]> Pileus Git - ~andy/linux/blob - drivers/net/wireless/ipw2x00/ipw2100.c
Merge branch 'linux_next' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[~andy/linux] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169 #include "ipw.h"
170
171 #define IPW2100_VERSION "git-1.2.2"
172
173 #define DRV_NAME        "ipw2100"
174 #define DRV_VERSION     IPW2100_VERSION
175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
177
178 static struct pm_qos_request ipw2100_pm_qos_req;
179
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG        /* Reception debugging */
183 #endif
184
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217         if (ipw2100_debug_level & (level)) { \
218                 printk(KERN_DEBUG "ipw2100: %c %s ", \
219                        in_interrupt() ? 'I' : 'U',  __func__); \
220                 printk(message); \
221         } \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif                          /* CONFIG_IPW2100_DEBUG */
226
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229         "undefined",
230         "unused",               /* HOST_ATTENTION */
231         "HOST_COMPLETE",
232         "unused",               /* SLEEP */
233         "unused",               /* HOST_POWER_DOWN */
234         "unused",
235         "SYSTEM_CONFIG",
236         "unused",               /* SET_IMR */
237         "SSID",
238         "MANDATORY_BSSID",
239         "AUTHENTICATION_TYPE",
240         "ADAPTER_ADDRESS",
241         "PORT_TYPE",
242         "INTERNATIONAL_MODE",
243         "CHANNEL",
244         "RTS_THRESHOLD",
245         "FRAG_THRESHOLD",
246         "POWER_MODE",
247         "TX_RATES",
248         "BASIC_TX_RATES",
249         "WEP_KEY_INFO",
250         "unused",
251         "unused",
252         "unused",
253         "unused",
254         "WEP_KEY_INDEX",
255         "WEP_FLAGS",
256         "ADD_MULTICAST",
257         "CLEAR_ALL_MULTICAST",
258         "BEACON_INTERVAL",
259         "ATIM_WINDOW",
260         "CLEAR_STATISTICS",
261         "undefined",
262         "undefined",
263         "undefined",
264         "undefined",
265         "TX_POWER_INDEX",
266         "undefined",
267         "undefined",
268         "undefined",
269         "undefined",
270         "undefined",
271         "undefined",
272         "BROADCAST_SCAN",
273         "CARD_DISABLE",
274         "PREFERRED_BSSID",
275         "SET_SCAN_OPTIONS",
276         "SCAN_DWELL_TIME",
277         "SWEEP_TABLE",
278         "AP_OR_STATION_TABLE",
279         "GROUP_ORDINALS",
280         "SHORT_RETRY_LIMIT",
281         "LONG_RETRY_LIMIT",
282         "unused",               /* SAVE_CALIBRATION */
283         "unused",               /* RESTORE_CALIBRATION */
284         "undefined",
285         "undefined",
286         "undefined",
287         "HOST_PRE_POWER_DOWN",
288         "unused",               /* HOST_INTERRUPT_COALESCING */
289         "undefined",
290         "CARD_DISABLE_PHY_OFF",
291         "MSDU_TX_RATES",
292         "undefined",
293         "SET_STATION_STAT_BITS",
294         "CLEAR_STATIONS_STAT_BITS",
295         "LEAP_ROGUE_MODE",
296         "SET_SECURITY_INFORMATION",
297         "DISASSOCIATION_BSSID",
298         "SET_WPA_ASS_IE"
299 };
300 #endif
301
302 static const long ipw2100_frequencies[] = {
303         2412, 2417, 2422, 2427,
304         2432, 2437, 2442, 2447,
305         2452, 2457, 2462, 2467,
306         2472, 2484
307 };
308
309 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
310
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312         { .bitrate = 10 },
313         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330                                struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332                                 struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334                                  size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336                                     size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338                                      struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340                                   struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static struct iw_handler_def ipw2100_wx_handler_def;
344
345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347         struct ipw2100_priv *priv = libipw_priv(dev);
348
349         *val = ioread32(priv->ioaddr + reg);
350         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352
353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355         struct ipw2100_priv *priv = libipw_priv(dev);
356
357         iowrite32(val, priv->ioaddr + reg);
358         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360
361 static inline void read_register_word(struct net_device *dev, u32 reg,
362                                       u16 * val)
363 {
364         struct ipw2100_priv *priv = libipw_priv(dev);
365
366         *val = ioread16(priv->ioaddr + reg);
367         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372         struct ipw2100_priv *priv = libipw_priv(dev);
373
374         *val = ioread8(priv->ioaddr + reg);
375         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380         struct ipw2100_priv *priv = libipw_priv(dev);
381
382         iowrite16(val, priv->ioaddr + reg);
383         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385
386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388         struct ipw2100_priv *priv = libipw_priv(dev);
389
390         iowrite8(val, priv->ioaddr + reg);
391         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393
394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397                        addr & IPW_REG_INDIRECT_ADDR_MASK);
398         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400
401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404                        addr & IPW_REG_INDIRECT_ADDR_MASK);
405         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407
408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411                        addr & IPW_REG_INDIRECT_ADDR_MASK);
412         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414
415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418                        addr & IPW_REG_INDIRECT_ADDR_MASK);
419         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421
422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425                        addr & IPW_REG_INDIRECT_ADDR_MASK);
426         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428
429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432                        addr & IPW_REG_INDIRECT_ADDR_MASK);
433         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435
436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439                        addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441
442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446
447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448                                     const u8 * buf)
449 {
450         u32 aligned_addr;
451         u32 aligned_len;
452         u32 dif_len;
453         u32 i;
454
455         /* read first nibble byte by byte */
456         aligned_addr = addr & (~0x3);
457         dif_len = addr - aligned_addr;
458         if (dif_len) {
459                 /* Start reading at aligned_addr + dif_len */
460                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461                                aligned_addr);
462                 for (i = dif_len; i < 4; i++, buf++)
463                         write_register_byte(dev,
464                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
465                                             *buf);
466
467                 len -= dif_len;
468                 aligned_addr += 4;
469         }
470
471         /* read DWs through autoincrement registers */
472         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473         aligned_len = len & (~0x3);
474         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476
477         /* copy the last nibble */
478         dif_len = len - aligned_len;
479         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480         for (i = 0; i < dif_len; i++, buf++)
481                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482                                     *buf);
483 }
484
485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486                                    u8 * buf)
487 {
488         u32 aligned_addr;
489         u32 aligned_len;
490         u32 dif_len;
491         u32 i;
492
493         /* read first nibble byte by byte */
494         aligned_addr = addr & (~0x3);
495         dif_len = addr - aligned_addr;
496         if (dif_len) {
497                 /* Start reading at aligned_addr + dif_len */
498                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499                                aligned_addr);
500                 for (i = dif_len; i < 4; i++, buf++)
501                         read_register_byte(dev,
502                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
503                                            buf);
504
505                 len -= dif_len;
506                 aligned_addr += 4;
507         }
508
509         /* read DWs through autoincrement registers */
510         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511         aligned_len = len & (~0x3);
512         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514
515         /* copy the last nibble */
516         dif_len = len - aligned_len;
517         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518         for (i = 0; i < dif_len; i++, buf++)
519                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521
522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524         u32 dbg;
525
526         read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527
528         return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530
531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532                                void *val, u32 * len)
533 {
534         struct ipw2100_ordinals *ordinals = &priv->ordinals;
535         u32 addr;
536         u32 field_info;
537         u16 field_len;
538         u16 field_count;
539         u32 total_length;
540
541         if (ordinals->table1_addr == 0) {
542                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543                        "before they have been loaded.\n");
544                 return -EINVAL;
545         }
546
547         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
550
551                         printk(KERN_WARNING DRV_NAME
552                                ": ordinal buffer length too small, need %zd\n",
553                                IPW_ORD_TAB_1_ENTRY_SIZE);
554
555                         return -EINVAL;
556                 }
557
558                 read_nic_dword(priv->net_dev,
559                                ordinals->table1_addr + (ord << 2), &addr);
560                 read_nic_dword(priv->net_dev, addr, val);
561
562                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
563
564                 return 0;
565         }
566
567         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568
569                 ord -= IPW_START_ORD_TAB_2;
570
571                 /* get the address of statistic */
572                 read_nic_dword(priv->net_dev,
573                                ordinals->table2_addr + (ord << 3), &addr);
574
575                 /* get the second DW of statistics ;
576                  * two 16-bit words - first is length, second is count */
577                 read_nic_dword(priv->net_dev,
578                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
579                                &field_info);
580
581                 /* get each entry length */
582                 field_len = *((u16 *) & field_info);
583
584                 /* get number of entries */
585                 field_count = *(((u16 *) & field_info) + 1);
586
587                 /* abort if no enough memory */
588                 total_length = field_len * field_count;
589                 if (total_length > *len) {
590                         *len = total_length;
591                         return -EINVAL;
592                 }
593
594                 *len = total_length;
595                 if (!total_length)
596                         return 0;
597
598                 /* read the ordinal data from the SRAM */
599                 read_nic_memory(priv->net_dev, addr, total_length, val);
600
601                 return 0;
602         }
603
604         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605                "in table 2\n", ord);
606
607         return -EINVAL;
608 }
609
610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611                                u32 * len)
612 {
613         struct ipw2100_ordinals *ordinals = &priv->ordinals;
614         u32 addr;
615
616         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
619                         IPW_DEBUG_INFO("wrong size\n");
620                         return -EINVAL;
621                 }
622
623                 read_nic_dword(priv->net_dev,
624                                ordinals->table1_addr + (ord << 2), &addr);
625
626                 write_nic_dword(priv->net_dev, addr, *val);
627
628                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
629
630                 return 0;
631         }
632
633         IPW_DEBUG_INFO("wrong table\n");
634         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635                 return -EINVAL;
636
637         return -EINVAL;
638 }
639
640 static char *snprint_line(char *buf, size_t count,
641                           const u8 * data, u32 len, u32 ofs)
642 {
643         int out, i, j, l;
644         char c;
645
646         out = snprintf(buf, count, "%08X", ofs);
647
648         for (l = 0, i = 0; i < 2; i++) {
649                 out += snprintf(buf + out, count - out, " ");
650                 for (j = 0; j < 8 && l < len; j++, l++)
651                         out += snprintf(buf + out, count - out, "%02X ",
652                                         data[(i * 8 + j)]);
653                 for (; j < 8; j++)
654                         out += snprintf(buf + out, count - out, "   ");
655         }
656
657         out += snprintf(buf + out, count - out, " ");
658         for (l = 0, i = 0; i < 2; i++) {
659                 out += snprintf(buf + out, count - out, " ");
660                 for (j = 0; j < 8 && l < len; j++, l++) {
661                         c = data[(i * 8 + j)];
662                         if (!isascii(c) || !isprint(c))
663                                 c = '.';
664
665                         out += snprintf(buf + out, count - out, "%c", c);
666                 }
667
668                 for (; j < 8; j++)
669                         out += snprintf(buf + out, count - out, " ");
670         }
671
672         return buf;
673 }
674
675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677         char line[81];
678         u32 ofs = 0;
679         if (!(ipw2100_debug_level & level))
680                 return;
681
682         while (len) {
683                 printk(KERN_DEBUG "%s\n",
684                        snprint_line(line, sizeof(line), &data[ofs],
685                                     min(len, 16U), ofs));
686                 ofs += 16;
687                 len -= min(len, 16U);
688         }
689 }
690
691 #define MAX_RESET_BACKOFF 10
692
693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695         unsigned long now = get_seconds();
696
697         /* If we haven't received a reset request within the backoff period,
698          * then we can reset the backoff interval so this reset occurs
699          * immediately */
700         if (priv->reset_backoff &&
701             (now - priv->last_reset > priv->reset_backoff))
702                 priv->reset_backoff = 0;
703
704         priv->last_reset = get_seconds();
705
706         if (!(priv->status & STATUS_RESET_PENDING)) {
707                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
708                                priv->net_dev->name, priv->reset_backoff);
709                 netif_carrier_off(priv->net_dev);
710                 netif_stop_queue(priv->net_dev);
711                 priv->status |= STATUS_RESET_PENDING;
712                 if (priv->reset_backoff)
713                         schedule_delayed_work(&priv->reset_work,
714                                               priv->reset_backoff * HZ);
715                 else
716                         schedule_delayed_work(&priv->reset_work, 0);
717
718                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
719                         priv->reset_backoff++;
720
721                 wake_up_interruptible(&priv->wait_command_queue);
722         } else
723                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724                                priv->net_dev->name);
725
726 }
727
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730                                    struct host_command *cmd)
731 {
732         struct list_head *element;
733         struct ipw2100_tx_packet *packet;
734         unsigned long flags;
735         int err = 0;
736
737         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738                      command_types[cmd->host_command], cmd->host_command,
739                      cmd->host_command_length);
740         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741                    cmd->host_command_length);
742
743         spin_lock_irqsave(&priv->low_lock, flags);
744
745         if (priv->fatal_error) {
746                 IPW_DEBUG_INFO
747                     ("Attempt to send command while hardware in fatal error condition.\n");
748                 err = -EIO;
749                 goto fail_unlock;
750         }
751
752         if (!(priv->status & STATUS_RUNNING)) {
753                 IPW_DEBUG_INFO
754                     ("Attempt to send command while hardware is not running.\n");
755                 err = -EIO;
756                 goto fail_unlock;
757         }
758
759         if (priv->status & STATUS_CMD_ACTIVE) {
760                 IPW_DEBUG_INFO
761                     ("Attempt to send command while another command is pending.\n");
762                 err = -EBUSY;
763                 goto fail_unlock;
764         }
765
766         if (list_empty(&priv->msg_free_list)) {
767                 IPW_DEBUG_INFO("no available msg buffers\n");
768                 goto fail_unlock;
769         }
770
771         priv->status |= STATUS_CMD_ACTIVE;
772         priv->messages_sent++;
773
774         element = priv->msg_free_list.next;
775
776         packet = list_entry(element, struct ipw2100_tx_packet, list);
777         packet->jiffy_start = jiffies;
778
779         /* initialize the firmware command packet */
780         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782         packet->info.c_struct.cmd->host_command_len_reg =
783             cmd->host_command_length;
784         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785
786         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787                cmd->host_command_parameters,
788                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789
790         list_del(element);
791         DEC_STAT(&priv->msg_free_stat);
792
793         list_add_tail(element, &priv->msg_pend_list);
794         INC_STAT(&priv->msg_pend_stat);
795
796         ipw2100_tx_send_commands(priv);
797         ipw2100_tx_send_data(priv);
798
799         spin_unlock_irqrestore(&priv->low_lock, flags);
800
801         /*
802          * We must wait for this command to complete before another
803          * command can be sent...  but if we wait more than 3 seconds
804          * then there is a problem.
805          */
806
807         err =
808             wait_event_interruptible_timeout(priv->wait_command_queue,
809                                              !(priv->
810                                                status & STATUS_CMD_ACTIVE),
811                                              HOST_COMPLETE_TIMEOUT);
812
813         if (err == 0) {
814                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817                 priv->status &= ~STATUS_CMD_ACTIVE;
818                 schedule_reset(priv);
819                 return -EIO;
820         }
821
822         if (priv->fatal_error) {
823                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824                        priv->net_dev->name);
825                 return -EIO;
826         }
827
828         /* !!!!! HACK TEST !!!!!
829          * When lots of debug trace statements are enabled, the driver
830          * doesn't seem to have as many firmware restart cycles...
831          *
832          * As a test, we're sticking in a 1/100s delay here */
833         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834
835         return 0;
836
837       fail_unlock:
838         spin_unlock_irqrestore(&priv->low_lock, flags);
839
840         return err;
841 }
842
843 /*
844  * Verify the values and data access of the hardware
845  * No locks needed or used.  No functions called.
846  */
847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849         u32 data1, data2;
850         u32 address;
851
852         u32 val1 = 0x76543210;
853         u32 val2 = 0xFEDCBA98;
854
855         /* Domain 0 check - all values should be DOA_DEBUG */
856         for (address = IPW_REG_DOA_DEBUG_AREA_START;
857              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858                 read_register(priv->net_dev, address, &data1);
859                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860                         return -EIO;
861         }
862
863         /* Domain 1 check - use arbitrary read/write compare  */
864         for (address = 0; address < 5; address++) {
865                 /* The memory area is not used now */
866                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867                                val1);
868                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869                                val2);
870                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871                               &data1);
872                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873                               &data2);
874                 if (val1 == data1 && val2 == data2)
875                         return 0;
876         }
877
878         return -EIO;
879 }
880
881 /*
882  *
883  * Loop until the CARD_DISABLED bit is the same value as the
884  * supplied parameter
885  *
886  * TODO: See if it would be more efficient to do a wait/wake
887  *       cycle and have the completion event trigger the wakeup
888  *
889  */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893         int i;
894         u32 card_state;
895         u32 len = sizeof(card_state);
896         int err;
897
898         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900                                           &card_state, &len);
901                 if (err) {
902                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903                                        "failed.\n");
904                         return 0;
905                 }
906
907                 /* We'll break out if either the HW state says it is
908                  * in the state we want, or if HOST_COMPLETE command
909                  * finishes */
910                 if ((card_state == state) ||
911                     ((priv->status & STATUS_ENABLED) ?
912                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913                         if (state == IPW_HW_STATE_ENABLED)
914                                 priv->status |= STATUS_ENABLED;
915                         else
916                                 priv->status &= ~STATUS_ENABLED;
917
918                         return 0;
919                 }
920
921                 udelay(50);
922         }
923
924         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925                        state ? "DISABLED" : "ENABLED");
926         return -EIO;
927 }
928
929 /*********************************************************************
930     Procedure   :   sw_reset_and_clock
931     Purpose     :   Asserts s/w reset, asserts clock initialization
932                     and waits for clock stabilization
933  ********************************************************************/
934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936         int i;
937         u32 r;
938
939         // assert s/w reset
940         write_register(priv->net_dev, IPW_REG_RESET_REG,
941                        IPW_AUX_HOST_RESET_REG_SW_RESET);
942
943         // wait for clock stabilization
944         for (i = 0; i < 1000; i++) {
945                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946
947                 // check clock ready bit
948                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950                         break;
951         }
952
953         if (i == 1000)
954                 return -EIO;    // TODO: better error value
955
956         /* set "initialization complete" bit to move adapter to
957          * D0 state */
958         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960
961         /* wait for clock stabilization */
962         for (i = 0; i < 10000; i++) {
963                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964
965                 /* check clock ready bit */
966                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968                         break;
969         }
970
971         if (i == 10000)
972                 return -EIO;    /* TODO: better error value */
973
974         /* set D0 standby bit */
975         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978
979         return 0;
980 }
981
982 /*********************************************************************
983     Procedure   :   ipw2100_download_firmware
984     Purpose     :   Initiaze adapter after power on.
985                     The sequence is:
986                     1. assert s/w reset first!
987                     2. awake clocks & wait for clock stabilization
988                     3. hold ARC (don't ask me why...)
989                     4. load Dino ucode and reset/clock init again
990                     5. zero-out shared mem
991                     6. download f/w
992  *******************************************************************/
993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995         u32 address;
996         int err;
997
998 #ifndef CONFIG_PM
999         /* Fetch the firmware and microcode */
1000         struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002
1003         if (priv->fatal_error) {
1004                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005                                 "fatal error %d.  Interface must be brought down.\n",
1006                                 priv->net_dev->name, priv->fatal_error);
1007                 return -EINVAL;
1008         }
1009 #ifdef CONFIG_PM
1010         if (!ipw2100_firmware.version) {
1011                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012                 if (err) {
1013                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014                                         priv->net_dev->name, err);
1015                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016                         goto fail;
1017                 }
1018         }
1019 #else
1020         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021         if (err) {
1022                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023                                 priv->net_dev->name, err);
1024                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025                 goto fail;
1026         }
1027 #endif
1028         priv->firmware_version = ipw2100_firmware.version;
1029
1030         /* s/w reset and clock stabilization */
1031         err = sw_reset_and_clock(priv);
1032         if (err) {
1033                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034                                 priv->net_dev->name, err);
1035                 goto fail;
1036         }
1037
1038         err = ipw2100_verify(priv);
1039         if (err) {
1040                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041                                 priv->net_dev->name, err);
1042                 goto fail;
1043         }
1044
1045         /* Hold ARC */
1046         write_nic_dword(priv->net_dev,
1047                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048
1049         /* allow ARC to run */
1050         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051
1052         /* load microcode */
1053         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054         if (err) {
1055                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056                        priv->net_dev->name, err);
1057                 goto fail;
1058         }
1059
1060         /* release ARC */
1061         write_nic_dword(priv->net_dev,
1062                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063
1064         /* s/w reset and clock stabilization (again!!!) */
1065         err = sw_reset_and_clock(priv);
1066         if (err) {
1067                 printk(KERN_ERR DRV_NAME
1068                        ": %s: sw_reset_and_clock failed: %d\n",
1069                        priv->net_dev->name, err);
1070                 goto fail;
1071         }
1072
1073         /* load f/w */
1074         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075         if (err) {
1076                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077                                 priv->net_dev->name, err);
1078                 goto fail;
1079         }
1080 #ifndef CONFIG_PM
1081         /*
1082          * When the .resume method of the driver is called, the other
1083          * part of the system, i.e. the ide driver could still stay in
1084          * the suspend stage. This prevents us from loading the firmware
1085          * from the disk.  --YZ
1086          */
1087
1088         /* free any storage allocated for firmware image */
1089         ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091
1092         /* zero out Domain 1 area indirectly (Si requirement) */
1093         for (address = IPW_HOST_FW_SHARED_AREA0;
1094              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095                 write_nic_dword(priv->net_dev, address, 0);
1096         for (address = IPW_HOST_FW_SHARED_AREA1;
1097              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098                 write_nic_dword(priv->net_dev, address, 0);
1099         for (address = IPW_HOST_FW_SHARED_AREA2;
1100              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101                 write_nic_dword(priv->net_dev, address, 0);
1102         for (address = IPW_HOST_FW_SHARED_AREA3;
1103              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104                 write_nic_dword(priv->net_dev, address, 0);
1105         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107                 write_nic_dword(priv->net_dev, address, 0);
1108
1109         return 0;
1110
1111       fail:
1112         ipw2100_release_firmware(priv, &ipw2100_firmware);
1113         return err;
1114 }
1115
1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118         if (priv->status & STATUS_INT_ENABLED)
1119                 return;
1120         priv->status |= STATUS_INT_ENABLED;
1121         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123
1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126         if (!(priv->status & STATUS_INT_ENABLED))
1127                 return;
1128         priv->status &= ~STATUS_INT_ENABLED;
1129         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131
1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134         struct ipw2100_ordinals *ord = &priv->ordinals;
1135
1136         IPW_DEBUG_INFO("enter\n");
1137
1138         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139                       &ord->table1_addr);
1140
1141         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142                       &ord->table2_addr);
1143
1144         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146
1147         ord->table2_size &= 0x0000FFFF;
1148
1149         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151         IPW_DEBUG_INFO("exit\n");
1152 }
1153
1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156         u32 reg = 0;
1157         /*
1158          * Set GPIO 3 writable by FW; GPIO 1 writable
1159          * by driver and enable clock
1160          */
1161         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162                IPW_BIT_GPIO_LED_OFF);
1163         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165
1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170
1171         unsigned short value = 0;
1172         u32 reg = 0;
1173         int i;
1174
1175         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177                 priv->status &= ~STATUS_RF_KILL_HW;
1178                 return 0;
1179         }
1180
1181         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182                 udelay(RF_KILL_CHECK_DELAY);
1183                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185         }
1186
1187         if (value == 0) {
1188                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189                 priv->status |= STATUS_RF_KILL_HW;
1190         } else {
1191                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192                 priv->status &= ~STATUS_RF_KILL_HW;
1193         }
1194
1195         return (value == 0);
1196 }
1197
1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200         u32 addr, len;
1201         u32 val;
1202
1203         /*
1204          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205          */
1206         len = sizeof(addr);
1207         if (ipw2100_get_ordinal
1208             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210                                __LINE__);
1211                 return -EIO;
1212         }
1213
1214         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215
1216         /*
1217          * EEPROM version is the byte at offset 0xfd in firmware
1218          * We read 4 bytes, then shift out the byte we actually want */
1219         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220         priv->eeprom_version = (val >> 24) & 0xFF;
1221         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222
1223         /*
1224          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225          *
1226          *  notice that the EEPROM bit is reverse polarity, i.e.
1227          *     bit = 0  signifies HW RF kill switch is supported
1228          *     bit = 1  signifies HW RF kill switch is NOT supported
1229          */
1230         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231         if (!((val >> 24) & 0x01))
1232                 priv->hw_features |= HW_FEATURE_RFKILL;
1233
1234         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236
1237         return 0;
1238 }
1239
1240 /*
1241  * Start firmware execution after power on and intialization
1242  * The sequence is:
1243  *  1. Release ARC
1244  *  2. Wait for f/w initialization completes;
1245  */
1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248         int i;
1249         u32 inta, inta_mask, gpio;
1250
1251         IPW_DEBUG_INFO("enter\n");
1252
1253         if (priv->status & STATUS_RUNNING)
1254                 return 0;
1255
1256         /*
1257          * Initialize the hw - drive adapter to DO state by setting
1258          * init_done bit. Wait for clk_ready bit and Download
1259          * fw & dino ucode
1260          */
1261         if (ipw2100_download_firmware(priv)) {
1262                 printk(KERN_ERR DRV_NAME
1263                        ": %s: Failed to power on the adapter.\n",
1264                        priv->net_dev->name);
1265                 return -EIO;
1266         }
1267
1268         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1269          * in the firmware RBD and TBD ring queue */
1270         ipw2100_queues_initialize(priv);
1271
1272         ipw2100_hw_set_gpio(priv);
1273
1274         /* TODO -- Look at disabling interrupts here to make sure none
1275          * get fired during FW initialization */
1276
1277         /* Release ARC - clear reset bit */
1278         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279
1280         /* wait for f/w intialization complete */
1281         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282         i = 5000;
1283         do {
1284                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285                 /* Todo... wait for sync command ... */
1286
1287                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288
1289                 /* check "init done" bit */
1290                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291                         /* reset "init done" bit */
1292                         write_register(priv->net_dev, IPW_REG_INTA,
1293                                        IPW2100_INTA_FW_INIT_DONE);
1294                         break;
1295                 }
1296
1297                 /* check error conditions : we check these after the firmware
1298                  * check so that if there is an error, the interrupt handler
1299                  * will see it and the adapter will be reset */
1300                 if (inta &
1301                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302                         /* clear error conditions */
1303                         write_register(priv->net_dev, IPW_REG_INTA,
1304                                        IPW2100_INTA_FATAL_ERROR |
1305                                        IPW2100_INTA_PARITY_ERROR);
1306                 }
1307         } while (--i);
1308
1309         /* Clear out any pending INTAs since we aren't supposed to have
1310          * interrupts enabled at this point... */
1311         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313         inta &= IPW_INTERRUPT_MASK;
1314         /* Clear out any pending interrupts */
1315         if (inta & inta_mask)
1316                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1317
1318         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319                      i ? "SUCCESS" : "FAILED");
1320
1321         if (!i) {
1322                 printk(KERN_WARNING DRV_NAME
1323                        ": %s: Firmware did not initialize.\n",
1324                        priv->net_dev->name);
1325                 return -EIO;
1326         }
1327
1328         /* allow firmware to write to GPIO1 & GPIO3 */
1329         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330
1331         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332
1333         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334
1335         /* Ready to receive commands */
1336         priv->status |= STATUS_RUNNING;
1337
1338         /* The adapter has been reset; we are not associated */
1339         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340
1341         IPW_DEBUG_INFO("exit\n");
1342
1343         return 0;
1344 }
1345
1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348         if (!priv->fatal_error)
1349                 return;
1350
1351         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353         priv->fatal_error = 0;
1354 }
1355
1356 /* NOTE: Our interrupt is disabled when this method is called */
1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359         u32 reg;
1360         int i;
1361
1362         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363
1364         ipw2100_hw_set_gpio(priv);
1365
1366         /* Step 1. Stop Master Assert */
1367         write_register(priv->net_dev, IPW_REG_RESET_REG,
1368                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369
1370         /* Step 2. Wait for stop Master Assert
1371          *         (not more than 50us, otherwise ret error */
1372         i = 5;
1373         do {
1374                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1376
1377                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378                         break;
1379         } while (--i);
1380
1381         priv->status &= ~STATUS_RESET_PENDING;
1382
1383         if (!i) {
1384                 IPW_DEBUG_INFO
1385                     ("exit - waited too long for master assert stop\n");
1386                 return -EIO;
1387         }
1388
1389         write_register(priv->net_dev, IPW_REG_RESET_REG,
1390                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1391
1392         /* Reset any fatal_error conditions */
1393         ipw2100_reset_fatalerror(priv);
1394
1395         /* At this point, the adapter is now stopped and disabled */
1396         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397                           STATUS_ASSOCIATED | STATUS_ENABLED);
1398
1399         return 0;
1400 }
1401
1402 /*
1403  * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404  *
1405  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406  *
1407  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408  * if STATUS_ASSN_LOST is sent.
