]> Pileus Git - ~andy/linux/blob - drivers/net/wireless/ipw2x00/ipw2100.c
ipw2x00: slight optimization of addr compare
[~andy/linux] / drivers / net / wireless / ipw2x00 / ipw2100.c
1 /******************************************************************************
2
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of version 2 of the GNU General Public License as
7   published by the Free Software Foundation.
8
9   This program is distributed in the hope that it will be useful, but WITHOUT
10   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12   more details.
13
14   You should have received a copy of the GNU General Public License along with
15   this program; if not, write to the Free Software Foundation, Inc., 59
16   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
17
18   The full GNU General Public License is included in this distribution in the
19   file called LICENSE.
20
21   Contact Information:
22   Intel Linux Wireless <ilw@linux.intel.com>
23   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25   Portions of this file are based on the sample_* files provided by Wireless
26   Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27   <jt@hpl.hp.com>
28
29   Portions of this file are based on the Host AP project,
30   Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31     <j@w1.fi>
32   Copyright (c) 2002-2003, Jouni Malinen <j@w1.fi>
33
34   Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35   ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36   available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
37
38 ******************************************************************************/
39 /*
40
41  Initial driver on which this is based was developed by Janusz Gorycki,
42  Maciej Urbaniak, and Maciej Sosnowski.
43
44  Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
45
46 Theory of Operation
47
48 Tx - Commands and Data
49
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
53
54 The host writes to the TBD queue at the WRITE index.  The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
57
58 The firmware pulls from the TBD queue at the READ index.  The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
61
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent.  If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD.  If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc.  The next TBD then refers to the actual packet location.
67
68 The Tx flow cycle is as follows:
69
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72    list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75    to a physical address.  That address is entered into a TBD.  Two TBDs are
76    filled out.  The first indicating a data packet, the second referring to the
77    actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79    firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83    to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85    from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87    to unmap the DMA address and to free the SKB originally passed to the driver
88    from the kernel.
89 11)The packet structure is placed onto the tx_free_list
90
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
93
94 ...
95
96 Critical Sections / Locking :
97
98 There are two locks utilized.  The first is the low level lock (priv->low_lock)
99 that protects the following:
100
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
102
103   tx_free_list : Holds pre-allocated Tx buffers.
104     TAIL modified in __ipw2100_tx_process()
105     HEAD modified in ipw2100_tx()
106
107   tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108     TAIL modified ipw2100_tx()
109     HEAD modified by ipw2100_tx_send_data()
110
111   msg_free_list : Holds pre-allocated Msg (Command) buffers
112     TAIL modified in __ipw2100_tx_process()
113     HEAD modified in ipw2100_hw_send_command()
114
115   msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116     TAIL modified in ipw2100_hw_send_command()
117     HEAD modified in ipw2100_tx_send_commands()
118
119   The flow of data on the TX side is as follows:
120
121   MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122   TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
123
124   The methods that work on the TBD ring are protected via priv->low_lock.
125
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128   and associated logic
129
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
132
133
134 */
135
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/time.h>
161 #include <linux/firmware.h>
162 #include <linux/acpi.h>
163 #include <linux/ctype.h>
164 #include <linux/pm_qos.h>
165
166 #include <net/lib80211.h>
167
168 #include "ipw2100.h"
169 #include "ipw.h"
170
171 #define IPW2100_VERSION "git-1.2.2"
172
173 #define DRV_NAME        "ipw2100"
174 #define DRV_VERSION     IPW2100_VERSION
175 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
176 #define DRV_COPYRIGHT   "Copyright(c) 2003-2006 Intel Corporation"
177
178 static struct pm_qos_request ipw2100_pm_qos_req;
179
180 /* Debugging stuff */
181 #ifdef CONFIG_IPW2100_DEBUG
182 #define IPW2100_RX_DEBUG        /* Reception debugging */
183 #endif
184
185 MODULE_DESCRIPTION(DRV_DESCRIPTION);
186 MODULE_VERSION(DRV_VERSION);
187 MODULE_AUTHOR(DRV_COPYRIGHT);
188 MODULE_LICENSE("GPL");
189
190 static int debug = 0;
191 static int network_mode = 0;
192 static int channel = 0;
193 static int associate = 0;
194 static int disable = 0;
195 #ifdef CONFIG_PM
196 static struct ipw2100_fw ipw2100_firmware;
197 #endif
198
199 #include <linux/moduleparam.h>
200 module_param(debug, int, 0444);
201 module_param_named(mode, network_mode, int, 0444);
202 module_param(channel, int, 0444);
203 module_param(associate, int, 0444);
204 module_param(disable, int, 0444);
205
206 MODULE_PARM_DESC(debug, "debug level");
207 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
208 MODULE_PARM_DESC(channel, "channel");
209 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
210 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
211
212 static u32 ipw2100_debug_level = IPW_DL_NONE;
213
214 #ifdef CONFIG_IPW2100_DEBUG
215 #define IPW_DEBUG(level, message...) \
216 do { \
217         if (ipw2100_debug_level & (level)) { \
218                 printk(KERN_DEBUG "ipw2100: %c %s ", \
219                        in_interrupt() ? 'I' : 'U',  __func__); \
220                 printk(message); \
221         } \
222 } while (0)
223 #else
224 #define IPW_DEBUG(level, message...) do {} while (0)
225 #endif                          /* CONFIG_IPW2100_DEBUG */
226
227 #ifdef CONFIG_IPW2100_DEBUG
228 static const char *command_types[] = {
229         "undefined",
230         "unused",               /* HOST_ATTENTION */
231         "HOST_COMPLETE",
232         "unused",               /* SLEEP */
233         "unused",               /* HOST_POWER_DOWN */
234         "unused",
235         "SYSTEM_CONFIG",
236         "unused",               /* SET_IMR */
237         "SSID",
238         "MANDATORY_BSSID",
239         "AUTHENTICATION_TYPE",
240         "ADAPTER_ADDRESS",
241         "PORT_TYPE",
242         "INTERNATIONAL_MODE",
243         "CHANNEL",
244         "RTS_THRESHOLD",
245         "FRAG_THRESHOLD",
246         "POWER_MODE",
247         "TX_RATES",
248         "BASIC_TX_RATES",
249         "WEP_KEY_INFO",
250         "unused",
251         "unused",
252         "unused",
253         "unused",
254         "WEP_KEY_INDEX",
255         "WEP_FLAGS",
256         "ADD_MULTICAST",
257         "CLEAR_ALL_MULTICAST",
258         "BEACON_INTERVAL",
259         "ATIM_WINDOW",
260         "CLEAR_STATISTICS",
261         "undefined",
262         "undefined",
263         "undefined",
264         "undefined",
265         "TX_POWER_INDEX",
266         "undefined",
267         "undefined",
268         "undefined",
269         "undefined",
270         "undefined",
271         "undefined",
272         "BROADCAST_SCAN",
273         "CARD_DISABLE",
274         "PREFERRED_BSSID",
275         "SET_SCAN_OPTIONS",
276         "SCAN_DWELL_TIME",
277         "SWEEP_TABLE",
278         "AP_OR_STATION_TABLE",
279         "GROUP_ORDINALS",
280         "SHORT_RETRY_LIMIT",
281         "LONG_RETRY_LIMIT",
282         "unused",               /* SAVE_CALIBRATION */
283         "unused",               /* RESTORE_CALIBRATION */
284         "undefined",
285         "undefined",
286         "undefined",
287         "HOST_PRE_POWER_DOWN",
288         "unused",               /* HOST_INTERRUPT_COALESCING */
289         "undefined",
290         "CARD_DISABLE_PHY_OFF",
291         "MSDU_TX_RATES",
292         "undefined",
293         "SET_STATION_STAT_BITS",
294         "CLEAR_STATIONS_STAT_BITS",
295         "LEAP_ROGUE_MODE",
296         "SET_SECURITY_INFORMATION",
297         "DISASSOCIATION_BSSID",
298         "SET_WPA_ASS_IE"
299 };
300 #endif
301
302 static const long ipw2100_frequencies[] = {
303         2412, 2417, 2422, 2427,
304         2432, 2437, 2442, 2447,
305         2452, 2457, 2462, 2467,
306         2472, 2484
307 };
308
309 #define FREQ_COUNT      ARRAY_SIZE(ipw2100_frequencies)
310
311 static struct ieee80211_rate ipw2100_bg_rates[] = {
312         { .bitrate = 10 },
313         { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
314         { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
315         { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
316 };
317
318 #define RATE_COUNT ARRAY_SIZE(ipw2100_bg_rates)
319
320 /* Pre-decl until we get the code solid and then we can clean it up */
321 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
322 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
323 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
324
325 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
326 static void ipw2100_queues_free(struct ipw2100_priv *priv);
327 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
328
329 static int ipw2100_fw_download(struct ipw2100_priv *priv,
330                                struct ipw2100_fw *fw);
331 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
332                                 struct ipw2100_fw *fw);
333 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
334                                  size_t max);
335 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
336                                     size_t max);
337 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
338                                      struct ipw2100_fw *fw);
339 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
340                                   struct ipw2100_fw *fw);
341 static void ipw2100_wx_event_work(struct work_struct *work);
342 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
343 static struct iw_handler_def ipw2100_wx_handler_def;
344
345 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
346 {
347         struct ipw2100_priv *priv = libipw_priv(dev);
348
349         *val = ioread32(priv->ioaddr + reg);
350         IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
351 }
352
353 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
354 {
355         struct ipw2100_priv *priv = libipw_priv(dev);
356
357         iowrite32(val, priv->ioaddr + reg);
358         IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
359 }
360
361 static inline void read_register_word(struct net_device *dev, u32 reg,
362                                       u16 * val)
363 {
364         struct ipw2100_priv *priv = libipw_priv(dev);
365
366         *val = ioread16(priv->ioaddr + reg);
367         IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
368 }
369
370 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
371 {
372         struct ipw2100_priv *priv = libipw_priv(dev);
373
374         *val = ioread8(priv->ioaddr + reg);
375         IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
376 }
377
378 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
379 {
380         struct ipw2100_priv *priv = libipw_priv(dev);
381
382         iowrite16(val, priv->ioaddr + reg);
383         IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
384 }
385
386 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
387 {
388         struct ipw2100_priv *priv = libipw_priv(dev);
389
390         iowrite8(val, priv->ioaddr + reg);
391         IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
392 }
393
394 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
395 {
396         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
397                        addr & IPW_REG_INDIRECT_ADDR_MASK);
398         read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
399 }
400
401 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
402 {
403         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
404                        addr & IPW_REG_INDIRECT_ADDR_MASK);
405         write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
406 }
407
408 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
409 {
410         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
411                        addr & IPW_REG_INDIRECT_ADDR_MASK);
412         read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
413 }
414
415 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
416 {
417         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
418                        addr & IPW_REG_INDIRECT_ADDR_MASK);
419         write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
420 }
421
422 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
423 {
424         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
425                        addr & IPW_REG_INDIRECT_ADDR_MASK);
426         read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
427 }
428
429 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
430 {
431         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
432                        addr & IPW_REG_INDIRECT_ADDR_MASK);
433         write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
434 }
435
436 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
437 {
438         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
439                        addr & IPW_REG_INDIRECT_ADDR_MASK);
440 }
441
442 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
443 {
444         write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
445 }
446
447 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
448                                     const u8 * buf)
449 {
450         u32 aligned_addr;
451         u32 aligned_len;
452         u32 dif_len;
453         u32 i;
454
455         /* read first nibble byte by byte */
456         aligned_addr = addr & (~0x3);
457         dif_len = addr - aligned_addr;
458         if (dif_len) {
459                 /* Start reading at aligned_addr + dif_len */
460                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
461                                aligned_addr);
462                 for (i = dif_len; i < 4; i++, buf++)
463                         write_register_byte(dev,
464                                             IPW_REG_INDIRECT_ACCESS_DATA + i,
465                                             *buf);
466
467                 len -= dif_len;
468                 aligned_addr += 4;
469         }
470
471         /* read DWs through autoincrement registers */
472         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
473         aligned_len = len & (~0x3);
474         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
475                 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
476
477         /* copy the last nibble */
478         dif_len = len - aligned_len;
479         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
480         for (i = 0; i < dif_len; i++, buf++)
481                 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
482                                     *buf);
483 }
484
485 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
486                                    u8 * buf)
487 {
488         u32 aligned_addr;
489         u32 aligned_len;
490         u32 dif_len;
491         u32 i;
492
493         /* read first nibble byte by byte */
494         aligned_addr = addr & (~0x3);
495         dif_len = addr - aligned_addr;
496         if (dif_len) {
497                 /* Start reading at aligned_addr + dif_len */
498                 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
499                                aligned_addr);
500                 for (i = dif_len; i < 4; i++, buf++)
501                         read_register_byte(dev,
502                                            IPW_REG_INDIRECT_ACCESS_DATA + i,
503                                            buf);
504
505                 len -= dif_len;
506                 aligned_addr += 4;
507         }
508
509         /* read DWs through autoincrement registers */
510         write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
511         aligned_len = len & (~0x3);
512         for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
513                 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
514
515         /* copy the last nibble */
516         dif_len = len - aligned_len;
517         write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
518         for (i = 0; i < dif_len; i++, buf++)
519                 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
520 }
521
522 static bool ipw2100_hw_is_adapter_in_system(struct net_device *dev)
523 {
524         u32 dbg;
525
526         read_register(dev, IPW_REG_DOA_DEBUG_AREA_START, &dbg);
527
528         return dbg == IPW_DATA_DOA_DEBUG_VALUE;
529 }
530
531 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
532                                void *val, u32 * len)
533 {
534         struct ipw2100_ordinals *ordinals = &priv->ordinals;
535         u32 addr;
536         u32 field_info;
537         u16 field_len;
538         u16 field_count;
539         u32 total_length;
540
541         if (ordinals->table1_addr == 0) {
542                 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
543                        "before they have been loaded.\n");
544                 return -EINVAL;
545         }
546
547         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
548                 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
549                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
550
551                         printk(KERN_WARNING DRV_NAME
552                                ": ordinal buffer length too small, need %zd\n",
553                                IPW_ORD_TAB_1_ENTRY_SIZE);
554
555                         return -EINVAL;
556                 }
557
558                 read_nic_dword(priv->net_dev,
559                                ordinals->table1_addr + (ord << 2), &addr);
560                 read_nic_dword(priv->net_dev, addr, val);
561
562                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
563
564                 return 0;
565         }
566
567         if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
568
569                 ord -= IPW_START_ORD_TAB_2;
570
571                 /* get the address of statistic */
572                 read_nic_dword(priv->net_dev,
573                                ordinals->table2_addr + (ord << 3), &addr);
574
575                 /* get the second DW of statistics ;
576                  * two 16-bit words - first is length, second is count */
577                 read_nic_dword(priv->net_dev,
578                                ordinals->table2_addr + (ord << 3) + sizeof(u32),
579                                &field_info);
580
581                 /* get each entry length */
582                 field_len = *((u16 *) & field_info);
583
584                 /* get number of entries */
585                 field_count = *(((u16 *) & field_info) + 1);
586
587                 /* abort if no enough memory */
588                 total_length = field_len * field_count;
589                 if (total_length > *len) {
590                         *len = total_length;
591                         return -EINVAL;
592                 }
593
594                 *len = total_length;
595                 if (!total_length)
596                         return 0;
597
598                 /* read the ordinal data from the SRAM */
599                 read_nic_memory(priv->net_dev, addr, total_length, val);
600
601                 return 0;
602         }
603
604         printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
605                "in table 2\n", ord);
606
607         return -EINVAL;
608 }
609
610 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
611                                u32 * len)
612 {
613         struct ipw2100_ordinals *ordinals = &priv->ordinals;
614         u32 addr;
615
616         if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
617                 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
618                         *len = IPW_ORD_TAB_1_ENTRY_SIZE;
619                         IPW_DEBUG_INFO("wrong size\n");
620                         return -EINVAL;
621                 }
622
623                 read_nic_dword(priv->net_dev,
624                                ordinals->table1_addr + (ord << 2), &addr);
625
626                 write_nic_dword(priv->net_dev, addr, *val);
627
628                 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
629
630                 return 0;
631         }
632
633         IPW_DEBUG_INFO("wrong table\n");
634         if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
635                 return -EINVAL;
636
637         return -EINVAL;
638 }
639
640 static char *snprint_line(char *buf, size_t count,
641                           const u8 * data, u32 len, u32 ofs)
642 {
643         int out, i, j, l;
644         char c;
645
646         out = snprintf(buf, count, "%08X", ofs);
647
648         for (l = 0, i = 0; i < 2; i++) {
649                 out += snprintf(buf + out, count - out, " ");
650                 for (j = 0; j < 8 && l < len; j++, l++)
651                         out += snprintf(buf + out, count - out, "%02X ",
652                                         data[(i * 8 + j)]);
653                 for (; j < 8; j++)
654                         out += snprintf(buf + out, count - out, "   ");
655         }
656
657         out += snprintf(buf + out, count - out, " ");
