_INT_BUFFER,
523                          int_urb_complete, usb,
524                          intr->interval);
525
526         dev_dbg_f(zd_usb_dev(usb), "submit urb %p\n", intr->urb);
527         r = usb_submit_urb(urb, GFP_NOFS);
528         if (r) {
529                 dev_dbg_f(zd_usb_dev(usb),
530                          "Couldn't submit urb. Error number %d\n", r);
531                 goto error;
532         }
533
534         return 0;
535 error:
536         kfree(transfer_buffer);
537 error_set_urb_null:
538         spin_lock_irq(&intr->lock);
539         intr->urb = NULL;
540         spin_unlock_irq(&intr->lock);
541 error_free_urb:
542         usb_free_urb(urb);
543 out:
544         return r;
545 }
546
547 void zd_usb_disable_int(struct zd_usb *usb)
548 {
549         unsigned long flags;
550         struct zd_usb_interrupt *intr = &usb->intr;
551         struct urb *urb;
552
553         spin_lock_irqsave(&intr->lock, flags);
554         urb = intr->urb;
555         if (!urb) {
556                 spin_unlock_irqrestore(&intr->lock, flags);
557                 return;
558         }
559         intr->urb = NULL;
560         spin_unlock_irqrestore(&intr->lock, flags);
561
562         usb_kill_urb(urb);
563         dev_dbg_f(zd_usb_dev(usb), "urb %p killed\n", urb);
564         usb_free_urb(urb);
565 }
566
567 static void handle_rx_packet(struct zd_usb *usb, const u8 *buffer,
568                              unsigned int length)
569 {
570         int i;
571         struct zd_mac *mac = zd_usb_to_mac(usb);
572         const struct rx_length_info *length_info;
573
574         if (length < sizeof(struct rx_length_info)) {
575                 /* It's not a complete packet anyhow. */
576                 return;
577         }
578         length_info = (struct rx_length_info *)
579                 (buffer + length - sizeof(struct rx_length_info));
580
581         /* It might be that three frames are merged into a single URB
582          * transaction. We have to check for the length info tag.
583          *
584          * While testing we discovered that length_info might be unaligned,
585          * because if USB transactions are merged, the last packet will not
586          * be padded. Unaligned access might also happen if the length_info
587          * structure is not present.
588          */
589         if (get_unaligned(&length_info->tag) == cpu_to_le16(RX_LENGTH_INFO_TAG))
590         {
591                 unsigned int l, k, n;
592                 for (i = 0, l = 0;; i++) {
593                         k = le16_to_cpu(get_unaligned(&length_info->length[i]));
594                         n = l+k;
595                         if (n > length)
596                                 return;
597                         zd_mac_rx(mac, buffer+l, k);
598                         if (i >= 2)
599                                 return;
600                         l = (n+3) & ~3;
601                 }
602         } else {
603                 zd_mac_rx(mac, buffer, length);
604         }
605 }
606
607 static void rx_urb_complete(struct urb *urb)
608 {
609         struct zd_usb *usb;
610         struct zd_usb_rx *rx;
611         const u8 *buffer;
612         unsigned int length;
613
614         switch (urb->status) {
615         case 0:
616                 break;
617         case -ESHUTDOWN:
618         case -EINVAL:
619         case -ENODEV:
620         case -ENOENT:
621         case -ECONNRESET:
622         case -EPIPE:
623                 return;
624         default:
625                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
626                 goto resubmit;
627         }
628
629         buffer = urb->transfer_buffer;
630         length = urb->actual_length;
631         usb = urb->context;
632         rx = &usb->rx;
633
634         if (length%rx->usb_packet_size > rx->usb_packet_size-4) {
635                 /* If there is an old first fragment, we don't care. */