1409  */
1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412
1413 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1414
1415         struct host_command cmd = {
1416                 .host_command = CARD_DISABLE_PHY_OFF,
1417                 .host_command_sequence = 0,
1418                 .host_command_length = 0,
1419         };
1420         int err, i;
1421         u32 val1, val2;
1422
1423         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424
1425         /* Turn off the radio */
1426         err = ipw2100_hw_send_command(priv, &cmd);
1427         if (err)
1428                 return err;
1429
1430         for (i = 0; i < 2500; i++) {
1431                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433
1434                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435                     (val2 & IPW2100_COMMAND_PHY_OFF))
1436                         return 0;
1437
1438                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439         }
1440
1441         return -EIO;
1442 }
1443
1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446         struct host_command cmd = {
1447                 .host_command = HOST_COMPLETE,
1448                 .host_command_sequence = 0,
1449                 .host_command_length = 0
1450         };
1451         int err = 0;
1452
1453         IPW_DEBUG_HC("HOST_COMPLETE\n");
1454
1455         if (priv->status & STATUS_ENABLED)
1456                 return 0;
1457
1458         mutex_lock(&priv->adapter_mutex);
1459
1460         if (rf_kill_active(priv)) {
1461                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462                 goto fail_up;
1463         }
1464
1465         err = ipw2100_hw_send_command(priv, &cmd);
1466         if (err) {
1467                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468                 goto fail_up;
1469         }
1470
1471         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472         if (err) {
1473                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474                                priv->net_dev->name);
1475                 goto fail_up;
1476         }
1477
1478         if (priv->stop_hang_check) {
1479                 priv->stop_hang_check = 0;
1480                 schedule_delayed_work(&priv->hang_check, HZ / 2);
1481         }
1482
1483       fail_up:
1484         mutex_unlock(&priv->adapter_mutex);
1485         return err;
1486 }
1487
1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491
1492         struct host_command cmd = {
1493                 .host_command = HOST_PRE_POWER_DOWN,
1494                 .host_command_sequence = 0,
1495                 .host_command_length = 0,
1496         };
1497         int err, i;
1498         u32 reg;
1499
1500         if (!(priv->status & STATUS_RUNNING))
1501                 return 0;
1502
1503         priv->status |= STATUS_STOPPING;
1504
1505         /* We can only shut down the card if the firmware is operational.  So,
1506          * if we haven't reset since a fatal_error, then we can not send the
1507          * shutdown commands. */
1508         if (!priv->fatal_error) {
1509                 /* First, make sure the adapter is enabled so that the PHY_OFF
1510                  * command can shut it down */
1511                 ipw2100_enable_adapter(priv);
1512
1513                 err = ipw2100_hw_phy_off(priv);
1514                 if (err)
1515                         printk(KERN_WARNING DRV_NAME
1516                                ": Error disabling radio %d\n", err);
1517
1518                 /*
1519                  * If in D0-standby mode going directly to D3 may cause a
1520                  * PCI bus violation.  Therefore we must change out of the D0
1521                  * state.
1522                  *
1523                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524                  * hardware from going into standby mode and will transition
1525                  * out of D0-standby if it is already in that state.
1526                  *
1527                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528                  * driver upon completion.  Once received, the driver can
1529                  * proceed to the D3 state.
1530                  *
1531                  * Prepare for power down command to fw.  This command would
1532                  * take HW out of D0-standby and prepare it for D3 state.
1533                  *
1534                  * Currently FW does not support event notification for this
1535                  * event. Therefore, skip waiting for it.  Just wait a fixed
1536                  * 100ms
1537                  */
1538                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539
1540                 err = ipw2100_hw_send_command(priv, &cmd);
1541                 if (err)
1542                         printk(KERN_WARNING DRV_NAME ": "
1543                                "%s: Power down command failed: Error %d\n",
1544                                priv->net_dev->name, err);
1545                 else
1546                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547         }
1548
1549         priv->status &= ~STATUS_ENABLED;
1550
1551         /*
1552          * Set GPIO 3 writable by FW; GPIO 1 writable
1553          * by driver and enable clock
1554          */
1555         ipw2100_hw_set_gpio(priv);
1556
1557         /*
1558          * Power down adapter.  Sequence:
1559          * 1. Stop master assert (RESET_REG[9]=1)
1560          * 2. Wait for stop master (RESET_REG[8]==1)
1561          * 3. S/w reset assert (RESET_REG[7] = 1)
1562          */
1563
1564         /* Stop master assert */
1565         write_register(priv->net_dev, IPW_REG_RESET_REG,
1566                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567
1568         /* wait stop master not more than 50 usec.
1569          * Otherwise return error. */
1570         for (i = 5; i > 0; i--) {
1571                 udelay(10);
1572
1573                 /* Check master stop bit */
1574                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1575
1576                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577                         break;
1578         }
1579
1580         if (i == 0)
1581                 printk(KERN_WARNING DRV_NAME
1582                        ": %s: Could now power down adapter.\n",
1583                        priv->net_dev->name);
1584
1585         /* assert s/w reset */
1586         write_register(priv->net_dev, IPW_REG_RESET_REG,
1587                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1588
1589         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590
1591         return 0;
1592 }
1593
1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596         struct host_command cmd = {
1597                 .host_command = CARD_DISABLE,
1598                 .host_command_sequence = 0,
1599                 .host_command_length = 0
1600         };
1601         int err = 0;
1602
1603         IPW_DEBUG_HC("CARD_DISABLE\n");
1604
1605         if (!(priv->status & STATUS_ENABLED))
1606                 return 0;
1607
1608         /* Make sure we clear the associated state */
1609         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610
1611         if (!priv->stop_hang_check) {
1612                 priv->stop_hang_check = 1;
1613                 cancel_delayed_work(&priv->hang_check);
1614         }
1615
1616         mutex_lock(&priv->adapter_mutex);
1617
1618         err = ipw2100_hw_send_command(priv, &cmd);
1619         if (err) {
1620                 printk(KERN_WARNING DRV_NAME
1621                        ": exit - failed to send CARD_DISABLE command\n");
1622                 goto fail_up;
1623         }
1624
1625         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626         if (err) {
1627                 printk(KERN_WARNING DRV_NAME
1628                        ": exit - card failed to change to DISABLED\n");
1629                 goto fail_up;
1630         }
1631
1632         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633
1634       fail_up:
1635         mutex_unlock(&priv->adapter_mutex);
1636         return err;
1637 }
1638
1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641         struct host_command cmd = {
1642                 .host_command = SET_SCAN_OPTIONS,
1643                 .host_command_sequence = 0,
1644                 .host_command_length = 8
1645         };
1646         int err;
1647
1648         IPW_DEBUG_INFO("enter\n");
1649
1650         IPW_DEBUG_SCAN("setting scan options\n");
1651
1652         cmd.host_command_parameters[0] = 0;
1653
1654         if (!(priv->config & CFG_ASSOCIATE))
1655                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658         if (priv->config & CFG_PASSIVE_SCAN)
1659                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660
1661         cmd.host_command_parameters[1] = priv->channel_mask;
1662
1663         err = ipw2100_hw_send_command(priv, &cmd);
1664
1665         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666                      cmd.host_command_parameters[0]);
1667
1668         return err;
1669 }
1670
1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673         struct host_command cmd = {
1674                 .host_command = BROADCAST_SCAN,
1675                 .host_command_sequence = 0,
1676                 .host_command_length = 4
1677         };
1678         int err;
1679
1680         IPW_DEBUG_HC("START_SCAN\n");
1681
1682         cmd.host_command_parameters[0] = 0;
1683
1684         /* No scanning if in monitor mode */
1685         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686                 return 1;
1687
1688         if (priv->status & STATUS_SCANNING) {
1689                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690                 return 0;
1691         }
1692
1693         IPW_DEBUG_INFO("enter\n");
1694
1695         /* Not clearing here; doing so makes iwlist always return nothing...
1696          *
1697          * We should modify the table logic to use aging tables vs. clearing
1698          * the table on each scan start.
1699          */
1700         IPW_DEBUG_SCAN("starting scan\n");
1701
1702         priv->status |= STATUS_SCANNING;
1703         err = ipw2100_hw_send_command(priv, &cmd);
1704         if (err)
1705                 priv->status &= ~STATUS_SCANNING;
1706
1707         IPW_DEBUG_INFO("exit\n");
1708
1709         return err;
1710 }
1711
1712 static const struct libipw_geo ipw_geos[] = {
1713         {                       /* Restricted */
1714          "---",
1715          .bg_channels = 14,
1716          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717                 {2427, 4}, {2432, 5}, {2437, 6},
1718                 {2442, 7}, {2447, 8}, {2452, 9},
1719                 {2457, 10}, {2462, 11}, {2467, 12},
1720                 {2472, 13}, {2484, 14}},
1721          },
1722 };
1723
1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726         unsigned long flags;
1727         int rc = 0;
1728         u32 lock;
1729         u32 ord_len = sizeof(lock);
1730
1731         /* Age scan list entries found before suspend */
1732         if (priv->suspend_time) {
1733                 libipw_networks_age(priv->ieee, priv->suspend_time);
1734                 priv->suspend_time = 0;
1735         }
1736
1737         /* Quiet if manually disabled. */
1738         if (priv->status & STATUS_RF_KILL_SW) {
1739                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740                                "switch\n", priv->net_dev->name);
1741                 return 0;
1742         }
1743
1744         /* the ipw2100 hardware really doesn't want power management delays
1745          * longer than 175usec
1746          */
1747         pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748
1749         /* If the interrupt is enabled, turn it off... */
1750         spin_lock_irqsave(&priv->low_lock, flags);
1751         ipw2100_disable_interrupts(priv);
1752
1753         /* Reset any fatal_error conditions */
1754         ipw2100_reset_fatalerror(priv);
1755         spin_unlock_irqrestore(&priv->low_lock, flags);
1756
1757         if (priv->status & STATUS_POWERED ||
1758             (priv->status & STATUS_RESET_PENDING)) {
1759                 /* Power cycle the card ... */
1760                 if (ipw2100_power_cycle_adapter(priv)) {
1761                         printk(KERN_WARNING DRV_NAME
1762                                ": %s: Could not cycle adapter.\n",
1763                                priv->net_dev->name);
1764                         rc = 1;
1765                         goto exit;
1766                 }
1767         } else
1768                 priv->status |= STATUS_POWERED;
1769
1770         /* Load the firmware, start the clocks, etc. */
1771         if (ipw2100_start_adapter(priv)) {
1772                 printk(KERN_ERR DRV_NAME
1773                        ": %s: Failed to start the firmware.\n",
1774                        priv->net_dev->name);
1775                 rc = 1;
1776                 goto exit;
1777         }
1778
1779         ipw2100_initialize_ordinals(priv);
1780
1781         /* Determine capabilities of this particular HW configuration */
1782         if (ipw2100_get_hw_features(priv)) {
1783                 printk(KERN_ERR DRV_NAME
1784                        ": %s: Failed to determine HW features.\n",
1785                        priv->net_dev->name);
1786                 rc = 1;
1787                 goto exit;
1788         }
1789
1790         /* Initialize the geo */
1791         libipw_set_geo(priv->ieee, &ipw_geos[0]);
1792         priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1793
1794         lock = LOCK_NONE;
1795         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1796                 printk(KERN_ERR DRV_NAME
1797                        ": %s: Failed to clear ordinal lock.\n",
1798                        priv->net_dev->name);
1799                 rc = 1;
1800                 goto exit;
1801         }
1802
1803         priv->status &= ~STATUS_SCANNING;
1804
1805         if (rf_kill_active(priv)) {
1806                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807                        priv->net_dev->name);
1808
1809                 if (priv->stop_rf_kill) {
1810                         priv->stop_rf_kill = 0;
1811                         schedule_delayed_work(&priv->rf_kill,
1812                                               round_jiffies_relative(HZ));
1813                 }
1814
1815                 deferred = 1;
1816         }
1817
1818         /* Turn on the interrupt so that commands can be processed */
1819         ipw2100_enable_interrupts(priv);
1820
1821         /* Send all of the commands that must be sent prior to
1822          * HOST_COMPLETE */
1823         if (ipw2100_adapter_setup(priv)) {
1824                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1825                        priv->net_dev->name);
1826                 rc = 1;
1827                 goto exit;
1828         }
1829
1830         if (!deferred) {
1831                 /* Enable the adapter - sends HOST_COMPLETE */
1832                 if (ipw2100_enable_adapter(priv)) {
1833                         printk(KERN_ERR DRV_NAME ": "
1834                                "%s: failed in call to enable adapter.\n",
1835                                priv->net_dev->name);
1836                         ipw2100_hw_stop_adapter(priv);
1837                         rc = 1;
1838                         goto exit;
1839                 }
1840
1841                 /* Start a scan . . . */
1842                 ipw2100_set_scan_options(priv);
1843                 ipw2100_start_scan(priv);
1844         }
1845
1846       exit:
1847         return rc;
1848 }
1849
1850 static void ipw2100_down(struct ipw2100_priv *priv)
1851 {
1852         unsigned long flags;
1853         union iwreq_data wrqu = {
1854                 .ap_addr = {
1855                             .sa_family = ARPHRD_ETHER}
1856         };
1857         int associated = priv->status & STATUS_ASSOCIATED;
1858
1859         /* Kill the RF switch timer */
1860         if (!priv->stop_rf_kill) {
1861                 priv->stop_rf_kill = 1;
1862                 cancel_delayed_work(&priv->rf_kill);
1863         }
1864
1865         /* Kill the firmware hang check timer */
1866         if (!priv->stop_hang_check) {
1867                 priv->stop_hang_check = 1;
1868                 cancel_delayed_work(&priv->hang_check);
1869         }
1870
1871         /* Kill any pending resets */
1872         if (priv->status & STATUS_RESET_PENDING)
1873                 cancel_delayed_work(&priv->reset_work);
1874
1875         /* Make sure the interrupt is on so that FW commands will be
1876          * processed correctly */
1877         spin_lock_irqsave(&priv->low_lock, flags);
1878         ipw2100_enable_interrupts(priv);
1879         spin_unlock_irqrestore(&priv->low_lock, flags);
1880
1881         if (ipw2100_hw_stop_adapter(priv))
1882                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883                        priv->net_dev->name);
1884
1885         /* Do not disable the interrupt until _after_ we disable
1886          * the adaptor.  Otherwise the CARD_DISABLE command will never
1887          * be ack'd by the firmware */
1888         spin_lock_irqsave(&priv->low_lock, flags);
1889         ipw2100_disable_interrupts(priv);
1890         spin_unlock_irqrestore(&priv->low_lock, flags);
1891
1892         pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1893
1894         /* We have to signal any supplicant if we are disassociating */
1895         if (associated)
1896                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1897
1898         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899         netif_carrier_off(priv->net_dev);
1900         netif_stop_queue(priv->net_dev);
1901 }
1902
1903 static int ipw2100_wdev_init(struct net_device *dev)
1904 {
1905         struct ipw2100_priv *priv = libipw_priv(dev);
1906         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1907         struct wireless_dev *wdev = &priv->ieee->wdev;
1908         int i;
1909
1910         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1911
1912         /* fill-out priv->ieee->bg_band */
1913         if (geo->bg_channels) {
1914                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1915
1916                 bg_band->band = IEEE80211_BAND_2GHZ;
1917                 bg_band->n_channels = geo->bg_channels;
1918                 bg_band->channels = kcalloc(geo->bg_channels,
1919                                             sizeof(struct ieee80211_channel),
1920                                             GFP_KERNEL);
1921                 if (!bg_band->channels) {
1922                         ipw2100_down(priv);
1923                         return -ENOMEM;
1924                 }
1925                 /* translate geo->bg to bg_band.channels */
1926                 for (i = 0; i < geo->bg_channels; i++) {
1927                         bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1928                         bg_band->channels[i].center_freq = geo->bg[i].freq;
1929                         bg_band->channels[i].hw_value = geo->bg[i].channel;
1930                         bg_band->channels[i].max_power = geo->bg[i].max_power;
1931                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1932                                 bg_band->channels[i].flags |=
1933                                         IEEE80211_CHAN_PASSIVE_SCAN;
1934                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1935                                 bg_band->channels[i].flags |=
1936                                         IEEE80211_CHAN_NO_IBSS;
1937                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1938                                 bg_band->channels[i].flags |=
1939                                         IEEE80211_CHAN_RADAR;
1940                         /* No equivalent for LIBIPW_CH_80211H_RULES,
1941                            LIBIPW_CH_UNIFORM_SPREADING, or
1942                            LIBIPW_CH_B_ONLY... */
1943                 }
1944                 /* point at bitrate info */
1945                 bg_band->bitrates = ipw2100_bg_rates;
1946                 bg_band->n_bitrates = RATE_COUNT;
1947
1948                 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1949         }
1950
1951         wdev->wiphy->cipher_suites = ipw_cipher_suites;
1952         wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1953
1954         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1955         if (wiphy_register(wdev->wiphy))
1956                 return -EIO;
1957         return 0;
1958 }
1959
1960 static void ipw2100_reset_adapter(struct work_struct *work)
1961 {
1962         struct ipw2100_priv *priv =
1963                 container_of(work, struct ipw2100_priv, reset_work.work);
1964         unsigned long flags;
1965         union iwreq_data wrqu = {
1966                 .ap_addr = {
1967                             .sa_family = ARPHRD_ETHER}
1968         };
1969         int associated = priv->status & STATUS_ASSOCIATED;
1970
1971         spin_lock_irqsave(&priv->low_lock, flags);
1972         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1973         priv->resets++;
1974         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1975         priv->status |= STATUS_SECURITY_UPDATED;
1976
1977         /* Force a power cycle even if interface hasn't been opened
1978          * yet */
1979         cancel_delayed_work(&priv->reset_work);
1980         priv->status |= STATUS_RESET_PENDING;
1981         spin_unlock_irqrestore(&priv->low_lock, flags);
1982
1983         mutex_lock(&priv->action_mutex);
1984         /* stop timed checks so that they don't interfere with reset */
1985         priv->stop_hang_check = 1;
1986         cancel_delayed_work(&priv->hang_check);
1987
1988         /* We have to signal any supplicant if we are disassociating */
1989         if (associated)
1990                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1991
1992         ipw2100_up(priv, 0);
1993         mutex_unlock(&priv->action_mutex);
1994
1995 }
1996
1997 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1998 {
1999
2000 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2001         int ret;
2002         unsigned int len, essid_len;
2003         char essid[IW_ESSID_MAX_SIZE];
2004         u32 txrate;
2005         u32 chan;
2006         char *txratename;
2007         u8 bssid[ETH_ALEN];
2008         DECLARE_SSID_BUF(ssid);
2009
2010         /*
2011          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2012          *      an actual MAC of the AP. Seems like FW sets this
2013          *      address too late. Read it later and expose through
2014          *      /proc or schedule a later task to query and update
2015          */
2016
2017         essid_len = IW_ESSID_MAX_SIZE;
2018         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2019                                   essid, &essid_len);
2020         if (ret) {
2021                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2022                                __LINE__);
2023                 return;
2024         }
2025
2026         len = sizeof(u32);
2027         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2028         if (ret) {
2029                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2030                                __LINE__);
2031                 return;
2032         }
2033
2034         len = sizeof(u32);
2035         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2036         if (ret) {
2037                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2038                                __LINE__);
2039                 return;
2040         }
2041         len = ETH_ALEN;
2042         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2043                                   &len);
2044         if (ret) {
2045                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2046                                __LINE__);
2047                 return;
2048         }
2049         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2050
2051         switch (txrate) {
2052         case TX_RATE_1_MBIT:
2053                 txratename = "1Mbps";
2054                 break;
2055         case TX_RATE_2_MBIT:
2056                 txratename = "2Mbsp";
2057                 break;
2058         case TX_RATE_5_5_MBIT:
2059                 txratename = "5.5Mbps";
2060                 break;
2061         case TX_RATE_11_MBIT:
2062                 txratename = "11Mbps";
2063                 break;
2064         default:
2065                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2066                 txratename = "unknown rate";
2067                 break;
2068         }
2069
2070         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2071                        priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2072                        txratename, chan, bssid);
2073
2074         /* now we copy read ssid into dev */
2075         if (!(priv->config & CFG_STATIC_ESSID)) {
2076                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2077                 memcpy(priv->essid, essid, priv->essid_len);
2078         }
2079         priv->channel = chan;
2080         memcpy(priv->bssid, bssid, ETH_ALEN);
2081
2082         priv->status |= STATUS_ASSOCIATING;
2083         priv->connect_start = get_seconds();
2084
2085         schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2086 }
2087
2088 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2089                              int length, int batch_mode)
2090 {
2091         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2092         struct host_command cmd = {
2093                 .host_command = SSID,
2094                 .host_command_sequence = 0,
2095                 .host_command_length = ssid_len
2096         };
2097         int err;
2098         DECLARE_SSID_BUF(ssid);
2099
2100         IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2101
2102         if (ssid_len)
2103                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2104
2105         if (!batch_mode) {
2106                 err = ipw2100_disable_adapter(priv);
2107                 if (err)
2108                         return err;
2109         }
2110
2111         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2112          * disable auto association -- so we cheat by setting a bogus SSID */
2113         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2114                 int i;
2115                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2116                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2117                         bogus[i] = 0x18 + i;
2118                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2119         }
2120
2121         /* NOTE:  We always send the SSID command even if the provided ESSID is
2122          * the same as what we currently think is set. */
2123
2124         err = ipw2100_hw_send_command(priv, &cmd);
2125         if (!err) {
2126                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2127                 memcpy(priv->essid, essid, ssid_len);
2128                 priv->essid_len = ssid_len;
2129         }
2130
2131         if (!batch_mode) {
2132                 if (ipw2100_enable_adapter(priv))
2133                         err = -EIO;
2134         }
2135
2136         return err;
2137 }
2138
2139 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2140 {
2141         DECLARE_SSID_BUF(ssid);
2142
2143         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2144                   "disassociated: '%s' %pM\n",
2145                   print_ssid(ssid, priv->essid, priv->essid_len),
2146                   priv->bssid);
2147
2148         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2149
2150         if (priv->status & STATUS_STOPPING) {
2151                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2152                 return;
2153         }
2154
2155         memset(priv->bssid, 0, ETH_ALEN);
2156         memset(priv->ieee->bssid, 0, ETH_ALEN);
2157
2158         netif_carrier_off(priv->net_dev);
2159         netif_stop_queue(priv->net_dev);
2160
2161         if (!(priv->status & STATUS_RUNNING))
2162                 return;
2163
2164         if (priv->status & STATUS_SECURITY_UPDATED)
2165                 schedule_delayed_work(&priv->security_work, 0);
2166
2167         schedule_delayed_work(&priv->wx_event_work, 0);
2168 }
2169
2170 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2171 {
2172         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2173                        priv->net_dev->name);
2174
2175         /* RF_KILL is now enabled (else we wouldn't be here) */
2176         wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2177         priv->status |= STATUS_RF_KILL_HW;
2178
2179         /* Make sure the RF Kill check timer is running */
2180         priv->stop_rf_kill = 0;
2181         mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2182 }
2183
2184 static void ipw2100_scan_event(struct work_struct *work)
2185 {
2186         struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv,
2187                                                  scan_event.work);
2188         union iwreq_data wrqu;
2189
2190         wrqu.data.length = 0;
2191         wrqu.data.flags = 0;
2192         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2193 }
2194
2195 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2196 {
2197         IPW_DEBUG_SCAN("scan complete\n");
2198         /* Age the scan results... */
2199         priv->ieee->scans++;
2200         priv->status &= ~STATUS_SCANNING;
2201
2202         /* Only userspace-requested scan completion events go out immediately */
2203         if (!priv->user_requested_scan) {
2204                 schedule_delayed_work(&priv->scan_event,
2205                                       round_jiffies_relative(msecs_to_jiffies(4000)));
2206         } else {
2207                 priv->user_requested_scan = 0;
2208                 mod_delayed_work(system_wq, &priv->scan_event, 0);
2209         }
2210 }
2211
2212 #ifdef CONFIG_IPW2100_DEBUG
2213 #define IPW2100_HANDLER(v, f) { v, f, # v }
2214 struct ipw2100_status_indicator {
2215         int status;
2216         void (*cb) (struct ipw2100_priv * priv, u32 status);
2217         char *name;
2218 };
2219 #else
2220 #define IPW2100_HANDLER(v, f) { v, f }
2221 struct ipw2100_status_indicator {
2222         int status;
2223         void (*cb) (struct ipw2100_priv * priv, u32 status);
2224 };
2225 #endif                          /* CONFIG_IPW2100_DEBUG */
2226
2227 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2228 {
2229         IPW_DEBUG_SCAN("Scanning...\n");
2230         priv->status |= STATUS_SCANNING;
2231 }
2232
2233 static const struct ipw2100_status_indicator status_handlers[] = {
2234         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2235         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2236         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2237         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2238         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2239         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2240         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2241         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2242         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2243         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2244         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2245         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2246         IPW2100_HANDLER(-1, NULL)
2247 };
2248
2249 static void isr_status_change(struct ipw2100_priv *priv, int status)
2250 {
2251         int i;
2252
2253         if (status == IPW_STATE_SCANNING &&
2254             priv->status & STATUS_ASSOCIATED &&
2255             !(priv->status & STATUS_SCANNING)) {
2256                 IPW_DEBUG_INFO("Scan detected while associated, with "
2257                                "no scan request.  Restarting firmware.\n");
2258
2259                 /* Wake up any sleeping jobs */
2260                 schedule_reset(priv);
2261         }
2262
2263         for (i = 0; status_handlers[i].status != -1; i++) {
2264                 if (status == status_handlers[i].status) {
2265                         IPW_DEBUG_NOTIF("Status change: %s\n",
2266                                         status_handlers[i].name);
2267                         if (status_handlers[i].cb)
2268                                 status_handlers[i].cb(priv, status);
2269                         priv->wstats.status = status;
2270                         return;
2271                 }
2272         }
2273
2274         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2275 }
2276
2277 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2278                                     struct ipw2100_cmd_header *cmd)
2279 {
2280 #ifdef CONFIG_IPW2100_DEBUG
2281         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2282                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2283                              command_types[cmd->host_command_reg],
2284                              cmd->host_command_reg);
2285         }
2286 #endif
2287         if (cmd->host_command_reg == HOST_COMPLETE)
2288                 priv->status |= STATUS_ENABLED;
2289
2290         if (cmd->host_command_reg == CARD_DISABLE)
2291                 priv->status &= ~STATUS_ENABLED;
2292
2293         priv->status &= ~STATUS_CMD_ACTIVE;
2294
2295         wake_up_interruptible(&priv->wait_command_queue);
2296 }
2297
2298 #ifdef CONFIG_IPW2100_DEBUG
2299 static const char *frame_types[] = {
2300         "COMMAND_STATUS_VAL",
2301         "STATUS_CHANGE_VAL",
2302         "P80211_DATA_VAL",
2303         "P8023_DATA_VAL",
2304         "HOST_NOTIFICATION_VAL"
2305 };
2306 #endif
2307
2308 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2309                                     struct ipw2100_rx_packet *packet)
2310 {
2311         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2312         if (!packet->skb)
2313                 return -ENOMEM;
2314
2315         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2316         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2317                                           sizeof(struct ipw2100_rx),
2318                                           PCI_DMA_FROMDEVICE);
2319         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2320          *       dma_addr */
2321
2322         return 0;
2323 }
2324
2325 #define SEARCH_ERROR   0xffffffff
2326 #define SEARCH_FAIL    0xfffffffe
2327 #define SEARCH_SUCCESS 0xfffffff0
2328 #define SEARCH_DISCARD 0
2329 #define SEARCH_SNAPSHOT 1
2330
2331 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2332 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2333 {
2334         int i;
2335         if (!priv->snapshot[0])
2336                 return;
2337         for (i = 0; i < 0x30; i++)
2338                 kfree(priv->snapshot[i]);
2339         priv->snapshot[0] = NULL;
2340 }
2341
2342 #ifdef IPW2100_DEBUG_C3
2343 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2344 {
2345         int i;
2346         if (priv->snapshot[0])
2347                 return 1;
2348         for (i = 0; i < 0x30; i++) {
2349                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2350                 if (!priv->snapshot[i]) {
2351                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2352                                        "buffer %d\n", priv->net_dev->name, i);
2353                         while (i > 0)
2354                                 kfree(priv->snapshot[--i]);
2355                         priv->snapshot[0] = NULL;
2356                         return 0;
2357                 }
2358         }
2359
2360         return 1;
2361 }
2362
2363 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2364                                     size_t len, int mode)
2365 {
2366         u32 i, j;
2367         u32 tmp;
2368         u8 *s, *d;
2369         u32 ret;
2370
2371         s = in_buf;
2372         if (mode == SEARCH_SNAPSHOT) {
2373                 if (!ipw2100_snapshot_alloc(priv))
2374                         mode = SEARCH_DISCARD;
2375         }
2376
2377         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2378                 read_nic_dword(priv->net_dev, i, &tmp);
2379                 if (mode == SEARCH_SNAPSHOT)
2380                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2381                 if (ret == SEARCH_FAIL) {
2382                         d = (u8 *) & tmp;
2383                         for (j = 0; j < 4; j++) {
2384                                 if (*s != *d) {
2385                                         s = in_buf;
2386                                         continue;
2387                                 }
2388
2389                                 s++;
2390                                 d++;
2391
2392                                 if ((s - in_buf) == len)
2393                                         ret = (i + j) - len + 1;
2394                         }
2395                 } else if (mode == SEARCH_DISCARD)
2396                         return ret;
2397         }
2398
2399         return ret;
2400 }
2401 #endif
2402
2403 /*
2404  *
2405  * 0) Disconnect the SKB from the firmware (just unmap)
2406  * 1) Pack the ETH header into the SKB
2407  * 2) Pass the SKB to the network stack
2408  *
2409  * When packet is provided by the firmware, it contains the following:
2410  *
2411  * .  libipw_hdr
2412  * .  libipw_snap_hdr
2413  *
2414  * The size of the constructed ethernet
2415  *
2416  */
2417 #ifdef IPW2100_RX_DEBUG
2418 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2419 #endif
2420
2421 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2422 {
2423 #ifdef IPW2100_DEBUG_C3
2424         struct ipw2100_status *status = &priv->status_queue.drv[i];
2425         u32 match, reg;
2426         int j;
2427 #endif
2428
2429         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2430                        i * sizeof(struct ipw2100_status));
2431
2432 #ifdef IPW2100_DEBUG_C3
2433         /* Halt the firmware so we can get a good image */
2434         write_register(priv->net_dev, IPW_REG_RESET_REG,
2435                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2436         j = 5;
2437         do {
2438                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2439                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2440
2441                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2442                         break;
2443         } while (j--);
2444
2445         match = ipw2100_match_buf(priv, (u8 *) status,
2446                                   sizeof(struct ipw2100_status),
2447                                   SEARCH_SNAPSHOT);
2448         if (match < SEARCH_SUCCESS)
2449                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2450                                "offset 0x%06X, length %d:\n",
2451                                priv->net_dev->name, match,
2452                                sizeof(struct ipw2100_status));
2453         else
2454                 IPW_DEBUG_INFO("%s: No DMA status match in "
2455                                "Firmware.\n", priv->net_dev->name);
2456
2457         printk_buf((u8 *) priv->status_queue.drv,
2458                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2459 #endif
2460
2461         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2462         priv->net_dev->stats.rx_errors++;
2463         schedule_reset(priv);
2464 }
2465
2466 static void isr_rx(struct ipw2100_priv *priv, int i,
2467                           struct libipw_rx_stats *stats)
2468 {
2469         struct net_device *dev = priv->net_dev;
2470         struct ipw2100_status *status = &priv->status_queue.drv[i];
2471         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2472
2473         IPW_DEBUG_RX("Handler...\n");
2474
2475         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2476                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2477                                "  Dropping.\n",
2478                                dev->name,
2479                                status->frame_size, skb_tailroom(packet->skb));
2480                 dev->stats.rx_errors++;
2481                 return;
2482         }
2483
2484         if (unlikely(!netif_running(dev))) {
2485                 dev->stats.rx_errors++;
2486                 priv->wstats.discard.misc++;
2487                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2488                 return;
2489         }
2490
2491         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2492                      !(priv->status & STATUS_ASSOCIATED))) {
2493                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2494                 priv->wstats.discard.misc++;
2495                 return;
2496         }
2497
2498         pci_unmap_single(priv->pci_dev,
2499                          packet->dma_addr,
2500                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2501
2502         skb_put(packet->skb, status->frame_size);
2503
2504 #ifdef IPW2100_RX_DEBUG
2505         /* Make a copy of the frame so we can dump it to the logs if
2506          * libipw_rx fails */
2507         skb_copy_from_linear_data(packet->skb, packet_data,
2508                                   min_t(u32, status->frame_size,
2509                                              IPW_RX_NIC_BUFFER_LENGTH));
2510 #endif
2511
2512         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2513 #ifdef IPW2100_RX_DEBUG
2514                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2515                                dev->name);
2516                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2517 #endif
2518                 dev->stats.rx_errors++;
2519
2520                 /* libipw_rx failed, so it didn't free the SKB */
2521                 dev_kfree_skb_any(packet->skb);
2522                 packet->skb = NULL;
2523         }
2524
2525         /* We need to allocate a new SKB and attach it to the RDB. */
2526         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2527                 printk(KERN_WARNING DRV_NAME ": "
2528                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2529                        "adapter.\n", dev->name);
2530                 /* TODO: schedule adapter shutdown */
2531                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2532         }
2533
2534         /* Update the RDB entry */
2535         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2536 }
2537
2538 #ifdef CONFIG_IPW2100_MONITOR
2539
2540 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2541                    struct libipw_rx_stats *stats)
2542 {
2543         struct net_device *dev = priv->net_dev;
2544         struct ipw2100_status *status = &priv->status_queue.drv[i];
2545         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2546
2547         /* Magic struct that slots into the radiotap header -- no reason
2548          * to build this manually element by element, we can write it much
2549          * more efficiently than we can parse it. ORDER MATTERS HERE */
2550         struct ipw_rt_hdr {
2551                 struct ieee80211_radiotap_header rt_hdr;
2552                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2553         } *ipw_rt;
2554
2555         IPW_DEBUG_RX("Handler...\n");
2556
2557         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2558                                 sizeof(struct ipw_rt_hdr))) {
2559                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2560                                "  Dropping.\n",
2561                                dev->name,
2562                                status->frame_size,
2563                                skb_tailroom(packet->skb));
2564                 dev->stats.rx_errors++;
2565                 return;
2566         }
2567
2568         if (unlikely(!netif_running(dev))) {
2569                 dev->stats.rx_errors++;
2570                 priv->wstats.discard.misc++;
2571                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2572                 return;
2573         }
2574
2575         if (unlikely(priv->config & CFG_CRC_CHECK &&
2576                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2577                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2578                 dev->stats.rx_errors++;
2579                 return;
2580         }
2581
2582         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2583                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2584         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2585                 packet->skb->data, status->frame_size);
2586
2587         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2588
2589         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2590         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2591         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2592
2593         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2594
2595         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2596
2597         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2598
2599         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2600                 dev->stats.rx_errors++;
2601
2602                 /* libipw_rx failed, so it didn't free the SKB */
2603                 dev_kfree_skb_any(packet->skb);
2604                 packet->skb = NULL;
2605         }
2606
2607         /* We need to allocate a new SKB and attach it to the RDB. */
2608         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2609                 IPW_DEBUG_WARNING(
2610                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2611                         "adapter.\n", dev->name);
2612                 /* TODO: schedule adapter shutdown */
2613                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2614         }
2615
2616         /* Update the RDB entry */
2617         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2618 }
2619
2620 #endif
2621
2622 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2623 {
2624         struct ipw2100_status *status = &priv->status_queue.drv[i];
2625         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2626         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2627
2628         switch (frame_type) {
2629         case COMMAND_STATUS_VAL:
2630                 return (status->frame_size != sizeof(u->rx_data.command));
2631         case STATUS_CHANGE_VAL:
2632                 return (status->frame_size != sizeof(u->rx_data.status));
2633         case HOST_NOTIFICATION_VAL:
2634                 return (status->frame_size < sizeof(u->rx_data.notification));
2635         case P80211_DATA_VAL:
2636         case P8023_DATA_VAL:
2637 #ifdef CONFIG_IPW2100_MONITOR
2638                 return 0;
2639 #else
2640                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2641                 case IEEE80211_FTYPE_MGMT:
2642                 case IEEE80211_FTYPE_CTL:
2643                         return 0;
2644                 case IEEE80211_FTYPE_DATA:
2645                         return (status->frame_size >
2646                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2647                 }
2648 #endif
2649         }
2650
2651         return 1;
2652 }
2653
2654 /*
2655  * ipw2100 interrupts are disabled at this point, and the ISR
2656  * is the only code that calls this method.  So, we do not need
2657  * to play with any locks.
