]> Pileus Git - ~andy/linux/blob - drivers/net/wireless/ipw2x00/ipw2100.c
Merge branch 'for-jens' of git://git.drbd.org/linux-drbd into for-3.6/drivers
[~andy/linux] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169 #include "ipw.h"
170
171 #define IPW2100_VERSION "git-1.2.2"
172
173 #define DRV_NAME        "ipw2100"
174 #define DRV_VERSION     IPW2100_VERSION
175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
177
178 static struct pm_qos_request ipw2100_pm_qos_req;
179
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG        /* Reception debugging */
183 #endif
184
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217         if (ipw2100_debug_level & (level)) { \
218                 printk(KERN_DEBUG "ipw2100: %c %s ", \
219                        in_interrupt() ? 'I' : 'U',  __func__); \
220                 printk(message); \
221         } \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif                          /* CONFIG_IPW2100_DEBUG */
226
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229         "undefined",
230         "unused",               /* HOST_ATTENTION */
231         "HOST_COMPLETE",
232         "unused",               /* SLEEP */
233         "unused",               /* HOST_POWER_DOWN */
234         "unused",
235         "SYSTEM_CONFIG",
236         "unused",               /* SET_IMR */
237         "SSID",
238         "MANDATORY_BSSID",
239         "AUTHENTICATION_TYPE",
240         "ADAPTER_ADDRESS",
241         "PORT_TYPE",
242         "INTERNATIONAL_MODE",
243         "CHANNEL",
244         "RTS_THRESHOLD",
245         "FRAG_THRESHOLD",
246         "POWER_MODE",
247         "TX_RATES",
248         "BASIC_TX_RATES",
249         "WEP_KEY_INFO",
250         "unused",
251         "unused",
252         "unused",
253         "unused",
254         "WEP_KEY_INDEX",
255         "WEP_FLAGS",
256         "ADD_MULTICAST",
257         "CLEAR_ALL_MULTICAST",
258         "BEACON_INTERVAL",
259         "ATIM_WINDOW",
260         "CLEAR_STATISTICS",
261         "undefined",
262         "undefined",
263         "undefined",
264         "undefined",
265         "TX_POWER_INDEX",
266         "undefined",
267         "undefined",
268         "undefined",
269         "undefined",
270         "undefined",
271         "undefined",
272         "BROADCAST_SCAN",
273         "CARD_DISABLE",
274         "PREFERRED_BSSID",
275         "SET_SCAN_OPTIONS",
276         "SCAN_DWELL_TIME",
277         "SWEEP_TABLE",
278         "AP_OR_STATION_TABLE",
279         "GROUP_ORDINALS",
280         "SHORT_RETRY_LIMIT",
281         "LONG_RETRY_LIMIT",
282         "unused",               /* SAVE_CALIBRATION */
283         "unused",               /* RESTORE_CALIBRATION */
284         "undefined",
285         "undefined",
286         "undefined",
287         "HOST_PRE_POWER_DOWN",
288         "unused",               /* HOST_INTERRUPT_COALESCING */
289         "undefined",
290         "CARD_DISABLE_PHY_OFF",
291         "MSDU_TX_RATES",
292         "undefined",
293         "SET_STATION_STAT_BITS",
294         "CLEAR_STATIONS_STAT_BITS",
295         "LEAP_ROGUE_MODE",
296         "SET_SECURITY_INFORMATION",
297         "DISASSOCIATION_BSSID",
298         "SET_WPA_ASS_IE"
299 };
300 #endif
301
302 static const long ipw2100_frequencies[] = {
303         2412, 2417, 2422, 2427,
304         2432, 2437, 2442, 2447,
305         2452, 2457, 2462, 2467,
306         2472, 2484
307 };
308
309 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
310
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312         { .bitrate = 10 },
313         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330                                struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332                                 struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334                                  size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336                                     size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338                                      struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340                                   struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static struct iw_handler_def ipw2100_wx_handler_def;
344
345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347         struct ipw2100_priv *priv = libipw_priv(dev);
348
349         *val = ioread32(priv->ioaddr + reg);
350         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352
353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355         struct ipw2100_priv *priv = libipw_priv(dev);
356
357         iowrite32(val, priv->ioaddr + reg);
358         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360
361 static inline void read_register_word(struct net_device *dev, u32 reg,
362                                       u16 * val)
363 {
364         struct ipw2100_priv *priv = libipw_priv(dev);
365
366         *val = ioread16(priv->ioaddr + reg);
367         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372         struct ipw2100_priv *priv = libipw_priv(dev);
373
374         *val = ioread8(priv->ioaddr + reg);
375         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380         struct ipw2100_priv *priv = libipw_priv(dev);
381
382         iowrite16(val, priv->ioaddr + reg);
383         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385
386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388         struct ipw2100_priv *priv = libipw_priv(dev);
389
390         iowrite8(val, priv->ioaddr + reg);
391         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393
394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397                        addr & IPW_REG_INDIRECT_ADDR_MASK);
398         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400
401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404                        addr & IPW_REG_INDIRECT_ADDR_MASK);
405         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407
408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411                        addr & IPW_REG_INDIRECT_ADDR_MASK);
412         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414
415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418                        addr & IPW_REG_INDIRECT_ADDR_MASK);
419         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421
422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425                        addr & IPW_REG_INDIRECT_ADDR_MASK);
426         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428
429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432                        addr & IPW_REG_INDIRECT_ADDR_MASK);
433         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435
436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439                        addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441
442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446
447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448                                     const u8 * buf)
449 {
450         u32 aligned_addr;
451         u32 aligned_len;
452         u32 dif_len;
453         u32 i;
454
455         /* read first nibble byte by byte */
456         aligned_addr = addr & (~0x3);
457         dif_len = addr - aligned_addr;
458         if (dif_len) {
459                 /* Start reading at aligned_addr + dif_len */
460                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461                                aligned_addr);
462                 for (i = dif_len; i < 4; i++, buf++)
463                         write_register_byte(dev,
464                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
465                                             *buf);
466
467                 len -= dif_len;
468                 aligned_addr += 4;
469         }
470
471         /* read DWs through autoincrement registers */
472         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473         aligned_len = len & (~0x3);
474         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476
477         /* copy the last nibble */
478         dif_len = len - aligned_len;
479         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480         for (i = 0; i < dif_len; i++, buf++)
481                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482                                     *buf);
483 }
484
485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486                                    u8 * buf)
487 {
488         u32 aligned_addr;
489         u32 aligned_len;
490         u32 dif_len;
491         u32 i;
492
493         /* read first nibble byte by byte */
494         aligned_addr = addr & (~0x3);
495         dif_len = addr - aligned_addr;
496         if (dif_len) {
497                 /* Start reading at aligned_addr + dif_len */
498                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499                                aligned_addr);
500                 for (i = dif_len; i < 4; i++, buf++)
501                         read_register_byte(dev,
502                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
503                                            buf);
504
505                 len -= dif_len;
506                 aligned_addr += 4;
507         }
508
509         /* read DWs through autoincrement registers */
510         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511         aligned_len = len & (~0x3);
512         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514
515         /* copy the last nibble */
516         dif_len = len - aligned_len;
517         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518         for (i = 0; i < dif_len; i++, buf++)
519                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521
522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524         u32 dbg;
525
526         read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527
528         return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530
531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532                                void *val, u32 * len)
533 {
534         struct ipw2100_ordinals *ordinals = &priv->ordinals;
535         u32 addr;
536         u32 field_info;
537         u16 field_len;
538         u16 field_count;
539         u32 total_length;
540
541         if (ordinals->table1_addr == 0) {
542                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543                        "before they have been loaded.\n");
544                 return -EINVAL;
545         }
546
547         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
550
551                         printk(KERN_WARNING DRV_NAME
552                                ": ordinal buffer length too small, need %zd\n",
553                                IPW_ORD_TAB_1_ENTRY_SIZE);
554
555                         return -EINVAL;
556                 }
557
558                 read_nic_dword(priv->net_dev,
559                                ordinals->table1_addr + (ord << 2), &addr);
560                 read_nic_dword(priv->net_dev, addr, val);
561
562                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
563
564                 return 0;
565         }
566
567         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568
569                 ord -= IPW_START_ORD_TAB_2;
570
571                 /* get the address of statistic */
572                 read_nic_dword(priv->net_dev,
573                                ordinals->table2_addr + (ord << 3), &addr);
574
575                 /* get the second DW of statistics ;
576                  * two 16-bit words - first is length, second is count */
577                 read_nic_dword(priv->net_dev,
578                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
579                                &field_info);
580
581                 /* get each entry length */
582                 field_len = *((u16 *) & field_info);
583
584                 /* get number of entries */
585                 field_count = *(((u16 *) & field_info) + 1);
586
587                 /* abort if no enough memory */
588                 total_length = field_len * field_count;
589                 if (total_length > *len) {
590                         *len = total_length;
591                         return -EINVAL;
592                 }
593
594                 *len = total_length;
595                 if (!total_length)
596                         return 0;
597
598                 /* read the ordinal data from the SRAM */
599                 read_nic_memory(priv->net_dev, addr, total_length, val);
600
601                 return 0;
602         }
603
604         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605                "in table 2\n", ord);
606
607         return -EINVAL;
608 }
609
610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611                                u32 * len)
612 {
613         struct ipw2100_ordinals *ordinals = &priv->ordinals;
614         u32 addr;
615
616         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
619                         IPW_DEBUG_INFO("wrong size\n");
620                         return -EINVAL;
621                 }
622
623                 read_nic_dword(priv->net_dev,
624                                ordinals->table1_addr + (ord << 2), &addr);
625
626                 write_nic_dword(priv->net_dev, addr, *val);
627
628                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
629
630                 return 0;
631         }
632
633         IPW_DEBUG_INFO("wrong table\n");
634         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635                 return -EINVAL;
636
637         return -EINVAL;
638 }
639
640 static char *snprint_line(char *buf, size_t count,
641                           const u8 * data, u32 len, u32 ofs)
642 {
643         int out, i, j, l;
644         char c;
645
646         out = snprintf(buf, count, "%08X", ofs);
647
648         for (l = 0, i = 0; i < 2; i++) {
649                 out += snprintf(buf + out, count - out, " ");
650                 for (j = 0; j < 8 && l < len; j++, l++)
651                         out += snprintf(buf + out, count - out, "%02X ",
652                                         data[(i * 8 + j)]);
653                 for (; j < 8; j++)
654                         out += snprintf(buf + out, count - out, "   ");
655         }
656
657         out += snprintf(buf + out, count - out, " ");
658         for (l = 0, i = 0; i < 2; i++) {
659                 out += snprintf(buf + out, count - out, " ");
660                 for (j = 0; j < 8 && l < len; j++, l++) {
661                         c = data[(i * 8 + j)];
662                         if (!isascii(c) || !isprint(c))
663                                 c = '.';
664
665                         out += snprintf(buf + out, count - out, "%c", c);
666                 }
667
668                 for (; j < 8; j++)
669                         out += snprintf(buf + out, count - out, " ");
670         }
671
672         return buf;
673 }
674
675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677         char line[81];
678         u32 ofs = 0;
679         if (!(ipw2100_debug_level & level))
680                 return;
681
682         while (len) {
683                 printk(KERN_DEBUG "%s\n",
684                        snprint_line(line, sizeof(line), &data[ofs],
685                                     min(len, 16U), ofs));
686                 ofs += 16;
687                 len -= min(len, 16U);
688         }
689 }
690
691 #define MAX_RESET_BACKOFF 10
692
693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695         unsigned long now = get_seconds();
696
697         /* If we haven't received a reset request within the backoff period,
698          * then we can reset the backoff interval so this reset occurs
699          * immediately */
700         if (priv->reset_backoff &&
701             (now - priv->last_reset > priv->reset_backoff))
702                 priv->reset_backoff = 0;
703
704         priv->last_reset = get_seconds();
705
706         if (!(priv->status & STATUS_RESET_PENDING)) {
707                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
708                                priv->net_dev->name, priv->reset_backoff);
709                 netif_carrier_off(priv->net_dev);
710                 netif_stop_queue(priv->net_dev);
711                 priv->status |= STATUS_RESET_PENDING;
712                 if (priv->reset_backoff)
713                         schedule_delayed_work(&priv->reset_work,
714                                               priv->reset_backoff * HZ);
715                 else
716                         schedule_delayed_work(&priv->reset_work, 0);
717
718                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
719                         priv->reset_backoff++;
720
721                 wake_up_interruptible(&priv->wait_command_queue);
722         } else
723                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724                                priv->net_dev->name);
725
726 }
727
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730                                    struct host_command *cmd)
731 {
732         struct list_head *element;
733         struct ipw2100_tx_packet *packet;
734         unsigned long flags;
735         int err = 0;
736
737         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738                      command_types[cmd->host_command], cmd->host_command,
739                      cmd->host_command_length);
740         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741                    cmd->host_command_length);
742
743         spin_lock_irqsave(&priv->low_lock, flags);
744
745         if (priv->fatal_error) {
746                 IPW_DEBUG_INFO
747                     ("Attempt to send command while hardware in fatal error condition.\n");
748                 err = -EIO;
749                 goto fail_unlock;
750         }
751
752         if (!(priv->status & STATUS_RUNNING)) {
753                 IPW_DEBUG_INFO
754                     ("Attempt to send command while hardware is not running.\n");
755                 err = -EIO;
756                 goto fail_unlock;
757         }
758
759         if (priv->status & STATUS_CMD_ACTIVE) {
760                 IPW_DEBUG_INFO
761                     ("Attempt to send command while another command is pending.\n");
762                 err = -EBUSY;
763                 goto fail_unlock;
764         }
765
766         if (list_empty(&priv->msg_free_list)) {
767                 IPW_DEBUG_INFO("no available msg buffers\n");
768                 goto fail_unlock;
769         }
770
771         priv->status |= STATUS_CMD_ACTIVE;
772         priv->messages_sent++;
773
774         element = priv->msg_free_list.next;
775
776         packet = list_entry(element, struct ipw2100_tx_packet, list);
777         packet->jiffy_start = jiffies;
778
779         /* initialize the firmware command packet */
780         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782         packet->info.c_struct.cmd->host_command_len_reg =
783             cmd->host_command_length;
784         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785
786         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787                cmd->host_command_parameters,
788                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789
790         list_del(element);
791         DEC_STAT(&priv->msg_free_stat);
792
793         list_add_tail(element, &priv->msg_pend_list);
794         INC_STAT(&priv->msg_pend_stat);
795
796         ipw2100_tx_send_commands(priv);
797         ipw2100_tx_send_data(priv);
798
799         spin_unlock_irqrestore(&priv->low_lock, flags);
800
801         /*
802          * We must wait for this command to complete before another
803          * command can be sent...  but if we wait more than 3 seconds
804          * then there is a problem.
805          */
806
807         err =
808             wait_event_interruptible_timeout(priv->wait_command_queue,
809                                              !(priv->
810                                                status & STATUS_CMD_ACTIVE),
811                                              HOST_COMPLETE_TIMEOUT);
812
813         if (err == 0) {
814                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817                 priv->status &= ~STATUS_CMD_ACTIVE;
818                 schedule_reset(priv);
819                 return -EIO;
820         }
821
822         if (priv->fatal_error) {
823                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824                        priv->net_dev->name);
825                 return -EIO;
826         }
827
828         /* !!!!! HACK TEST !!!!!
829          * When lots of debug trace statements are enabled, the driver
830          * doesn't seem to have as many firmware restart cycles...
831          *
832          * As a test, we're sticking in a 1/100s delay here */
833         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834
835         return 0;
836
837       fail_unlock:
838         spin_unlock_irqrestore(&priv->low_lock, flags);
839
840         return err;
841 }
842
843 /*
844  * Verify the values and data access of the hardware
845  * No locks needed or used.  No functions called.
846  */
847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849         u32 data1, data2;
850         u32 address;
851
852         u32 val1 = 0x76543210;
853         u32 val2 = 0xFEDCBA98;
854
855         /* Domain 0 check - all values should be DOA_DEBUG */
856         for (address = IPW_REG_DOA_DEBUG_AREA_START;
857              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858                 read_register(priv->net_dev, address, &data1);
859                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860                         return -EIO;
861         }
862
863         /* Domain 1 check - use arbitrary read/write compare  */
864         for (address = 0; address < 5; address++) {
865                 /* The memory area is not used now */
866                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867                                val1);
868                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869                                val2);
870                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871                               &data1);
872                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873                               &data2);
874                 if (val1 == data1 && val2 == data2)
875                         return 0;
876         }
877
878         return -EIO;
879 }
880
881 /*
882  *
883  * Loop until the CARD_DISABLED bit is the same value as the
884  * supplied parameter
885  *
886  * TODO: See if it would be more efficient to do a wait/wake
887  *       cycle and have the completion event trigger the wakeup
888  *
889  */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893         int i;
894         u32 card_state;
895         u32 len = sizeof(card_state);
896         int err;
897
898         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900                                           &card_state, &len);
901                 if (err) {
902                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903                                        "failed.\n");
904                         return 0;
905                 }
906
907                 /* We'll break out if either the HW state says it is
908                  * in the state we want, or if HOST_COMPLETE command
909                  * finishes */
910                 if ((card_state == state) ||
911                     ((priv->status & STATUS_ENABLED) ?
912                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913                         if (state == IPW_HW_STATE_ENABLED)
914                                 priv->status |= STATUS_ENABLED;
915                         else
916                                 priv->status &= ~STATUS_ENABLED;
917
918                         return 0;
919                 }
920
921                 udelay(50);
922         }
923
924         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925                        state ? "DISABLED" : "ENABLED");
926         return -EIO;
927 }
928
929 /*********************************************************************
930     Procedure   :   sw_reset_and_clock
931     Purpose     :   Asserts s/w reset, asserts clock initialization
932                     and waits for clock stabilization
933  ********************************************************************/
934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936         int i;
937         u32 r;
938
939         // assert s/w reset
940         write_register(priv->net_dev, IPW_REG_RESET_REG,
941                        IPW_AUX_HOST_RESET_REG_SW_RESET);
942
943         // wait for clock stabilization
944         for (i = 0; i < 1000; i++) {
945                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946
947                 // check clock ready bit
948                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950                         break;
951         }
952
953         if (i == 1000)
954                 return -EIO;    // TODO: better error value
955
956         /* set "initialization complete" bit to move adapter to
957          * D0 state */
958         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960
961         /* wait for clock stabilization */
962         for (i = 0; i < 10000; i++) {
963                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964
965                 /* check clock ready bit */
966                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968                         break;
969         }
970
971         if (i == 10000)
972                 return -EIO;    /* TODO: better error value */
973
974         /* set D0 standby bit */
975         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978
979         return 0;
980 }
981
982 /*********************************************************************
983     Procedure   :   ipw2100_download_firmware
984     Purpose     :   Initiaze adapter after power on.
985                     The sequence is:
986                     1. assert s/w reset first!
987                     2. awake clocks & wait for clock stabilization
988                     3. hold ARC (don't ask me why...)
989                     4. load Dino ucode and reset/clock init again
990                     5. zero-out shared mem
991                     6. download f/w
992  *******************************************************************/
993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995         u32 address;
996         int err;
997
998 #ifndef CONFIG_PM
999         /* Fetch the firmware and microcode */
1000         struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002
1003         if (priv->fatal_error) {
1004                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005                                 "fatal error %d.  Interface must be brought down.\n",
1006                                 priv->net_dev->name, priv->fatal_error);
1007                 return -EINVAL;
1008         }
1009 #ifdef CONFIG_PM
1010         if (!ipw2100_firmware.version) {
1011                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012                 if (err) {
1013                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014                                         priv->net_dev->name, err);
1015                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016                         goto fail;
1017                 }
1018         }
1019 #else
1020         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021         if (err) {
1022                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023                                 priv->net_dev->name, err);
1024                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025                 goto fail;
1026         }
1027 #endif
1028         priv->firmware_version = ipw2100_firmware.version;
1029
1030         /* s/w reset and clock stabilization */
1031         err = sw_reset_and_clock(priv);
1032         if (err) {
1033                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034                                 priv->net_dev->name, err);
1035                 goto fail;
1036         }
1037
1038         err = ipw2100_verify(priv);
1039         if (err) {
1040                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041                                 priv->net_dev->name, err);
1042                 goto fail;
1043         }
1044
1045         /* Hold ARC */
1046         write_nic_dword(priv->net_dev,
1047                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048
1049         /* allow ARC to run */
1050         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051
1052         /* load microcode */
1053         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054         if (err) {
1055                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056                        priv->net_dev->name, err);
1057                 goto fail;
1058         }
1059
1060         /* release ARC */
1061         write_nic_dword(priv->net_dev,
1062                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063
1064         /* s/w reset and clock stabilization (again!!!) */
1065         err = sw_reset_and_clock(priv);
1066         if (err) {
1067                 printk(KERN_ERR DRV_NAME
1068                        ": %s: sw_reset_and_clock failed: %d\n",
1069                        priv->net_dev->name, err);
1070                 goto fail;
1071         }
1072
1073         /* load f/w */
1074         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075         if (err) {
1076                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077                                 priv->net_dev->name, err);
1078                 goto fail;
1079         }
1080 #ifndef CONFIG_PM
1081         /*
1082          * When the .resume method of the driver is called, the other
1083          * part of the system, i.e. the ide driver could still stay in
1084          * the suspend stage. This prevents us from loading the firmware
1085          * from the disk.  --YZ
1086          */
1087
1088         /* free any storage allocated for firmware image */
1089         ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091
1092         /* zero out Domain 1 area indirectly (Si requirement) */
1093         for (address = IPW_HOST_FW_SHARED_AREA0;
1094              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095                 write_nic_dword(priv->net_dev, address, 0);
1096         for (address = IPW_HOST_FW_SHARED_AREA1;
1097              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098                 write_nic_dword(priv->net_dev, address, 0);
1099         for (address = IPW_HOST_FW_SHARED_AREA2;
1100              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101                 write_nic_dword(priv->net_dev, address, 0);
1102         for (address = IPW_HOST_FW_SHARED_AREA3;
1103              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104                 write_nic_dword(priv->net_dev, address, 0);
1105         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107                 write_nic_dword(priv->net_dev, address, 0);
1108
1109         return 0;
1110
1111       fail:
1112         ipw2100_release_firmware(priv, &ipw2100_firmware);
1113         return err;
1114 }
1115
1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118         if (priv->status & STATUS_INT_ENABLED)
1119                 return;
1120         priv->status |= STATUS_INT_ENABLED;
1121         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123
1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126         if (!(priv->status & STATUS_INT_ENABLED))
1127                 return;
1128         priv->status &= ~STATUS_INT_ENABLED;
1129         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131
1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134         struct ipw2100_ordinals *ord = &priv->ordinals;
1135
1136         IPW_DEBUG_INFO("enter\n");
1137
1138         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139                       &ord->table1_addr);
1140
1141         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142                       &ord->table2_addr);
1143
1144         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146
1147         ord->table2_size &= 0x0000FFFF;
1148
1149         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151         IPW_DEBUG_INFO("exit\n");
1152 }
1153
1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156         u32 reg = 0;
1157         /*
1158          * Set GPIO 3 writable by FW; GPIO 1 writable
1159          * by driver and enable clock
1160          */
1161         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162                IPW_BIT_GPIO_LED_OFF);
1163         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165
1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170
1171         unsigned short value = 0;
1172         u32 reg = 0;
1173         int i;
1174
1175         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177                 priv->status &= ~STATUS_RF_KILL_HW;
1178                 return 0;
1179         }
1180
1181         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182                 udelay(RF_KILL_CHECK_DELAY);
1183                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185         }
1186
1187         if (value == 0) {
1188                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189                 priv->status |= STATUS_RF_KILL_HW;
1190         } else {
1191                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192                 priv->status &= ~STATUS_RF_KILL_HW;
1193         }
1194
1195         return (value == 0);
1196 }
1197
1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200         u32 addr, len;
1201         u32 val;
1202
1203         /*
1204          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205          */
1206         len = sizeof(addr);
1207         if (ipw2100_get_ordinal
1208             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210                                __LINE__);
1211                 return -EIO;
1212         }
1213
1214         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215
1216         /*
1217          * EEPROM version is the byte at offset 0xfd in firmware
1218          * We read 4 bytes, then shift out the byte we actually want */
1219         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220         priv->eeprom_version = (val >> 24) & 0xFF;
1221         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222
1223         /*
1224          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225          *
1226          *  notice that the EEPROM bit is reverse polarity, i.e.
1227          *     bit = 0  signifies HW RF kill switch is supported
1228          *     bit = 1  signifies HW RF kill switch is NOT supported
1229          */
1230         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231         if (!((val >> 24) & 0x01))
1232                 priv->hw_features |= HW_FEATURE_RFKILL;
1233
1234         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236
1237         return 0;
1238 }
1239
1240 /*
1241  * Start firmware execution after power on and intialization
1242  * The sequence is:
1243  *  1. Release ARC
1244  *  2. Wait for f/w initialization completes;
1245  */
1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248         int i;
1249         u32 inta, inta_mask, gpio;
1250
1251         IPW_DEBUG_INFO("enter\n");
1252
1253         if (priv->status & STATUS_RUNNING)
1254                 return 0;
1255
1256         /*
1257          * Initialize the hw - drive adapter to DO state by setting
1258          * init_done bit. Wait for clk_ready bit and Download
1259          * fw & dino ucode
1260          */
1261         if (ipw2100_download_firmware(priv)) {
1262                 printk(KERN_ERR DRV_NAME
1263                        ": %s: Failed to power on the adapter.\n",
1264                        priv->net_dev->name);
1265                 return -EIO;
1266         }
1267
1268         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1269          * in the firmware RBD and TBD ring queue */
1270         ipw2100_queues_initialize(priv);
1271
1272         ipw2100_hw_set_gpio(priv);
1273
1274         /* TODO -- Look at disabling interrupts here to make sure none
1275          * get fired during FW initialization */
1276
1277         /* Release ARC - clear reset bit */
1278         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279
1280         /* wait for f/w intialization complete */
1281         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282         i = 5000;
1283         do {
1284                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285                 /* Todo... wait for sync command ... */
1286
1287                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288
1289                 /* check "init done" bit */
1290                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291                         /* reset "init done" bit */
1292                         write_register(priv->net_dev, IPW_REG_INTA,
1293                                        IPW2100_INTA_FW_INIT_DONE);
1294                         break;
1295                 }
1296
1297                 /* check error conditions : we check these after the firmware
1298                  * check so that if there is an error, the interrupt handler
1299                  * will see it and the adapter will be reset */
1300                 if (inta &
1301                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302                         /* clear error conditions */
1303                         write_register(priv->net_dev, IPW_REG_INTA,
1304                                        IPW2100_INTA_FATAL_ERROR |
1305                                        IPW2100_INTA_PARITY_ERROR);
1306                 }
1307         } while (--i);
1308
1309         /* Clear out any pending INTAs since we aren't supposed to have
1310          * interrupts enabled at this point... */
1311         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313         inta &= IPW_INTERRUPT_MASK;
1314         /* Clear out any pending interrupts */
1315         if (inta & inta_mask)
1316                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1317
1318         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319                      i ? "SUCCESS" : "FAILED");
1320
1321         if (!i) {
1322                 printk(KERN_WARNING DRV_NAME
1323                        ": %s: Firmware did not initialize.\n",
1324                        priv->net_dev->name);
1325                 return -EIO;
1326         }
1327
1328         /* allow firmware to write to GPIO1 & GPIO3 */
1329         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330
1331         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332
1333         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334
1335         /* Ready to receive commands */
1336         priv->status |= STATUS_RUNNING;
1337
1338         /* The adapter has been reset; we are not associated */
1339         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340
1341         IPW_DEBUG_INFO("exit\n");
1342
1343         return 0;
1344 }
1345
1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348         if (!priv->fatal_error)
1349                 return;
1350
1351         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353         priv->fatal_error = 0;
1354 }
1355
1356 /* NOTE: Our interrupt is disabled when this method is called */
1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359         u32 reg;
1360         int i;
1361
1362         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363
1364         ipw2100_hw_set_gpio(priv);
1365
1366         /* Step 1. Stop Master Assert */
1367         write_register(priv->net_dev, IPW_REG_RESET_REG,
1368                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369
1370         /* Step 2. Wait for stop Master Assert
1371          *         (not more than 50us, otherwise ret error */
1372         i = 5;
1373         do {
1374                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1376
1377                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378                         break;
1379         } while (--i);
1380
1381         priv->status &= ~STATUS_RESET_PENDING;
1382
1383         if (!i) {
1384                 IPW_DEBUG_INFO
1385                     ("exit - waited too long for master assert stop\n");
1386                 return -EIO;
1387         }
1388
1389         write_register(priv->net_dev, IPW_REG_RESET_REG,
1390                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1391
1392         /* Reset any fatal_error conditions */
1393         ipw2100_reset_fatalerror(priv);
1394
1395         /* At this point, the adapter is now stopped and disabled */
1396         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397                           STATUS_ASSOCIATED | STATUS_ENABLED);
1398
1399         return 0;
1400 }
1401
1402 /*
1403  * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404  *
1405  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406  *
1407  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408  * if STATUS_ASSN_LOST is sent.