658         for (l = 0, i = 0; i < 2; i++) {
659                 out += snprintf(buf + out, count - out, " ");
660                 for (j = 0; j < 8 && l < len; j++, l++) {
661                         c = data[(i * 8 + j)];
662                         if (!isascii(c) || !isprint(c))
663                                 c = '.';
664
665                         out += snprintf(buf + out, count - out, "%c", c);
666                 }
667
668                 for (; j < 8; j++)
669                         out += snprintf(buf + out, count - out, " ");
670         }
671
672         return buf;
673 }
674
675 static void printk_buf(int level, const u8 * data, u32 len)
676 {
677         char line[81];
678         u32 ofs = 0;
679         if (!(ipw2100_debug_level & level))
680                 return;
681
682         while (len) {
683                 printk(KERN_DEBUG "%s\n",
684                        snprint_line(line, sizeof(line), &data[ofs],
685                                     min(len, 16U), ofs));
686                 ofs += 16;
687                 len -= min(len, 16U);
688         }
689 }
690
691 #define MAX_RESET_BACKOFF 10
692
693 static void schedule_reset(struct ipw2100_priv *priv)
694 {
695         unsigned long now = get_seconds();
696
697         /* If we haven't received a reset request within the backoff period,
698          * then we can reset the backoff interval so this reset occurs
699          * immediately */
700         if (priv->reset_backoff &&
701             (now - priv->last_reset > priv->reset_backoff))
702                 priv->reset_backoff = 0;
703
704         priv->last_reset = get_seconds();
705
706         if (!(priv->status & STATUS_RESET_PENDING)) {
707                 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
708                                priv->net_dev->name, priv->reset_backoff);
709                 netif_carrier_off(priv->net_dev);
710                 netif_stop_queue(priv->net_dev);
711                 priv->status |= STATUS_RESET_PENDING;
712                 if (priv->reset_backoff)
713                         schedule_delayed_work(&priv->reset_work,
714                                               priv->reset_backoff * HZ);
715                 else
716                         schedule_delayed_work(&priv->reset_work, 0);
717
718                 if (priv->reset_backoff < MAX_RESET_BACKOFF)
719                         priv->reset_backoff++;
720
721                 wake_up_interruptible(&priv->wait_command_queue);
722         } else
723                 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
724                                priv->net_dev->name);
725
726 }
727
728 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
729 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
730                                    struct host_command *cmd)
731 {
732         struct list_head *element;
733         struct ipw2100_tx_packet *packet;
734         unsigned long flags;
735         int err = 0;
736
737         IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
738                      command_types[cmd->host_command], cmd->host_command,
739                      cmd->host_command_length);
740         printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
741                    cmd->host_command_length);
742
743         spin_lock_irqsave(&priv->low_lock, flags);
744
745         if (priv->fatal_error) {
746                 IPW_DEBUG_INFO
747                     ("Attempt to send command while hardware in fatal error condition.\n");
748                 err = -EIO;
749                 goto fail_unlock;
750         }
751
752         if (!(priv->status & STATUS_RUNNING)) {
753                 IPW_DEBUG_INFO
754                     ("Attempt to send command while hardware is not running.\n");
755                 err = -EIO;
756                 goto fail_unlock;
757         }
758
759         if (priv->status & STATUS_CMD_ACTIVE) {
760                 IPW_DEBUG_INFO
761                     ("Attempt to send command while another command is pending.\n");
762                 err = -EBUSY;
763                 goto fail_unlock;
764         }
765
766         if (list_empty(&priv->msg_free_list)) {
767                 IPW_DEBUG_INFO("no available msg buffers\n");
768                 goto fail_unlock;
769         }
770
771         priv->status |= STATUS_CMD_ACTIVE;
772         priv->messages_sent++;
773
774         element = priv->msg_free_list.next;
775
776         packet = list_entry(element, struct ipw2100_tx_packet, list);
777         packet->jiffy_start = jiffies;
778
779         /* initialize the firmware command packet */
780         packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
781         packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
782         packet->info.c_struct.cmd->host_command_len_reg =
783             cmd->host_command_length;
784         packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
785
786         memcpy(packet->info.c_struct.cmd->host_command_params_reg,
787                cmd->host_command_parameters,
788                sizeof(packet->info.c_struct.cmd->host_command_params_reg));
789
790         list_del(element);
791         DEC_STAT(&priv->msg_free_stat);
792
793         list_add_tail(element, &priv->msg_pend_list);
794         INC_STAT(&priv->msg_pend_stat);
795
796         ipw2100_tx_send_commands(priv);
797         ipw2100_tx_send_data(priv);
798
799         spin_unlock_irqrestore(&priv->low_lock, flags);
800
801         /*
802          * We must wait for this command to complete before another
803          * command can be sent...  but if we wait more than 3 seconds
804          * then there is a problem.
805          */
806
807         err =
808             wait_event_interruptible_timeout(priv->wait_command_queue,
809                                              !(priv->
810                                                status & STATUS_CMD_ACTIVE),
811                                              HOST_COMPLETE_TIMEOUT);
812
813         if (err == 0) {
814                 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
815                                1000 * (HOST_COMPLETE_TIMEOUT / HZ));
816                 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
817                 priv->status &= ~STATUS_CMD_ACTIVE;
818                 schedule_reset(priv);
819                 return -EIO;
820         }
821
822         if (priv->fatal_error) {
823                 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
824                        priv->net_dev->name);
825                 return -EIO;
826         }
827
828         /* !!!!! HACK TEST !!!!!
829          * When lots of debug trace statements are enabled, the driver
830          * doesn't seem to have as many firmware restart cycles...
831          *
832          * As a test, we're sticking in a 1/100s delay here */
833         schedule_timeout_uninterruptible(msecs_to_jiffies(10));
834
835         return 0;
836
837       fail_unlock:
838         spin_unlock_irqrestore(&priv->low_lock, flags);
839
840         return err;
841 }
842
843 /*
844  * Verify the values and data access of the hardware
845  * No locks needed or used.  No functions called.
846  */
847 static int ipw2100_verify(struct ipw2100_priv *priv)
848 {
849         u32 data1, data2;
850         u32 address;
851
852         u32 val1 = 0x76543210;
853         u32 val2 = 0xFEDCBA98;
854
855         /* Domain 0 check - all values should be DOA_DEBUG */
856         for (address = IPW_REG_DOA_DEBUG_AREA_START;
857              address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
858                 read_register(priv->net_dev, address, &data1);
859                 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
860                         return -EIO;
861         }
862
863         /* Domain 1 check - use arbitrary read/write compare  */
864         for (address = 0; address < 5; address++) {
865                 /* The memory area is not used now */
866                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
867                                val1);
868                 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
869                                val2);
870                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
871                               &data1);
872                 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
873                               &data2);
874                 if (val1 == data1 && val2 == data2)
875                         return 0;
876         }
877
878         return -EIO;
879 }
880
881 /*
882  *
883  * Loop until the CARD_DISABLED bit is the same value as the
884  * supplied parameter
885  *
886  * TODO: See if it would be more efficient to do a wait/wake
887  *       cycle and have the completion event trigger the wakeup
888  *
889  */
890 #define IPW_CARD_DISABLE_COMPLETE_WAIT              100 // 100 milli
891 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
892 {
893         int i;
894         u32 card_state;
895         u32 len = sizeof(card_state);
896         int err;
897
898         for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
899                 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
900                                           &card_state, &len);
901                 if (err) {
902                         IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
903                                        "failed.\n");
904                         return 0;
905                 }
906
907                 /* We'll break out if either the HW state says it is
908                  * in the state we want, or if HOST_COMPLETE command
909                  * finishes */
910                 if ((card_state == state) ||
911                     ((priv->status & STATUS_ENABLED) ?
912                      IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
913                         if (state == IPW_HW_STATE_ENABLED)
914                                 priv->status |= STATUS_ENABLED;
915                         else
916                                 priv->status &= ~STATUS_ENABLED;
917
918                         return 0;
919                 }
920
921                 udelay(50);
922         }
923
924         IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
925                        state ? "DISABLED" : "ENABLED");
926         return -EIO;
927 }
928
929 /*********************************************************************
930     Procedure   :   sw_reset_and_clock
931     Purpose     :   Asserts s/w reset, asserts clock initialization
932                     and waits for clock stabilization
933  ********************************************************************/
934 static int sw_reset_and_clock(struct ipw2100_priv *priv)
935 {
936         int i;
937         u32 r;
938
939         // assert s/w reset
940         write_register(priv->net_dev, IPW_REG_RESET_REG,
941                        IPW_AUX_HOST_RESET_REG_SW_RESET);
942
943         // wait for clock stabilization
944         for (i = 0; i < 1000; i++) {
945                 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
946
947                 // check clock ready bit
948                 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
949                 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
950                         break;
951         }
952
953         if (i == 1000)
954                 return -EIO;    // TODO: better error value
955
956         /* set "initialization complete" bit to move adapter to
957          * D0 state */
958         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
959                        IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
960
961         /* wait for clock stabilization */
962         for (i = 0; i < 10000; i++) {
963                 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
964
965                 /* check clock ready bit */
966                 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
967                 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
968                         break;
969         }
970
971         if (i == 10000)
972                 return -EIO;    /* TODO: better error value */
973
974         /* set D0 standby bit */
975         read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
976         write_register(priv->net_dev, IPW_REG_GP_CNTRL,
977                        r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
978
979         return 0;
980 }
981
982 /*********************************************************************
983     Procedure   :   ipw2100_download_firmware
984     Purpose     :   Initiaze adapter after power on.
985                     The sequence is:
986                     1. assert s/w reset first!
987                     2. awake clocks & wait for clock stabilization
988                     3. hold ARC (don't ask me why...)
989                     4. load Dino ucode and reset/clock init again
990                     5. zero-out shared mem
991                     6. download f/w
992  *******************************************************************/
993 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
994 {
995         u32 address;
996         int err;
997
998 #ifndef CONFIG_PM
999         /* Fetch the firmware and microcode */
1000         struct ipw2100_fw ipw2100_firmware;
1001 #endif
1002
1003         if (priv->fatal_error) {
1004                 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
1005                                 "fatal error %d.  Interface must be brought down.\n",
1006                                 priv->net_dev->name, priv->fatal_error);
1007                 return -EINVAL;
1008         }
1009 #ifdef CONFIG_PM
1010         if (!ipw2100_firmware.version) {
1011                 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1012                 if (err) {
1013                         IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1014                                         priv->net_dev->name, err);
1015                         priv->fatal_error = IPW2100_ERR_FW_LOAD;
1016                         goto fail;
1017                 }
1018         }
1019 #else
1020         err = ipw2100_get_firmware(priv, &ipw2100_firmware);
1021         if (err) {
1022                 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
1023                                 priv->net_dev->name, err);
1024                 priv->fatal_error = IPW2100_ERR_FW_LOAD;
1025                 goto fail;
1026         }
1027 #endif
1028         priv->firmware_version = ipw2100_firmware.version;
1029
1030         /* s/w reset and clock stabilization */
1031         err = sw_reset_and_clock(priv);
1032         if (err) {
1033                 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1034                                 priv->net_dev->name, err);
1035                 goto fail;
1036         }
1037
1038         err = ipw2100_verify(priv);
1039         if (err) {
1040                 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1041                                 priv->net_dev->name, err);
1042                 goto fail;
1043         }
1044
1045         /* Hold ARC */
1046         write_nic_dword(priv->net_dev,
1047                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1048
1049         /* allow ARC to run */
1050         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1051
1052         /* load microcode */
1053         err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1054         if (err) {
1055                 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1056                        priv->net_dev->name, err);
1057                 goto fail;
1058         }
1059
1060         /* release ARC */
1061         write_nic_dword(priv->net_dev,
1062                         IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1063
1064         /* s/w reset and clock stabilization (again!!!) */
1065         err = sw_reset_and_clock(priv);
1066         if (err) {
1067                 printk(KERN_ERR DRV_NAME
1068                        ": %s: sw_reset_and_clock failed: %d\n",
1069                        priv->net_dev->name, err);
1070                 goto fail;
1071         }
1072
1073         /* load f/w */
1074         err = ipw2100_fw_download(priv, &ipw2100_firmware);
1075         if (err) {
1076                 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1077                                 priv->net_dev->name, err);
1078                 goto fail;
1079         }
1080 #ifndef CONFIG_PM
1081         /*
1082          * When the .resume method of the driver is called, the other
1083          * part of the system, i.e. the ide driver could still stay in
1084          * the suspend stage. This prevents us from loading the firmware
1085          * from the disk.  --YZ
1086          */
1087
1088         /* free any storage allocated for firmware image */
1089         ipw2100_release_firmware(priv, &ipw2100_firmware);
1090 #endif
1091
1092         /* zero out Domain 1 area indirectly (Si requirement) */
1093         for (address = IPW_HOST_FW_SHARED_AREA0;
1094              address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1095                 write_nic_dword(priv->net_dev, address, 0);
1096         for (address = IPW_HOST_FW_SHARED_AREA1;
1097              address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1098                 write_nic_dword(priv->net_dev, address, 0);
1099         for (address = IPW_HOST_FW_SHARED_AREA2;
1100              address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1101                 write_nic_dword(priv->net_dev, address, 0);
1102         for (address = IPW_HOST_FW_SHARED_AREA3;
1103              address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1104                 write_nic_dword(priv->net_dev, address, 0);
1105         for (address = IPW_HOST_FW_INTERRUPT_AREA;
1106              address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1107                 write_nic_dword(priv->net_dev, address, 0);
1108
1109         return 0;
1110
1111       fail:
1112         ipw2100_release_firmware(priv, &ipw2100_firmware);
1113         return err;
1114 }
1115
1116 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1117 {
1118         if (priv->status & STATUS_INT_ENABLED)
1119                 return;
1120         priv->status |= STATUS_INT_ENABLED;
1121         write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1122 }
1123
1124 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1125 {
1126         if (!(priv->status & STATUS_INT_ENABLED))
1127                 return;
1128         priv->status &= ~STATUS_INT_ENABLED;
1129         write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1130 }
1131
1132 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1133 {
1134         struct ipw2100_ordinals *ord = &priv->ordinals;
1135
1136         IPW_DEBUG_INFO("enter\n");
1137
1138         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1139                       &ord->table1_addr);
1140
1141         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1142                       &ord->table2_addr);
1143
1144         read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1145         read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1146
1147         ord->table2_size &= 0x0000FFFF;
1148
1149         IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1150         IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1151         IPW_DEBUG_INFO("exit\n");
1152 }
1153
1154 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1155 {
1156         u32 reg = 0;
1157         /*
1158          * Set GPIO 3 writable by FW; GPIO 1 writable
1159          * by driver and enable clock
1160          */
1161         reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1162                IPW_BIT_GPIO_LED_OFF);
1163         write_register(priv->net_dev, IPW_REG_GPIO, reg);
1164 }
1165
1166 static int rf_kill_active(struct ipw2100_priv *priv)
1167 {
1168 #define MAX_RF_KILL_CHECKS 5
1169 #define RF_KILL_CHECK_DELAY 40
1170
1171         unsigned short value = 0;
1172         u32 reg = 0;
1173         int i;
1174
1175         if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1176                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1177                 priv->status &= ~STATUS_RF_KILL_HW;
1178                 return 0;
1179         }
1180
1181         for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1182                 udelay(RF_KILL_CHECK_DELAY);
1183                 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1184                 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1185         }
1186
1187         if (value == 0) {
1188                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1189                 priv->status |= STATUS_RF_KILL_HW;
1190         } else {
1191                 wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1192                 priv->status &= ~STATUS_RF_KILL_HW;
1193         }
1194
1195         return (value == 0);
1196 }
1197
1198 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1199 {
1200         u32 addr, len;
1201         u32 val;
1202
1203         /*
1204          * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1205          */
1206         len = sizeof(addr);
1207         if (ipw2100_get_ordinal
1208             (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1209                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1210                                __LINE__);
1211                 return -EIO;
1212         }
1213
1214         IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1215
1216         /*
1217          * EEPROM version is the byte at offset 0xfd in firmware
1218          * We read 4 bytes, then shift out the byte we actually want */
1219         read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1220         priv->eeprom_version = (val >> 24) & 0xFF;
1221         IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1222
1223         /*
1224          *  HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1225          *
1226          *  notice that the EEPROM bit is reverse polarity, i.e.