2658  *
2659  * RX Queue works as follows:
2660  *
2661  * Read index - firmware places packet in entry identified by the
2662  *              Read index and advances Read index.  In this manner,
2663  *              Read index will always point to the next packet to
2664  *              be filled--but not yet valid.
2665  *
2666  * Write index - driver fills this entry with an unused RBD entry.
2667  *               This entry has not filled by the firmware yet.
2668  *
2669  * In between the W and R indexes are the RBDs that have been received
2670  * but not yet processed.
2671  *
2672  * The process of handling packets will start at WRITE + 1 and advance
2673  * until it reaches the READ index.
2674  *
2675  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2676  *
2677  */
2678 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2679 {
2680         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2681         struct ipw2100_status_queue *sq = &priv->status_queue;
2682         struct ipw2100_rx_packet *packet;
2683         u16 frame_type;
2684         u32 r, w, i, s;
2685         struct ipw2100_rx *u;
2686         struct libipw_rx_stats stats = {
2687                 .mac_time = jiffies,
2688         };
2689
2690         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2691         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2692
2693         if (r >= rxq->entries) {
2694                 IPW_DEBUG_RX("exit - bad read index\n");
2695                 return;
2696         }
2697
2698         i = (rxq->next + 1) % rxq->entries;
2699         s = i;
2700         while (i != r) {
2701                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2702                    r, rxq->next, i); */
2703
2704                 packet = &priv->rx_buffers[i];
2705
2706                 /* Sync the DMA for the RX buffer so CPU is sure to get
2707                  * the correct values */
2708                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2709                                             sizeof(struct ipw2100_rx),
2710                                             PCI_DMA_FROMDEVICE);
2711
2712                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2713                         ipw2100_corruption_detected(priv, i);
2714                         goto increment;
2715                 }
2716
2717                 u = packet->rxp;
2718                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2719                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2720                 stats.len = sq->drv[i].frame_size;
2721
2722                 stats.mask = 0;
2723                 if (stats.rssi != 0)
2724                         stats.mask |= LIBIPW_STATMASK_RSSI;
2725                 stats.freq = LIBIPW_24GHZ_BAND;
2726
2727                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2728                              priv->net_dev->name, frame_types[frame_type],
2729                              stats.len);
2730
2731                 switch (frame_type) {
2732                 case COMMAND_STATUS_VAL:
2733                         /* Reset Rx watchdog */
2734                         isr_rx_complete_command(priv, &u->rx_data.command);
2735                         break;
2736
2737                 case STATUS_CHANGE_VAL:
2738                         isr_status_change(priv, u->rx_data.status);
2739                         break;
2740
2741                 case P80211_DATA_VAL:
2742                 case P8023_DATA_VAL:
2743 #ifdef CONFIG_IPW2100_MONITOR
2744                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2745                                 isr_rx_monitor(priv, i, &stats);
2746                                 break;
2747                         }
2748 #endif
2749                         if (stats.len < sizeof(struct libipw_hdr_3addr))
2750                                 break;
2751                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2752                         case IEEE80211_FTYPE_MGMT:
2753                                 libipw_rx_mgt(priv->ieee,
2754                                                  &u->rx_data.header, &stats);
2755                                 break;
2756
2757                         case IEEE80211_FTYPE_CTL:
2758                                 break;
2759
2760                         case IEEE80211_FTYPE_DATA:
2761                                 isr_rx(priv, i, &stats);
2762                                 break;
2763
2764                         }
2765                         break;
2766                 }
2767
2768               increment:
2769                 /* clear status field associated with this RBD */
2770                 rxq->drv[i].status.info.field = 0;
2771
2772                 i = (i + 1) % rxq->entries;
2773         }
2774
2775         if (i != s) {
2776                 /* backtrack one entry, wrapping to end if at 0 */
2777                 rxq->next = (i ? i : rxq->entries) - 1;
2778
2779                 write_register(priv->net_dev,
2780                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2781         }
2782 }
2783
2784 /*
2785  * __ipw2100_tx_process
2786  *
2787  * This routine will determine whether the next packet on
2788  * the fw_pend_list has been processed by the firmware yet.
2789  *
2790  * If not, then it does nothing and returns.
2791  *
2792  * If so, then it removes the item from the fw_pend_list, frees
2793  * any associated storage, and places the item back on the
2794  * free list of its source (either msg_free_list or tx_free_list)
2795  *
2796  * TX Queue works as follows:
2797  *
2798  * Read index - points to the next TBD that the firmware will
2799  *              process.  The firmware will read the data, and once
2800  *              done processing, it will advance the Read index.
2801  *
2802  * Write index - driver fills this entry with an constructed TBD
2803  *               entry.  The Write index is not advanced until the
2804  *               packet has been configured.
2805  *
2806  * In between the W and R indexes are the TBDs that have NOT been
2807  * processed.  Lagging behind the R index are packets that have
2808  * been processed but have not been freed by the driver.
2809  *
2810  * In order to free old storage, an internal index will be maintained
2811  * that points to the next packet to be freed.  When all used
2812  * packets have been freed, the oldest index will be the same as the
2813  * firmware's read index.
2814  *
2815  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2816  *
2817  * Because the TBD structure can not contain arbitrary data, the
2818  * driver must keep an internal queue of cached allocations such that
2819  * it can put that data back into the tx_free_list and msg_free_list
2820  * for use by future command and data packets.
2821  *
2822  */
2823 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2824 {
2825         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2826         struct ipw2100_bd *tbd;
2827         struct list_head *element;
2828         struct ipw2100_tx_packet *packet;
2829         int descriptors_used;
2830         int e, i;
2831         u32 r, w, frag_num = 0;
2832
2833         if (list_empty(&priv->fw_pend_list))
2834                 return 0;
2835
2836         element = priv->fw_pend_list.next;
2837
2838         packet = list_entry(element, struct ipw2100_tx_packet, list);
2839         tbd = &txq->drv[packet->index];
2840
2841         /* Determine how many TBD entries must be finished... */
2842         switch (packet->type) {
2843         case COMMAND:
2844                 /* COMMAND uses only one slot; don't advance */
2845                 descriptors_used = 1;
2846                 e = txq->oldest;
2847                 break;
2848
2849         case DATA:
2850                 /* DATA uses two slots; advance and loop position. */
2851                 descriptors_used = tbd->num_fragments;
2852                 frag_num = tbd->num_fragments - 1;
2853                 e = txq->oldest + frag_num;
2854                 e %= txq->entries;
2855                 break;
2856
2857         default:
2858                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2859                        priv->net_dev->name);
2860                 return 0;
2861         }
2862
2863         /* if the last TBD is not done by NIC yet, then packet is
2864          * not ready to be released.
2865          *
2866          */
2867         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2868                       &r);
2869         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2870                       &w);
2871         if (w != txq->next)
2872                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2873                        priv->net_dev->name);
2874
2875         /*
2876          * txq->next is the index of the last packet written txq->oldest is
2877          * the index of the r is the index of the next packet to be read by
2878          * firmware
2879          */
2880
2881         /*
2882          * Quick graphic to help you visualize the following
2883          * if / else statement
2884          *
2885          * ===>|                     s---->|===============
2886          *                               e>|
2887          * | a | b | c | d | e | f | g | h | i | j | k | l
2888          *       r---->|
2889          *               w
2890          *
2891          * w - updated by driver
2892          * r - updated by firmware
2893          * s - start of oldest BD entry (txq->oldest)
2894          * e - end of oldest BD entry
2895          *
2896          */
2897         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2898                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2899                 return 0;
2900         }
2901
2902         list_del(element);
2903         DEC_STAT(&priv->fw_pend_stat);
2904
2905 #ifdef CONFIG_IPW2100_DEBUG
2906         {
2907                 i = txq->oldest;
2908                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2909                              &txq->drv[i],
2910                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2911                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2912
2913                 if (packet->type == DATA) {
2914                         i = (i + 1) % txq->entries;
2915
2916                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2917                                      &txq->drv[i],
2918                                      (u32) (txq->nic + i *
2919                                             sizeof(struct ipw2100_bd)),
2920                                      (u32) txq->drv[i].host_addr,
2921                                      txq->drv[i].buf_length);
2922                 }
2923         }
2924 #endif
2925
2926         switch (packet->type) {
2927         case DATA:
2928                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2929                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2930                                "Expecting DATA TBD but pulled "
2931                                "something else: ids %d=%d.\n",
2932                                priv->net_dev->name, txq->oldest, packet->index);
2933
2934                 /* DATA packet; we have to unmap and free the SKB */
2935                 for (i = 0; i < frag_num; i++) {
2936                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2937
2938                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2939                                      (packet->index + 1 + i) % txq->entries,
2940                                      tbd->host_addr, tbd->buf_length);
2941
2942                         pci_unmap_single(priv->pci_dev,
2943                                          tbd->host_addr,
2944                                          tbd->buf_length, PCI_DMA_TODEVICE);
2945                 }
2946
2947                 libipw_txb_free(packet->info.d_struct.txb);
2948                 packet->info.d_struct.txb = NULL;
2949
2950                 list_add_tail(element, &priv->tx_free_list);
2951                 INC_STAT(&priv->tx_free_stat);
2952
2953                 /* We have a free slot in the Tx queue, so wake up the
2954                  * transmit layer if it is stopped. */
2955                 if (priv->status & STATUS_ASSOCIATED)
2956                         netif_wake_queue(priv->net_dev);
2957
2958                 /* A packet was processed by the hardware, so update the
2959                  * watchdog */
2960                 priv->net_dev->trans_start = jiffies;
2961
2962                 break;
2963
2964         case COMMAND:
2965                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2966                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2967                                "Expecting COMMAND TBD but pulled "
2968                                "something else: ids %d=%d.\n",
2969                                priv->net_dev->name, txq->oldest, packet->index);
2970
2971 #ifdef CONFIG_IPW2100_DEBUG
2972                 if (packet->info.c_struct.cmd->host_command_reg <
2973                     ARRAY_SIZE(command_types))
2974                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2975                                      command_types[packet->info.c_struct.cmd->
2976                                                    host_command_reg],
2977                                      packet->info.c_struct.cmd->
2978                                      host_command_reg,
2979                                      packet->info.c_struct.cmd->cmd_status_reg);
2980 #endif
2981
2982                 list_add_tail(element, &priv->msg_free_list);
2983                 INC_STAT(&priv->msg_free_stat);
2984                 break;
2985         }
2986
2987         /* advance oldest used TBD pointer to start of next entry */
2988         txq->oldest = (e + 1) % txq->entries;
2989         /* increase available TBDs number */
2990         txq->available += descriptors_used;
2991         SET_STAT(&priv->txq_stat, txq->available);
2992
2993         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2994                      jiffies - packet->jiffy_start);
2995
2996         return (!list_empty(&priv->fw_pend_list));
2997 }
2998
2999 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3000 {
3001         int i = 0;
3002
3003         while (__ipw2100_tx_process(priv) && i < 200)
3004                 i++;
3005
3006         if (i == 200) {
3007                 printk(KERN_WARNING DRV_NAME ": "
3008                        "%s: Driver is running slow (%d iters).\n",
3009                        priv->net_dev->name, i);
3010         }
3011 }
3012
3013 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3014 {
3015         struct list_head *element;
3016         struct ipw2100_tx_packet *packet;
3017         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3018         struct ipw2100_bd *tbd;
3019         int next = txq->next;
3020
3021         while (!list_empty(&priv->msg_pend_list)) {
3022                 /* if there isn't enough space in TBD queue, then
3023                  * don't stuff a new one in.
3024                  * NOTE: 3 are needed as a command will take one,
3025                  *       and there is a minimum of 2 that must be
3026                  *       maintained between the r and w indexes
3027                  */
3028                 if (txq->available <= 3) {
3029                         IPW_DEBUG_TX("no room in tx_queue\n");
3030                         break;
3031                 }
3032
3033                 element = priv->msg_pend_list.next;
3034                 list_del(element);
3035                 DEC_STAT(&priv->msg_pend_stat);
3036
3037                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3038
3039                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3040                              &txq->drv[txq->next],
3041                              (u32) (txq->nic + txq->next *
3042                                       sizeof(struct ipw2100_bd)));
3043
3044                 packet->index = txq->next;
3045
3046                 tbd = &txq->drv[txq->next];
3047
3048                 /* initialize TBD */
3049                 tbd->host_addr = packet->info.c_struct.cmd_phys;
3050                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3051                 /* not marking number of fragments causes problems
3052                  * with f/w debug version */
3053                 tbd->num_fragments = 1;
3054                 tbd->status.info.field =
3055                     IPW_BD_STATUS_TX_FRAME_COMMAND |
3056                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3057
3058                 /* update TBD queue counters */
3059                 txq->next++;
3060                 txq->next %= txq->entries;
3061                 txq->available--;
3062                 DEC_STAT(&priv->txq_stat);
3063
3064                 list_add_tail(element, &priv->fw_pend_list);
3065                 INC_STAT(&priv->fw_pend_stat);
3066         }
3067
3068         if (txq->next != next) {
3069                 /* kick off the DMA by notifying firmware the
3070                  * write index has moved; make sure TBD stores are sync'd */
3071                 wmb();
3072                 write_register(priv->net_dev,
3073                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3074                                txq->next);
3075         }
3076 }
3077
3078 /*
3079  * ipw2100_tx_send_data
3080  *
3081  */
3082 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3083 {
3084         struct list_head *element;
3085         struct ipw2100_tx_packet *packet;
3086         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3087         struct ipw2100_bd *tbd;
3088         int next = txq->next;
3089         int i = 0;
3090         struct ipw2100_data_header *ipw_hdr;
3091         struct libipw_hdr_3addr *hdr;
3092
3093         while (!list_empty(&priv->tx_pend_list)) {
3094                 /* if there isn't enough space in TBD queue, then
3095                  * don't stuff a new one in.
3096                  * NOTE: 4 are needed as a data will take two,
3097                  *       and there is a minimum of 2 that must be
3098                  *       maintained between the r and w indexes
3099                  */
3100                 element = priv->tx_pend_list.next;
3101                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3102
3103                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3104                              IPW_MAX_BDS)) {
3105                         /* TODO: Support merging buffers if more than
3106                          * IPW_MAX_BDS are used */
3107                         IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3108                                        "Increase fragmentation level.\n",
3109                                        priv->net_dev->name);
3110                 }
3111
3112                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3113                         IPW_DEBUG_TX("no room in tx_queue\n");
3114                         break;
3115                 }
3116
3117                 list_del(element);
3118                 DEC_STAT(&priv->tx_pend_stat);
3119
3120                 tbd = &txq->drv[txq->next];
3121
3122                 packet->index = txq->next;
3123
3124                 ipw_hdr = packet->info.d_struct.data;
3125                 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3126                     fragments[0]->data;
3127
3128                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3129                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3130                            Addr3 = DA */
3131                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3132                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3133                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3134                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3135                            Addr3 = BSSID */
3136                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3137                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3138                 }
3139
3140                 ipw_hdr->host_command_reg = SEND;
3141                 ipw_hdr->host_command_reg1 = 0;
3142
3143                 /* For now we only support host based encryption */
3144                 ipw_hdr->needs_encryption = 0;
3145                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3146                 if (packet->info.d_struct.txb->nr_frags > 1)
3147                         ipw_hdr->fragment_size =
3148                             packet->info.d_struct.txb->frag_size -
3149                             LIBIPW_3ADDR_LEN;
3150                 else
3151                         ipw_hdr->fragment_size = 0;
3152
3153                 tbd->host_addr = packet->info.d_struct.data_phys;
3154                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3155                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3156                 tbd->status.info.field =
3157                     IPW_BD_STATUS_TX_FRAME_802_3 |
3158                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3159                 txq->next++;
3160                 txq->next %= txq->entries;
3161
3162                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3163                              packet->index, tbd->host_addr, tbd->buf_length);
3164 #ifdef CONFIG_IPW2100_DEBUG
3165                 if (packet->info.d_struct.txb->nr_frags > 1)
3166                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3167                                        packet->info.d_struct.txb->nr_frags);
3168 #endif
3169
3170                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3171                         tbd = &txq->drv[txq->next];
3172                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3173                                 tbd->status.info.field =
3174                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3175                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3176                         else
3177                                 tbd->status.info.field =
3178                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3179                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3180
3181                         tbd->buf_length = packet->info.d_struct.txb->
3182                             fragments[i]->len - LIBIPW_3ADDR_LEN;
3183
3184                         tbd->host_addr = pci_map_single(priv->pci_dev,
3185                                                         packet->info.d_struct.
3186                                                         txb->fragments[i]->
3187                                                         data +
3188                                                         LIBIPW_3ADDR_LEN,
3189                                                         tbd->buf_length,
3190                                                         PCI_DMA_TODEVICE);
3191
3192                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3193                                      txq->next, tbd->host_addr,
3194                                      tbd->buf_length);
3195
3196                         pci_dma_sync_single_for_device(priv->pci_dev,
3197                                                        tbd->host_addr,
3198                                                        tbd->buf_length,
3199                                                        PCI_DMA_TODEVICE);
3200
3201                         txq->next++;
3202                         txq->next %= txq->entries;
3203                 }
3204
3205                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3206                 SET_STAT(&priv->txq_stat, txq->available);
3207
3208                 list_add_tail(element, &priv->fw_pend_list);
3209                 INC_STAT(&priv->fw_pend_stat);
3210         }
3211
3212         if (txq->next != next) {
3213                 /* kick off the DMA by notifying firmware the
3214                  * write index has moved; make sure TBD stores are sync'd */
3215                 write_register(priv->net_dev,
3216                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3217                                txq->next);
3218         }
3219 }
3220
3221 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3222 {
3223         struct net_device *dev = priv->net_dev;
3224         unsigned long flags;
3225         u32 inta, tmp;
3226
3227         spin_lock_irqsave(&priv->low_lock, flags);
3228         ipw2100_disable_interrupts(priv);
3229
3230         read_register(dev, IPW_REG_INTA, &inta);
3231
3232         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3233                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3234
3235         priv->in_isr++;
3236         priv->interrupts++;
3237
3238         /* We do not loop and keep polling for more interrupts as this
3239          * is frowned upon and doesn't play nicely with other potentially
3240          * chained IRQs */
3241         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3242                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3243
3244         if (inta & IPW2100_INTA_FATAL_ERROR) {
3245                 printk(KERN_WARNING DRV_NAME
3246                        ": Fatal interrupt. Scheduling firmware restart.\n");
3247                 priv->inta_other++;
3248                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3249
3250                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3251                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3252                                priv->net_dev->name, priv->fatal_error);
3253
3254                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3255                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3256                                priv->net_dev->name, tmp);
3257
3258                 /* Wake up any sleeping jobs */
3259                 schedule_reset(priv);
3260         }
3261
3262         if (inta & IPW2100_INTA_PARITY_ERROR) {
3263                 printk(KERN_ERR DRV_NAME
3264                        ": ***** PARITY ERROR INTERRUPT !!!!\n");
3265                 priv->inta_other++;
3266                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3267         }
3268
3269         if (inta & IPW2100_INTA_RX_TRANSFER) {
3270                 IPW_DEBUG_ISR("RX interrupt\n");
3271
3272                 priv->rx_interrupts++;
3273
3274                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3275
3276                 __ipw2100_rx_process(priv);
3277                 __ipw2100_tx_complete(priv);
3278         }
3279
3280         if (inta & IPW2100_INTA_TX_TRANSFER) {
3281                 IPW_DEBUG_ISR("TX interrupt\n");
3282
3283                 priv->tx_interrupts++;
3284
3285                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3286
3287                 __ipw2100_tx_complete(priv);
3288                 ipw2100_tx_send_commands(priv);
3289                 ipw2100_tx_send_data(priv);
3290         }
3291
3292         if (inta & IPW2100_INTA_TX_COMPLETE) {
3293                 IPW_DEBUG_ISR("TX complete\n");
3294                 priv->inta_other++;
3295                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3296
3297                 __ipw2100_tx_complete(priv);
3298         }
3299
3300         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3301                 /* ipw2100_handle_event(dev); */
3302                 priv->inta_other++;
3303                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3304         }
3305
3306         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3307                 IPW_DEBUG_ISR("FW init done interrupt\n");
3308                 priv->inta_other++;
3309
3310                 read_register(dev, IPW_REG_INTA, &tmp);
3311                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3312                            IPW2100_INTA_PARITY_ERROR)) {
3313                         write_register(dev, IPW_REG_INTA,
3314                                        IPW2100_INTA_FATAL_ERROR |
3315                                        IPW2100_INTA_PARITY_ERROR);
3316                 }
3317
3318                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3319         }
3320
3321         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3322                 IPW_DEBUG_ISR("Status change interrupt\n");
3323                 priv->inta_other++;
3324                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3325         }
3326
3327         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3328                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3329                 priv->inta_other++;
3330                 write_register(dev, IPW_REG_INTA,
3331                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3332         }
3333
3334         priv->in_isr--;
3335         ipw2100_enable_interrupts(priv);
3336
3337         spin_unlock_irqrestore(&priv->low_lock, flags);
3338
3339         IPW_DEBUG_ISR("exit\n");
3340 }
3341
3342 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3343 {
3344         struct ipw2100_priv *priv = data;
3345         u32 inta, inta_mask;
3346
3347         if (!data)
3348                 return IRQ_NONE;
3349
3350         spin_lock(&priv->low_lock);
3351
3352         /* We check to see if we should be ignoring interrupts before
3353          * we touch the hardware.  During ucode load if we try and handle
3354          * an interrupt we can cause keyboard problems as well as cause
3355          * the ucode to fail to initialize */
3356         if (!(priv->status & STATUS_INT_ENABLED)) {
3357                 /* Shared IRQ */
3358                 goto none;
3359         }
3360
3361         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3362         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3363
3364         if (inta == 0xFFFFFFFF) {
3365                 /* Hardware disappeared */
3366                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3367                 goto none;
3368         }
3369
3370         inta &= IPW_INTERRUPT_MASK;
3371
3372         if (!(inta & inta_mask)) {
3373                 /* Shared interrupt */
3374                 goto none;
3375         }
3376
3377         /* We disable the hardware interrupt here just to prevent unneeded
3378          * calls to be made.  We disable this again within the actual
3379          * work tasklet, so if another part of the code re-enables the
3380          * interrupt, that is fine */
3381         ipw2100_disable_interrupts(priv);
3382
3383         tasklet_schedule(&priv->irq_tasklet);
3384         spin_unlock(&priv->low_lock);
3385
3386         return IRQ_HANDLED;
3387       none:
3388         spin_unlock(&priv->low_lock);
3389         return IRQ_NONE;
3390 }
3391
3392 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3393                               struct net_device *dev, int pri)
3394 {
3395         struct ipw2100_priv *priv = libipw_priv(dev);
3396         struct list_head *element;
3397         struct ipw2100_tx_packet *packet;
3398         unsigned long flags;
3399
3400         spin_lock_irqsave(&priv->low_lock, flags);
3401
3402         if (!(priv->status & STATUS_ASSOCIATED)) {
3403                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3404                 priv->net_dev->stats.tx_carrier_errors++;
3405                 netif_stop_queue(dev);
3406                 goto fail_unlock;
3407         }
3408
3409         if (list_empty(&priv->tx_free_list))
3410                 goto fail_unlock;
3411
3412         element = priv->tx_free_list.next;
3413         packet = list_entry(element, struct ipw2100_tx_packet, list);
3414
3415         packet->info.d_struct.txb = txb;
3416
3417         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3418         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3419
3420         packet->jiffy_start = jiffies;
3421
3422         list_del(element);
3423         DEC_STAT(&priv->tx_free_stat);
3424
3425         list_add_tail(element, &priv->tx_pend_list);
3426         INC_STAT(&priv->tx_pend_stat);
3427
3428         ipw2100_tx_send_data(priv);
3429
3430         spin_unlock_irqrestore(&priv->low_lock, flags);
3431         return NETDEV_TX_OK;
3432
3433 fail_unlock:
3434         netif_stop_queue(dev);
3435         spin_unlock_irqrestore(&priv->low_lock, flags);
3436         return NETDEV_TX_BUSY;
3437 }
3438
3439 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3440 {
3441         int i, j, err = -EINVAL;
3442         void *v;
3443         dma_addr_t p;
3444
3445         priv->msg_buffers =
3446             kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3447                     GFP_KERNEL);
3448         if (!priv->msg_buffers)
3449                 return -ENOMEM;
3450
3451         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3452                 v = pci_alloc_consistent(priv->pci_dev,
3453                                          sizeof(struct ipw2100_cmd_header), &p);
3454                 if (!v) {
3455                         printk(KERN_ERR DRV_NAME ": "
3456                                "%s: PCI alloc failed for msg "
3457                                "buffers.\n", priv->net_dev->name);
3458                         err = -ENOMEM;
3459                         break;
3460                 }
3461
3462                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3463
3464                 priv->msg_buffers[i].type = COMMAND;
3465                 priv->msg_buffers[i].info.c_struct.cmd =
3466                     (struct ipw2100_cmd_header *)v;
3467                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3468         }
3469
3470         if (i == IPW_COMMAND_POOL_SIZE)
3471                 return 0;
3472
3473         for (j = 0; j < i; j++) {
3474                 pci_free_consistent(priv->pci_dev,
3475                                     sizeof(struct ipw2100_cmd_header),
3476                                     priv->msg_buffers[j].info.c_struct.cmd,
3477                                     priv->msg_buffers[j].info.c_struct.