1409  */
1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412
1413 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1414
1415         struct host_command cmd = {
1416                 .host_command = CARD_DISABLE_PHY_OFF,
1417                 .host_command_sequence = 0,
1418                 .host_command_length = 0,
1419         };
1420         int err, i;
1421         u32 val1, val2;
1422
1423         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424
1425         /* Turn off the radio */
1426         err = ipw2100_hw_send_command(priv, &cmd);
1427         if (err)
1428                 return err;
1429
1430         for (i = 0; i < 2500; i++) {
1431                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433
1434                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435                     (val2 & IPW2100_COMMAND_PHY_OFF))
1436                         return 0;
1437
1438                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439         }
1440
1441         return -EIO;
1442 }
1443
1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446         struct host_command cmd = {
1447                 .host_command = HOST_COMPLETE,
1448                 .host_command_sequence = 0,
1449                 .host_command_length = 0
1450         };
1451         int err = 0;
1452
1453         IPW_DEBUG_HC("HOST_COMPLETE\n");
1454
1455         if (priv->status & STATUS_ENABLED)
1456                 return 0;
1457
1458         mutex_lock(&priv->adapter_mutex);
1459
1460         if (rf_kill_active(priv)) {
1461                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462                 goto fail_up;
1463         }
1464
1465         err = ipw2100_hw_send_command(priv, &cmd);
1466         if (err) {
1467                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468                 goto fail_up;
1469         }
1470
1471         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472         if (err) {
1473                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474                                priv->net_dev->name);
1475                 goto fail_up;
1476         }
1477
1478         if (priv->stop_hang_check) {
1479                 priv->stop_hang_check = 0;
1480                 schedule_delayed_work(&priv->hang_check, HZ / 2);
1481         }
1482
1483       fail_up:
1484         mutex_unlock(&priv->adapter_mutex);
1485         return err;
1486 }
1487
1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491
1492         struct host_command cmd = {
1493                 .host_command = HOST_PRE_POWER_DOWN,
1494                 .host_command_sequence = 0,
1495                 .host_command_length = 0,
1496         };
1497         int err, i;
1498         u32 reg;
1499
1500         if (!(priv->status & STATUS_RUNNING))
1501                 return 0;
1502
1503         priv->status |= STATUS_STOPPING;
1504
1505         /* We can only shut down the card if the firmware is operational.  So,
1506          * if we haven't reset since a fatal_error, then we can not send the
1507          * shutdown commands. */
1508         if (!priv->fatal_error) {
1509                 /* First, make sure the adapter is enabled so that the PHY_OFF
1510                  * command can shut it down */
1511                 ipw2100_enable_adapter(priv);
1512
1513                 err = ipw2100_hw_phy_off(priv);
1514                 if (err)
1515                         printk(KERN_WARNING DRV_NAME
1516                                ": Error disabling radio %d\n", err);
1517
1518                 /*
1519                  * If in D0-standby mode going directly to D3 may cause a
1520                  * PCI bus violation.  Therefore we must change out of the D0
1521                  * state.
1522                  *
1523                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524                  * hardware from going into standby mode and will transition
1525                  * out of D0-standby if it is already in that state.
1526                  *
1527                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528                  * driver upon completion.  Once received, the driver can
1529                  * proceed to the D3 state.
1530                  *
1531                  * Prepare for power down command to fw.  This command would
1532                  * take HW out of D0-standby and prepare it for D3 state.
1533                  *
1534                  * Currently FW does not support event notification for this
1535                  * event. Therefore, skip waiting for it.  Just wait a fixed
1536                  * 100ms
1537                  */
1538                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539
1540                 err = ipw2100_hw_send_command(priv, &cmd);
1541                 if (err)
1542                         printk(KERN_WARNING DRV_NAME ": "
1543                                "%s: Power down command failed: Error %d\n",
1544                                priv->net_dev->name, err);
1545                 else
1546                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547         }
1548
1549         priv->status &= ~STATUS_ENABLED;
1550
1551         /*
1552          * Set GPIO 3 writable by FW; GPIO 1 writable
1553          * by driver and enable clock
1554          */
1555         ipw2100_hw_set_gpio(priv);
1556
1557         /*
1558          * Power down adapter.  Sequence:
1559          * 1. Stop master assert (RESET_REG[9]=1)
1560          * 2. Wait for stop master (RESET_REG[8]==1)
1561          * 3. S/w reset assert (RESET_REG[7] = 1)
1562          */
1563
1564         /* Stop master assert */
1565         write_register(priv->net_dev, IPW_REG_RESET_REG,
1566                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567
1568         /* wait stop master not more than 50 usec.
1569          * Otherwise return error. */
1570         for (i = 5; i > 0; i--) {
1571                 udelay(10);
1572
1573                 /* Check master stop bit */
1574                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1575
1576                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577                         break;
1578         }
1579
1580         if (i == 0)
1581                 printk(KERN_WARNING DRV_NAME
1582                        ": %s: Could now power down adapter.\n",
1583                        priv->net_dev->name);
1584
1585         /* assert s/w reset */
1586         write_register(priv->net_dev, IPW_REG_RESET_REG,
1587                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1588
1589         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590
1591         return 0;
1592 }
1593
1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596         struct host_command cmd = {
1597                 .host_command = CARD_DISABLE,
1598                 .host_command_sequence = 0,
1599                 .host_command_length = 0
1600         };
1601         int err = 0;
1602
1603         IPW_DEBUG_HC("CARD_DISABLE\n");
1604
1605         if (!(priv->status & STATUS_ENABLED))
1606                 return 0;
1607
1608         /* Make sure we clear the associated state */
1609         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610
1611         if (!priv->stop_hang_check) {
1612                 priv->stop_hang_check = 1;
1613                 cancel_delayed_work(&priv->hang_check);
1614         }
1615
1616         mutex_lock(&priv->adapter_mutex);
1617
1618         err = ipw2100_hw_send_command(priv, &cmd);
1619         if (err) {
1620                 printk(KERN_WARNING DRV_NAME
1621                        ": exit - failed to send CARD_DISABLE command\n");
1622                 goto fail_up;
1623         }
1624
1625         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626         if (err) {
1627                 printk(KERN_WARNING DRV_NAME
1628                        ": exit - card failed to change to DISABLED\n");
1629                 goto fail_up;
1630         }
1631
1632         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633
1634       fail_up:
1635         mutex_unlock(&priv->adapter_mutex);
1636         return err;
1637 }
1638
1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641         struct host_command cmd = {
1642                 .host_command = SET_SCAN_OPTIONS,
1643                 .host_command_sequence = 0,
1644                 .host_command_length = 8
1645         };
1646         int err;
1647
1648         IPW_DEBUG_INFO("enter\n");
1649
1650         IPW_DEBUG_SCAN("setting scan options\n");
1651
1652         cmd.host_command_parameters[0] = 0;
1653
1654         if (!(priv->config & CFG_ASSOCIATE))
1655                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658         if (priv->config & CFG_PASSIVE_SCAN)
1659                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660
1661         cmd.host_command_parameters[1] = priv->channel_mask;
1662
1663         err = ipw2100_hw_send_command(priv, &cmd);
1664
1665         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666                      cmd.host_command_parameters[0]);
1667
1668         return err;
1669 }
1670
1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673         struct host_command cmd = {
1674                 .host_command = BROADCAST_SCAN,
1675                 .host_command_sequence = 0,
1676                 .host_command_length = 4
1677         };
1678         int err;
1679
1680         IPW_DEBUG_HC("START_SCAN\n");
1681
1682         cmd.host_command_parameters[0] = 0;
1683
1684         /* No scanning if in monitor mode */
1685         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686                 return 1;
1687
1688         if (priv->status & STATUS_SCANNING) {
1689                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690                 return 0;
1691         }
1692
1693         IPW_DEBUG_INFO("enter\n");
1694
1695         /* Not clearing here; doing so makes iwlist always return nothing...
1696          *
1697          * We should modify the table logic to use aging tables vs. clearing
1698          * the table on each scan start.
1699          */
1700         IPW_DEBUG_SCAN("starting scan\n");
1701
1702         priv->status |= STATUS_SCANNING;
1703         err = ipw2100_hw_send_command(priv, &cmd);
1704         if (err)
1705                 priv->status &= ~STATUS_SCANNING;
1706
1707         IPW_DEBUG_INFO("exit\n");
1708
1709         return err;
1710 }
1711
1712 static const struct libipw_geo ipw_geos[] = {
1713         {                       /* Restricted */
1714          "---",
1715          .bg_channels = 14,
1716          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717                 {2427, 4}, {2432, 5}, {2437, 6},
1718                 {2442, 7}, {2447, 8}, {2452, 9},
1719                 {2457, 10}, {2462, 11}, {2467, 12},
1720                 {2472, 13}, {2484, 14}},
1721          },
1722 };
1723
1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726         unsigned long flags;
1727         int rc = 0;
1728         u32 lock;
1729         u32 ord_len = sizeof(lock);
1730
1731         /* Age scan list entries found before suspend */
1732         if (priv->suspend_time) {
1733                 libipw_networks_age(priv->ieee, priv->suspend_time);
1734                 priv->suspend_time = 0;
1735         }
1736
1737         /* Quiet if manually disabled. */
1738         if (priv->status & STATUS_RF_KILL_SW) {
1739                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740                                "switch\n", priv->net_dev->name);
1741                 return 0;
1742         }
1743
1744         /* the ipw2100 hardware really doesn't want power management delays
1745          * longer than 175usec
1746          */
1747         pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748
1749         /* If the interrupt is enabled, turn it off... */
1750         spin_lock_irqsave(&priv->low_lock, flags);
1751         ipw2100_disable_interrupts(priv);
1752
1753         /* Reset any fatal_error conditions */
1754         ipw2100_reset_fatalerror(priv);
1755         spin_unlock_irqrestore(&priv->low_lock, flags);
1756
1757         if (priv->status & STATUS_POWERED ||
1758             (priv->status & STATUS_RESET_PENDING)) {
1759                 /* Power cycle the card ... */
1760                 if (ipw2100_power_cycle_adapter(priv)) {
1761                         printk(KERN_WARNING DRV_NAME
1762                                ": %s: Could not cycle adapter.\n",
1763                                priv->net_dev->name);
1764                         rc = 1;
1765                         goto exit;
1766                 }
1767         } else
1768                 priv->status |= STATUS_POWERED;
1769
1770         /* Load the firmware, start the clocks, etc. */
1771         if (ipw2100_start_adapter(priv)) {
1772                 printk(KERN_ERR DRV_NAME
1773                        ": %s: Failed to start the firmware.\n",
1774                        priv->net_dev->name);
1775                 rc = 1;
1776                 goto exit;
1777         }
1778
1779         ipw2100_initialize_ordinals(priv);
1780
1781         /* Determine capabilities of this particular HW configuration */
1782         if (ipw2100_get_hw_features(priv)) {
1783                 printk(KERN_ERR DRV_NAME
1784                        ": %s: Failed to determine HW features.\n",
1785                        priv->net_dev->name);
1786                 rc = 1;
1787                 goto exit;
1788         }
1789
1790         /* Initialize the geo */
1791         if (libipw_set_geo(priv->ieee, &ipw_geos[0])) {
1792                 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1793                 return 0;
1794         }
1795         priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1796
1797         lock = LOCK_NONE;
1798         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1799                 printk(KERN_ERR DRV_NAME
1800                        ": %s: Failed to clear ordinal lock.\n",
1801                        priv->net_dev->name);
1802                 rc = 1;
1803                 goto exit;
1804         }
1805
1806         priv->status &= ~STATUS_SCANNING;
1807
1808         if (rf_kill_active(priv)) {
1809                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1810                        priv->net_dev->name);
1811
1812                 if (priv->stop_rf_kill) {
1813                         priv->stop_rf_kill = 0;
1814                         schedule_delayed_work(&priv->rf_kill,
1815                                               round_jiffies_relative(HZ));
1816                 }
1817
1818                 deferred = 1;
1819         }
1820
1821         /* Turn on the interrupt so that commands can be processed */
1822         ipw2100_enable_interrupts(priv);
1823
1824         /* Send all of the commands that must be sent prior to
1825          * HOST_COMPLETE */
1826         if (ipw2100_adapter_setup(priv)) {
1827                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1828                        priv->net_dev->name);
1829                 rc = 1;
1830                 goto exit;
1831         }
1832
1833         if (!deferred) {
1834                 /* Enable the adapter - sends HOST_COMPLETE */
1835                 if (ipw2100_enable_adapter(priv)) {
1836                         printk(KERN_ERR DRV_NAME ": "
1837                                "%s: failed in call to enable adapter.\n",
1838                                priv->net_dev->name);
1839                         ipw2100_hw_stop_adapter(priv);
1840                         rc = 1;
1841                         goto exit;
1842                 }
1843
1844                 /* Start a scan . . . */
1845                 ipw2100_set_scan_options(priv);
1846                 ipw2100_start_scan(priv);
1847         }
1848
1849       exit:
1850         return rc;
1851 }
1852
1853 static void ipw2100_down(struct ipw2100_priv *priv)
1854 {
1855         unsigned long flags;
1856         union iwreq_data wrqu = {
1857                 .ap_addr = {
1858                             .sa_family = ARPHRD_ETHER}
1859         };
1860         int associated = priv->status & STATUS_ASSOCIATED;
1861
1862         /* Kill the RF switch timer */
1863         if (!priv->stop_rf_kill) {
1864                 priv->stop_rf_kill = 1;
1865                 cancel_delayed_work(&priv->rf_kill);
1866         }
1867
1868         /* Kill the firmware hang check timer */
1869         if (!priv->stop_hang_check) {
1870                 priv->stop_hang_check = 1;
1871                 cancel_delayed_work(&priv->hang_check);
1872         }
1873
1874         /* Kill any pending resets */
1875         if (priv->status & STATUS_RESET_PENDING)
1876                 cancel_delayed_work(&priv->reset_work);
1877
1878         /* Make sure the interrupt is on so that FW commands will be
1879          * processed correctly */
1880         spin_lock_irqsave(&priv->low_lock, flags);
1881         ipw2100_enable_interrupts(priv);
1882         spin_unlock_irqrestore(&priv->low_lock, flags);
1883
1884         if (ipw2100_hw_stop_adapter(priv))
1885                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1886                        priv->net_dev->name);
1887
1888         /* Do not disable the interrupt until _after_ we disable
1889          * the adaptor.  Otherwise the CARD_DISABLE command will never
1890          * be ack'd by the firmware */
1891         spin_lock_irqsave(&priv->low_lock, flags);
1892         ipw2100_disable_interrupts(priv);
1893         spin_unlock_irqrestore(&priv->low_lock, flags);
1894
1895         pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1896
1897         /* We have to signal any supplicant if we are disassociating */
1898         if (associated)
1899                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1900
1901         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1902         netif_carrier_off(priv->net_dev);
1903         netif_stop_queue(priv->net_dev);
1904 }
1905
1906 static int ipw2100_wdev_init(struct net_device *dev)
1907 {
1908         struct ipw2100_priv *priv = libipw_priv(dev);
1909         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1910         struct wireless_dev *wdev = &priv->ieee->wdev;
1911         int i;
1912
1913         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1914
1915         /* fill-out priv->ieee->bg_band */
1916         if (geo->bg_channels) {
1917                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1918
1919                 bg_band->band = IEEE80211_BAND_2GHZ;
1920                 bg_band->n_channels = geo->bg_channels;
1921                 bg_band->channels = kcalloc(geo->bg_channels,
1922                                             sizeof(struct ieee80211_channel),
1923                                             GFP_KERNEL);
1924                 if (!bg_band->channels) {
1925                         ipw2100_down(priv);
1926                         return -ENOMEM;
1927                 }
1928                 /* translate geo->bg to bg_band.channels */
1929                 for (i = 0; i < geo->bg_channels; i++) {
1930                         bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1931                         bg_band->channels[i].center_freq = geo->bg[i].freq;
1932                         bg_band->channels[i].hw_value = geo->bg[i].channel;
1933                         bg_band->channels[i].max_power = geo->bg[i].max_power;
1934                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1935                                 bg_band->channels[i].flags |=
1936                                         IEEE80211_CHAN_PASSIVE_SCAN;
1937                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1938                                 bg_band->channels[i].flags |=
1939                                         IEEE80211_CHAN_NO_IBSS;
1940                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1941                                 bg_band->channels[i].flags |=
1942                                         IEEE80211_CHAN_RADAR;
1943                         /* No equivalent for LIBIPW_CH_80211H_RULES,
1944                            LIBIPW_CH_UNIFORM_SPREADING, or
1945                            LIBIPW_CH_B_ONLY... */
1946                 }
1947                 /* point at bitrate info */
1948                 bg_band->bitrates = ipw2100_bg_rates;
1949                 bg_band->n_bitrates = RATE_COUNT;
1950
1951                 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1952         }
1953
1954         wdev->wiphy->cipher_suites = ipw_cipher_suites;
1955         wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1956
1957         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1958         if (wiphy_register(wdev->wiphy))
1959                 return -EIO;
1960         return 0;
1961 }
1962
1963 static void ipw2100_reset_adapter(struct work_struct *work)
1964 {
1965         struct ipw2100_priv *priv =
1966                 container_of(work, struct ipw2100_priv, reset_work.work);
1967         unsigned long flags;
1968         union iwreq_data wrqu = {
1969                 .ap_addr = {
1970                             .sa_family = ARPHRD_ETHER}
1971         };
1972         int associated = priv->status & STATUS_ASSOCIATED;
1973
1974         spin_lock_irqsave(&priv->low_lock, flags);
1975         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1976         priv->resets++;
1977         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1978         priv->status |= STATUS_SECURITY_UPDATED;
1979
1980         /* Force a power cycle even if interface hasn't been opened
1981          * yet */
1982         cancel_delayed_work(&priv->reset_work);
1983         priv->status |= STATUS_RESET_PENDING;
1984         spin_unlock_irqrestore(&priv->low_lock, flags);
1985
1986         mutex_lock(&priv->action_mutex);
1987         /* stop timed checks so that they don't interfere with reset */
1988         priv->stop_hang_check = 1;
1989         cancel_delayed_work(&priv->hang_check);
1990
1991         /* We have to signal any supplicant if we are disassociating */
1992         if (associated)
1993                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1994
1995         ipw2100_up(priv, 0);
1996         mutex_unlock(&priv->action_mutex);
1997
1998 }
1999
2000 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
2001 {
2002
2003 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2004         int ret;
2005         unsigned int len, essid_len;
2006         char essid[IW_ESSID_MAX_SIZE];
2007         u32 txrate;
2008         u32 chan;
2009         char *txratename;
2010         u8 bssid[ETH_ALEN];
2011         DECLARE_SSID_BUF(ssid);
2012
2013         /*
2014          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2015          *      an actual MAC of the AP. Seems like FW sets this
2016          *      address too late. Read it later and expose through
2017          *      /proc or schedule a later task to query and update
2018          */
2019
2020         essid_len = IW_ESSID_MAX_SIZE;
2021         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2022                                   essid, &essid_len);
2023         if (ret) {
2024                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2025                                __LINE__);
2026                 return;
2027         }
2028
2029         len = sizeof(u32);
2030         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2031         if (ret) {
2032                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2033                                __LINE__);
2034                 return;
2035         }
2036
2037         len = sizeof(u32);
2038         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2039         if (ret) {
2040                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2041                                __LINE__);
2042                 return;
2043         }
2044         len = ETH_ALEN;
2045         ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
2046         if (ret) {
2047                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2048                                __LINE__);
2049                 return;
2050         }
2051         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2052
2053         switch (txrate) {
2054         case TX_RATE_1_MBIT:
2055                 txratename = "1Mbps";
2056                 break;
2057         case TX_RATE_2_MBIT:
2058                 txratename = "2Mbsp";
2059                 break;
2060         case TX_RATE_5_5_MBIT:
2061                 txratename = "5.5Mbps";
2062                 break;
2063         case TX_RATE_11_MBIT:
2064                 txratename = "11Mbps";
2065                 break;
2066         default:
2067                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2068                 txratename = "unknown rate";
2069                 break;
2070         }
2071
2072         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2073                        priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2074                        txratename, chan, bssid);
2075
2076         /* now we copy read ssid into dev */
2077         if (!(priv->config & CFG_STATIC_ESSID)) {
2078                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2079                 memcpy(priv->essid, essid, priv->essid_len);
2080         }
2081         priv->channel = chan;
2082         memcpy(priv->bssid, bssid, ETH_ALEN);
2083
2084         priv->status |= STATUS_ASSOCIATING;
2085         priv->connect_start = get_seconds();
2086
2087         schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2088 }
2089
2090 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2091                              int length, int batch_mode)
2092 {
2093         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2094         struct host_command cmd = {
2095                 .host_command = SSID,
2096                 .host_command_sequence = 0,
2097                 .host_command_length = ssid_len
2098         };
2099         int err;
2100         DECLARE_SSID_BUF(ssid);
2101
2102         IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2103
2104         if (ssid_len)
2105                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2106
2107         if (!batch_mode) {
2108                 err = ipw2100_disable_adapter(priv);
2109                 if (err)
2110                         return err;
2111         }
2112
2113         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2114          * disable auto association -- so we cheat by setting a bogus SSID */
2115         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2116                 int i;
2117                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2118                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2119                         bogus[i] = 0x18 + i;
2120                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2121         }
2122
2123         /* NOTE:  We always send the SSID command even if the provided ESSID is
2124          * the same as what we currently think is set. */
2125
2126         err = ipw2100_hw_send_command(priv, &cmd);
2127         if (!err) {
2128                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2129                 memcpy(priv->essid, essid, ssid_len);
2130                 priv->essid_len = ssid_len;
2131         }
2132
2133         if (!batch_mode) {
2134                 if (ipw2100_enable_adapter(priv))
2135                         err = -EIO;
2136         }
2137
2138         return err;
2139 }
2140
2141 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2142 {
2143         DECLARE_SSID_BUF(ssid);
2144
2145         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2146                   "disassociated: '%s' %pM\n",
2147                   print_ssid(ssid, priv->essid, priv->essid_len),
2148                   priv->bssid);
2149
2150         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2151
2152         if (priv->status & STATUS_STOPPING) {
2153                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2154                 return;
2155         }
2156
2157         memset(priv->bssid, 0, ETH_ALEN);
2158         memset(priv->ieee->bssid, 0, ETH_ALEN);
2159
2160         netif_carrier_off(priv->net_dev);
2161         netif_stop_queue(priv->net_dev);
2162
2163         if (!(priv->status & STATUS_RUNNING))
2164                 return;
2165
2166         if (priv->status & STATUS_SECURITY_UPDATED)
2167                 schedule_delayed_work(&priv->security_work, 0);
2168
2169         schedule_delayed_work(&priv->wx_event_work, 0);
2170 }
2171
2172 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2173 {
2174         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2175                        priv->net_dev->name);
2176
2177         /* RF_KILL is now enabled (else we wouldn't be here) */
2178         wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2179         priv->status |= STATUS_RF_KILL_HW;
2180
2181         /* Make sure the RF Kill check timer is running */
2182         priv->stop_rf_kill = 0;
2183         cancel_delayed_work(&priv->rf_kill);
2184         schedule_delayed_work(&priv->rf_kill, round_jiffies_relative(HZ));
2185 }
2186
2187 static void send_scan_event(void *data)
2188 {
2189         struct ipw2100_priv *priv = data;
2190         union iwreq_data wrqu;
2191
2192         wrqu.data.length = 0;
2193         wrqu.data.flags = 0;
2194         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2195 }
2196
2197 static void ipw2100_scan_event_later(struct work_struct *work)
2198 {
2199         send_scan_event(container_of(work, struct ipw2100_priv,
2200                                         scan_event_later.work));
2201 }
2202
2203 static void ipw2100_scan_event_now(struct work_struct *work)
2204 {
2205         send_scan_event(container_of(work, struct ipw2100_priv,
2206                                         scan_event_now));
2207 }
2208
2209 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2210 {
2211         IPW_DEBUG_SCAN("scan complete\n");
2212         /* Age the scan results... */
2213         priv->ieee->scans++;
2214         priv->status &= ~STATUS_SCANNING;
2215
2216         /* Only userspace-requested scan completion events go out immediately */
2217         if (!priv->user_requested_scan) {
2218                 if (!delayed_work_pending(&priv->scan_event_later))
2219                         schedule_delayed_work(&priv->scan_event_later,
2220                                               round_jiffies_relative(msecs_to_jiffies(4000)));
2221         } else {
2222                 priv->user_requested_scan = 0;
2223                 cancel_delayed_work(&priv->scan_event_later);
2224                 schedule_work(&priv->scan_event_now);
2225         }
2226 }
2227
2228 #ifdef CONFIG_IPW2100_DEBUG
2229 #define IPW2100_HANDLER(v, f) { v, f, # v }
2230 struct ipw2100_status_indicator {
2231         int status;
2232         void (*cb) (struct ipw2100_priv * priv, u32 status);
2233         char *name;
2234 };
2235 #else
2236 #define IPW2100_HANDLER(v, f) { v, f }
2237 struct ipw2100_status_indicator {
2238         int status;
2239         void (*cb) (struct ipw2100_priv * priv, u32 status);
2240 };
2241 #endif                          /* CONFIG_IPW2100_DEBUG */
2242
2243 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2244 {
2245         IPW_DEBUG_SCAN("Scanning...\n");
2246         priv->status |= STATUS_SCANNING;
2247 }
2248
2249 static const struct ipw2100_status_indicator status_handlers[] = {
2250         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2251         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2252         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2253         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2254         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2255         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2256         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2257         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2258         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2259         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2260         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2261         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2262         IPW2100_HANDLER(-1, NULL)
2263 };
2264
2265 static void isr_status_change(struct ipw2100_priv *priv, int status)
2266 {
2267         int i;
2268
2269         if (status == IPW_STATE_SCANNING &&
2270             priv->status & STATUS_ASSOCIATED &&
2271             !(priv->status & STATUS_SCANNING)) {
2272                 IPW_DEBUG_INFO("Scan detected while associated, with "
2273                                "no scan request.  Restarting firmware.\n");
2274
2275                 /* Wake up any sleeping jobs */
2276                 schedule_reset(priv);
2277         }
2278
2279         for (i = 0; status_handlers[i].status != -1; i++) {
2280                 if (status == status_handlers[i].status) {
2281                         IPW_DEBUG_NOTIF("Status change: %s\n",
2282                                         status_handlers[i].name);
2283                         if (status_handlers[i].cb)
2284                                 status_handlers[i].cb(priv, status);
2285                         priv->wstats.status = status;
2286                         return;
2287                 }
2288         }
2289
2290         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2291 }
2292
2293 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2294                                     struct ipw2100_cmd_header *cmd)
2295 {
2296 #ifdef CONFIG_IPW2100_DEBUG
2297         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2298                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2299                              command_types[cmd->host_command_reg],
2300                              cmd->host_command_reg);
2301         }
2302 #endif
2303         if (cmd->host_command_reg == HOST_COMPLETE)
2304                 priv->status |= STATUS_ENABLED;
2305
2306         if (cmd->host_command_reg == CARD_DISABLE)
2307                 priv->status &= ~STATUS_ENABLED;
2308
2309         priv->status &= ~STATUS_CMD_ACTIVE;
2310
2311         wake_up_interruptible(&priv->wait_command_queue);
2312 }
2313
2314 #ifdef CONFIG_IPW2100_DEBUG
2315 static const char *frame_types[] = {
2316         "COMMAND_STATUS_VAL",
2317         "STATUS_CHANGE_VAL",
2318         "P80211_DATA_VAL",
2319         "P8023_DATA_VAL",
2320         "HOST_NOTIFICATION_VAL"
2321 };
2322 #endif
2323
2324 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2325                                     struct ipw2100_rx_packet *packet)
2326 {
2327         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2328         if (!packet->skb)
2329                 return -ENOMEM;
2330
2331         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2332         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2333                                           sizeof(struct ipw2100_rx),
2334                                           PCI_DMA_FROMDEVICE);
2335         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2336          *       dma_addr */
2337
2338         return 0;
2339 }
2340
2341 #define SEARCH_ERROR   0xffffffff
2342 #define SEARCH_FAIL    0xfffffffe
2343 #define SEARCH_SUCCESS 0xfffffff0
2344 #define SEARCH_DISCARD 0
2345 #define SEARCH_SNAPSHOT 1
2346
2347 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2348 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2349 {
2350         int i;
2351         if (!priv->snapshot[0])
2352                 return;
2353         for (i = 0; i < 0x30; i++)
2354                 kfree(priv->snapshot[i]);
2355         priv->snapshot[0] = NULL;
2356 }
2357
2358 #ifdef IPW2100_DEBUG_C3
2359 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2360 {
2361         int i;
2362         if (priv->snapshot[0])
2363                 return 1;
2364         for (i = 0; i < 0x30; i++) {
2365                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2366                 if (!priv->snapshot[i]) {
2367                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2368                                        "buffer %d\n", priv->net_dev->name, i);
2369                         while (i > 0)
2370                                 kfree(priv->snapshot[--i]);
2371                         priv->snapshot[0] = NULL;
2372                         return 0;
2373                 }
2374         }
2375
2376         return 1;
2377 }
2378
2379 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2380                                     size_t len, int mode)
2381 {
2382         u32 i, j;
2383         u32 tmp;
2384         u8 *s, *d;
2385         u32 ret;
2386
2387         s = in_buf;
2388         if (mode == SEARCH_SNAPSHOT) {
2389                 if (!ipw2100_snapshot_alloc(priv))
2390                         mode = SEARCH_DISCARD;
2391         }
2392
2393         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2394                 read_nic_dword(priv->net_dev, i, &tmp);
2395                 if (mode == SEARCH_SNAPSHOT)
2396                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2397                 if (ret == SEARCH_FAIL) {
2398                         d = (u8 *) & tmp;
2399                         for (j = 0; j < 4; j++) {
2400                                 if (*s != *d) {
2401                                         s = in_buf;
2402                                         continue;
2403                                 }
2404
2405                                 s++;
2406                                 d++;
2407
2408                                 if ((s - in_buf) == len)
2409                                         ret = (i + j) - len + 1;
2410                         }
2411                 } else if (mode == SEARCH_DISCARD)
2412                         return ret;
2413         }
2414
2415         return ret;
2416 }
2417 #endif
2418
2419 /*
2420  *
2421  * 0) Disconnect the SKB from the firmware (just unmap)
2422  * 1) Pack the ETH header into the SKB
2423  * 2) Pass the SKB to the network stack
2424  *
2425  * When packet is provided by the firmware, it contains the following:
2426  *
2427  * .  libipw_hdr
2428  * .  libipw_snap_hdr
2429  *
2430  * The size of the constructed ethernet
2431  *
2432  */
2433 #ifdef IPW2100_RX_DEBUG
2434 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2435 #endif
2436
2437 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2438 {
2439 #ifdef IPW2100_DEBUG_C3
2440         struct ipw2100_status *status = &priv->status_queue.drv[i];
2441         u32 match, reg;
2442         int j;
2443 #endif
2444
2445         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2446                        i * sizeof(struct ipw2100_status));
2447
2448 #ifdef IPW2100_DEBUG_C3
2449         /* Halt the firmware so we can get a good image */
2450         write_register(priv->net_dev, IPW_REG_RESET_REG,
2451                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2452         j = 5;
2453         do {
2454                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2455                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2456
2457                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2458                         break;
2459         } while (j--);
2460
2461         match = ipw2100_match_buf(priv, (u8 *) status,
2462                                   sizeof(struct ipw2100_status),
2463                                   SEARCH_SNAPSHOT);
2464         if (match < SEARCH_SUCCESS)
2465                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2466                                "offset 0x%06X, length %d:\n",
2467                                priv->net_dev->name, match,
2468                                sizeof(struct ipw2100_status));
2469         else
2470                 IPW_DEBUG_INFO("%s: No DMA status match in "
2471                                "Firmware.\n", priv->net_dev->name);
2472
2473         printk_buf((u8 *) priv->status_queue.drv,
2474                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2475 #endif
2476
2477         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2478         priv->net_dev->stats.rx_errors++;
2479         schedule_reset(priv);
2480 }
2481
2482 static void isr_rx(struct ipw2100_priv *priv, int i,
2483                           struct libipw_rx_stats *stats)
2484 {
2485         struct net_device *dev = priv->net_dev;
2486         struct ipw2100_status *status = &priv->status_queue.drv[i];
2487         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2488
2489         IPW_DEBUG_RX("Handler...\n");
2490
2491         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2492                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2493                                "  Dropping.\n",
2494                                dev->name,
2495                                status->frame_size, skb_tailroom(packet->skb));
2496                 dev->stats.rx_errors++;
2497                 return;
2498         }
2499
2500         if (unlikely(!netif_running(dev))) {
2501                 dev->stats.rx_errors++;
2502                 priv->wstats.discard.misc++;
2503                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2504                 return;
2505         }
2506
2507         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2508                      !(priv->status & STATUS_ASSOCIATED))) {
2509                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2510                 priv->wstats.discard.misc++;
2511                 return;
2512         }
2513
2514         pci_unmap_single(priv->pci_dev,
2515                          packet->dma_addr,
2516                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2517
2518         skb_put(packet->skb, status->frame_size);
2519
2520 #ifdef IPW2100_RX_DEBUG
2521         /* Make a copy of the frame so we can dump it to the logs if
2522          * libipw_rx fails */
2523         skb_copy_from_linear_data(packet->skb, packet_data,
2524                                   min_t(u32, status->frame_size,
2525                                              IPW_RX_NIC_BUFFER_LENGTH));
2526 #endif
2527
2528         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2529 #ifdef IPW2100_RX_DEBUG
2530                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2531                                dev->name);
2532                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2533 #endif
2534                 dev->stats.rx_errors++;
2535
2536                 /* libipw_rx failed, so it didn't free the SKB */
2537                 dev_kfree_skb_any(packet->skb);
2538                 packet->skb = NULL;
2539         }
2540
2541         /* We need to allocate a new SKB and attach it to the RDB. */
2542         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2543                 printk(KERN_WARNING DRV_NAME ": "
2544                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2545                        "adapter.\n", dev->name);
2546                 /* TODO: schedule adapter shutdown */
2547                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2548         }
2549
2550         /* Update the RDB entry */
2551         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2552 }
2553
2554 #ifdef CONFIG_IPW2100_MONITOR
2555
2556 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2557                    struct libipw_rx_stats *stats)
2558 {
2559         struct net_device *dev = priv->net_dev;
2560         struct ipw2100_status *status = &priv->status_queue.drv[i];
2561         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2562
2563         /* Magic struct that slots into the radiotap header -- no reason
2564          * to build this manually element by element, we can write it much
2565          * more efficiently than we can parse it. ORDER MATTERS HERE */
2566         struct ipw_rt_hdr {
2567                 struct ieee80211_radiotap_header rt_hdr;
2568                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2569         } *ipw_rt;
2570
2571         IPW_DEBUG_RX("Handler...\n");
2572
2573         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2574                                 sizeof(struct ipw_rt_hdr))) {
2575                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2576                                "  Dropping.\n",
2577                                dev->name,
2578                                status->frame_size,
2579                                skb_tailroom(packet->skb));
2580                 dev->stats.rx_errors++;
2581                 return;
2582         }
2583
2584         if (unlikely(!netif_running(dev))) {
2585                 dev->stats.rx_errors++;
2586                 priv->wstats.discard.misc++;
2587                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2588                 return;
2589         }
2590
2591         if (unlikely(priv->config & CFG_CRC_CHECK &&
2592                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2593                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2594                 dev->stats.rx_errors++;
2595                 return;
2596         }
2597
2598         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2599                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2600         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2601                 packet->skb->data, status->frame_size);
2602
2603         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2604
2605         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2606         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2607         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2608
2609         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2610
2611         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2612
2613         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2614
2615         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2616                 dev->stats.rx_errors++;
2617
2618                 /* libipw_rx failed, so it didn't free the SKB */
2619                 dev_kfree_skb_any(packet->skb);
2620                 packet->skb = NULL;
2621         }
2622
2623         /* We need to allocate a new SKB and attach it to the RDB. */
2624         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2625                 IPW_DEBUG_WARNING(
2626                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2627                         "adapter.\n", dev->name);
2628                 /* TODO: schedule adapter shutdown */
2629                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2630         }
2631
2632         /* Update the RDB entry */
2633         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2634 }
2635
2636 #endif
2637
2638 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2639 {
2640         struct ipw2100_status *status = &priv->status_queue.drv[i];
2641         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2642         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2643
2644         switch (frame_type) {
2645         case COMMAND_STATUS_VAL:
2646                 return (status->frame_size != sizeof(u->rx_data.command));
2647         case STATUS_CHANGE_VAL:
2648                 return (status->frame_size != sizeof(u->rx_data.status));
2649         case HOST_NOTIFICATION_VAL:
2650                 return (status->frame_size < sizeof(u->rx_data.notification));
2651         case P80211_DATA_VAL:
2652         case P8023_DATA_VAL:
2653 #ifdef CONFIG_IPW2100_MONITOR
2654                 return 0;
2655 #else
2656                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2657                 case IEEE80211_FTYPE_MGMT:
2658                 case IEEE80211_FTYPE_CTL:
2659                         return 0;
2660                 case IEEE80211_FTYPE_DATA:
2661                         return (status->frame_size >
2662                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2663                 }
2664 #endif
2665         }
2666
2667         return 1;
2668 }
2669
2670 /*
2671  * ipw2100 interrupts are disabled at this point, and the ISR
2672  * is the only code that calls this method.  So, we do not need
2673  * to play with any locks.