1227          *     bit = 0  signifies HW RF kill switch is supported
1228          *     bit = 1  signifies HW RF kill switch is NOT supported
1229          */
1230         read_nic_dword(priv->net_dev, addr + 0x20, &val);
1231         if (!((val >> 24) & 0x01))
1232                 priv->hw_features |= HW_FEATURE_RFKILL;
1233
1234         IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1235                        (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1236
1237         return 0;
1238 }
1239
1240 /*
1241  * Start firmware execution after power on and intialization
1242  * The sequence is:
1243  *  1. Release ARC
1244  *  2. Wait for f/w initialization completes;
1245  */
1246 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1247 {
1248         int i;
1249         u32 inta, inta_mask, gpio;
1250
1251         IPW_DEBUG_INFO("enter\n");
1252
1253         if (priv->status & STATUS_RUNNING)
1254                 return 0;
1255
1256         /*
1257          * Initialize the hw - drive adapter to DO state by setting
1258          * init_done bit. Wait for clk_ready bit and Download
1259          * fw & dino ucode
1260          */
1261         if (ipw2100_download_firmware(priv)) {
1262                 printk(KERN_ERR DRV_NAME
1263                        ": %s: Failed to power on the adapter.\n",
1264                        priv->net_dev->name);
1265                 return -EIO;
1266         }
1267
1268         /* Clear the Tx, Rx and Msg queues and the r/w indexes
1269          * in the firmware RBD and TBD ring queue */
1270         ipw2100_queues_initialize(priv);
1271
1272         ipw2100_hw_set_gpio(priv);
1273
1274         /* TODO -- Look at disabling interrupts here to make sure none
1275          * get fired during FW initialization */
1276
1277         /* Release ARC - clear reset bit */
1278         write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1279
1280         /* wait for f/w intialization complete */
1281         IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1282         i = 5000;
1283         do {
1284                 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1285                 /* Todo... wait for sync command ... */
1286
1287                 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1288
1289                 /* check "init done" bit */
1290                 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1291                         /* reset "init done" bit */
1292                         write_register(priv->net_dev, IPW_REG_INTA,
1293                                        IPW2100_INTA_FW_INIT_DONE);
1294                         break;
1295                 }
1296
1297                 /* check error conditions : we check these after the firmware
1298                  * check so that if there is an error, the interrupt handler
1299                  * will see it and the adapter will be reset */
1300                 if (inta &
1301                     (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1302                         /* clear error conditions */
1303                         write_register(priv->net_dev, IPW_REG_INTA,
1304                                        IPW2100_INTA_FATAL_ERROR |
1305                                        IPW2100_INTA_PARITY_ERROR);
1306                 }
1307         } while (--i);
1308
1309         /* Clear out any pending INTAs since we aren't supposed to have
1310          * interrupts enabled at this point... */
1311         read_register(priv->net_dev, IPW_REG_INTA, &inta);
1312         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1313         inta &= IPW_INTERRUPT_MASK;
1314         /* Clear out any pending interrupts */
1315         if (inta & inta_mask)
1316                 write_register(priv->net_dev, IPW_REG_INTA, inta);
1317
1318         IPW_DEBUG_FW("f/w initialization complete: %s\n",
1319                      i ? "SUCCESS" : "FAILED");
1320
1321         if (!i) {
1322                 printk(KERN_WARNING DRV_NAME
1323                        ": %s: Firmware did not initialize.\n",
1324                        priv->net_dev->name);
1325                 return -EIO;
1326         }
1327
1328         /* allow firmware to write to GPIO1 & GPIO3 */
1329         read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1330
1331         gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1332
1333         write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1334
1335         /* Ready to receive commands */
1336         priv->status |= STATUS_RUNNING;
1337
1338         /* The adapter has been reset; we are not associated */
1339         priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1340
1341         IPW_DEBUG_INFO("exit\n");
1342
1343         return 0;
1344 }
1345
1346 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1347 {
1348         if (!priv->fatal_error)
1349                 return;
1350
1351         priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1352         priv->fatal_index %= IPW2100_ERROR_QUEUE;
1353         priv->fatal_error = 0;
1354 }
1355
1356 /* NOTE: Our interrupt is disabled when this method is called */
1357 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1358 {
1359         u32 reg;
1360         int i;
1361
1362         IPW_DEBUG_INFO("Power cycling the hardware.\n");
1363
1364         ipw2100_hw_set_gpio(priv);
1365
1366         /* Step 1. Stop Master Assert */
1367         write_register(priv->net_dev, IPW_REG_RESET_REG,
1368                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1369
1370         /* Step 2. Wait for stop Master Assert
1371          *         (not more than 50us, otherwise ret error */
1372         i = 5;
1373         do {
1374                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1375                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1376
1377                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1378                         break;
1379         } while (--i);
1380
1381         priv->status &= ~STATUS_RESET_PENDING;
1382
1383         if (!i) {
1384                 IPW_DEBUG_INFO
1385                     ("exit - waited too long for master assert stop\n");
1386                 return -EIO;
1387         }
1388
1389         write_register(priv->net_dev, IPW_REG_RESET_REG,
1390                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1391
1392         /* Reset any fatal_error conditions */
1393         ipw2100_reset_fatalerror(priv);
1394
1395         /* At this point, the adapter is now stopped and disabled */
1396         priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1397                           STATUS_ASSOCIATED | STATUS_ENABLED);
1398
1399         return 0;
1400 }
1401
1402 /*
1403  * Send the CARD_DISABLE_PHY_OFF command to the card to disable it
1404  *
1405  * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1406  *
1407  * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1408  * if STATUS_ASSN_LOST is sent.
1409  */
1410 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1411 {
1412
1413 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1414
1415         struct host_command cmd = {
1416                 .host_command = CARD_DISABLE_PHY_OFF,
1417                 .host_command_sequence = 0,
1418                 .host_command_length = 0,
1419         };
1420         int err, i;
1421         u32 val1, val2;
1422
1423         IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1424
1425         /* Turn off the radio */
1426         err = ipw2100_hw_send_command(priv, &cmd);
1427         if (err)
1428                 return err;
1429
1430         for (i = 0; i < 2500; i++) {
1431                 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1432                 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1433
1434                 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1435                     (val2 & IPW2100_COMMAND_PHY_OFF))
1436                         return 0;
1437
1438                 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1439         }
1440
1441         return -EIO;
1442 }
1443
1444 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1445 {
1446         struct host_command cmd = {
1447                 .host_command = HOST_COMPLETE,
1448                 .host_command_sequence = 0,
1449                 .host_command_length = 0
1450         };
1451         int err = 0;
1452
1453         IPW_DEBUG_HC("HOST_COMPLETE\n");
1454
1455         if (priv->status & STATUS_ENABLED)
1456                 return 0;
1457
1458         mutex_lock(&priv->adapter_mutex);
1459
1460         if (rf_kill_active(priv)) {
1461                 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1462                 goto fail_up;
1463         }
1464
1465         err = ipw2100_hw_send_command(priv, &cmd);
1466         if (err) {
1467                 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1468                 goto fail_up;
1469         }
1470
1471         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1472         if (err) {
1473                 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1474                                priv->net_dev->name);
1475                 goto fail_up;
1476         }
1477
1478         if (priv->stop_hang_check) {
1479                 priv->stop_hang_check = 0;
1480                 schedule_delayed_work(&priv->hang_check, HZ / 2);
1481         }
1482
1483       fail_up:
1484         mutex_unlock(&priv->adapter_mutex);
1485         return err;
1486 }
1487
1488 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1489 {
1490 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1491
1492         struct host_command cmd = {
1493                 .host_command = HOST_PRE_POWER_DOWN,
1494                 .host_command_sequence = 0,
1495                 .host_command_length = 0,
1496         };
1497         int err, i;
1498         u32 reg;
1499
1500         if (!(priv->status & STATUS_RUNNING))
1501                 return 0;
1502
1503         priv->status |= STATUS_STOPPING;
1504
1505         /* We can only shut down the card if the firmware is operational.  So,
1506          * if we haven't reset since a fatal_error, then we can not send the
1507          * shutdown commands. */
1508         if (!priv->fatal_error) {
1509                 /* First, make sure the adapter is enabled so that the PHY_OFF
1510                  * command can shut it down */
1511                 ipw2100_enable_adapter(priv);
1512
1513                 err = ipw2100_hw_phy_off(priv);
1514                 if (err)
1515                         printk(KERN_WARNING DRV_NAME
1516                                ": Error disabling radio %d\n", err);
1517
1518                 /*
1519                  * If in D0-standby mode going directly to D3 may cause a
1520                  * PCI bus violation.  Therefore we must change out of the D0
1521                  * state.
1522                  *
1523                  * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1524                  * hardware from going into standby mode and will transition
1525                  * out of D0-standby if it is already in that state.
1526                  *
1527                  * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1528                  * driver upon completion.  Once received, the driver can
1529                  * proceed to the D3 state.
1530                  *
1531                  * Prepare for power down command to fw.  This command would
1532                  * take HW out of D0-standby and prepare it for D3 state.
1533                  *
1534                  * Currently FW does not support event notification for this
1535                  * event. Therefore, skip waiting for it.  Just wait a fixed
1536                  * 100ms
1537                  */
1538                 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1539
1540                 err = ipw2100_hw_send_command(priv, &cmd);
1541                 if (err)
1542                         printk(KERN_WARNING DRV_NAME ": "
1543                                "%s: Power down command failed: Error %d\n",
1544                                priv->net_dev->name, err);
1545                 else
1546                         schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1547         }
1548
1549         priv->status &= ~STATUS_ENABLED;
1550
1551         /*
1552          * Set GPIO 3 writable by FW; GPIO 1 writable
1553          * by driver and enable clock
1554          */
1555         ipw2100_hw_set_gpio(priv);
1556
1557         /*
1558          * Power down adapter.  Sequence:
1559          * 1. Stop master assert (RESET_REG[9]=1)
1560          * 2. Wait for stop master (RESET_REG[8]==1)
1561          * 3. S/w reset assert (RESET_REG[7] = 1)
1562          */
1563
1564         /* Stop master assert */
1565         write_register(priv->net_dev, IPW_REG_RESET_REG,
1566                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1567
1568         /* wait stop master not more than 50 usec.
1569          * Otherwise return error. */
1570         for (i = 5; i > 0; i--) {
1571                 udelay(10);
1572
1573                 /* Check master stop bit */
1574                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1575
1576                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1577                         break;
1578         }
1579
1580         if (i == 0)
1581                 printk(KERN_WARNING DRV_NAME
1582                        ": %s: Could now power down adapter.\n",
1583                        priv->net_dev->name);
1584
1585         /* assert s/w reset */
1586         write_register(priv->net_dev, IPW_REG_RESET_REG,
1587                        IPW_AUX_HOST_RESET_REG_SW_RESET);
1588
1589         priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1590
1591         return 0;
1592 }
1593
1594 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1595 {
1596         struct host_command cmd = {
1597                 .host_command = CARD_DISABLE,
1598                 .host_command_sequence = 0,
1599                 .host_command_length = 0
1600         };
1601         int err = 0;
1602
1603         IPW_DEBUG_HC("CARD_DISABLE\n");
1604
1605         if (!(priv->status & STATUS_ENABLED))
1606                 return 0;
1607
1608         /* Make sure we clear the associated state */
1609         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1610
1611         if (!priv->stop_hang_check) {
1612                 priv->stop_hang_check = 1;
1613                 cancel_delayed_work(&priv->hang_check);
1614         }
1615
1616         mutex_lock(&priv->adapter_mutex);
1617
1618         err = ipw2100_hw_send_command(priv, &cmd);
1619         if (err) {
1620                 printk(KERN_WARNING DRV_NAME
1621                        ": exit - failed to send CARD_DISABLE command\n");
1622                 goto fail_up;
1623         }
1624
1625         err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1626         if (err) {
1627                 printk(KERN_WARNING DRV_NAME
1628                        ": exit - card failed to change to DISABLED\n");
1629                 goto fail_up;
1630         }
1631
1632         IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1633
1634       fail_up:
1635         mutex_unlock(&priv->adapter_mutex);
1636         return err;
1637 }
1638
1639 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1640 {
1641         struct host_command cmd = {
1642                 .host_command = SET_SCAN_OPTIONS,
1643                 .host_command_sequence = 0,
1644                 .host_command_length = 8
1645         };
1646         int err;
1647
1648         IPW_DEBUG_INFO("enter\n");
1649
1650         IPW_DEBUG_SCAN("setting scan options\n");
1651
1652         cmd.host_command_parameters[0] = 0;
1653
1654         if (!(priv->config & CFG_ASSOCIATE))
1655                 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1656         if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1657                 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1658         if (priv->config & CFG_PASSIVE_SCAN)
1659                 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1660
1661         cmd.host_command_parameters[1] = priv->channel_mask;
1662
1663         err = ipw2100_hw_send_command(priv, &cmd);
1664
1665         IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1666                      cmd.host_command_parameters[0]);
1667
1668         return err;
1669 }
1670
1671 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1672 {
1673         struct host_command cmd = {
1674                 .host_command = BROADCAST_SCAN,
1675                 .host_command_sequence = 0,
1676                 .host_command_length = 4
1677         };
1678         int err;
1679
1680         IPW_DEBUG_HC("START_SCAN\n");
1681
1682         cmd.host_command_parameters[0] = 0;
1683
1684         /* No scanning if in monitor mode */
1685         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1686                 return 1;
1687
1688         if (priv->status & STATUS_SCANNING) {
1689                 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1690                 return 0;
1691         }
1692
1693         IPW_DEBUG_INFO("enter\n");
1694
1695         /* Not clearing here; doing so makes iwlist always return nothing...
