]> Pileus Git - ~andy/linux/blob - drivers/net/wireless/rt2x00/rt2500usb.c
Merge branch 'thinkpad-2.6.32-part2' into release
[~andy/linux] / drivers / net / wireless / rt2x00 / rt2500usb.c
1 /*
2         Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500usb
23         Abstract: rt2500usb device specific routines.
24         Supported chipsets: RT2570.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/usb.h>
33
34 #include "rt2x00.h"
35 #include "rt2x00usb.h"
36 #include "rt2500usb.h"
37
38 /*
39  * Allow hardware encryption to be disabled.
40  */
41 static int modparam_nohwcrypt = 0;
42 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
43 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
44
45 /*
46  * Register access.
47  * All access to the CSR registers will go through the methods
48  * rt2500usb_register_read and rt2500usb_register_write.
49  * BBP and RF register require indirect register access,
50  * and use the CSR registers BBPCSR and RFCSR to achieve this.
51  * These indirect registers work with busy bits,
52  * and we will try maximal REGISTER_BUSY_COUNT times to access
53  * the register while taking a REGISTER_BUSY_DELAY us delay
54  * between each attampt. When the busy bit is still set at that time,
55  * the access attempt is considered to have failed,
56  * and we will print an error.
57  * If the csr_mutex is already held then the _lock variants must
58  * be used instead.
59  */
60 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
61                                            const unsigned int offset,
62                                            u16 *value)
63 {
64         __le16 reg;
65         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
66                                       USB_VENDOR_REQUEST_IN, offset,
67                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
68         *value = le16_to_cpu(reg);
69 }
70
71 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
72                                                 const unsigned int offset,
73                                                 u16 *value)
74 {
75         __le16 reg;
76         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
77                                        USB_VENDOR_REQUEST_IN, offset,
78                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
79         *value = le16_to_cpu(reg);
80 }
81
82 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
83                                                 const unsigned int offset,
84                                                 void *value, const u16 length)
85 {
86         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
87                                       USB_VENDOR_REQUEST_IN, offset,
88                                       value, length,
89                                       REGISTER_TIMEOUT16(length));
90 }
91
92 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
93                                             const unsigned int offset,
94                                             u16 value)
95 {
96         __le16 reg = cpu_to_le16(value);
97         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
98                                       USB_VENDOR_REQUEST_OUT, offset,
99                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
100 }
101
102 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
103                                                  const unsigned int offset,
104                                                  u16 value)
105 {
106         __le16 reg = cpu_to_le16(value);
107         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
108                                        USB_VENDOR_REQUEST_OUT, offset,
109                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
110 }
111
112 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
113                                                  const unsigned int offset,
114                                                  void *value, const u16 length)
115 {
116         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
117                                       USB_VENDOR_REQUEST_OUT, offset,
118                                       value, length,
119                                       REGISTER_TIMEOUT16(length));
120 }
121
122 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
123                                   const unsigned int offset,
124                                   struct rt2x00_field16 field,
125                                   u16 *reg)
126 {
127         unsigned int i;
128
129         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
130                 rt2500usb_register_read_lock(rt2x00dev, offset, reg);
131                 if (!rt2x00_get_field16(*reg, field))
132                         return 1;
133                 udelay(REGISTER_BUSY_DELAY);
134         }
135
136         ERROR(rt2x00dev, "Indirect register access failed: "
137               "offset=0x%.08x, value=0x%.08x\n", offset, *reg);
138         *reg = ~0;
139
140         return 0;
141 }
142
143 #define WAIT_FOR_BBP(__dev, __reg) \
144         rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
145 #define WAIT_FOR_RF(__dev, __reg) \
146         rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
147
148 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
149                                 const unsigned int word, const u8 value)
150 {
151         u16 reg;
152
153         mutex_lock(&rt2x00dev->csr_mutex);
154
155         /*
156          * Wait until the BBP becomes available, afterwards we
157          * can safely write the new data into the register.
158          */
159         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
160                 reg = 0;
161                 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
162                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
163                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
164
165                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
166         }
167
168         mutex_unlock(&rt2x00dev->csr_mutex);
169 }
170
171 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
172                                const unsigned int word, u8 *value)
173 {
174         u16 reg;
175
176         mutex_lock(&rt2x00dev->csr_mutex);
177
178         /*
179          * Wait until the BBP becomes available, afterwards we
180          * can safely write the read request into the register.
181          * After the data has been written, we wait until hardware
182          * returns the correct value, if at any time the register
183          * doesn't become available in time, reg will be 0xffffffff
184          * which means we return 0xff to the caller.
185          */
186         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
187                 reg = 0;
188                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
189                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
190
191                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
192
193                 if (WAIT_FOR_BBP(rt2x00dev, &reg))
194                         rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
195         }
196
197         *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
198
199         mutex_unlock(&rt2x00dev->csr_mutex);
200 }
201
202 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
203                                const unsigned int word, const u32 value)
204 {
205         u16 reg;
206
207         mutex_lock(&rt2x00dev->csr_mutex);
208
209         /*
210          * Wait until the RF becomes available, afterwards we
211          * can safely write the new data into the register.