2674  *
2675  * RX Queue works as follows:
2676  *
2677  * Read index - firmware places packet in entry identified by the
2678  *              Read index and advances Read index.  In this manner,
2679  *              Read index will always point to the next packet to
2680  *              be filled--but not yet valid.
2681  *
2682  * Write index - driver fills this entry with an unused RBD entry.
2683  *               This entry has not filled by the firmware yet.
2684  *
2685  * In between the W and R indexes are the RBDs that have been received
2686  * but not yet processed.
2687  *
2688  * The process of handling packets will start at WRITE + 1 and advance
2689  * until it reaches the READ index.
2690  *
2691  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2692  *
2693  */
2694 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2695 {
2696         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2697         struct ipw2100_status_queue *sq = &priv->status_queue;
2698         struct ipw2100_rx_packet *packet;
2699         u16 frame_type;
2700         u32 r, w, i, s;
2701         struct ipw2100_rx *u;
2702         struct libipw_rx_stats stats = {
2703                 .mac_time = jiffies,
2704         };
2705
2706         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2707         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2708
2709         if (r >= rxq->entries) {
2710                 IPW_DEBUG_RX("exit - bad read index\n");
2711                 return;
2712         }
2713
2714         i = (rxq->next + 1) % rxq->entries;
2715         s = i;
2716         while (i != r) {
2717                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2718                    r, rxq->next, i); */
2719
2720                 packet = &priv->rx_buffers[i];
2721
2722                 /* Sync the DMA for the RX buffer so CPU is sure to get
2723                  * the correct values */
2724                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2725                                             sizeof(struct ipw2100_rx),
2726                                             PCI_DMA_FROMDEVICE);
2727
2728                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2729                         ipw2100_corruption_detected(priv, i);
2730                         goto increment;
2731                 }
2732
2733                 u = packet->rxp;
2734                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2735                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2736                 stats.len = sq->drv[i].frame_size;
2737
2738                 stats.mask = 0;
2739                 if (stats.rssi != 0)
2740                         stats.mask |= LIBIPW_STATMASK_RSSI;
2741                 stats.freq = LIBIPW_24GHZ_BAND;
2742
2743                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2744                              priv->net_dev->name, frame_types[frame_type],
2745                              stats.len);
2746
2747                 switch (frame_type) {
2748                 case COMMAND_STATUS_VAL:
2749                         /* Reset Rx watchdog */
2750                         isr_rx_complete_command(priv, &u->rx_data.command);
2751                         break;
2752
2753                 case STATUS_CHANGE_VAL:
2754                         isr_status_change(priv, u->rx_data.status);
2755                         break;
2756
2757                 case P80211_DATA_VAL:
2758                 case P8023_DATA_VAL:
2759 #ifdef CONFIG_IPW2100_MONITOR
2760                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2761                                 isr_rx_monitor(priv, i, &stats);
2762                                 break;
2763                         }
2764 #endif
2765                         if (stats.len < sizeof(struct libipw_hdr_3addr))
2766                                 break;
2767                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2768                         case IEEE80211_FTYPE_MGMT:
2769                                 libipw_rx_mgt(priv->ieee,
2770                                                  &u->rx_data.header, &stats);
2771                                 break;
2772
2773                         case IEEE80211_FTYPE_CTL:
2774                                 break;
2775
2776                         case IEEE80211_FTYPE_DATA:
2777                                 isr_rx(priv, i, &stats);
2778                                 break;
2779
2780                         }
2781                         break;
2782                 }
2783
2784               increment:
2785                 /* clear status field associated with this RBD */
2786                 rxq->drv[i].status.info.field = 0;
2787
2788                 i = (i + 1) % rxq->entries;
2789         }
2790
2791         if (i != s) {
2792                 /* backtrack one entry, wrapping to end if at 0 */
2793                 rxq->next = (i ? i : rxq->entries) - 1;
2794
2795                 write_register(priv->net_dev,
2796                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2797         }
2798 }
2799
2800 /*
2801  * __ipw2100_tx_process
2802  *
2803  * This routine will determine whether the next packet on
2804  * the fw_pend_list has been processed by the firmware yet.
2805  *
2806  * If not, then it does nothing and returns.
2807  *
2808  * If so, then it removes the item from the fw_pend_list, frees
2809  * any associated storage, and places the item back on the
2810  * free list of its source (either msg_free_list or tx_free_list)
2811  *
2812  * TX Queue works as follows:
2813  *
2814  * Read index - points to the next TBD that the firmware will
2815  *              process.  The firmware will read the data, and once
2816  *              done processing, it will advance the Read index.
2817  *
2818  * Write index - driver fills this entry with an constructed TBD
2819  *               entry.  The Write index is not advanced until the
2820  *               packet has been configured.
2821  *
2822  * In between the W and R indexes are the TBDs that have NOT been
2823  * processed.  Lagging behind the R index are packets that have
2824  * been processed but have not been freed by the driver.
2825  *
2826  * In order to free old storage, an internal index will be maintained
2827  * that points to the next packet to be freed.  When all used
2828  * packets have been freed, the oldest index will be the same as the
2829  * firmware's read index.
2830  *
2831  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2832  *
2833  * Because the TBD structure can not contain arbitrary data, the
2834  * driver must keep an internal queue of cached allocations such that
2835  * it can put that data back into the tx_free_list and msg_free_list
2836  * for use by future command and data packets.
2837  *
2838  */
2839 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2840 {
2841         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2842         struct ipw2100_bd *tbd;
2843         struct list_head *element;
2844         struct ipw2100_tx_packet *packet;
2845         int descriptors_used;
2846         int e, i;
2847         u32 r, w, frag_num = 0;
2848
2849         if (list_empty(&priv->fw_pend_list))
2850                 return 0;
2851
2852         element = priv->fw_pend_list.next;
2853
2854         packet = list_entry(element, struct ipw2100_tx_packet, list);
2855         tbd = &txq->drv[packet->index];
2856
2857         /* Determine how many TBD entries must be finished... */
2858         switch (packet->type) {
2859         case COMMAND:
2860                 /* COMMAND uses only one slot; don't advance */
2861                 descriptors_used = 1;
2862                 e = txq->oldest;
2863                 break;
2864
2865         case DATA:
2866                 /* DATA uses two slots; advance and loop position. */
2867                 descriptors_used = tbd->num_fragments;
2868                 frag_num = tbd->num_fragments - 1;
2869                 e = txq->oldest + frag_num;
2870                 e %= txq->entries;
2871                 break;
2872
2873         default:
2874                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2875                        priv->net_dev->name);
2876                 return 0;
2877         }
2878
2879         /* if the last TBD is not done by NIC yet, then packet is
2880          * not ready to be released.
2881          *
2882          */
2883         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2884                       &r);
2885         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2886                       &w);
2887         if (w != txq->next)
2888                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2889                        priv->net_dev->name);
2890
2891         /*
2892          * txq->next is the index of the last packet written txq->oldest is
2893          * the index of the r is the index of the next packet to be read by
2894          * firmware
2895          */
2896
2897         /*
2898          * Quick graphic to help you visualize the following
2899          * if / else statement
2900          *
2901          * ===>|                     s---->|===============
2902          *                               e>|
2903          * | a | b | c | d | e | f | g | h | i | j | k | l
2904          *       r---->|
2905          *               w
2906          *
2907          * w - updated by driver
2908          * r - updated by firmware
2909          * s - start of oldest BD entry (txq->oldest)
2910          * e - end of oldest BD entry
2911          *
2912          */
2913         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2914                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2915                 return 0;
2916         }
2917
2918         list_del(element);
2919         DEC_STAT(&priv->fw_pend_stat);
2920
2921 #ifdef CONFIG_IPW2100_DEBUG
2922         {
2923                 i = txq->oldest;
2924                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2925                              &txq->drv[i],
2926                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2927                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2928
2929                 if (packet->type == DATA) {
2930                         i = (i + 1) % txq->entries;
2931
2932                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2933                                      &txq->drv[i],
2934                                      (u32) (txq->nic + i *
2935                                             sizeof(struct ipw2100_bd)),
2936                                      (u32) txq->drv[i].host_addr,
2937                                      txq->drv[i].buf_length);
2938                 }
2939         }
2940 #endif
2941
2942         switch (packet->type) {
2943         case DATA:
2944                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2945                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2946                                "Expecting DATA TBD but pulled "
2947                                "something else: ids %d=%d.\n",
2948                                priv->net_dev->name, txq->oldest, packet->index);
2949
2950                 /* DATA packet; we have to unmap and free the SKB */
2951                 for (i = 0; i < frag_num; i++) {
2952                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2953
2954                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2955                                      (packet->index + 1 + i) % txq->entries,
2956                                      tbd->host_addr, tbd->buf_length);
2957
2958                         pci_unmap_single(priv->pci_dev,
2959                                          tbd->host_addr,
2960                                          tbd->buf_length, PCI_DMA_TODEVICE);
2961                 }
2962
2963                 libipw_txb_free(packet->info.d_struct.txb);
2964                 packet->info.d_struct.txb = NULL;
2965
2966                 list_add_tail(element, &priv->tx_free_list);
2967                 INC_STAT(&priv->tx_free_stat);
2968
2969                 /* We have a free slot in the Tx queue, so wake up the
2970                  * transmit layer if it is stopped. */
2971                 if (priv->status & STATUS_ASSOCIATED)
2972                         netif_wake_queue(priv->net_dev);
2973
2974                 /* A packet was processed by the hardware, so update the
2975                  * watchdog */
2976                 priv->net_dev->trans_start = jiffies;
2977
2978                 break;
2979
2980         case COMMAND:
2981                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2982                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2983                                "Expecting COMMAND TBD but pulled "
2984                                "something else: ids %d=%d.\n",
2985                                priv->net_dev->name, txq->oldest, packet->index);
2986
2987 #ifdef CONFIG_IPW2100_DEBUG
2988                 if (packet->info.c_struct.cmd->host_command_reg <
2989                     ARRAY_SIZE(command_types))
2990                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2991                                      command_types[packet->info.c_struct.cmd->
2992                                                    host_command_reg],
2993                                      packet->info.c_struct.cmd->
2994                                      host_command_reg,
2995                                      packet->info.c_struct.cmd->cmd_status_reg);
2996 #endif
2997
2998                 list_add_tail(element, &priv->msg_free_list);
2999                 INC_STAT(&priv->msg_free_stat);
3000                 break;
3001         }
3002
3003         /* advance oldest used TBD pointer to start of next entry */
3004         txq->oldest = (e + 1) % txq->entries;
3005         /* increase available TBDs number */
3006         txq->available += descriptors_used;
3007         SET_STAT(&priv->txq_stat, txq->available);
3008
3009         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
3010                      jiffies - packet->jiffy_start);
3011
3012         return (!list_empty(&priv->fw_pend_list));
3013 }
3014
3015 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3016 {
3017         int i = 0;
3018
3019         while (__ipw2100_tx_process(priv) && i < 200)
3020                 i++;
3021
3022         if (i == 200) {
3023                 printk(KERN_WARNING DRV_NAME ": "
3024                        "%s: Driver is running slow (%d iters).\n",
3025                        priv->net_dev->name, i);
3026         }
3027 }
3028
3029 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3030 {
3031         struct list_head *element;
3032         struct ipw2100_tx_packet *packet;
3033         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3034         struct ipw2100_bd *tbd;
3035         int next = txq->next;
3036
3037         while (!list_empty(&priv->msg_pend_list)) {
3038                 /* if there isn't enough space in TBD queue, then
3039                  * don't stuff a new one in.
3040                  * NOTE: 3 are needed as a command will take one,
3041                  *       and there is a minimum of 2 that must be
3042                  *       maintained between the r and w indexes
3043                  */
3044                 if (txq->available <= 3) {
3045                         IPW_DEBUG_TX("no room in tx_queue\n");
3046                         break;
3047                 }
3048
3049                 element = priv->msg_pend_list.next;
3050                 list_del(element);
3051                 DEC_STAT(&priv->msg_pend_stat);
3052
3053                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3054
3055                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3056                              &txq->drv[txq->next],
3057                              (u32) (txq->nic + txq->next *
3058                                       sizeof(struct ipw2100_bd)));
3059
3060                 packet->index = txq->next;
3061
3062                 tbd = &txq->drv[txq->next];
3063
3064                 /* initialize TBD */
3065                 tbd->host_addr = packet->info.c_struct.cmd_phys;
3066                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3067                 /* not marking number of fragments causes problems
3068                  * with f/w debug version */
3069                 tbd->num_fragments = 1;
3070                 tbd->status.info.field =
3071                     IPW_BD_STATUS_TX_FRAME_COMMAND |
3072                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3073
3074                 /* update TBD queue counters */
3075                 txq->next++;
3076                 txq->next %= txq->entries;
3077                 txq->available--;
3078                 DEC_STAT(&priv->txq_stat);
3079
3080                 list_add_tail(element, &priv->fw_pend_list);
3081                 INC_STAT(&priv->fw_pend_stat);
3082         }
3083
3084         if (txq->next != next) {
3085                 /* kick off the DMA by notifying firmware the
3086                  * write index has moved; make sure TBD stores are sync'd */
3087                 wmb();
3088                 write_register(priv->net_dev,
3089                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3090                                txq->next);
3091         }
3092 }
3093
3094 /*
3095  * ipw2100_tx_send_data
3096  *
3097  */
3098 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3099 {
3100         struct list_head *element;
3101         struct ipw2100_tx_packet *packet;
3102         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3103         struct ipw2100_bd *tbd;
3104         int next = txq->next;
3105         int i = 0;
3106         struct ipw2100_data_header *ipw_hdr;
3107         struct libipw_hdr_3addr *hdr;
3108
3109         while (!list_empty(&priv->tx_pend_list)) {
3110                 /* if there isn't enough space in TBD queue, then
3111                  * don't stuff a new one in.
3112                  * NOTE: 4 are needed as a data will take two,
3113                  *       and there is a minimum of 2 that must be
3114                  *       maintained between the r and w indexes
3115                  */
3116                 element = priv->tx_pend_list.next;
3117                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3118
3119                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3120                              IPW_MAX_BDS)) {
3121                         /* TODO: Support merging buffers if more than
3122                          * IPW_MAX_BDS are used */
3123                         IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3124                                        "Increase fragmentation level.\n",
3125                                        priv->net_dev->name);
3126                 }
3127
3128                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3129                         IPW_DEBUG_TX("no room in tx_queue\n");
3130                         break;
3131                 }
3132
3133                 list_del(element);
3134                 DEC_STAT(&priv->tx_pend_stat);
3135
3136                 tbd = &txq->drv[txq->next];
3137
3138                 packet->index = txq->next;
3139
3140                 ipw_hdr = packet->info.d_struct.data;
3141                 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3142                     fragments[0]->data;
3143
3144                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3145                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3146                            Addr3 = DA */
3147                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3148                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3149                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3150                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3151                            Addr3 = BSSID */
3152                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3153                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3154                 }
3155
3156                 ipw_hdr->host_command_reg = SEND;
3157                 ipw_hdr->host_command_reg1 = 0;
3158
3159                 /* For now we only support host based encryption */
3160                 ipw_hdr->needs_encryption = 0;
3161                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3162                 if (packet->info.d_struct.txb->nr_frags > 1)
3163                         ipw_hdr->fragment_size =
3164                             packet->info.d_struct.txb->frag_size -
3165                             LIBIPW_3ADDR_LEN;
3166                 else
3167                         ipw_hdr->fragment_size = 0;
3168
3169                 tbd->host_addr = packet->info.d_struct.data_phys;
3170                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3171                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3172                 tbd->status.info.field =
3173                     IPW_BD_STATUS_TX_FRAME_802_3 |
3174                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3175                 txq->next++;
3176                 txq->next %= txq->entries;
3177
3178                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3179                              packet->index, tbd->host_addr, tbd->buf_length);
3180 #ifdef CONFIG_IPW2100_DEBUG
3181                 if (packet->info.d_struct.txb->nr_frags > 1)
3182                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3183                                        packet->info.d_struct.txb->nr_frags);
3184 #endif
3185
3186                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3187                         tbd = &txq->drv[txq->next];
3188                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3189                                 tbd->status.info.field =
3190                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3191                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3192                         else
3193                                 tbd->status.info.field =
3194                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3195                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3196
3197                         tbd->buf_length = packet->info.d_struct.txb->
3198                             fragments[i]->len - LIBIPW_3ADDR_LEN;
3199
3200                         tbd->host_addr = pci_map_single(priv->pci_dev,
3201                                                         packet->info.d_struct.
3202                                                         txb->fragments[i]->
3203                                                         data +
3204                                                         LIBIPW_3ADDR_LEN,
3205                                                         tbd->buf_length,
3206                                                         PCI_DMA_TODEVICE);
3207
3208                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3209                                      txq->next, tbd->host_addr,
3210                                      tbd->buf_length);
3211
3212                         pci_dma_sync_single_for_device(priv->pci_dev,
3213                                                        tbd->host_addr,
3214                                                        tbd->buf_length,
3215                                                        PCI_DMA_TODEVICE);
3216
3217                         txq->next++;
3218                         txq->next %= txq->entries;
3219                 }
3220
3221                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3222                 SET_STAT(&priv->txq_stat, txq->available);
3223
3224                 list_add_tail(element, &priv->fw_pend_list);
3225                 INC_STAT(&priv->fw_pend_stat);
3226         }
3227
3228         if (txq->next != next) {
3229                 /* kick off the DMA by notifying firmware the
3230                  * write index has moved; make sure TBD stores are sync'd */
3231                 write_register(priv->net_dev,
3232                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3233                                txq->next);
3234         }
3235 }
3236
3237 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3238 {
3239         struct net_device *dev = priv->net_dev;
3240         unsigned long flags;
3241         u32 inta, tmp;
3242
3243         spin_lock_irqsave(&priv->low_lock, flags);
3244         ipw2100_disable_interrupts(priv);
3245
3246         read_register(dev, IPW_REG_INTA, &inta);
3247
3248         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3249                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3250
3251         priv->in_isr++;
3252         priv->interrupts++;
3253
3254         /* We do not loop and keep polling for more interrupts as this
3255          * is frowned upon and doesn't play nicely with other potentially
3256          * chained IRQs */
3257         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3258                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3259
3260         if (inta & IPW2100_INTA_FATAL_ERROR) {
3261                 printk(KERN_WARNING DRV_NAME
3262                        ": Fatal interrupt. Scheduling firmware restart.\n");
3263                 priv->inta_other++;
3264                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3265
3266                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3267                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3268                                priv->net_dev->name, priv->fatal_error);
3269
3270                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3271                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3272                                priv->net_dev->name, tmp);
3273
3274                 /* Wake up any sleeping jobs */
3275                 schedule_reset(priv);
3276         }
3277
3278         if (inta & IPW2100_INTA_PARITY_ERROR) {
3279                 printk(KERN_ERR DRV_NAME
3280                        ": ***** PARITY ERROR INTERRUPT !!!!\n");
3281                 priv->inta_other++;
3282                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3283         }
3284
3285         if (inta & IPW2100_INTA_RX_TRANSFER) {
3286                 IPW_DEBUG_ISR("RX interrupt\n");
3287
3288                 priv->rx_interrupts++;
3289
3290                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3291
3292                 __ipw2100_rx_process(priv);
3293                 __ipw2100_tx_complete(priv);
3294         }
3295
3296         if (inta & IPW2100_INTA_TX_TRANSFER) {
3297                 IPW_DEBUG_ISR("TX interrupt\n");
3298
3299                 priv->tx_interrupts++;
3300
3301                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3302
3303                 __ipw2100_tx_complete(priv);
3304                 ipw2100_tx_send_commands(priv);
3305                 ipw2100_tx_send_data(priv);
3306         }
3307
3308         if (inta & IPW2100_INTA_TX_COMPLETE) {
3309                 IPW_DEBUG_ISR("TX complete\n");
3310                 priv->inta_other++;
3311                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3312
3313                 __ipw2100_tx_complete(priv);
3314         }
3315
3316         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3317                 /* ipw2100_handle_event(dev); */
3318                 priv->inta_other++;
3319                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3320         }
3321
3322         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3323                 IPW_DEBUG_ISR("FW init done interrupt\n");
3324                 priv->inta_other++;
3325
3326                 read_register(dev, IPW_REG_INTA, &tmp);
3327                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3328                            IPW2100_INTA_PARITY_ERROR)) {
3329                         write_register(dev, IPW_REG_INTA,
3330                                        IPW2100_INTA_FATAL_ERROR |
3331                                        IPW2100_INTA_PARITY_ERROR);
3332                 }
3333
3334                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3335         }
3336
3337         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3338                 IPW_DEBUG_ISR("Status change interrupt\n");
3339                 priv->inta_other++;
3340                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3341         }
3342
3343         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3344                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3345                 priv->inta_other++;
3346                 write_register(dev, IPW_REG_INTA,
3347                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3348         }
3349
3350         priv->in_isr--;
3351         ipw2100_enable_interrupts(priv);
3352
3353         spin_unlock_irqrestore(&priv->low_lock, flags);
3354
3355         IPW_DEBUG_ISR("exit\n");
3356 }
3357
3358 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3359 {
3360         struct ipw2100_priv *priv = data;
3361         u32 inta, inta_mask;
3362
3363         if (!data)
3364                 return IRQ_NONE;
3365
3366         spin_lock(&priv->low_lock);
3367
3368         /* We check to see if we should be ignoring interrupts before
3369          * we touch the hardware.  During ucode load if we try and handle
3370          * an interrupt we can cause keyboard problems as well as cause
3371          * the ucode to fail to initialize */
3372         if (!(priv->status & STATUS_INT_ENABLED)) {
3373                 /* Shared IRQ */
3374                 goto none;
3375         }
3376
3377         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3378         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3379
3380         if (inta == 0xFFFFFFFF) {
3381                 /* Hardware disappeared */
3382                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3383                 goto none;
3384         }
3385
3386         inta &= IPW_INTERRUPT_MASK;
3387
3388         if (!(inta & inta_mask)) {
3389                 /* Shared interrupt */
3390                 goto none;
3391         }
3392
3393         /* We disable the hardware interrupt here just to prevent unneeded
3394          * calls to be made.  We disable this again within the actual
3395          * work tasklet, so if another part of the code re-enables the
3396          * interrupt, that is fine */
3397         ipw2100_disable_interrupts(priv);
3398
3399         tasklet_schedule(&priv->irq_tasklet);
3400         spin_unlock(&priv->low_lock);
3401
3402         return IRQ_HANDLED;
3403       none:
3404         spin_unlock(&priv->low_lock);
3405         return IRQ_NONE;
3406 }
3407
3408 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3409                               struct net_device *dev, int pri)
3410 {
3411         struct ipw2100_priv *priv = libipw_priv(dev);
3412         struct list_head *element;
3413         struct ipw2100_tx_packet *packet;
3414         unsigned long flags;
3415
3416         spin_lock_irqsave(&priv->low_lock, flags);
3417
3418         if (!(priv->status & STATUS_ASSOCIATED)) {
3419                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3420                 priv->net_dev->stats.tx_carrier_errors++;
3421                 netif_stop_queue(dev);
3422                 goto fail_unlock;
3423         }
3424
3425         if (list_empty(&priv->tx_free_list))
3426                 goto fail_unlock;
3427
3428         element = priv->tx_free_list.next;
3429         packet = list_entry(element, struct ipw2100_tx_packet, list);
3430
3431         packet->info.d_struct.txb = txb;
3432
3433         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3434         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3435
3436         packet->jiffy_start = jiffies;
3437
3438         list_del(element);
3439         DEC_STAT(&priv->tx_free_stat);
3440
3441         list_add_tail(element, &priv->tx_pend_list);
3442         INC_STAT(&priv->tx_pend_stat);
3443
3444         ipw2100_tx_send_data(priv);
3445
3446         spin_unlock_irqrestore(&priv->low_lock, flags);
3447         return NETDEV_TX_OK;
3448
3449 fail_unlock:
3450         netif_stop_queue(dev);
3451         spin_unlock_irqrestore(&priv->low_lock, flags);
3452         return NETDEV_TX_BUSY;
3453 }
3454
3455 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3456 {
3457         int i, j, err = -EINVAL;
3458         void *v;
3459         dma_addr_t p;
3460
3461         priv->msg_buffers =
3462             kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3463                     GFP_KERNEL);
3464         if (!priv->msg_buffers)
3465                 return -ENOMEM;
3466
3467         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3468                 v = pci_alloc_consistent(priv->pci_dev,
3469                                          sizeof(struct ipw2100_cmd_header), &p);
3470                 if (!v) {
3471                         printk(KERN_ERR DRV_NAME ": "
3472                                "%s: PCI alloc failed for msg "
3473                                "buffers.\n", priv->net_dev->name);
3474                         err = -ENOMEM;
3475                         break;
3476                 }
3477
3478                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3479
3480                 priv->msg_buffers[i].type = COMMAND;
3481                 priv->msg_buffers[i].info.c_struct.cmd =
3482                     (struct ipw2100_cmd_header *)v;
3483                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3484         }
3485
3486         if (i == IPW_COMMAND_POOL_SIZE)
3487                 return 0;
3488
3489         for (j = 0; j < i; j++) {
3490                 pci_free_consistent(priv->pci_dev,
3491                                     sizeof(struct ipw2100_cmd_header),
3492                                     priv->msg_buffers[j].info.c_struct.cmd,
3493                                     priv->msg_buffers[j].info.c_struct.