1696          *
1697          * We should modify the table logic to use aging tables vs. clearing
1698          * the table on each scan start.
1699          */
1700         IPW_DEBUG_SCAN("starting scan\n");
1701
1702         priv->status |= STATUS_SCANNING;
1703         err = ipw2100_hw_send_command(priv, &cmd);
1704         if (err)
1705                 priv->status &= ~STATUS_SCANNING;
1706
1707         IPW_DEBUG_INFO("exit\n");
1708
1709         return err;
1710 }
1711
1712 static const struct libipw_geo ipw_geos[] = {
1713         {                       /* Restricted */
1714          "---",
1715          .bg_channels = 14,
1716          .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1717                 {2427, 4}, {2432, 5}, {2437, 6},
1718                 {2442, 7}, {2447, 8}, {2452, 9},
1719                 {2457, 10}, {2462, 11}, {2467, 12},
1720                 {2472, 13}, {2484, 14}},
1721          },
1722 };
1723
1724 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1725 {
1726         unsigned long flags;
1727         int rc = 0;
1728         u32 lock;
1729         u32 ord_len = sizeof(lock);
1730
1731         /* Age scan list entries found before suspend */
1732         if (priv->suspend_time) {
1733                 libipw_networks_age(priv->ieee, priv->suspend_time);
1734                 priv->suspend_time = 0;
1735         }
1736
1737         /* Quiet if manually disabled. */
1738         if (priv->status & STATUS_RF_KILL_SW) {
1739                 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1740                                "switch\n", priv->net_dev->name);
1741                 return 0;
1742         }
1743
1744         /* the ipw2100 hardware really doesn't want power management delays
1745          * longer than 175usec
1746          */
1747         pm_qos_update_request(&ipw2100_pm_qos_req, 175);
1748
1749         /* If the interrupt is enabled, turn it off... */
1750         spin_lock_irqsave(&priv->low_lock, flags);
1751         ipw2100_disable_interrupts(priv);
1752
1753         /* Reset any fatal_error conditions */
1754         ipw2100_reset_fatalerror(priv);
1755         spin_unlock_irqrestore(&priv->low_lock, flags);
1756
1757         if (priv->status & STATUS_POWERED ||
1758             (priv->status & STATUS_RESET_PENDING)) {
1759                 /* Power cycle the card ... */
1760                 if (ipw2100_power_cycle_adapter(priv)) {
1761                         printk(KERN_WARNING DRV_NAME
1762                                ": %s: Could not cycle adapter.\n",
1763                                priv->net_dev->name);
1764                         rc = 1;
1765                         goto exit;
1766                 }
1767         } else
1768                 priv->status |= STATUS_POWERED;
1769
1770         /* Load the firmware, start the clocks, etc. */
1771         if (ipw2100_start_adapter(priv)) {
1772                 printk(KERN_ERR DRV_NAME
1773                        ": %s: Failed to start the firmware.\n",
1774                        priv->net_dev->name);
1775                 rc = 1;
1776                 goto exit;
1777         }
1778
1779         ipw2100_initialize_ordinals(priv);
1780
1781         /* Determine capabilities of this particular HW configuration */
1782         if (ipw2100_get_hw_features(priv)) {
1783                 printk(KERN_ERR DRV_NAME
1784                        ": %s: Failed to determine HW features.\n",
1785                        priv->net_dev->name);
1786                 rc = 1;
1787                 goto exit;
1788         }
1789
1790         /* Initialize the geo */
1791         libipw_set_geo(priv->ieee, &ipw_geos[0]);
1792         priv->ieee->freq_band = LIBIPW_24GHZ_BAND;
1793
1794         lock = LOCK_NONE;
1795         if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1796                 printk(KERN_ERR DRV_NAME
1797                        ": %s: Failed to clear ordinal lock.\n",
1798                        priv->net_dev->name);
1799                 rc = 1;
1800                 goto exit;
1801         }
1802
1803         priv->status &= ~STATUS_SCANNING;
1804
1805         if (rf_kill_active(priv)) {
1806                 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1807                        priv->net_dev->name);
1808
1809                 if (priv->stop_rf_kill) {
1810                         priv->stop_rf_kill = 0;
1811                         schedule_delayed_work(&priv->rf_kill,
1812                                               round_jiffies_relative(HZ));
1813                 }
1814
1815                 deferred = 1;
1816         }
1817
1818         /* Turn on the interrupt so that commands can be processed */
1819         ipw2100_enable_interrupts(priv);
1820
1821         /* Send all of the commands that must be sent prior to
1822          * HOST_COMPLETE */
1823         if (ipw2100_adapter_setup(priv)) {
1824                 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1825                        priv->net_dev->name);
1826                 rc = 1;
1827                 goto exit;
1828         }
1829
1830         if (!deferred) {
1831                 /* Enable the adapter - sends HOST_COMPLETE */
1832                 if (ipw2100_enable_adapter(priv)) {
1833                         printk(KERN_ERR DRV_NAME ": "
1834                                "%s: failed in call to enable adapter.\n",
1835                                priv->net_dev->name);
1836                         ipw2100_hw_stop_adapter(priv);
1837                         rc = 1;
1838                         goto exit;
1839                 }
1840
1841                 /* Start a scan . . . */
1842                 ipw2100_set_scan_options(priv);
1843                 ipw2100_start_scan(priv);
1844         }
1845
1846       exit:
1847         return rc;
1848 }
1849
1850 static void ipw2100_down(struct ipw2100_priv *priv)
1851 {
1852         unsigned long flags;
1853         union iwreq_data wrqu = {
1854                 .ap_addr = {
1855                             .sa_family = ARPHRD_ETHER}
1856         };
1857         int associated = priv->status & STATUS_ASSOCIATED;
1858
1859         /* Kill the RF switch timer */
1860         if (!priv->stop_rf_kill) {
1861                 priv->stop_rf_kill = 1;
1862                 cancel_delayed_work(&priv->rf_kill);
1863         }
1864
1865         /* Kill the firmware hang check timer */
1866         if (!priv->stop_hang_check) {
1867                 priv->stop_hang_check = 1;
1868                 cancel_delayed_work(&priv->hang_check);
1869         }
1870
1871         /* Kill any pending resets */
1872         if (priv->status & STATUS_RESET_PENDING)
1873                 cancel_delayed_work(&priv->reset_work);
1874
1875         /* Make sure the interrupt is on so that FW commands will be
1876          * processed correctly */
1877         spin_lock_irqsave(&priv->low_lock, flags);
1878         ipw2100_enable_interrupts(priv);
1879         spin_unlock_irqrestore(&priv->low_lock, flags);
1880
1881         if (ipw2100_hw_stop_adapter(priv))
1882                 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1883                        priv->net_dev->name);
1884
1885         /* Do not disable the interrupt until _after_ we disable
1886          * the adaptor.  Otherwise the CARD_DISABLE command will never
1887          * be ack'd by the firmware */
1888         spin_lock_irqsave(&priv->low_lock, flags);
1889         ipw2100_disable_interrupts(priv);
1890         spin_unlock_irqrestore(&priv->low_lock, flags);
1891
1892         pm_qos_update_request(&ipw2100_pm_qos_req, PM_QOS_DEFAULT_VALUE);
1893
1894         /* We have to signal any supplicant if we are disassociating */
1895         if (associated)
1896                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1897
1898         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1899         netif_carrier_off(priv->net_dev);
1900         netif_stop_queue(priv->net_dev);
1901 }
1902
1903 static int ipw2100_wdev_init(struct net_device *dev)
1904 {
1905         struct ipw2100_priv *priv = libipw_priv(dev);
1906         const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1907         struct wireless_dev *wdev = &priv->ieee->wdev;
1908         int i;
1909
1910         memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
1911
1912         /* fill-out priv->ieee->bg_band */
1913         if (geo->bg_channels) {
1914                 struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
1915
1916                 bg_band->band = IEEE80211_BAND_2GHZ;
1917                 bg_band->n_channels = geo->bg_channels;
1918                 bg_band->channels = kcalloc(geo->bg_channels,
1919                                             sizeof(struct ieee80211_channel),
1920                                             GFP_KERNEL);
1921                 if (!bg_band->channels) {
1922                         ipw2100_down(priv);
1923                         return -ENOMEM;
1924                 }
1925                 /* translate geo->bg to bg_band.channels */
1926                 for (i = 0; i < geo->bg_channels; i++) {
1927                         bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
1928                         bg_band->channels[i].center_freq = geo->bg[i].freq;
1929                         bg_band->channels[i].hw_value = geo->bg[i].channel;
1930                         bg_band->channels[i].max_power = geo->bg[i].max_power;
1931                         if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
1932                                 bg_band->channels[i].flags |=
1933                                         IEEE80211_CHAN_NO_IR;
1934                         if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
1935                                 bg_band->channels[i].flags |=
1936                                         IEEE80211_CHAN_NO_IR;
1937                         if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
1938                                 bg_band->channels[i].flags |=
1939                                         IEEE80211_CHAN_RADAR;
1940                         /* No equivalent for LIBIPW_CH_80211H_RULES,
1941                            LIBIPW_CH_UNIFORM_SPREADING, or
1942                            LIBIPW_CH_B_ONLY... */
1943                 }
1944                 /* point at bitrate info */
1945                 bg_band->bitrates = ipw2100_bg_rates;
1946                 bg_band->n_bitrates = RATE_COUNT;
1947
1948                 wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
1949         }
1950
1951         wdev->wiphy->cipher_suites = ipw_cipher_suites;
1952         wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
1953
1954         set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
1955         if (wiphy_register(wdev->wiphy))
1956                 return -EIO;
1957         return 0;
1958 }
1959
1960 static void ipw2100_reset_adapter(struct work_struct *work)
1961 {
1962         struct ipw2100_priv *priv =
1963                 container_of(work, struct ipw2100_priv, reset_work.work);
1964         unsigned long flags;
1965         union iwreq_data wrqu = {
1966                 .ap_addr = {
1967                             .sa_family = ARPHRD_ETHER}
1968         };
1969         int associated = priv->status & STATUS_ASSOCIATED;
1970
1971         spin_lock_irqsave(&priv->low_lock, flags);
1972         IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1973         priv->resets++;
1974         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1975         priv->status |= STATUS_SECURITY_UPDATED;
1976
1977         /* Force a power cycle even if interface hasn't been opened
1978          * yet */
1979         cancel_delayed_work(&priv->reset_work);
1980         priv->status |= STATUS_RESET_PENDING;
1981         spin_unlock_irqrestore(&priv->low_lock, flags);
1982
1983         mutex_lock(&priv->action_mutex);
1984         /* stop timed checks so that they don't interfere with reset */
1985         priv->stop_hang_check = 1;
1986         cancel_delayed_work(&priv->hang_check);
1987
1988         /* We have to signal any supplicant if we are disassociating */
1989         if (associated)
1990                 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1991
1992         ipw2100_up(priv, 0);
1993         mutex_unlock(&priv->action_mutex);
1994
1995 }
1996
1997 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1998 {
1999
2000 #define MAC_ASSOCIATION_READ_DELAY (HZ)
2001         int ret;
2002         unsigned int len, essid_len;
2003         char essid[IW_ESSID_MAX_SIZE];
2004         u32 txrate;
2005         u32 chan;
2006         char *txratename;
2007         u8 bssid[ETH_ALEN];
2008         DECLARE_SSID_BUF(ssid);
2009
2010         /*
2011          * TBD: BSSID is usually 00:00:00:00:00:00 here and not
2012          *      an actual MAC of the AP. Seems like FW sets this
2013          *      address too late. Read it later and expose through
2014          *      /proc or schedule a later task to query and update
2015          */
2016
2017         essid_len = IW_ESSID_MAX_SIZE;
2018         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
2019                                   essid, &essid_len);
2020         if (ret) {
2021                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2022                                __LINE__);
2023                 return;
2024         }
2025
2026         len = sizeof(u32);
2027         ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
2028         if (ret) {
2029                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2030                                __LINE__);
2031                 return;
2032         }
2033
2034         len = sizeof(u32);
2035         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
2036         if (ret) {
2037                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2038                                __LINE__);
2039                 return;
2040         }
2041         len = ETH_ALEN;
2042         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, bssid,
2043                                   &len);
2044         if (ret) {
2045                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
2046                                __LINE__);
2047                 return;
2048         }
2049         memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
2050
2051         switch (txrate) {
2052         case TX_RATE_1_MBIT:
2053                 txratename = "1Mbps";
2054                 break;
2055         case TX_RATE_2_MBIT:
2056                 txratename = "2Mbsp";
2057                 break;
2058         case TX_RATE_5_5_MBIT:
2059                 txratename = "5.5Mbps";
2060                 break;
2061         case TX_RATE_11_MBIT:
2062                 txratename = "11Mbps";
2063                 break;
2064         default:
2065                 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
2066                 txratename = "unknown rate";
2067                 break;
2068         }
2069
2070         IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID=%pM)\n",
2071                        priv->net_dev->name, print_ssid(ssid, essid, essid_len),
2072                        txratename, chan, bssid);
2073
2074         /* now we copy read ssid into dev */
2075         if (!(priv->config & CFG_STATIC_ESSID)) {
2076                 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
2077                 memcpy(priv->essid, essid, priv->essid_len);
2078         }
2079         priv->channel = chan;
2080         memcpy(priv->bssid, bssid, ETH_ALEN);
2081
2082         priv->status |= STATUS_ASSOCIATING;
2083         priv->connect_start = get_seconds();
2084
2085         schedule_delayed_work(&priv->wx_event_work, HZ / 10);
2086 }
2087
2088 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2089                              int length, int batch_mode)
2090 {
2091         int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2092         struct host_command cmd = {
2093                 .host_command = SSID,
2094                 .host_command_sequence = 0,
2095                 .host_command_length = ssid_len
2096         };
2097         int err;
2098         DECLARE_SSID_BUF(ssid);
2099
2100         IPW_DEBUG_HC("SSID: '%s'\n", print_ssid(ssid, essid, ssid_len));
2101
2102         if (ssid_len)
2103                 memcpy(cmd.host_command_parameters, essid, ssid_len);
2104
2105         if (!batch_mode) {
2106                 err = ipw2100_disable_adapter(priv);
2107                 if (err)
2108                         return err;
2109         }
2110
2111         /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2112          * disable auto association -- so we cheat by setting a bogus SSID */
2113         if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2114                 int i;
2115                 u8 *bogus = (u8 *) cmd.host_command_parameters;
2116                 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2117                         bogus[i] = 0x18 + i;
2118                 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2119         }
2120
2121         /* NOTE:  We always send the SSID command even if the provided ESSID is
2122          * the same as what we currently think is set. */
2123
2124         err = ipw2100_hw_send_command(priv, &cmd);
2125         if (!err) {
2126                 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2127                 memcpy(priv->essid, essid, ssid_len);
2128                 priv->essid_len = ssid_len;
2129         }
2130
2131         if (!batch_mode) {
2132                 if (ipw2100_enable_adapter(priv))
2133                         err = -EIO;
2134         }
2135
2136         return err;
2137 }
2138
2139 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2140 {
2141         DECLARE_SSID_BUF(ssid);
2142
2143         IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2144                   "disassociated: '%s' %pM\n",
2145                   print_ssid(ssid, priv->essid, priv->essid_len),
2146                   priv->bssid);
2147
2148         priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2149
2150         if (priv->status & STATUS_STOPPING) {
2151                 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2152                 return;
2153         }
2154
2155         memset(priv->bssid, 0, ETH_ALEN);
2156         memset(priv->ieee->bssid, 0, ETH_ALEN);
2157
2158         netif_carrier_off(priv->net_dev);
2159         netif_stop_queue(priv->net_dev);
2160
2161         if (!(priv->status & STATUS_RUNNING))
2162                 return;
2163
2164         if (priv->status & STATUS_SECURITY_UPDATED)
2165                 schedule_delayed_work(&priv->security_work, 0);
2166
2167         schedule_delayed_work(&priv->wx_event_work, 0);
2168 }
2169
2170 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2171 {
2172         IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2173                        priv->net_dev->name);
2174
2175         /* RF_KILL is now enabled (else we wouldn't be here) */
2176         wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2177         priv->status |= STATUS_RF_KILL_HW;