212          */
213         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
214                 reg = 0;
215                 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
216                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
217
218                 reg = 0;
219                 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
220                 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
221                 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
222                 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
223
224                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
225                 rt2x00_rf_write(rt2x00dev, word, value);
226         }
227
228         mutex_unlock(&rt2x00dev->csr_mutex);
229 }
230
231 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
232 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
233                                      const unsigned int offset,
234                                      u32 *value)
235 {
236         rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
237 }
238
239 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
240                                       const unsigned int offset,
241                                       u32 value)
242 {
243         rt2500usb_register_write(rt2x00dev, offset, value);
244 }
245
246 static const struct rt2x00debug rt2500usb_rt2x00debug = {
247         .owner  = THIS_MODULE,
248         .csr    = {
249                 .read           = _rt2500usb_register_read,
250                 .write          = _rt2500usb_register_write,
251                 .flags          = RT2X00DEBUGFS_OFFSET,
252                 .word_base      = CSR_REG_BASE,
253                 .word_size      = sizeof(u16),
254                 .word_count     = CSR_REG_SIZE / sizeof(u16),
255         },
256         .eeprom = {
257                 .read           = rt2x00_eeprom_read,
258                 .write          = rt2x00_eeprom_write,
259                 .word_base      = EEPROM_BASE,
260                 .word_size      = sizeof(u16),
261                 .word_count     = EEPROM_SIZE / sizeof(u16),
262         },
263         .bbp    = {
264                 .read           = rt2500usb_bbp_read,
265                 .write          = rt2500usb_bbp_write,
266                 .word_base      = BBP_BASE,
267                 .word_size      = sizeof(u8),
268                 .word_count     = BBP_SIZE / sizeof(u8),
269         },
270         .rf     = {
271                 .read           = rt2x00_rf_read,
272                 .write          = rt2500usb_rf_write,
273                 .word_base      = RF_BASE,
274                 .word_size      = sizeof(u32),
275                 .word_count     = RF_SIZE / sizeof(u32),
276         },
277 };
278 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
279
280 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
281 {
282         u16 reg;
283
284         rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
285         return rt2x00_get_field32(reg, MAC_CSR19_BIT7);
286 }
287
288 #ifdef CONFIG_RT2X00_LIB_LEDS
289 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
290                                      enum led_brightness brightness)
291 {
292         struct rt2x00_led *led =
293             container_of(led_cdev, struct rt2x00_led, led_dev);
294         unsigned int enabled = brightness != LED_OFF;
295         u16 reg;
296
297         rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
298
299         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
300                 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
301         else if (led->type == LED_TYPE_ACTIVITY)
302                 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
303
304         rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
305 }
306
307 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
308                                unsigned long *delay_on,
309                                unsigned long *delay_off)
310 {
311         struct rt2x00_led *led =
312             container_of(led_cdev, struct rt2x00_led, led_dev);
313         u16 reg;
314
315         rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
316         rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
317         rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
318         rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
319
320         return 0;
321 }
322
323 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
324                                struct rt2x00_led *led,
325                                enum led_type type)
326 {
327         led->rt2x00dev = rt2x00dev;
328         led->type = type;
329         led->led_dev.brightness_set = rt2500usb_brightness_set;
330         led->led_dev.blink_set = rt2500usb_blink_set;
331         led->flags = LED_INITIALIZED;
332 }
333 #endif /* CONFIG_RT2X00_LIB_LEDS */
334
335 /*
336  * Configuration handlers.
337  */
338
339 /*
340  * rt2500usb does not differentiate between shared and pairwise
341  * keys, so we should use the same function for both key types.
342  */
343 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
344                                 struct rt2x00lib_crypto *crypto,
345                                 struct ieee80211_key_conf *key)
346 {
347         int timeout;
348         u32 mask;
349         u16 reg;
350
351         if (crypto->cmd == SET_KEY) {
352                 /*
353                  * Pairwise key will always be entry 0, but this
354                  * could collide with a shared key on the same
355                  * position...
356                  */
357                 mask = TXRX_CSR0_KEY_ID.bit_mask;
358
359                 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
360                 reg &= mask;
361
362                 if (reg && reg == mask)
363                         return -ENOSPC;
364
365                 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
366
367                 key->hw_key_idx += reg ? ffz(reg) : 0;
368
369                 /*
370                  * The encryption key doesn't fit within the CSR cache,
371                  * this means we should allocate it seperately and use
372                  * rt2x00usb_vendor_request() to send the key to the hardware.
373                  */
374                 reg = KEY_ENTRY(key->hw_key_idx);
375                 timeout = REGISTER_TIMEOUT32(sizeof(crypto->key));
376                 rt2x00usb_vendor_request_large_buff(rt2x00dev, USB_MULTI_WRITE,
377                                                     USB_VENDOR_REQUEST_OUT, reg,
378                                                     crypto->key,
379                                                     sizeof(crypto->key),
380                                                     timeout);
381
382                 /*
383                  * The driver does not support the IV/EIV generation
384                  * in hardware. However it demands the data to be provided
385                  * both seperately as well as inside the frame.
386                  * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
387                  * to ensure rt2x00lib will not strip the data from the
388                  * frame after the copy, now we must tell mac80211
389                  * to generate the IV/EIV data.
390                  */
391                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
392                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
393         }
394
395         /*
396          * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
397          * a particular key is valid.
398          */
399         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
400         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
401         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
402
403         mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
404         if (crypto->cmd == SET_KEY)
405                 mask |= 1 << key->hw_key_idx;
406         else if (crypto->cmd == DISABLE_KEY)
407                 mask &= ~(1 << key->hw_key_idx);
408         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
409         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
410
411         return 0;
412 }
413
414 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
415                                     const unsigned int filter_flags)
416 {
417         u16 reg;
418
419         /*
420          * Start configuration steps.
421          * Note that the version error will always be dropped
422          * and broadcast frames will always be accepted since
423          * there is no filter for it at this time.
424          */
425         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
426         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
427                            !(filter_flags & FIF_FCSFAIL));
428         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
429                            !(filter_flags & FIF_PLCPFAIL));
430         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
431                            !(filter_flags & FIF_CONTROL));
432         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
433                            !(filter_flags & FIF_PROMISC_IN_BSS));
434         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
435                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
436                            !rt2x00dev->intf_ap_count);
437         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
438         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
439                            !(filter_flags & FIF_ALLMULTI));
440         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
441         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
442 }
443
444 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
445                                   struct rt2x00_intf *intf,
446                                   struct rt2x00intf_conf *conf,
447                                   const unsigned int flags)
448 {
449         unsigned int bcn_preload;
450         u16 reg;
451
452         if (flags & CONFIG_UPDATE_TYPE) {
453                 /*
454                  * Enable beacon config
455                  */
456                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
457                 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
458                 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
459                 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
460                                    2 * (conf->type != NL80211_IFTYPE_STATION));
461                 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
462
463                 /*
464                  * Enable synchronisation.