3494                                     cmd_phys);
3495         }
3496
3497         kfree(priv->msg_buffers);
3498         priv->msg_buffers = NULL;
3499
3500         return err;
3501 }
3502
3503 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3504 {
3505         int i;
3506
3507         INIT_LIST_HEAD(&priv->msg_free_list);
3508         INIT_LIST_HEAD(&priv->msg_pend_list);
3509
3510         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3511                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3512         SET_STAT(&priv->msg_free_stat, i);
3513
3514         return 0;
3515 }
3516
3517 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3518 {
3519         int i;
3520
3521         if (!priv->msg_buffers)
3522                 return;
3523
3524         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3525                 pci_free_consistent(priv->pci_dev,
3526                                     sizeof(struct ipw2100_cmd_header),
3527                                     priv->msg_buffers[i].info.c_struct.cmd,
3528                                     priv->msg_buffers[i].info.c_struct.
3529                                     cmd_phys);
3530         }
3531
3532         kfree(priv->msg_buffers);
3533         priv->msg_buffers = NULL;
3534 }
3535
3536 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3537                         char *buf)
3538 {
3539         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3540         char *out = buf;
3541         int i, j;
3542         u32 val;
3543
3544         for (i = 0; i < 16; i++) {
3545                 out += sprintf(out, "[%08X] ", i * 16);
3546                 for (j = 0; j < 16; j += 4) {
3547                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3548                         out += sprintf(out, "%08X ", val);
3549                 }
3550                 out += sprintf(out, "\n");
3551         }
3552
3553         return out - buf;
3554 }
3555
3556 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3557
3558 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3559                         char *buf)
3560 {
3561         struct ipw2100_priv *p = dev_get_drvdata(d);
3562         return sprintf(buf, "0x%08x\n", (int)p->config);
3563 }
3564
3565 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3566
3567 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3568                            char *buf)
3569 {
3570         struct ipw2100_priv *p = dev_get_drvdata(d);
3571         return sprintf(buf, "0x%08x\n", (int)p->status);
3572 }
3573
3574 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3575
3576 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3577                                char *buf)
3578 {
3579         struct ipw2100_priv *p = dev_get_drvdata(d);
3580         return sprintf(buf, "0x%08x\n", (int)p->capability);
3581 }
3582
3583 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3584
3585 #define IPW2100_REG(x) { IPW_ ##x, #x }
3586 static const struct {
3587         u32 addr;
3588         const char *name;
3589 } hw_data[] = {
3590 IPW2100_REG(REG_GP_CNTRL),
3591             IPW2100_REG(REG_GPIO),
3592             IPW2100_REG(REG_INTA),
3593             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3594 #define IPW2100_NIC(x, s) { x, #x, s }
3595 static const struct {
3596         u32 addr;
3597         const char *name;
3598         size_t size;
3599 } nic_data[] = {
3600 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3601             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3602 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3603 static const struct {
3604         u8 index;
3605         const char *name;
3606         const char *desc;
3607 } ord_data[] = {
3608 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3609             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3610                                 "successful Host Tx's (MSDU)"),
3611             IPW2100_ORD(STAT_TX_DIR_DATA,
3612                                 "successful Directed Tx's (MSDU)"),
3613             IPW2100_ORD(STAT_TX_DIR_DATA1,
3614                                 "successful Directed Tx's (MSDU) @ 1MB"),
3615             IPW2100_ORD(STAT_TX_DIR_DATA2,
3616                                 "successful Directed Tx's (MSDU) @ 2MB"),
3617             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3618                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3619             IPW2100_ORD(STAT_TX_DIR_DATA11,
3620                                 "successful Directed Tx's (MSDU) @ 11MB"),
3621             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3622                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3623             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3624                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3625             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3626                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3627             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3628                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3629             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3630             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3631             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3632             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3633             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3634             IPW2100_ORD(STAT_TX_ASSN_RESP,
3635                                 "successful Association response Tx's"),
3636             IPW2100_ORD(STAT_TX_REASSN,
3637                                 "successful Reassociation Tx's"),
3638             IPW2100_ORD(STAT_TX_REASSN_RESP,
3639                                 "successful Reassociation response Tx's"),
3640             IPW2100_ORD(STAT_TX_PROBE,
3641                                 "probes successfully transmitted"),
3642             IPW2100_ORD(STAT_TX_PROBE_RESP,
3643                                 "probe responses successfully transmitted"),
3644             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3645             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3646             IPW2100_ORD(STAT_TX_DISASSN,
3647                                 "successful Disassociation TX"),
3648             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3649             IPW2100_ORD(STAT_TX_DEAUTH,
3650                                 "successful Deauthentication TX"),
3651             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3652                                 "Total successful Tx data bytes"),
3653             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3654             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3655             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3656             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3657             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3658             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3659             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3660                                 "times max tries in a hop failed"),
3661             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3662                                 "times disassociation failed"),
3663             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3664             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3665             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3666             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3667             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3668             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3669             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3670                                 "directed packets at 5.5MB"),
3671             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3672             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3673             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3674                                 "nondirected packets at 1MB"),
3675             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3676                                 "nondirected packets at 2MB"),
3677             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3678                                 "nondirected packets at 5.5MB"),
3679             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3680                                 "nondirected packets at 11MB"),
3681             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3682             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3683                                                                     "Rx CTS"),
3684             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3685             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3686             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3687             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3688             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3689             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3690             IPW2100_ORD(STAT_RX_REASSN_RESP,
3691                                 "Reassociation response Rx's"),
3692             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3693             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3694             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3695             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3696             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3697             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3698             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3699             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3700                                 "Total rx data bytes received"),
3701             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3702             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3703             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3704             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3705             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3706             IPW2100_ORD(STAT_RX_DUPLICATE1,
3707                                 "duplicate rx packets at 1MB"),
3708             IPW2100_ORD(STAT_RX_DUPLICATE2,
3709                                 "duplicate rx packets at 2MB"),
3710             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3711                                 "duplicate rx packets at 5.5MB"),
3712             IPW2100_ORD(STAT_RX_DUPLICATE11,
3713                                 "duplicate rx packets at 11MB"),
3714             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3715             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3716             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3717             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3718             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3719                                 "rx frames with invalid protocol"),
3720             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3721             IPW2100_ORD(STAT_RX_NO_BUFFER,
3722                                 "rx frames rejected due to no buffer"),
3723             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3724                                 "rx frames dropped due to missing fragment"),
3725             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3726                                 "rx frames dropped due to non-sequential fragment"),
3727             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3728                                 "rx frames dropped due to unmatched 1st frame"),
3729             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3730                                 "rx frames dropped due to uncompleted frame"),
3731             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3732                                 "ICV errors during decryption"),
3733             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3734             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3735             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3736                                 "poll response timeouts"),
3737             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3738                                 "timeouts waiting for last {broad,multi}cast pkt"),
3739             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3740             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3741             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3742             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3743             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3744                                 "current calculation of % missed beacons"),
3745             IPW2100_ORD(STAT_PERCENT_RETRIES,
3746                                 "current calculation of % missed tx retries"),
3747             IPW2100_ORD(ASSOCIATED_AP_PTR,
3748                                 "0 if not associated, else pointer to AP table entry"),
3749             IPW2100_ORD(AVAILABLE_AP_CNT,
3750                                 "AP's decsribed in the AP table"),
3751             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3752             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3753             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3754             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3755                                 "failures due to response fail"),
3756             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3757             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3758             IPW2100_ORD(STAT_ROAM_INHIBIT,
3759                                 "times roaming was inhibited due to activity"),
3760             IPW2100_ORD(RSSI_AT_ASSN,
3761                                 "RSSI of associated AP at time of association"),
3762             IPW2100_ORD(STAT_ASSN_CAUSE1,
3763                                 "reassociation: no probe response or TX on hop"),
3764             IPW2100_ORD(STAT_ASSN_CAUSE2,
3765                                 "reassociation: poor tx/rx quality"),
3766             IPW2100_ORD(STAT_ASSN_CAUSE3,
3767                                 "reassociation: tx/rx quality (excessive AP load"),
3768             IPW2100_ORD(STAT_ASSN_CAUSE4,
3769                                 "reassociation: AP RSSI level"),
3770             IPW2100_ORD(STAT_ASSN_CAUSE5,
3771                                 "reassociations due to load leveling"),
3772             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3773             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3774                                 "times authentication response failed"),
3775             IPW2100_ORD(STATION_TABLE_CNT,
3776                                 "entries in association table"),
3777             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3778             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3779             IPW2100_ORD(COUNTRY_CODE,
3780                                 "IEEE country code as recv'd from beacon"),
3781             IPW2100_ORD(COUNTRY_CHANNELS,
3782                                 "channels supported by country"),
3783             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3784             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3785             IPW2100_ORD(ANTENNA_DIVERSITY,
3786                                 "TRUE if antenna diversity is disabled"),
3787             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3788             IPW2100_ORD(OUR_FREQ,
3789                                 "current radio freq lower digits - channel ID"),
3790             IPW2100_ORD(RTC_TIME, "current RTC time"),
3791             IPW2100_ORD(PORT_TYPE, "operating mode"),
3792             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3793             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3794             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3795             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3796             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3797             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3798             IPW2100_ORD(CAPABILITIES,
3799                                 "Management frame capability field"),
3800             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3801             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3802             IPW2100_ORD(RTS_THRESHOLD,
3803                                 "Min packet length for RTS handshaking"),
3804             IPW2100_ORD(INT_MODE, "International mode"),
3805             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3806                                 "protocol frag threshold"),
3807             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3808                                 "EEPROM offset in SRAM"),
3809             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3810                                 "EEPROM size in SRAM"),
3811             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3812             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3813                                 "EEPROM IBSS 11b channel set"),
3814             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3815             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3816             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3817             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3818             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3819
3820 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3821                               char *buf)
3822 {
3823         int i;
3824         struct ipw2100_priv *priv = dev_get_drvdata(d);
3825         struct net_device *dev = priv->net_dev;
3826         char *out = buf;
3827         u32 val = 0;
3828
3829         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3830
3831         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3832                 read_register(dev, hw_data[i].addr, &val);
3833                 out += sprintf(out, "%30s [%08X] : %08X\n",
3834                                hw_data[i].name, hw_data[i].addr, val);
3835         }
3836
3837         return out - buf;
3838 }
3839
3840 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3841
3842 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3843                              char *buf)
3844 {
3845         struct ipw2100_priv *priv = dev_get_drvdata(d);
3846         struct net_device *dev = priv->net_dev;
3847         char *out = buf;
3848         int i;
3849
3850         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3851
3852         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3853                 u8 tmp8;
3854                 u16 tmp16;
3855                 u32 tmp32;
3856
3857                 switch (nic_data[i].size) {
3858                 case 1:
3859                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3860                         out += sprintf(out, "%30s [%08X] : %02X\n",
3861                                        nic_data[i].name, nic_data[i].addr,
3862                                        tmp8);
3863                         break;
3864                 case 2:
3865                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3866                         out += sprintf(out, "%30s [%08X] : %04X\n",
3867                                        nic_data[i].name, nic_data[i].addr,
3868                                        tmp16);
3869                         break;
3870                 case 4:
3871                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3872                         out += sprintf(out, "%30s [%08X] : %08X\n",
3873                                        nic_data[i].name, nic_data[i].addr,
3874                                        tmp32);
3875                         break;
3876                 }
3877         }
3878         return out - buf;
3879 }
3880
3881 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3882
3883 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3884                            char *buf)
3885 {
3886         struct ipw2100_priv *priv = dev_get_drvdata(d);
3887         struct net_device *dev = priv->net_dev;
3888         static unsigned long loop = 0;
3889         int len = 0;
3890         u32 buffer[4];
3891         int i;
3892         char line[81];
3893
3894         if (loop >= 0x30000)
3895                 loop = 0;
3896
3897         /* sysfs provides us PAGE_SIZE buffer */
3898         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3899
3900                 if (priv->snapshot[0])
3901                         for (i = 0; i < 4; i++)
3902                                 buffer[i] =
3903                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3904                 else
3905                         for (i = 0; i < 4; i++)
3906                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3907
3908                 if (priv->dump_raw)
3909                         len += sprintf(buf + len,
3910                                        "%c%c%c%c"
3911                                        "%c%c%c%c"
3912                                        "%c%c%c%c"
3913                                        "%c%c%c%c",
3914                                        ((u8 *) buffer)[0x0],
3915                                        ((u8 *) buffer)[0x1],
3916                                        ((u8 *) buffer)[0x2],
3917                                        ((u8 *) buffer)[0x3],
3918                                        ((u8 *) buffer)[0x4],
3919                                        ((u8 *) buffer)[0x5],
3920                                        ((u8 *) buffer)[0x6],
3921                                        ((u8 *) buffer)[0x7],
3922                                        ((u8 *) buffer)[0x8],
3923                                        ((u8 *) buffer)[0x9],
3924                                        ((u8 *) buffer)[0xa],
3925                                        ((u8 *) buffer)[0xb],
3926                                        ((u8 *) buffer)[0xc],
3927                                        ((u8 *) buffer)[0xd],
3928                                        ((u8 *) buffer)[0xe],
3929                                        ((u8 *) buffer)[0xf]);
3930                 else
3931                         len += sprintf(buf + len, "%s\n",
3932                                        snprint_line(line, sizeof(line),
3933                                                     (u8 *) buffer, 16, loop));
3934                 loop += 16;
3935         }
3936
3937         return len;
3938 }
3939
3940 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3941                             const char *buf, size_t count)
3942 {
3943         struct ipw2100_priv *priv = dev_get_drvdata(d);
3944         struct net_device *dev = priv->net_dev;
3945         const char *p = buf;
3946
3947         (void)dev;              /* kill unused-var warning for debug-only code */
3948
3949         if (count < 1)
3950                 return count;
3951
3952         if (p[0] == '1' ||
3953             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3954                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3955                                dev->name);
3956                 priv->dump_raw = 1;
3957
3958         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3959                                    tolower(p[1]) == 'f')) {
3960                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3961                                dev->name);
3962                 priv->dump_raw = 0;
3963
3964         } else if (tolower(p[0]) == 'r') {
3965                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3966                 ipw2100_snapshot_free(priv);
3967
3968         } else
3969                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3970                                "reset = clear memory snapshot\n", dev->name);
3971
3972         return count;
3973 }
3974
3975 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3976
3977 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3978                              char *buf)
3979 {
3980         struct ipw2100_priv *priv = dev_get_drvdata(d);
3981         u32 val = 0;
3982         int len = 0;
3983         u32 val_len;
3984         static int loop = 0;
3985
3986         if (priv->status & STATUS_RF_KILL_MASK)
3987                 return 0;
3988
3989         if (loop >= ARRAY_SIZE(ord_data))
3990                 loop = 0;
3991
3992         /* sysfs provides us PAGE_SIZE buffer */
3993         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3994                 val_len = sizeof(u32);
3995
3996                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3997                                         &val_len))
3998                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3999                                        ord_data[loop].index,
4000                                        ord_data[loop].desc);
4001                 else
4002                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
4003                                        ord_data[loop].index, val,
4004                                        ord_data[loop].desc);
4005                 loop++;
4006         }
4007
4008         return len;
4009 }
4010
4011 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
4012
4013 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
4014                           char *buf)
4015 {
4016         struct ipw2100_priv *priv = dev_get_drvdata(d);
4017         char *out = buf;
4018
4019         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4020                        priv->interrupts, priv->tx_interrupts,
4021                        priv->rx_interrupts, priv->inta_other);
4022         out += sprintf(out, "firmware resets: %d\n", priv->resets);
4023         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4024 #ifdef CONFIG_IPW2100_DEBUG
4025         out += sprintf(out, "packet mismatch image: %s\n",
4026                        priv->snapshot[0] ? "YES" : "NO");
4027 #endif
4028
4029         return out - buf;
4030 }
4031
4032 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4033
4034 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4035 {
4036         int err;
4037
4038         if (mode == priv->ieee->iw_mode)
4039                 return 0;
4040
4041         err = ipw2100_disable_adapter(priv);
4042         if (err) {
4043                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4044                        priv->net_dev->name, err);
4045                 return err;
4046         }
4047
4048         switch (mode) {
4049         case IW_MODE_INFRA:
4050                 priv->net_dev->type = ARPHRD_ETHER;
4051                 break;
4052         case IW_MODE_ADHOC:
4053                 priv->net_dev->type = ARPHRD_ETHER;
4054                 break;
4055 #ifdef CONFIG_IPW2100_MONITOR
4056         case IW_MODE_MONITOR:
4057                 priv->last_mode = priv->ieee->iw_mode;
4058                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4059                 break;
4060 #endif                          /* CONFIG_IPW2100_MONITOR */
4061         }
4062
4063         priv->ieee->iw_mode = mode;
4064
4065 #ifdef CONFIG_PM
4066         /* Indicate ipw2100_download_firmware download firmware
4067          * from disk instead of memory. */
4068         ipw2100_firmware.version = 0;
4069 #endif
4070
4071         printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4072         priv->reset_backoff = 0;
4073         schedule_reset(priv);
4074
4075         return 0;
4076 }
4077
4078 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4079                               char *buf)
4080 {
4081         struct ipw2100_priv *priv = dev_get_drvdata(d);
4082         int len = 0;
4083
4084 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4085
4086         if (priv->status & STATUS_ASSOCIATED)
4087                 len += sprintf(buf + len, "connected: %lu\n",
4088                                get_seconds() - priv->connect_start);
4089         else
4090                 len += sprintf(buf + len, "not connected\n");
4091
4092         DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4093         DUMP_VAR(status, "08lx");
4094         DUMP_VAR(config, "08lx");
4095         DUMP_VAR(capability, "08lx");
4096
4097         len +=
4098             sprintf(buf + len, "last_rtc: %lu\n",
4099                     (unsigned long)priv->last_rtc);
4100
4101         DUMP_VAR(fatal_error, "d");
4102         DUMP_VAR(stop_hang_check, "d");
4103         DUMP_VAR(stop_rf_kill, "d");
4104         DUMP_VAR(messages_sent, "d");
4105
4106         DUMP_VAR(tx_pend_stat.value, "d");
4107         DUMP_VAR(tx_pend_stat.hi, "d");
4108
4109         DUMP_VAR(tx_free_stat.value, "d");
4110         DUMP_VAR(tx_free_stat.lo, "d");
4111
4112         DUMP_VAR(msg_free_stat.value, "d");
4113         DUMP_VAR(msg_free_stat.lo, "d");
4114
4115         DUMP_VAR(msg_pend_stat.value, "d");
4116         DUMP_VAR(msg_pend_stat.hi, "d");
4117
4118         DUMP_VAR(fw_pend_stat.value, "d");
4119         DUMP_VAR(fw_pend_stat.hi, "d");
4120
4121         DUMP_VAR(txq_stat.value, "d");
4122         DUMP_VAR(txq_stat.lo, "d");
4123
4124         DUMP_VAR(ieee->scans, "d");
4125         DUMP_VAR(reset_backoff, "d");
4126
4127         return len;
4128 }
4129
4130 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4131
4132 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4133                             char *buf)
4134 {
4135         struct ipw2100_priv *priv = dev_get_drvdata(d);
4136         char essid[IW_ESSID_MAX_SIZE + 1];
4137         u8 bssid[ETH_ALEN];
4138         u32 chan = 0;
4139         char *out = buf;
4140         unsigned int length;
4141         int ret;
4142
4143         if (priv->status & STATUS_RF_KILL_MASK)
4144                 return 0;
4145
4146         memset(essid, 0, sizeof(essid));
4147         memset(bssid, 0, sizeof(bssid));
4148
4149         length = IW_ESSID_MAX_SIZE;
4150         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4151         if (ret)
4152                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4153                                __LINE__);
4154
4155         length = sizeof(bssid);
4156         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4157                                   bssid, &length);
4158         if (ret)
4159                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4160                                __LINE__);
4161
4162         length = sizeof(u32);
4163         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4164         if (ret)
4165                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4166                                __LINE__);
4167
4168         out += sprintf(out, "ESSID: %s\n", essid);
4169         out += sprintf(out, "BSSID:   %pM\n", bssid);
4170         out += sprintf(out, "Channel: %d\n", chan);
4171
4172         return out - buf;
4173 }
4174
4175 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4176
4177 #ifdef CONFIG_IPW2100_DEBUG
4178 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4179 {
4180         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4181 }
4182
4183 static ssize_t store_debug_level(struct device_driver *d,
4184                                  const char *buf, size_t count)
4185 {
4186         char *p = (char *)buf;
4187         u32 val;
4188
4189         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4190                 p++;
4191                 if (p[0] == 'x' || p[0] == 'X')
4192                         p++;
4193                 val = simple_strtoul(p, &p, 16);
4194         } else
4195                 val = simple_strtoul(p, &p, 10);
4196         if (p == buf)
4197                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4198         else
4199                 ipw2100_debug_level = val;
4200
4201         return strnlen(buf, count);
4202 }
4203
4204 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4205                    store_debug_level);
4206 #endif                          /* CONFIG_IPW2100_DEBUG */
4207
4208 static ssize_t show_fatal_error(struct device *d,
4209                                 struct device_attribute *attr, char *buf)
4210 {
4211         struct ipw2100_priv *priv = dev_get_drvdata(d);
4212         char *out = buf;
4213         int i;
4214
4215         if (priv->fatal_error)
4216                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4217         else
4218                 out += sprintf(out, "0\n");
4219
4220         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4221                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4222                                         IPW2100_ERROR_QUEUE])
4223                         continue;
4224
4225                 out += sprintf(out, "%d. 0x%08X\n", i,
4226                                priv->fatal_errors[(priv->fatal_index - i) %
4227                                                   IPW2100_ERROR_QUEUE]);
4228         }
4229
4230         return out - buf;
4231 }
4232
4233 static ssize_t store_fatal_error(struct device *d,
4234                                  struct device_attribute *attr, const char *buf,
4235                                  size_t count)
4236 {
4237         struct ipw2100_priv *priv = dev_get_drvdata(d);
4238         schedule_reset(priv);
4239         return count;
4240 }
4241
4242 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4243                    store_fatal_error);
4244
4245 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4246                              char *buf)
4247 {
4248         struct ipw2100_priv *priv = dev_get_drvdata(d);
4249         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4250 }
4251
4252 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4253                               const char *buf, size_t count)
4254 {
4255         struct ipw2100_priv *priv = dev_get_drvdata(d);
4256         struct net_device *dev = priv->net_dev;
4257         char buffer[] = "00000000";
4258         unsigned long len =
4259             (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4260         unsigned long val;
4261         char *p = buffer;
4262
4263         (void)dev;              /* kill unused-var warning for debug-only code */
4264
4265         IPW_DEBUG_INFO("enter\n");
4266
4267         strncpy(buffer, buf, len);
4268         buffer[len] = 0;
4269
4270         if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4271                 p++;
4272                 if (p[0] == 'x' || p[0] == 'X')
4273                         p++;
4274                 val = simple_strtoul(p, &p, 16);
4275         } else
4276                 val = simple_strtoul(p, &p, 10);
4277         if (p == buffer) {
4278                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4279         } else {
4280                 priv->ieee->scan_age = val;
4281                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4282         }
4283
4284         IPW_DEBUG_INFO("exit\n");
4285         return len;
4286 }
4287
4288 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4289
4290 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4291                             char *buf)
4292 {
4293         /* 0 - RF kill not enabled
4294            1 - SW based RF kill active (sysfs)
4295            2 - HW based RF kill active
4296            3 - Both HW and SW baed RF kill active */
4297         struct ipw2100_priv *priv = dev_get_drvdata(d);
4298         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4299             (rf_kill_active(priv) ? 0x2 : 0x0);
4300         return sprintf(buf, "%i\n", val);
4301 }
4302
4303 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4304 {
4305         if ((disable_radio ? 1 : 0) ==
4306             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4307                 return 0;
4308
4309         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4310                           disable_radio ? "OFF" : "ON");
4311
4312         mutex_lock(&priv->action_mutex);
4313
4314         if (disable_radio) {
4315                 priv->status |= STATUS_RF_KILL_SW;
4316                 ipw2100_down(priv);
4317         } else {
4318                 priv->status &= ~STATUS_RF_KILL_SW;
4319                 if (rf_kill_active(priv)) {
4320                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4321                                           "disabled by HW switch\n");
4322                         /* Make sure the RF_KILL check timer is running */
4323                         priv->stop_rf_kill = 0;
4324                         cancel_delayed_work(&priv->rf_kill);
4325                         schedule_delayed_work(&priv->rf_kill,
4326                                               round_jiffies_relative(HZ));
4327                 } else
4328                         schedule_reset(priv);
4329         }
4330
4331         mutex_unlock(&priv->action_mutex);
4332         return 1;
4333 }
4334
4335 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4336                              const char *buf, size_t count)
4337 {
4338         struct ipw2100_priv *priv = dev_get_drvdata(d);
4339         ipw_radio_kill_sw(priv, buf[0] == '1');
4340         return count;
4341 }
4342
4343 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4344
4345 static struct attribute *ipw2100_sysfs_entries[] = {
4346         &dev_attr_hardware.attr,
4347         &dev_attr_registers.attr,
4348         &dev_attr_ordinals.attr,
4349         &dev_attr_pci.attr,
4350         &dev_attr_stats.attr,
4351         &dev_attr_internals.attr,
4352         &dev_attr_bssinfo.attr,
4353         &dev_attr_memory.attr,
4354         &dev_attr_scan_age.attr,
4355         &dev_attr_fatal_error.attr,
4356         &dev_attr_rf_kill.attr,
4357         &dev_attr_cfg.attr,
4358         &dev_attr_status.attr,
4359         &dev_attr_capability.attr,
4360         NULL,
4361 };
4362
4363 static struct attribute_group ipw2100_attribute_group = {
4364         .attrs = ipw2100_sysfs_entries,
4365 };
4366
4367 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4368 {
4369         struct ipw2100_status_queue *q = &priv->status_queue;
4370
4371         IPW_DEBUG_INFO("enter\n");
4372
4373         q->size = entries * sizeof(struct ipw2100_status);
4374         q->drv =
4375             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4376                                                           q->size, &q->nic);
4377         if (!q->drv) {
4378                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4379                 return -ENOMEM;
4380         }
4381
4382         memset(q->drv, 0, q->size);
4383
4384         IPW_DEBUG_INFO("exit\n");
4385
4386         return 0;
4387 }
4388
4389 static void status_queue_free(struct ipw2100_priv *priv)
4390 {
4391         IPW_DEBUG_INFO("enter\n");
4392
4393         if (priv->status_queue.drv) {
4394                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4395                                     priv->status_queue.drv,
4396                                     priv->status_queue.nic);
4397                 priv->status_queue.drv = NULL;
4398         }
4399
4400         IPW_DEBUG_INFO("exit\n");
4401 }
4402
4403 static int bd_queue_allocate(struct ipw2100_priv *priv,
4404                              struct ipw2100_bd_queue *q, int entries)
4405 {
4406         IPW_DEBUG_INFO("enter\n");
4407
4408         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4409
4410         q->entries = entries;
4411         q->size = entries * sizeof(struct ipw2100_bd);
4412         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4413         if (!q->drv) {
4414                 IPW_DEBUG_INFO
4415                     ("can't allocate shared memory for buffer descriptors\n");
4416                 return -ENOMEM;
4417         }
4418         memset(q->drv, 0, q->size);
4419
4420         IPW_DEBUG_INFO("exit\n");
4421
4422         return 0;
4423 }
4424
4425 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4426 {
4427         IPW_DEBUG_INFO("enter\n");
4428
4429         if (!q)
4430                 return;
4431
4432         if (q->drv) {
4433                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4434                 q->drv = NULL;
4435         }
4436
4437         IPW_DEBUG_INFO("exit\n");
4438 }
4439
4440 static void bd_queue_initialize(struct ipw2100_priv *priv,
4441                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4442                                 u32 r, u32 w)
4443 {
4444         IPW_DEBUG_INFO("enter\n");
4445
4446         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4447                        (u32) q->nic);
4448
4449         write_register(priv->net_dev, base, q->nic);
4450         write_register(priv->net_dev, size, q->entries);
4451         write_register(priv->net_dev, r, q->oldest);
4452         write_register(priv->net_dev, w, q->next);
4453
4454         IPW_DEBUG_INFO("exit\n");
4455 }
4456
4457 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4458 {
4459         priv->stop_rf_kill = 1;
4460         priv->stop_hang_check = 1;
4461         cancel_delayed_work_sync(&priv->reset_work);
4462         cancel_delayed_work_sync(&priv->security_work);
4463         cancel_delayed_work_sync(&priv->wx_event_work);
4464         cancel_delayed_work_sync(&priv->hang_check);
4465         cancel_delayed_work_sync(&priv->rf_kill);
4466         cancel_work_sync(&priv->scan_event_now);
4467         cancel_delayed_work_sync(&priv->scan_event_later);
4468 }
4469
4470 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4471 {
4472         int i, j, err = -EINVAL;
4473         void *v;
4474         dma_addr_t p;
4475
4476         IPW_DEBUG_INFO("enter\n");
4477
4478         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4479         if (err) {
4480                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4481                                 priv->net_dev->name);
4482                 return err;
4483         }
4484
4485         priv->tx_buffers =
4486             kmalloc(TX_PENDED_QUEUE_LENGTH * sizeof(struct ipw2100_tx_packet),
4487                     GFP_ATOMIC);
4488         if (!priv->tx_buffers) {
4489                 printk(KERN_ERR DRV_NAME
4490                        ": %s: alloc failed form tx buffers.\n",
4491                        priv->net_dev->name);
4492                 bd_queue_free(priv, &priv->tx_queue);
4493                 return -ENOMEM;
4494         }
4495
4496         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4497                 v = pci_alloc_consistent(priv->pci_dev,
4498                                          sizeof(struct ipw2100_data_header),
4499                                          &p);
4500                 if (!v) {
4501                         printk(KERN_ERR DRV_NAME
4502                                ": %s: PCI alloc failed for tx " "buffers.\n",
4503                                priv->net_dev->name);
4504                         err = -ENOMEM;
4505                         break;
4506                 }
4507
4508                 priv->tx_buffers[i].type = DATA;
4509                 priv->tx_buffers[i].info.d_struct.data =
4510                     (struct ipw2100_data_header *)v;
4511                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4512                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4513         }
4514
4515         if (i == TX_PENDED_QUEUE_LENGTH)
4516                 return 0;
4517
4518         for (j = 0; j < i; j++) {
4519                 pci_free_consistent(priv->pci_dev,
4520                                     sizeof(struct ipw2100_data_header),
4521                                     priv->tx_buffers[j].info.d_struct.data,
4522                                     priv->tx_buffers[j].info.d_struct.