2178
2179         /* Make sure the RF Kill check timer is running */
2180         priv->stop_rf_kill = 0;
2181         mod_delayed_work(system_wq, &priv->rf_kill, round_jiffies_relative(HZ));
2182 }
2183
2184 static void ipw2100_scan_event(struct work_struct *work)
2185 {
2186         struct ipw2100_priv *priv = container_of(work, struct ipw2100_priv,
2187                                                  scan_event.work);
2188         union iwreq_data wrqu;
2189
2190         wrqu.data.length = 0;
2191         wrqu.data.flags = 0;
2192         wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
2193 }
2194
2195 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2196 {
2197         IPW_DEBUG_SCAN("scan complete\n");
2198         /* Age the scan results... */
2199         priv->ieee->scans++;
2200         priv->status &= ~STATUS_SCANNING;
2201
2202         /* Only userspace-requested scan completion events go out immediately */
2203         if (!priv->user_requested_scan) {
2204                 schedule_delayed_work(&priv->scan_event,
2205                                       round_jiffies_relative(msecs_to_jiffies(4000)));
2206         } else {
2207                 priv->user_requested_scan = 0;
2208                 mod_delayed_work(system_wq, &priv->scan_event, 0);
2209         }
2210 }
2211
2212 #ifdef CONFIG_IPW2100_DEBUG
2213 #define IPW2100_HANDLER(v, f) { v, f, # v }
2214 struct ipw2100_status_indicator {
2215         int status;
2216         void (*cb) (struct ipw2100_priv * priv, u32 status);
2217         char *name;
2218 };
2219 #else
2220 #define IPW2100_HANDLER(v, f) { v, f }
2221 struct ipw2100_status_indicator {
2222         int status;
2223         void (*cb) (struct ipw2100_priv * priv, u32 status);
2224 };
2225 #endif                          /* CONFIG_IPW2100_DEBUG */
2226
2227 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2228 {
2229         IPW_DEBUG_SCAN("Scanning...\n");
2230         priv->status |= STATUS_SCANNING;
2231 }
2232
2233 static const struct ipw2100_status_indicator status_handlers[] = {
2234         IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2235         IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2236         IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2237         IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2238         IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2239         IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2240         IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2241         IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2242         IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2243         IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2244         IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2245         IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2246         IPW2100_HANDLER(-1, NULL)
2247 };
2248
2249 static void isr_status_change(struct ipw2100_priv *priv, int status)
2250 {
2251         int i;
2252
2253         if (status == IPW_STATE_SCANNING &&
2254             priv->status & STATUS_ASSOCIATED &&
2255             !(priv->status & STATUS_SCANNING)) {
2256                 IPW_DEBUG_INFO("Scan detected while associated, with "
2257                                "no scan request.  Restarting firmware.\n");
2258
2259                 /* Wake up any sleeping jobs */
2260                 schedule_reset(priv);
2261         }
2262
2263         for (i = 0; status_handlers[i].status != -1; i++) {
2264                 if (status == status_handlers[i].status) {
2265                         IPW_DEBUG_NOTIF("Status change: %s\n",
2266                                         status_handlers[i].name);
2267                         if (status_handlers[i].cb)
2268                                 status_handlers[i].cb(priv, status);
2269                         priv->wstats.status = status;
2270                         return;
2271                 }
2272         }
2273
2274         IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2275 }
2276
2277 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2278                                     struct ipw2100_cmd_header *cmd)
2279 {
2280 #ifdef CONFIG_IPW2100_DEBUG
2281         if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2282                 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2283                              command_types[cmd->host_command_reg],
2284                              cmd->host_command_reg);
2285         }
2286 #endif
2287         if (cmd->host_command_reg == HOST_COMPLETE)
2288                 priv->status |= STATUS_ENABLED;
2289
2290         if (cmd->host_command_reg == CARD_DISABLE)
2291                 priv->status &= ~STATUS_ENABLED;
2292
2293         priv->status &= ~STATUS_CMD_ACTIVE;
2294
2295         wake_up_interruptible(&priv->wait_command_queue);
2296 }
2297
2298 #ifdef CONFIG_IPW2100_DEBUG
2299 static const char *frame_types[] = {
2300         "COMMAND_STATUS_VAL",
2301         "STATUS_CHANGE_VAL",
2302         "P80211_DATA_VAL",
2303         "P8023_DATA_VAL",
2304         "HOST_NOTIFICATION_VAL"
2305 };
2306 #endif
2307
2308 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2309                                     struct ipw2100_rx_packet *packet)
2310 {
2311         packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2312         if (!packet->skb)
2313                 return -ENOMEM;
2314
2315         packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2316         packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2317                                           sizeof(struct ipw2100_rx),
2318                                           PCI_DMA_FROMDEVICE);
2319         /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2320          *       dma_addr */
2321
2322         return 0;
2323 }
2324
2325 #define SEARCH_ERROR   0xffffffff
2326 #define SEARCH_FAIL    0xfffffffe
2327 #define SEARCH_SUCCESS 0xfffffff0
2328 #define SEARCH_DISCARD 0
2329 #define SEARCH_SNAPSHOT 1
2330
2331 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2332 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2333 {
2334         int i;
2335         if (!priv->snapshot[0])
2336                 return;
2337         for (i = 0; i < 0x30; i++)
2338                 kfree(priv->snapshot[i]);
2339         priv->snapshot[0] = NULL;
2340 }
2341
2342 #ifdef IPW2100_DEBUG_C3
2343 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2344 {
2345         int i;
2346         if (priv->snapshot[0])
2347                 return 1;
2348         for (i = 0; i < 0x30; i++) {
2349                 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2350                 if (!priv->snapshot[i]) {
2351                         IPW_DEBUG_INFO("%s: Error allocating snapshot "
2352                                        "buffer %d\n", priv->net_dev->name, i);
2353                         while (i > 0)
2354                                 kfree(priv->snapshot[--i]);
2355                         priv->snapshot[0] = NULL;
2356                         return 0;
2357                 }
2358         }
2359
2360         return 1;
2361 }
2362
2363 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2364                                     size_t len, int mode)
2365 {
2366         u32 i, j;
2367         u32 tmp;
2368         u8 *s, *d;
2369         u32 ret;
2370
2371         s = in_buf;
2372         if (mode == SEARCH_SNAPSHOT) {
2373                 if (!ipw2100_snapshot_alloc(priv))
2374                         mode = SEARCH_DISCARD;
2375         }
2376
2377         for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2378                 read_nic_dword(priv->net_dev, i, &tmp);
2379                 if (mode == SEARCH_SNAPSHOT)
2380                         *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2381                 if (ret == SEARCH_FAIL) {
2382                         d = (u8 *) & tmp;
2383                         for (j = 0; j < 4; j++) {
2384                                 if (*s != *d) {
2385                                         s = in_buf;
2386                                         continue;
2387                                 }
2388
2389                                 s++;
2390                                 d++;
2391
2392                                 if ((s - in_buf) == len)
2393                                         ret = (i + j) - len + 1;
2394                         }
2395                 } else if (mode == SEARCH_DISCARD)
2396                         return ret;
2397         }
2398
2399         return ret;
2400 }
2401 #endif
2402
2403 /*
2404  *
2405  * 0) Disconnect the SKB from the firmware (just unmap)
2406  * 1) Pack the ETH header into the SKB
2407  * 2) Pass the SKB to the network stack
2408  *
2409  * When packet is provided by the firmware, it contains the following:
2410  *
2411  * .  libipw_hdr
2412  * .  libipw_snap_hdr
2413  *
2414  * The size of the constructed ethernet
2415  *
2416  */
2417 #ifdef IPW2100_RX_DEBUG
2418 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2419 #endif
2420
2421 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2422 {
2423 #ifdef IPW2100_DEBUG_C3
2424         struct ipw2100_status *status = &priv->status_queue.drv[i];
2425         u32 match, reg;
2426         int j;
2427 #endif
2428
2429         IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2430                        i * sizeof(struct ipw2100_status));
2431
2432 #ifdef IPW2100_DEBUG_C3
2433         /* Halt the firmware so we can get a good image */
2434         write_register(priv->net_dev, IPW_REG_RESET_REG,
2435                        IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2436         j = 5;
2437         do {
2438                 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2439                 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2440
2441                 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2442                         break;
2443         } while (j--);
2444
2445         match = ipw2100_match_buf(priv, (u8 *) status,
2446                                   sizeof(struct ipw2100_status),
2447                                   SEARCH_SNAPSHOT);
2448         if (match < SEARCH_SUCCESS)
2449                 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2450                                "offset 0x%06X, length %d:\n",
2451                                priv->net_dev->name, match,
2452                                sizeof(struct ipw2100_status));
2453         else
2454                 IPW_DEBUG_INFO("%s: No DMA status match in "
2455                                "Firmware.\n", priv->net_dev->name);
2456
2457         printk_buf((u8 *) priv->status_queue.drv,
2458                    sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2459 #endif
2460
2461         priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2462         priv->net_dev->stats.rx_errors++;
2463         schedule_reset(priv);
2464 }
2465
2466 static void isr_rx(struct ipw2100_priv *priv, int i,
2467                           struct libipw_rx_stats *stats)
2468 {
2469         struct net_device *dev = priv->net_dev;
2470         struct ipw2100_status *status = &priv->status_queue.drv[i];
2471         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2472
2473         IPW_DEBUG_RX("Handler...\n");
2474
2475         if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2476                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2477                                "  Dropping.\n",
2478                                dev->name,
2479                                status->frame_size, skb_tailroom(packet->skb));
2480                 dev->stats.rx_errors++;
2481                 return;
2482         }
2483
2484         if (unlikely(!netif_running(dev))) {
2485                 dev->stats.rx_errors++;
2486                 priv->wstats.discard.misc++;
2487                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2488                 return;
2489         }
2490
2491         if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2492                      !(priv->status & STATUS_ASSOCIATED))) {
2493                 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2494                 priv->wstats.discard.misc++;
2495                 return;
2496         }
2497
2498         pci_unmap_single(priv->pci_dev,
2499                          packet->dma_addr,
2500                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2501
2502         skb_put(packet->skb, status->frame_size);
2503
2504 #ifdef IPW2100_RX_DEBUG
2505         /* Make a copy of the frame so we can dump it to the logs if
2506          * libipw_rx fails */
2507         skb_copy_from_linear_data(packet->skb, packet_data,
2508                                   min_t(u32, status->frame_size,
2509                                              IPW_RX_NIC_BUFFER_LENGTH));
2510 #endif
2511
2512         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2513 #ifdef IPW2100_RX_DEBUG
2514                 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2515                                dev->name);
2516                 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2517 #endif
2518                 dev->stats.rx_errors++;
2519
2520                 /* libipw_rx failed, so it didn't free the SKB */
2521                 dev_kfree_skb_any(packet->skb);
2522                 packet->skb = NULL;
2523         }
2524
2525         /* We need to allocate a new SKB and attach it to the RDB. */
2526         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2527                 printk(KERN_WARNING DRV_NAME ": "
2528                        "%s: Unable to allocate SKB onto RBD ring - disabling "
2529                        "adapter.\n", dev->name);
2530                 /* TODO: schedule adapter shutdown */
2531                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2532         }
2533
2534         /* Update the RDB entry */
2535         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2536 }
2537
2538 #ifdef CONFIG_IPW2100_MONITOR
2539
2540 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2541                    struct libipw_rx_stats *stats)
2542 {
2543         struct net_device *dev = priv->net_dev;
2544         struct ipw2100_status *status = &priv->status_queue.drv[i];
2545         struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2546
2547         /* Magic struct that slots into the radiotap header -- no reason
2548          * to build this manually element by element, we can write it much
2549          * more efficiently than we can parse it. ORDER MATTERS HERE */
2550         struct ipw_rt_hdr {
2551                 struct ieee80211_radiotap_header rt_hdr;
2552                 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2553         } *ipw_rt;
2554
2555         IPW_DEBUG_RX("Handler...\n");
2556
2557         if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2558                                 sizeof(struct ipw_rt_hdr))) {
2559                 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2560                                "  Dropping.\n",
2561                                dev->name,
2562                                status->frame_size,
2563                                skb_tailroom(packet->skb));
2564                 dev->stats.rx_errors++;
2565                 return;
2566         }
2567
2568         if (unlikely(!netif_running(dev))) {
2569                 dev->stats.rx_errors++;
2570                 priv->wstats.discard.misc++;
2571                 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2572                 return;
2573         }
2574
2575         if (unlikely(priv->config & CFG_CRC_CHECK &&
2576                      status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2577                 IPW_DEBUG_RX("CRC error in packet.  Dropping.\n");
2578                 dev->stats.rx_errors++;
2579                 return;
2580         }
2581
2582         pci_unmap_single(priv->pci_dev, packet->dma_addr,
2583                          sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2584         memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2585                 packet->skb->data, status->frame_size);
2586
2587         ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2588
2589         ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2590         ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2591         ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total hdr+data */
2592
2593         ipw_rt->rt_hdr.it_present = cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
2594
2595         ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2596
2597         skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2598
2599         if (!libipw_rx(priv->ieee, packet->skb, stats)) {
2600                 dev->stats.rx_errors++;
2601
2602                 /* libipw_rx failed, so it didn't free the SKB */
2603                 dev_kfree_skb_any(packet->skb);
2604                 packet->skb = NULL;
2605         }
2606
2607         /* We need to allocate a new SKB and attach it to the RDB. */
2608         if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2609                 IPW_DEBUG_WARNING(
2610                         "%s: Unable to allocate SKB onto RBD ring - disabling "
2611                         "adapter.\n", dev->name);
2612                 /* TODO: schedule adapter shutdown */
2613                 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2614         }
2615
2616         /* Update the RDB entry */
2617         priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2618 }
2619
2620 #endif
2621
2622 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2623 {
2624         struct ipw2100_status *status = &priv->status_queue.drv[i];
2625         struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2626         u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2627
2628         switch (frame_type) {
2629         case COMMAND_STATUS_VAL:
2630                 return (status->frame_size != sizeof(u->rx_data.command));
2631         case STATUS_CHANGE_VAL:
2632                 return (status->frame_size != sizeof(u->rx_data.status));
2633         case HOST_NOTIFICATION_VAL:
2634                 return (status->frame_size < sizeof(u->rx_data.notification));
2635         case P80211_DATA_VAL:
2636         case P8023_DATA_VAL:
2637 #ifdef CONFIG_IPW2100_MONITOR
2638                 return 0;
2639 #else
2640                 switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2641                 case IEEE80211_FTYPE_MGMT:
2642                 case IEEE80211_FTYPE_CTL:
2643                         return 0;
2644                 case IEEE80211_FTYPE_DATA:
2645                         return (status->frame_size >
2646                                 IPW_MAX_802_11_PAYLOAD_LENGTH);
2647                 }
2648 #endif
2649         }
2650
2651         return 1;
2652 }
2653
2654 /*
2655  * ipw2100 interrupts are disabled at this point, and the ISR
2656  * is the only code that calls this method.  So, we do not need
2657  * to play with any locks.