465                  */
466                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
467                 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
468                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
469
470                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
471                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
472                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
473                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
474                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
475         }
476
477         if (flags & CONFIG_UPDATE_MAC)
478                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
479                                               (3 * sizeof(__le16)));
480
481         if (flags & CONFIG_UPDATE_BSSID)
482                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
483                                               (3 * sizeof(__le16)));
484 }
485
486 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
487                                  struct rt2x00lib_erp *erp)
488 {
489         u16 reg;
490
491         rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
492         rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
493                            !!erp->short_preamble);
494         rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
495
496         rt2500usb_register_write(rt2x00dev, TXRX_CSR11, erp->basic_rates);
497
498         rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
499         rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL, erp->beacon_int * 4);
500         rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
501
502         rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
503         rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
504         rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
505 }
506
507 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
508                                  struct antenna_setup *ant)
509 {
510         u8 r2;
511         u8 r14;
512         u16 csr5;
513         u16 csr6;
514
515         /*
516          * We should never come here because rt2x00lib is supposed
517          * to catch this and send us the correct antenna explicitely.
518          */
519         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
520                ant->tx == ANTENNA_SW_DIVERSITY);
521
522         rt2500usb_bbp_read(rt2x00dev, 2, &r2);
523         rt2500usb_bbp_read(rt2x00dev, 14, &r14);
524         rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
525         rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
526
527         /*
528          * Configure the TX antenna.
529          */
530         switch (ant->tx) {
531         case ANTENNA_HW_DIVERSITY:
532                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
533                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
534                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
535                 break;
536         case ANTENNA_A:
537                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
538                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
539                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
540                 break;
541         case ANTENNA_B:
542         default:
543                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
544                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
545                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
546                 break;
547         }
548
549         /*
550          * Configure the RX antenna.
551          */
552         switch (ant->rx) {
553         case ANTENNA_HW_DIVERSITY:
554                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
555                 break;
556         case ANTENNA_A:
557                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
558                 break;
559         case ANTENNA_B:
560         default:
561                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
562                 break;
563         }
564
565         /*
566          * RT2525E and RT5222 need to flip TX I/Q
567          */
568         if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
569             rt2x00_rf(&rt2x00dev->chip, RF5222)) {
570                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
571                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
572                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
573
574                 /*
575                  * RT2525E does not need RX I/Q Flip.
576                  */
577                 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
578                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
579         } else {
580                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
581                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
582         }
583
584         rt2500usb_bbp_write(rt2x00dev, 2, r2);
585         rt2500usb_bbp_write(rt2x00dev, 14, r14);
586         rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
587         rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
588 }
589
590 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
591                                      struct rf_channel *rf, const int txpower)
592 {
593         /*
594          * Set TXpower.
595          */
596         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
597
598         /*
599          * For RT2525E we should first set the channel to half band higher.
600          */
601         if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
602                 static const u32 vals[] = {
603                         0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
604                         0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
605                         0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
606                         0x00000902, 0x00000906
607                 };
608
609                 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
610                 if (rf->rf4)
611                         rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
612         }
613
614         rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
615         rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
616         rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
617         if (rf->rf4)
618                 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
619 }
620
621 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
622                                      const int txpower)
623 {
624         u32 rf3;
625
626         rt2x00_rf_read(rt2x00dev, 3, &rf3);
627         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
628         rt2500usb_rf_write(rt2x00dev, 3, rf3);
629 }
630
631 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
632                                 struct rt2x00lib_conf *libconf)
633 {
634         enum dev_state state =
635             (libconf->conf->flags & IEEE80211_CONF_PS) ?
636                 STATE_SLEEP : STATE_AWAKE;
637         u16 reg;
638
639         if (state == STATE_SLEEP) {
640                 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
641                 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
642                                    rt2x00dev->beacon_int - 20);
643                 rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
644                                    libconf->conf->listen_interval - 1);
645
646                 /* We must first disable autowake before it can be enabled */
647                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
648                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
649
650                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
651                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
652         }
653
654         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
655 }
656
657 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
658                              struct rt2x00lib_conf *libconf,
659                              const unsigned int flags)
660 {
661         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
662                 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
663                                          libconf->conf->power_level);
664         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
665             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
666                 rt2500usb_config_txpower(rt2x00dev,
667                                          libconf->conf->power_level);
668         if (flags & IEEE80211_CONF_CHANGE_PS)
669                 rt2500usb_config_ps(rt2x00dev, libconf);
670 }
671
672 /*
673  * Link tuning
674  */
675 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
676                                  struct link_qual *qual)
677 {
678         u16 reg;
679
680         /*
681          * Update FCS error count from register.
682          */
683         rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
684         qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
685
686         /*
687          * Update False CCA count from register.
688          */
689         rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
690         qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
691 }
692
693 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
694                                   struct link_qual *qual)
695 {
696         u16 eeprom;
697         u16 value;
698
699         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
700         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
701         rt2500usb_bbp_write(rt2x00dev, 24, value);
702
703         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
704         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
705         rt2500usb_bbp_write(rt2x00dev, 25, value);
706
707         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
708         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
709         rt2500usb_bbp_write(rt2x00dev, 61, value);
710
711         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
712         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
713         rt2500usb_bbp_write(rt2x00dev, 17, value);
714
715         qual->vgc_level = value;
716 }
717
718 /*
719  * NOTE: This function is directly ported from legacy driver, but
720  * despite it being declared it was never called. Although link tuning
721  * sounds like a good idea, and usually works well for the other drivers,
722  * it does _not_ work with rt2500usb. Enabling this function will result
723  * in TX capabilities only until association kicks in. Immediately
724  * after the successful association all TX frames will be kept in the
725  * hardware queue and never transmitted.
726  */
727 #if 0
728 static void rt2500usb_link_tuner(struct rt2x00_dev *rt2x00dev)
729 {
730         int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
731         u16 bbp_thresh;
732         u16 vgc_bound;
733         u16 sens;
734         u16 r24;
735         u16 r25;
736         u16 r61;
737         u16 r17_sens;
738         u8 r17;
739         u8 up_bound;
740         u8 low_bound;
741
742         /*
743          * Read current r17 value, as well as the sensitivity values
744          * for the r17 register.
745          */
746         rt2500usb_bbp_read(rt2x00dev, 17, &r17);
747         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &r17_sens);
748
749         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &vgc_bound);
750         up_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCUPPER);
751         low_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCLOWER);
752
753         /*
754          * If we are not associated, we should go straight to the
755          * dynamic CCA tuning.
756          */
757         if (!rt2x00dev->intf_associated)
758                 goto dynamic_cca_tune;
759
760         /*
761          * Determine the BBP tuning threshold and correctly
762          * set BBP 24, 25 and 61.