4523                                     data_phys);
4524         }
4525
4526         kfree(priv->tx_buffers);
4527         priv->tx_buffers = NULL;
4528
4529         return err;
4530 }
4531
4532 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4533 {
4534         int i;
4535
4536         IPW_DEBUG_INFO("enter\n");
4537
4538         /*
4539          * reinitialize packet info lists
4540          */
4541         INIT_LIST_HEAD(&priv->fw_pend_list);
4542         INIT_STAT(&priv->fw_pend_stat);
4543
4544         /*
4545          * reinitialize lists
4546          */
4547         INIT_LIST_HEAD(&priv->tx_pend_list);
4548         INIT_LIST_HEAD(&priv->tx_free_list);
4549         INIT_STAT(&priv->tx_pend_stat);
4550         INIT_STAT(&priv->tx_free_stat);
4551
4552         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4553                 /* We simply drop any SKBs that have been queued for
4554                  * transmit */
4555                 if (priv->tx_buffers[i].info.d_struct.txb) {
4556                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4557                                            txb);
4558                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4559                 }
4560
4561                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4562         }
4563
4564         SET_STAT(&priv->tx_free_stat, i);
4565
4566         priv->tx_queue.oldest = 0;
4567         priv->tx_queue.available = priv->tx_queue.entries;
4568         priv->tx_queue.next = 0;
4569         INIT_STAT(&priv->txq_stat);
4570         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4571
4572         bd_queue_initialize(priv, &priv->tx_queue,
4573                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4574                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4575                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4576                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4577
4578         IPW_DEBUG_INFO("exit\n");
4579
4580 }
4581
4582 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4583 {
4584         int i;
4585
4586         IPW_DEBUG_INFO("enter\n");
4587
4588         bd_queue_free(priv, &priv->tx_queue);
4589
4590         if (!priv->tx_buffers)
4591                 return;
4592
4593         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4594                 if (priv->tx_buffers[i].info.d_struct.txb) {
4595                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4596                                            txb);
4597                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4598                 }
4599                 if (priv->tx_buffers[i].info.d_struct.data)
4600                         pci_free_consistent(priv->pci_dev,
4601                                             sizeof(struct ipw2100_data_header),
4602                                             priv->tx_buffers[i].info.d_struct.
4603                                             data,
4604                                             priv->tx_buffers[i].info.d_struct.
4605                                             data_phys);
4606         }
4607
4608         kfree(priv->tx_buffers);
4609         priv->tx_buffers = NULL;
4610
4611         IPW_DEBUG_INFO("exit\n");
4612 }
4613
4614 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4615 {
4616         int i, j, err = -EINVAL;
4617
4618         IPW_DEBUG_INFO("enter\n");
4619
4620         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4621         if (err) {
4622                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4623                 return err;
4624         }
4625
4626         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4627         if (err) {
4628                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4629                 bd_queue_free(priv, &priv->rx_queue);
4630                 return err;
4631         }
4632
4633         /*
4634          * allocate packets
4635          */
4636         priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4637                                    sizeof(struct ipw2100_rx_packet),
4638                                    GFP_KERNEL);
4639         if (!priv->rx_buffers) {
4640                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4641
4642                 bd_queue_free(priv, &priv->rx_queue);
4643
4644                 status_queue_free(priv);
4645
4646                 return -ENOMEM;
4647         }
4648
4649         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4650                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4651
4652                 err = ipw2100_alloc_skb(priv, packet);
4653                 if (unlikely(err)) {
4654                         err = -ENOMEM;
4655                         break;
4656                 }
4657
4658                 /* The BD holds the cache aligned address */
4659                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4660                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4661                 priv->status_queue.drv[i].status_fields = 0;
4662         }
4663
4664         if (i == RX_QUEUE_LENGTH)
4665                 return 0;
4666
4667         for (j = 0; j < i; j++) {
4668                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4669                                  sizeof(struct ipw2100_rx_packet),
4670                                  PCI_DMA_FROMDEVICE);
4671                 dev_kfree_skb(priv->rx_buffers[j].skb);
4672         }
4673
4674         kfree(priv->rx_buffers);
4675         priv->rx_buffers = NULL;
4676
4677         bd_queue_free(priv, &priv->rx_queue);
4678
4679         status_queue_free(priv);
4680
4681         return err;
4682 }
4683
4684 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4685 {
4686         IPW_DEBUG_INFO("enter\n");
4687
4688         priv->rx_queue.oldest = 0;
4689         priv->rx_queue.available = priv->rx_queue.entries - 1;
4690         priv->rx_queue.next = priv->rx_queue.entries - 1;
4691
4692         INIT_STAT(&priv->rxq_stat);
4693         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4694
4695         bd_queue_initialize(priv, &priv->rx_queue,
4696                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4697                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4698                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4699                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4700
4701         /* set up the status queue */
4702         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4703                        priv->status_queue.nic);
4704
4705         IPW_DEBUG_INFO("exit\n");
4706 }
4707
4708 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4709 {
4710         int i;
4711
4712         IPW_DEBUG_INFO("enter\n");
4713
4714         bd_queue_free(priv, &priv->rx_queue);
4715         status_queue_free(priv);
4716
4717         if (!priv->rx_buffers)
4718                 return;
4719
4720         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4721                 if (priv->rx_buffers[i].rxp) {
4722                         pci_unmap_single(priv->pci_dev,
4723                                          priv->rx_buffers[i].dma_addr,
4724                                          sizeof(struct ipw2100_rx),
4725                                          PCI_DMA_FROMDEVICE);
4726                         dev_kfree_skb(priv->rx_buffers[i].skb);
4727                 }
4728         }
4729
4730         kfree(priv->rx_buffers);
4731         priv->rx_buffers = NULL;
4732
4733         IPW_DEBUG_INFO("exit\n");
4734 }
4735
4736 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4737 {
4738         u32 length = ETH_ALEN;
4739         u8 addr[ETH_ALEN];
4740
4741         int err;
4742
4743         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4744         if (err) {
4745                 IPW_DEBUG_INFO("MAC address read failed\n");
4746                 return -EIO;
4747         }
4748
4749         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4750         IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4751
4752         return 0;
4753 }
4754
4755 /********************************************************************
4756  *
4757  * Firmware Commands
4758  *
4759  ********************************************************************/
4760
4761 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4762 {
4763         struct host_command cmd = {
4764                 .host_command = ADAPTER_ADDRESS,
4765                 .host_command_sequence = 0,
4766                 .host_command_length = ETH_ALEN
4767         };
4768         int err;
4769
4770         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4771
4772         IPW_DEBUG_INFO("enter\n");
4773
4774         if (priv->config & CFG_CUSTOM_MAC) {
4775                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4776                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4777         } else
4778                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4779                        ETH_ALEN);
4780
4781         err = ipw2100_hw_send_command(priv, &cmd);
4782
4783         IPW_DEBUG_INFO("exit\n");
4784         return err;
4785 }
4786
4787 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4788                                  int batch_mode)
4789 {
4790         struct host_command cmd = {
4791                 .host_command = PORT_TYPE,
4792                 .host_command_sequence = 0,
4793                 .host_command_length = sizeof(u32)
4794         };
4795         int err;
4796
4797         switch (port_type) {
4798         case IW_MODE_INFRA:
4799                 cmd.host_command_parameters[0] = IPW_BSS;
4800                 break;
4801         case IW_MODE_ADHOC:
4802                 cmd.host_command_parameters[0] = IPW_IBSS;
4803                 break;
4804         }
4805
4806         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4807                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4808
4809         if (!batch_mode) {
4810                 err = ipw2100_disable_adapter(priv);
4811                 if (err) {
4812                         printk(KERN_ERR DRV_NAME
4813                                ": %s: Could not disable adapter %d\n",
4814                                priv->net_dev->name, err);
4815                         return err;
4816                 }
4817         }
4818
4819         /* send cmd to firmware */
4820         err = ipw2100_hw_send_command(priv, &cmd);
4821
4822         if (!batch_mode)
4823                 ipw2100_enable_adapter(priv);
4824
4825         return err;
4826 }
4827
4828 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4829                                int batch_mode)
4830 {
4831         struct host_command cmd = {
4832                 .host_command = CHANNEL,
4833                 .host_command_sequence = 0,
4834                 .host_command_length = sizeof(u32)
4835         };
4836         int err;
4837
4838         cmd.host_command_parameters[0] = channel;
4839
4840         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4841
4842         /* If BSS then we don't support channel selection */
4843         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4844                 return 0;
4845
4846         if ((channel != 0) &&
4847             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4848                 return -EINVAL;
4849
4850         if (!batch_mode) {
4851                 err = ipw2100_disable_adapter(priv);
4852                 if (err)
4853                         return err;
4854         }
4855
4856         err = ipw2100_hw_send_command(priv, &cmd);
4857         if (err) {
4858                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4859                 return err;
4860         }
4861
4862         if (channel)
4863                 priv->config |= CFG_STATIC_CHANNEL;
4864         else
4865                 priv->config &= ~CFG_STATIC_CHANNEL;
4866
4867         priv->channel = channel;
4868
4869         if (!batch_mode) {
4870                 err = ipw2100_enable_adapter(priv);
4871                 if (err)
4872                         return err;
4873         }
4874
4875         return 0;
4876 }
4877
4878 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4879 {
4880         struct host_command cmd = {
4881                 .host_command = SYSTEM_CONFIG,
4882                 .host_command_sequence = 0,
4883                 .host_command_length = 12,
4884         };
4885         u32 ibss_mask, len = sizeof(u32);
4886         int err;
4887
4888         /* Set system configuration */
4889
4890         if (!batch_mode) {
4891                 err = ipw2100_disable_adapter(priv);
4892                 if (err)
4893                         return err;
4894         }
4895
4896         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4897                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4898
4899         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4900             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4901
4902         if (!(priv->config & CFG_LONG_PREAMBLE))
4903                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4904
4905         err = ipw2100_get_ordinal(priv,
4906                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4907                                   &ibss_mask, &len);
4908         if (err)
4909                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4910
4911         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4912         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4913
4914         /* 11b only */
4915         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4916
4917         err = ipw2100_hw_send_command(priv, &cmd);
4918         if (err)
4919                 return err;
4920
4921 /* If IPv6 is configured in the kernel then we don't want to filter out all
4922  * of the multicast packets as IPv6 needs some. */
4923 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4924         cmd.host_command = ADD_MULTICAST;
4925         cmd.host_command_sequence = 0;
4926         cmd.host_command_length = 0;
4927
4928         ipw2100_hw_send_command(priv, &cmd);
4929 #endif
4930         if (!batch_mode) {
4931                 err = ipw2100_enable_adapter(priv);
4932                 if (err)
4933                         return err;
4934         }
4935
4936         return 0;
4937 }
4938
4939 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4940                                 int batch_mode)
4941 {
4942         struct host_command cmd = {
4943                 .host_command = BASIC_TX_RATES,
4944                 .host_command_sequence = 0,
4945                 .host_command_length = 4
4946         };
4947         int err;
4948
4949         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4950
4951         if (!batch_mode) {
4952                 err = ipw2100_disable_adapter(priv);
4953                 if (err)
4954                         return err;
4955         }
4956
4957         /* Set BASIC TX Rate first */
4958         ipw2100_hw_send_command(priv, &cmd);
4959
4960         /* Set TX Rate */
4961         cmd.host_command = TX_RATES;
4962         ipw2100_hw_send_command(priv, &cmd);
4963
4964         /* Set MSDU TX Rate */
4965         cmd.host_command = MSDU_TX_RATES;
4966         ipw2100_hw_send_command(priv, &cmd);
4967
4968         if (!batch_mode) {
4969                 err = ipw2100_enable_adapter(priv);
4970                 if (err)
4971                         return err;
4972         }
4973
4974         priv->tx_rates = rate;
4975
4976         return 0;
4977 }
4978
4979 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4980 {
4981         struct host_command cmd = {
4982                 .host_command = POWER_MODE,
4983                 .host_command_sequence = 0,
4984                 .host_command_length = 4
4985         };
4986         int err;
4987
4988         cmd.host_command_parameters[0] = power_level;
4989
4990         err = ipw2100_hw_send_command(priv, &cmd);
4991         if (err)
4992                 return err;
4993
4994         if (power_level == IPW_POWER_MODE_CAM)
4995                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4996         else
4997                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4998
4999 #ifdef IPW2100_TX_POWER
5000         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
5001                 /* Set beacon interval */
5002                 cmd.host_command = TX_POWER_INDEX;
5003                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
5004
5005                 err = ipw2100_hw_send_command(priv, &cmd);
5006                 if (err)
5007                         return err;
5008         }
5009 #endif
5010
5011         return 0;
5012 }
5013
5014 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
5015 {
5016         struct host_command cmd = {
5017                 .host_command = RTS_THRESHOLD,
5018                 .host_command_sequence = 0,
5019                 .host_command_length = 4
5020         };
5021         int err;
5022
5023         if (threshold & RTS_DISABLED)
5024                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
5025         else
5026                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
5027
5028         err = ipw2100_hw_send_command(priv, &cmd);
5029         if (err)
5030                 return err;
5031
5032         priv->rts_threshold = threshold;
5033
5034         return 0;
5035 }
5036
5037 #if 0
5038 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
5039                                         u32 threshold, int batch_mode)
5040 {
5041         struct host_command cmd = {
5042                 .host_command = FRAG_THRESHOLD,
5043                 .host_command_sequence = 0,
5044                 .host_command_length = 4,
5045                 .host_command_parameters[0] = 0,
5046         };
5047         int err;
5048
5049         if (!batch_mode) {
5050                 err = ipw2100_disable_adapter(priv);
5051                 if (err)
5052                         return err;
5053         }
5054
5055         if (threshold == 0)
5056                 threshold = DEFAULT_FRAG_THRESHOLD;
5057         else {
5058                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5059                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5060         }
5061
5062         cmd.host_command_parameters[0] = threshold;
5063
5064         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5065
5066         err = ipw2100_hw_send_command(priv, &cmd);
5067
5068         if (!batch_mode)
5069                 ipw2100_enable_adapter(priv);
5070
5071         if (!err)
5072                 priv->frag_threshold = threshold;
5073
5074         return err;
5075 }
5076 #endif
5077
5078 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5079 {
5080         struct host_command cmd = {
5081                 .host_command = SHORT_RETRY_LIMIT,
5082                 .host_command_sequence = 0,
5083                 .host_command_length = 4
5084         };
5085         int err;
5086
5087         cmd.host_command_parameters[0] = retry;
5088
5089         err = ipw2100_hw_send_command(priv, &cmd);
5090         if (err)
5091                 return err;
5092
5093         priv->short_retry_limit = retry;
5094
5095         return 0;
5096 }
5097
5098 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5099 {
5100         struct host_command cmd = {
5101                 .host_command = LONG_RETRY_LIMIT,
5102                 .host_command_sequence = 0,
5103                 .host_command_length = 4
5104         };
5105         int err;
5106
5107         cmd.host_command_parameters[0] = retry;
5108
5109         err = ipw2100_hw_send_command(priv, &cmd);
5110         if (err)
5111                 return err;
5112
5113         priv->long_retry_limit = retry;
5114
5115         return 0;
5116 }
5117
5118 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5119                                        int batch_mode)
5120 {
5121         struct host_command cmd = {
5122                 .host_command = MANDATORY_BSSID,
5123                 .host_command_sequence = 0,
5124                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5125         };
5126         int err;
5127
5128 #ifdef CONFIG_IPW2100_DEBUG
5129         if (bssid != NULL)
5130                 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5131         else
5132                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5133 #endif
5134         /* if BSSID is empty then we disable mandatory bssid mode */
5135         if (bssid != NULL)
5136                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5137
5138         if (!batch_mode) {
5139                 err = ipw2100_disable_adapter(priv);
5140                 if (err)
5141                         return err;
5142         }
5143
5144         err = ipw2100_hw_send_command(priv, &cmd);
5145
5146         if (!batch_mode)
5147                 ipw2100_enable_adapter(priv);
5148
5149         return err;
5150 }
5151
5152 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5153 {
5154         struct host_command cmd = {
5155                 .host_command = DISASSOCIATION_BSSID,
5156                 .host_command_sequence = 0,
5157                 .host_command_length = ETH_ALEN
5158         };
5159         int err;
5160         int len;
5161
5162         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5163
5164         len = ETH_ALEN;
5165         /* The Firmware currently ignores the BSSID and just disassociates from
5166          * the currently associated AP -- but in the off chance that a future
5167          * firmware does use the BSSID provided here, we go ahead and try and
5168          * set it to the currently associated AP's BSSID */
5169         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5170
5171         err = ipw2100_hw_send_command(priv, &cmd);
5172
5173         return err;
5174 }
5175
5176 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5177                               struct ipw2100_wpa_assoc_frame *, int)
5178     __attribute__ ((unused));
5179
5180 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5181                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5182                               int batch_mode)
5183 {
5184         struct host_command cmd = {
5185                 .host_command = SET_WPA_IE,
5186                 .host_command_sequence = 0,
5187                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5188         };
5189         int err;
5190
5191         IPW_DEBUG_HC("SET_WPA_IE\n");
5192
5193         if (!batch_mode) {
5194                 err = ipw2100_disable_adapter(priv);
5195                 if (err)
5196                         return err;
5197         }
5198
5199         memcpy(cmd.host_command_parameters, wpa_frame,
5200                sizeof(struct ipw2100_wpa_assoc_frame));
5201
5202         err = ipw2100_hw_send_command(priv, &cmd);
5203
5204         if (!batch_mode) {
5205                 if (ipw2100_enable_adapter(priv))
5206                         err = -EIO;
5207         }
5208
5209         return err;
5210 }
5211
5212 struct security_info_params {
5213         u32 allowed_ciphers;
5214         u16 version;
5215         u8 auth_mode;
5216         u8 replay_counters_number;
5217         u8 unicast_using_group;
5218 } __packed;
5219
5220 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5221                                             int auth_mode,
5222                                             int security_level,
5223                                             int unicast_using_group,
5224                                             int batch_mode)
5225 {
5226         struct host_command cmd = {
5227                 .host_command = SET_SECURITY_INFORMATION,
5228                 .host_command_sequence = 0,
5229                 .host_command_length = sizeof(struct security_info_params)
5230         };
5231         struct security_info_params *security =
5232             (struct security_info_params *)&cmd.host_command_parameters;
5233         int err;
5234         memset(security, 0, sizeof(*security));
5235
5236         /* If shared key AP authentication is turned on, then we need to
5237          * configure the firmware to try and use it.
5238          *
5239          * Actual data encryption/decryption is handled by the host. */
5240         security->auth_mode = auth_mode;
5241         security->unicast_using_group = unicast_using_group;
5242
5243         switch (security_level) {
5244         default:
5245         case SEC_LEVEL_0:
5246                 security->allowed_ciphers = IPW_NONE_CIPHER;
5247                 break;
5248         case SEC_LEVEL_1:
5249                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5250                     IPW_WEP104_CIPHER;
5251                 break;
5252         case SEC_LEVEL_2:
5253                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5254                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5255                 break;
5256         case SEC_LEVEL_2_CKIP:
5257                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5258                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5259                 break;
5260         case SEC_LEVEL_3:
5261                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5262                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5263                 break;
5264         }
5265
5266         IPW_DEBUG_HC
5267             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5268              security->auth_mode, security->allowed_ciphers, security_level);
5269
5270         security->replay_counters_number = 0;
5271
5272         if (!batch_mode) {
5273                 err = ipw2100_disable_adapter(priv);
5274                 if (err)
5275                         return err;
5276         }
5277
5278         err = ipw2100_hw_send_command(priv, &cmd);
5279
5280         if (!batch_mode)
5281                 ipw2100_enable_adapter(priv);
5282
5283         return err;
5284 }
5285
5286 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5287 {
5288         struct host_command cmd = {
5289                 .host_command = TX_POWER_INDEX,
5290                 .host_command_sequence = 0,
5291                 .host_command_length = 4
5292         };
5293         int err = 0;
5294         u32 tmp = tx_power;
5295
5296         if (tx_power != IPW_TX_POWER_DEFAULT)
5297                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5298                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5299
5300         cmd.host_command_parameters[0] = tmp;
5301
5302         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5303                 err = ipw2100_hw_send_command(priv, &cmd);
5304         if (!err)
5305                 priv->tx_power = tx_power;
5306
5307         return 0;
5308 }
5309
5310 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5311                                             u32 interval, int batch_mode)
5312 {
5313         struct host_command cmd = {
5314                 .host_command = BEACON_INTERVAL,
5315                 .host_command_sequence = 0,
5316                 .host_command_length = 4
5317         };
5318         int err;
5319
5320         cmd.host_command_parameters[0] = interval;
5321
5322         IPW_DEBUG_INFO("enter\n");
5323
5324         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5325                 if (!batch_mode) {
5326                         err = ipw2100_disable_adapter(priv);
5327                         if (err)
5328                                 return err;
5329                 }
5330
5331                 ipw2100_hw_send_command(priv, &cmd);
5332
5333                 if (!batch_mode) {
5334                         err = ipw2100_enable_adapter(priv);
5335                         if (err)
5336                                 return err;
5337                 }
5338         }
5339
5340         IPW_DEBUG_INFO("exit\n");
5341
5342         return 0;
5343 }
5344
5345 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5346 {
5347         ipw2100_tx_initialize(priv);
5348         ipw2100_rx_initialize(priv);
5349         ipw2100_msg_initialize(priv);
5350 }
5351
5352 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5353 {
5354         ipw2100_tx_free(priv);
5355         ipw2100_rx_free(priv);
5356         ipw2100_msg_free(priv);
5357 }
5358
5359 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5360 {
5361         if (ipw2100_tx_allocate(priv) ||
5362             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5363                 goto fail;
5364
5365         return 0;
5366
5367       fail:
5368         ipw2100_tx_free(priv);
5369         ipw2100_rx_free(priv);
5370         ipw2100_msg_free(priv);
5371         return -ENOMEM;
5372 }
5373
5374 #define IPW_PRIVACY_CAPABLE 0x0008
5375
5376 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5377                                  int batch_mode)
5378 {
5379         struct host_command cmd = {
5380                 .host_command = WEP_FLAGS,
5381                 .host_command_sequence = 0,
5382                 .host_command_length = 4
5383         };
5384         int err;
5385
5386         cmd.host_command_parameters[0] = flags;
5387
5388         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5389
5390         if (!batch_mode) {
5391                 err = ipw2100_disable_adapter(priv);
5392                 if (err) {
5393                         printk(KERN_ERR DRV_NAME
5394                                ": %s: Could not disable adapter %d\n",
5395                                priv->net_dev->name, err);
5396                         return err;
5397                 }
5398         }
5399
5400         /* send cmd to firmware */
5401         err = ipw2100_hw_send_command(priv, &cmd);
5402
5403         if (!batch_mode)
5404                 ipw2100_enable_adapter(priv);
5405
5406         return err;
5407 }
5408
5409 struct ipw2100_wep_key {
5410         u8 idx;
5411         u8 len;
5412         u8 key[13];
5413 };
5414
5415 /* Macros to ease up priting WEP keys */
5416 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5417 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5418 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5419 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5420
5421 /**
5422  * Set a the wep key
5423  *
5424  * @priv: struct to work on
5425  * @idx: index of the key we want to set
5426  * @key: ptr to the key data to set
5427  * @len: length of the buffer at @key
5428  * @batch_mode: FIXME perform the operation in batch mode, not
5429  *              disabling the device.
5430  *
5431  * @returns 0 if OK, < 0 errno code on error.
5432  *
5433  * Fill out a command structure with the new wep key, length an
5434  * index and send it down the wire.
5435  */
5436 static int ipw2100_set_key(struct ipw2100_priv *priv,
5437                            int idx, char *key, int len, int batch_mode)
5438 {
5439         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5440         struct host_command cmd = {
5441                 .host_command = WEP_KEY_INFO,
5442                 .host_command_sequence = 0,
5443                 .host_command_length = sizeof(struct ipw2100_wep_key),
5444         };
5445         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5446         int err;
5447
5448         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5449                      idx, keylen, len);
5450
5451         /* NOTE: We don't check cached values in case the firmware was reset
5452          * or some other problem is occurring.  If the user is setting the key,
5453          * then we push the change */
5454
5455         wep_key->idx = idx;
5456         wep_key->len = keylen;
5457
5458         if (keylen) {
5459                 memcpy(wep_key->key, key, len);
5460                 memset(wep_key->key + len, 0, keylen - len);
5461         }
5462
5463         /* Will be optimized out on debug not being configured in */
5464         if (keylen == 0)
5465                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5466                               priv->net_dev->name, wep_key->idx);
5467         else if (keylen == 5)
5468                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5469                               priv->net_dev->name, wep_key->idx, wep_key->len,
5470                               WEP_STR_64(wep_key->key));
5471         else
5472                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5473                               "\n",
5474                               priv->net_dev->name, wep_key->idx, wep_key->len,
5475                               WEP_STR_128(wep_key->key));
5476
5477         if (!batch_mode) {
5478                 err = ipw2100_disable_adapter(priv);
5479                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5480                 if (err) {
5481                         printk(KERN_ERR DRV_NAME
5482                                ": %s: Could not disable adapter %d\n",
5483                                priv->net_dev->name, err);
5484                         return err;
5485                 }
5486         }
5487
5488         /* send cmd to firmware */
5489         err = ipw2100_hw_send_command(priv, &cmd);
5490
5491         if (!batch_mode) {
5492                 int err2 = ipw2100_enable_adapter(priv);
5493                 if (err == 0)
5494                         err = err2;
5495         }
5496         return err;
5497 }
5498
5499 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5500                                  int idx, int batch_mode)
5501 {
5502         struct host_command cmd = {
5503                 .host_command = WEP_KEY_INDEX,
5504                 .host_command_sequence = 0,
5505                 .host_command_length = 4,
5506                 .host_command_parameters = {idx},
5507         };
5508         int err;
5509
5510         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5511
5512         if (idx < 0 || idx > 3)
5513                 return -EINVAL;
5514
5515         if (!batch_mode) {
5516                 err = ipw2100_disable_adapter(priv);
5517                 if (err) {
5518                         printk(KERN_ERR DRV_NAME
5519                                ": %s: Could not disable adapter %d\n",
5520                                priv->net_dev->name, err);
5521                         return err;
5522                 }
5523         }
5524
5525         /* send cmd to firmware */
5526         err = ipw2100_hw_send_command(priv, &cmd);
5527
5528         if (!batch_mode)
5529                 ipw2100_enable_adapter(priv);
5530
5531         return err;
5532 }
5533
5534 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5535 {
5536         int i, err, auth_mode, sec_level, use_group;
5537
5538         if (!(priv->status & STATUS_RUNNING))
5539                 return 0;
5540
5541         if (!batch_mode) {
5542                 err = ipw2100_disable_adapter(priv);
5543                 if (err)
5544                         return err;
5545         }
5546
5547         if (!priv->ieee->sec.enabled) {
5548                 err =
5549                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5550                                                      SEC_LEVEL_0, 0, 1);
5551         } else {
5552                 auth_mode = IPW_AUTH_OPEN;
5553                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5554                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5555                                 auth_mode = IPW_AUTH_SHARED;
5556                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5557                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5558                 }
5559
5560                 sec_level = SEC_LEVEL_0;
5561                 if (priv->ieee->sec.flags & SEC_LEVEL)
5562                         sec_level = priv->ieee->sec.level;
5563
5564                 use_group = 0;
5565                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5566                         use_group = priv->ieee->sec.unicast_uses_group;
5567
5568                 err =
5569                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5570                                                      use_group, 1);
5571         }
5572
5573         if (err)
5574                 goto exit;
5575
5576         if (priv->ieee->sec.enabled) {
5577                 for (i = 0; i < 4; i++) {
5578                         if (!(priv->ieee->sec.flags & (1 << i))) {
5579                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5580                                 priv->ieee->sec.key_sizes[i] = 0;
5581                         } else {
5582                                 err = ipw2100_set_key(priv, i,
5583                                                       priv->ieee->sec.keys[i],
5584                                                       priv->ieee->sec.
5585                                                       key_sizes[i], 1);
5586                                 if (err)
5587                                         goto exit;
5588                         }
5589                 }
5590
5591                 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5592         }
5593
5594         /* Always enable privacy so the Host can filter WEP packets if
5595          * encrypted data is sent up */
5596         err =
5597             ipw2100_set_wep_flags(priv,
5598                                   priv->ieee->sec.