2658  *
2659  * RX Queue works as follows:
2660  *
2661  * Read index - firmware places packet in entry identified by the
2662  *              Read index and advances Read index.  In this manner,
2663  *              Read index will always point to the next packet to
2664  *              be filled--but not yet valid.
2665  *
2666  * Write index - driver fills this entry with an unused RBD entry.
2667  *               This entry has not filled by the firmware yet.
2668  *
2669  * In between the W and R indexes are the RBDs that have been received
2670  * but not yet processed.
2671  *
2672  * The process of handling packets will start at WRITE + 1 and advance
2673  * until it reaches the READ index.
2674  *
2675  * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2676  *
2677  */
2678 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2679 {
2680         struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2681         struct ipw2100_status_queue *sq = &priv->status_queue;
2682         struct ipw2100_rx_packet *packet;
2683         u16 frame_type;
2684         u32 r, w, i, s;
2685         struct ipw2100_rx *u;
2686         struct libipw_rx_stats stats = {
2687                 .mac_time = jiffies,
2688         };
2689
2690         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2691         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2692
2693         if (r >= rxq->entries) {
2694                 IPW_DEBUG_RX("exit - bad read index\n");
2695                 return;
2696         }
2697
2698         i = (rxq->next + 1) % rxq->entries;
2699         s = i;
2700         while (i != r) {
2701                 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2702                    r, rxq->next, i); */
2703
2704                 packet = &priv->rx_buffers[i];
2705
2706                 /* Sync the DMA for the RX buffer so CPU is sure to get
2707                  * the correct values */
2708                 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2709                                             sizeof(struct ipw2100_rx),
2710                                             PCI_DMA_FROMDEVICE);
2711
2712                 if (unlikely(ipw2100_corruption_check(priv, i))) {
2713                         ipw2100_corruption_detected(priv, i);
2714                         goto increment;
2715                 }
2716
2717                 u = packet->rxp;
2718                 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2719                 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2720                 stats.len = sq->drv[i].frame_size;
2721
2722                 stats.mask = 0;
2723                 if (stats.rssi != 0)
2724                         stats.mask |= LIBIPW_STATMASK_RSSI;
2725                 stats.freq = LIBIPW_24GHZ_BAND;
2726
2727                 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2728                              priv->net_dev->name, frame_types[frame_type],
2729                              stats.len);
2730
2731                 switch (frame_type) {
2732                 case COMMAND_STATUS_VAL:
2733                         /* Reset Rx watchdog */
2734                         isr_rx_complete_command(priv, &u->rx_data.command);
2735                         break;
2736
2737                 case STATUS_CHANGE_VAL:
2738                         isr_status_change(priv, u->rx_data.status);
2739                         break;
2740
2741                 case P80211_DATA_VAL:
2742                 case P8023_DATA_VAL:
2743 #ifdef CONFIG_IPW2100_MONITOR
2744                         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2745                                 isr_rx_monitor(priv, i, &stats);
2746                                 break;
2747                         }
2748 #endif
2749                         if (stats.len < sizeof(struct libipw_hdr_3addr))
2750                                 break;
2751                         switch (WLAN_FC_GET_TYPE(le16_to_cpu(u->rx_data.header.frame_ctl))) {
2752                         case IEEE80211_FTYPE_MGMT:
2753                                 libipw_rx_mgt(priv->ieee,
2754                                                  &u->rx_data.header, &stats);
2755                                 break;
2756
2757                         case IEEE80211_FTYPE_CTL:
2758                                 break;
2759
2760                         case IEEE80211_FTYPE_DATA:
2761                                 isr_rx(priv, i, &stats);
2762                                 break;
2763
2764                         }
2765                         break;
2766                 }
2767
2768               increment:
2769                 /* clear status field associated with this RBD */
2770                 rxq->drv[i].status.info.field = 0;
2771
2772                 i = (i + 1) % rxq->entries;
2773         }
2774
2775         if (i != s) {
2776                 /* backtrack one entry, wrapping to end if at 0 */
2777                 rxq->next = (i ? i : rxq->entries) - 1;
2778
2779                 write_register(priv->net_dev,
2780                                IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2781         }
2782 }
2783
2784 /*
2785  * __ipw2100_tx_process
2786  *
2787  * This routine will determine whether the next packet on
2788  * the fw_pend_list has been processed by the firmware yet.
2789  *
2790  * If not, then it does nothing and returns.
2791  *
2792  * If so, then it removes the item from the fw_pend_list, frees
2793  * any associated storage, and places the item back on the
2794  * free list of its source (either msg_free_list or tx_free_list)
2795  *
2796  * TX Queue works as follows:
2797  *
2798  * Read index - points to the next TBD that the firmware will
2799  *              process.  The firmware will read the data, and once
2800  *              done processing, it will advance the Read index.
2801  *
2802  * Write index - driver fills this entry with an constructed TBD
2803  *               entry.  The Write index is not advanced until the
2804  *               packet has been configured.
2805  *
2806  * In between the W and R indexes are the TBDs that have NOT been
2807  * processed.  Lagging behind the R index are packets that have
2808  * been processed but have not been freed by the driver.
2809  *
2810  * In order to free old storage, an internal index will be maintained
2811  * that points to the next packet to be freed.  When all used
2812  * packets have been freed, the oldest index will be the same as the
2813  * firmware's read index.
2814  *
2815  * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2816  *
2817  * Because the TBD structure can not contain arbitrary data, the
2818  * driver must keep an internal queue of cached allocations such that
2819  * it can put that data back into the tx_free_list and msg_free_list
2820  * for use by future command and data packets.
2821  *
2822  */
2823 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2824 {
2825         struct ipw2100_bd_queue *txq = &priv->tx_queue;
2826         struct ipw2100_bd *tbd;
2827         struct list_head *element;
2828         struct ipw2100_tx_packet *packet;
2829         int descriptors_used;
2830         int e, i;
2831         u32 r, w, frag_num = 0;
2832
2833         if (list_empty(&priv->fw_pend_list))
2834                 return 0;
2835
2836         element = priv->fw_pend_list.next;
2837
2838         packet = list_entry(element, struct ipw2100_tx_packet, list);
2839         tbd = &txq->drv[packet->index];
2840
2841         /* Determine how many TBD entries must be finished... */
2842         switch (packet->type) {
2843         case COMMAND:
2844                 /* COMMAND uses only one slot; don't advance */
2845                 descriptors_used = 1;
2846                 e = txq->oldest;
2847                 break;
2848
2849         case DATA:
2850                 /* DATA uses two slots; advance and loop position. */
2851                 descriptors_used = tbd->num_fragments;
2852                 frag_num = tbd->num_fragments - 1;
2853                 e = txq->oldest + frag_num;
2854                 e %= txq->entries;
2855                 break;
2856
2857         default:
2858                 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2859                        priv->net_dev->name);
2860                 return 0;
2861         }
2862
2863         /* if the last TBD is not done by NIC yet, then packet is
2864          * not ready to be released.
2865          *
2866          */
2867         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2868                       &r);
2869         read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2870                       &w);
2871         if (w != txq->next)
2872                 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2873                        priv->net_dev->name);
2874
2875         /*
2876          * txq->next is the index of the last packet written txq->oldest is
2877          * the index of the r is the index of the next packet to be read by
2878          * firmware
2879          */
2880
2881         /*
2882          * Quick graphic to help you visualize the following
2883          * if / else statement
2884          *
2885          * ===>|                     s---->|===============
2886          *                               e>|
2887          * | a | b | c | d | e | f | g | h | i | j | k | l
2888          *       r---->|
2889          *               w
2890          *
2891          * w - updated by driver
2892          * r - updated by firmware
2893          * s - start of oldest BD entry (txq->oldest)
2894          * e - end of oldest BD entry
2895          *
2896          */
2897         if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2898                 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2899                 return 0;
2900         }
2901
2902         list_del(element);
2903         DEC_STAT(&priv->fw_pend_stat);
2904
2905 #ifdef CONFIG_IPW2100_DEBUG
2906         {
2907                 i = txq->oldest;
2908                 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2909                              &txq->drv[i],
2910                              (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2911                              txq->drv[i].host_addr, txq->drv[i].buf_length);
2912
2913                 if (packet->type == DATA) {
2914                         i = (i + 1) % txq->entries;
2915
2916                         IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2917                                      &txq->drv[i],
2918                                      (u32) (txq->nic + i *
2919                                             sizeof(struct ipw2100_bd)),
2920                                      (u32) txq->drv[i].host_addr,
2921                                      txq->drv[i].buf_length);
2922                 }
2923         }
2924 #endif
2925
2926         switch (packet->type) {
2927         case DATA:
2928                 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2929                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2930                                "Expecting DATA TBD but pulled "
2931                                "something else: ids %d=%d.\n",
2932                                priv->net_dev->name, txq->oldest, packet->index);
2933
2934                 /* DATA packet; we have to unmap and free the SKB */
2935                 for (i = 0; i < frag_num; i++) {
2936                         tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2937
2938                         IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2939                                      (packet->index + 1 + i) % txq->entries,
2940                                      tbd->host_addr, tbd->buf_length);
2941
2942                         pci_unmap_single(priv->pci_dev,
2943                                          tbd->host_addr,
2944                                          tbd->buf_length, PCI_DMA_TODEVICE);
2945                 }
2946
2947                 libipw_txb_free(packet->info.d_struct.txb);
2948                 packet->info.d_struct.txb = NULL;
2949
2950                 list_add_tail(element, &priv->tx_free_list);
2951                 INC_STAT(&priv->tx_free_stat);
2952
2953                 /* We have a free slot in the Tx queue, so wake up the
2954                  * transmit layer if it is stopped. */
2955                 if (priv->status & STATUS_ASSOCIATED)
2956                         netif_wake_queue(priv->net_dev);
2957
2958                 /* A packet was processed by the hardware, so update the
2959                  * watchdog */
2960                 priv->net_dev->trans_start = jiffies;
2961
2962                 break;
2963
2964         case COMMAND:
2965                 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2966                         printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch.  "
2967                                "Expecting COMMAND TBD but pulled "
2968                                "something else: ids %d=%d.\n",
2969                                priv->net_dev->name, txq->oldest, packet->index);
2970
2971 #ifdef CONFIG_IPW2100_DEBUG
2972                 if (packet->info.c_struct.cmd->host_command_reg <
2973                     ARRAY_SIZE(command_types))
2974                         IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2975                                      command_types[packet->info.c_struct.cmd->
2976                                                    host_command_reg],
2977                                      packet->info.c_struct.cmd->
2978                                      host_command_reg,
2979                                      packet->info.c_struct.cmd->cmd_status_reg);
2980 #endif
2981
2982                 list_add_tail(element, &priv->msg_free_list);
2983                 INC_STAT(&priv->msg_free_stat);
2984                 break;
2985         }
2986
2987         /* advance oldest used TBD pointer to start of next entry */
2988         txq->oldest = (e + 1) % txq->entries;
2989         /* increase available TBDs number */
2990         txq->available += descriptors_used;
2991         SET_STAT(&priv->txq_stat, txq->available);
2992
2993         IPW_DEBUG_TX("packet latency (send to process)  %ld jiffies\n",
2994                      jiffies - packet->jiffy_start);
2995
2996         return (!list_empty(&priv->fw_pend_list));
2997 }
2998
2999 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
3000 {
3001         int i = 0;
3002
3003         while (__ipw2100_tx_process(priv) && i < 200)
3004                 i++;
3005
3006         if (i == 200) {
3007                 printk(KERN_WARNING DRV_NAME ": "
3008                        "%s: Driver is running slow (%d iters).\n",
3009                        priv->net_dev->name, i);
3010         }
3011 }
3012
3013 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
3014 {
3015         struct list_head *element;
3016         struct ipw2100_tx_packet *packet;
3017         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3018         struct ipw2100_bd *tbd;
3019         int next = txq->next;
3020
3021         while (!list_empty(&priv->msg_pend_list)) {
3022                 /* if there isn't enough space in TBD queue, then
3023                  * don't stuff a new one in.