3478                                     cmd_phys);
3479         }
3480
3481         kfree(priv->msg_buffers);
3482         priv->msg_buffers = NULL;
3483
3484         return err;
3485 }
3486
3487 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3488 {
3489         int i;
3490
3491         INIT_LIST_HEAD(&priv->msg_free_list);
3492         INIT_LIST_HEAD(&priv->msg_pend_list);
3493
3494         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3495                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3496         SET_STAT(&priv->msg_free_stat, i);
3497
3498         return 0;
3499 }
3500
3501 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3502 {
3503         int i;
3504
3505         if (!priv->msg_buffers)
3506                 return;
3507
3508         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3509                 pci_free_consistent(priv->pci_dev,
3510                                     sizeof(struct ipw2100_cmd_header),
3511                                     priv->msg_buffers[i].info.c_struct.cmd,
3512                                     priv->msg_buffers[i].info.c_struct.
3513                                     cmd_phys);
3514         }
3515
3516         kfree(priv->msg_buffers);
3517         priv->msg_buffers = NULL;
3518 }
3519
3520 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3521                         char *buf)
3522 {
3523         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3524         char *out = buf;
3525         int i, j;
3526         u32 val;
3527
3528         for (i = 0; i < 16; i++) {
3529                 out += sprintf(out, "[%08X] ", i * 16);
3530                 for (j = 0; j < 16; j += 4) {
3531                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3532                         out += sprintf(out, "%08X ", val);
3533                 }
3534                 out += sprintf(out, "\n");
3535         }
3536
3537         return out - buf;
3538 }
3539
3540 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3541
3542 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3543                         char *buf)
3544 {
3545         struct ipw2100_priv *p = dev_get_drvdata(d);
3546         return sprintf(buf, "0x%08x\n", (int)p->config);
3547 }
3548
3549 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3550
3551 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3552                            char *buf)
3553 {
3554         struct ipw2100_priv *p = dev_get_drvdata(d);
3555         return sprintf(buf, "0x%08x\n", (int)p->status);
3556 }
3557
3558 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3559
3560 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3561                                char *buf)
3562 {
3563         struct ipw2100_priv *p = dev_get_drvdata(d);
3564         return sprintf(buf, "0x%08x\n", (int)p->capability);
3565 }
3566
3567 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3568
3569 #define IPW2100_REG(x) { IPW_ ##x, #x }
3570 static const struct {
3571         u32 addr;
3572         const char *name;
3573 } hw_data[] = {
3574 IPW2100_REG(REG_GP_CNTRL),
3575             IPW2100_REG(REG_GPIO),
3576             IPW2100_REG(REG_INTA),
3577             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3578 #define IPW2100_NIC(x, s) { x, #x, s }
3579 static const struct {
3580         u32 addr;
3581         const char *name;
3582         size_t size;
3583 } nic_data[] = {
3584 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3585             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3586 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3587 static const struct {
3588         u8 index;
3589         const char *name;
3590         const char *desc;
3591 } ord_data[] = {
3592 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3593             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3594                                 "successful Host Tx's (MSDU)"),
3595             IPW2100_ORD(STAT_TX_DIR_DATA,
3596                                 "successful Directed Tx's (MSDU)"),
3597             IPW2100_ORD(STAT_TX_DIR_DATA1,
3598                                 "successful Directed Tx's (MSDU) @ 1MB"),
3599             IPW2100_ORD(STAT_TX_DIR_DATA2,
3600                                 "successful Directed Tx's (MSDU) @ 2MB"),
3601             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3602                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3603             IPW2100_ORD(STAT_TX_DIR_DATA11,
3604                                 "successful Directed Tx's (MSDU) @ 11MB"),
3605             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3606                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3607             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3608                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3609             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3610                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3611             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3612                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3613             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3614             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3615             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3616             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3617             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3618             IPW2100_ORD(STAT_TX_ASSN_RESP,
3619                                 "successful Association response Tx's"),
3620             IPW2100_ORD(STAT_TX_REASSN,
3621                                 "successful Reassociation Tx's"),
3622             IPW2100_ORD(STAT_TX_REASSN_RESP,
3623                                 "successful Reassociation response Tx's"),
3624             IPW2100_ORD(STAT_TX_PROBE,
3625                                 "probes successfully transmitted"),
3626             IPW2100_ORD(STAT_TX_PROBE_RESP,
3627                                 "probe responses successfully transmitted"),
3628             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3629             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3630             IPW2100_ORD(STAT_TX_DISASSN,
3631                                 "successful Disassociation TX"),
3632             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3633             IPW2100_ORD(STAT_TX_DEAUTH,
3634                                 "successful Deauthentication TX"),
3635             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3636                                 "Total successful Tx data bytes"),
3637             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3638             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3639             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3640             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3641             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3642             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3643             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3644                                 "times max tries in a hop failed"),
3645             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3646                                 "times disassociation failed"),
3647             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3648             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3649             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3650             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3651             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3652             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3653             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3654                                 "directed packets at 5.5MB"),
3655             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3656             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3657             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3658                                 "nondirected packets at 1MB"),
3659             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3660                                 "nondirected packets at 2MB"),
3661             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3662                                 "nondirected packets at 5.5MB"),
3663             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3664                                 "nondirected packets at 11MB"),
3665             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3666             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3667                                                                     "Rx CTS"),
3668             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3669             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3670             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3671             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3672             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3673             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3674             IPW2100_ORD(STAT_RX_REASSN_RESP,
3675                                 "Reassociation response Rx's"),
3676             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3677             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3678             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3679             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3680             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3681             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3682             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3683             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3684                                 "Total rx data bytes received"),
3685             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3686             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3687             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3688             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3689             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3690             IPW2100_ORD(STAT_RX_DUPLICATE1,
3691                                 "duplicate rx packets at 1MB"),
3692             IPW2100_ORD(STAT_RX_DUPLICATE2,
3693                                 "duplicate rx packets at 2MB"),
3694             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3695                                 "duplicate rx packets at 5.5MB"),
3696             IPW2100_ORD(STAT_RX_DUPLICATE11,
3697                                 "duplicate rx packets at 11MB"),
3698             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3699             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3700             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3701             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3702             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3703                                 "rx frames with invalid protocol"),
3704             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3705             IPW2100_ORD(STAT_RX_NO_BUFFER,
3706                                 "rx frames rejected due to no buffer"),
3707             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3708                                 "rx frames dropped due to missing fragment"),
3709             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3710                                 "rx frames dropped due to non-sequential fragment"),
3711             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3712                                 "rx frames dropped due to unmatched 1st frame"),
3713             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3714                                 "rx frames dropped due to uncompleted frame"),
3715             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3716                                 "ICV errors during decryption"),
3717             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3718             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3719             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3720                                 "poll response timeouts"),
3721             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3722                                 "timeouts waiting for last {broad,multi}cast pkt"),
3723             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3724             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3725             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3726             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3727             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3728                                 "current calculation of % missed beacons"),
3729             IPW2100_ORD(STAT_PERCENT_RETRIES,
3730                                 "current calculation of % missed tx retries"),
3731             IPW2100_ORD(ASSOCIATED_AP_PTR,
3732                                 "0 if not associated, else pointer to AP table entry"),
3733             IPW2100_ORD(AVAILABLE_AP_CNT,
3734                                 "AP's decsribed in the AP table"),
3735             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3736             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3737             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3738             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3739                                 "failures due to response fail"),
3740             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3741             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3742             IPW2100_ORD(STAT_ROAM_INHIBIT,
3743                                 "times roaming was inhibited due to activity"),
3744             IPW2100_ORD(RSSI_AT_ASSN,
3745                                 "RSSI of associated AP at time of association"),
3746             IPW2100_ORD(STAT_ASSN_CAUSE1,
3747                                 "reassociation: no probe response or TX on hop"),
3748             IPW2100_ORD(STAT_ASSN_CAUSE2,
3749                                 "reassociation: poor tx/rx quality"),
3750             IPW2100_ORD(STAT_ASSN_CAUSE3,
3751                                 "reassociation: tx/rx quality (excessive AP load"),
3752             IPW2100_ORD(STAT_ASSN_CAUSE4,
3753                                 "reassociation: AP RSSI level"),
3754             IPW2100_ORD(STAT_ASSN_CAUSE5,
3755                                 "reassociations due to load leveling"),
3756             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3757             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3758                                 "times authentication response failed"),
3759             IPW2100_ORD(STATION_TABLE_CNT,
3760                                 "entries in association table"),
3761             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3762             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3763             IPW2100_ORD(COUNTRY_CODE,
3764                                 "IEEE country code as recv'd from beacon"),
3765             IPW2100_ORD(COUNTRY_CHANNELS,
3766                                 "channels supported by country"),
3767             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3768             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3769             IPW2100_ORD(ANTENNA_DIVERSITY,
3770                                 "TRUE if antenna diversity is disabled"),
3771             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3772             IPW2100_ORD(OUR_FREQ,
3773                                 "current radio freq lower digits - channel ID"),
3774             IPW2100_ORD(RTC_TIME, "current RTC time"),
3775             IPW2100_ORD(PORT_TYPE, "operating mode"),
3776             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3777             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3778             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3779             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3780             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3781             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3782             IPW2100_ORD(CAPABILITIES,
3783                                 "Management frame capability field"),
3784             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3785             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3786             IPW2100_ORD(RTS_THRESHOLD,
3787                                 "Min packet length for RTS handshaking"),
3788             IPW2100_ORD(INT_MODE, "International mode"),
3789             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3790                                 "protocol frag threshold"),
3791             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3792                                 "EEPROM offset in SRAM"),
3793             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3794                                 "EEPROM size in SRAM"),
3795             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3796             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3797                                 "EEPROM IBSS 11b channel set"),
3798             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3799             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3800             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3801             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3802             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3803
3804 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3805                               char *buf)
3806 {
3807         int i;
3808         struct ipw2100_priv *priv = dev_get_drvdata(d);
3809         struct net_device *dev = priv->net_dev;
3810         char *out = buf;
3811         u32 val = 0;
3812
3813         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3814
3815         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3816                 read_register(dev, hw_data[i].addr, &val);
3817                 out += sprintf(out, "%30s [%08X] : %08X\n",
3818                                hw_data[i].name, hw_data[i].addr, val);
3819         }
3820
3821         return out - buf;
3822 }
3823
3824 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3825
3826 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3827                              char *buf)
3828 {
3829         struct ipw2100_priv *priv = dev_get_drvdata(d);
3830         struct net_device *dev = priv->net_dev;
3831         char *out = buf;
3832         int i;
3833
3834         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3835
3836         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3837                 u8 tmp8;
3838                 u16 tmp16;
3839                 u32 tmp32;
3840
3841                 switch (nic_data[i].size) {
3842                 case 1:
3843                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3844                         out += sprintf(out, "%30s [%08X] : %02X\n",
3845                                        nic_data[i].name, nic_data[i].addr,
3846                                        tmp8);
3847                         break;
3848                 case 2:
3849                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3850                         out += sprintf(out, "%30s [%08X] : %04X\n",
3851                                        nic_data[i].name, nic_data[i].addr,
3852                                        tmp16);
3853                         break;
3854                 case 4:
3855                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3856                         out += sprintf(out, "%30s [%08X] : %08X\n",
3857                                        nic_data[i].name, nic_data[i].addr,
3858                                        tmp32);
3859                         break;
3860                 }
3861         }
3862         return out - buf;
3863 }
3864
3865 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3866
3867 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3868                            char *buf)
3869 {
3870         struct ipw2100_priv *priv = dev_get_drvdata(d);
3871         struct net_device *dev = priv->net_dev;
3872         static unsigned long loop = 0;
3873         int len = 0;
3874         u32 buffer[4];
3875         int i;
3876         char line[81];
3877
3878         if (loop >= 0x30000)
3879                 loop = 0;
3880
3881         /* sysfs provides us PAGE_SIZE buffer */
3882         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3883
3884                 if (priv->snapshot[0])
3885                         for (i = 0; i < 4; i++)
3886                                 buffer[i] =
3887                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3888                 else
3889                         for (i = 0; i < 4; i++)
3890                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3891
3892                 if (priv->dump_raw)
3893                         len += sprintf(buf + len,
3894                                        "%c%c%c%c"
3895                                        "%c%c%c%c"
3896                                        "%c%c%c%c"
3897                                        "%c%c%c%c",
3898                                        ((u8 *) buffer)[0x0],
3899                                        ((u8 *) buffer)[0x1],
3900                                        ((u8 *) buffer)[0x2],
3901                                        ((u8 *) buffer)[0x3],
3902                                        ((u8 *) buffer)[0x4],
3903                                        ((u8 *) buffer)[0x5],
3904                                        ((u8 *) buffer)[0x6],
3905                                        ((u8 *) buffer)[0x7],
3906                                        ((u8 *) buffer)[0x8],
3907                                        ((u8 *) buffer)[0x9],
3908                                        ((u8 *) buffer)[0xa],
3909                                        ((u8 *) buffer)[0xb],
3910                                        ((u8 *) buffer)[0xc],
3911                                        ((u8 *) buffer)[0xd],
3912                                        ((u8 *) buffer)[0xe],
3913                                        ((u8 *) buffer)[0xf]);
3914                 else
3915                         len += sprintf(buf + len, "%s\n",
3916                                        snprint_line(line, sizeof(line),
3917                                                     (u8 *) buffer, 16, loop));
3918                 loop += 16;
3919         }
3920
3921         return len;
3922 }
3923
3924 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3925                             const char *buf, size_t count)
3926 {
3927         struct ipw2100_priv *priv = dev_get_drvdata(d);
3928         struct net_device *dev = priv->net_dev;
3929         const char *p = buf;
3930
3931         (void)dev;              /* kill unused-var warning for debug-only code */
3932
3933         if (count < 1)
3934                 return count;
3935
3936         if (p[0] == '1' ||
3937             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3938                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3939                                dev->name);
3940                 priv->dump_raw = 1;
3941
3942         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3943                                    tolower(p[1]) == 'f')) {
3944                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3945                                dev->name);
3946                 priv->dump_raw = 0;
3947
3948         } else if (tolower(p[0]) == 'r') {
3949                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3950                 ipw2100_snapshot_free(priv);
3951
3952         } else
3953                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3954                                "reset = clear memory snapshot\n", dev->name);
3955
3956         return count;
3957 }
3958
3959 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3960
3961 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3962                              char *buf)
3963 {
3964         struct ipw2100_priv *priv = dev_get_drvdata(d);
3965         u32 val = 0;
3966         int len = 0;
3967         u32 val_len;
3968         static int loop = 0;
3969
3970         if (priv->status & STATUS_RF_KILL_MASK)
3971                 return 0;
3972
3973         if (loop >= ARRAY_SIZE(ord_data))
3974                 loop = 0;
3975
3976         /* sysfs provides us PAGE_SIZE buffer */
3977         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3978                 val_len = sizeof(u32);
3979
3980                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3981                                         &val_len))
3982                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3983                                        ord_data[loop].index,
3984                                        ord_data[loop].desc);
3985                 else
3986                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3987                                        ord_data[loop].index, val,
3988                                        ord_data[loop].desc);
3989                 loop++;
3990         }
3991
3992         return len;
3993 }
3994
3995 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3996
3997 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3998                           char *buf)
3999 {
4000         struct ipw2100_priv *priv = dev_get_drvdata(d);
4001         char *out = buf;
4002
4003         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4004                        priv->interrupts, priv->tx_interrupts,
4005                        priv->rx_interrupts, priv->inta_other);
4006         out += sprintf(out, "firmware resets: %d\n", priv->resets);
4007         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4008 #ifdef CONFIG_IPW2100_DEBUG
4009         out += sprintf(out, "packet mismatch image: %s\n",
4010                        priv->snapshot[0] ? "YES" : "NO");
4011 #endif
4012
4013         return out - buf;
4014 }
4015
4016 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4017
4018 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4019 {
4020         int err;
4021
4022         if (mode == priv->ieee->iw_mode)
4023                 return 0;
4024
4025         err = ipw2100_disable_adapter(priv);
4026         if (err) {
4027                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4028                        priv->net_dev->name, err);
4029                 return err;
4030         }
4031
4032         switch (mode) {
4033         case IW_MODE_INFRA:
4034                 priv->net_dev->type = ARPHRD_ETHER;
4035                 break;
4036         case IW_MODE_ADHOC:
4037                 priv->net_dev->type = ARPHRD_ETHER;
4038                 break;
4039 #ifdef CONFIG_IPW2100_MONITOR
4040         case IW_MODE_MONITOR:
4041                 priv->last_mode = priv->ieee->iw_mode;
4042                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4043                 break;
4044 #endif                          /* CONFIG_IPW2100_MONITOR */
4045         }
4046
4047         priv->ieee->iw_mode = mode;
4048
4049 #ifdef CONFIG_PM
4050         /* Indicate ipw2100_download_firmware download firmware
4051          * from disk instead of memory. */
4052         ipw2100_firmware.version = 0;
4053 #endif
4054
4055         printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4056         priv->reset_backoff = 0;
4057         schedule_reset(priv);
4058
4059         return 0;
4060 }
4061
4062 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4063                               char *buf)
4064 {
4065         struct ipw2100_priv *priv = dev_get_drvdata(d);
4066         int len = 0;
4067
4068 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4069
4070         if (priv->status & STATUS_ASSOCIATED)
4071                 len += sprintf(buf + len, "connected: %lu\n",
4072                                get_seconds() - priv->connect_start);
4073         else
4074                 len += sprintf(buf + len, "not connected\n");
4075
4076         DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4077         DUMP_VAR(status, "08lx");
4078         DUMP_VAR(config, "08lx");
4079         DUMP_VAR(capability, "08lx");
4080
4081         len +=
4082             sprintf(buf + len, "last_rtc: %lu\n",
4083                     (unsigned long)priv->last_rtc);
4084
4085         DUMP_VAR(fatal_error, "d");
4086         DUMP_VAR(stop_hang_check, "d");
4087         DUMP_VAR(stop_rf_kill, "d");
4088         DUMP_VAR(messages_sent, "d");
4089
4090         DUMP_VAR(tx_pend_stat.value, "d");
4091         DUMP_VAR(tx_pend_stat.hi, "d");
4092
4093         DUMP_VAR(tx_free_stat.value, "d");
4094         DUMP_VAR(tx_free_stat.lo, "d");
4095
4096         DUMP_VAR(msg_free_stat.value, "d");
4097         DUMP_VAR(msg_free_stat.lo, "d");
4098
4099         DUMP_VAR(msg_pend_stat.value, "d");
4100         DUMP_VAR(msg_pend_stat.hi, "d");
4101
4102         DUMP_VAR(fw_pend_stat.value, "d");
4103         DUMP_VAR(fw_pend_stat.hi, "d");
4104
4105         DUMP_VAR(txq_stat.value, "d");
4106         DUMP_VAR(txq_stat.lo, "d");
4107
4108         DUMP_VAR(ieee->scans, "d");
4109         DUMP_VAR(reset_backoff, "d");
4110
4111         return len;
4112 }
4113
4114 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4115
4116 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4117                             char *buf)
4118 {
4119         struct ipw2100_priv *priv = dev_get_drvdata(d);
4120         char essid[IW_ESSID_MAX_SIZE + 1];
4121         u8 bssid[ETH_ALEN];
4122         u32 chan = 0;
4123         char *out = buf;
4124         unsigned int length;
4125         int ret;
4126
4127         if (priv->status & STATUS_RF_KILL_MASK)
4128                 return 0;
4129
4130         memset(essid, 0, sizeof(essid));
4131         memset(bssid, 0, sizeof(bssid));
4132
4133         length = IW_ESSID_MAX_SIZE;
4134         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4135         if (ret)
4136                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4137                                __LINE__);
4138
4139         length = sizeof(bssid);
4140         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4141                                   bssid, &length);
4142         if (ret)
4143                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4144                                __LINE__);
4145
4146         length = sizeof(u32);
4147         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4148         if (ret)
4149                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4150                                __LINE__);
4151
4152         out += sprintf(out, "ESSID: %s\n", essid);
4153         out += sprintf(out, "BSSID:   %pM\n", bssid);
4154         out += sprintf(out, "Channel: %d\n", chan);
4155
4156         return out - buf;
4157 }
4158
4159 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4160
4161 #ifdef CONFIG_IPW2100_DEBUG
4162 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4163 {
4164         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4165 }
4166
4167 static ssize_t store_debug_level(struct device_driver *d,
4168                                  const char *buf, size_t count)
4169 {
4170         char *p = (char *)buf;
4171         u32 val;
4172
4173         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4174                 p++;
4175                 if (p[0] == 'x' || p[0] == 'X')
4176                         p++;
4177                 val = simple_strtoul(p, &p, 16);
4178         } else
4179                 val = simple_strtoul(p, &p, 10);
4180         if (p == buf)
4181                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4182         else
4183                 ipw2100_debug_level = val;
4184
4185         return strnlen(buf, count);
4186 }
4187
4188 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4189                    store_debug_level);
4190 #endif                          /* CONFIG_IPW2100_DEBUG */
4191
4192 static ssize_t show_fatal_error(struct device *d,
4193                                 struct device_attribute *attr, char *buf)
4194 {
4195         struct ipw2100_priv *priv = dev_get_drvdata(d);
4196         char *out = buf;
4197         int i;
4198
4199         if (priv->fatal_error)
4200                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4201         else
4202                 out += sprintf(out, "0\n");
4203
4204         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4205                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4206                                         IPW2100_ERROR_QUEUE])
4207                         continue;
4208
4209                 out += sprintf(out, "%d. 0x%08X\n", i,
4210                                priv->fatal_errors[(priv->fatal_index - i) %
4211                                                   IPW2100_ERROR_QUEUE]);
4212         }
4213
4214         return out - buf;
4215 }
4216
4217 static ssize_t store_fatal_error(struct device *d,
4218                                  struct device_attribute *attr, const char *buf,
4219                                  size_t count)
4220 {
4221         struct ipw2100_priv *priv = dev_get_drvdata(d);
4222         schedule_reset(priv);
4223         return count;
4224 }
4225
4226 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4227                    store_fatal_error);
4228
4229 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4230                              char *buf)
4231 {
4232         struct ipw2100_priv *priv = dev_get_drvdata(d);
4233         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4234 }
4235
4236 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4237                               const char *buf, size_t count)
4238 {
4239         struct ipw2100_priv *priv = dev_get_drvdata(d);
4240         struct net_device *dev = priv->net_dev;
4241         char buffer[] = "00000000";
4242         unsigned long len =
4243             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4244         unsigned long val;
4245         char *p = buffer;
4246
4247         (void)dev;              /* kill unused-var warning for debug-only code */
4248
4249         IPW_DEBUG_INFO("enter\n");
4250
4251         strncpy(buffer, buf, len);
4252         buffer[len] = 0;
4253
4254         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4255                 p++;
4256                 if (p[0] == 'x' || p[0] == 'X')
4257                         p++;
4258                 val = simple_strtoul(p, &p, 16);
4259         } else
4260                 val = simple_strtoul(p, &p, 10);
4261         if (p == buffer) {
4262                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4263         } else {
4264                 priv->ieee->scan_age = val;
4265                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4266         }
4267
4268         IPW_DEBUG_INFO("exit\n");
4269         return len;
4270 }
4271
4272 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4273
4274 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4275                             char *buf)
4276 {
4277         /* 0 - RF kill not enabled
4278            1 - SW based RF kill active (sysfs)
4279            2 - HW based RF kill active
4280            3 - Both HW and SW baed RF kill active */
4281         struct ipw2100_priv *priv = dev_get_drvdata(d);
4282         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4283             (rf_kill_active(priv) ? 0x2 : 0x0);
4284         return sprintf(buf, "%i\n", val);
4285 }
4286
4287 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4288 {
4289         if ((disable_radio ? 1 : 0) ==
4290             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4291                 return 0;
4292
4293         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4294                           disable_radio ? "OFF" : "ON");
4295
4296         mutex_lock(&priv->action_mutex);
4297
4298         if (disable_radio) {
4299                 priv->status |= STATUS_RF_KILL_SW;
4300                 ipw2100_down(priv);
4301         } else {
4302                 priv->status &= ~STATUS_RF_KILL_SW;
4303                 if (rf_kill_active(priv)) {
4304                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4305                                           "disabled by HW switch\n");
4306                         /* Make sure the RF_KILL check timer is running */
4307                         priv->stop_rf_kill = 0;
4308                         mod_delayed_work(system_wq, &priv->rf_kill,
4309                                          round_jiffies_relative(HZ));
4310                 } else
4311                         schedule_reset(priv);
4312         }
4313
4314         mutex_unlock(&priv->action_mutex);
4315         return 1;
4316 }
4317
4318 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4319                              const char *buf, size_t count)
4320 {
4321         struct ipw2100_priv *priv = dev_get_drvdata(d);
4322         ipw_radio_kill_sw(priv, buf[0] == '1');
4323         return count;
4324 }
4325
4326 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4327
4328 static struct attribute *ipw2100_sysfs_entries[] = {
4329         &dev_attr_hardware.attr,
4330         &dev_attr_registers.attr,
4331         &dev_attr_ordinals.attr,
4332         &dev_attr_pci.attr,
4333         &dev_attr_stats.attr,
4334         &dev_attr_internals.attr,
4335         &dev_attr_bssinfo.attr,
4336         &dev_attr_memory.attr,
4337         &dev_attr_scan_age.attr,
4338         &dev_attr_fatal_error.attr,
4339         &dev_attr_rf_kill.attr,
4340         &dev_attr_cfg.attr,
4341         &dev_attr_status.attr,
4342         &dev_attr_capability.attr,
4343         NULL,
4344 };
4345
4346 static struct attribute_group ipw2100_attribute_group = {
4347         .attrs = ipw2100_sysfs_entries,
4348 };
4349
4350 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4351 {
4352         struct ipw2100_status_queue *q = &priv->status_queue;
4353
4354         IPW_DEBUG_INFO("enter\n");
4355
4356         q->size = entries * sizeof(struct ipw2100_status);
4357         q->drv =
4358             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4359                                                           q->size, &q->nic);
4360         if (!q->drv) {
4361                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4362                 return -ENOMEM;
4363         }
4364
4365         memset(q->drv, 0, q->size);
4366
4367         IPW_DEBUG_INFO("exit\n");
4368
4369         return 0;
4370 }
4371
4372 static void status_queue_free(struct ipw2100_priv *priv)
4373 {
4374         IPW_DEBUG_INFO("enter\n");
4375
4376         if (priv->status_queue.drv) {
4377                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4378                                     priv->status_queue.drv,
4379                                     priv->status_queue.nic);
4380                 priv->status_queue.drv = NULL;
4381         }
4382
4383         IPW_DEBUG_INFO("exit\n");
4384 }
4385
4386 static int bd_queue_allocate(struct ipw2100_priv *priv,
4387                              struct ipw2100_bd_queue *q, int entries)
4388 {
4389         IPW_DEBUG_INFO("enter\n");
4390
4391         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4392
4393         q->entries = entries;
4394         q->size = entries * sizeof(struct ipw2100_bd);
4395         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4396         if (!q->drv) {
4397                 IPW_DEBUG_INFO
4398                     ("can't allocate shared memory for buffer descriptors\n");
4399                 return -ENOMEM;
4400         }
4401         memset(q->drv, 0, q->size);
4402
4403         IPW_DEBUG_INFO("exit\n");
4404
4405         return 0;
4406 }
4407
4408 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4409 {
4410         IPW_DEBUG_INFO("enter\n");
4411
4412         if (!q)
4413                 return;
4414
4415         if (q->drv) {
4416                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4417                 q->drv = NULL;
4418         }
4419
4420         IPW_DEBUG_INFO("exit\n");
4421 }
4422
4423 static void bd_queue_initialize(struct ipw2100_priv *priv,
4424                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4425                                 u32 r, u32 w)
4426 {
4427         IPW_DEBUG_INFO("enter\n");
4428
4429         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4430                        (u32) q->nic);
4431
4432         write_register(priv->net_dev, base, q->nic);
4433         write_register(priv->net_dev, size, q->entries);
4434         write_register(priv->net_dev, r, q->oldest);
4435         write_register(priv->net_dev, w, q->next);
4436
4437         IPW_DEBUG_INFO("exit\n");
4438 }
4439
4440 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4441 {
4442         priv->stop_rf_kill = 1;
4443         priv->stop_hang_check = 1;
4444         cancel_delayed_work_sync(&priv->reset_work);
4445         cancel_delayed_work_sync(&priv->security_work);
4446         cancel_delayed_work_sync(&priv->wx_event_work);
4447         cancel_delayed_work_sync(&priv->hang_check);
4448         cancel_delayed_work_sync(&priv->rf_kill);
4449         cancel_delayed_work_sync(&priv->scan_event);
4450 }
4451
4452 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4453 {
4454         int i, j, err = -EINVAL;
4455         void *v;
4456         dma_addr_t p;
4457
4458         IPW_DEBUG_INFO("enter\n");
4459
4460         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4461         if (err) {
4462                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4463                                 priv->net_dev->name);
4464                 return err;
4465         }
4466
4467         priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH,
4468                                          sizeof(struct ipw2100_tx_packet),
4469                                          GFP_ATOMIC);
4470         if (!priv->tx_buffers) {
4471                 bd_queue_free(priv, &priv->tx_queue);
4472                 return -ENOMEM;
4473         }
4474
4475         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4476                 v = pci_alloc_consistent(priv->pci_dev,
4477                                          sizeof(struct ipw2100_data_header),
4478                                          &p);
4479                 if (!v) {
4480                         printk(KERN_ERR DRV_NAME
4481                                ": %s: PCI alloc failed for tx " "buffers.\n",
4482                                priv->net_dev->name);
4483                         err = -ENOMEM;
4484                         break;
4485                 }
4486
4487                 priv->tx_buffers[i].type = DATA;
4488                 priv->tx_buffers[i].info.d_struct.data =
4489                     (struct ipw2100_data_header *)v;
4490                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4491                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4492         }
4493
4494         if (i == TX_PENDED_QUEUE_LENGTH)
4495                 return 0;
4496
4497         for (j = 0; j < i; j++) {
4498                 pci_free_consistent(priv->pci_dev,
4499                                     sizeof(struct ipw2100_data_header),
4500                                     priv->tx_buffers[j].info.d_struct.data,
4501                                     priv->tx_buffers[j].info.d_struct.