636                 dev_dbg_f(urb_dev(urb), "*** first fragment ***\n");
637                 ZD_ASSERT(length <= ARRAY_SIZE(rx->fragment));
638                 spin_lock(&rx->lock);
639                 memcpy(rx->fragment, buffer, length);
640                 rx->fragment_length = length;
641                 spin_unlock(&rx->lock);
642                 goto resubmit;
643         }
644
645         spin_lock(&rx->lock);
646         if (rx->fragment_length > 0) {
647                 /* We are on a second fragment, we believe */
648                 ZD_ASSERT(length + rx->fragment_length <=
649                           ARRAY_SIZE(rx->fragment));
650                 dev_dbg_f(urb_dev(urb), "*** second fragment ***\n");
651                 memcpy(rx->fragment+rx->fragment_length, buffer, length);
652                 handle_rx_packet(usb, rx->fragment,
653                                  rx->fragment_length + length);
654                 rx->fragment_length = 0;
655                 spin_unlock(&rx->lock);
656         } else {
657                 spin_unlock(&rx->lock);
658                 handle_rx_packet(usb, buffer, length);
659         }
660
661 resubmit:
662         usb_submit_urb(urb, GFP_ATOMIC);
663 }
664
665 static struct urb *alloc_urb(struct zd_usb *usb)
666 {
667         struct usb_device *udev = zd_usb_to_usbdev(usb);
668         struct urb *urb;
669         void *buffer;
670
671         urb = usb_alloc_urb(0, GFP_NOFS);
672         if (!urb)
673                 return NULL;
674         buffer = usb_buffer_alloc(udev, USB_MAX_RX_SIZE, GFP_NOFS,
675                                   &urb->transfer_dma);
676         if (!buffer) {
677                 usb_free_urb(urb);
678                 return NULL;
679         }
680
681         usb_fill_bulk_urb(urb, udev, usb_rcvbulkpipe(udev, EP_DATA_IN),
682                           buffer, USB_MAX_RX_SIZE,
683                           rx_urb_complete, usb);
684         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
685
686         return urb;
687 }
688
689 static void free_urb(struct urb *urb)
690 {
691         if (!urb)
692                 return;
693         usb_buffer_free(urb->dev, urb->transfer_buffer_length,
694                         urb->transfer_buffer, urb->transfer_dma);
695         usb_free_urb(urb);
696 }
697
698 int zd_usb_enable_rx(struct zd_usb *usb)
699 {
700         int i, r;
701         struct zd_usb_rx *rx = &usb->rx;
702         struct urb **urbs;
703
704         dev_dbg_f(zd_usb_dev(usb), "\n");
705
706         r = -ENOMEM;
707         urbs = kcalloc(URBS_COUNT, sizeof(struct urb *), GFP_NOFS);
708         if (!urbs)
709                 goto error;
710         for (i = 0; i < URBS_COUNT; i++) {
711                 urbs[i] = alloc_urb(usb);
712                 if (!urbs[i])
713                         goto error;
714         }
715
716         ZD_ASSERT(!irqs_disabled());
717         spin_lock_irq(&rx->lock);
718         if (rx->urbs) {
719                 spin_unlock_irq(&rx->lock);
720                 r = 0;
721                 goto error;
722         }
723         rx->urbs = urbs;
724         rx->urbs_count = URBS_COUNT;
725         spin_unlock_irq(&rx->lock);
726
727         for (i = 0; i < URBS_COUNT; i++) {
728                 r = usb_submit_urb(urbs[i], GFP_NOFS);
729                 if (r)
730                         goto error_submit;
731         }
732
733         return 0;
734 error_submit:
735         for (i = 0; i < URBS_COUNT; i++) {
736                 usb_kill_urb(urbs[i]);
737         }
738         spin_lock_irq(&rx->lock);
739         rx->urbs = NULL;
740         rx->urbs_count = 0;
741         spin_unlock_irq(&rx->lock);
742 error:
743         if (urbs) {
744                 for (i = 0; i < URBS_COUNT; i++)
745                         free_urb(urbs[i]);
746         }
747         return r;
748 }
749
750 void zd_usb_disable_rx(struct zd_usb *usb)
751 {
752         int i;