763          */
764         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &bbp_thresh);
765         bbp_thresh = rt2x00_get_field16(bbp_thresh, EEPROM_BBPTUNE_THRESHOLD);
766
767         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &r24);
768         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &r25);
769         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &r61);
770
771         if ((rssi + bbp_thresh) > 0) {
772                 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_HIGH);
773                 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_HIGH);
774                 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_HIGH);
775         } else {
776                 r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_LOW);
777                 r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_LOW);
778                 r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_LOW);
779         }
780
781         rt2500usb_bbp_write(rt2x00dev, 24, r24);
782         rt2500usb_bbp_write(rt2x00dev, 25, r25);
783         rt2500usb_bbp_write(rt2x00dev, 61, r61);
784
785         /*
786          * A too low RSSI will cause too much false CCA which will
787          * then corrupt the R17 tuning. To remidy this the tuning should
788          * be stopped (While making sure the R17 value will not exceed limits)
789          */
790         if (rssi >= -40) {
791                 if (r17 != 0x60)
792                         rt2500usb_bbp_write(rt2x00dev, 17, 0x60);
793                 return;
794         }
795
796         /*
797          * Special big-R17 for short distance
798          */
799         if (rssi >= -58) {
800                 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_LOW);
801                 if (r17 != sens)
802                         rt2500usb_bbp_write(rt2x00dev, 17, sens);
803                 return;
804         }
805
806         /*
807          * Special mid-R17 for middle distance
808          */
809         if (rssi >= -74) {
810                 sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_HIGH);
811                 if (r17 != sens)
812                         rt2500usb_bbp_write(rt2x00dev, 17, sens);
813                 return;
814         }
815
816         /*
817          * Leave short or middle distance condition, restore r17
818          * to the dynamic tuning range.
819          */
820         low_bound = 0x32;
821         if (rssi < -77)
822                 up_bound -= (-77 - rssi);
823
824         if (up_bound < low_bound)
825                 up_bound = low_bound;
826
827         if (r17 > up_bound) {
828                 rt2500usb_bbp_write(rt2x00dev, 17, up_bound);
829                 rt2x00dev->link.vgc_level = up_bound;
830                 return;
831         }
832
833 dynamic_cca_tune:
834
835         /*
836          * R17 is inside the dynamic tuning range,
837          * start tuning the link based on the false cca counter.
838          */
839         if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
840                 rt2500usb_bbp_write(rt2x00dev, 17, ++r17);
841                 rt2x00dev->link.vgc_level = r17;
842         } else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
843                 rt2500usb_bbp_write(rt2x00dev, 17, --r17);
844                 rt2x00dev->link.vgc_level = r17;
845         }
846 }
847 #else
848 #define rt2500usb_link_tuner    NULL
849 #endif
850
851 /*
852  * Initialization functions.
853  */
854 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
855 {
856         u16 reg;
857
858         rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
859                                     USB_MODE_TEST, REGISTER_TIMEOUT);
860         rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
861                                     0x00f0, REGISTER_TIMEOUT);
862
863         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
864         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
865         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
866
867         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
868         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
869
870         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
871         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
872         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
873         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
874         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
875
876         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
877         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
878         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
879         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
880         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
881
882         rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
883         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
884         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
885         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
886         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
887         rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
888
889         rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
890         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
891         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
892         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
893         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
894         rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
895
896         rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
897         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
898         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
899         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
900         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
901         rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
902
903         rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
904         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
905         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
906         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
907         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
908         rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
909
910         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
911         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
912         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
913         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
914         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
915         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
916
917         rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
918         rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
919
920         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
921                 return -EBUSY;
922
923         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
924         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
925         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
926         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
927         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
928
929         if (rt2x00_rev(&rt2x00dev->chip) >= RT2570_VERSION_C) {
930                 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
931                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
932         } else {
933                 reg = 0;
934                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
935                 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
936         }
937         rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
938
939         rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
940         rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
941         rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
942         rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
943
944         rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
945         rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
946                            rt2x00dev->rx->data_size);
947         rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
948
949         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
950         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
951         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
952         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
953
954         rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
955         rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
956         rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
957
958         rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
959         rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
960         rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
961
962         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
963         rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
964         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
965
966         return 0;
967 }
968
969 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
970 {
971         unsigned int i;
972         u8 value;
973
974         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
975                 rt2500usb_bbp_read(rt2x00dev, 0, &value);
976                 if ((value != 0xff) && (value != 0x00))
977                         return 0;
978                 udelay(REGISTER_BUSY_DELAY);
979         }
980
981         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
982         return -EACCES;
983 }
984
985 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
986 {
987         unsigned int i;
988         u16 eeprom;
989         u8 value;
990         u8 reg_id;
991
992         if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
993                 return -EACCES;
994
995         rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
996         rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
997         rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
998         rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
999         rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
1000         rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
1001         rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
1002         rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
1003         rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
1004         rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
1005         rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
1006         rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
1007         rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
1008         rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
1009         rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
1010         rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
1011         rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
1012         rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
1013         rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
1014         rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
1015         rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
1016         rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
1017         rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
1018         rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
1019         rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
1020         rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
1021         rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
1022         rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
1023         rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
1024         rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
1025         rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
1026
1027         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1028                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1029
1030                 if (eeprom != 0xffff && eeprom != 0x0000) {
1031                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1032                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1033                         rt2500usb_bbp_write(rt2x00dev, reg_id, value);
1034                 }
1035         }
1036
1037         return 0;
1038 }
1039
1040 /*
1041  * Device state switch handlers.
1042  */
1043 static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
1044                                 enum dev_state state)
1045 {
1046         u16 reg;
1047
1048         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1049         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
1050                            (state == STATE_RADIO_RX_OFF) ||
1051                            (state == STATE_RADIO_RX_OFF_LINK));
1052         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1053 }
1054
1055 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1056 {
1057         /*
1058          * Initialize all registers.
1059          */
1060         if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
1061                      rt2500usb_init_bbp(rt2x00dev)))
1062                 return -EIO;
1063
1064         return 0;
1065 }
1066
1067 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1068 {
1069         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
1070         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
1071
1072         /*
1073          * Disable synchronisation.