4502                                     data_phys);
4503         }
4504
4505         kfree(priv->tx_buffers);
4506         priv->tx_buffers = NULL;
4507
4508         return err;
4509 }
4510
4511 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4512 {
4513         int i;
4514
4515         IPW_DEBUG_INFO("enter\n");
4516
4517         /*
4518          * reinitialize packet info lists
4519          */
4520         INIT_LIST_HEAD(&priv->fw_pend_list);
4521         INIT_STAT(&priv->fw_pend_stat);
4522
4523         /*
4524          * reinitialize lists
4525          */
4526         INIT_LIST_HEAD(&priv->tx_pend_list);
4527         INIT_LIST_HEAD(&priv->tx_free_list);
4528         INIT_STAT(&priv->tx_pend_stat);
4529         INIT_STAT(&priv->tx_free_stat);
4530
4531         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4532                 /* We simply drop any SKBs that have been queued for
4533                  * transmit */
4534                 if (priv->tx_buffers[i].info.d_struct.txb) {
4535                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4536                                            txb);
4537                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4538                 }
4539
4540                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4541         }
4542
4543         SET_STAT(&priv->tx_free_stat, i);
4544
4545         priv->tx_queue.oldest = 0;
4546         priv->tx_queue.available = priv->tx_queue.entries;
4547         priv->tx_queue.next = 0;
4548         INIT_STAT(&priv->txq_stat);
4549         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4550
4551         bd_queue_initialize(priv, &priv->tx_queue,
4552                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4553                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4554                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4555                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4556
4557         IPW_DEBUG_INFO("exit\n");
4558
4559 }
4560
4561 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4562 {
4563         int i;
4564
4565         IPW_DEBUG_INFO("enter\n");
4566
4567         bd_queue_free(priv, &priv->tx_queue);
4568
4569         if (!priv->tx_buffers)
4570                 return;
4571
4572         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4573                 if (priv->tx_buffers[i].info.d_struct.txb) {
4574                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4575                                            txb);
4576                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4577                 }
4578                 if (priv->tx_buffers[i].info.d_struct.data)
4579                         pci_free_consistent(priv->pci_dev,
4580                                             sizeof(struct ipw2100_data_header),
4581                                             priv->tx_buffers[i].info.d_struct.
4582                                             data,
4583                                             priv->tx_buffers[i].info.d_struct.
4584                                             data_phys);
4585         }
4586
4587         kfree(priv->tx_buffers);
4588         priv->tx_buffers = NULL;
4589
4590         IPW_DEBUG_INFO("exit\n");
4591 }
4592
4593 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4594 {
4595         int i, j, err = -EINVAL;
4596
4597         IPW_DEBUG_INFO("enter\n");
4598
4599         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4600         if (err) {
4601                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4602                 return err;
4603         }
4604
4605         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4606         if (err) {
4607                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4608                 bd_queue_free(priv, &priv->rx_queue);
4609                 return err;
4610         }
4611
4612         /*
4613          * allocate packets
4614          */
4615         priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4616                                    sizeof(struct ipw2100_rx_packet),
4617                                    GFP_KERNEL);
4618         if (!priv->rx_buffers) {
4619                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4620
4621                 bd_queue_free(priv, &priv->rx_queue);
4622
4623                 status_queue_free(priv);
4624
4625                 return -ENOMEM;
4626         }
4627
4628         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4629                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4630
4631                 err = ipw2100_alloc_skb(priv, packet);
4632                 if (unlikely(err)) {
4633                         err = -ENOMEM;
4634                         break;
4635                 }
4636
4637                 /* The BD holds the cache aligned address */
4638                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4639                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4640                 priv->status_queue.drv[i].status_fields = 0;
4641         }
4642
4643         if (i == RX_QUEUE_LENGTH)
4644                 return 0;
4645
4646         for (j = 0; j < i; j++) {
4647                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4648                                  sizeof(struct ipw2100_rx_packet),
4649                                  PCI_DMA_FROMDEVICE);
4650                 dev_kfree_skb(priv->rx_buffers[j].skb);
4651         }
4652
4653         kfree(priv->rx_buffers);
4654         priv->rx_buffers = NULL;
4655
4656         bd_queue_free(priv, &priv->rx_queue);
4657
4658         status_queue_free(priv);
4659
4660         return err;
4661 }
4662
4663 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4664 {
4665         IPW_DEBUG_INFO("enter\n");
4666
4667         priv->rx_queue.oldest = 0;
4668         priv->rx_queue.available = priv->rx_queue.entries - 1;
4669         priv->rx_queue.next = priv->rx_queue.entries - 1;
4670
4671         INIT_STAT(&priv->rxq_stat);
4672         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4673
4674         bd_queue_initialize(priv, &priv->rx_queue,
4675                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4676                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4677                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4678                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4679
4680         /* set up the status queue */
4681         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4682                        priv->status_queue.nic);
4683
4684         IPW_DEBUG_INFO("exit\n");
4685 }
4686
4687 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4688 {
4689         int i;
4690
4691         IPW_DEBUG_INFO("enter\n");
4692
4693         bd_queue_free(priv, &priv->rx_queue);
4694         status_queue_free(priv);
4695
4696         if (!priv->rx_buffers)
4697                 return;
4698
4699         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4700                 if (priv->rx_buffers[i].rxp) {
4701                         pci_unmap_single(priv->pci_dev,
4702                                          priv->rx_buffers[i].dma_addr,
4703                                          sizeof(struct ipw2100_rx),
4704                                          PCI_DMA_FROMDEVICE);
4705                         dev_kfree_skb(priv->rx_buffers[i].skb);
4706                 }
4707         }
4708
4709         kfree(priv->rx_buffers);
4710         priv->rx_buffers = NULL;
4711
4712         IPW_DEBUG_INFO("exit\n");
4713 }
4714
4715 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4716 {
4717         u32 length = ETH_ALEN;
4718         u8 addr[ETH_ALEN];
4719
4720         int err;
4721
4722         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4723         if (err) {
4724                 IPW_DEBUG_INFO("MAC address read failed\n");
4725                 return -EIO;
4726         }
4727
4728         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4729         IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4730
4731         return 0;
4732 }
4733
4734 /********************************************************************
4735  *
4736  * Firmware Commands
4737  *
4738  ********************************************************************/
4739
4740 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4741 {
4742         struct host_command cmd = {
4743                 .host_command = ADAPTER_ADDRESS,
4744                 .host_command_sequence = 0,
4745                 .host_command_length = ETH_ALEN
4746         };
4747         int err;
4748
4749         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4750
4751         IPW_DEBUG_INFO("enter\n");
4752
4753         if (priv->config & CFG_CUSTOM_MAC) {
4754                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4755                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4756         } else
4757                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4758                        ETH_ALEN);
4759
4760         err = ipw2100_hw_send_command(priv, &cmd);
4761
4762         IPW_DEBUG_INFO("exit\n");
4763         return err;
4764 }
4765
4766 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4767                                  int batch_mode)
4768 {
4769         struct host_command cmd = {
4770                 .host_command = PORT_TYPE,
4771                 .host_command_sequence = 0,
4772                 .host_command_length = sizeof(u32)
4773         };
4774         int err;
4775
4776         switch (port_type) {
4777         case IW_MODE_INFRA:
4778                 cmd.host_command_parameters[0] = IPW_BSS;
4779                 break;
4780         case IW_MODE_ADHOC:
4781                 cmd.host_command_parameters[0] = IPW_IBSS;
4782                 break;
4783         }
4784
4785         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4786                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4787
4788         if (!batch_mode) {
4789                 err = ipw2100_disable_adapter(priv);
4790                 if (err) {
4791                         printk(KERN_ERR DRV_NAME
4792                                ": %s: Could not disable adapter %d\n",
4793                                priv->net_dev->name, err);
4794                         return err;
4795                 }
4796         }
4797
4798         /* send cmd to firmware */
4799         err = ipw2100_hw_send_command(priv, &cmd);
4800
4801         if (!batch_mode)
4802                 ipw2100_enable_adapter(priv);
4803
4804         return err;
4805 }
4806
4807 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4808                                int batch_mode)
4809 {
4810         struct host_command cmd = {
4811                 .host_command = CHANNEL,
4812                 .host_command_sequence = 0,
4813                 .host_command_length = sizeof(u32)
4814         };
4815         int err;
4816
4817         cmd.host_command_parameters[0] = channel;
4818
4819         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4820
4821         /* If BSS then we don't support channel selection */
4822         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4823                 return 0;
4824
4825         if ((channel != 0) &&
4826             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4827                 return -EINVAL;
4828
4829         if (!batch_mode) {
4830                 err = ipw2100_disable_adapter(priv);
4831                 if (err)
4832                         return err;
4833         }
4834
4835         err = ipw2100_hw_send_command(priv, &cmd);
4836         if (err) {
4837                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4838                 return err;
4839         }
4840
4841         if (channel)
4842                 priv->config |= CFG_STATIC_CHANNEL;
4843         else
4844                 priv->config &= ~CFG_STATIC_CHANNEL;
4845
4846         priv->channel = channel;
4847
4848         if (!batch_mode) {
4849                 err = ipw2100_enable_adapter(priv);
4850                 if (err)
4851                         return err;
4852         }
4853
4854         return 0;
4855 }
4856
4857 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4858 {
4859         struct host_command cmd = {
4860                 .host_command = SYSTEM_CONFIG,
4861                 .host_command_sequence = 0,
4862                 .host_command_length = 12,
4863         };
4864         u32 ibss_mask, len = sizeof(u32);
4865         int err;
4866
4867         /* Set system configuration */
4868
4869         if (!batch_mode) {
4870                 err = ipw2100_disable_adapter(priv);
4871                 if (err)
4872                         return err;
4873         }
4874
4875         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4876                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4877
4878         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4879             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4880
4881         if (!(priv->config & CFG_LONG_PREAMBLE))
4882                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4883
4884         err = ipw2100_get_ordinal(priv,
4885                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4886                                   &ibss_mask, &len);
4887         if (err)
4888                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4889
4890         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4891         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4892
4893         /* 11b only */
4894         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4895
4896         err = ipw2100_hw_send_command(priv, &cmd);
4897         if (err)
4898                 return err;
4899
4900 /* If IPv6 is configured in the kernel then we don't want to filter out all
4901  * of the multicast packets as IPv6 needs some. */
4902 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4903         cmd.host_command = ADD_MULTICAST;
4904         cmd.host_command_sequence = 0;
4905         cmd.host_command_length = 0;
4906
4907         ipw2100_hw_send_command(priv, &cmd);
4908 #endif
4909         if (!batch_mode) {
4910                 err = ipw2100_enable_adapter(priv);
4911                 if (err)
4912                         return err;
4913         }
4914
4915         return 0;
4916 }
4917
4918 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4919                                 int batch_mode)
4920 {
4921         struct host_command cmd = {
4922                 .host_command = BASIC_TX_RATES,
4923                 .host_command_sequence = 0,
4924                 .host_command_length = 4
4925         };
4926         int err;
4927
4928         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4929
4930         if (!batch_mode) {
4931                 err = ipw2100_disable_adapter(priv);
4932                 if (err)
4933                         return err;
4934         }
4935
4936         /* Set BASIC TX Rate first */
4937         ipw2100_hw_send_command(priv, &cmd);
4938
4939         /* Set TX Rate */
4940         cmd.host_command = TX_RATES;
4941         ipw2100_hw_send_command(priv, &cmd);
4942
4943         /* Set MSDU TX Rate */
4944         cmd.host_command = MSDU_TX_RATES;
4945         ipw2100_hw_send_command(priv, &cmd);
4946
4947         if (!batch_mode) {
4948                 err = ipw2100_enable_adapter(priv);
4949                 if (err)
4950                         return err;
4951         }
4952
4953         priv->tx_rates = rate;
4954
4955         return 0;
4956 }
4957
4958 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4959 {
4960         struct host_command cmd = {
4961                 .host_command = POWER_MODE,
4962                 .host_command_sequence = 0,
4963                 .host_command_length = 4
4964         };
4965         int err;
4966
4967         cmd.host_command_parameters[0] = power_level;
4968
4969         err = ipw2100_hw_send_command(priv, &cmd);
4970         if (err)
4971                 return err;
4972
4973         if (power_level == IPW_POWER_MODE_CAM)
4974                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4975         else
4976                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4977
4978 #ifdef IPW2100_TX_POWER
4979         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4980                 /* Set beacon interval */
4981                 cmd.host_command = TX_POWER_INDEX;
4982                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4983
4984                 err = ipw2100_hw_send_command(priv, &cmd);
4985                 if (err)
4986                         return err;
4987         }
4988 #endif
4989
4990         return 0;
4991 }
4992
4993 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4994 {
4995         struct host_command cmd = {
4996                 .host_command = RTS_THRESHOLD,
4997                 .host_command_sequence = 0,
4998                 .host_command_length = 4
4999         };
5000         int err;
5001
5002         if (threshold & RTS_DISABLED)
5003                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
5004         else
5005                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
5006
5007         err = ipw2100_hw_send_command(priv, &cmd);
5008         if (err)
5009                 return err;
5010
5011         priv->rts_threshold = threshold;
5012
5013         return 0;
5014 }
5015
5016 #if 0
5017 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
5018                                         u32 threshold, int batch_mode)
5019 {
5020         struct host_command cmd = {
5021                 .host_command = FRAG_THRESHOLD,
5022                 .host_command_sequence = 0,
5023                 .host_command_length = 4,
5024                 .host_command_parameters[0] = 0,
5025         };
5026         int err;
5027
5028         if (!batch_mode) {
5029                 err = ipw2100_disable_adapter(priv);
5030                 if (err)
5031                         return err;
5032         }
5033
5034         if (threshold == 0)
5035                 threshold = DEFAULT_FRAG_THRESHOLD;
5036         else {
5037                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5038                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5039         }
5040
5041         cmd.host_command_parameters[0] = threshold;
5042
5043         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5044
5045         err = ipw2100_hw_send_command(priv, &cmd);
5046
5047         if (!batch_mode)
5048                 ipw2100_enable_adapter(priv);
5049
5050         if (!err)
5051                 priv->frag_threshold = threshold;
5052
5053         return err;
5054 }
5055 #endif
5056
5057 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5058 {
5059         struct host_command cmd = {
5060                 .host_command = SHORT_RETRY_LIMIT,
5061                 .host_command_sequence = 0,
5062                 .host_command_length = 4
5063         };
5064         int err;
5065
5066         cmd.host_command_parameters[0] = retry;
5067
5068         err = ipw2100_hw_send_command(priv, &cmd);
5069         if (err)
5070                 return err;
5071
5072         priv->short_retry_limit = retry;
5073
5074         return 0;
5075 }
5076
5077 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5078 {
5079         struct host_command cmd = {
5080                 .host_command = LONG_RETRY_LIMIT,
5081                 .host_command_sequence = 0,
5082                 .host_command_length = 4
5083         };
5084         int err;
5085
5086         cmd.host_command_parameters[0] = retry;
5087
5088         err = ipw2100_hw_send_command(priv, &cmd);
5089         if (err)
5090                 return err;
5091
5092         priv->long_retry_limit = retry;
5093
5094         return 0;
5095 }
5096
5097 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5098                                        int batch_mode)
5099 {
5100         struct host_command cmd = {
5101                 .host_command = MANDATORY_BSSID,
5102                 .host_command_sequence = 0,
5103                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5104         };
5105         int err;
5106
5107 #ifdef CONFIG_IPW2100_DEBUG
5108         if (bssid != NULL)
5109                 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5110         else
5111                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5112 #endif
5113         /* if BSSID is empty then we disable mandatory bssid mode */
5114         if (bssid != NULL)
5115                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5116
5117         if (!batch_mode) {
5118                 err = ipw2100_disable_adapter(priv);
5119                 if (err)
5120                         return err;
5121         }
5122
5123         err = ipw2100_hw_send_command(priv, &cmd);
5124
5125         if (!batch_mode)
5126                 ipw2100_enable_adapter(priv);
5127
5128         return err;
5129 }
5130
5131 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5132 {
5133         struct host_command cmd = {
5134                 .host_command = DISASSOCIATION_BSSID,
5135                 .host_command_sequence = 0,
5136                 .host_command_length = ETH_ALEN
5137         };
5138         int err;
5139         int len;
5140
5141         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5142
5143         len = ETH_ALEN;
5144         /* The Firmware currently ignores the BSSID and just disassociates from
5145          * the currently associated AP -- but in the off chance that a future
5146          * firmware does use the BSSID provided here, we go ahead and try and
5147          * set it to the currently associated AP's BSSID */
5148         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5149
5150         err = ipw2100_hw_send_command(priv, &cmd);
5151
5152         return err;
5153 }
5154
5155 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5156                               struct ipw2100_wpa_assoc_frame *, int)
5157     __attribute__ ((unused));
5158
5159 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5160                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5161                               int batch_mode)
5162 {
5163         struct host_command cmd = {
5164                 .host_command = SET_WPA_IE,
5165                 .host_command_sequence = 0,
5166                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5167         };
5168         int err;
5169
5170         IPW_DEBUG_HC("SET_WPA_IE\n");
5171
5172         if (!batch_mode) {
5173                 err = ipw2100_disable_adapter(priv);
5174                 if (err)
5175                         return err;
5176         }
5177
5178         memcpy(cmd.host_command_parameters, wpa_frame,
5179                sizeof(struct ipw2100_wpa_assoc_frame));
5180
5181         err = ipw2100_hw_send_command(priv, &cmd);
5182
5183         if (!batch_mode) {
5184                 if (ipw2100_enable_adapter(priv))
5185                         err = -EIO;
5186         }
5187
5188         return err;
5189 }
5190
5191 struct security_info_params {
5192         u32 allowed_ciphers;
5193         u16 version;
5194         u8 auth_mode;
5195         u8 replay_counters_number;
5196         u8 unicast_using_group;
5197 } __packed;
5198
5199 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5200                                             int auth_mode,
5201                                             int security_level,
5202                                             int unicast_using_group,
5203                                             int batch_mode)
5204 {
5205         struct host_command cmd = {
5206                 .host_command = SET_SECURITY_INFORMATION,
5207                 .host_command_sequence = 0,
5208                 .host_command_length = sizeof(struct security_info_params)
5209         };
5210         struct security_info_params *security =
5211             (struct security_info_params *)&cmd.host_command_parameters;
5212         int err;
5213         memset(security, 0, sizeof(*security));
5214
5215         /* If shared key AP authentication is turned on, then we need to
5216          * configure the firmware to try and use it.
5217          *
5218          * Actual data encryption/decryption is handled by the host. */
5219         security->auth_mode = auth_mode;
5220         security->unicast_using_group = unicast_using_group;
5221
5222         switch (security_level) {
5223         default:
5224         case SEC_LEVEL_0:
5225                 security->allowed_ciphers = IPW_NONE_CIPHER;
5226                 break;
5227         case SEC_LEVEL_1:
5228                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5229                     IPW_WEP104_CIPHER;
5230                 break;
5231         case SEC_LEVEL_2:
5232                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5233                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5234                 break;
5235         case SEC_LEVEL_2_CKIP:
5236                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5237                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5238                 break;
5239         case SEC_LEVEL_3:
5240                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5241                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5242                 break;
5243         }
5244
5245         IPW_DEBUG_HC
5246             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5247              security->auth_mode, security->allowed_ciphers, security_level);
5248
5249         security->replay_counters_number = 0;
5250
5251         if (!batch_mode) {
5252                 err = ipw2100_disable_adapter(priv);
5253                 if (err)
5254                         return err;
5255         }
5256
5257         err = ipw2100_hw_send_command(priv, &cmd);
5258
5259         if (!batch_mode)
5260                 ipw2100_enable_adapter(priv);
5261
5262         return err;
5263 }
5264
5265 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5266 {
5267         struct host_command cmd = {
5268                 .host_command = TX_POWER_INDEX,
5269                 .host_command_sequence = 0,
5270                 .host_command_length = 4
5271         };
5272         int err = 0;
5273         u32 tmp = tx_power;
5274
5275         if (tx_power != IPW_TX_POWER_DEFAULT)
5276                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5277                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5278
5279         cmd.host_command_parameters[0] = tmp;
5280
5281         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5282                 err = ipw2100_hw_send_command(priv, &cmd);
5283         if (!err)
5284                 priv->tx_power = tx_power;
5285
5286         return 0;
5287 }
5288
5289 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5290                                             u32 interval, int batch_mode)
5291 {
5292         struct host_command cmd = {
5293                 .host_command = BEACON_INTERVAL,
5294                 .host_command_sequence = 0,
5295                 .host_command_length = 4
5296         };
5297         int err;
5298
5299         cmd.host_command_parameters[0] = interval;
5300
5301         IPW_DEBUG_INFO("enter\n");
5302
5303         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5304                 if (!batch_mode) {
5305                         err = ipw2100_disable_adapter(priv);
5306                         if (err)
5307                                 return err;
5308                 }
5309
5310                 ipw2100_hw_send_command(priv, &cmd);
5311
5312                 if (!batch_mode) {
5313                         err = ipw2100_enable_adapter(priv);
5314                         if (err)
5315                                 return err;
5316                 }
5317         }
5318
5319         IPW_DEBUG_INFO("exit\n");
5320
5321         return 0;
5322 }
5323
5324 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5325 {
5326         ipw2100_tx_initialize(priv);
5327         ipw2100_rx_initialize(priv);
5328         ipw2100_msg_initialize(priv);
5329 }
5330
5331 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5332 {
5333         ipw2100_tx_free(priv);
5334         ipw2100_rx_free(priv);
5335         ipw2100_msg_free(priv);
5336 }
5337
5338 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5339 {
5340         if (ipw2100_tx_allocate(priv) ||
5341             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5342                 goto fail;
5343
5344         return 0;
5345
5346       fail:
5347         ipw2100_tx_free(priv);
5348         ipw2100_rx_free(priv);
5349         ipw2100_msg_free(priv);
5350         return -ENOMEM;
5351 }
5352
5353 #define IPW_PRIVACY_CAPABLE 0x0008
5354
5355 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5356                                  int batch_mode)
5357 {
5358         struct host_command cmd = {
5359                 .host_command = WEP_FLAGS,
5360                 .host_command_sequence = 0,
5361                 .host_command_length = 4
5362         };
5363         int err;
5364
5365         cmd.host_command_parameters[0] = flags;
5366
5367         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5368
5369         if (!batch_mode) {
5370                 err = ipw2100_disable_adapter(priv);
5371                 if (err) {
5372                         printk(KERN_ERR DRV_NAME
5373                                ": %s: Could not disable adapter %d\n",
5374                                priv->net_dev->name, err);
5375                         return err;
5376                 }
5377         }
5378
5379         /* send cmd to firmware */
5380         err = ipw2100_hw_send_command(priv, &cmd);
5381
5382         if (!batch_mode)
5383                 ipw2100_enable_adapter(priv);
5384
5385         return err;
5386 }
5387
5388 struct ipw2100_wep_key {
5389         u8 idx;
5390         u8 len;
5391         u8 key[13];
5392 };
5393
5394 /* Macros to ease up priting WEP keys */
5395 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5396 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5397 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5398 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5399
5400 /**
5401  * Set a the wep key
5402  *
5403  * @priv: struct to work on
5404  * @idx: index of the key we want to set
5405  * @key: ptr to the key data to set
5406  * @len: length of the buffer at @key
5407  * @batch_mode: FIXME perform the operation in batch mode, not
5408  *              disabling the device.
5409  *
5410  * @returns 0 if OK, < 0 errno code on error.
5411  *
5412  * Fill out a command structure with the new wep key, length an
5413  * index and send it down the wire.
5414  */
5415 static int ipw2100_set_key(struct ipw2100_priv *priv,
5416                            int idx, char *key, int len, int batch_mode)
5417 {
5418         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5419         struct host_command cmd = {
5420                 .host_command = WEP_KEY_INFO,
5421                 .host_command_sequence = 0,
5422                 .host_command_length = sizeof(struct ipw2100_wep_key),
5423         };
5424         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5425         int err;
5426
5427         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5428                      idx, keylen, len);
5429
5430         /* NOTE: We don't check cached values in case the firmware was reset
5431          * or some other problem is occurring.  If the user is setting the key,
5432          * then we push the change */
5433
5434         wep_key->idx = idx;
5435         wep_key->len = keylen;
5436
5437         if (keylen) {
5438                 memcpy(wep_key->key, key, len);
5439                 memset(wep_key->key + len, 0, keylen - len);
5440         }
5441
5442         /* Will be optimized out on debug not being configured in */
5443         if (keylen == 0)
5444                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5445                               priv->net_dev->name, wep_key->idx);
5446         else if (keylen == 5)
5447                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5448                               priv->net_dev->name, wep_key->idx, wep_key->len,
5449                               WEP_STR_64(wep_key->key));
5450         else
5451                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5452                               "\n",
5453                               priv->net_dev->name, wep_key->idx, wep_key->len,
5454                               WEP_STR_128(wep_key->key));
5455
5456         if (!batch_mode) {
5457                 err = ipw2100_disable_adapter(priv);
5458                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5459                 if (err) {
5460                         printk(KERN_ERR DRV_NAME
5461                                ": %s: Could not disable adapter %d\n",
5462                                priv->net_dev->name, err);
5463                         return err;
5464                 }
5465         }
5466
5467         /* send cmd to firmware */
5468         err = ipw2100_hw_send_command(priv, &cmd);
5469
5470         if (!batch_mode) {
5471                 int err2 = ipw2100_enable_adapter(priv);
5472                 if (err == 0)
5473                         err = err2;
5474         }
5475         return err;
5476 }
5477
5478 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5479                                  int idx, int batch_mode)
5480 {
5481         struct host_command cmd = {
5482                 .host_command = WEP_KEY_INDEX,
5483                 .host_command_sequence = 0,
5484                 .host_command_length = 4,
5485                 .host_command_parameters = {idx},
5486         };
5487         int err;
5488
5489         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5490
5491         if (idx < 0 || idx > 3)
5492                 return -EINVAL;
5493
5494         if (!batch_mode) {
5495                 err = ipw2100_disable_adapter(priv);
5496                 if (err) {
5497                         printk(KERN_ERR DRV_NAME
5498                                ": %s: Could not disable adapter %d\n",
5499                                priv->net_dev->name, err);
5500                         return err;
5501                 }
5502         }
5503
5504         /* send cmd to firmware */
5505         err = ipw2100_hw_send_command(priv, &cmd);
5506
5507         if (!batch_mode)
5508                 ipw2100_enable_adapter(priv);
5509
5510         return err;
5511 }
5512
5513 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5514 {
5515         int i, err, auth_mode, sec_level, use_group;
5516
5517         if (!(priv->status & STATUS_RUNNING))
5518                 return 0;
5519
5520         if (!batch_mode) {
5521                 err = ipw2100_disable_adapter(priv);
5522                 if (err)
5523                         return err;
5524         }
5525
5526         if (!priv->ieee->sec.enabled) {
5527                 err =
5528                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5529                                                      SEC_LEVEL_0, 0, 1);
5530         } else {
5531                 auth_mode = IPW_AUTH_OPEN;
5532                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5533                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5534                                 auth_mode = IPW_AUTH_SHARED;
5535                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5536                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5537                 }
5538
5539                 sec_level = SEC_LEVEL_0;
5540                 if (priv->ieee->sec.flags & SEC_LEVEL)
5541                         sec_level = priv->ieee->sec.level;
5542
5543                 use_group = 0;
5544                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5545                         use_group = priv->ieee->sec.unicast_uses_group;
5546
5547                 err =
5548                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5549                                                      use_group, 1);
5550         }
5551
5552         if (err)
5553                 goto exit;
5554
5555         if (priv->ieee->sec.enabled) {
5556                 for (i = 0; i < 4; i++) {
5557                         if (!(priv->ieee->sec.flags & (1 << i))) {
5558                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5559                                 priv->ieee->sec.key_sizes[i] = 0;
5560                         } else {
5561                                 err = ipw2100_set_key(priv, i,
5562                                                       priv->ieee->sec.keys[i],
5563                                                       priv->ieee->sec.
5564                                                       key_sizes[i], 1);
5565                                 if (err)
5566                                         goto exit;
5567                         }
5568                 }
5569
5570                 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5571         }
5572
5573         /* Always enable privacy so the Host can filter WEP packets if
5574          * encrypted data is sent up */
5575         err =
5576             ipw2100_set_wep_flags(priv,
5577                                   priv->ieee->sec.