753         unsigned long flags;
754         struct urb **urbs;
755         unsigned int count;
756         struct zd_usb_rx *rx = &usb->rx;
757
758         spin_lock_irqsave(&rx->lock, flags);
759         urbs = rx->urbs;
760         count = rx->urbs_count;
761         spin_unlock_irqrestore(&rx->lock, flags);
762         if (!urbs)
763                 return;
764
765         for (i = 0; i < count; i++) {
766                 usb_kill_urb(urbs[i]);
767                 free_urb(urbs[i]);
768         }
769         kfree(urbs);
770
771         spin_lock_irqsave(&rx->lock, flags);
772         rx->urbs = NULL;
773         rx->urbs_count = 0;
774         spin_unlock_irqrestore(&rx->lock, flags);
775 }
776
777 static void tx_urb_complete(struct urb *urb)
778 {
779         int r;
780
781         switch (urb->status) {
782         case 0:
783                 break;
784         case -ESHUTDOWN:
785         case -EINVAL:
786         case -ENODEV:
787         case -ENOENT:
788         case -ECONNRESET:
789         case -EPIPE:
790                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
791                 break;
792         default:
793                 dev_dbg_f(urb_dev(urb), "urb %p error %d\n", urb, urb->status);
794                 goto resubmit;
795         }
796 free_urb:
797         usb_buffer_free(urb->dev, urb->transfer_buffer_length,
798                         urb->transfer_buffer, urb->transfer_dma);
799         usb_free_urb(urb);
800         return;
801 resubmit:
802         r = usb_submit_urb(urb, GFP_ATOMIC);
803         if (r) {
804                 dev_dbg_f(urb_dev(urb), "error resubmit urb %p %d\n", urb, r);
805                 goto free_urb;
806         }
807 }
808
809 /* Puts the frame on the USB endpoint. It doesn't wait for
810  * completion. The frame must contain the control set.
811  */
812 int zd_usb_tx(struct zd_usb *usb, const u8 *frame, unsigned int length)
813 {
814         int r;
815         struct usb_device *udev = zd_usb_to_usbdev(usb);
816         struct urb *urb;
817         void *buffer;
818
819         urb = usb_alloc_urb(0, GFP_ATOMIC);
820         if (!urb) {
821                 r = -ENOMEM;
822                 goto out;
823         }
824
825         buffer = usb_buffer_alloc(zd_usb_to_usbdev(usb), length, GFP_ATOMIC,
826                                   &urb->transfer_dma);
827         if (!buffer) {
828                 r = -ENOMEM;
829                 goto error_free_urb;
830         }
831         memcpy(buffer, frame, length);
832
833         usb_fill_bulk_urb(urb, udev, usb_sndbulkpipe(udev, EP_DATA_OUT),
834                           buffer, length, tx_urb_complete, NULL);
835         urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
836
837         r = usb_submit_urb(urb, GFP_ATOMIC);
838         if (r)
839                 goto error;
840         return 0;
841 error:
842         usb_buffer_free(zd_usb_to_usbdev(usb), length, buffer,
843                         urb->transfer_dma);
844 error_free_urb:
845         usb_free_urb(urb);
846 out:
847         return r;
848 }
849
850 static inline void init_usb_interrupt(struct zd_usb *usb)
851 {
852         struct zd_usb_interrupt *intr = &usb->intr;
853
854         spin_lock_init(&intr->lock);
855         intr->interval = int_urb_interval(zd_usb_to_usbdev(usb));
856         init_completion(&intr->read_regs.completion);
857         intr->read_regs.cr_int_addr = cpu_to_le16(usb_addr(usb, CR_INTERRUPT));
858 }
859
860 static inline void init_usb_rx(struct zd_usb *usb)
861 {
862         struct zd_usb_rx *rx = &usb->rx;
863         spin_lock_init(&rx->lock);
864         if (interface_to_usbdev(usb->intf)->speed == USB_SPEED_HIGH) {
865                 rx->usb_packet_size = 512;
866         } else {
867                 rx->usb_packet_size = 64;
868         }
869         ZD_ASSERT(rx->fragment_length == 0);
870 }
871
872 static inline void init_usb_tx(struct zd_usb *usb)
873 {