5599                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5600         if (err)
5601                 goto exit;
5602
5603         priv->status &= ~STATUS_SECURITY_UPDATED;
5604
5605       exit:
5606         if (!batch_mode)
5607                 ipw2100_enable_adapter(priv);
5608
5609         return err;
5610 }
5611
5612 static void ipw2100_security_work(struct work_struct *work)
5613 {
5614         struct ipw2100_priv *priv =
5615                 container_of(work, struct ipw2100_priv, security_work.work);
5616
5617         /* If we happen to have reconnected before we get a chance to
5618          * process this, then update the security settings--which causes
5619          * a disassociation to occur */
5620         if (!(priv->status & STATUS_ASSOCIATED) &&
5621             priv->status & STATUS_SECURITY_UPDATED)
5622                 ipw2100_configure_security(priv, 0);
5623 }
5624
5625 static void shim__set_security(struct net_device *dev,
5626                                struct libipw_security *sec)
5627 {
5628         struct ipw2100_priv *priv = libipw_priv(dev);
5629         int i, force_update = 0;
5630
5631         mutex_lock(&priv->action_mutex);
5632         if (!(priv->status & STATUS_INITIALIZED))
5633                 goto done;
5634
5635         for (i = 0; i < 4; i++) {
5636                 if (sec->flags & (1 << i)) {
5637                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5638                         if (sec->key_sizes[i] == 0)
5639                                 priv->ieee->sec.flags &= ~(1 << i);
5640                         else
5641                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5642                                        sec->key_sizes[i]);
5643                         if (sec->level == SEC_LEVEL_1) {
5644                                 priv->ieee->sec.flags |= (1 << i);
5645                                 priv->status |= STATUS_SECURITY_UPDATED;
5646                         } else
5647                                 priv->ieee->sec.flags &= ~(1 << i);
5648                 }
5649         }
5650
5651         if ((sec->flags & SEC_ACTIVE_KEY) &&
5652             priv->ieee->sec.active_key != sec->active_key) {
5653                 if (sec->active_key <= 3) {
5654                         priv->ieee->sec.active_key = sec->active_key;
5655                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5656                 } else
5657                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5658
5659                 priv->status |= STATUS_SECURITY_UPDATED;
5660         }
5661
5662         if ((sec->flags & SEC_AUTH_MODE) &&
5663             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5664                 priv->ieee->sec.auth_mode = sec->auth_mode;
5665                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5666                 priv->status |= STATUS_SECURITY_UPDATED;
5667         }
5668
5669         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5670                 priv->ieee->sec.flags |= SEC_ENABLED;
5671                 priv->ieee->sec.enabled = sec->enabled;
5672                 priv->status |= STATUS_SECURITY_UPDATED;
5673                 force_update = 1;
5674         }
5675
5676         if (sec->flags & SEC_ENCRYPT)
5677                 priv->ieee->sec.encrypt = sec->encrypt;
5678
5679         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5680                 priv->ieee->sec.level = sec->level;
5681                 priv->ieee->sec.flags |= SEC_LEVEL;
5682                 priv->status |= STATUS_SECURITY_UPDATED;
5683         }
5684
5685         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5686                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5687                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5688                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5689                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5690                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5691                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5692                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5693                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5694                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5695
5696 /* As a temporary work around to enable WPA until we figure out why
5697  * wpa_supplicant toggles the security capability of the driver, which
5698  * forces a disassocation with force_update...
5699  *
5700  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5701         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5702                 ipw2100_configure_security(priv, 0);
5703       done:
5704         mutex_unlock(&priv->action_mutex);
5705 }
5706
5707 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5708 {
5709         int err;
5710         int batch_mode = 1;
5711         u8 *bssid;
5712
5713         IPW_DEBUG_INFO("enter\n");
5714
5715         err = ipw2100_disable_adapter(priv);
5716         if (err)
5717                 return err;
5718 #ifdef CONFIG_IPW2100_MONITOR
5719         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5720                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5721                 if (err)
5722                         return err;
5723
5724                 IPW_DEBUG_INFO("exit\n");
5725
5726                 return 0;
5727         }
5728 #endif                          /* CONFIG_IPW2100_MONITOR */
5729
5730         err = ipw2100_read_mac_address(priv);
5731         if (err)
5732                 return -EIO;
5733
5734         err = ipw2100_set_mac_address(priv, batch_mode);
5735         if (err)
5736                 return err;
5737
5738         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5739         if (err)
5740                 return err;
5741
5742         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5743                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5744                 if (err)
5745                         return err;
5746         }
5747
5748         err = ipw2100_system_config(priv, batch_mode);
5749         if (err)
5750                 return err;
5751
5752         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5753         if (err)
5754                 return err;
5755
5756         /* Default to power mode OFF */
5757         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5758         if (err)
5759                 return err;
5760
5761         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5762         if (err)
5763                 return err;
5764
5765         if (priv->config & CFG_STATIC_BSSID)
5766                 bssid = priv->bssid;
5767         else
5768                 bssid = NULL;
5769         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5770         if (err)
5771                 return err;
5772
5773         if (priv->config & CFG_STATIC_ESSID)
5774                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5775                                         batch_mode);
5776         else
5777                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5778         if (err)
5779                 return err;
5780
5781         err = ipw2100_configure_security(priv, batch_mode);
5782         if (err)
5783                 return err;
5784
5785         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5786                 err =
5787                     ipw2100_set_ibss_beacon_interval(priv,
5788                                                      priv->beacon_interval,
5789                                                      batch_mode);
5790                 if (err)
5791                         return err;
5792
5793                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5794                 if (err)
5795                         return err;
5796         }
5797
5798         /*
5799            err = ipw2100_set_fragmentation_threshold(
5800            priv, priv->frag_threshold, batch_mode);
5801            if (err)
5802            return err;
5803          */
5804
5805         IPW_DEBUG_INFO("exit\n");
5806
5807         return 0;
5808 }
5809
5810 /*************************************************************************
5811  *
5812  * EXTERNALLY CALLED METHODS
5813  *
5814  *************************************************************************/
5815
5816 /* This method is called by the network layer -- not to be confused with
5817  * ipw2100_set_mac_address() declared above called by this driver (and this
5818  * method as well) to talk to the firmware */
5819 static int ipw2100_set_address(struct net_device *dev, void *p)
5820 {
5821         struct ipw2100_priv *priv = libipw_priv(dev);
5822         struct sockaddr *addr = p;
5823         int err = 0;
5824
5825         if (!is_valid_ether_addr(addr->sa_data))
5826                 return -EADDRNOTAVAIL;
5827
5828         mutex_lock(&priv->action_mutex);
5829
5830         priv->config |= CFG_CUSTOM_MAC;
5831         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5832
5833         err = ipw2100_set_mac_address(priv, 0);
5834         if (err)
5835                 goto done;
5836
5837         priv->reset_backoff = 0;
5838         mutex_unlock(&priv->action_mutex);
5839         ipw2100_reset_adapter(&priv->reset_work.work);
5840         return 0;
5841
5842       done:
5843         mutex_unlock(&priv->action_mutex);
5844         return err;
5845 }
5846
5847 static int ipw2100_open(struct net_device *dev)
5848 {
5849         struct ipw2100_priv *priv = libipw_priv(dev);
5850         unsigned long flags;
5851         IPW_DEBUG_INFO("dev->open\n");
5852
5853         spin_lock_irqsave(&priv->low_lock, flags);
5854         if (priv->status & STATUS_ASSOCIATED) {
5855                 netif_carrier_on(dev);
5856                 netif_start_queue(dev);
5857         }
5858         spin_unlock_irqrestore(&priv->low_lock, flags);
5859
5860         return 0;
5861 }
5862
5863 static int ipw2100_close(struct net_device *dev)
5864 {
5865         struct ipw2100_priv *priv = libipw_priv(dev);
5866         unsigned long flags;
5867         struct list_head *element;
5868         struct ipw2100_tx_packet *packet;
5869
5870         IPW_DEBUG_INFO("enter\n");
5871
5872         spin_lock_irqsave(&priv->low_lock, flags);
5873
5874         if (priv->status & STATUS_ASSOCIATED)
5875                 netif_carrier_off(dev);
5876         netif_stop_queue(dev);
5877
5878         /* Flush the TX queue ... */
5879         while (!list_empty(&priv->tx_pend_list)) {
5880                 element = priv->tx_pend_list.next;
5881                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5882
5883                 list_del(element);
5884                 DEC_STAT(&priv->tx_pend_stat);
5885
5886                 libipw_txb_free(packet->info.d_struct.txb);
5887                 packet->info.d_struct.txb = NULL;
5888
5889                 list_add_tail(element, &priv->tx_free_list);
5890                 INC_STAT(&priv->tx_free_stat);
5891         }
5892         spin_unlock_irqrestore(&priv->low_lock, flags);
5893
5894         IPW_DEBUG_INFO("exit\n");
5895
5896         return 0;
5897 }
5898
5899 /*
5900  * TODO:  Fix this function... its just wrong
5901  */
5902 static void ipw2100_tx_timeout(struct net_device *dev)
5903 {
5904         struct ipw2100_priv *priv = libipw_priv(dev);
5905
5906         dev->stats.tx_errors++;
5907
5908 #ifdef CONFIG_IPW2100_MONITOR
5909         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5910                 return;
5911 #endif
5912
5913         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5914                        dev->name);
5915         schedule_reset(priv);
5916 }
5917
5918 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5919 {
5920         /* This is called when wpa_supplicant loads and closes the driver
5921          * interface. */
5922         priv->ieee->wpa_enabled = value;
5923         return 0;
5924 }
5925
5926 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5927 {
5928
5929         struct libipw_device *ieee = priv->ieee;
5930         struct libipw_security sec = {
5931                 .flags = SEC_AUTH_MODE,
5932         };
5933         int ret = 0;
5934
5935         if (value & IW_AUTH_ALG_SHARED_KEY) {
5936                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5937                 ieee->open_wep = 0;
5938         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5939                 sec.auth_mode = WLAN_AUTH_OPEN;
5940                 ieee->open_wep = 1;
5941         } else if (value & IW_AUTH_ALG_LEAP) {
5942                 sec.auth_mode = WLAN_AUTH_LEAP;
5943                 ieee->open_wep = 1;
5944         } else
5945                 return -EINVAL;
5946
5947         if (ieee->set_security)
5948                 ieee->set_security(ieee->dev, &sec);
5949         else
5950                 ret = -EOPNOTSUPP;
5951
5952         return ret;
5953 }
5954
5955 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5956                                     char *wpa_ie, int wpa_ie_len)
5957 {
5958
5959         struct ipw2100_wpa_assoc_frame frame;
5960
5961         frame.fixed_ie_mask = 0;
5962
5963         /* copy WPA IE */
5964         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5965         frame.var_ie_len = wpa_ie_len;
5966
5967         /* make sure WPA is enabled */
5968         ipw2100_wpa_enable(priv, 1);
5969         ipw2100_set_wpa_ie(priv, &frame, 0);
5970 }
5971
5972 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5973                                     struct ethtool_drvinfo *info)
5974 {
5975         struct ipw2100_priv *priv = libipw_priv(dev);
5976         char fw_ver[64], ucode_ver[64];
5977
5978         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5979         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5980
5981         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5982         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5983
5984         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5985                  fw_ver, priv->eeprom_version, ucode_ver);
5986
5987         strlcpy(info->bus_info, pci_name(priv->pci_dev),
5988                 sizeof(info->bus_info));
5989 }
5990
5991 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5992 {
5993         struct ipw2100_priv *priv = libipw_priv(dev);
5994         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5995 }
5996
5997 static const struct ethtool_ops ipw2100_ethtool_ops = {
5998         .get_link = ipw2100_ethtool_get_link,
5999         .get_drvinfo = ipw_ethtool_get_drvinfo,
6000 };
6001
6002 static void ipw2100_hang_check(struct work_struct *work)
6003 {
6004         struct ipw2100_priv *priv =
6005                 container_of(work, struct ipw2100_priv, hang_check.work);
6006         unsigned long flags;
6007         u32 rtc = 0xa5a5a5a5;
6008         u32 len = sizeof(rtc);
6009         int restart = 0;
6010
6011         spin_lock_irqsave(&priv->low_lock, flags);
6012
6013         if (priv->fatal_error != 0) {
6014                 /* If fatal_error is set then we need to restart */
6015                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
6016                                priv->net_dev->name);
6017
6018                 restart = 1;
6019         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
6020                    (rtc == priv->last_rtc)) {
6021                 /* Check if firmware is hung */
6022                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
6023                                priv->net_dev->name);
6024
6025                 restart = 1;
6026         }
6027
6028         if (restart) {
6029                 /* Kill timer */
6030                 priv->stop_hang_check = 1;
6031                 priv->hangs++;
6032
6033                 /* Restart the NIC */
6034                 schedule_reset(priv);
6035         }
6036
6037         priv->last_rtc = rtc;
6038
6039         if (!priv->stop_hang_check)
6040                 schedule_delayed_work(&priv->hang_check, HZ / 2);
6041
6042         spin_unlock_irqrestore(&priv->low_lock, flags);
6043 }
6044
6045 static void ipw2100_rf_kill(struct work_struct *work)
6046 {
6047         struct ipw2100_priv *priv =
6048                 container_of(work, struct ipw2100_priv, rf_kill.work);
6049         unsigned long flags;
6050
6051         spin_lock_irqsave(&priv->low_lock, flags);
6052
6053         if (rf_kill_active(priv)) {
6054                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6055                 if (!priv->stop_rf_kill)
6056                         schedule_delayed_work(&priv->rf_kill,
6057                                               round_jiffies_relative(HZ));
6058                 goto exit_unlock;
6059         }
6060
6061         /* RF Kill is now disabled, so bring the device back up */
6062
6063         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6064                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6065                                   "device\n");
6066                 schedule_reset(priv);
6067         } else
6068                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6069                                   "enabled\n");
6070
6071       exit_unlock:
6072         spin_unlock_irqrestore(&priv->low_lock, flags);
6073 }
6074
6075 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6076
6077 static const struct net_device_ops ipw2100_netdev_ops = {
6078         .ndo_open               = ipw2100_open,
6079         .ndo_stop               = ipw2100_close,
6080         .ndo_start_xmit         = libipw_xmit,
6081         .ndo_change_mtu         = libipw_change_mtu,
6082         .ndo_tx_timeout         = ipw2100_tx_timeout,
6083         .ndo_set_mac_address    = ipw2100_set_address,
6084         .ndo_validate_addr      = eth_validate_addr,
6085 };
6086
6087 /* Look into using netdev destructor to shutdown libipw? */
6088
6089 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6090                                                void __iomem * ioaddr)
6091 {
6092         struct ipw2100_priv *priv;
6093         struct net_device *dev;
6094
6095         dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6096         if (!dev)
6097                 return NULL;
6098         priv = libipw_priv(dev);
6099         priv->ieee = netdev_priv(dev);
6100         priv->pci_dev = pci_dev;
6101         priv->net_dev = dev;
6102         priv->ioaddr = ioaddr;
6103
6104         priv->ieee->hard_start_xmit = ipw2100_tx;
6105         priv->ieee->set_security = shim__set_security;
6106
6107         priv->ieee->perfect_rssi = -20;
6108         priv->ieee->worst_rssi = -85;
6109
6110         dev->netdev_ops = &ipw2100_netdev_ops;
6111         dev->ethtool_ops = &ipw2100_ethtool_ops;
6112         dev->wireless_handlers = &ipw2100_wx_handler_def;
6113         priv->wireless_data.libipw = priv->ieee;
6114         dev->wireless_data = &priv->wireless_data;
6115         dev->watchdog_timeo = 3 * HZ;
6116         dev->irq = 0;
6117
6118         /* NOTE: We don't use the wireless_handlers hook
6119          * in dev as the system will start throwing WX requests
6120          * to us before we're actually initialized and it just
6121          * ends up causing problems.  So, we just handle
6122          * the WX extensions through the ipw2100_ioctl interface */
6123
6124         /* memset() puts everything to 0, so we only have explicitly set
6125          * those values that need to be something else */
6126
6127         /* If power management is turned on, default to AUTO mode */
6128         priv->power_mode = IPW_POWER_AUTO;
6129
6130 #ifdef CONFIG_IPW2100_MONITOR
6131         priv->config |= CFG_CRC_CHECK;
6132 #endif
6133         priv->ieee->wpa_enabled = 0;
6134         priv->ieee->drop_unencrypted = 0;
6135         priv->ieee->privacy_invoked = 0;
6136         priv->ieee->ieee802_1x = 1;
6137
6138         /* Set module parameters */
6139         switch (network_mode) {
6140         case 1:
6141                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6142                 break;
6143 #ifdef CONFIG_IPW2100_MONITOR
6144         case 2:
6145                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6146                 break;
6147 #endif
6148         default:
6149         case 0:
6150                 priv->ieee->iw_mode = IW_MODE_INFRA;
6151                 break;
6152         }
6153
6154         if (disable == 1)
6155                 priv->status |= STATUS_RF_KILL_SW;
6156
6157         if (channel != 0 &&
6158             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6159                 priv->config |= CFG_STATIC_CHANNEL;
6160                 priv->channel = channel;
6161         }
6162
6163         if (associate)
6164                 priv->config |= CFG_ASSOCIATE;
6165
6166         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6167         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6168         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6169         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6170         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6171         priv->tx_power = IPW_TX_POWER_DEFAULT;
6172         priv->tx_rates = DEFAULT_TX_RATES;
6173
6174         strcpy(priv->nick, "ipw2100");
6175
6176         spin_lock_init(&priv->low_lock);
6177         mutex_init(&priv->action_mutex);
6178         mutex_init(&priv->adapter_mutex);
6179
6180         init_waitqueue_head(&priv->wait_command_queue);
6181
6182         netif_carrier_off(dev);
6183
6184         INIT_LIST_HEAD(&priv->msg_free_list);
6185         INIT_LIST_HEAD(&priv->msg_pend_list);
6186         INIT_STAT(&priv->msg_free_stat);
6187         INIT_STAT(&priv->msg_pend_stat);
6188
6189         INIT_LIST_HEAD(&priv->tx_free_list);
6190         INIT_LIST_HEAD(&priv->tx_pend_list);
6191         INIT_STAT(&priv->tx_free_stat);
6192         INIT_STAT(&priv->tx_pend_stat);
6193
6194         INIT_LIST_HEAD(&priv->fw_pend_list);
6195         INIT_STAT(&priv->fw_pend_stat);
6196
6197         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6198         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6199         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6200         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6201         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6202         INIT_WORK(&priv->scan_event_now, ipw2100_scan_event_now);
6203         INIT_DELAYED_WORK(&priv->scan_event_later, ipw2100_scan_event_later);
6204
6205         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6206                      ipw2100_irq_tasklet, (unsigned long)priv);
6207
6208         /* NOTE:  We do not start the deferred work for status checks yet */
6209         priv->stop_rf_kill = 1;
6210         priv->stop_hang_check = 1;
6211
6212         return dev;
6213 }
6214
6215 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6216                                 const struct pci_device_id *ent)
6217 {
6218         void __iomem *ioaddr;
6219         struct net_device *dev = NULL;
6220         struct ipw2100_priv *priv = NULL;
6221         int err = 0;
6222         int registered = 0;
6223         u32 val;
6224
6225         IPW_DEBUG_INFO("enter\n");
6226
6227         if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6228                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6229                 err = -ENODEV;
6230                 goto out;
6231         }
6232
6233         ioaddr = pci_iomap(pci_dev, 0, 0);
6234         if (!ioaddr) {
6235                 printk(KERN_WARNING DRV_NAME
6236                        "Error calling ioremap_nocache.\n");
6237                 err = -EIO;
6238                 goto fail;
6239         }
6240
6241         /* allocate and initialize our net_device */
6242         dev = ipw2100_alloc_device(pci_dev, ioaddr);
6243         if (!dev) {
6244                 printk(KERN_WARNING DRV_NAME
6245                        "Error calling ipw2100_alloc_device.\n");
6246                 err = -ENOMEM;
6247                 goto fail;
6248         }
6249
6250         /* set up PCI mappings for device */
6251         err = pci_enable_device(pci_dev);
6252         if (err) {
6253                 printk(KERN_WARNING DRV_NAME
6254                        "Error calling pci_enable_device.\n");
6255                 return err;
6256         }
6257
6258         priv = libipw_priv(dev);
6259
6260         pci_set_master(pci_dev);
6261         pci_set_drvdata(pci_dev, priv);
6262
6263         err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6264         if (err) {
6265                 printk(KERN_WARNING DRV_NAME
6266                        "Error calling pci_set_dma_mask.\n");
6267                 pci_disable_device(pci_dev);
6268                 return err;
6269         }
6270
6271         err = pci_request_regions(pci_dev, DRV_NAME);
6272         if (err) {
6273                 printk(KERN_WARNING DRV_NAME
6274                        "Error calling pci_request_regions.\n");
6275                 pci_disable_device(pci_dev);
6276                 return err;
6277         }
6278
6279         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6280          * PCI Tx retries from interfering with C3 CPU state */
6281         pci_read_config_dword(pci_dev, 0x40, &val);
6282         if ((val & 0x0000ff00) != 0)
6283                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6284
6285         pci_set_power_state(pci_dev, PCI_D0);
6286
6287         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6288                 printk(KERN_WARNING DRV_NAME
6289                        "Device not found via register read.\n");
6290                 err = -ENODEV;
6291                 goto fail;
6292         }
6293
6294         SET_NETDEV_DEV(dev, &pci_dev->dev);
6295
6296         /* Force interrupts to be shut off on the device */
6297         priv->status |= STATUS_INT_ENABLED;
6298         ipw2100_disable_interrupts(priv);
6299
6300         /* Allocate and initialize the Tx/Rx queues and lists */
6301         if (ipw2100_queues_allocate(priv)) {
6302                 printk(KERN_WARNING DRV_NAME
6303                        "Error calling ipw2100_queues_allocate.\n");
6304                 err = -ENOMEM;
6305                 goto fail;
6306         }
6307         ipw2100_queues_initialize(priv);
6308
6309         err = request_irq(pci_dev->irq,
6310                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6311         if (err) {
6312                 printk(KERN_WARNING DRV_NAME
6313                        "Error calling request_irq: %d.\n", pci_dev->irq);
6314                 goto fail;
6315         }
6316         dev->irq = pci_dev->irq;
6317
6318         IPW_DEBUG_INFO("Attempting to register device...\n");
6319
6320         printk(KERN_INFO DRV_NAME
6321                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6322
6323         err = ipw2100_up(priv, 1);
6324         if (err)
6325                 goto fail;
6326
6327         err = ipw2100_wdev_init(dev);
6328         if (err)
6329                 goto fail;
6330         registered = 1;
6331
6332         /* Bring up the interface.  Pre 0.46, after we registered the
6333          * network device we would call ipw2100_up.  This introduced a race
6334          * condition with newer hotplug configurations (network was coming
6335          * up and making calls before the device was initialized).
6336          */
6337         err = register_netdev(dev);
6338         if (err) {
6339                 printk(KERN_WARNING DRV_NAME
6340                        "Error calling register_netdev.\n");
6341                 goto fail;
6342         }
6343         registered = 2;
6344
6345         mutex_lock(&priv->action_mutex);
6346
6347         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6348
6349         /* perform this after register_netdev so that dev->name is set */
6350         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6351         if (err)
6352                 goto fail_unlock;
6353
6354         /* If the RF Kill switch is disabled, go ahead and complete the
6355          * startup sequence */
6356         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6357                 /* Enable the adapter - sends HOST_COMPLETE */
6358                 if (ipw2100_enable_adapter(priv)) {
6359                         printk(KERN_WARNING DRV_NAME
6360                                ": %s: failed in call to enable adapter.\n",
6361                                priv->net_dev->name);
6362                         ipw2100_hw_stop_adapter(priv);
6363                         err = -EIO;
6364                         goto fail_unlock;
6365                 }
6366
6367                 /* Start a scan . . . */
6368                 ipw2100_set_scan_options(priv);
6369                 ipw2100_start_scan(priv);
6370         }
6371
6372         IPW_DEBUG_INFO("exit\n");
6373
6374         priv->status |= STATUS_INITIALIZED;
6375
6376         mutex_unlock(&priv->action_mutex);
6377 out:
6378         return err;
6379
6380       fail_unlock:
6381         mutex_unlock(&priv->action_mutex);
6382       fail:
6383         if (dev) {
6384                 if (registered >= 2)
6385                         unregister_netdev(dev);
6386
6387                 if (registered) {
6388                         wiphy_unregister(priv->ieee->wdev.wiphy);
6389                         kfree(priv->ieee->bg_band.channels);
6390                 }
6391
6392                 ipw2100_hw_stop_adapter(priv);
6393
6394                 ipw2100_disable_interrupts(priv);
6395
6396                 if (dev->irq)
6397                         free_irq(dev->irq, priv);
6398
6399                 ipw2100_kill_works(priv);
6400
6401                 /* These are safe to call even if they weren't allocated */
6402                 ipw2100_queues_free(priv);
6403                 sysfs_remove_group(&pci_dev->dev.kobj,
6404                                    &ipw2100_attribute_group);
6405
6406                 free_libipw(dev, 0);
6407                 pci_set_drvdata(pci_dev, NULL);
6408         }
6409
6410         pci_iounmap(pci_dev, ioaddr);
6411
6412         pci_release_regions(pci_dev);
6413         pci_disable_device(pci_dev);
6414         goto out;
6415 }
6416
6417 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6418 {
6419         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6420         struct net_device *dev = priv->net_dev;
6421
6422         mutex_lock(&priv->action_mutex);
6423
6424         priv->status &= ~STATUS_INITIALIZED;
6425
6426         sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6427
6428 #ifdef CONFIG_PM
6429         if (ipw2100_firmware.version)
6430                 ipw2100_release_firmware(priv, &ipw2100_firmware);
6431 #endif
6432         /* Take down the hardware */
6433         ipw2100_down(priv);
6434
6435         /* Release the mutex so that the network subsystem can
6436          * complete any needed calls into the driver... */
6437         mutex_unlock(&priv->action_mutex);
6438
6439         /* Unregister the device first - this results in close()
6440          * being called if the device is open.  If we free storage
6441          * first, then close() will crash.
6442          * FIXME: remove the comment above. */
6443         unregister_netdev(dev);
6444
6445         ipw2100_kill_works(priv);
6446
6447         ipw2100_queues_free(priv);
6448
6449         /* Free potential debugging firmware snapshot */
6450         ipw2100_snapshot_free(priv);
6451
6452         free_irq(dev->irq, priv);
6453
6454         pci_iounmap(pci_dev, priv->ioaddr);
6455
6456         /* wiphy_unregister needs to be here, before free_libipw */
6457         wiphy_unregister(priv->ieee->wdev.wiphy);
6458         kfree(priv->ieee->bg_band.channels);
6459         free_libipw(dev, 0);
6460
6461         pci_release_regions(pci_dev);
6462         pci_disable_device(pci_dev);
6463
6464         IPW_DEBUG_INFO("exit\n");
6465 }
6466
6467 #ifdef CONFIG_PM
6468 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6469 {
6470         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6471         struct net_device *dev = priv->net_dev;
6472
6473         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6474
6475         mutex_lock(&priv->action_mutex);
6476         if (priv->status & STATUS_INITIALIZED) {
6477                 /* Take down the device; powers it off, etc. */
6478                 ipw2100_down(priv);
6479         }
6480
6481         /* Remove the PRESENT state of the device */
6482         netif_device_detach(dev);
6483
6484         pci_save_state(pci_dev);
6485         pci_disable_device(pci_dev);
6486         pci_set_power_state(pci_dev, PCI_D3hot);
6487
6488         priv->suspend_at = get_seconds();
6489
6490         mutex_unlock(&priv->action_mutex);
6491
6492         return 0;
6493 }
6494
6495 static int ipw2100_resume(struct pci_dev *pci_dev)
6496 {
6497         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6498         struct net_device *dev = priv->net_dev;
6499         int err;
6500         u32 val;
6501
6502         if (IPW2100_PM_DISABLED)
6503                 return 0;
6504
6505         mutex_lock(&priv->action_mutex);
6506
6507         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6508
6509         pci_set_power_state(pci_dev, PCI_D0);
6510         err = pci_enable_device(pci_dev);
6511         if (err) {
6512                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6513                        dev->name);
6514                 mutex_unlock(&priv->action_mutex);
6515                 return err;
6516         }
6517         pci_restore_state(pci_dev);
6518
6519         /*
6520          * Suspend/Resume resets the PCI configuration space, so we have to
6521          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6522          * from interfering with C3 CPU state. pci_restore_state won't help
6523          * here since it only restores the first 64 bytes pci config header.
6524          */
6525         pci_read_config_dword(pci_dev, 0x40, &val);
6526         if ((val & 0x0000ff00) != 0)
6527                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6528
6529         /* Set the device back into the PRESENT state; this will also wake
6530          * the queue of needed */
6531         netif_device_attach(dev);
6532
6533         priv->suspend_time = get_seconds() - priv->suspend_at;
6534
6535         /* Bring the device back up */
6536         if (!(priv->status & STATUS_RF_KILL_SW))
6537                 ipw2100_up(priv, 0);
6538
6539         mutex_unlock(&priv->action_mutex);
6540
6541         return 0;
6542 }
6543 #endif
6544
6545 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6546 {
6547         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6548
6549         /* Take down the device; powers it off, etc. */
6550         ipw2100_down(priv);
6551
6552         pci_disable_device(pci_dev);
6553 }
6554
6555 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6556
6557 static DEFINE_PCI_DEVICE_TABLE(ipw2100_pci_id_table) = {
6558         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6559         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6560         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6561         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6562         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6563         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6564         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6565         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6566         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6567         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6568         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6569         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6570         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6571
6572         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6573         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6574         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6575         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6576         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6577
6578         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6579         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6580         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6581         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6582         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6583         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6584         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6585
6586         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6587
6588         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6589         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6590         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6591         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6592         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6593         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6594         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6595
6596         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6597         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6598         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6599         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6600         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6601         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6602
6603         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6604         {0,},
6605 };
6606
6607 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6608
6609 static struct pci_driver ipw2100_pci_driver = {
6610         .name = DRV_NAME,
6611         .id_table = ipw2100_pci_id_table,
6612         .probe = ipw2100_pci_init_one,
6613         .remove = __devexit_p(ipw2100_pci_remove_one),
6614 #ifdef CONFIG_PM
6615         .suspend = ipw2100_suspend,
6616         .resume = ipw2100_resume,
6617 #endif
6618         .shutdown = ipw2100_shutdown,
6619 };
6620
6621 /**
6622  * Initialize the ipw2100 driver/module
6623  *
6624  * @returns 0 if ok, < 0 errno node con error.
6625  *
6626  * Note: we cannot init the /proc stuff until the PCI driver is there,
6627  * or we risk an unlikely race condition on someone accessing
6628  * uninitialized data in the PCI dev struct through /proc.