5578                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5579         if (err)
5580                 goto exit;
5581
5582         priv->status &= ~STATUS_SECURITY_UPDATED;
5583
5584       exit:
5585         if (!batch_mode)
5586                 ipw2100_enable_adapter(priv);
5587
5588         return err;
5589 }
5590
5591 static void ipw2100_security_work(struct work_struct *work)
5592 {
5593         struct ipw2100_priv *priv =
5594                 container_of(work, struct ipw2100_priv, security_work.work);
5595
5596         /* If we happen to have reconnected before we get a chance to
5597          * process this, then update the security settings--which causes
5598          * a disassociation to occur */
5599         if (!(priv->status & STATUS_ASSOCIATED) &&
5600             priv->status & STATUS_SECURITY_UPDATED)
5601                 ipw2100_configure_security(priv, 0);
5602 }
5603
5604 static void shim__set_security(struct net_device *dev,
5605                                struct libipw_security *sec)
5606 {
5607         struct ipw2100_priv *priv = libipw_priv(dev);
5608         int i, force_update = 0;
5609
5610         mutex_lock(&priv->action_mutex);
5611         if (!(priv->status & STATUS_INITIALIZED))
5612                 goto done;
5613
5614         for (i = 0; i < 4; i++) {
5615                 if (sec->flags & (1 << i)) {
5616                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5617                         if (sec->key_sizes[i] == 0)
5618                                 priv->ieee->sec.flags &= ~(1 << i);
5619                         else
5620                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5621                                        sec->key_sizes[i]);
5622                         if (sec->level == SEC_LEVEL_1) {
5623                                 priv->ieee->sec.flags |= (1 << i);
5624                                 priv->status |= STATUS_SECURITY_UPDATED;
5625                         } else
5626                                 priv->ieee->sec.flags &= ~(1 << i);
5627                 }
5628         }
5629
5630         if ((sec->flags & SEC_ACTIVE_KEY) &&
5631             priv->ieee->sec.active_key != sec->active_key) {
5632                 if (sec->active_key <= 3) {
5633                         priv->ieee->sec.active_key = sec->active_key;
5634                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5635                 } else
5636                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5637
5638                 priv->status |= STATUS_SECURITY_UPDATED;
5639         }
5640
5641         if ((sec->flags & SEC_AUTH_MODE) &&
5642             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5643                 priv->ieee->sec.auth_mode = sec->auth_mode;
5644                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5645                 priv->status |= STATUS_SECURITY_UPDATED;
5646         }
5647
5648         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5649                 priv->ieee->sec.flags |= SEC_ENABLED;
5650                 priv->ieee->sec.enabled = sec->enabled;
5651                 priv->status |= STATUS_SECURITY_UPDATED;
5652                 force_update = 1;
5653         }
5654
5655         if (sec->flags & SEC_ENCRYPT)
5656                 priv->ieee->sec.encrypt = sec->encrypt;
5657
5658         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5659                 priv->ieee->sec.level = sec->level;
5660                 priv->ieee->sec.flags |= SEC_LEVEL;
5661                 priv->status |= STATUS_SECURITY_UPDATED;
5662         }
5663
5664         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5665                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5666                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5667                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5668                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5669                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5670                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5671                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5672                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5673                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5674
5675 /* As a temporary work around to enable WPA until we figure out why
5676  * wpa_supplicant toggles the security capability of the driver, which
5677  * forces a disassocation with force_update...
5678  *
5679  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5680         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5681                 ipw2100_configure_security(priv, 0);
5682       done:
5683         mutex_unlock(&priv->action_mutex);
5684 }
5685
5686 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5687 {
5688         int err;
5689         int batch_mode = 1;
5690         u8 *bssid;
5691
5692         IPW_DEBUG_INFO("enter\n");
5693
5694         err = ipw2100_disable_adapter(priv);
5695         if (err)
5696                 return err;
5697 #ifdef CONFIG_IPW2100_MONITOR
5698         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5699                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5700                 if (err)
5701                         return err;
5702
5703                 IPW_DEBUG_INFO("exit\n");
5704
5705                 return 0;
5706         }
5707 #endif                          /* CONFIG_IPW2100_MONITOR */
5708
5709         err = ipw2100_read_mac_address(priv);
5710         if (err)
5711                 return -EIO;
5712
5713         err = ipw2100_set_mac_address(priv, batch_mode);
5714         if (err)
5715                 return err;
5716
5717         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5718         if (err)
5719                 return err;
5720
5721         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5722                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5723                 if (err)
5724                         return err;
5725         }
5726
5727         err = ipw2100_system_config(priv, batch_mode);
5728         if (err)
5729                 return err;
5730
5731         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5732         if (err)
5733                 return err;
5734
5735         /* Default to power mode OFF */
5736         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5737         if (err)
5738                 return err;
5739
5740         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5741         if (err)
5742                 return err;
5743
5744         if (priv->config & CFG_STATIC_BSSID)
5745                 bssid = priv->bssid;
5746         else
5747                 bssid = NULL;
5748         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5749         if (err)
5750                 return err;
5751
5752         if (priv->config & CFG_STATIC_ESSID)
5753                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5754                                         batch_mode);
5755         else
5756                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5757         if (err)
5758                 return err;
5759
5760         err = ipw2100_configure_security(priv, batch_mode);
5761         if (err)
5762                 return err;
5763
5764         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5765                 err =
5766                     ipw2100_set_ibss_beacon_interval(priv,
5767                                                      priv->beacon_interval,
5768                                                      batch_mode);
5769                 if (err)
5770                         return err;
5771
5772                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5773                 if (err)
5774                         return err;
5775         }
5776
5777         /*
5778            err = ipw2100_set_fragmentation_threshold(
5779            priv, priv->frag_threshold, batch_mode);
5780            if (err)
5781            return err;
5782          */
5783
5784         IPW_DEBUG_INFO("exit\n");
5785
5786         return 0;
5787 }
5788
5789 /*************************************************************************
5790  *
5791  * EXTERNALLY CALLED METHODS
5792  *
5793  *************************************************************************/
5794
5795 /* This method is called by the network layer -- not to be confused with
5796  * ipw2100_set_mac_address() declared above called by this driver (and this
5797  * method as well) to talk to the firmware */
5798 static int ipw2100_set_address(struct net_device *dev, void *p)
5799 {
5800         struct ipw2100_priv *priv = libipw_priv(dev);
5801         struct sockaddr *addr = p;
5802         int err = 0;
5803
5804         if (!is_valid_ether_addr(addr->sa_data))
5805                 return -EADDRNOTAVAIL;
5806
5807         mutex_lock(&priv->action_mutex);
5808
5809         priv->config |= CFG_CUSTOM_MAC;
5810         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5811
5812         err = ipw2100_set_mac_address(priv, 0);
5813         if (err)
5814                 goto done;
5815
5816         priv->reset_backoff = 0;
5817         mutex_unlock(&priv->action_mutex);
5818         ipw2100_reset_adapter(&priv->reset_work.work);
5819         return 0;
5820
5821       done:
5822         mutex_unlock(&priv->action_mutex);
5823         return err;
5824 }
5825
5826 static int ipw2100_open(struct net_device *dev)
5827 {
5828         struct ipw2100_priv *priv = libipw_priv(dev);
5829         unsigned long flags;
5830         IPW_DEBUG_INFO("dev->open\n");
5831
5832         spin_lock_irqsave(&priv->low_lock, flags);
5833         if (priv->status & STATUS_ASSOCIATED) {
5834                 netif_carrier_on(dev);
5835                 netif_start_queue(dev);
5836         }
5837         spin_unlock_irqrestore(&priv->low_lock, flags);
5838
5839         return 0;
5840 }
5841
5842 static int ipw2100_close(struct net_device *dev)
5843 {
5844         struct ipw2100_priv *priv = libipw_priv(dev);
5845         unsigned long flags;
5846         struct list_head *element;
5847         struct ipw2100_tx_packet *packet;
5848
5849         IPW_DEBUG_INFO("enter\n");
5850
5851         spin_lock_irqsave(&priv->low_lock, flags);
5852
5853         if (priv->status & STATUS_ASSOCIATED)
5854                 netif_carrier_off(dev);
5855         netif_stop_queue(dev);
5856
5857         /* Flush the TX queue ... */
5858         while (!list_empty(&priv->tx_pend_list)) {
5859                 element = priv->tx_pend_list.next;
5860                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5861
5862                 list_del(element);
5863                 DEC_STAT(&priv->tx_pend_stat);
5864
5865                 libipw_txb_free(packet->info.d_struct.txb);
5866                 packet->info.d_struct.txb = NULL;
5867
5868                 list_add_tail(element, &priv->tx_free_list);
5869                 INC_STAT(&priv->tx_free_stat);
5870         }
5871         spin_unlock_irqrestore(&priv->low_lock, flags);
5872
5873         IPW_DEBUG_INFO("exit\n");
5874
5875         return 0;
5876 }
5877
5878 /*
5879  * TODO:  Fix this function... its just wrong
5880  */
5881 static void ipw2100_tx_timeout(struct net_device *dev)
5882 {
5883         struct ipw2100_priv *priv = libipw_priv(dev);
5884
5885         dev->stats.tx_errors++;
5886
5887 #ifdef CONFIG_IPW2100_MONITOR
5888         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5889                 return;
5890 #endif
5891
5892         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5893                        dev->name);
5894         schedule_reset(priv);
5895 }
5896
5897 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5898 {
5899         /* This is called when wpa_supplicant loads and closes the driver
5900          * interface. */
5901         priv->ieee->wpa_enabled = value;
5902         return 0;
5903 }
5904
5905 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5906 {
5907
5908         struct libipw_device *ieee = priv->ieee;
5909         struct libipw_security sec = {
5910                 .flags = SEC_AUTH_MODE,
5911         };
5912         int ret = 0;
5913
5914         if (value & IW_AUTH_ALG_SHARED_KEY) {
5915                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5916                 ieee->open_wep = 0;
5917         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5918                 sec.auth_mode = WLAN_AUTH_OPEN;
5919                 ieee->open_wep = 1;
5920         } else if (value & IW_AUTH_ALG_LEAP) {
5921                 sec.auth_mode = WLAN_AUTH_LEAP;
5922                 ieee->open_wep = 1;
5923         } else
5924                 return -EINVAL;
5925
5926         if (ieee->set_security)
5927                 ieee->set_security(ieee->dev, &sec);
5928         else
5929                 ret = -EOPNOTSUPP;
5930
5931         return ret;
5932 }
5933
5934 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5935                                     char *wpa_ie, int wpa_ie_len)
5936 {
5937
5938         struct ipw2100_wpa_assoc_frame frame;
5939
5940         frame.fixed_ie_mask = 0;
5941
5942         /* copy WPA IE */
5943         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5944         frame.var_ie_len = wpa_ie_len;
5945
5946         /* make sure WPA is enabled */
5947         ipw2100_wpa_enable(priv, 1);
5948         ipw2100_set_wpa_ie(priv, &frame, 0);
5949 }
5950
5951 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5952                                     struct ethtool_drvinfo *info)
5953 {
5954         struct ipw2100_priv *priv = libipw_priv(dev);
5955         char fw_ver[64], ucode_ver[64];
5956
5957         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5958         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5959
5960         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5961         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5962
5963         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5964                  fw_ver, priv->eeprom_version, ucode_ver);
5965
5966         strlcpy(info->bus_info, pci_name(priv->pci_dev),
5967                 sizeof(info->bus_info));
5968 }
5969
5970 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5971 {
5972         struct ipw2100_priv *priv = libipw_priv(dev);
5973         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5974 }
5975
5976 static const struct ethtool_ops ipw2100_ethtool_ops = {
5977         .get_link = ipw2100_ethtool_get_link,
5978         .get_drvinfo = ipw_ethtool_get_drvinfo,
5979 };
5980
5981 static void ipw2100_hang_check(struct work_struct *work)
5982 {
5983         struct ipw2100_priv *priv =
5984                 container_of(work, struct ipw2100_priv, hang_check.work);
5985         unsigned long flags;
5986         u32 rtc = 0xa5a5a5a5;
5987         u32 len = sizeof(rtc);
5988         int restart = 0;
5989
5990         spin_lock_irqsave(&priv->low_lock, flags);
5991
5992         if (priv->fatal_error != 0) {
5993                 /* If fatal_error is set then we need to restart */
5994                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5995                                priv->net_dev->name);
5996
5997                 restart = 1;
5998         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5999                    (rtc == priv->last_rtc)) {
6000                 /* Check if firmware is hung */
6001                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6002                                priv->net_dev->name);
6003
6004                 restart = 1;
6005         }
6006
6007         if (restart) {
6008                 /* Kill timer */
6009                 priv->stop_hang_check = 1;
6010                 priv->hangs++;
6011
6012                 /* Restart the NIC */
6013                 schedule_reset(priv);
6014         }
6015
6016         priv->last_rtc = rtc;
6017
6018         if (!priv->stop_hang_check)
6019                 schedule_delayed_work(&priv->hang_check, HZ / 2);
6020
6021         spin_unlock_irqrestore(&priv->low_lock, flags);
6022 }
6023
6024 static void ipw2100_rf_kill(struct work_struct *work)
6025 {
6026         struct ipw2100_priv *priv =
6027                 container_of(work, struct ipw2100_priv, rf_kill.work);
6028         unsigned long flags;
6029
6030         spin_lock_irqsave(&priv->low_lock, flags);
6031
6032         if (rf_kill_active(priv)) {
6033                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6034                 if (!priv->stop_rf_kill)
6035                         schedule_delayed_work(&priv->rf_kill,
6036                                               round_jiffies_relative(HZ));
6037                 goto exit_unlock;
6038         }
6039
6040         /* RF Kill is now disabled, so bring the device back up */
6041
6042         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6043                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6044                                   "device\n");
6045                 schedule_reset(priv);
6046         } else
6047                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6048                                   "enabled\n");
6049
6050       exit_unlock:
6051         spin_unlock_irqrestore(&priv->low_lock, flags);
6052 }
6053
6054 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6055
6056 static const struct net_device_ops ipw2100_netdev_ops = {
6057         .ndo_open               = ipw2100_open,
6058         .ndo_stop               = ipw2100_close,
6059         .ndo_start_xmit         = libipw_xmit,
6060         .ndo_change_mtu         = libipw_change_mtu,
6061         .ndo_tx_timeout         = ipw2100_tx_timeout,
6062         .ndo_set_mac_address    = ipw2100_set_address,
6063         .ndo_validate_addr      = eth_validate_addr,
6064 };
6065
6066 /* Look into using netdev destructor to shutdown libipw? */
6067
6068 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6069                                                void __iomem * ioaddr)
6070 {
6071         struct ipw2100_priv *priv;
6072         struct net_device *dev;
6073
6074         dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6075         if (!dev)
6076                 return NULL;
6077         priv = libipw_priv(dev);
6078         priv->ieee = netdev_priv(dev);
6079         priv->pci_dev = pci_dev;
6080         priv->net_dev = dev;
6081         priv->ioaddr = ioaddr;
6082
6083         priv->ieee->hard_start_xmit = ipw2100_tx;
6084         priv->ieee->set_security = shim__set_security;
6085
6086         priv->ieee->perfect_rssi = -20;
6087         priv->ieee->worst_rssi = -85;
6088
6089         dev->netdev_ops = &ipw2100_netdev_ops;
6090         dev->ethtool_ops = &ipw2100_ethtool_ops;
6091         dev->wireless_handlers = &ipw2100_wx_handler_def;
6092         priv->wireless_data.libipw = priv->ieee;
6093         dev->wireless_data = &priv->wireless_data;
6094         dev->watchdog_timeo = 3 * HZ;
6095         dev->irq = 0;
6096
6097         /* NOTE: We don't use the wireless_handlers hook
6098          * in dev as the system will start throwing WX requests
6099          * to us before we're actually initialized and it just
6100          * ends up causing problems.  So, we just handle
6101          * the WX extensions through the ipw2100_ioctl interface */
6102
6103         /* memset() puts everything to 0, so we only have explicitly set
6104          * those values that need to be something else */
6105
6106         /* If power management is turned on, default to AUTO mode */
6107         priv->power_mode = IPW_POWER_AUTO;
6108
6109 #ifdef CONFIG_IPW2100_MONITOR
6110         priv->config |= CFG_CRC_CHECK;
6111 #endif
6112         priv->ieee->wpa_enabled = 0;
6113         priv->ieee->drop_unencrypted = 0;
6114         priv->ieee->privacy_invoked = 0;
6115         priv->ieee->ieee802_1x = 1;
6116
6117         /* Set module parameters */
6118         switch (network_mode) {
6119         case 1:
6120                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6121                 break;
6122 #ifdef CONFIG_IPW2100_MONITOR
6123         case 2:
6124                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6125                 break;
6126 #endif
6127         default:
6128         case 0:
6129                 priv->ieee->iw_mode = IW_MODE_INFRA;
6130                 break;
6131         }
6132
6133         if (disable == 1)
6134                 priv->status |= STATUS_RF_KILL_SW;
6135
6136         if (channel != 0 &&
6137             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6138                 priv->config |= CFG_STATIC_CHANNEL;
6139                 priv->channel = channel;
6140         }
6141
6142         if (associate)
6143                 priv->config |= CFG_ASSOCIATE;
6144
6145         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6146         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6147         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6148         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6149         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6150         priv->tx_power = IPW_TX_POWER_DEFAULT;
6151         priv->tx_rates = DEFAULT_TX_RATES;
6152
6153         strcpy(priv->nick, "ipw2100");
6154
6155         spin_lock_init(&priv->low_lock);
6156         mutex_init(&priv->action_mutex);
6157         mutex_init(&priv->adapter_mutex);
6158
6159         init_waitqueue_head(&priv->wait_command_queue);
6160
6161         netif_carrier_off(dev);
6162
6163         INIT_LIST_HEAD(&priv->msg_free_list);
6164         INIT_LIST_HEAD(&priv->msg_pend_list);
6165         INIT_STAT(&priv->msg_free_stat);
6166         INIT_STAT(&priv->msg_pend_stat);
6167
6168         INIT_LIST_HEAD(&priv->tx_free_list);
6169         INIT_LIST_HEAD(&priv->tx_pend_list);
6170         INIT_STAT(&priv->tx_free_stat);
6171         INIT_STAT(&priv->tx_pend_stat);
6172
6173         INIT_LIST_HEAD(&priv->fw_pend_list);
6174         INIT_STAT(&priv->fw_pend_stat);
6175
6176         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6177         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6178         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6179         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6180         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6181         INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event);
6182
6183         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6184                      ipw2100_irq_tasklet, (unsigned long)priv);
6185
6186         /* NOTE:  We do not start the deferred work for status checks yet */
6187         priv->stop_rf_kill = 1;
6188         priv->stop_hang_check = 1;
6189
6190         return dev;
6191 }
6192
6193 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6194                                 const struct pci_device_id *ent)
6195 {
6196         void __iomem *ioaddr;
6197         struct net_device *dev = NULL;
6198         struct ipw2100_priv *priv = NULL;
6199         int err = 0;
6200         int registered = 0;
6201         u32 val;
6202
6203         IPW_DEBUG_INFO("enter\n");
6204
6205         if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6206                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6207                 err = -ENODEV;
6208                 goto out;
6209         }
6210
6211         ioaddr = pci_iomap(pci_dev, 0, 0);
6212         if (!ioaddr) {
6213                 printk(KERN_WARNING DRV_NAME
6214                        "Error calling ioremap_nocache.\n");
6215                 err = -EIO;
6216                 goto fail;
6217         }
6218
6219         /* allocate and initialize our net_device */
6220         dev = ipw2100_alloc_device(pci_dev, ioaddr);
6221         if (!dev) {
6222                 printk(KERN_WARNING DRV_NAME
6223                        "Error calling ipw2100_alloc_device.\n");
6224                 err = -ENOMEM;
6225                 goto fail;
6226         }
6227
6228         /* set up PCI mappings for device */
6229         err = pci_enable_device(pci_dev);
6230         if (err) {
6231                 printk(KERN_WARNING DRV_NAME
6232                        "Error calling pci_enable_device.\n");
6233                 return err;
6234         }
6235
6236         priv = libipw_priv(dev);
6237
6238         pci_set_master(pci_dev);
6239         pci_set_drvdata(pci_dev, priv);
6240
6241         err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6242         if (err) {
6243                 printk(KERN_WARNING DRV_NAME
6244                        "Error calling pci_set_dma_mask.\n");
6245                 pci_disable_device(pci_dev);
6246                 return err;
6247         }
6248
6249         err = pci_request_regions(pci_dev, DRV_NAME);
6250         if (err) {
6251                 printk(KERN_WARNING DRV_NAME
6252                        "Error calling pci_request_regions.\n");
6253                 pci_disable_device(pci_dev);
6254                 return err;
6255         }
6256
6257         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6258          * PCI Tx retries from interfering with C3 CPU state */
6259         pci_read_config_dword(pci_dev, 0x40, &val);
6260         if ((val & 0x0000ff00) != 0)
6261                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6262
6263         pci_set_power_state(pci_dev, PCI_D0);
6264
6265         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6266                 printk(KERN_WARNING DRV_NAME
6267                        "Device not found via register read.\n");
6268                 err = -ENODEV;
6269                 goto fail;
6270         }
6271
6272         SET_NETDEV_DEV(dev, &pci_dev->dev);
6273
6274         /* Force interrupts to be shut off on the device */
6275         priv->status |= STATUS_INT_ENABLED;
6276         ipw2100_disable_interrupts(priv);
6277
6278         /* Allocate and initialize the Tx/Rx queues and lists */
6279         if (ipw2100_queues_allocate(priv)) {
6280                 printk(KERN_WARNING DRV_NAME
6281                        "Error calling ipw2100_queues_allocate.\n");
6282                 err = -ENOMEM;
6283                 goto fail;
6284         }
6285         ipw2100_queues_initialize(priv);
6286
6287         err = request_irq(pci_dev->irq,
6288                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6289         if (err) {
6290                 printk(KERN_WARNING DRV_NAME
6291                        "Error calling request_irq: %d.\n", pci_dev->irq);
6292                 goto fail;
6293         }
6294         dev->irq = pci_dev->irq;
6295
6296         IPW_DEBUG_INFO("Attempting to register device...\n");
6297
6298         printk(KERN_INFO DRV_NAME
6299                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6300
6301         err = ipw2100_up(priv, 1);
6302         if (err)
6303                 goto fail;
6304
6305         err = ipw2100_wdev_init(dev);
6306         if (err)
6307                 goto fail;
6308         registered = 1;
6309
6310         /* Bring up the interface.  Pre 0.46, after we registered the
6311          * network device we would call ipw2100_up.  This introduced a race
6312          * condition with newer hotplug configurations (network was coming
6313          * up and making calls before the device was initialized).
6314          */
6315         err = register_netdev(dev);
6316         if (err) {
6317                 printk(KERN_WARNING DRV_NAME
6318                        "Error calling register_netdev.\n");
6319                 goto fail;
6320         }
6321         registered = 2;
6322
6323         mutex_lock(&priv->action_mutex);
6324
6325         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6326
6327         /* perform this after register_netdev so that dev->name is set */
6328         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6329         if (err)
6330                 goto fail_unlock;
6331
6332         /* If the RF Kill switch is disabled, go ahead and complete the
6333          * startup sequence */
6334         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6335                 /* Enable the adapter - sends HOST_COMPLETE */
6336                 if (ipw2100_enable_adapter(priv)) {
6337                         printk(KERN_WARNING DRV_NAME
6338                                ": %s: failed in call to enable adapter.\n",
6339                                priv->net_dev->name);
6340                         ipw2100_hw_stop_adapter(priv);
6341                         err = -EIO;
6342                         goto fail_unlock;
6343                 }
6344
6345                 /* Start a scan . . . */
6346                 ipw2100_set_scan_options(priv);
6347                 ipw2100_start_scan(priv);
6348         }
6349
6350         IPW_DEBUG_INFO("exit\n");
6351
6352         priv->status |= STATUS_INITIALIZED;
6353
6354         mutex_unlock(&priv->action_mutex);
6355 out:
6356         return err;
6357
6358       fail_unlock:
6359         mutex_unlock(&priv->action_mutex);
6360       fail:
6361         if (dev) {
6362                 if (registered >= 2)
6363                         unregister_netdev(dev);
6364
6365                 if (registered) {
6366                         wiphy_unregister(priv->ieee->wdev.wiphy);
6367                         kfree(priv->ieee->bg_band.channels);
6368                 }
6369
6370                 ipw2100_hw_stop_adapter(priv);
6371
6372                 ipw2100_disable_interrupts(priv);
6373
6374                 if (dev->irq)
6375                         free_irq(dev->irq, priv);
6376
6377                 ipw2100_kill_works(priv);
6378
6379                 /* These are safe to call even if they weren't allocated */
6380                 ipw2100_queues_free(priv);
6381                 sysfs_remove_group(&pci_dev->dev.kobj,
6382                                    &ipw2100_attribute_group);
6383
6384                 free_libipw(dev, 0);
6385                 pci_set_drvdata(pci_dev, NULL);
6386         }
6387
6388         pci_iounmap(pci_dev, ioaddr);
6389
6390         pci_release_regions(pci_dev);
6391         pci_disable_device(pci_dev);
6392         goto out;
6393 }
6394
6395 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6396 {
6397         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6398         struct net_device *dev = priv->net_dev;
6399
6400         mutex_lock(&priv->action_mutex);
6401
6402         priv->status &= ~STATUS_INITIALIZED;
6403
6404         sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6405
6406 #ifdef CONFIG_PM
6407         if (ipw2100_firmware.version)
6408                 ipw2100_release_firmware(priv, &ipw2100_firmware);
6409 #endif
6410         /* Take down the hardware */
6411         ipw2100_down(priv);
6412
6413         /* Release the mutex so that the network subsystem can
6414          * complete any needed calls into the driver... */
6415         mutex_unlock(&priv->action_mutex);
6416
6417         /* Unregister the device first - this results in close()
6418          * being called if the device is open.  If we free storage
6419          * first, then close() will crash.
6420          * FIXME: remove the comment above. */
6421         unregister_netdev(dev);
6422
6423         ipw2100_kill_works(priv);
6424
6425         ipw2100_queues_free(priv);
6426
6427         /* Free potential debugging firmware snapshot */
6428         ipw2100_snapshot_free(priv);
6429
6430         free_irq(dev->irq, priv);
6431
6432         pci_iounmap(pci_dev, priv->ioaddr);
6433
6434         /* wiphy_unregister needs to be here, before free_libipw */
6435         wiphy_unregister(priv->ieee->wdev.wiphy);
6436         kfree(priv->ieee->bg_band.channels);
6437         free_libipw(dev, 0);
6438
6439         pci_release_regions(pci_dev);
6440         pci_disable_device(pci_dev);
6441
6442         IPW_DEBUG_INFO("exit\n");
6443 }
6444
6445 #ifdef CONFIG_PM
6446 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6447 {
6448         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6449         struct net_device *dev = priv->net_dev;
6450
6451         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6452
6453         mutex_lock(&priv->action_mutex);
6454         if (priv->status & STATUS_INITIALIZED) {
6455                 /* Take down the device; powers it off, etc. */
6456                 ipw2100_down(priv);
6457         }
6458
6459         /* Remove the PRESENT state of the device */
6460         netif_device_detach(dev);
6461
6462         pci_save_state(pci_dev);
6463         pci_disable_device(pci_dev);
6464         pci_set_power_state(pci_dev, PCI_D3hot);
6465
6466         priv->suspend_at = get_seconds();
6467
6468         mutex_unlock(&priv->action_mutex);
6469
6470         return 0;
6471 }
6472
6473 static int ipw2100_resume(struct pci_dev *pci_dev)
6474 {
6475         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6476         struct net_device *dev = priv->net_dev;
6477         int err;
6478         u32 val;
6479
6480         if (IPW2100_PM_DISABLED)
6481                 return 0;
6482
6483         mutex_lock(&priv->action_mutex);
6484
6485         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6486
6487         pci_set_power_state(pci_dev, PCI_D0);
6488         err = pci_enable_device(pci_dev);
6489         if (err) {
6490                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6491                        dev->name);
6492                 mutex_unlock(&priv->action_mutex);
6493                 return err;
6494         }
6495         pci_restore_state(pci_dev);
6496
6497         /*
6498          * Suspend/Resume resets the PCI configuration space, so we have to
6499          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6500          * from interfering with C3 CPU state. pci_restore_state won't help
6501          * here since it only restores the first 64 bytes pci config header.
6502          */
6503         pci_read_config_dword(pci_dev, 0x40, &val);
6504         if ((val & 0x0000ff00) != 0)
6505                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6506
6507         /* Set the device back into the PRESENT state; this will also wake
6508          * the queue of needed */
6509         netif_device_attach(dev);
6510
6511         priv->suspend_time = get_seconds() - priv->suspend_at;
6512
6513         /* Bring the device back up */
6514         if (!(priv->status & STATUS_RF_KILL_SW))
6515                 ipw2100_up(priv, 0);
6516
6517         mutex_unlock(&priv->action_mutex);
6518
6519         return 0;
6520 }
6521 #endif
6522
6523 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6524 {
6525         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6526
6527         /* Take down the device; powers it off, etc. */
6528         ipw2100_down(priv);
6529
6530         pci_disable_device(pci_dev);
6531 }
6532
6533 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6534
6535 static DEFINE_PCI_DEVICE_TABLE(ipw2100_pci_id_table) = {
6536         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6537         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6538         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6539         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6540         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6541         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6542         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6543         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6544         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6545         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6546         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6547         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6548         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6549
6550         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6551         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6552         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6553         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6554         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6555
6556         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6557         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6558         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6559         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6560         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6561         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6562         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6563
6564         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6565
6566         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6567         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6568         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6569         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6570         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6571         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6572         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6573
6574         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6575         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6576         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6577         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6578         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6579         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6580
6581         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6582         {0,},
6583 };
6584
6585 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6586
6587 static struct pci_driver ipw2100_pci_driver = {
6588         .name = DRV_NAME,
6589         .id_table = ipw2100_pci_id_table,
6590         .probe = ipw2100_pci_init_one,
6591         .remove = ipw2100_pci_remove_one,
6592 #ifdef CONFIG_PM
6593         .suspend = ipw2100_suspend,
6594         .resume = ipw2100_resume,
6595 #endif
6596         .shutdown = ipw2100_shutdown,
6597 };
6598
6599 /**
6600  * Initialize the ipw2100 driver/module
6601  *
6602  * @returns 0 if ok, < 0 errno node con error.
6603  *
6604  * Note: we cannot init the /proc stuff until the PCI driver is there,
6605  * or we risk an unlikely race condition on someone accessing
6606  * uninitialized data in the PCI dev struct through /proc.