3024                  * NOTE: 3 are needed as a command will take one,
3025                  *       and there is a minimum of 2 that must be
3026                  *       maintained between the r and w indexes
3027                  */
3028                 if (txq->available <= 3) {
3029                         IPW_DEBUG_TX("no room in tx_queue\n");
3030                         break;
3031                 }
3032
3033                 element = priv->msg_pend_list.next;
3034                 list_del(element);
3035                 DEC_STAT(&priv->msg_pend_stat);
3036
3037                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3038
3039                 IPW_DEBUG_TX("using TBD at virt=%p, phys=%04X\n",
3040                              &txq->drv[txq->next],
3041                              (u32) (txq->nic + txq->next *
3042                                       sizeof(struct ipw2100_bd)));
3043
3044                 packet->index = txq->next;
3045
3046                 tbd = &txq->drv[txq->next];
3047
3048                 /* initialize TBD */
3049                 tbd->host_addr = packet->info.c_struct.cmd_phys;
3050                 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
3051                 /* not marking number of fragments causes problems
3052                  * with f/w debug version */
3053                 tbd->num_fragments = 1;
3054                 tbd->status.info.field =
3055                     IPW_BD_STATUS_TX_FRAME_COMMAND |
3056                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3057
3058                 /* update TBD queue counters */
3059                 txq->next++;
3060                 txq->next %= txq->entries;
3061                 txq->available--;
3062                 DEC_STAT(&priv->txq_stat);
3063
3064                 list_add_tail(element, &priv->fw_pend_list);
3065                 INC_STAT(&priv->fw_pend_stat);
3066         }
3067
3068         if (txq->next != next) {
3069                 /* kick off the DMA by notifying firmware the
3070                  * write index has moved; make sure TBD stores are sync'd */
3071                 wmb();
3072                 write_register(priv->net_dev,
3073                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3074                                txq->next);
3075         }
3076 }
3077
3078 /*
3079  * ipw2100_tx_send_data
3080  *
3081  */
3082 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3083 {
3084         struct list_head *element;
3085         struct ipw2100_tx_packet *packet;
3086         struct ipw2100_bd_queue *txq = &priv->tx_queue;
3087         struct ipw2100_bd *tbd;
3088         int next = txq->next;
3089         int i = 0;
3090         struct ipw2100_data_header *ipw_hdr;
3091         struct libipw_hdr_3addr *hdr;
3092
3093         while (!list_empty(&priv->tx_pend_list)) {
3094                 /* if there isn't enough space in TBD queue, then
3095                  * don't stuff a new one in.
3096                  * NOTE: 4 are needed as a data will take two,
3097                  *       and there is a minimum of 2 that must be
3098                  *       maintained between the r and w indexes
3099                  */
3100                 element = priv->tx_pend_list.next;
3101                 packet = list_entry(element, struct ipw2100_tx_packet, list);
3102
3103                 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3104                              IPW_MAX_BDS)) {
3105                         /* TODO: Support merging buffers if more than
3106                          * IPW_MAX_BDS are used */
3107                         IPW_DEBUG_INFO("%s: Maximum BD threshold exceeded.  "
3108                                        "Increase fragmentation level.\n",
3109                                        priv->net_dev->name);
3110                 }
3111
3112                 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3113                         IPW_DEBUG_TX("no room in tx_queue\n");
3114                         break;
3115                 }
3116
3117                 list_del(element);
3118                 DEC_STAT(&priv->tx_pend_stat);
3119
3120                 tbd = &txq->drv[txq->next];
3121
3122                 packet->index = txq->next;
3123
3124                 ipw_hdr = packet->info.d_struct.data;
3125                 hdr = (struct libipw_hdr_3addr *)packet->info.d_struct.txb->
3126                     fragments[0]->data;
3127
3128                 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3129                         /* To DS: Addr1 = BSSID, Addr2 = SA,
3130                            Addr3 = DA */
3131                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3132                         memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3133                 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3134                         /* not From/To DS: Addr1 = DA, Addr2 = SA,
3135                            Addr3 = BSSID */
3136                         memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3137                         memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3138                 }
3139
3140                 ipw_hdr->host_command_reg = SEND;
3141                 ipw_hdr->host_command_reg1 = 0;
3142
3143                 /* For now we only support host based encryption */
3144                 ipw_hdr->needs_encryption = 0;
3145                 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3146                 if (packet->info.d_struct.txb->nr_frags > 1)
3147                         ipw_hdr->fragment_size =
3148                             packet->info.d_struct.txb->frag_size -
3149                             LIBIPW_3ADDR_LEN;
3150                 else
3151                         ipw_hdr->fragment_size = 0;
3152
3153                 tbd->host_addr = packet->info.d_struct.data_phys;
3154                 tbd->buf_length = sizeof(struct ipw2100_data_header);
3155                 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3156                 tbd->status.info.field =
3157                     IPW_BD_STATUS_TX_FRAME_802_3 |
3158                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3159                 txq->next++;
3160                 txq->next %= txq->entries;
3161
3162                 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3163                              packet->index, tbd->host_addr, tbd->buf_length);
3164 #ifdef CONFIG_IPW2100_DEBUG
3165                 if (packet->info.d_struct.txb->nr_frags > 1)
3166                         IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3167                                        packet->info.d_struct.txb->nr_frags);
3168 #endif
3169
3170                 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3171                         tbd = &txq->drv[txq->next];
3172                         if (i == packet->info.d_struct.txb->nr_frags - 1)
3173                                 tbd->status.info.field =
3174                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3175                                     IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3176                         else
3177                                 tbd->status.info.field =
3178                                     IPW_BD_STATUS_TX_FRAME_802_3 |
3179                                     IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3180
3181                         tbd->buf_length = packet->info.d_struct.txb->
3182                             fragments[i]->len - LIBIPW_3ADDR_LEN;
3183
3184                         tbd->host_addr = pci_map_single(priv->pci_dev,
3185                                                         packet->info.d_struct.
3186                                                         txb->fragments[i]->
3187                                                         data +
3188                                                         LIBIPW_3ADDR_LEN,
3189                                                         tbd->buf_length,
3190                                                         PCI_DMA_TODEVICE);
3191
3192                         IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3193                                      txq->next, tbd->host_addr,
3194                                      tbd->buf_length);
3195
3196                         pci_dma_sync_single_for_device(priv->pci_dev,
3197                                                        tbd->host_addr,
3198                                                        tbd->buf_length,
3199                                                        PCI_DMA_TODEVICE);
3200
3201                         txq->next++;
3202                         txq->next %= txq->entries;
3203                 }
3204
3205                 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3206                 SET_STAT(&priv->txq_stat, txq->available);
3207
3208                 list_add_tail(element, &priv->fw_pend_list);
3209                 INC_STAT(&priv->fw_pend_stat);
3210         }
3211
3212         if (txq->next != next) {
3213                 /* kick off the DMA by notifying firmware the
3214                  * write index has moved; make sure TBD stores are sync'd */
3215                 write_register(priv->net_dev,
3216                                IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3217                                txq->next);
3218         }
3219 }
3220
3221 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3222 {
3223         struct net_device *dev = priv->net_dev;
3224         unsigned long flags;
3225         u32 inta, tmp;
3226
3227         spin_lock_irqsave(&priv->low_lock, flags);
3228         ipw2100_disable_interrupts(priv);
3229
3230         read_register(dev, IPW_REG_INTA, &inta);
3231
3232         IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3233                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3234
3235         priv->in_isr++;
3236         priv->interrupts++;
3237
3238         /* We do not loop and keep polling for more interrupts as this
3239          * is frowned upon and doesn't play nicely with other potentially
3240          * chained IRQs */
3241         IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3242                       (unsigned long)inta & IPW_INTERRUPT_MASK);
3243
3244         if (inta & IPW2100_INTA_FATAL_ERROR) {
3245                 printk(KERN_WARNING DRV_NAME
3246                        ": Fatal interrupt. Scheduling firmware restart.\n");
3247                 priv->inta_other++;
3248                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3249
3250                 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3251                 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3252                                priv->net_dev->name, priv->fatal_error);
3253
3254                 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3255                 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3256                                priv->net_dev->name, tmp);
3257
3258                 /* Wake up any sleeping jobs */
3259                 schedule_reset(priv);
3260         }
3261
3262         if (inta & IPW2100_INTA_PARITY_ERROR) {
3263                 printk(KERN_ERR DRV_NAME
3264                        ": ***** PARITY ERROR INTERRUPT !!!!\n");
3265                 priv->inta_other++;
3266                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3267         }
3268
3269         if (inta & IPW2100_INTA_RX_TRANSFER) {
3270                 IPW_DEBUG_ISR("RX interrupt\n");
3271
3272                 priv->rx_interrupts++;
3273
3274                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3275
3276                 __ipw2100_rx_process(priv);
3277                 __ipw2100_tx_complete(priv);
3278         }
3279
3280         if (inta & IPW2100_INTA_TX_TRANSFER) {
3281                 IPW_DEBUG_ISR("TX interrupt\n");
3282
3283                 priv->tx_interrupts++;
3284
3285                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3286
3287                 __ipw2100_tx_complete(priv);
3288                 ipw2100_tx_send_commands(priv);
3289                 ipw2100_tx_send_data(priv);
3290         }
3291
3292         if (inta & IPW2100_INTA_TX_COMPLETE) {
3293                 IPW_DEBUG_ISR("TX complete\n");
3294                 priv->inta_other++;
3295                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3296
3297                 __ipw2100_tx_complete(priv);
3298         }
3299
3300         if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3301                 /* ipw2100_handle_event(dev); */
3302                 priv->inta_other++;
3303                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3304         }
3305
3306         if (inta & IPW2100_INTA_FW_INIT_DONE) {
3307                 IPW_DEBUG_ISR("FW init done interrupt\n");
3308                 priv->inta_other++;
3309
3310                 read_register(dev, IPW_REG_INTA, &tmp);
3311                 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3312                            IPW2100_INTA_PARITY_ERROR)) {
3313                         write_register(dev, IPW_REG_INTA,
3314                                        IPW2100_INTA_FATAL_ERROR |
3315                                        IPW2100_INTA_PARITY_ERROR);
3316                 }
3317
3318                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3319         }
3320
3321         if (inta & IPW2100_INTA_STATUS_CHANGE) {
3322                 IPW_DEBUG_ISR("Status change interrupt\n");
3323                 priv->inta_other++;
3324                 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3325         }
3326
3327         if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3328                 IPW_DEBUG_ISR("slave host mode interrupt\n");
3329                 priv->inta_other++;
3330                 write_register(dev, IPW_REG_INTA,
3331                                IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3332         }
3333
3334         priv->in_isr--;
3335         ipw2100_enable_interrupts(priv);
3336
3337         spin_unlock_irqrestore(&priv->low_lock, flags);
3338
3339         IPW_DEBUG_ISR("exit\n");
3340 }
3341
3342 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3343 {
3344         struct ipw2100_priv *priv = data;
3345         u32 inta, inta_mask;
3346
3347         if (!data)
3348                 return IRQ_NONE;
3349
3350         spin_lock(&priv->low_lock);
3351
3352         /* We check to see if we should be ignoring interrupts before
3353          * we touch the hardware.  During ucode load if we try and handle
3354          * an interrupt we can cause keyboard problems as well as cause
3355          * the ucode to fail to initialize */
3356         if (!(priv->status & STATUS_INT_ENABLED)) {
3357                 /* Shared IRQ */
3358                 goto none;
3359         }
3360
3361         read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3362         read_register(priv->net_dev, IPW_REG_INTA, &inta);
3363
3364         if (inta == 0xFFFFFFFF) {
3365                 /* Hardware disappeared */
3366                 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3367                 goto none;
3368         }
3369
3370         inta &= IPW_INTERRUPT_MASK;
3371
3372         if (!(inta & inta_mask)) {
3373                 /* Shared interrupt */
3374                 goto none;
3375         }
3376
3377         /* We disable the hardware interrupt here just to prevent unneeded
3378          * calls to be made.  We disable this again within the actual
3379          * work tasklet, so if another part of the code re-enables the
3380          * interrupt, that is fine */
3381         ipw2100_disable_interrupts(priv);
3382
3383         tasklet_schedule(&priv->irq_tasklet);
3384         spin_unlock(&priv->low_lock);
3385
3386         return IRQ_HANDLED;
3387       none:
3388         spin_unlock(&priv->low_lock);
3389         return IRQ_NONE;
3390 }
3391
3392 static netdev_tx_t ipw2100_tx(struct libipw_txb *txb,
3393                               struct net_device *dev, int pri)
3394 {
3395         struct ipw2100_priv *priv = libipw_priv(dev);
3396         struct list_head *element;
3397         struct ipw2100_tx_packet *packet;
3398         unsigned long flags;
3399
3400         spin_lock_irqsave(&priv->low_lock, flags);
3401
3402         if (!(priv->status & STATUS_ASSOCIATED)) {
3403                 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3404                 priv->net_dev->stats.tx_carrier_errors++;
3405                 netif_stop_queue(dev);
3406                 goto fail_unlock;
3407         }
3408
3409         if (list_empty(&priv->tx_free_list))
3410                 goto fail_unlock;
3411
3412         element = priv->tx_free_list.next;
3413         packet = list_entry(element, struct ipw2100_tx_packet, list);
3414
3415         packet->info.d_struct.txb = txb;
3416
3417         IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3418         printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3419
3420         packet->jiffy_start = jiffies;
3421
3422         list_del(element);
3423         DEC_STAT(&priv->tx_free_stat);
3424
3425         list_add_tail(element, &priv->tx_pend_list);
3426         INC_STAT(&priv->tx_pend_stat);
3427
3428         ipw2100_tx_send_data(priv);
3429
3430         spin_unlock_irqrestore(&priv->low_lock, flags);
3431         return NETDEV_TX_OK;
3432
3433 fail_unlock:
3434         netif_stop_queue(dev);
3435         spin_unlock_irqrestore(&priv->low_lock, flags);
3436         return NETDEV_TX_BUSY;
3437 }
3438
3439 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3440 {
3441         int i, j, err = -EINVAL;
3442         void *v;
3443         dma_addr_t p;
3444
3445         priv->msg_buffers =
3446             kmalloc(IPW_COMMAND_POOL_SIZE * sizeof(struct ipw2100_tx_packet),
3447                     GFP_KERNEL);
3448         if (!priv->msg_buffers)
3449                 return -ENOMEM;
3450
3451         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3452                 v = pci_alloc_consistent(priv->pci_dev,
3453                                          sizeof(struct ipw2100_cmd_header), &p);
3454                 if (!v) {
3455                         printk(KERN_ERR DRV_NAME ": "
3456                                "%s: PCI alloc failed for msg "
3457                                "buffers.\n", priv->net_dev->name);
3458                         err = -ENOMEM;
3459                         break;
3460                 }
3461
3462                 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3463
3464                 priv->msg_buffers[i].type = COMMAND;
3465                 priv->msg_buffers[i].info.c_struct.cmd =
3466                     (struct ipw2100_cmd_header *)v;
3467                 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3468         }
3469
3470         if (i == IPW_COMMAND_POOL_SIZE)
3471                 return 0;
3472
3473         for (j = 0; j < i; j++) {
3474                 pci_free_consistent(priv->pci_dev,
3475                                     sizeof(struct ipw2100_cmd_header),
3476                                     priv->msg_buffers[j].info.c_struct.cmd,
3477                                     priv->msg_buffers[j].info.c_struct.
3478                                     cmd_phys);
3479         }
3480
3481         kfree(priv->msg_buffers);
3482         priv->msg_buffers = NULL;
3483
3484         return err;
3485 }
3486
3487 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3488 {
3489         int i;
3490
3491         INIT_LIST_HEAD(&priv->msg_free_list);
3492         INIT_LIST_HEAD(&priv->msg_pend_list);
3493
3494         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3495                 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3496         SET_STAT(&priv->msg_free_stat, i);
3497
3498         return 0;
3499 }
3500
3501 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3502 {
3503         int i;
3504
3505         if (!priv->msg_buffers)
3506                 return;
3507
3508         for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3509                 pci_free_consistent(priv->pci_dev,
3510                                     sizeof(struct ipw2100_cmd_header),
3511                                     priv->msg_buffers[i].info.c_struct.cmd,
3512                                     priv->msg_buffers[i].info.c_struct.