1074          */
1075         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
1076
1077         rt2x00usb_disable_radio(rt2x00dev);
1078 }
1079
1080 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
1081                                enum dev_state state)
1082 {
1083         u16 reg;
1084         u16 reg2;
1085         unsigned int i;
1086         char put_to_sleep;
1087         char bbp_state;
1088         char rf_state;
1089
1090         put_to_sleep = (state != STATE_AWAKE);
1091
1092         reg = 0;
1093         rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
1094         rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
1095         rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
1096         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1097         rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
1098         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1099
1100         /*
1101          * Device is not guaranteed to be in the requested state yet.
1102          * We must wait until the register indicates that the
1103          * device has entered the correct state.
1104          */
1105         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1106                 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
1107                 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
1108                 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
1109                 if (bbp_state == state && rf_state == state)
1110                         return 0;
1111                 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
1112                 msleep(30);
1113         }
1114
1115         return -EBUSY;
1116 }
1117
1118 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1119                                       enum dev_state state)
1120 {
1121         int retval = 0;
1122
1123         switch (state) {
1124         case STATE_RADIO_ON:
1125                 retval = rt2500usb_enable_radio(rt2x00dev);
1126                 break;
1127         case STATE_RADIO_OFF:
1128                 rt2500usb_disable_radio(rt2x00dev);
1129                 break;
1130         case STATE_RADIO_RX_ON:
1131         case STATE_RADIO_RX_ON_LINK:
1132         case STATE_RADIO_RX_OFF:
1133         case STATE_RADIO_RX_OFF_LINK:
1134                 rt2500usb_toggle_rx(rt2x00dev, state);
1135                 break;
1136         case STATE_RADIO_IRQ_ON:
1137         case STATE_RADIO_IRQ_OFF:
1138                 /* No support, but no error either */
1139                 break;
1140         case STATE_DEEP_SLEEP:
1141         case STATE_SLEEP:
1142         case STATE_STANDBY:
1143         case STATE_AWAKE:
1144                 retval = rt2500usb_set_state(rt2x00dev, state);
1145                 break;
1146         default:
1147                 retval = -ENOTSUPP;
1148                 break;
1149         }
1150
1151         if (unlikely(retval))
1152                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1153                       state, retval);
1154
1155         return retval;
1156 }
1157
1158 /*
1159  * TX descriptor initialization
1160  */
1161 static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1162                                     struct sk_buff *skb,
1163                                     struct txentry_desc *txdesc)
1164 {
1165         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1166         __le32 *txd = skbdesc->desc;
1167         u32 word;
1168
1169         /*
1170          * Start writing the descriptor words.
1171          */
1172         rt2x00_desc_read(txd, 1, &word);
1173         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1174         rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
1175         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1176         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1177         rt2x00_desc_write(txd, 1, word);
1178
1179         rt2x00_desc_read(txd, 2, &word);
1180         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1181         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1182         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1183         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1184         rt2x00_desc_write(txd, 2, word);
1185
1186         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1187                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1188                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1189         }
1190
1191         rt2x00_desc_read(txd, 0, &word);
1192         rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1193         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1194                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1195         rt2x00_set_field32(&word, TXD_W0_ACK,
1196                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1197         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1198                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1199         rt2x00_set_field32(&word, TXD_W0_OFDM,
1200                            (txdesc->rate_mode == RATE_MODE_OFDM));
1201         rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1202                            test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1203         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1204         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, skb->len);
1205         rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1206         rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1207         rt2x00_desc_write(txd, 0, word);
1208 }
1209
1210 /*
1211  * TX data initialization
1212  */
1213 static void rt2500usb_beacondone(struct urb *urb);
1214
1215 static void rt2500usb_write_beacon(struct queue_entry *entry)
1216 {
1217         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1218         struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1219         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1220         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1221         int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1222         int length;
1223         u16 reg;
1224
1225         /*
1226          * Add the descriptor in front of the skb.
1227          */
1228         skb_push(entry->skb, entry->queue->desc_size);
1229         memcpy(entry->skb->data, skbdesc->desc, skbdesc->desc_len);
1230         skbdesc->desc = entry->skb->data;
1231
1232         /*
1233          * Disable beaconing while we are reloading the beacon data,
1234          * otherwise we might be sending out invalid data.
1235          */
1236         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1237         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1238         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1239
1240         /*
1241          * USB devices cannot blindly pass the skb->len as the
1242          * length of the data to usb_fill_bulk_urb. Pass the skb
1243          * to the driver to determine what the length should be.
1244          */
1245         length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1246
1247         usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1248                           entry->skb->data, length, rt2500usb_beacondone,
1249                           entry);
1250
1251         /*
1252          * Second we need to create the guardian byte.
1253          * We only need a single byte, so lets recycle
1254          * the 'flags' field we are not using for beacons.
1255          */
1256         bcn_priv->guardian_data = 0;
1257         usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1258                           &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1259                           entry);
1260
1261         /*
1262          * Send out the guardian byte.
1263          */
1264         usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1265 }
1266
1267 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1268 {
1269         int length;
1270
1271         /*
1272          * The length _must_ be a multiple of 2,
1273          * but it must _not_ be a multiple of the USB packet size.
1274          */
1275         length = roundup(entry->skb->len, 2);
1276         length += (2 * !(length % entry->queue->usb_maxpacket));
1277
1278         return length;
1279 }
1280
1281 static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1282                                     const enum data_queue_qid queue)
1283 {
1284         u16 reg, reg0;
1285
1286         if (queue != QID_BEACON) {
1287                 rt2x00usb_kick_tx_queue(rt2x00dev, queue);
1288                 return;
1289         }
1290
1291         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1292         if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
1293                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1294                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1295                 reg0 = reg;
1296                 rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1297                 /*
1298                  * Beacon generation will fail initially.
1299                  * To prevent this we need to change the TXRX_CSR19
1300                  * register several times (reg0 is the same as reg
1301                  * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1302                  * and 1 in reg).
1303                  */
1304                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1305                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1306                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1307                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1308                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1309         }
1310 }
1311
1312 /*
1313  * RX control handlers
1314  */
1315 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1316                                   struct rxdone_entry_desc *rxdesc)
1317 {
1318         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1319         struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1320         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1321         __le32 *rxd =
1322             (__le32 *)(entry->skb->data +
1323                        (entry_priv->urb->actual_length -
1324                         entry->queue->desc_size));
1325         u32 word0;
1326         u32 word1;
1327
1328         /*
1329          * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1330          * frame data in rt2x00usb.