6607  */
6608 static int __init ipw2100_init(void)
6609 {
6610         int ret;
6611
6612         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6613         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6614
6615         pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6616                            PM_QOS_DEFAULT_VALUE);
6617
6618         ret = pci_register_driver(&ipw2100_pci_driver);
6619         if (ret)
6620                 goto out;
6621
6622 #ifdef CONFIG_IPW2100_DEBUG
6623         ipw2100_debug_level = debug;
6624         ret = driver_create_file(&ipw2100_pci_driver.driver,
6625                                  &driver_attr_debug_level);
6626 #endif
6627
6628 out:
6629         return ret;
6630 }
6631
6632 /**
6633  * Cleanup ipw2100 driver registration
6634  */
6635 static void __exit ipw2100_exit(void)
6636 {
6637         /* FIXME: IPG: check that we have no instances of the devices open */
6638 #ifdef CONFIG_IPW2100_DEBUG
6639         driver_remove_file(&ipw2100_pci_driver.driver,
6640                            &driver_attr_debug_level);
6641 #endif
6642         pci_unregister_driver(&ipw2100_pci_driver);
6643         pm_qos_remove_request(&ipw2100_pm_qos_req);
6644 }
6645
6646 module_init(ipw2100_init);
6647 module_exit(ipw2100_exit);
6648
6649 static int ipw2100_wx_get_name(struct net_device *dev,
6650                                struct iw_request_info *info,
6651                                union iwreq_data *wrqu, char *extra)
6652 {
6653         /*
6654          * This can be called at any time.  No action lock required
6655          */
6656
6657         struct ipw2100_priv *priv = libipw_priv(dev);
6658         if (!(priv->status & STATUS_ASSOCIATED))
6659                 strcpy(wrqu->name, "unassociated");
6660         else
6661                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6662
6663         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6664         return 0;
6665 }
6666
6667 static int ipw2100_wx_set_freq(struct net_device *dev,
6668                                struct iw_request_info *info,
6669                                union iwreq_data *wrqu, char *extra)
6670 {
6671         struct ipw2100_priv *priv = libipw_priv(dev);
6672         struct iw_freq *fwrq = &wrqu->freq;
6673         int err = 0;
6674
6675         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6676                 return -EOPNOTSUPP;
6677
6678         mutex_lock(&priv->action_mutex);
6679         if (!(priv->status & STATUS_INITIALIZED)) {
6680                 err = -EIO;
6681                 goto done;
6682         }
6683
6684         /* if setting by freq convert to channel */
6685         if (fwrq->e == 1) {
6686                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6687                         int f = fwrq->m / 100000;
6688                         int c = 0;
6689
6690                         while ((c < REG_MAX_CHANNEL) &&
6691                                (f != ipw2100_frequencies[c]))
6692                                 c++;
6693
6694                         /* hack to fall through */
6695                         fwrq->e = 0;
6696                         fwrq->m = c + 1;
6697                 }
6698         }
6699
6700         if (fwrq->e > 0 || fwrq->m > 1000) {
6701                 err = -EOPNOTSUPP;
6702                 goto done;
6703         } else {                /* Set the channel */
6704                 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6705                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6706         }
6707
6708       done:
6709         mutex_unlock(&priv->action_mutex);
6710         return err;
6711 }
6712
6713 static int ipw2100_wx_get_freq(struct net_device *dev,
6714                                struct iw_request_info *info,
6715                                union iwreq_data *wrqu, char *extra)
6716 {
6717         /*
6718          * This can be called at any time.  No action lock required
6719          */
6720
6721         struct ipw2100_priv *priv = libipw_priv(dev);
6722
6723         wrqu->freq.e = 0;
6724
6725         /* If we are associated, trying to associate, or have a statically
6726          * configured CHANNEL then return that; otherwise return ANY */
6727         if (priv->config & CFG_STATIC_CHANNEL ||
6728             priv->status & STATUS_ASSOCIATED)
6729                 wrqu->freq.m = priv->channel;
6730         else
6731                 wrqu->freq.m = 0;
6732
6733         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6734         return 0;
6735
6736 }
6737
6738 static int ipw2100_wx_set_mode(struct net_device *dev,
6739                                struct iw_request_info *info,
6740                                union iwreq_data *wrqu, char *extra)
6741 {
6742         struct ipw2100_priv *priv = libipw_priv(dev);
6743         int err = 0;
6744
6745         IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6746
6747         if (wrqu->mode == priv->ieee->iw_mode)
6748                 return 0;
6749
6750         mutex_lock(&priv->action_mutex);
6751         if (!(priv->status & STATUS_INITIALIZED)) {
6752                 err = -EIO;
6753                 goto done;
6754         }
6755
6756         switch (wrqu->mode) {
6757 #ifdef CONFIG_IPW2100_MONITOR
6758         case IW_MODE_MONITOR:
6759                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6760                 break;
6761 #endif                          /* CONFIG_IPW2100_MONITOR */
6762         case IW_MODE_ADHOC:
6763                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6764                 break;
6765         case IW_MODE_INFRA:
6766         case IW_MODE_AUTO:
6767         default:
6768                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6769                 break;
6770         }
6771
6772       done:
6773         mutex_unlock(&priv->action_mutex);
6774         return err;
6775 }
6776
6777 static int ipw2100_wx_get_mode(struct net_device *dev,
6778                                struct iw_request_info *info,
6779                                union iwreq_data *wrqu, char *extra)
6780 {
6781         /*
6782          * This can be called at any time.  No action lock required
6783          */
6784
6785         struct ipw2100_priv *priv = libipw_priv(dev);
6786
6787         wrqu->mode = priv->ieee->iw_mode;
6788         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6789
6790         return 0;
6791 }
6792
6793 #define POWER_MODES 5
6794
6795 /* Values are in microsecond */
6796 static const s32 timeout_duration[POWER_MODES] = {
6797         350000,
6798         250000,
6799         75000,
6800         37000,
6801         25000,
6802 };
6803
6804 static const s32 period_duration[POWER_MODES] = {
6805         400000,
6806         700000,
6807         1000000,
6808         1000000,
6809         1000000
6810 };
6811
6812 static int ipw2100_wx_get_range(struct net_device *dev,
6813                                 struct iw_request_info *info,
6814                                 union iwreq_data *wrqu, char *extra)
6815 {
6816         /*
6817          * This can be called at any time.  No action lock required
6818          */
6819
6820         struct ipw2100_priv *priv = libipw_priv(dev);
6821         struct iw_range *range = (struct iw_range *)extra;
6822         u16 val;
6823         int i, level;
6824
6825         wrqu->data.length = sizeof(*range);
6826         memset(range, 0, sizeof(*range));
6827
6828         /* Let's try to keep this struct in the same order as in
6829          * linux/include/wireless.h
6830          */
6831
6832         /* TODO: See what values we can set, and remove the ones we can't
6833          * set, or fill them with some default data.
6834          */
6835
6836         /* ~5 Mb/s real (802.11b) */
6837         range->throughput = 5 * 1000 * 1000;
6838
6839 //      range->sensitivity;     /* signal level threshold range */
6840
6841         range->max_qual.qual = 100;
6842         /* TODO: Find real max RSSI and stick here */
6843         range->max_qual.level = 0;
6844         range->max_qual.noise = 0;
6845         range->max_qual.updated = 7;    /* Updated all three */
6846
6847         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6848         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6849         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6850         range->avg_qual.noise = 0;
6851         range->avg_qual.updated = 7;    /* Updated all three */
6852
6853         range->num_bitrates = RATE_COUNT;
6854
6855         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6856                 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6857         }
6858
6859         range->min_rts = MIN_RTS_THRESHOLD;
6860         range->max_rts = MAX_RTS_THRESHOLD;
6861         range->min_frag = MIN_FRAG_THRESHOLD;
6862         range->max_frag = MAX_FRAG_THRESHOLD;
6863
6864         range->min_pmp = period_duration[0];    /* Minimal PM period */
6865         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6866         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6867         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6868
6869         /* How to decode max/min PM period */
6870         range->pmp_flags = IW_POWER_PERIOD;
6871         /* How to decode max/min PM period */
6872         range->pmt_flags = IW_POWER_TIMEOUT;
6873         /* What PM options are supported */
6874         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6875
6876         range->encoding_size[0] = 5;
6877         range->encoding_size[1] = 13;   /* Different token sizes */
6878         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6879         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6880 //      range->encoding_login_index;            /* token index for login token */
6881
6882         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6883                 range->txpower_capa = IW_TXPOW_DBM;
6884                 range->num_txpower = IW_MAX_TXPOWER;
6885                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6886                      i < IW_MAX_TXPOWER;
6887                      i++, level -=
6888                      ((IPW_TX_POWER_MAX_DBM -
6889                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6890                         range->txpower[i] = level / 16;
6891         } else {
6892                 range->txpower_capa = 0;
6893                 range->num_txpower = 0;
6894         }
6895
6896         /* Set the Wireless Extension versions */
6897         range->we_version_compiled = WIRELESS_EXT;
6898         range->we_version_source = 18;
6899
6900 //      range->retry_capa;      /* What retry options are supported */
6901 //      range->retry_flags;     /* How to decode max/min retry limit */
6902 //      range->r_time_flags;    /* How to decode max/min retry life */
6903 //      range->min_retry;       /* Minimal number of retries */
6904 //      range->max_retry;       /* Maximal number of retries */
6905 //      range->min_r_time;      /* Minimal retry lifetime */
6906 //      range->max_r_time;      /* Maximal retry lifetime */
6907
6908         range->num_channels = FREQ_COUNT;
6909
6910         val = 0;
6911         for (i = 0; i < FREQ_COUNT; i++) {
6912                 // TODO: Include only legal frequencies for some countries
6913 //              if (local->channel_mask & (1 << i)) {
6914                 range->freq[val].i = i + 1;
6915                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6916                 range->freq[val].e = 1;
6917                 val++;
6918 //              }
6919                 if (val == IW_MAX_FREQUENCIES)
6920                         break;
6921         }
6922         range->num_frequency = val;
6923
6924         /* Event capability (kernel + driver) */
6925         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6926                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6927         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6928
6929         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6930                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6931
6932         IPW_DEBUG_WX("GET Range\n");
6933
6934         return 0;
6935 }
6936
6937 static int ipw2100_wx_set_wap(struct net_device *dev,
6938                               struct iw_request_info *info,
6939                               union iwreq_data *wrqu, char *extra)
6940 {
6941         struct ipw2100_priv *priv = libipw_priv(dev);
6942         int err = 0;
6943
6944         // sanity checks
6945         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6946                 return -EINVAL;
6947
6948         mutex_lock(&priv->action_mutex);
6949         if (!(priv->status & STATUS_INITIALIZED)) {
6950                 err = -EIO;
6951                 goto done;
6952         }
6953
6954         if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6955             is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6956                 /* we disable mandatory BSSID association */
6957                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6958                 priv->config &= ~CFG_STATIC_BSSID;
6959                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6960                 goto done;
6961         }
6962
6963         priv->config |= CFG_STATIC_BSSID;
6964         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6965
6966         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6967
6968         IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6969
6970       done:
6971         mutex_unlock(&priv->action_mutex);
6972         return err;
6973 }
6974
6975 static int ipw2100_wx_get_wap(struct net_device *dev,
6976                               struct iw_request_info *info,
6977                               union iwreq_data *wrqu, char *extra)
6978 {
6979         /*
6980          * This can be called at any time.  No action lock required
6981          */
6982
6983         struct ipw2100_priv *priv = libipw_priv(dev);
6984
6985         /* If we are associated, trying to associate, or have a statically
6986          * configured BSSID then return that; otherwise return ANY */
6987         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6988                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6989                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6990         } else
6991                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6992
6993         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6994         return 0;
6995 }
6996
6997 static int ipw2100_wx_set_essid(struct net_device *dev,
6998                                 struct iw_request_info *info,
6999                                 union iwreq_data *wrqu, char *extra)
7000 {
7001         struct ipw2100_priv *priv = libipw_priv(dev);
7002         char *essid = "";       /* ANY */
7003         int length = 0;
7004         int err = 0;
7005         DECLARE_SSID_BUF(ssid);
7006
7007         mutex_lock(&priv->action_mutex);
7008         if (!(priv->status & STATUS_INITIALIZED)) {
7009                 err = -EIO;
7010                 goto done;
7011         }
7012
7013         if (wrqu->essid.flags && wrqu->essid.length) {
7014                 length = wrqu->essid.length;
7015                 essid = extra;
7016         }
7017
7018         if (length == 0) {
7019                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
7020                 priv->config &= ~CFG_STATIC_ESSID;
7021                 err = ipw2100_set_essid(priv, NULL, 0, 0);
7022                 goto done;
7023         }
7024
7025         length = min(length, IW_ESSID_MAX_SIZE);
7026
7027         priv->config |= CFG_STATIC_ESSID;
7028
7029         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7030                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7031                 err = 0;
7032                 goto done;
7033         }
7034
7035         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
7036                      print_ssid(ssid, essid, length), length);
7037
7038         priv->essid_len = length;
7039         memcpy(priv->essid, essid, priv->essid_len);
7040
7041         err = ipw2100_set_essid(priv, essid, length, 0);
7042
7043       done:
7044         mutex_unlock(&priv->action_mutex);
7045         return err;
7046 }
7047
7048 static int ipw2100_wx_get_essid(struct net_device *dev,
7049                                 struct iw_request_info *info,
7050                                 union iwreq_data *wrqu, char *extra)
7051 {
7052         /*
7053          * This can be called at any time.  No action lock required
7054          */
7055
7056         struct ipw2100_priv *priv = libipw_priv(dev);
7057         DECLARE_SSID_BUF(ssid);
7058
7059         /* If we are associated, trying to associate, or have a statically
7060          * configured ESSID then return that; otherwise return ANY */
7061         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7062                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7063                              print_ssid(ssid, priv->essid, priv->essid_len));
7064                 memcpy(extra, priv->essid, priv->essid_len);
7065                 wrqu->essid.length = priv->essid_len;
7066                 wrqu->essid.flags = 1;  /* active */
7067         } else {
7068                 IPW_DEBUG_WX("Getting essid: ANY\n");
7069                 wrqu->essid.length = 0;
7070                 wrqu->essid.flags = 0;  /* active */
7071         }
7072
7073         return 0;
7074 }
7075
7076 static int ipw2100_wx_set_nick(struct net_device *dev,
7077                                struct iw_request_info *info,
7078                                union iwreq_data *wrqu, char *extra)
7079 {
7080         /*
7081          * This can be called at any time.  No action lock required
7082          */
7083
7084         struct ipw2100_priv *priv = libipw_priv(dev);
7085
7086         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7087                 return -E2BIG;
7088
7089         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7090         memset(priv->nick, 0, sizeof(priv->nick));
7091         memcpy(priv->nick, extra, wrqu->data.length);
7092
7093         IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7094
7095         return 0;
7096 }
7097
7098 static int ipw2100_wx_get_nick(struct net_device *dev,
7099                                struct iw_request_info *info,
7100                                union iwreq_data *wrqu, char *extra)
7101 {
7102         /*
7103          * This can be called at any time.  No action lock required
7104          */
7105
7106         struct ipw2100_priv *priv = libipw_priv(dev);
7107
7108         wrqu->data.length = strlen(priv->nick);
7109         memcpy(extra, priv->nick, wrqu->data.length);
7110         wrqu->data.flags = 1;   /* active */
7111
7112         IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7113
7114         return 0;
7115 }
7116
7117 static int ipw2100_wx_set_rate(struct net_device *dev,
7118                                struct iw_request_info *info,
7119                                union iwreq_data *wrqu, char *extra)
7120 {
7121         struct ipw2100_priv *priv = libipw_priv(dev);
7122         u32 target_rate = wrqu->bitrate.value;
7123         u32 rate;
7124         int err = 0;
7125
7126         mutex_lock(&priv->action_mutex);
7127         if (!(priv->status & STATUS_INITIALIZED)) {
7128                 err = -EIO;
7129                 goto done;
7130         }
7131
7132         rate = 0;
7133
7134         if (target_rate == 1000000 ||
7135             (!wrqu->bitrate.fixed && target_rate > 1000000))
7136                 rate |= TX_RATE_1_MBIT;
7137         if (target_rate == 2000000 ||
7138             (!wrqu->bitrate.fixed && target_rate > 2000000))
7139                 rate |= TX_RATE_2_MBIT;
7140         if (target_rate == 5500000 ||
7141             (!wrqu->bitrate.fixed && target_rate > 5500000))
7142                 rate |= TX_RATE_5_5_MBIT;
7143         if (target_rate == 11000000 ||
7144             (!wrqu->bitrate.fixed && target_rate > 11000000))
7145                 rate |= TX_RATE_11_MBIT;
7146         if (rate == 0)
7147                 rate = DEFAULT_TX_RATES;
7148
7149         err = ipw2100_set_tx_rates(priv, rate, 0);
7150
7151         IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7152       done:
7153         mutex_unlock(&priv->action_mutex);
7154         return err;
7155 }
7156
7157 static int ipw2100_wx_get_rate(struct net_device *dev,
7158                                struct iw_request_info *info,
7159                                union iwreq_data *wrqu, char *extra)
7160 {
7161         struct ipw2100_priv *priv = libipw_priv(dev);
7162         int val;
7163         unsigned int len = sizeof(val);
7164         int err = 0;
7165
7166         if (!(priv->status & STATUS_ENABLED) ||
7167             priv->status & STATUS_RF_KILL_MASK ||
7168             !(priv->status & STATUS_ASSOCIATED)) {
7169                 wrqu->bitrate.value = 0;
7170                 return 0;
7171         }
7172
7173         mutex_lock(&priv->action_mutex);
7174         if (!(priv->status & STATUS_INITIALIZED)) {
7175                 err = -EIO;
7176                 goto done;
7177         }
7178
7179         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7180         if (err) {
7181                 IPW_DEBUG_WX("failed querying ordinals.\n");
7182                 goto done;
7183         }
7184
7185         switch (val & TX_RATE_MASK) {
7186         case TX_RATE_1_MBIT:
7187                 wrqu->bitrate.value = 1000000;
7188                 break;
7189         case TX_RATE_2_MBIT:
7190                 wrqu->bitrate.value = 2000000;
7191                 break;
7192         case TX_RATE_5_5_MBIT:
7193                 wrqu->bitrate.value = 5500000;
7194                 break;
7195         case TX_RATE_11_MBIT:
7196                 wrqu->bitrate.value = 11000000;
7197                 break;
7198         default:
7199                 wrqu->bitrate.value = 0;
7200         }
7201
7202         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7203
7204       done:
7205         mutex_unlock(&priv->action_mutex);
7206         return err;
7207 }
7208
7209 static int ipw2100_wx_set_rts(struct net_device *dev,
7210                               struct iw_request_info *info,
7211                               union iwreq_data *wrqu, char *extra)
7212 {
7213         struct ipw2100_priv *priv = libipw_priv(dev);
7214         int value, err;
7215
7216         /* Auto RTS not yet supported */
7217         if (wrqu->rts.fixed == 0)
7218                 return -EINVAL;
7219
7220         mutex_lock(&priv->action_mutex);
7221         if (!(priv->status & STATUS_INITIALIZED)) {
7222                 err = -EIO;
7223                 goto done;
7224         }
7225
7226         if (wrqu->rts.disabled)
7227                 value = priv->rts_threshold | RTS_DISABLED;
7228         else {
7229                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7230                         err = -EINVAL;
7231                         goto done;
7232                 }
7233                 value = wrqu->rts.value;
7234         }
7235
7236         err = ipw2100_set_rts_threshold(priv, value);
7237
7238         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7239       done:
7240         mutex_unlock(&priv->action_mutex);
7241         return err;
7242 }
7243
7244 static int ipw2100_wx_get_rts(struct net_device *dev,
7245                               struct iw_request_info *info,
7246                               union iwreq_data *wrqu, char *extra)
7247 {
7248         /*
7249          * This can be called at any time.  No action lock required
7250          */
7251
7252         struct ipw2100_priv *priv = libipw_priv(dev);
7253
7254         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7255         wrqu->rts.fixed = 1;    /* no auto select */
7256
7257         /* If RTS is set to the default value, then it is disabled */
7258         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7259
7260         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7261
7262         return 0;
7263 }
7264
7265 static int ipw2100_wx_set_txpow(struct net_device *dev,
7266                                 struct iw_request_info *info,
7267                                 union iwreq_data *wrqu, char *extra)
7268 {
7269         struct ipw2100_priv *priv = libipw_priv(dev);
7270         int err = 0, value;
7271         
7272         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7273                 return -EINPROGRESS;
7274
7275         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7276                 return 0;
7277
7278         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7279                 return -EINVAL;
7280
7281         if (wrqu->txpower.fixed == 0)
7282                 value = IPW_TX_POWER_DEFAULT;
7283         else {
7284                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7285                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7286                         return -EINVAL;
7287
7288                 value = wrqu->txpower.value;
7289         }
7290
7291         mutex_lock(&priv->action_mutex);
7292         if (!(priv->status & STATUS_INITIALIZED)) {
7293                 err = -EIO;
7294                 goto done;
7295         }
7296
7297         err = ipw2100_set_tx_power(priv, value);
7298
7299         IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7300
7301       done:
7302         mutex_unlock(&priv->action_mutex);
7303         return err;
7304 }
7305
7306 static int ipw2100_wx_get_txpow(struct net_device *dev,
7307                                 struct iw_request_info *info,
7308                                 union iwreq_data *wrqu, char *extra)
7309 {
7310         /*
7311          * This can be called at any time.  No action lock required
7312          */
7313
7314         struct ipw2100_priv *priv = libipw_priv(dev);
7315
7316         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7317
7318         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7319                 wrqu->txpower.fixed = 0;
7320                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7321         } else {
7322                 wrqu->txpower.fixed = 1;
7323                 wrqu->txpower.value = priv->tx_power;
7324         }
7325
7326         wrqu->txpower.flags = IW_TXPOW_DBM;
7327
7328         IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7329
7330         return 0;
7331 }
7332
7333 static int ipw2100_wx_set_frag(struct net_device *dev,
7334                                struct iw_request_info *info,
7335                                union iwreq_data *wrqu, char *extra)
7336 {
7337         /*
7338          * This can be called at any time.  No action lock required
7339          */
7340
7341         struct ipw2100_priv *priv = libipw_priv(dev);
7342
7343         if (!wrqu->frag.fixed)
7344                 return -EINVAL;
7345
7346         if (wrqu->frag.disabled) {
7347                 priv->frag_threshold |= FRAG_DISABLED;
7348                 priv->ieee->fts = DEFAULT_FTS;
7349         } else {
7350                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7351                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7352                         return -EINVAL;
7353
7354                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7355                 priv->frag_threshold = priv->ieee->fts;
7356         }
7357
7358         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7359
7360         return 0;
7361 }
7362
7363 static int ipw2100_wx_get_frag(struct net_device *dev,
7364                                struct iw_request_info *info,
7365                                union iwreq_data *wrqu, char *extra)
7366 {
7367         /*
7368          * This can be called at any time.  No action lock required
7369          */
7370
7371         struct ipw2100_priv *priv = libipw_priv(dev);
7372         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7373         wrqu->frag.fixed = 0;   /* no auto select */
7374         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7375
7376         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7377
7378         return 0;
7379 }
7380
7381 static int ipw2100_wx_set_retry(struct net_device *dev,
7382                                 struct iw_request_info *info,
7383                                 union iwreq_data *wrqu, char *extra)
7384 {
7385         struct ipw2100_priv *priv = libipw_priv(dev);
7386         int err = 0;
7387
7388         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7389                 return -EINVAL;
7390
7391         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7392                 return 0;
7393
7394         mutex_lock(&priv->action_mutex);
7395         if (!(priv->status & STATUS_INITIALIZED)) {
7396                 err = -EIO;
7397                 goto done;
7398         }
7399
7400         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7401                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7402                 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7403                              wrqu->retry.value);
7404                 goto done;
7405         }
7406
7407         if (wrqu->retry.flags & IW_RETRY_LONG) {
7408                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7409                 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7410                              wrqu->retry.value);
7411                 goto done;
7412         }
7413
7414         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7415         if (!err)
7416                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7417
7418         IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7419
7420       done:
7421         mutex_unlock(&priv->action_mutex);
7422         return err;
7423 }
7424
7425 static int ipw2100_wx_get_retry(struct net_device *dev,
7426                                 struct iw_request_info *info,
7427                                 union iwreq_data *wrqu, char *extra)
7428 {
7429         /*
7430          * This can be called at any time.  No action lock required
7431          */
7432
7433         struct ipw2100_priv *priv = libipw_priv(dev);
7434
7435         wrqu->retry.disabled = 0;       /* can't be disabled */
7436
7437         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7438                 return -EINVAL;
7439
7440         if (wrqu->retry.flags & IW_RETRY_LONG) {
7441                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7442                 wrqu->retry.value = priv->long_retry_limit;
7443         } else {
7444                 wrqu->retry.flags =
7445                     (priv->short_retry_limit !=
7446                      priv->long_retry_limit) ?
7447                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7448
7449                 wrqu->retry.value = priv->short_retry_limit;
7450         }
7451
7452         IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7453
7454         return 0;
7455 }
7456
7457 static int ipw2100_wx_set_scan(struct net_device *dev,
7458                                struct iw_request_info *info,
7459                                union iwreq_data *wrqu, char *extra)
7460 {
7461         struct ipw2100_priv *priv = libipw_priv(dev);
7462         int err = 0;
7463
7464         mutex_lock(&priv->action_mutex);
7465         if (!(priv->status & STATUS_INITIALIZED)) {
7466                 err = -EIO;
7467                 goto done;
7468         }
7469
7470         IPW_DEBUG_WX("Initiating scan...\n");
7471
7472         priv->user_requested_scan = 1;
7473         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7474                 IPW_DEBUG_WX("Start scan failed.\n");
7475
7476                 /* TODO: Mark a scan as pending so when hardware initialized
7477                  *       a scan starts */
7478         }
7479
7480       done:
7481         mutex_unlock(&priv->action_mutex);
7482         return err;
7483 }
7484
7485 static int ipw2100_wx_get_scan(struct net_device *dev,
7486                                struct iw_request_info *info,
7487                                union iwreq_data *wrqu, char *extra)
7488 {
7489         /*
7490          * This can be called at any time.  No action lock required
7491          */
7492
7493         struct ipw2100_priv *priv = libipw_priv(dev);
7494         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7495 }
7496
7497 /*
7498  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7499  */
7500 static int ipw2100_wx_set_encode(struct net_device *dev,
7501                                  struct iw_request_info *info,
7502                                  union iwreq_data *wrqu, char *key)
7503 {
7504         /*
7505          * No check of STATUS_INITIALIZED required
7506          */
7507
7508         struct ipw2100_priv *priv = libipw_priv(dev);
7509         return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7510 }
7511
7512 static int ipw2100_wx_get_encode(struct net_device *dev,
7513                                  struct iw_request_info *info,
7514                                  union iwreq_data *wrqu, char *key)
7515 {
7516         /*
7517          * This can be called at any time.  No action lock required
7518          */
7519
7520         struct ipw2100_priv *priv = libipw_priv(dev);
7521         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7522 }
7523
7524 static int ipw2100_wx_set_power(struct net_device *dev,
7525                                 struct iw_request_info *info,
7526                                 union iwreq_data *wrqu, char *extra)
7527 {
7528         struct ipw2100_priv *priv = libipw_priv(dev);
7529         int err = 0;
7530
7531         mutex_lock(&priv->action_mutex);
7532         if (!(priv->status & STATUS_INITIALIZED)) {
7533                 err = -EIO;
7534                 goto done;
7535         }
7536
7537         if (wrqu->power.disabled) {
7538                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7539                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7540                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7541                 goto done;
7542         }
7543
7544         switch (wrqu->power.flags & IW_POWER_MODE) {
7545         case IW_POWER_ON:       /* If not specified */
7546         case IW_POWER_MODE:     /* If set all mask */
7547         case IW_POWER_ALL_R:    /* If explicitly state all */
7548                 break;
7549         default:                /* Otherwise we don't support it */
7550                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7551                              wrqu->power.flags);
7552                 err = -EOPNOTSUPP;
7553                 goto done;
7554         }
7555
7556         /* If the user hasn't specified a power management mode yet, default
7557          * to BATTERY */
7558         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7559         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7560
7561         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7562
7563       done:
7564         mutex_unlock(&priv->action_mutex);
7565         return err;
7566
7567 }
7568
7569 static int ipw2100_wx_get_power(struct net_device *dev,
7570                                 struct iw_request_info *info,
7571                                 union iwreq_data *wrqu, char *extra)
7572 {
7573         /*
7574          * This can be called at any time.  No action lock required
7575          */
7576
7577         struct ipw2100_priv *priv = libipw_priv(dev);
7578
7579         if (!(priv->power_mode & IPW_POWER_ENABLED))
7580                 wrqu->power.disabled = 1;
7581         else {
7582                 wrqu->power.disabled = 0;
7583                 wrqu->power.flags = 0;
7584         }
7585
7586         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7587
7588         return 0;
7589 }
7590
7591 /*
7592  * WE-18 WPA support
7593  */
7594
7595 /* SIOCSIWGENIE */
7596 static int ipw2100_wx_set_genie(struct net_device *dev,
7597                                 struct iw_request_info *info,
7598                                 union iwreq_data *wrqu, char *extra)
7599 {
7600
7601         struct ipw2100_priv *priv = libipw_priv(dev);
7602         struct libipw_device *ieee = priv->ieee;
7603         u8 *buf;
7604
7605         if (!ieee->wpa_enabled)
7606                 return -EOPNOTSUPP;
7607
7608         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7609             (wrqu->data.length && extra == NULL))
7610                 return -EINVAL;
7611
7612         if (wrqu->data.length) {
7613                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7614                 if (buf == NULL)
7615                         return -ENOMEM;
7616
7617                 kfree(ieee->wpa_ie);
7618                 ieee->wpa_ie = buf;
7619                 ieee->wpa_ie_len = wrqu->data.length;
7620         } else {
7621                 kfree(ieee->wpa_ie);
7622                 ieee->wpa_ie = NULL;
7623                 ieee->wpa_ie_len = 0;
7624         }
7625
7626         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7627
7628         return 0;
7629 }
7630
7631 /* SIOCGIWGENIE */
7632 static int ipw2100_wx_get_genie(struct net_device *dev,
7633                                 struct iw_request_info *info,
7634                                 union iwreq_data *wrqu, char *extra)
7635 {
7636         struct ipw2100_priv *priv = libipw_priv(dev);
7637         struct libipw_device *ieee = priv->ieee;
7638
7639         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7640                 wrqu->data.length = 0;
7641                 return 0;
7642         }
7643
7644         if (wrqu->data.length < ieee->wpa_ie_len)
7645                 return -E2BIG;
7646
7647         wrqu->data.length = ieee->wpa_ie_len;
7648         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7649
7650         return 0;
7651 }
7652
7653 /* SIOCSIWAUTH */
7654 static int ipw2100_wx_set_auth(struct net_device *dev,
7655                                struct iw_request_info *info,
7656                                union iwreq_data *wrqu, char *extra)
7657 {
7658         struct ipw2100_priv *priv = libipw_priv(dev);
7659         struct libipw_device *ieee = priv->ieee;
7660         struct iw_param *param = &wrqu->param;
7661         struct lib80211_crypt_data *crypt;
7662         unsigned long flags;
7663         int ret = 0;
7664
7665         switch (param->flags & IW_AUTH_INDEX) {
7666         case IW_AUTH_WPA_VERSION:
7667         case IW_AUTH_CIPHER_PAIRWISE:
7668         case IW_AUTH_CIPHER_GROUP:
7669         case IW_AUTH_KEY_MGMT:
7670                 /*
7671                  * ipw2200 does not use these parameters
7672                  */
7673                 break;
7674
7675         case IW_AUTH_TKIP_COUNTERMEASURES:
7676                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7677                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7678                         break;
7679
7680                 flags = crypt->ops->get_flags(crypt->priv);
7681
7682                 if (param->value)
7683                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7684                 else
7685                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7686
7687                 crypt->ops->set_flags(flags, crypt->priv);
7688
7689                 break;
7690
7691         case IW_AUTH_DROP_UNENCRYPTED:{
7692                         /* HACK:
7693                          *
7694                          * wpa_supplicant calls set_wpa_enabled when the driver
7695                          * is loaded and unloaded, regardless of if WPA is being
7696                          * used.  No other calls are made which can be used to
7697                          * determine if encryption will be used or not prior to
7698                          * association being expected.  If encryption is not being
7699                          * used, drop_unencrypted is set to false, else true -- we
7700                          * can use this to determine if the CAP_PRIVACY_ON bit should
7701                          * be set.