6629  */
6630 static int __init ipw2100_init(void)
6631 {
6632         int ret;
6633
6634         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6635         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6636
6637         pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6638                            PM_QOS_DEFAULT_VALUE);
6639
6640         ret = pci_register_driver(&ipw2100_pci_driver);
6641         if (ret)
6642                 goto out;
6643
6644 #ifdef CONFIG_IPW2100_DEBUG
6645         ipw2100_debug_level = debug;
6646         ret = driver_create_file(&ipw2100_pci_driver.driver,
6647                                  &driver_attr_debug_level);
6648 #endif
6649
6650 out:
6651         return ret;
6652 }
6653
6654 /**
6655  * Cleanup ipw2100 driver registration
6656  */
6657 static void __exit ipw2100_exit(void)
6658 {
6659         /* FIXME: IPG: check that we have no instances of the devices open */
6660 #ifdef CONFIG_IPW2100_DEBUG
6661         driver_remove_file(&ipw2100_pci_driver.driver,
6662                            &driver_attr_debug_level);
6663 #endif
6664         pci_unregister_driver(&ipw2100_pci_driver);
6665         pm_qos_remove_request(&ipw2100_pm_qos_req);
6666 }
6667
6668 module_init(ipw2100_init);
6669 module_exit(ipw2100_exit);
6670
6671 static int ipw2100_wx_get_name(struct net_device *dev,
6672                                struct iw_request_info *info,
6673                                union iwreq_data *wrqu, char *extra)
6674 {
6675         /*
6676          * This can be called at any time.  No action lock required
6677          */
6678
6679         struct ipw2100_priv *priv = libipw_priv(dev);
6680         if (!(priv->status & STATUS_ASSOCIATED))
6681                 strcpy(wrqu->name, "unassociated");
6682         else
6683                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6684
6685         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6686         return 0;
6687 }
6688
6689 static int ipw2100_wx_set_freq(struct net_device *dev,
6690                                struct iw_request_info *info,
6691                                union iwreq_data *wrqu, char *extra)
6692 {
6693         struct ipw2100_priv *priv = libipw_priv(dev);
6694         struct iw_freq *fwrq = &wrqu->freq;
6695         int err = 0;
6696
6697         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6698                 return -EOPNOTSUPP;
6699
6700         mutex_lock(&priv->action_mutex);
6701         if (!(priv->status & STATUS_INITIALIZED)) {
6702                 err = -EIO;
6703                 goto done;
6704         }
6705
6706         /* if setting by freq convert to channel */
6707         if (fwrq->e == 1) {
6708                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6709                         int f = fwrq->m / 100000;
6710                         int c = 0;
6711
6712                         while ((c < REG_MAX_CHANNEL) &&
6713                                (f != ipw2100_frequencies[c]))
6714                                 c++;
6715
6716                         /* hack to fall through */
6717                         fwrq->e = 0;
6718                         fwrq->m = c + 1;
6719                 }
6720         }
6721
6722         if (fwrq->e > 0 || fwrq->m > 1000) {
6723                 err = -EOPNOTSUPP;
6724                 goto done;
6725         } else {                /* Set the channel */
6726                 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6727                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6728         }
6729
6730       done:
6731         mutex_unlock(&priv->action_mutex);
6732         return err;
6733 }
6734
6735 static int ipw2100_wx_get_freq(struct net_device *dev,
6736                                struct iw_request_info *info,
6737                                union iwreq_data *wrqu, char *extra)
6738 {
6739         /*
6740          * This can be called at any time.  No action lock required
6741          */
6742
6743         struct ipw2100_priv *priv = libipw_priv(dev);
6744
6745         wrqu->freq.e = 0;
6746
6747         /* If we are associated, trying to associate, or have a statically
6748          * configured CHANNEL then return that; otherwise return ANY */
6749         if (priv->config & CFG_STATIC_CHANNEL ||
6750             priv->status & STATUS_ASSOCIATED)
6751                 wrqu->freq.m = priv->channel;
6752         else
6753                 wrqu->freq.m = 0;
6754
6755         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6756         return 0;
6757
6758 }
6759
6760 static int ipw2100_wx_set_mode(struct net_device *dev,
6761                                struct iw_request_info *info,
6762                                union iwreq_data *wrqu, char *extra)
6763 {
6764         struct ipw2100_priv *priv = libipw_priv(dev);
6765         int err = 0;
6766
6767         IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6768
6769         if (wrqu->mode == priv->ieee->iw_mode)
6770                 return 0;
6771
6772         mutex_lock(&priv->action_mutex);
6773         if (!(priv->status & STATUS_INITIALIZED)) {
6774                 err = -EIO;
6775                 goto done;
6776         }
6777
6778         switch (wrqu->mode) {
6779 #ifdef CONFIG_IPW2100_MONITOR
6780         case IW_MODE_MONITOR:
6781                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6782                 break;
6783 #endif                          /* CONFIG_IPW2100_MONITOR */
6784         case IW_MODE_ADHOC:
6785                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6786                 break;
6787         case IW_MODE_INFRA:
6788         case IW_MODE_AUTO:
6789         default:
6790                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6791                 break;
6792         }
6793
6794       done:
6795         mutex_unlock(&priv->action_mutex);
6796         return err;
6797 }
6798
6799 static int ipw2100_wx_get_mode(struct net_device *dev,
6800                                struct iw_request_info *info,
6801                                union iwreq_data *wrqu, char *extra)
6802 {
6803         /*
6804          * This can be called at any time.  No action lock required
6805          */
6806
6807         struct ipw2100_priv *priv = libipw_priv(dev);
6808
6809         wrqu->mode = priv->ieee->iw_mode;
6810         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6811
6812         return 0;
6813 }
6814
6815 #define POWER_MODES 5
6816
6817 /* Values are in microsecond */
6818 static const s32 timeout_duration[POWER_MODES] = {
6819         350000,
6820         250000,
6821         75000,
6822         37000,
6823         25000,
6824 };
6825
6826 static const s32 period_duration[POWER_MODES] = {
6827         400000,
6828         700000,
6829         1000000,
6830         1000000,
6831         1000000
6832 };
6833
6834 static int ipw2100_wx_get_range(struct net_device *dev,
6835                                 struct iw_request_info *info,
6836                                 union iwreq_data *wrqu, char *extra)
6837 {
6838         /*
6839          * This can be called at any time.  No action lock required
6840          */
6841
6842         struct ipw2100_priv *priv = libipw_priv(dev);
6843         struct iw_range *range = (struct iw_range *)extra;
6844         u16 val;
6845         int i, level;
6846
6847         wrqu->data.length = sizeof(*range);
6848         memset(range, 0, sizeof(*range));
6849
6850         /* Let's try to keep this struct in the same order as in
6851          * linux/include/wireless.h
6852          */
6853
6854         /* TODO: See what values we can set, and remove the ones we can't
6855          * set, or fill them with some default data.
6856          */
6857
6858         /* ~5 Mb/s real (802.11b) */
6859         range->throughput = 5 * 1000 * 1000;
6860
6861 //      range->sensitivity;     /* signal level threshold range */
6862
6863         range->max_qual.qual = 100;
6864         /* TODO: Find real max RSSI and stick here */
6865         range->max_qual.level = 0;
6866         range->max_qual.noise = 0;
6867         range->max_qual.updated = 7;    /* Updated all three */
6868
6869         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6870         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6871         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6872         range->avg_qual.noise = 0;
6873         range->avg_qual.updated = 7;    /* Updated all three */
6874
6875         range->num_bitrates = RATE_COUNT;
6876
6877         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6878                 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6879         }
6880
6881         range->min_rts = MIN_RTS_THRESHOLD;
6882         range->max_rts = MAX_RTS_THRESHOLD;
6883         range->min_frag = MIN_FRAG_THRESHOLD;
6884         range->max_frag = MAX_FRAG_THRESHOLD;
6885
6886         range->min_pmp = period_duration[0];    /* Minimal PM period */
6887         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6888         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6889         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6890
6891         /* How to decode max/min PM period */
6892         range->pmp_flags = IW_POWER_PERIOD;
6893         /* How to decode max/min PM period */
6894         range->pmt_flags = IW_POWER_TIMEOUT;
6895         /* What PM options are supported */
6896         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6897
6898         range->encoding_size[0] = 5;
6899         range->encoding_size[1] = 13;   /* Different token sizes */
6900         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6901         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6902 //      range->encoding_login_index;            /* token index for login token */
6903
6904         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6905                 range->txpower_capa = IW_TXPOW_DBM;
6906                 range->num_txpower = IW_MAX_TXPOWER;
6907                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6908                      i < IW_MAX_TXPOWER;
6909                      i++, level -=
6910                      ((IPW_TX_POWER_MAX_DBM -
6911                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6912                         range->txpower[i] = level / 16;
6913         } else {
6914                 range->txpower_capa = 0;
6915                 range->num_txpower = 0;
6916         }
6917
6918         /* Set the Wireless Extension versions */
6919         range->we_version_compiled = WIRELESS_EXT;
6920         range->we_version_source = 18;
6921
6922 //      range->retry_capa;      /* What retry options are supported */
6923 //      range->retry_flags;     /* How to decode max/min retry limit */
6924 //      range->r_time_flags;    /* How to decode max/min retry life */
6925 //      range->min_retry;       /* Minimal number of retries */
6926 //      range->max_retry;       /* Maximal number of retries */
6927 //      range->min_r_time;      /* Minimal retry lifetime */
6928 //      range->max_r_time;      /* Maximal retry lifetime */
6929
6930         range->num_channels = FREQ_COUNT;
6931
6932         val = 0;
6933         for (i = 0; i < FREQ_COUNT; i++) {
6934                 // TODO: Include only legal frequencies for some countries
6935 //              if (local->channel_mask & (1 << i)) {
6936                 range->freq[val].i = i + 1;
6937                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6938                 range->freq[val].e = 1;
6939                 val++;
6940 //              }
6941                 if (val == IW_MAX_FREQUENCIES)
6942                         break;
6943         }
6944         range->num_frequency = val;
6945
6946         /* Event capability (kernel + driver) */
6947         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6948                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6949         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6950
6951         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6952                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6953
6954         IPW_DEBUG_WX("GET Range\n");
6955
6956         return 0;
6957 }
6958
6959 static int ipw2100_wx_set_wap(struct net_device *dev,
6960                               struct iw_request_info *info,
6961                               union iwreq_data *wrqu, char *extra)
6962 {
6963         struct ipw2100_priv *priv = libipw_priv(dev);
6964         int err = 0;
6965
6966         static const unsigned char any[] = {
6967                 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6968         };
6969         static const unsigned char off[] = {
6970                 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6971         };
6972
6973         // sanity checks
6974         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6975                 return -EINVAL;
6976
6977         mutex_lock(&priv->action_mutex);
6978         if (!(priv->status & STATUS_INITIALIZED)) {
6979                 err = -EIO;
6980                 goto done;
6981         }
6982
6983         if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6984             !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6985                 /* we disable mandatory BSSID association */
6986                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6987                 priv->config &= ~CFG_STATIC_BSSID;
6988                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6989                 goto done;
6990         }
6991
6992         priv->config |= CFG_STATIC_BSSID;
6993         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6994
6995         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6996
6997         IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6998
6999       done:
7000         mutex_unlock(&priv->action_mutex);
7001         return err;
7002 }
7003
7004 static int ipw2100_wx_get_wap(struct net_device *dev,
7005                               struct iw_request_info *info,
7006                               union iwreq_data *wrqu, char *extra)
7007 {
7008         /*
7009          * This can be called at any time.  No action lock required
7010          */
7011
7012         struct ipw2100_priv *priv = libipw_priv(dev);
7013
7014         /* If we are associated, trying to associate, or have a statically
7015          * configured BSSID then return that; otherwise return ANY */
7016         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
7017                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
7018                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
7019         } else
7020                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
7021
7022         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
7023         return 0;
7024 }
7025
7026 static int ipw2100_wx_set_essid(struct net_device *dev,
7027                                 struct iw_request_info *info,
7028                                 union iwreq_data *wrqu, char *extra)
7029 {
7030         struct ipw2100_priv *priv = libipw_priv(dev);
7031         char *essid = "";       /* ANY */
7032         int length = 0;
7033         int err = 0;
7034         DECLARE_SSID_BUF(ssid);
7035
7036         mutex_lock(&priv->action_mutex);
7037         if (!(priv->status & STATUS_INITIALIZED)) {
7038                 err = -EIO;
7039                 goto done;
7040         }
7041
7042         if (wrqu->essid.flags && wrqu->essid.length) {
7043                 length = wrqu->essid.length;
7044                 essid = extra;
7045         }
7046
7047         if (length == 0) {
7048                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
7049                 priv->config &= ~CFG_STATIC_ESSID;
7050                 err = ipw2100_set_essid(priv, NULL, 0, 0);
7051                 goto done;
7052         }
7053
7054         length = min(length, IW_ESSID_MAX_SIZE);
7055
7056         priv->config |= CFG_STATIC_ESSID;
7057
7058         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7059                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7060                 err = 0;
7061                 goto done;
7062         }
7063
7064         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
7065                      print_ssid(ssid, essid, length), length);
7066
7067         priv->essid_len = length;
7068         memcpy(priv->essid, essid, priv->essid_len);
7069
7070         err = ipw2100_set_essid(priv, essid, length, 0);
7071
7072       done:
7073         mutex_unlock(&priv->action_mutex);
7074         return err;
7075 }
7076
7077 static int ipw2100_wx_get_essid(struct net_device *dev,
7078                                 struct iw_request_info *info,
7079                                 union iwreq_data *wrqu, char *extra)
7080 {
7081         /*
7082          * This can be called at any time.  No action lock required
7083          */
7084
7085         struct ipw2100_priv *priv = libipw_priv(dev);
7086         DECLARE_SSID_BUF(ssid);
7087
7088         /* If we are associated, trying to associate, or have a statically
7089          * configured ESSID then return that; otherwise return ANY */
7090         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7091                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7092                              print_ssid(ssid, priv->essid, priv->essid_len));
7093                 memcpy(extra, priv->essid, priv->essid_len);
7094                 wrqu->essid.length = priv->essid_len;
7095                 wrqu->essid.flags = 1;  /* active */
7096         } else {
7097                 IPW_DEBUG_WX("Getting essid: ANY\n");
7098                 wrqu->essid.length = 0;
7099                 wrqu->essid.flags = 0;  /* active */
7100         }
7101
7102         return 0;
7103 }
7104
7105 static int ipw2100_wx_set_nick(struct net_device *dev,
7106                                struct iw_request_info *info,
7107                                union iwreq_data *wrqu, char *extra)
7108 {
7109         /*
7110          * This can be called at any time.  No action lock required
7111          */
7112
7113         struct ipw2100_priv *priv = libipw_priv(dev);
7114
7115         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7116                 return -E2BIG;
7117
7118         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7119         memset(priv->nick, 0, sizeof(priv->nick));
7120         memcpy(priv->nick, extra, wrqu->data.length);
7121
7122         IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7123
7124         return 0;
7125 }
7126
7127 static int ipw2100_wx_get_nick(struct net_device *dev,
7128                                struct iw_request_info *info,
7129                                union iwreq_data *wrqu, char *extra)
7130 {
7131         /*
7132          * This can be called at any time.  No action lock required
7133          */
7134
7135         struct ipw2100_priv *priv = libipw_priv(dev);
7136
7137         wrqu->data.length = strlen(priv->nick);
7138         memcpy(extra, priv->nick, wrqu->data.length);
7139         wrqu->data.flags = 1;   /* active */
7140
7141         IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7142
7143         return 0;
7144 }
7145
7146 static int ipw2100_wx_set_rate(struct net_device *dev,
7147                                struct iw_request_info *info,
7148                                union iwreq_data *wrqu, char *extra)
7149 {
7150         struct ipw2100_priv *priv = libipw_priv(dev);
7151         u32 target_rate = wrqu->bitrate.value;
7152         u32 rate;
7153         int err = 0;
7154
7155         mutex_lock(&priv->action_mutex);
7156         if (!(priv->status & STATUS_INITIALIZED)) {
7157                 err = -EIO;
7158                 goto done;
7159         }
7160
7161         rate = 0;
7162
7163         if (target_rate == 1000000 ||
7164             (!wrqu->bitrate.fixed && target_rate > 1000000))
7165                 rate |= TX_RATE_1_MBIT;
7166         if (target_rate == 2000000 ||
7167             (!wrqu->bitrate.fixed && target_rate > 2000000))
7168                 rate |= TX_RATE_2_MBIT;
7169         if (target_rate == 5500000 ||
7170             (!wrqu->bitrate.fixed && target_rate > 5500000))
7171                 rate |= TX_RATE_5_5_MBIT;
7172         if (target_rate == 11000000 ||
7173             (!wrqu->bitrate.fixed && target_rate > 11000000))
7174                 rate |= TX_RATE_11_MBIT;
7175         if (rate == 0)
7176                 rate = DEFAULT_TX_RATES;
7177
7178         err = ipw2100_set_tx_rates(priv, rate, 0);
7179
7180         IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7181       done:
7182         mutex_unlock(&priv->action_mutex);
7183         return err;
7184 }
7185
7186 static int ipw2100_wx_get_rate(struct net_device *dev,
7187                                struct iw_request_info *info,
7188                                union iwreq_data *wrqu, char *extra)
7189 {
7190         struct ipw2100_priv *priv = libipw_priv(dev);
7191         int val;
7192         unsigned int len = sizeof(val);
7193         int err = 0;
7194
7195         if (!(priv->status & STATUS_ENABLED) ||
7196             priv->status & STATUS_RF_KILL_MASK ||
7197             !(priv->status & STATUS_ASSOCIATED)) {
7198                 wrqu->bitrate.value = 0;
7199                 return 0;
7200         }
7201
7202         mutex_lock(&priv->action_mutex);
7203         if (!(priv->status & STATUS_INITIALIZED)) {
7204                 err = -EIO;
7205                 goto done;
7206         }
7207
7208         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7209         if (err) {
7210                 IPW_DEBUG_WX("failed querying ordinals.\n");
7211                 goto done;
7212         }
7213
7214         switch (val & TX_RATE_MASK) {
7215         case TX_RATE_1_MBIT:
7216                 wrqu->bitrate.value = 1000000;
7217                 break;
7218         case TX_RATE_2_MBIT:
7219                 wrqu->bitrate.value = 2000000;
7220                 break;
7221         case TX_RATE_5_5_MBIT:
7222                 wrqu->bitrate.value = 5500000;
7223                 break;
7224         case TX_RATE_11_MBIT:
7225                 wrqu->bitrate.value = 11000000;
7226                 break;
7227         default:
7228                 wrqu->bitrate.value = 0;
7229         }
7230
7231         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7232
7233       done:
7234         mutex_unlock(&priv->action_mutex);
7235         return err;
7236 }
7237
7238 static int ipw2100_wx_set_rts(struct net_device *dev,
7239                               struct iw_request_info *info,
7240                               union iwreq_data *wrqu, char *extra)
7241 {
7242         struct ipw2100_priv *priv = libipw_priv(dev);
7243         int value, err;
7244
7245         /* Auto RTS not yet supported */
7246         if (wrqu->rts.fixed == 0)
7247                 return -EINVAL;
7248
7249         mutex_lock(&priv->action_mutex);
7250         if (!(priv->status & STATUS_INITIALIZED)) {
7251                 err = -EIO;
7252                 goto done;
7253         }
7254
7255         if (wrqu->rts.disabled)
7256                 value = priv->rts_threshold | RTS_DISABLED;
7257         else {
7258                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7259                         err = -EINVAL;
7260                         goto done;
7261                 }
7262                 value = wrqu->rts.value;
7263         }
7264
7265         err = ipw2100_set_rts_threshold(priv, value);
7266
7267         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7268       done:
7269         mutex_unlock(&priv->action_mutex);
7270         return err;
7271 }
7272
7273 static int ipw2100_wx_get_rts(struct net_device *dev,
7274                               struct iw_request_info *info,
7275                               union iwreq_data *wrqu, char *extra)
7276 {
7277         /*
7278          * This can be called at any time.  No action lock required
7279          */
7280
7281         struct ipw2100_priv *priv = libipw_priv(dev);
7282
7283         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7284         wrqu->rts.fixed = 1;    /* no auto select */
7285
7286         /* If RTS is set to the default value, then it is disabled */
7287         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7288
7289         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7290
7291         return 0;
7292 }
7293
7294 static int ipw2100_wx_set_txpow(struct net_device *dev,
7295                                 struct iw_request_info *info,
7296                                 union iwreq_data *wrqu, char *extra)
7297 {
7298         struct ipw2100_priv *priv = libipw_priv(dev);
7299         int err = 0, value;
7300         
7301         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7302                 return -EINPROGRESS;
7303
7304         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7305                 return 0;
7306
7307         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7308                 return -EINVAL;
7309
7310         if (wrqu->txpower.fixed == 0)
7311                 value = IPW_TX_POWER_DEFAULT;
7312         else {
7313                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7314                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7315                         return -EINVAL;
7316
7317                 value = wrqu->txpower.value;
7318         }
7319
7320         mutex_lock(&priv->action_mutex);
7321         if (!(priv->status & STATUS_INITIALIZED)) {
7322                 err = -EIO;
7323                 goto done;
7324         }
7325
7326         err = ipw2100_set_tx_power(priv, value);
7327
7328         IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7329
7330       done:
7331         mutex_unlock(&priv->action_mutex);
7332         return err;
7333 }
7334
7335 static int ipw2100_wx_get_txpow(struct net_device *dev,
7336                                 struct iw_request_info *info,
7337                                 union iwreq_data *wrqu, char *extra)
7338 {
7339         /*
7340          * This can be called at any time.  No action lock required
7341          */
7342
7343         struct ipw2100_priv *priv = libipw_priv(dev);
7344
7345         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7346
7347         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7348                 wrqu->txpower.fixed = 0;
7349                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7350         } else {
7351                 wrqu->txpower.fixed = 1;
7352                 wrqu->txpower.value = priv->tx_power;
7353         }
7354
7355         wrqu->txpower.flags = IW_TXPOW_DBM;
7356
7357         IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7358
7359         return 0;
7360 }
7361
7362 static int ipw2100_wx_set_frag(struct net_device *dev,
7363                                struct iw_request_info *info,
7364                                union iwreq_data *wrqu, char *extra)
7365 {
7366         /*
7367          * This can be called at any time.  No action lock required
7368          */
7369
7370         struct ipw2100_priv *priv = libipw_priv(dev);
7371
7372         if (!wrqu->frag.fixed)
7373                 return -EINVAL;
7374
7375         if (wrqu->frag.disabled) {
7376                 priv->frag_threshold |= FRAG_DISABLED;
7377                 priv->ieee->fts = DEFAULT_FTS;
7378         } else {
7379                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7380                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7381                         return -EINVAL;
7382
7383                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7384                 priv->frag_threshold = priv->ieee->fts;
7385         }
7386
7387         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7388
7389         return 0;
7390 }
7391
7392 static int ipw2100_wx_get_frag(struct net_device *dev,
7393                                struct iw_request_info *info,
7394                                union iwreq_data *wrqu, char *extra)
7395 {
7396         /*
7397          * This can be called at any time.  No action lock required
7398          */
7399
7400         struct ipw2100_priv *priv = libipw_priv(dev);
7401         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7402         wrqu->frag.fixed = 0;   /* no auto select */
7403         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7404
7405         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7406
7407         return 0;
7408 }
7409
7410 static int ipw2100_wx_set_retry(struct net_device *dev,
7411                                 struct iw_request_info *info,
7412                                 union iwreq_data *wrqu, char *extra)
7413 {
7414         struct ipw2100_priv *priv = libipw_priv(dev);
7415         int err = 0;
7416
7417         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7418                 return -EINVAL;
7419
7420         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7421                 return 0;
7422
7423         mutex_lock(&priv->action_mutex);
7424         if (!(priv->status & STATUS_INITIALIZED)) {
7425                 err = -EIO;
7426                 goto done;
7427         }
7428
7429         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7430                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7431                 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7432                              wrqu->retry.value);
7433                 goto done;
7434         }
7435
7436         if (wrqu->retry.flags & IW_RETRY_LONG) {
7437                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7438                 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7439                              wrqu->retry.value);
7440                 goto done;
7441         }
7442
7443         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7444         if (!err)
7445                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7446
7447         IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7448
7449       done:
7450         mutex_unlock(&priv->action_mutex);
7451         return err;
7452 }
7453
7454 static int ipw2100_wx_get_retry(struct net_device *dev,
7455                                 struct iw_request_info *info,
7456                                 union iwreq_data *wrqu, char *extra)
7457 {
7458         /*
7459          * This can be called at any time.  No action lock required
7460          */
7461
7462         struct ipw2100_priv *priv = libipw_priv(dev);
7463
7464         wrqu->retry.disabled = 0;       /* can't be disabled */
7465
7466         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7467                 return -EINVAL;
7468
7469         if (wrqu->retry.flags & IW_RETRY_LONG) {
7470                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7471                 wrqu->retry.value = priv->long_retry_limit;
7472         } else {
7473                 wrqu->retry.flags =
7474                     (priv->short_retry_limit !=
7475                      priv->long_retry_limit) ?
7476                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7477
7478                 wrqu->retry.value = priv->short_retry_limit;
7479         }
7480
7481         IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7482
7483         return 0;
7484 }
7485
7486 static int ipw2100_wx_set_scan(struct net_device *dev,
7487                                struct iw_request_info *info,
7488                                union iwreq_data *wrqu, char *extra)
7489 {
7490         struct ipw2100_priv *priv = libipw_priv(dev);
7491         int err = 0;
7492
7493         mutex_lock(&priv->action_mutex);
7494         if (!(priv->status & STATUS_INITIALIZED)) {
7495                 err = -EIO;
7496                 goto done;
7497         }
7498
7499         IPW_DEBUG_WX("Initiating scan...\n");
7500
7501         priv->user_requested_scan = 1;
7502         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7503                 IPW_DEBUG_WX("Start scan failed.\n");
7504
7505                 /* TODO: Mark a scan as pending so when hardware initialized
7506                  *       a scan starts */
7507         }
7508
7509       done:
7510         mutex_unlock(&priv->action_mutex);
7511         return err;
7512 }
7513
7514 static int ipw2100_wx_get_scan(struct net_device *dev,
7515                                struct iw_request_info *info,
7516                                union iwreq_data *wrqu, char *extra)
7517 {
7518         /*
7519          * This can be called at any time.  No action lock required
7520          */
7521
7522         struct ipw2100_priv *priv = libipw_priv(dev);
7523         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7524 }
7525
7526 /*
7527  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7528  */
7529 static int ipw2100_wx_set_encode(struct net_device *dev,
7530                                  struct iw_request_info *info,
7531                                  union iwreq_data *wrqu, char *key)
7532 {
7533         /*
7534          * No check of STATUS_INITIALIZED required
7535          */
7536
7537         struct ipw2100_priv *priv = libipw_priv(dev);
7538         return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7539 }
7540
7541 static int ipw2100_wx_get_encode(struct net_device *dev,
7542                                  struct iw_request_info *info,
7543                                  union iwreq_data *wrqu, char *key)
7544 {
7545         /*
7546          * This can be called at any time.  No action lock required
7547          */
7548
7549         struct ipw2100_priv *priv = libipw_priv(dev);
7550         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7551 }
7552
7553 static int ipw2100_wx_set_power(struct net_device *dev,
7554                                 struct iw_request_info *info,
7555                                 union iwreq_data *wrqu, char *extra)
7556 {
7557         struct ipw2100_priv *priv = libipw_priv(dev);
7558         int err = 0;
7559
7560         mutex_lock(&priv->action_mutex);
7561         if (!(priv->status & STATUS_INITIALIZED)) {
7562                 err = -EIO;
7563                 goto done;
7564         }
7565
7566         if (wrqu->power.disabled) {
7567                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7568                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7569                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7570                 goto done;
7571         }
7572
7573         switch (wrqu->power.flags & IW_POWER_MODE) {
7574         case IW_POWER_ON:       /* If not specified */
7575         case IW_POWER_MODE:     /* If set all mask */
7576         case IW_POWER_ALL_R:    /* If explicitly state all */
7577                 break;
7578         default:                /* Otherwise we don't support it */
7579                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7580                              wrqu->power.flags);
7581                 err = -EOPNOTSUPP;
7582                 goto done;
7583         }
7584
7585         /* If the user hasn't specified a power management mode yet, default
7586          * to BATTERY */
7587         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7588         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7589
7590         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7591
7592       done:
7593         mutex_unlock(&priv->action_mutex);
7594         return err;
7595
7596 }
7597
7598 static int ipw2100_wx_get_power(struct net_device *dev,
7599                                 struct iw_request_info *info,
7600                                 union iwreq_data *wrqu, char *extra)
7601 {
7602         /*
7603          * This can be called at any time.  No action lock required
7604          */
7605
7606         struct ipw2100_priv *priv = libipw_priv(dev);
7607
7608         if (!(priv->power_mode & IPW_POWER_ENABLED))
7609                 wrqu->power.disabled = 1;
7610         else {
7611                 wrqu->power.disabled = 0;
7612                 wrqu->power.flags = 0;
7613         }
7614
7615         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7616
7617         return 0;
7618 }
7619
7620 /*
7621  * WE-18 WPA support
7622  */
7623
7624 /* SIOCSIWGENIE */
7625 static int ipw2100_wx_set_genie(struct net_device *dev,
7626                                 struct iw_request_info *info,
7627                                 union iwreq_data *wrqu, char *extra)
7628 {
7629
7630         struct ipw2100_priv *priv = libipw_priv(dev);
7631         struct libipw_device *ieee = priv->ieee;
7632         u8 *buf;
7633
7634         if (!ieee->wpa_enabled)
7635                 return -EOPNOTSUPP;
7636
7637         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7638             (wrqu->data.length && extra == NULL))
7639                 return -EINVAL;
7640
7641         if (wrqu->data.length) {
7642                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7643                 if (buf == NULL)
7644                         return -ENOMEM;
7645
7646                 kfree(ieee->wpa_ie);
7647                 ieee->wpa_ie = buf;
7648                 ieee->wpa_ie_len = wrqu->data.length;
7649         } else {
7650                 kfree(ieee->wpa_ie);
7651                 ieee->wpa_ie = NULL;
7652                 ieee->wpa_ie_len = 0;
7653         }
7654
7655         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7656
7657         return 0;
7658 }
7659
7660 /* SIOCGIWGENIE */
7661 static int ipw2100_wx_get_genie(struct net_device *dev,
7662                                 struct iw_request_info *info,
7663                                 union iwreq_data *wrqu, char *extra)
7664 {
7665         struct ipw2100_priv *priv = libipw_priv(dev);
7666         struct libipw_device *ieee = priv->ieee;
7667
7668         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7669                 wrqu->data.length = 0;
7670                 return 0;
7671         }
7672
7673         if (wrqu->data.length < ieee->wpa_ie_len)
7674                 return -E2BIG;
7675
7676         wrqu->data.length = ieee->wpa_ie_len;
7677         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7678
7679         return 0;
7680 }
7681
7682 /* SIOCSIWAUTH */
7683 static int ipw2100_wx_set_auth(struct net_device *dev,
7684                                struct iw_request_info *info,
7685                                union iwreq_data *wrqu, char *extra)
7686 {
7687         struct ipw2100_priv *priv = libipw_priv(dev);
7688         struct libipw_device *ieee = priv->ieee;
7689         struct iw_param *param = &wrqu->param;
7690         struct lib80211_crypt_data *crypt;
7691         unsigned long flags;
7692         int ret = 0;
7693
7694         switch (param->flags & IW_AUTH_INDEX) {
7695         case IW_AUTH_WPA_VERSION:
7696         case IW_AUTH_CIPHER_PAIRWISE:
7697         case IW_AUTH_CIPHER_GROUP:
7698         case IW_AUTH_KEY_MGMT:
7699                 /*
7700                  * ipw2200 does not use these parameters
7701                  */
7702                 break;
7703
7704         case IW_AUTH_TKIP_COUNTERMEASURES:
7705                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7706                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7707                         break;
7708
7709                 flags = crypt->ops->get_flags(crypt->priv);
7710
7711                 if (param->value)
7712                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7713                 else
7714                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7715
7716                 crypt->ops->set_flags(flags, crypt->priv);
7717
7718                 break;
7719
7720         case IW_AUTH_DROP_UNENCRYPTED:{
7721                         /* HACK:
7722                          *
7723                          * wpa_supplicant calls set_wpa_enabled when the driver
7724                          * is loaded and unloaded, regardless of if WPA is being
7725                          * used.  No other calls are made which can be used to
7726                          * determine if encryption will be used or not prior to
7727                          * association being expected.  If encryption is not being
7728                          * used, drop_unencrypted is set to false, else true -- we
7729                          * can use this to determine if the CAP_PRIVACY_ON bit should
7730                          * be set.