1331          */
1332         memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1333         rxd = (__le32 *)skbdesc->desc;
1334
1335         /*
1336          * It is now safe to read the descriptor on all architectures.
1337          */
1338         rt2x00_desc_read(rxd, 0, &word0);
1339         rt2x00_desc_read(rxd, 1, &word1);
1340
1341         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1342                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1343         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1344                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1345
1346         if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
1347                 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1348                 if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1349                         rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1350         }
1351
1352         if (rxdesc->cipher != CIPHER_NONE) {
1353                 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1354                 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1355                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1356
1357                 /* ICV is located at the end of frame */
1358
1359                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1360                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1361                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1362                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1363                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1364         }
1365
1366         /*
1367          * Obtain the status about this packet.
1368          * When frame was received with an OFDM bitrate,
1369          * the signal is the PLCP value. If it was received with
1370          * a CCK bitrate the signal is the rate in 100kbit/s.
1371          */
1372         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1373         rxdesc->rssi =
1374             rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1375         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1376
1377         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1378                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1379         else
1380                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1381         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1382                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1383
1384         /*
1385          * Adjust the skb memory window to the frame boundaries.
1386          */
1387         skb_trim(entry->skb, rxdesc->size);
1388 }
1389
1390 /*
1391  * Interrupt functions.
1392  */
1393 static void rt2500usb_beacondone(struct urb *urb)
1394 {
1395         struct queue_entry *entry = (struct queue_entry *)urb->context;
1396         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1397
1398         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1399                 return;
1400
1401         /*
1402          * Check if this was the guardian beacon,
1403          * if that was the case we need to send the real beacon now.
1404          * Otherwise we should free the sk_buffer, the device
1405          * should be doing the rest of the work now.
1406          */
1407         if (bcn_priv->guardian_urb == urb) {
1408                 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1409         } else if (bcn_priv->urb == urb) {
1410                 dev_kfree_skb(entry->skb);
1411                 entry->skb = NULL;
1412         }
1413 }
1414
1415 /*
1416  * Device probe functions.
1417  */
1418 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1419 {
1420         u16 word;
1421         u8 *mac;
1422         u8 bbp;
1423
1424         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1425
1426         /*
1427          * Start validation of the data that has been read.
1428          */
1429         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1430         if (!is_valid_ether_addr(mac)) {
1431                 random_ether_addr(mac);
1432                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1433         }
1434
1435         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1436         if (word == 0xffff) {
1437                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1438                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1439                                    ANTENNA_SW_DIVERSITY);
1440                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1441                                    ANTENNA_SW_DIVERSITY);
1442                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1443                                    LED_MODE_DEFAULT);
1444                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1445                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1446                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1447                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1448                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1449         }
1450
1451         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1452         if (word == 0xffff) {
1453                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1454                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1455                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1456                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1457                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1458         }
1459
1460         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1461         if (word == 0xffff) {
1462                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1463                                    DEFAULT_RSSI_OFFSET);
1464                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1465                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1466         }
1467
1468         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1469         if (word == 0xffff) {
1470                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1471                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1472                 EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1473         }
1474
1475         /*
1476          * Switch lower vgc bound to current BBP R17 value,
1477          * lower the value a bit for better quality.
1478          */
1479         rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1480         bbp -= 6;
1481
1482         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1483         if (word == 0xffff) {
1484                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1485                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1486                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1487                 EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1488         } else {
1489                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1490                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1491         }
1492
1493         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1494         if (word == 0xffff) {
1495                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1496                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1497                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1498                 EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1499         }
1500
1501         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1502         if (word == 0xffff) {
1503                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1504                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1505                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1506                 EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1507         }
1508
1509         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1510         if (word == 0xffff) {
1511                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1512                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1513                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1514                 EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1515         }
1516
1517         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1518         if (word == 0xffff) {
1519                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1520                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1521                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1522                 EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1523         }
1524
1525         return 0;
1526 }
1527
1528 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1529 {
1530         u16 reg;
1531         u16 value;
1532         u16 eeprom;
1533
1534         /*
1535          * Read EEPROM word for configuration.
1536          */
1537         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1538
1539         /*
1540          * Identify RF chipset.
1541          */
1542         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1543         rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1544         rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1545
1546         if (!rt2x00_check_rev(&rt2x00dev->chip, 0x000ffff0, 0) ||
1547             rt2x00_check_rev(&rt2x00dev->chip, 0x0000000f, 0)) {
1548
1549                 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1550                 return -ENODEV;
1551         }
1552
1553         if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1554             !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1555             !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1556             !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1557             !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1558             !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1559                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1560                 return -ENODEV;
1561         }
1562
1563         /*
1564          * Identify default antenna configuration.
1565          */
1566         rt2x00dev->default_ant.tx =
1567             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1568         rt2x00dev->default_ant.rx =
1569             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1570
1571         /*
1572          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1573          * I am not 100% sure about this, but the legacy drivers do not
1574          * indicate antenna swapping in software is required when
1575          * diversity is enabled.
1576          */
1577         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1578                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1579         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1580                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1581
1582         /*
1583          * Store led mode, for correct led behaviour.
1584          */
1585 #ifdef CONFIG_RT2X00_LIB_LEDS
1586         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1587
1588         rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1589         if (value == LED_MODE_TXRX_ACTIVITY ||
1590             value == LED_MODE_DEFAULT ||
1591             value == LED_MODE_ASUS)
1592                 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1593                                    LED_TYPE_ACTIVITY);
1594 #endif /* CONFIG_RT2X00_LIB_LEDS */
1595
1596         /*
1597          * Detect if this device has an hardware controlled radio.
1598          */
1599         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1600                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1601
1602         /*
1603          * Check if the BBP tuning should be disabled.
1604          */
1605         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1606         if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1607                 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1608
1609         /*
1610          * Read the RSSI <-> dBm offset information.