7702                          */
7703                         struct libipw_security sec = {
7704                                 .flags = SEC_ENABLED,
7705                                 .enabled = param->value,
7706                         };
7707                         priv->ieee->drop_unencrypted = param->value;
7708                         /* We only change SEC_LEVEL for open mode. Others
7709                          * are set by ipw_wpa_set_encryption.
7710                          */
7711                         if (!param->value) {
7712                                 sec.flags |= SEC_LEVEL;
7713                                 sec.level = SEC_LEVEL_0;
7714                         } else {
7715                                 sec.flags |= SEC_LEVEL;
7716                                 sec.level = SEC_LEVEL_1;
7717                         }
7718                         if (priv->ieee->set_security)
7719                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7720                         break;
7721                 }
7722
7723         case IW_AUTH_80211_AUTH_ALG:
7724                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7725                 break;
7726
7727         case IW_AUTH_WPA_ENABLED:
7728                 ret = ipw2100_wpa_enable(priv, param->value);
7729                 break;
7730
7731         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7732                 ieee->ieee802_1x = param->value;
7733                 break;
7734
7735                 //case IW_AUTH_ROAMING_CONTROL:
7736         case IW_AUTH_PRIVACY_INVOKED:
7737                 ieee->privacy_invoked = param->value;
7738                 break;
7739
7740         default:
7741                 return -EOPNOTSUPP;
7742         }
7743         return ret;
7744 }
7745
7746 /* SIOCGIWAUTH */
7747 static int ipw2100_wx_get_auth(struct net_device *dev,
7748                                struct iw_request_info *info,
7749                                union iwreq_data *wrqu, char *extra)
7750 {
7751         struct ipw2100_priv *priv = libipw_priv(dev);
7752         struct libipw_device *ieee = priv->ieee;
7753         struct lib80211_crypt_data *crypt;
7754         struct iw_param *param = &wrqu->param;
7755         int ret = 0;
7756
7757         switch (param->flags & IW_AUTH_INDEX) {
7758         case IW_AUTH_WPA_VERSION:
7759         case IW_AUTH_CIPHER_PAIRWISE:
7760         case IW_AUTH_CIPHER_GROUP:
7761         case IW_AUTH_KEY_MGMT:
7762                 /*
7763                  * wpa_supplicant will control these internally
7764                  */
7765                 ret = -EOPNOTSUPP;
7766                 break;
7767
7768         case IW_AUTH_TKIP_COUNTERMEASURES:
7769                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7770                 if (!crypt || !crypt->ops->get_flags) {
7771                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7772                                           "crypt not set!\n");
7773                         break;
7774                 }
7775
7776                 param->value = (crypt->ops->get_flags(crypt->priv) &
7777                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7778
7779                 break;
7780
7781         case IW_AUTH_DROP_UNENCRYPTED:
7782                 param->value = ieee->drop_unencrypted;
7783                 break;
7784
7785         case IW_AUTH_80211_AUTH_ALG:
7786                 param->value = priv->ieee->sec.auth_mode;
7787                 break;
7788
7789         case IW_AUTH_WPA_ENABLED:
7790                 param->value = ieee->wpa_enabled;
7791                 break;
7792
7793         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7794                 param->value = ieee->ieee802_1x;
7795                 break;
7796
7797         case IW_AUTH_ROAMING_CONTROL:
7798         case IW_AUTH_PRIVACY_INVOKED:
7799                 param->value = ieee->privacy_invoked;
7800                 break;
7801
7802         default:
7803                 return -EOPNOTSUPP;
7804         }
7805         return 0;
7806 }
7807
7808 /* SIOCSIWENCODEEXT */
7809 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7810                                     struct iw_request_info *info,
7811                                     union iwreq_data *wrqu, char *extra)
7812 {
7813         struct ipw2100_priv *priv = libipw_priv(dev);
7814         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7815 }
7816
7817 /* SIOCGIWENCODEEXT */
7818 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7819                                     struct iw_request_info *info,
7820                                     union iwreq_data *wrqu, char *extra)
7821 {
7822         struct ipw2100_priv *priv = libipw_priv(dev);
7823         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7824 }
7825
7826 /* SIOCSIWMLME */
7827 static int ipw2100_wx_set_mlme(struct net_device *dev,
7828                                struct iw_request_info *info,
7829                                union iwreq_data *wrqu, char *extra)
7830 {
7831         struct ipw2100_priv *priv = libipw_priv(dev);
7832         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7833         __le16 reason;
7834
7835         reason = cpu_to_le16(mlme->reason_code);
7836
7837         switch (mlme->cmd) {
7838         case IW_MLME_DEAUTH:
7839                 // silently ignore
7840                 break;
7841
7842         case IW_MLME_DISASSOC:
7843                 ipw2100_disassociate_bssid(priv);
7844                 break;
7845
7846         default:
7847                 return -EOPNOTSUPP;
7848         }
7849         return 0;
7850 }
7851
7852 /*
7853  *
7854  * IWPRIV handlers
7855  *
7856  */
7857 #ifdef CONFIG_IPW2100_MONITOR
7858 static int ipw2100_wx_set_promisc(struct net_device *dev,
7859                                   struct iw_request_info *info,
7860                                   union iwreq_data *wrqu, char *extra)
7861 {
7862         struct ipw2100_priv *priv = libipw_priv(dev);
7863         int *parms = (int *)extra;
7864         int enable = (parms[0] > 0);
7865         int err = 0;
7866
7867         mutex_lock(&priv->action_mutex);
7868         if (!(priv->status & STATUS_INITIALIZED)) {
7869                 err = -EIO;
7870                 goto done;
7871         }
7872
7873         if (enable) {
7874                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7875                         err = ipw2100_set_channel(priv, parms[1], 0);
7876                         goto done;
7877                 }
7878                 priv->channel = parms[1];
7879                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7880         } else {
7881                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7882                         err = ipw2100_switch_mode(priv, priv->last_mode);
7883         }
7884       done:
7885         mutex_unlock(&priv->action_mutex);
7886         return err;
7887 }
7888
7889 static int ipw2100_wx_reset(struct net_device *dev,
7890                             struct iw_request_info *info,
7891                             union iwreq_data *wrqu, char *extra)
7892 {
7893         struct ipw2100_priv *priv = libipw_priv(dev);
7894         if (priv->status & STATUS_INITIALIZED)
7895                 schedule_reset(priv);
7896         return 0;
7897 }
7898
7899 #endif
7900
7901 static int ipw2100_wx_set_powermode(struct net_device *dev,
7902                                     struct iw_request_info *info,
7903                                     union iwreq_data *wrqu, char *extra)
7904 {
7905         struct ipw2100_priv *priv = libipw_priv(dev);
7906         int err = 0, mode = *(int *)extra;
7907
7908         mutex_lock(&priv->action_mutex);
7909         if (!(priv->status & STATUS_INITIALIZED)) {
7910                 err = -EIO;
7911                 goto done;
7912         }
7913
7914         if ((mode < 0) || (mode > POWER_MODES))
7915                 mode = IPW_POWER_AUTO;
7916
7917         if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7918                 err = ipw2100_set_power_mode(priv, mode);
7919       done:
7920         mutex_unlock(&priv->action_mutex);
7921         return err;
7922 }
7923
7924 #define MAX_POWER_STRING 80
7925 static int ipw2100_wx_get_powermode(struct net_device *dev,
7926                                     struct iw_request_info *info,
7927                                     union iwreq_data *wrqu, char *extra)
7928 {
7929         /*
7930          * This can be called at any time.  No action lock required
7931          */
7932
7933         struct ipw2100_priv *priv = libipw_priv(dev);
7934         int level = IPW_POWER_LEVEL(priv->power_mode);
7935         s32 timeout, period;
7936
7937         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7938                 snprintf(extra, MAX_POWER_STRING,
7939                          "Power save level: %d (Off)", level);
7940         } else {
7941                 switch (level) {
7942                 case IPW_POWER_MODE_CAM:
7943                         snprintf(extra, MAX_POWER_STRING,
7944                                  "Power save level: %d (None)", level);
7945                         break;
7946                 case IPW_POWER_AUTO:
7947                         snprintf(extra, MAX_POWER_STRING,
7948                                  "Power save level: %d (Auto)", level);
7949                         break;
7950                 default:
7951                         timeout = timeout_duration[level - 1] / 1000;
7952                         period = period_duration[level - 1] / 1000;
7953                         snprintf(extra, MAX_POWER_STRING,
7954                                  "Power save level: %d "
7955                                  "(Timeout %dms, Period %dms)",
7956                                  level, timeout, period);
7957                 }
7958         }
7959
7960         wrqu->data.length = strlen(extra) + 1;
7961
7962         return 0;
7963 }
7964
7965 static int ipw2100_wx_set_preamble(struct net_device *dev,
7966                                    struct iw_request_info *info,
7967                                    union iwreq_data *wrqu, char *extra)
7968 {
7969         struct ipw2100_priv *priv = libipw_priv(dev);
7970         int err, mode = *(int *)extra;
7971
7972         mutex_lock(&priv->action_mutex);
7973         if (!(priv->status & STATUS_INITIALIZED)) {
7974                 err = -EIO;
7975                 goto done;
7976         }
7977
7978         if (mode == 1)
7979                 priv->config |= CFG_LONG_PREAMBLE;
7980         else if (mode == 0)
7981                 priv->config &= ~CFG_LONG_PREAMBLE;
7982         else {
7983                 err = -EINVAL;
7984                 goto done;
7985         }
7986
7987         err = ipw2100_system_config(priv, 0);
7988
7989       done:
7990         mutex_unlock(&priv->action_mutex);
7991         return err;
7992 }
7993
7994 static int ipw2100_wx_get_preamble(struct net_device *dev,
7995                                    struct iw_request_info *info,
7996                                    union iwreq_data *wrqu, char *extra)
7997 {
7998         /*
7999          * This can be called at any time.  No action lock required
8000          */
8001
8002         struct ipw2100_priv *priv = libipw_priv(dev);
8003
8004         if (priv->config & CFG_LONG_PREAMBLE)
8005                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
8006         else
8007                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
8008
8009         return 0;
8010 }
8011
8012 #ifdef CONFIG_IPW2100_MONITOR
8013 static int ipw2100_wx_set_crc_check(struct net_device *dev,
8014                                     struct iw_request_info *info,
8015                                     union iwreq_data *wrqu, char *extra)
8016 {
8017         struct ipw2100_priv *priv = libipw_priv(dev);
8018         int err, mode = *(int *)extra;
8019
8020         mutex_lock(&priv->action_mutex);
8021         if (!(priv->status & STATUS_INITIALIZED)) {
8022                 err = -EIO;
8023                 goto done;
8024         }
8025
8026         if (mode == 1)
8027                 priv->config |= CFG_CRC_CHECK;
8028         else if (mode == 0)
8029                 priv->config &= ~CFG_CRC_CHECK;
8030         else {
8031                 err = -EINVAL;
8032                 goto done;
8033         }
8034         err = 0;
8035
8036       done:
8037         mutex_unlock(&priv->action_mutex);
8038         return err;
8039 }
8040
8041 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8042                                     struct iw_request_info *info,
8043                                     union iwreq_data *wrqu, char *extra)
8044 {
8045         /*
8046          * This can be called at any time.  No action lock required
8047          */
8048
8049         struct ipw2100_priv *priv = libipw_priv(dev);
8050
8051         if (priv->config & CFG_CRC_CHECK)
8052                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8053         else
8054                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8055
8056         return 0;
8057 }
8058 #endif                          /* CONFIG_IPW2100_MONITOR */
8059
8060 static iw_handler ipw2100_wx_handlers[] = {
8061         IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8062         IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8063         IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8064         IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8065         IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8066         IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8067         IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8068         IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8069         IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8070         IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8071         IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8072         IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8073         IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8074         IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8075         IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8076         IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8077         IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8078         IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8079         IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8080         IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8081         IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8082         IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8083         IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8084         IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8085         IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8086         IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8087         IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8088         IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8089         IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8090         IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8091         IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8092         IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8093         IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8094         IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8095         IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8096 };
8097
8098 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8099 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8100 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8101 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8102 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8103 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8104 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8105 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8106
8107 static const struct iw_priv_args ipw2100_private_args[] = {
8108
8109 #ifdef CONFIG_IPW2100_MONITOR
8110         {
8111          IPW2100_PRIV_SET_MONITOR,
8112          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8113         {
8114          IPW2100_PRIV_RESET,
8115          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8116 #endif                          /* CONFIG_IPW2100_MONITOR */
8117
8118         {
8119          IPW2100_PRIV_SET_POWER,
8120          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8121         {
8122          IPW2100_PRIV_GET_POWER,
8123          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8124          "get_power"},
8125         {
8126          IPW2100_PRIV_SET_LONGPREAMBLE,
8127          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8128         {
8129          IPW2100_PRIV_GET_LONGPREAMBLE,
8130          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8131 #ifdef CONFIG_IPW2100_MONITOR
8132         {
8133          IPW2100_PRIV_SET_CRC_CHECK,
8134          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8135         {
8136          IPW2100_PRIV_GET_CRC_CHECK,
8137          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8138 #endif                          /* CONFIG_IPW2100_MONITOR */
8139 };
8140
8141 static iw_handler ipw2100_private_handler[] = {
8142 #ifdef CONFIG_IPW2100_MONITOR
8143         ipw2100_wx_set_promisc,
8144         ipw2100_wx_reset,
8145 #else                           /* CONFIG_IPW2100_MONITOR */
8146         NULL,
8147         NULL,
8148 #endif                          /* CONFIG_IPW2100_MONITOR */
8149         ipw2100_wx_set_powermode,
8150         ipw2100_wx_get_powermode,
8151         ipw2100_wx_set_preamble,
8152         ipw2100_wx_get_preamble,
8153 #ifdef CONFIG_IPW2100_MONITOR
8154         ipw2100_wx_set_crc_check,
8155         ipw2100_wx_get_crc_check,
8156 #else                           /* CONFIG_IPW2100_MONITOR */
8157         NULL,
8158         NULL,
8159 #endif                          /* CONFIG_IPW2100_MONITOR */
8160 };
8161
8162 /*
8163  * Get wireless statistics.
8164  * Called by /proc/net/wireless
8165  * Also called by SIOCGIWSTATS
8166  */
8167 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8168 {
8169         enum {
8170                 POOR = 30,
8171                 FAIR = 60,
8172                 GOOD = 80,
8173                 VERY_GOOD = 90,
8174                 EXCELLENT = 95,
8175                 PERFECT = 100
8176         };
8177         int rssi_qual;
8178         int tx_qual;
8179         int beacon_qual;
8180         int quality;
8181
8182         struct ipw2100_priv *priv = libipw_priv(dev);
8183         struct iw_statistics *wstats;
8184         u32 rssi, tx_retries, missed_beacons, tx_failures;
8185         u32 ord_len = sizeof(u32);
8186
8187         if (!priv)
8188                 return (struct iw_statistics *)NULL;
8189
8190         wstats = &priv->wstats;
8191
8192         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8193          * ipw2100_wx_wireless_stats seems to be called before fw is
8194          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8195          * and associated; if not associcated, the values are all meaningless
8196          * anyway, so set them all to NULL and INVALID */
8197         if (!(priv->status & STATUS_ASSOCIATED)) {
8198                 wstats->miss.beacon = 0;
8199                 wstats->discard.retries = 0;
8200                 wstats->qual.qual = 0;
8201                 wstats->qual.level = 0;
8202                 wstats->qual.noise = 0;
8203                 wstats->qual.updated = 7;
8204                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8205                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8206                 return wstats;
8207         }
8208
8209         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8210                                 &missed_beacons, &ord_len))
8211                 goto fail_get_ordinal;
8212
8213         /* If we don't have a connection the quality and level is 0 */
8214         if (!(priv->status & STATUS_ASSOCIATED)) {
8215                 wstats->qual.qual = 0;
8216                 wstats->qual.level = 0;
8217         } else {
8218                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8219                                         &rssi, &ord_len))
8220                         goto fail_get_ordinal;
8221                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8222                 if (rssi < 10)
8223                         rssi_qual = rssi * POOR / 10;
8224                 else if (rssi < 15)
8225                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8226                 else if (rssi < 20)
8227                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8228                 else if (rssi < 30)
8229                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8230                             10 + GOOD;
8231                 else
8232                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8233                             10 + VERY_GOOD;
8234
8235                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8236                                         &tx_retries, &ord_len))
8237                         goto fail_get_ordinal;
8238
8239                 if (tx_retries > 75)
8240                         tx_qual = (90 - tx_retries) * POOR / 15;
8241                 else if (tx_retries > 70)
8242                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8243                 else if (tx_retries > 65)
8244                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8245                 else if (tx_retries > 50)
8246                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8247                             15 + GOOD;
8248                 else
8249                         tx_qual = (50 - tx_retries) *
8250                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8251
8252                 if (missed_beacons > 50)
8253                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8254                 else if (missed_beacons > 40)
8255                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8256                             10 + POOR;
8257                 else if (missed_beacons > 32)
8258                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8259                             18 + FAIR;
8260                 else if (missed_beacons > 20)
8261                         beacon_qual = (32 - missed_beacons) *
8262                             (VERY_GOOD - GOOD) / 20 + GOOD;
8263                 else
8264                         beacon_qual = (20 - missed_beacons) *
8265                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8266
8267                 quality = min(tx_qual, rssi_qual);
8268                 quality = min(beacon_qual, quality);
8269
8270 #ifdef CONFIG_IPW2100_DEBUG
8271                 if (beacon_qual == quality)
8272                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8273                 else if (tx_qual == quality)
8274                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8275                 else if (quality != 100)
8276                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8277                 else
8278                         IPW_DEBUG_WX("Quality not clamped.\n");
8279 #endif
8280
8281                 wstats->qual.qual = quality;
8282                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8283         }
8284
8285         wstats->qual.noise = 0;
8286         wstats->qual.updated = 7;
8287         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8288
8289         /* FIXME: this is percent and not a # */
8290         wstats->miss.beacon = missed_beacons;
8291
8292         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8293                                 &tx_failures, &ord_len))
8294                 goto fail_get_ordinal;
8295         wstats->discard.retries = tx_failures;
8296
8297         return wstats;
8298
8299       fail_get_ordinal:
8300         IPW_DEBUG_WX("failed querying ordinals.\n");
8301
8302         return (struct iw_statistics *)NULL;
8303 }
8304
8305 static struct iw_handler_def ipw2100_wx_handler_def = {
8306         .standard = ipw2100_wx_handlers,
8307         .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8308         .num_private = ARRAY_SIZE(ipw2100_private_handler),
8309         .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8310         .private = (iw_handler *) ipw2100_private_handler,
8311         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8312         .get_wireless_stats = ipw2100_wx_wireless_stats,
8313 };
8314
8315 static void ipw2100_wx_event_work(struct work_struct *work)
8316 {
8317         struct ipw2100_priv *priv =
8318                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8319         union iwreq_data wrqu;
8320         unsigned int len = ETH_ALEN;
8321
8322         if (priv->status & STATUS_STOPPING)
8323                 return;
8324
8325         mutex_lock(&priv->action_mutex);
8326
8327         IPW_DEBUG_WX("enter\n");
8328
8329         mutex_unlock(&priv->action_mutex);
8330
8331         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8332
8333         /* Fetch BSSID from the hardware */
8334         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8335             priv->status & STATUS_RF_KILL_MASK ||
8336             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8337                                 &priv->bssid, &len)) {
8338                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8339         } else {
8340                 /* We now have the BSSID, so can finish setting to the full
8341                  * associated state */
8342                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8343                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8344                 priv->status &= ~STATUS_ASSOCIATING;
8345                 priv->status |= STATUS_ASSOCIATED;
8346                 netif_carrier_on(priv->net_dev);
8347                 netif_wake_queue(priv->net_dev);
8348         }
8349
8350         if (!(priv->status & STATUS_ASSOCIATED)) {
8351                 IPW_DEBUG_WX("Configuring ESSID\n");
8352                 mutex_lock(&priv->action_mutex);
8353                 /* This is a disassociation event, so kick the firmware to
8354                  * look for another AP */
8355                 if (priv->config & CFG_STATIC_ESSID)
8356                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8357                                           0);
8358                 else
8359                         ipw2100_set_essid(priv, NULL, 0, 0);
8360                 mutex_unlock(&priv->action_mutex);
8361         }
8362
8363         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8364 }
8365
8366 #define IPW2100_FW_MAJOR_VERSION 1
8367 #define IPW2100_FW_MINOR_VERSION 3
8368
8369 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8370 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8371
8372 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8373                              IPW2100_FW_MAJOR_VERSION)
8374
8375 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8376 "." __stringify(IPW2100_FW_MINOR_VERSION)
8377
8378 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8379
8380 /*
8381
8382 BINARY FIRMWARE HEADER FORMAT
8383
8384 offset      length   desc
8385 0           2        version
8386 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8387 4           4        fw_len
8388 8           4        uc_len
8389 C           fw_len   firmware data
8390 12 + fw_len uc_len   microcode data
8391
8392 */
8393
8394 struct ipw2100_fw_header {
8395         short version;
8396         short mode;
8397         unsigned int fw_size;
8398         unsigned int uc_size;
8399 } __packed;
8400
8401 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8402 {
8403         struct ipw2100_fw_header *h =
8404             (struct ipw2100_fw_header *)fw->fw_entry->data;
8405
8406         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8407                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8408                        "(detected version id of %u). "
8409                        "See Documentation/networking/README.ipw2100\n",
8410                        h->version);
8411                 return 1;
8412         }
8413
8414         fw->version = h->version;
8415         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8416         fw->fw.size = h->fw_size;
8417         fw->uc.data = fw->fw.data + h->fw_size;
8418         fw->uc.size = h->uc_size;
8419
8420         return 0;
8421 }
8422
8423 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8424                                 struct ipw2100_fw *fw)
8425 {
8426         char *fw_name;
8427         int rc;
8428
8429         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8430                        priv->net_dev->name);
8431
8432         switch (priv->ieee->iw_mode) {
8433         case IW_MODE_ADHOC:
8434                 fw_name = IPW2100_FW_NAME("-i");
8435                 break;
8436 #ifdef CONFIG_IPW2100_MONITOR
8437         case IW_MODE_MONITOR:
8438                 fw_name = IPW2100_FW_NAME("-p");
8439                 break;
8440 #endif
8441         case IW_MODE_INFRA:
8442         default:
8443                 fw_name = IPW2100_FW_NAME("");
8444                 break;
8445         }
8446
8447         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8448
8449         if (rc < 0) {
8450                 printk(KERN_ERR DRV_NAME ": "
8451                        "%s: Firmware '%s' not available or load failed.\n",
8452                        priv->net_dev->name, fw_name);
8453                 return rc;
8454         }
8455         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8456                        fw->fw_entry->size);
8457
8458         ipw2100_mod_firmware_load(fw);
8459
8460         return 0;
8461 }
8462
8463 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8464 #ifdef CONFIG_IPW2100_MONITOR
8465 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8466 #endif
8467 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8468
8469 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8470                                      struct ipw2100_fw *fw)
8471 {
8472         fw->version = 0;
8473         release_firmware(fw->fw_entry);
8474         fw->fw_entry = NULL;
8475 }
8476
8477 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8478                                  size_t max)
8479 {
8480         char ver[MAX_FW_VERSION_LEN];
8481         u32 len = MAX_FW_VERSION_LEN;
8482         u32 tmp;
8483         int i;
8484         /* firmware version is an ascii string (max len of 14) */
8485         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8486                 return -EIO;
8487         tmp = max;
8488         if (len >= max)
8489                 len = max - 1;
8490         for (i = 0; i < len; i++)
8491                 buf[i] = ver[i];
8492         buf[i] = '\0';
8493         return tmp;
8494 }
8495
8496 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8497                                     size_t max)
8498 {
8499         u32 ver;
8500         u32 len = sizeof(ver);
8501         /* microcode version is a 32 bit integer */
8502         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8503                 return -EIO;
8504         return snprintf(buf, max, "%08X", ver);
8505 }
8506
8507 /*
8508  * On exit, the firmware will have been freed from the fw list
8509  */
8510 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8511 {
8512         /* firmware is constructed of N contiguous entries, each entry is
8513          * structured as:
8514          *
8515          * offset    sie         desc
8516          * 0         4           address to write to
8517          * 4         2           length of data run
8518          * 6         length      data
8519          */
8520         unsigned int addr;
8521         unsigned short len;
8522
8523         const unsigned char *firmware_data = fw->fw.data;
8524         unsigned int firmware_data_left = fw->fw.size;
8525
8526         while (firmware_data_left > 0) {
8527                 addr = *(u32 *) (firmware_data);
8528                 firmware_data += 4;
8529                 firmware_data_left -= 4;
8530
8531                 len = *(u16 *) (firmware_data);
8532                 firmware_data += 2;
8533                 firmware_data_left -= 2;
8534
8535                 if (len > 32) {
8536                         printk(KERN_ERR DRV_NAME ": "
8537                                "Invalid firmware run-length of %d bytes\n",
8538                                len);
8539                         return -EINVAL;
8540                 }
8541
8542                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8543                 firmware_data += len;
8544                 firmware_data_left -= len;
8545         }
8546
8547         return 0;
8548 }
8549
8550 struct symbol_alive_response {
8551         u8 cmd_id;
8552         u8 seq_num;
8553         u8 ucode_rev;
8554         u8 eeprom_valid;
8555         u16 valid_flags;
8556         u8 IEEE_addr[6];
8557         u16 flags;
8558         u16 pcb_rev;
8559         u16 clock_settle_time;  // 1us LSB
8560         u16 powerup_settle_time;        // 1us LSB
8561         u16 hop_settle_time;    // 1us LSB
8562         u8 date[3];             // month, day, year
8563         u8 time[2];             // hours, minutes
8564         u8 ucode_valid;
8565 };
8566
8567 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8568                                   struct ipw2100_fw *fw)
8569 {
8570         struct net_device *dev = priv->net_dev;
8571         const unsigned char *microcode_data = fw->uc.data;
8572         unsigned int microcode_data_left = fw->uc.size;
8573         void __iomem *reg = priv->ioaddr;
8574
8575         struct symbol_alive_response response;
8576         int i, j;
8577         u8 data;
8578
8579         /* Symbol control */
8580         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8581         readl(reg);
8582         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8583         readl(reg);
8584
8585         /* HW config */
8586         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8587         readl(reg);
8588         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8589         readl(reg);
8590
8591         /* EN_CS_ACCESS bit to reset control store pointer */
8592         write_nic_byte(dev, 0x210000, 0x40);
8593         readl(reg);
8594         write_nic_byte(dev, 0x210000, 0x0);
8595         readl(reg);
8596         write_nic_byte(dev, 0x210000, 0x40);
8597         readl(reg);
8598
8599         /* copy microcode from buffer into Symbol */
8600
8601         while (microcode_data_left > 0) {
8602                 write_nic_byte(dev, 0x210010, *microcode_data++);
8603                 write_nic_byte(dev, 0x210010, *microcode_data++);
8604                 microcode_data_left -= 2;
8605         }
8606
8607         /* EN_CS_ACCESS bit to reset the control store pointer */
8608         write_nic_byte(dev, 0x210000, 0x0);
8609         readl(reg);
8610
8611         /* Enable System (Reg 0)
8612          * first enable causes garbage in RX FIFO */
8613         write_nic_byte(dev, 0x210000, 0x0);
8614         readl(reg);
8615         write_nic_byte(dev, 0x210000, 0x80);
8616         readl(reg);
8617
8618         /* Reset External Baseband Reg */
8619         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8620         readl(reg);
8621         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8622         readl(reg);
8623
8624         /* HW Config (Reg 5) */
8625         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8626         readl(reg);
8627         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8628         readl(reg);
8629
8630         /* Enable System (Reg 0)
8631          * second enable should be OK */
8632         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8633         readl(reg);
8634         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8635
8636         /* check Symbol is enabled - upped this from 5 as it wasn't always
8637          * catching the update */
8638         for (i = 0; i < 10; i++) {
8639                 udelay(10);
8640
8641                 /* check Dino is enabled bit */
8642                 read_nic_byte(dev, 0x210000, &data);
8643                 if (data & 0x1)
8644                         break;
8645         }
8646
8647         if (i == 10) {
8648                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8649                        dev->name);
8650                 return -EIO;
8651         }
8652
8653         /* Get Symbol alive response */
8654         for (i = 0; i < 30; i++) {
8655                 /* Read alive response structure */
8656                 for (j = 0;
8657                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8658                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8659
8660                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8661                         break;
8662                 udelay(10);
8663         }
8664
8665         if (i == 30) {
8666                 printk(KERN_ERR DRV_NAME
8667                        ": %s: No response from Symbol - hw not alive\n",
8668                        dev->name);
8669                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8670                 return -EIO;
8671         }
8672
8673         return 0;
8674 }