7731                          */
7732                         struct libipw_security sec = {
7733                                 .flags = SEC_ENABLED,
7734                                 .enabled = param->value,
7735                         };
7736                         priv->ieee->drop_unencrypted = param->value;
7737                         /* We only change SEC_LEVEL for open mode. Others
7738                          * are set by ipw_wpa_set_encryption.
7739                          */
7740                         if (!param->value) {
7741                                 sec.flags |= SEC_LEVEL;
7742                                 sec.level = SEC_LEVEL_0;
7743                         } else {
7744                                 sec.flags |= SEC_LEVEL;
7745                                 sec.level = SEC_LEVEL_1;
7746                         }
7747                         if (priv->ieee->set_security)
7748                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7749                         break;
7750                 }
7751
7752         case IW_AUTH_80211_AUTH_ALG:
7753                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7754                 break;
7755
7756         case IW_AUTH_WPA_ENABLED:
7757                 ret = ipw2100_wpa_enable(priv, param->value);
7758                 break;
7759
7760         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7761                 ieee->ieee802_1x = param->value;
7762                 break;
7763
7764                 //case IW_AUTH_ROAMING_CONTROL:
7765         case IW_AUTH_PRIVACY_INVOKED:
7766                 ieee->privacy_invoked = param->value;
7767                 break;
7768
7769         default:
7770                 return -EOPNOTSUPP;
7771         }
7772         return ret;
7773 }
7774
7775 /* SIOCGIWAUTH */
7776 static int ipw2100_wx_get_auth(struct net_device *dev,
7777                                struct iw_request_info *info,
7778                                union iwreq_data *wrqu, char *extra)
7779 {
7780         struct ipw2100_priv *priv = libipw_priv(dev);
7781         struct libipw_device *ieee = priv->ieee;
7782         struct lib80211_crypt_data *crypt;
7783         struct iw_param *param = &wrqu->param;
7784         int ret = 0;
7785
7786         switch (param->flags & IW_AUTH_INDEX) {
7787         case IW_AUTH_WPA_VERSION:
7788         case IW_AUTH_CIPHER_PAIRWISE:
7789         case IW_AUTH_CIPHER_GROUP:
7790         case IW_AUTH_KEY_MGMT:
7791                 /*
7792                  * wpa_supplicant will control these internally
7793                  */
7794                 ret = -EOPNOTSUPP;
7795                 break;
7796
7797         case IW_AUTH_TKIP_COUNTERMEASURES:
7798                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7799                 if (!crypt || !crypt->ops->get_flags) {
7800                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7801                                           "crypt not set!\n");
7802                         break;
7803                 }
7804
7805                 param->value = (crypt->ops->get_flags(crypt->priv) &
7806                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7807
7808                 break;
7809
7810         case IW_AUTH_DROP_UNENCRYPTED:
7811                 param->value = ieee->drop_unencrypted;
7812                 break;
7813
7814         case IW_AUTH_80211_AUTH_ALG:
7815                 param->value = priv->ieee->sec.auth_mode;
7816                 break;
7817
7818         case IW_AUTH_WPA_ENABLED:
7819                 param->value = ieee->wpa_enabled;
7820                 break;
7821
7822         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7823                 param->value = ieee->ieee802_1x;
7824                 break;
7825
7826         case IW_AUTH_ROAMING_CONTROL:
7827         case IW_AUTH_PRIVACY_INVOKED:
7828                 param->value = ieee->privacy_invoked;
7829                 break;
7830
7831         default:
7832                 return -EOPNOTSUPP;
7833         }
7834         return 0;
7835 }
7836
7837 /* SIOCSIWENCODEEXT */
7838 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7839                                     struct iw_request_info *info,
7840                                     union iwreq_data *wrqu, char *extra)
7841 {
7842         struct ipw2100_priv *priv = libipw_priv(dev);
7843         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7844 }
7845
7846 /* SIOCGIWENCODEEXT */
7847 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7848                                     struct iw_request_info *info,
7849                                     union iwreq_data *wrqu, char *extra)
7850 {
7851         struct ipw2100_priv *priv = libipw_priv(dev);
7852         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7853 }
7854
7855 /* SIOCSIWMLME */
7856 static int ipw2100_wx_set_mlme(struct net_device *dev,
7857                                struct iw_request_info *info,
7858                                union iwreq_data *wrqu, char *extra)
7859 {
7860         struct ipw2100_priv *priv = libipw_priv(dev);
7861         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7862         __le16 reason;
7863
7864         reason = cpu_to_le16(mlme->reason_code);
7865
7866         switch (mlme->cmd) {
7867         case IW_MLME_DEAUTH:
7868                 // silently ignore
7869                 break;
7870
7871         case IW_MLME_DISASSOC:
7872                 ipw2100_disassociate_bssid(priv);
7873                 break;
7874
7875         default:
7876                 return -EOPNOTSUPP;
7877         }
7878         return 0;
7879 }
7880
7881 /*
7882  *
7883  * IWPRIV handlers
7884  *
7885  */
7886 #ifdef CONFIG_IPW2100_MONITOR
7887 static int ipw2100_wx_set_promisc(struct net_device *dev,
7888                                   struct iw_request_info *info,
7889                                   union iwreq_data *wrqu, char *extra)
7890 {
7891         struct ipw2100_priv *priv = libipw_priv(dev);
7892         int *parms = (int *)extra;
7893         int enable = (parms[0] > 0);
7894         int err = 0;
7895
7896         mutex_lock(&priv->action_mutex);
7897         if (!(priv->status & STATUS_INITIALIZED)) {
7898                 err = -EIO;
7899                 goto done;
7900         }
7901
7902         if (enable) {
7903                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7904                         err = ipw2100_set_channel(priv, parms[1], 0);
7905                         goto done;
7906                 }
7907                 priv->channel = parms[1];
7908                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7909         } else {
7910                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7911                         err = ipw2100_switch_mode(priv, priv->last_mode);
7912         }
7913       done:
7914         mutex_unlock(&priv->action_mutex);
7915         return err;
7916 }
7917
7918 static int ipw2100_wx_reset(struct net_device *dev,
7919                             struct iw_request_info *info,
7920                             union iwreq_data *wrqu, char *extra)
7921 {
7922         struct ipw2100_priv *priv = libipw_priv(dev);
7923         if (priv->status & STATUS_INITIALIZED)
7924                 schedule_reset(priv);
7925         return 0;
7926 }
7927
7928 #endif
7929
7930 static int ipw2100_wx_set_powermode(struct net_device *dev,
7931                                     struct iw_request_info *info,
7932                                     union iwreq_data *wrqu, char *extra)
7933 {
7934         struct ipw2100_priv *priv = libipw_priv(dev);
7935         int err = 0, mode = *(int *)extra;
7936
7937         mutex_lock(&priv->action_mutex);
7938         if (!(priv->status & STATUS_INITIALIZED)) {
7939                 err = -EIO;
7940                 goto done;
7941         }
7942
7943         if ((mode < 0) || (mode > POWER_MODES))
7944                 mode = IPW_POWER_AUTO;
7945
7946         if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7947                 err = ipw2100_set_power_mode(priv, mode);
7948       done:
7949         mutex_unlock(&priv->action_mutex);
7950         return err;
7951 }
7952
7953 #define MAX_POWER_STRING 80
7954 static int ipw2100_wx_get_powermode(struct net_device *dev,
7955                                     struct iw_request_info *info,
7956                                     union iwreq_data *wrqu, char *extra)
7957 {
7958         /*
7959          * This can be called at any time.  No action lock required
7960          */
7961
7962         struct ipw2100_priv *priv = libipw_priv(dev);
7963         int level = IPW_POWER_LEVEL(priv->power_mode);
7964         s32 timeout, period;
7965
7966         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7967                 snprintf(extra, MAX_POWER_STRING,
7968                          "Power save level: %d (Off)", level);
7969         } else {
7970                 switch (level) {
7971                 case IPW_POWER_MODE_CAM:
7972                         snprintf(extra, MAX_POWER_STRING,
7973                                  "Power save level: %d (None)", level);
7974                         break;
7975                 case IPW_POWER_AUTO:
7976                         snprintf(extra, MAX_POWER_STRING,
7977                                  "Power save level: %d (Auto)", level);
7978                         break;
7979                 default:
7980                         timeout = timeout_duration[level - 1] / 1000;
7981                         period = period_duration[level - 1] / 1000;
7982                         snprintf(extra, MAX_POWER_STRING,
7983                                  "Power save level: %d "
7984                                  "(Timeout %dms, Period %dms)",
7985                                  level, timeout, period);
7986                 }
7987         }
7988
7989         wrqu->data.length = strlen(extra) + 1;
7990
7991         return 0;
7992 }
7993
7994 static int ipw2100_wx_set_preamble(struct net_device *dev,
7995                                    struct iw_request_info *info,
7996                                    union iwreq_data *wrqu, char *extra)
7997 {
7998         struct ipw2100_priv *priv = libipw_priv(dev);
7999         int err, mode = *(int *)extra;
8000
8001         mutex_lock(&priv->action_mutex);
8002         if (!(priv->status & STATUS_INITIALIZED)) {
8003                 err = -EIO;
8004                 goto done;
8005         }
8006
8007         if (mode == 1)
8008                 priv->config |= CFG_LONG_PREAMBLE;
8009         else if (mode == 0)
8010                 priv->config &= ~CFG_LONG_PREAMBLE;
8011         else {
8012                 err = -EINVAL;
8013                 goto done;
8014         }
8015
8016         err = ipw2100_system_config(priv, 0);
8017
8018       done:
8019         mutex_unlock(&priv->action_mutex);
8020         return err;
8021 }
8022
8023 static int ipw2100_wx_get_preamble(struct net_device *dev,
8024                                    struct iw_request_info *info,
8025                                    union iwreq_data *wrqu, char *extra)
8026 {
8027         /*
8028          * This can be called at any time.  No action lock required
8029          */
8030
8031         struct ipw2100_priv *priv = libipw_priv(dev);
8032
8033         if (priv->config & CFG_LONG_PREAMBLE)
8034                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
8035         else
8036                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
8037
8038         return 0;
8039 }
8040
8041 #ifdef CONFIG_IPW2100_MONITOR
8042 static int ipw2100_wx_set_crc_check(struct net_device *dev,
8043                                     struct iw_request_info *info,
8044                                     union iwreq_data *wrqu, char *extra)
8045 {
8046         struct ipw2100_priv *priv = libipw_priv(dev);
8047         int err, mode = *(int *)extra;
8048
8049         mutex_lock(&priv->action_mutex);
8050         if (!(priv->status & STATUS_INITIALIZED)) {
8051                 err = -EIO;
8052                 goto done;
8053         }
8054
8055         if (mode == 1)
8056                 priv->config |= CFG_CRC_CHECK;
8057         else if (mode == 0)
8058                 priv->config &= ~CFG_CRC_CHECK;
8059         else {
8060                 err = -EINVAL;
8061                 goto done;
8062         }
8063         err = 0;
8064
8065       done:
8066         mutex_unlock(&priv->action_mutex);
8067         return err;
8068 }
8069
8070 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8071                                     struct iw_request_info *info,
8072                                     union iwreq_data *wrqu, char *extra)
8073 {
8074         /*
8075          * This can be called at any time.  No action lock required
8076          */
8077
8078         struct ipw2100_priv *priv = libipw_priv(dev);
8079
8080         if (priv->config & CFG_CRC_CHECK)
8081                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8082         else
8083                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8084
8085         return 0;
8086 }
8087 #endif                          /* CONFIG_IPW2100_MONITOR */
8088
8089 static iw_handler ipw2100_wx_handlers[] = {
8090         IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8091         IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8092         IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8093         IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8094         IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8095         IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8096         IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8097         IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8098         IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8099         IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8100         IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8101         IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8102         IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8103         IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8104         IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8105         IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8106         IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8107         IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8108         IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8109         IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8110         IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8111         IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8112         IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8113         IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8114         IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8115         IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8116         IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8117         IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8118         IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8119         IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8120         IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8121         IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8122         IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8123         IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8124         IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8125 };
8126
8127 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8128 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8129 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8130 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8131 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8132 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8133 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8134 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8135
8136 static const struct iw_priv_args ipw2100_private_args[] = {
8137
8138 #ifdef CONFIG_IPW2100_MONITOR
8139         {
8140          IPW2100_PRIV_SET_MONITOR,
8141          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8142         {
8143          IPW2100_PRIV_RESET,
8144          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8145 #endif                          /* CONFIG_IPW2100_MONITOR */
8146
8147         {
8148          IPW2100_PRIV_SET_POWER,
8149          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8150         {
8151          IPW2100_PRIV_GET_POWER,
8152          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8153          "get_power"},
8154         {
8155          IPW2100_PRIV_SET_LONGPREAMBLE,
8156          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8157         {
8158          IPW2100_PRIV_GET_LONGPREAMBLE,
8159          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8160 #ifdef CONFIG_IPW2100_MONITOR
8161         {
8162          IPW2100_PRIV_SET_CRC_CHECK,
8163          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8164         {
8165          IPW2100_PRIV_GET_CRC_CHECK,
8166          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8167 #endif                          /* CONFIG_IPW2100_MONITOR */
8168 };
8169
8170 static iw_handler ipw2100_private_handler[] = {
8171 #ifdef CONFIG_IPW2100_MONITOR
8172         ipw2100_wx_set_promisc,
8173         ipw2100_wx_reset,
8174 #else                           /* CONFIG_IPW2100_MONITOR */
8175         NULL,
8176         NULL,
8177 #endif                          /* CONFIG_IPW2100_MONITOR */
8178         ipw2100_wx_set_powermode,
8179         ipw2100_wx_get_powermode,
8180         ipw2100_wx_set_preamble,
8181         ipw2100_wx_get_preamble,
8182 #ifdef CONFIG_IPW2100_MONITOR
8183         ipw2100_wx_set_crc_check,
8184         ipw2100_wx_get_crc_check,
8185 #else                           /* CONFIG_IPW2100_MONITOR */
8186         NULL,
8187         NULL,
8188 #endif                          /* CONFIG_IPW2100_MONITOR */
8189 };
8190
8191 /*
8192  * Get wireless statistics.
8193  * Called by /proc/net/wireless
8194  * Also called by SIOCGIWSTATS
8195  */
8196 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8197 {
8198         enum {
8199                 POOR = 30,
8200                 FAIR = 60,
8201                 GOOD = 80,
8202                 VERY_GOOD = 90,
8203                 EXCELLENT = 95,
8204                 PERFECT = 100
8205         };
8206         int rssi_qual;
8207         int tx_qual;
8208         int beacon_qual;
8209         int quality;
8210
8211         struct ipw2100_priv *priv = libipw_priv(dev);
8212         struct iw_statistics *wstats;
8213         u32 rssi, tx_retries, missed_beacons, tx_failures;
8214         u32 ord_len = sizeof(u32);
8215
8216         if (!priv)
8217                 return (struct iw_statistics *)NULL;
8218
8219         wstats = &priv->wstats;
8220
8221         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8222          * ipw2100_wx_wireless_stats seems to be called before fw is
8223          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8224          * and associated; if not associcated, the values are all meaningless
8225          * anyway, so set them all to NULL and INVALID */
8226         if (!(priv->status & STATUS_ASSOCIATED)) {
8227                 wstats->miss.beacon = 0;
8228                 wstats->discard.retries = 0;
8229                 wstats->qual.qual = 0;
8230                 wstats->qual.level = 0;
8231                 wstats->qual.noise = 0;
8232                 wstats->qual.updated = 7;
8233                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8234                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8235                 return wstats;
8236         }
8237
8238         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8239                                 &missed_beacons, &ord_len))
8240                 goto fail_get_ordinal;
8241
8242         /* If we don't have a connection the quality and level is 0 */
8243         if (!(priv->status & STATUS_ASSOCIATED)) {
8244                 wstats->qual.qual = 0;
8245                 wstats->qual.level = 0;
8246         } else {
8247                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8248                                         &rssi, &ord_len))
8249                         goto fail_get_ordinal;
8250                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8251                 if (rssi < 10)
8252                         rssi_qual = rssi * POOR / 10;
8253                 else if (rssi < 15)
8254                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8255                 else if (rssi < 20)
8256                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8257                 else if (rssi < 30)
8258                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8259                             10 + GOOD;
8260                 else
8261                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8262                             10 + VERY_GOOD;
8263
8264                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8265                                         &tx_retries, &ord_len))
8266                         goto fail_get_ordinal;
8267
8268                 if (tx_retries > 75)
8269                         tx_qual = (90 - tx_retries) * POOR / 15;
8270                 else if (tx_retries > 70)
8271                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8272                 else if (tx_retries > 65)
8273                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8274                 else if (tx_retries > 50)
8275                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8276                             15 + GOOD;
8277                 else
8278                         tx_qual = (50 - tx_retries) *
8279                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8280
8281                 if (missed_beacons > 50)
8282                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8283                 else if (missed_beacons > 40)
8284                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8285                             10 + POOR;
8286                 else if (missed_beacons > 32)
8287                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8288                             18 + FAIR;
8289                 else if (missed_beacons > 20)
8290                         beacon_qual = (32 - missed_beacons) *
8291                             (VERY_GOOD - GOOD) / 20 + GOOD;
8292                 else
8293                         beacon_qual = (20 - missed_beacons) *
8294                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8295
8296                 quality = min(tx_qual, rssi_qual);
8297                 quality = min(beacon_qual, quality);
8298
8299 #ifdef CONFIG_IPW2100_DEBUG
8300                 if (beacon_qual == quality)
8301                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8302                 else if (tx_qual == quality)
8303                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8304                 else if (quality != 100)
8305                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8306                 else
8307                         IPW_DEBUG_WX("Quality not clamped.\n");
8308 #endif
8309
8310                 wstats->qual.qual = quality;
8311                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8312         }
8313
8314         wstats->qual.noise = 0;
8315         wstats->qual.updated = 7;
8316         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8317
8318         /* FIXME: this is percent and not a # */
8319         wstats->miss.beacon = missed_beacons;
8320
8321         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8322                                 &tx_failures, &ord_len))
8323                 goto fail_get_ordinal;
8324         wstats->discard.retries = tx_failures;
8325
8326         return wstats;
8327
8328       fail_get_ordinal:
8329         IPW_DEBUG_WX("failed querying ordinals.\n");
8330
8331         return (struct iw_statistics *)NULL;
8332 }
8333
8334 static struct iw_handler_def ipw2100_wx_handler_def = {
8335         .standard = ipw2100_wx_handlers,
8336         .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8337         .num_private = ARRAY_SIZE(ipw2100_private_handler),
8338         .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8339         .private = (iw_handler *) ipw2100_private_handler,
8340         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8341         .get_wireless_stats = ipw2100_wx_wireless_stats,
8342 };
8343
8344 static void ipw2100_wx_event_work(struct work_struct *work)
8345 {
8346         struct ipw2100_priv *priv =
8347                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8348         union iwreq_data wrqu;
8349         unsigned int len = ETH_ALEN;
8350
8351         if (priv->status & STATUS_STOPPING)
8352                 return;
8353
8354         mutex_lock(&priv->action_mutex);
8355
8356         IPW_DEBUG_WX("enter\n");
8357
8358         mutex_unlock(&priv->action_mutex);
8359
8360         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8361
8362         /* Fetch BSSID from the hardware */
8363         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8364             priv->status & STATUS_RF_KILL_MASK ||
8365             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8366                                 &priv->bssid, &len)) {
8367                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8368         } else {
8369                 /* We now have the BSSID, so can finish setting to the full
8370                  * associated state */
8371                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8372                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8373                 priv->status &= ~STATUS_ASSOCIATING;
8374                 priv->status |= STATUS_ASSOCIATED;
8375                 netif_carrier_on(priv->net_dev);
8376                 netif_wake_queue(priv->net_dev);
8377         }
8378
8379         if (!(priv->status & STATUS_ASSOCIATED)) {
8380                 IPW_DEBUG_WX("Configuring ESSID\n");
8381                 mutex_lock(&priv->action_mutex);
8382                 /* This is a disassociation event, so kick the firmware to
8383                  * look for another AP */
8384                 if (priv->config & CFG_STATIC_ESSID)
8385                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8386                                           0);
8387                 else
8388                         ipw2100_set_essid(priv, NULL, 0, 0);
8389                 mutex_unlock(&priv->action_mutex);
8390         }
8391
8392         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8393 }
8394
8395 #define IPW2100_FW_MAJOR_VERSION 1
8396 #define IPW2100_FW_MINOR_VERSION 3
8397
8398 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8399 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8400
8401 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8402                              IPW2100_FW_MAJOR_VERSION)
8403
8404 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8405 "." __stringify(IPW2100_FW_MINOR_VERSION)
8406
8407 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8408
8409 /*
8410
8411 BINARY FIRMWARE HEADER FORMAT
8412
8413 offset      length   desc
8414 0           2        version
8415 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8416 4           4        fw_len
8417 8           4        uc_len
8418 C           fw_len   firmware data
8419 12 + fw_len uc_len   microcode data
8420
8421 */
8422
8423 struct ipw2100_fw_header {
8424         short version;
8425         short mode;
8426         unsigned int fw_size;
8427         unsigned int uc_size;
8428 } __packed;
8429
8430 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8431 {
8432         struct ipw2100_fw_header *h =
8433             (struct ipw2100_fw_header *)fw->fw_entry->data;
8434
8435         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8436                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8437                        "(detected version id of %u). "
8438                        "See Documentation/networking/README.ipw2100\n",
8439                        h->version);
8440                 return 1;
8441         }
8442
8443         fw->version = h->version;
8444         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8445         fw->fw.size = h->fw_size;
8446         fw->uc.data = fw->fw.data + h->fw_size;
8447         fw->uc.size = h->uc_size;
8448
8449         return 0;
8450 }
8451
8452 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8453                                 struct ipw2100_fw *fw)
8454 {
8455         char *fw_name;
8456         int rc;
8457
8458         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8459                        priv->net_dev->name);
8460
8461         switch (priv->ieee->iw_mode) {
8462         case IW_MODE_ADHOC:
8463                 fw_name = IPW2100_FW_NAME("-i");
8464                 break;
8465 #ifdef CONFIG_IPW2100_MONITOR
8466         case IW_MODE_MONITOR:
8467                 fw_name = IPW2100_FW_NAME("-p");
8468                 break;
8469 #endif
8470         case IW_MODE_INFRA:
8471         default:
8472                 fw_name = IPW2100_FW_NAME("");
8473                 break;
8474         }
8475
8476         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8477
8478         if (rc < 0) {
8479                 printk(KERN_ERR DRV_NAME ": "
8480                        "%s: Firmware '%s' not available or load failed.\n",
8481                        priv->net_dev->name, fw_name);
8482                 return rc;
8483         }
8484         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8485                        fw->fw_entry->size);
8486
8487         ipw2100_mod_firmware_load(fw);
8488
8489         return 0;
8490 }
8491
8492 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8493 #ifdef CONFIG_IPW2100_MONITOR
8494 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8495 #endif
8496 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8497
8498 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8499                                      struct ipw2100_fw *fw)
8500 {
8501         fw->version = 0;
8502         release_firmware(fw->fw_entry);
8503         fw->fw_entry = NULL;
8504 }
8505
8506 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8507                                  size_t max)
8508 {
8509         char ver[MAX_FW_VERSION_LEN];
8510         u32 len = MAX_FW_VERSION_LEN;
8511         u32 tmp;
8512         int i;
8513         /* firmware version is an ascii string (max len of 14) */
8514         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8515                 return -EIO;
8516         tmp = max;
8517         if (len >= max)
8518                 len = max - 1;
8519         for (i = 0; i < len; i++)
8520                 buf[i] = ver[i];
8521         buf[i] = '\0';
8522         return tmp;
8523 }
8524
8525 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8526                                     size_t max)
8527 {
8528         u32 ver;
8529         u32 len = sizeof(ver);
8530         /* microcode version is a 32 bit integer */
8531         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8532                 return -EIO;
8533         return snprintf(buf, max, "%08X", ver);
8534 }
8535
8536 /*
8537  * On exit, the firmware will have been freed from the fw list
8538  */
8539 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8540 {
8541         /* firmware is constructed of N contiguous entries, each entry is
8542          * structured as:
8543          *
8544          * offset    sie         desc
8545          * 0         4           address to write to
8546          * 4         2           length of data run
8547          * 6         length      data
8548          */
8549         unsigned int addr;
8550         unsigned short len;
8551
8552         const unsigned char *firmware_data = fw->fw.data;
8553         unsigned int firmware_data_left = fw->fw.size;
8554
8555         while (firmware_data_left > 0) {
8556                 addr = *(u32 *) (firmware_data);
8557                 firmware_data += 4;
8558                 firmware_data_left -= 4;
8559
8560                 len = *(u16 *) (firmware_data);
8561                 firmware_data += 2;
8562                 firmware_data_left -= 2;
8563
8564                 if (len > 32) {
8565                         printk(KERN_ERR DRV_NAME ": "
8566                                "Invalid firmware run-length of %d bytes\n",
8567                                len);
8568                         return -EINVAL;
8569                 }
8570
8571                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8572                 firmware_data += len;
8573                 firmware_data_left -= len;
8574         }
8575
8576         return 0;
8577 }
8578
8579 struct symbol_alive_response {
8580         u8 cmd_id;
8581         u8 seq_num;
8582         u8 ucode_rev;
8583         u8 eeprom_valid;
8584         u16 valid_flags;
8585         u8 IEEE_addr[6];
8586         u16 flags;
8587         u16 pcb_rev;
8588         u16 clock_settle_time;  // 1us LSB
8589         u16 powerup_settle_time;        // 1us LSB
8590         u16 hop_settle_time;    // 1us LSB
8591         u8 date[3];             // month, day, year
8592         u8 time[2];             // hours, minutes
8593         u8 ucode_valid;
8594 };
8595
8596 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8597                                   struct ipw2100_fw *fw)
8598 {
8599         struct net_device *dev = priv->net_dev;
8600         const unsigned char *microcode_data = fw->uc.data;
8601         unsigned int microcode_data_left = fw->uc.size;
8602         void __iomem *reg = priv->ioaddr;
8603
8604         struct symbol_alive_response response;
8605         int i, j;
8606         u8 data;
8607
8608         /* Symbol control */
8609         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8610         readl(reg);
8611         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8612         readl(reg);
8613
8614         /* HW config */
8615         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8616         readl(reg);
8617         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8618         readl(reg);
8619
8620         /* EN_CS_ACCESS bit to reset control store pointer */
8621         write_nic_byte(dev, 0x210000, 0x40);
8622         readl(reg);
8623         write_nic_byte(dev, 0x210000, 0x0);
8624         readl(reg);
8625         write_nic_byte(dev, 0x210000, 0x40);
8626         readl(reg);
8627
8628         /* copy microcode from buffer into Symbol */
8629
8630         while (microcode_data_left > 0) {
8631                 write_nic_byte(dev, 0x210010, *microcode_data++);
8632                 write_nic_byte(dev, 0x210010, *microcode_data++);
8633                 microcode_data_left -= 2;
8634         }
8635
8636         /* EN_CS_ACCESS bit to reset the control store pointer */
8637         write_nic_byte(dev, 0x210000, 0x0);
8638         readl(reg);
8639
8640         /* Enable System (Reg 0)
8641          * first enable causes garbage in RX FIFO */
8642         write_nic_byte(dev, 0x210000, 0x0);
8643         readl(reg);
8644         write_nic_byte(dev, 0x210000, 0x80);
8645         readl(reg);
8646
8647         /* Reset External Baseband Reg */
8648         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8649         readl(reg);
8650         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8651         readl(reg);
8652
8653         /* HW Config (Reg 5) */
8654         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8655         readl(reg);
8656         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8657         readl(reg);
8658
8659         /* Enable System (Reg 0)
8660          * second enable should be OK */
8661         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8662         readl(reg);
8663         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8664
8665         /* check Symbol is enabled - upped this from 5 as it wasn't always
8666          * catching the update */
8667         for (i = 0; i < 10; i++) {
8668                 udelay(10);
8669
8670                 /* check Dino is enabled bit */
8671                 read_nic_byte(dev, 0x210000, &data);
8672                 if (data & 0x1)
8673                         break;
8674         }
8675
8676         if (i == 10) {
8677                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8678                        dev->name);
8679                 return -EIO;
8680         }
8681
8682         /* Get Symbol alive response */
8683         for (i = 0; i < 30; i++) {
8684                 /* Read alive response structure */
8685                 for (j = 0;
8686                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8687                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8688
8689                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8690                         break;
8691                 udelay(10);
8692         }
8693
8694         if (i == 30) {
8695                 printk(KERN_ERR DRV_NAME
8696                        ": %s: No response from Symbol - hw not alive\n",
8697                        dev->name);
8698                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8699                 return -EIO;
8700         }
8701
8702         return 0;
8703 }