874         /* FIXME: at this point we will allocate a fixed number of urb's for
875          * use in a cyclic scheme */
876 }
877
878 void zd_usb_init(struct zd_usb *usb, struct net_device *netdev,
879                  struct usb_interface *intf)
880 {
881         memset(usb, 0, sizeof(*usb));
882         usb->intf = usb_get_intf(intf);
883         usb_set_intfdata(usb->intf, netdev);
884         init_usb_interrupt(usb);
885         init_usb_tx(usb);
886         init_usb_rx(usb);
887 }
888
889 int zd_usb_init_hw(struct zd_usb *usb)
890 {
891         int r;
892         struct zd_chip *chip = zd_usb_to_chip(usb);
893
894         ZD_ASSERT(mutex_is_locked(&chip->mutex));
895         r = zd_ioread16_locked(chip, &usb->fw_base_offset,
896                         USB_REG((u16)FW_BASE_ADDR_OFFSET));
897         if (r)
898                 return r;
899         dev_dbg_f(zd_usb_dev(usb), "fw_base_offset: %#06hx\n",
900                  usb->fw_base_offset);
901
902         return 0;
903 }
904
905 void zd_usb_clear(struct zd_usb *usb)
906 {
907         usb_set_intfdata(usb->intf, NULL);
908         usb_put_intf(usb->intf);
909         ZD_MEMCLEAR(usb, sizeof(*usb));
910         /* FIXME: usb_interrupt, usb_tx, usb_rx? */
911 }
912
913 static const char *speed(enum usb_device_speed speed)
914 {
915         switch (speed) {
916         case USB_SPEED_LOW:
917                 return "low";
918         case USB_SPEED_FULL:
919                 return "full";
920         case USB_SPEED_HIGH:
921                 return "high";
922         default:
923                 return "unknown speed";
924         }
925 }
926
927 static int scnprint_id(struct usb_device *udev, char *buffer, size_t size)
928 {
929         return scnprintf(buffer, size, "%04hx:%04hx v%04hx %s",
930                 le16_to_cpu(udev->descriptor.idVendor),
931                 le16_to_cpu(udev->descriptor.idProduct),
932                 get_bcdDevice(udev),
933                 speed(udev->speed));
934 }
935
936 int zd_usb_scnprint_id(struct zd_usb *usb, char *buffer, size_t size)
937 {
938         struct usb_device *udev = interface_to_usbdev(usb->intf);
939         return scnprint_id(udev, buffer, size);
940 }
941
942 #ifdef DEBUG
943 static void print_id(struct usb_device *udev)
944 {
945         char buffer[40];
946
947         scnprint_id(udev, buffer, sizeof(buffer));
948         buffer[sizeof(buffer)-1] = 0;
949         dev_dbg_f(&udev->dev, "%s\n", buffer);
950 }
951 #else
952 #define print_id(udev) do { } while (0)
953 #endif
954
955 static int eject_installer(struct usb_interface *intf)
956 {
957         struct usb_device *udev = interface_to_usbdev(intf);
958         struct usb_host_interface *iface_desc = &intf->altsetting[0];
959         struct usb_endpoint_descriptor *endpoint;
960         unsigned char *cmd;
961         u8 bulk_out_ep;
962         int r;
963
964         /* Find bulk out endpoint */
965         endpoint = &iface_desc->endpoint[1].desc;
966         if ((endpoint->bEndpointAddress & USB_TYPE_MASK) == USB_DIR_OUT &&
967             (endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
968             USB_ENDPOINT_XFER_BULK) {
969                 bulk_out_ep = endpoint->bEndpointAddress;
970         } else {
971                 dev_err(&udev->dev,
972                         "zd1211rw: Could not find bulk out endpoint\n");
973                 return -ENODEV;
974         }
975
976         cmd = kzalloc(31, GFP_KERNEL);
977         if (cmd == NULL)
978                 return -ENODEV;
979
980         /* USB bulk command block */
981         cmd[0] = 0x55;  /* bulk command signature */
982         cmd[1] = 0x53;  /* bulk command signature */
983         cmd[2] = 0x42;  /* bulk command signature */
984         cmd[3] = 0x43;  /* bulk command signature */
985         cmd[14] = 6;    /* command length */
986
987         cmd[15] = 0x1b; /* SCSI command: START STOP UNIT */
988         cmd[19] = 0x2;  /* eject disc */