1611          */
1612         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1613         rt2x00dev->rssi_offset =
1614             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1615
1616         return 0;
1617 }
1618
1619 /*
1620  * RF value list for RF2522
1621  * Supports: 2.4 GHz
1622  */
1623 static const struct rf_channel rf_vals_bg_2522[] = {
1624         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1625         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1626         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1627         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1628         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1629         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1630         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1631         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1632         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1633         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1634         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1635         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1636         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1637         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1638 };
1639
1640 /*
1641  * RF value list for RF2523
1642  * Supports: 2.4 GHz
1643  */
1644 static const struct rf_channel rf_vals_bg_2523[] = {
1645         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1646         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1647         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1648         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1649         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1650         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1651         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1652         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1653         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1654         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1655         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1656         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1657         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1658         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1659 };
1660
1661 /*
1662  * RF value list for RF2524
1663  * Supports: 2.4 GHz
1664  */
1665 static const struct rf_channel rf_vals_bg_2524[] = {
1666         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1667         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1668         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1669         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1670         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1671         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1672         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1673         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1674         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1675         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1676         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1677         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1678         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1679         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1680 };
1681
1682 /*
1683  * RF value list for RF2525
1684  * Supports: 2.4 GHz
1685  */
1686 static const struct rf_channel rf_vals_bg_2525[] = {
1687         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1688         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1689         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1690         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1691         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1692         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1693         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1694         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1695         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1696         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1697         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1698         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1699         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1700         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1701 };
1702
1703 /*
1704  * RF value list for RF2525e
1705  * Supports: 2.4 GHz
1706  */
1707 static const struct rf_channel rf_vals_bg_2525e[] = {
1708         { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1709         { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1710         { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1711         { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1712         { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1713         { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1714         { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1715         { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1716         { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1717         { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1718         { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1719         { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1720         { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1721         { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1722 };
1723
1724 /*
1725  * RF value list for RF5222
1726  * Supports: 2.4 GHz & 5.2 GHz
1727  */
1728 static const struct rf_channel rf_vals_5222[] = {
1729         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1730         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1731         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1732         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1733         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1734         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1735         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1736         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1737         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1738         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1739         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1740         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1741         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1742         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1743
1744         /* 802.11 UNI / HyperLan 2 */
1745         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1746         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1747         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1748         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1749         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1750         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1751         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1752         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1753
1754         /* 802.11 HyperLan 2 */
1755         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1756         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1757         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1758         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1759         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1760         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1761         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1762         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1763         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1764         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1765
1766         /* 802.11 UNII */
1767         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1768         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1769         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1770         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1771         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1772 };
1773
1774 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1775 {
1776         struct hw_mode_spec *spec = &rt2x00dev->spec;
1777         struct channel_info *info;
1778         char *tx_power;
1779         unsigned int i;
1780
1781         /*
1782          * Initialize all hw fields.
1783          */
1784         rt2x00dev->hw->flags =
1785             IEEE80211_HW_RX_INCLUDES_FCS |
1786             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1787             IEEE80211_HW_SIGNAL_DBM |
1788             IEEE80211_HW_SUPPORTS_PS |
1789             IEEE80211_HW_PS_NULLFUNC_STACK;
1790
1791         rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
1792
1793         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1794         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1795                                 rt2x00_eeprom_addr(rt2x00dev,
1796                                                    EEPROM_MAC_ADDR_0));
1797
1798         /*
1799          * Initialize hw_mode information.
1800          */
1801         spec->supported_bands = SUPPORT_BAND_2GHZ;
1802         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1803
1804         if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1805                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1806                 spec->channels = rf_vals_bg_2522;
1807         } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1808                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1809                 spec->channels = rf_vals_bg_2523;
1810         } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1811                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1812                 spec->channels = rf_vals_bg_2524;
1813         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1814                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1815                 spec->channels = rf_vals_bg_2525;
1816         } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1817                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1818                 spec->channels = rf_vals_bg_2525e;
1819         } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1820                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1821                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1822                 spec->channels = rf_vals_5222;
1823         }
1824
1825         /*
1826          * Create channel information array
1827          */
1828         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1829         if (!info)
1830                 return -ENOMEM;
1831
1832         spec->channels_info = info;
1833
1834         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1835         for (i = 0; i < 14; i++)
1836                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1837
1838         if (spec->num_channels > 14) {
1839                 for (i = 14; i < spec->num_channels; i++)
1840                         info[i].tx_power1 = DEFAULT_TXPOWER;
1841         }
1842
1843         return 0;
1844 }
1845
1846 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1847 {
1848         int retval;
1849
1850         /*
1851          * Allocate eeprom data.
1852          */
1853         retval = rt2500usb_validate_eeprom(rt2x00dev);
1854         if (retval)
1855                 return retval;
1856
1857         retval = rt2500usb_init_eeprom(rt2x00dev);
1858         if (retval)
1859                 return retval;
1860
1861         /*
1862          * Initialize hw specifications.
1863          */
1864         retval = rt2500usb_probe_hw_mode(rt2x00dev);
1865         if (retval)
1866                 return retval;
1867
1868         /*
1869          * This device requires the atim queue
1870          */
1871         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1872         __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
1873         if (!modparam_nohwcrypt) {
1874                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
1875                 __set_bit(DRIVER_REQUIRE_COPY_IV, &rt2x00dev->flags);
1876         }
1877         __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1878
1879         /*
1880          * Set the rssi offset.
1881          */
1882         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1883
1884         return 0;
1885 }
1886
1887 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1888         .tx                     = rt2x00mac_tx,
1889         .start                  = rt2x00mac_start,
1890         .stop                   = rt2x00mac_stop,
1891         .add_interface          = rt2x00mac_add_interface,
1892         .remove_interface       = rt2x00mac_remove_interface,
1893         .config                 = rt2x00mac_config,
1894         .configure_filter       = rt2x00mac_configure_filter,
1895         .set_tim                = rt2x00mac_set_tim,
1896         .set_key                = rt2x00mac_set_key,
1897         .get_stats              = rt2x00mac_get_stats,
1898         .bss_info_changed       = rt2x00mac_bss_info_changed,
1899         .conf_tx                = rt2x00mac_conf_tx,
1900         .get_tx_stats           = rt2x00mac_get_tx_stats,
1901         .rfkill_poll            = rt2x00mac_rfkill_poll,
1902 };
1903
1904 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1905         .probe_hw               = rt2500usb_probe_hw,
1906         .initialize             = rt2x00usb_initialize,
1907         .uninitialize           = rt2x00usb_uninitialize,
1908         .clear_entry            = rt2x00usb_clear_entry,
1909         .set_device_state       = rt2500usb_set_device_state,
1910         .rfkill_poll            = rt2500usb_rfkill_poll,
1911         .link_stats             = rt2500usb_link_stats,
1912         .reset_tuner            = rt2500usb_reset_tuner,
1913         .link_tuner             = rt2500usb_link_tuner,
1914         .write_tx_desc          = rt2500usb_write_tx_desc,
1915         .write_tx_data          = rt2x00usb_write_tx_data,
1916         .write_beacon           = rt2500usb_write_beacon,
1917         .get_tx_data_len        = rt2500usb_get_tx_data_len,
1918         .kick_tx_queue          = rt2500usb_kick_tx_queue,
1919         .kill_tx_queue          = rt2x00usb_kill_tx_queue,
1920         .fill_rxdone            = rt2500usb_fill_rxdone,
1921         .config_shared_key      = rt2500usb_config_key,
1922         .config_pairwise_key    = rt2500usb_config_key,
1923         .config_filter          = rt2500usb_config_filter,
1924         .config_intf            = rt2500usb_config_intf,
1925         .config_erp             = rt2500usb_config_erp,
1926         .config_ant             = rt2500usb_config_ant,
1927         .config                 = rt2500usb_config,
1928 };
1929
1930 static const struct data_queue_desc rt2500usb_queue_rx = {
1931         .entry_num              = RX_ENTRIES,
1932         .data_size              = DATA_FRAME_SIZE,
1933         .desc_size              = RXD_DESC_SIZE,
1934         .priv_size              = sizeof(struct queue_entry_priv_usb),
1935 };
1936
1937 static const struct data_queue_desc rt2500usb_queue_tx = {
1938         .entry_num              = TX_ENTRIES,
1939         .data_size              = DATA_FRAME_SIZE,
1940         .desc_size              = TXD_DESC_SIZE,
1941         .priv_size              = sizeof(struct queue_entry_priv_usb),
1942 };
1943
1944 static const struct data_queue_desc rt2500usb_queue_bcn = {
1945         .entry_num              = BEACON_ENTRIES,
1946         .data_size              = MGMT_FRAME_SIZE,
1947         .desc_size              = TXD_DESC_SIZE,
1948         .priv_size              = sizeof(struct queue_entry_priv_usb_bcn),
1949 };
1950
1951 static const struct data_queue_desc rt2500usb_queue_atim = {
1952         .entry_num              = ATIM_ENTRIES,
1953         .data_size              = DATA_FRAME_SIZE,
1954         .desc_size              = TXD_DESC_SIZE,
1955         .priv_size              = sizeof(struct queue_entry_priv_usb),
1956 };
1957
1958 static const struct rt2x00_ops rt2500usb_ops = {
1959         .name           = KBUILD_MODNAME,
1960         .max_sta_intf   = 1,
1961         .max_ap_intf    = 1,
1962         .eeprom_size    = EEPROM_SIZE,
1963         .rf_size        = RF_SIZE,
1964         .tx_queues      = NUM_TX_QUEUES,
1965         .rx             = &rt2500usb_queue_rx,
1966         .tx             = &rt2500usb_queue_tx,
1967         .bcn            = &rt2500usb_queue_bcn,
1968         .atim           = &rt2500usb_queue_atim,
1969         .lib            = &rt2500usb_rt2x00_ops,
1970         .hw             = &rt2500usb_mac80211_ops,
1971 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1972         .debugfs        = &rt2500usb_rt2x00debug,
1973 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1974 };
1975
1976 /*
1977  * rt2500usb module information.
1978  */
1979 static struct usb_device_id rt2500usb_device_table[] = {
1980         /* ASUS */
1981         { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1982         { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
1983         /* Belkin */
1984         { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
1985         { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
1986         { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
1987         /* Cisco Systems */
1988         { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
1989         { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
1990         { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
1991         /* CNet */
1992         { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt2500usb_ops) },
1993         /* Conceptronic */
1994         { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
1995         /* D-LINK */
1996         { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
1997         /* Gigabyte */
1998         { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
1999         { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
2000         /* Hercules */
2001         { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
2002         /* Melco */
2003         { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
2004         { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
2005         { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
2006         { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
2007         { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
2008         /* MSI */
2009         { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
2010         { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
2011         { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
2012         /* Ralink */
2013         { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
2014         { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
2015         { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
2016         { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
2017         /* Sagem */
2018         { USB_DEVICE(0x079b, 0x004b), USB_DEVICE_DATA(&rt2500usb_ops) },
2019         /* Siemens */
2020         { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
2021         /* SMC */
2022         { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
2023         /* Spairon */
2024         { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
2025         /* SURECOM */
2026         { USB_DEVICE(0x0769, 0x11f3), USB_DEVICE_DATA(&rt2500usb_ops) },
2027         /* Trust */
2028         { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
2029         /* VTech */
2030         { USB_DEVICE(0x0f88, 0x3012), USB_DEVICE_DATA(&rt2500usb_ops) },
2031         /* Zinwell */
2032         { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
2033         { 0, }
2034 };
2035
2036 MODULE_AUTHOR(DRV_PROJECT);
2037 MODULE_VERSION(DRV_VERSION);
2038 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
2039 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
2040 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
2041 MODULE_LICENSE("GPL");
2042
2043 static struct usb_driver rt2500usb_driver = {
2044         .name           = KBUILD_MODNAME,
2045         .id_table       = rt2500usb_device_table,
2046         .probe          = rt2x00usb_probe,
2047         .disconnect     = rt2x00usb_disconnect,
2048         .suspend        = rt2x00usb_suspend,
2049         .resume         = rt2x00usb_resume,
2050 };
2051
2052 static int __init rt2500usb_init(void)
2053 {
2054         return usb_register(&rt2500usb_driver);
2055 }
2056
2057 static void __exit rt2500usb_exit(void)
2058 {
2059         usb_deregister(&rt2500usb_driver);
2060 }
2061
2062 module_init(rt2500usb_init);
2063 module_exit(rt2500usb_exit);