989
990         dev_info(&udev->dev, "Ejecting virtual installer media...\n");
991         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, bulk_out_ep),
992                 cmd, 31, NULL, 2000);
993         kfree(cmd);
994         if (r)
995                 return r;
996
997         /* At this point, the device disconnects and reconnects with the real
998          * ID numbers. */
999
1000         usb_set_intfdata(intf, NULL);
1001         return 0;
1002 }
1003
1004 static int probe(struct usb_interface *intf, const struct usb_device_id *id)
1005 {
1006         int r;
1007         struct usb_device *udev = interface_to_usbdev(intf);
1008         struct net_device *netdev = NULL;
1009
1010         print_id(udev);
1011
1012         if (id->driver_info & DEVICE_INSTALLER)
1013                 return eject_installer(intf);
1014
1015         switch (udev->speed) {
1016         case USB_SPEED_LOW:
1017         case USB_SPEED_FULL:
1018         case USB_SPEED_HIGH:
1019                 break;
1020         default:
1021                 dev_dbg_f(&intf->dev, "Unknown USB speed\n");
1022                 r = -ENODEV;
1023                 goto error;
1024         }
1025
1026         netdev = zd_netdev_alloc(intf);
1027         if (netdev == NULL) {
1028                 r = -ENOMEM;
1029                 goto error;
1030         }
1031
1032         r = upload_firmware(udev, id->driver_info);
1033         if (r) {
1034                 dev_err(&intf->dev,
1035                        "couldn't load firmware. Error number %d\n", r);
1036                 goto error;
1037         }
1038
1039         r = usb_reset_configuration(udev);
1040         if (r) {
1041                 dev_dbg_f(&intf->dev,
1042                         "couldn't reset configuration. Error number %d\n", r);
1043                 goto error;
1044         }
1045
1046         /* At this point the interrupt endpoint is not generally enabled. We
1047          * save the USB bandwidth until the network device is opened. But
1048          * notify that the initialization of the MAC will require the
1049          * interrupts to be temporary enabled.
1050          */
1051         r = zd_mac_init_hw(zd_netdev_mac(netdev), id->driver_info);
1052         if (r) {
1053                 dev_dbg_f(&intf->dev,
1054                          "couldn't initialize mac. Error number %d\n", r);
1055                 goto error;
1056         }
1057
1058         r = register_netdev(netdev);
1059         if (r) {
1060                 dev_dbg_f(&intf->dev,
1061                          "couldn't register netdev. Error number %d\n", r);
1062                 goto error;
1063         }
1064
1065         dev_dbg_f(&intf->dev, "successful\n");
1066         dev_info(&intf->dev,"%s\n", netdev->name);
1067         return 0;
1068 error:
1069         usb_reset_device(interface_to_usbdev(intf));
1070         zd_netdev_free(netdev);
1071         return r;
1072 }
1073
1074 static void disconnect(struct usb_interface *intf)
1075 {
1076         struct net_device *netdev = zd_intf_to_netdev(intf);
1077         struct zd_mac *mac = zd_netdev_mac(netdev);
1078         struct zd_usb *usb = &mac->chip.usb;
1079
1080         /* Either something really bad happened, or we're just dealing with
1081          * a DEVICE_INSTALLER. */
1082         if (netdev == NULL)
1083                 return;
1084
1085         dev_dbg_f(zd_usb_dev(usb), "\n");
1086
1087         zd_netdev_disconnect(netdev);
1088
1089         /* Just in case something has gone wrong! */
1090         zd_usb_disable_rx(usb);
1091         zd_usb_disable_int(usb);
1092
1093         /* If the disconnect has been caused by a removal of the
1094          * driver module, the reset allows reloading of the driver. If the
1095          * reset will not be executed here, the upload of the firmware in the
1096          * probe function caused by the reloading of the driver will fail.
1097          */
1098         usb_reset_device(interface_to_usbdev(intf));
1099
1100         zd_netdev_free(netdev);
1101         dev_dbg(&intf->dev, "disconnected\n");
1102 }
1103
1104 static struct usb_driver driver = {
1105         .name           = "zd1211rw",
1106         .id_table       = usb_ids,
1107         .probe          = probe,
1108         .disconnect     = disconnect,
1109 };
1110
1111 struct workqueue_struct *zd_workqueue;
1112
1113 static int __init usb_init(void)
1114 {
1115         int r;
1116
1117         pr_debug("usb_init()\n");
1118
1119         zd_workqueue = create_singlethread_workqueue(driver.name);
1120         if (zd_workqueue == NULL) {
1121                 printk(KERN_ERR "%s: couldn't create workqueue\n", driver.name);
1122                 return -ENOMEM;
1123         }
1124
1125         r = usb_register(&driver);
1126         if (r) {
1127                 printk(KERN_ERR "usb_register() failed. Error number %d\n", r);
1128                 return r;
1129         }
1130
1131         pr_debug("zd1211rw initialized\n");
1132         return 0;
1133 }
1134
1135 static void __exit usb_exit(void)
1136 {
1137         pr_debug("usb_exit()\n");
1138         usb_deregister(&driver);
1139         destroy_workqueue(zd_workqueue);
1140 }
1141
1142 module_init(usb_init);
1143 module_exit(usb_exit);
1144
1145 static int usb_int_regs_length(unsigned int count)
1146 {
1147         return sizeof(struct usb_int_regs) + count * sizeof(struct reg_data);
1148 }
1149
1150 static void prepare_read_regs_int(struct zd_usb *usb)
1151 {
1152         struct zd_usb_interrupt *intr = &usb->intr;
1153
1154         spin_lock_irq(&intr->lock);
1155         intr->read_regs_enabled = 1;
1156         INIT_COMPLETION(intr->read_regs.completion);
1157         spin_unlock_irq(&intr->lock);
1158 }
1159
1160 static void disable_read_regs_int(struct zd_usb *usb)
1161 {
1162         struct zd_usb_interrupt *intr = &usb->intr;
1163
1164         spin_lock_irq(&intr->lock);
1165         intr->read_regs_enabled = 0;
1166         spin_unlock_irq(&intr->lock);
1167 }
1168
1169 static int get_results(struct zd_usb *usb, u16 *values,
1170                        struct usb_req_read_regs *req, unsigned int count)
1171 {
1172         int r;
1173         int i;
1174         struct zd_usb_interrupt *intr = &usb->intr;
1175         struct read_regs_int *rr = &intr->read_regs;
1176         struct usb_int_regs *regs = (struct usb_int_regs *)rr->buffer;
1177
1178         spin_lock_irq(&intr->lock);
1179
1180         r = -EIO;
1181         /* The created block size seems to be larger than expected.
1182          * However results appear to be correct.
1183          */
1184         if (rr->length < usb_int_regs_length(count)) {
1185                 dev_dbg_f(zd_usb_dev(usb),
1186                          "error: actual length %d less than expected %d\n",
1187                          rr->length, usb_int_regs_length(count));
1188                 goto error_unlock;
1189         }
1190         if (rr->length > sizeof(rr->buffer)) {
1191                 dev_dbg_f(zd_usb_dev(usb),
1192                          "error: actual length %d exceeds buffer size %zu\n",
1193                          rr->length, sizeof(rr->buffer));
1194                 goto error_unlock;
1195         }
1196
1197         for (i = 0; i < count; i++) {
1198                 struct reg_data *rd = &regs->regs[i];
1199                 if (rd->addr != req->addr[i]) {
1200                         dev_dbg_f(zd_usb_dev(usb),
1201                                  "rd[%d] addr %#06hx expected %#06hx\n", i,
1202                                  le16_to_cpu(rd->addr),
1203                                  le16_to_cpu(req->addr[i]));
1204                         goto error_unlock;
1205                 }
1206                 values[i] = le16_to_cpu(rd->value);
1207         }
1208
1209         r = 0;
1210 error_unlock:
1211         spin_unlock_irq(&intr->lock);
1212         return r;
1213 }
1214
1215 int zd_usb_ioread16v(struct zd_usb *usb, u16 *values,
1216                      const zd_addr_t *addresses, unsigned int count)
1217 {
1218         int r;
1219         int i, req_len, actual_req_len;
1220         struct usb_device *udev;
1221         struct usb_req_read_regs *req = NULL;
1222         unsigned long timeout;
1223
1224         if (count < 1) {
1225                 dev_dbg_f(zd_usb_dev(usb), "error: count is zero\n");
1226                 return -EINVAL;
1227         }
1228         if (count > USB_MAX_IOREAD16_COUNT) {
1229                 dev_dbg_f(zd_usb_dev(usb),
1230                          "error: count %u exceeds possible max %u\n",
1231                          count, USB_MAX_IOREAD16_COUNT);
1232                 return -EINVAL;
1233         }
1234         if (in_atomic()) {
1235                 dev_dbg_f(zd_usb_dev(usb),
1236                          "error: io in atomic context not supported\n");
1237                 return -EWOULDBLOCK;
1238         }
1239         if (!usb_int_enabled(usb)) {
1240                  dev_dbg_f(zd_usb_dev(usb),
1241                           "error: usb interrupt not enabled\n");
1242                 return -EWOULDBLOCK;
1243         }
1244
1245         req_len = sizeof(struct usb_req_read_regs) + count * sizeof(__le16);
1246         req = kmalloc(req_len, GFP_NOFS);
1247         if (!req)
1248                 return -ENOMEM;
1249         req->id = cpu_to_le16(USB_REQ_READ_REGS);
1250         for (i = 0; i < count; i++)
1251                 req->addr[i] = cpu_to_le16(usb_addr(usb, addresses[i]));
1252
1253         udev = zd_usb_to_usbdev(usb);
1254         prepare_read_regs_int(usb);
1255         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1256                          req, req_len, &actual_req_len, 1000 /* ms */);
1257         if (r) {
1258                 dev_dbg_f(zd_usb_dev(usb),
1259                         "error in usb_bulk_msg(). Error number %d\n", r);
1260                 goto error;
1261         }
1262         if (req_len != actual_req_len) {
1263                 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()\n"
1264                         " req_len %d != actual_req_len %d\n",
1265                         req_len, actual_req_len);
1266                 r = -EIO;
1267                 goto error;
1268         }
1269
1270         timeout = wait_for_completion_timeout(&usb->intr.read_regs.completion,
1271                                               msecs_to_jiffies(1000));
1272         if (!timeout) {
1273                 disable_read_regs_int(usb);
1274                 dev_dbg_f(zd_usb_dev(usb), "read timed out\n");
1275                 r = -ETIMEDOUT;
1276                 goto error;
1277         }
1278
1279         r = get_results(usb, values, req, count);
1280 error:
1281         kfree(req);
1282         return r;
1283 }
1284
1285 int zd_usb_iowrite16v(struct zd_usb *usb, const struct zd_ioreq16 *ioreqs,
1286                       unsigned int count)
1287 {
1288         int r;
1289         struct usb_device *udev;
1290         struct usb_req_write_regs *req = NULL;
1291         int i, req_len, actual_req_len;
1292
1293         if (count == 0)
1294                 return 0;
1295         if (count > USB_MAX_IOWRITE16_COUNT) {
1296                 dev_dbg_f(zd_usb_dev(usb),
1297                         "error: count %u exceeds possible max %u\n",
1298                         count, USB_MAX_IOWRITE16_COUNT);
1299                 return -EINVAL;
1300         }
1301         if (in_atomic()) {
1302                 dev_dbg_f(zd_usb_dev(usb),
1303                         "error: io in atomic context not supported\n");
1304                 return -EWOULDBLOCK;
1305         }
1306
1307         req_len = sizeof(struct usb_req_write_regs) +
1308                   count * sizeof(struct reg_data);
1309         req = kmalloc(req_len, GFP_NOFS);
1310         if (!req)
1311                 return -ENOMEM;
1312
1313         req->id = cpu_to_le16(USB_REQ_WRITE_REGS);
1314         for (i = 0; i < count; i++) {
1315                 struct reg_data *rw  = &req->reg_writes[i];
1316                 rw->addr = cpu_to_le16(usb_addr(usb, ioreqs[i].addr));
1317                 rw->value = cpu_to_le16(ioreqs[i].value);
1318         }
1319
1320         udev = zd_usb_to_usbdev(usb);
1321         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1322                          req, req_len, &actual_req_len, 1000 /* ms */);
1323         if (r) {
1324                 dev_dbg_f(zd_usb_dev(usb),
1325                         "error in usb_bulk_msg(). Error number %d\n", r);
1326                 goto error;
1327         }
1328         if (req_len != actual_req_len) {
1329                 dev_dbg_f(zd_usb_dev(usb),
1330                         "error in usb_bulk_msg()"
1331                         " req_len %d != actual_req_len %d\n",
1332                         req_len, actual_req_len);
1333                 r = -EIO;
1334                 goto error;
1335         }
1336
1337         /* FALL-THROUGH with r == 0 */
1338 error:
1339         kfree(req);
1340         return r;
1341 }
1342
1343 int zd_usb_rfwrite(struct zd_usb *usb, u32 value, u8 bits)
1344 {
1345         int r;
1346         struct usb_device *udev;
1347         struct usb_req_rfwrite *req = NULL;
1348         int i, req_len, actual_req_len;
1349         u16 bit_value_template;
1350
1351         if (in_atomic()) {
1352                 dev_dbg_f(zd_usb_dev(usb),
1353                         "error: io in atomic context not supported\n");
1354                 return -EWOULDBLOCK;
1355         }
1356         if (bits < USB_MIN_RFWRITE_BIT_COUNT) {
1357                 dev_dbg_f(zd_usb_dev(usb),
1358                         "error: bits %d are smaller than"
1359                         " USB_MIN_RFWRITE_BIT_COUNT %d\n",
1360                         bits, USB_MIN_RFWRITE_BIT_COUNT);
1361                 return -EINVAL;
1362         }
1363         if (bits > USB_MAX_RFWRITE_BIT_COUNT) {
1364                 dev_dbg_f(zd_usb_dev(usb),
1365                         "error: bits %d exceed USB_MAX_RFWRITE_BIT_COUNT %d\n",
1366                         bits, USB_MAX_RFWRITE_BIT_COUNT);
1367                 return -EINVAL;
1368         }
1369 #ifdef DEBUG
1370         if (value & (~0UL << bits)) {
1371                 dev_dbg_f(zd_usb_dev(usb),
1372                         "error: value %#09x has bits >= %d set\n",
1373                         value, bits);
1374                 return -EINVAL;
1375         }
1376 #endif /* DEBUG */
1377
1378         dev_dbg_f(zd_usb_dev(usb), "value %#09x bits %d\n", value, bits);
1379
1380         r = zd_usb_ioread16(usb, &bit_value_template, CR203);
1381         if (r) {
1382                 dev_dbg_f(zd_usb_dev(usb),
1383                         "error %d: Couldn't read CR203\n", r);
1384                 goto out;
1385         }
1386         bit_value_template &= ~(RF_IF_LE|RF_CLK|RF_DATA);
1387
1388         req_len = sizeof(struct usb_req_rfwrite) + bits * sizeof(__le16);
1389         req = kmalloc(req_len, GFP_NOFS);
1390         if (!req)
1391                 return -ENOMEM;
1392
1393         req->id = cpu_to_le16(USB_REQ_WRITE_RF);
1394         /* 1: 3683a, but not used in ZYDAS driver */
1395         req->value = cpu_to_le16(2);
1396         req->bits = cpu_to_le16(bits);
1397
1398         for (i = 0; i < bits; i++) {
1399                 u16 bv = bit_value_template;
1400                 if (value & (1 << (bits-1-i)))
1401                         bv |= RF_DATA;
1402                 req->bit_values[i] = cpu_to_le16(bv);
1403         }
1404
1405         udev = zd_usb_to_usbdev(usb);
1406         r = usb_bulk_msg(udev, usb_sndbulkpipe(udev, EP_REGS_OUT),
1407                          req, req_len, &actual_req_len, 1000 /* ms */);
1408         if (r) {
1409                 dev_dbg_f(zd_usb_dev(usb),
1410                         "error in usb_bulk_msg(). Error number %d\n", r);
1411                 goto out;
1412         }
1413         if (req_len != actual_req_len) {
1414                 dev_dbg_f(zd_usb_dev(usb), "error in usb_bulk_msg()"
1415                         " req_len %d != actual_req_len %d\n",
1416                         req_len, actual_req_len);
1417                 r = -EIO;
1418                 goto out;
1419         }
1420
1421         /* FALL-THROUGH with r == 0 */
1422 out:
1423         kfree(req);
1424         return r;
1425 }