3513                                     cmd_phys);
3514         }
3515
3516         kfree(priv->msg_buffers);
3517         priv->msg_buffers = NULL;
3518 }
3519
3520 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3521                         char *buf)
3522 {
3523         struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3524         char *out = buf;
3525         int i, j;
3526         u32 val;
3527
3528         for (i = 0; i < 16; i++) {
3529                 out += sprintf(out, "[%08X] ", i * 16);
3530                 for (j = 0; j < 16; j += 4) {
3531                         pci_read_config_dword(pci_dev, i * 16 + j, &val);
3532                         out += sprintf(out, "%08X ", val);
3533                 }
3534                 out += sprintf(out, "\n");
3535         }
3536
3537         return out - buf;
3538 }
3539
3540 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3541
3542 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3543                         char *buf)
3544 {
3545         struct ipw2100_priv *p = dev_get_drvdata(d);
3546         return sprintf(buf, "0x%08x\n", (int)p->config);
3547 }
3548
3549 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3550
3551 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3552                            char *buf)
3553 {
3554         struct ipw2100_priv *p = dev_get_drvdata(d);
3555         return sprintf(buf, "0x%08x\n", (int)p->status);
3556 }
3557
3558 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3559
3560 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3561                                char *buf)
3562 {
3563         struct ipw2100_priv *p = dev_get_drvdata(d);
3564         return sprintf(buf, "0x%08x\n", (int)p->capability);
3565 }
3566
3567 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3568
3569 #define IPW2100_REG(x) { IPW_ ##x, #x }
3570 static const struct {
3571         u32 addr;
3572         const char *name;
3573 } hw_data[] = {
3574 IPW2100_REG(REG_GP_CNTRL),
3575             IPW2100_REG(REG_GPIO),
3576             IPW2100_REG(REG_INTA),
3577             IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3578 #define IPW2100_NIC(x, s) { x, #x, s }
3579 static const struct {
3580         u32 addr;
3581         const char *name;
3582         size_t size;
3583 } nic_data[] = {
3584 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3585             IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3586 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3587 static const struct {
3588         u8 index;
3589         const char *name;
3590         const char *desc;
3591 } ord_data[] = {
3592 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3593             IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3594                                 "successful Host Tx's (MSDU)"),
3595             IPW2100_ORD(STAT_TX_DIR_DATA,
3596                                 "successful Directed Tx's (MSDU)"),
3597             IPW2100_ORD(STAT_TX_DIR_DATA1,
3598                                 "successful Directed Tx's (MSDU) @ 1MB"),
3599             IPW2100_ORD(STAT_TX_DIR_DATA2,
3600                                 "successful Directed Tx's (MSDU) @ 2MB"),
3601             IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3602                                 "successful Directed Tx's (MSDU) @ 5_5MB"),
3603             IPW2100_ORD(STAT_TX_DIR_DATA11,
3604                                 "successful Directed Tx's (MSDU) @ 11MB"),
3605             IPW2100_ORD(STAT_TX_NODIR_DATA1,
3606                                 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3607             IPW2100_ORD(STAT_TX_NODIR_DATA2,
3608                                 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3609             IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3610                                 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3611             IPW2100_ORD(STAT_TX_NODIR_DATA11,
3612                                 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3613             IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3614             IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3615             IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3616             IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3617             IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3618             IPW2100_ORD(STAT_TX_ASSN_RESP,
3619                                 "successful Association response Tx's"),
3620             IPW2100_ORD(STAT_TX_REASSN,
3621                                 "successful Reassociation Tx's"),
3622             IPW2100_ORD(STAT_TX_REASSN_RESP,
3623                                 "successful Reassociation response Tx's"),
3624             IPW2100_ORD(STAT_TX_PROBE,
3625                                 "probes successfully transmitted"),
3626             IPW2100_ORD(STAT_TX_PROBE_RESP,
3627                                 "probe responses successfully transmitted"),
3628             IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3629             IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3630             IPW2100_ORD(STAT_TX_DISASSN,
3631                                 "successful Disassociation TX"),
3632             IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3633             IPW2100_ORD(STAT_TX_DEAUTH,
3634                                 "successful Deauthentication TX"),
3635             IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3636                                 "Total successful Tx data bytes"),
3637             IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3638             IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3639             IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3640             IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3641             IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3642             IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3643             IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3644                                 "times max tries in a hop failed"),
3645             IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3646                                 "times disassociation failed"),
3647             IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3648             IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3649             IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3650             IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3651             IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3652             IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3653             IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3654                                 "directed packets at 5.5MB"),
3655             IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3656             IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3657             IPW2100_ORD(STAT_RX_NODIR_DATA1,
3658                                 "nondirected packets at 1MB"),
3659             IPW2100_ORD(STAT_RX_NODIR_DATA2,
3660                                 "nondirected packets at 2MB"),
3661             IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3662                                 "nondirected packets at 5.5MB"),
3663             IPW2100_ORD(STAT_RX_NODIR_DATA11,
3664                                 "nondirected packets at 11MB"),
3665             IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3666             IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3667                                                                     "Rx CTS"),
3668             IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3669             IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3670             IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3671             IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3672             IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3673             IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3674             IPW2100_ORD(STAT_RX_REASSN_RESP,
3675                                 "Reassociation response Rx's"),
3676             IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3677             IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3678             IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3679             IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3680             IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3681             IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3682             IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3683             IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3684                                 "Total rx data bytes received"),
3685             IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3686             IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3687             IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3688             IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3689             IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3690             IPW2100_ORD(STAT_RX_DUPLICATE1,
3691                                 "duplicate rx packets at 1MB"),
3692             IPW2100_ORD(STAT_RX_DUPLICATE2,
3693                                 "duplicate rx packets at 2MB"),
3694             IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3695                                 "duplicate rx packets at 5.5MB"),
3696             IPW2100_ORD(STAT_RX_DUPLICATE11,
3697                                 "duplicate rx packets at 11MB"),
3698             IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3699             IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent  db"),
3700             IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent  db"),
3701             IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent  db"),
3702             IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3703                                 "rx frames with invalid protocol"),
3704             IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3705             IPW2100_ORD(STAT_RX_NO_BUFFER,
3706                                 "rx frames rejected due to no buffer"),
3707             IPW2100_ORD(STAT_RX_MISSING_FRAG,
3708                                 "rx frames dropped due to missing fragment"),
3709             IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3710                                 "rx frames dropped due to non-sequential fragment"),
3711             IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3712                                 "rx frames dropped due to unmatched 1st frame"),
3713             IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3714                                 "rx frames dropped due to uncompleted frame"),
3715             IPW2100_ORD(STAT_RX_ICV_ERRORS,
3716                                 "ICV errors during decryption"),
3717             IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3718             IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3719             IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3720                                 "poll response timeouts"),
3721             IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3722                                 "timeouts waiting for last {broad,multi}cast pkt"),
3723             IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3724             IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3725             IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3726             IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3727             IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3728                                 "current calculation of % missed beacons"),
3729             IPW2100_ORD(STAT_PERCENT_RETRIES,
3730                                 "current calculation of % missed tx retries"),
3731             IPW2100_ORD(ASSOCIATED_AP_PTR,
3732                                 "0 if not associated, else pointer to AP table entry"),
3733             IPW2100_ORD(AVAILABLE_AP_CNT,
3734                                 "AP's decsribed in the AP table"),
3735             IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3736             IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3737             IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3738             IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3739                                 "failures due to response fail"),
3740             IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3741             IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3742             IPW2100_ORD(STAT_ROAM_INHIBIT,
3743                                 "times roaming was inhibited due to activity"),
3744             IPW2100_ORD(RSSI_AT_ASSN,
3745                                 "RSSI of associated AP at time of association"),
3746             IPW2100_ORD(STAT_ASSN_CAUSE1,
3747                                 "reassociation: no probe response or TX on hop"),
3748             IPW2100_ORD(STAT_ASSN_CAUSE2,
3749                                 "reassociation: poor tx/rx quality"),
3750             IPW2100_ORD(STAT_ASSN_CAUSE3,
3751                                 "reassociation: tx/rx quality (excessive AP load"),
3752             IPW2100_ORD(STAT_ASSN_CAUSE4,
3753                                 "reassociation: AP RSSI level"),
3754             IPW2100_ORD(STAT_ASSN_CAUSE5,
3755                                 "reassociations due to load leveling"),
3756             IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3757             IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3758                                 "times authentication response failed"),
3759             IPW2100_ORD(STATION_TABLE_CNT,
3760                                 "entries in association table"),
3761             IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3762             IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3763             IPW2100_ORD(COUNTRY_CODE,
3764                                 "IEEE country code as recv'd from beacon"),
3765             IPW2100_ORD(COUNTRY_CHANNELS,
3766                                 "channels supported by country"),
3767             IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3768             IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3769             IPW2100_ORD(ANTENNA_DIVERSITY,
3770                                 "TRUE if antenna diversity is disabled"),
3771             IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3772             IPW2100_ORD(OUR_FREQ,
3773                                 "current radio freq lower digits - channel ID"),
3774             IPW2100_ORD(RTC_TIME, "current RTC time"),
3775             IPW2100_ORD(PORT_TYPE, "operating mode"),
3776             IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3777             IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3778             IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3779             IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3780             IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3781             IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3782             IPW2100_ORD(CAPABILITIES,
3783                                 "Management frame capability field"),
3784             IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3785             IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3786             IPW2100_ORD(RTS_THRESHOLD,
3787                                 "Min packet length for RTS handshaking"),
3788             IPW2100_ORD(INT_MODE, "International mode"),
3789             IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3790                                 "protocol frag threshold"),
3791             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3792                                 "EEPROM offset in SRAM"),
3793             IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3794                                 "EEPROM size in SRAM"),
3795             IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3796             IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3797                                 "EEPROM IBSS 11b channel set"),
3798             IPW2100_ORD(MAC_VERSION, "MAC Version"),
3799             IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3800             IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3801             IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3802             IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3803
3804 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3805                               char *buf)
3806 {
3807         int i;
3808         struct ipw2100_priv *priv = dev_get_drvdata(d);
3809         struct net_device *dev = priv->net_dev;
3810         char *out = buf;
3811         u32 val = 0;
3812
3813         out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3814
3815         for (i = 0; i < ARRAY_SIZE(hw_data); i++) {
3816                 read_register(dev, hw_data[i].addr, &val);
3817                 out += sprintf(out, "%30s [%08X] : %08X\n",
3818                                hw_data[i].name, hw_data[i].addr, val);
3819         }
3820
3821         return out - buf;
3822 }
3823
3824 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3825
3826 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3827                              char *buf)
3828 {
3829         struct ipw2100_priv *priv = dev_get_drvdata(d);
3830         struct net_device *dev = priv->net_dev;
3831         char *out = buf;
3832         int i;
3833
3834         out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3835
3836         for (i = 0; i < ARRAY_SIZE(nic_data); i++) {
3837                 u8 tmp8;
3838                 u16 tmp16;
3839                 u32 tmp32;
3840
3841                 switch (nic_data[i].size) {
3842                 case 1:
3843                         read_nic_byte(dev, nic_data[i].addr, &tmp8);
3844                         out += sprintf(out, "%30s [%08X] : %02X\n",
3845                                        nic_data[i].name, nic_data[i].addr,
3846                                        tmp8);
3847                         break;
3848                 case 2:
3849                         read_nic_word(dev, nic_data[i].addr, &tmp16);
3850                         out += sprintf(out, "%30s [%08X] : %04X\n",
3851                                        nic_data[i].name, nic_data[i].addr,
3852                                        tmp16);
3853                         break;
3854                 case 4:
3855                         read_nic_dword(dev, nic_data[i].addr, &tmp32);
3856                         out += sprintf(out, "%30s [%08X] : %08X\n",
3857                                        nic_data[i].name, nic_data[i].addr,
3858                                        tmp32);
3859                         break;
3860                 }
3861         }
3862         return out - buf;
3863 }
3864
3865 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3866
3867 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3868                            char *buf)
3869 {
3870         struct ipw2100_priv *priv = dev_get_drvdata(d);
3871         struct net_device *dev = priv->net_dev;
3872         static unsigned long loop = 0;
3873         int len = 0;
3874         u32 buffer[4];
3875         int i;
3876         char line[81];
3877
3878         if (loop >= 0x30000)
3879                 loop = 0;
3880
3881         /* sysfs provides us PAGE_SIZE buffer */
3882         while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3883
3884                 if (priv->snapshot[0])
3885                         for (i = 0; i < 4; i++)
3886                                 buffer[i] =
3887                                     *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3888                 else
3889                         for (i = 0; i < 4; i++)
3890                                 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3891
3892                 if (priv->dump_raw)
3893                         len += sprintf(buf + len,
3894                                        "%c%c%c%c"
3895                                        "%c%c%c%c"
3896                                        "%c%c%c%c"
3897                                        "%c%c%c%c",
3898                                        ((u8 *) buffer)[0x0],
3899                                        ((u8 *) buffer)[0x1],
3900                                        ((u8 *) buffer)[0x2],
3901                                        ((u8 *) buffer)[0x3],
3902                                        ((u8 *) buffer)[0x4],
3903                                        ((u8 *) buffer)[0x5],
3904                                        ((u8 *) buffer)[0x6],
3905                                        ((u8 *) buffer)[0x7],
3906                                        ((u8 *) buffer)[0x8],
3907                                        ((u8 *) buffer)[0x9],
3908                                        ((u8 *) buffer)[0xa],
3909                                        ((u8 *) buffer)[0xb],
3910                                        ((u8 *) buffer)[0xc],
3911                                        ((u8 *) buffer)[0xd],
3912                                        ((u8 *) buffer)[0xe],
3913                                        ((u8 *) buffer)[0xf]);
3914                 else
3915                         len += sprintf(buf + len, "%s\n",
3916                                        snprint_line(line, sizeof(line),
3917                                                     (u8 *) buffer, 16, loop));
3918                 loop += 16;
3919         }
3920
3921         return len;
3922 }
3923
3924 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3925                             const char *buf, size_t count)
3926 {
3927         struct ipw2100_priv *priv = dev_get_drvdata(d);
3928         struct net_device *dev = priv->net_dev;
3929         const char *p = buf;
3930
3931         (void)dev;              /* kill unused-var warning for debug-only code */
3932
3933         if (count < 1)
3934                 return count;
3935
3936         if (p[0] == '1' ||
3937             (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3938                 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3939                                dev->name);
3940                 priv->dump_raw = 1;
3941
3942         } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3943                                    tolower(p[1]) == 'f')) {
3944                 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3945                                dev->name);
3946                 priv->dump_raw = 0;
3947
3948         } else if (tolower(p[0]) == 'r') {
3949                 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3950                 ipw2100_snapshot_free(priv);
3951
3952         } else
3953                 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3954                                "reset = clear memory snapshot\n", dev->name);
3955
3956         return count;
3957 }
3958
3959 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3960
3961 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3962                              char *buf)
3963 {
3964         struct ipw2100_priv *priv = dev_get_drvdata(d);
3965         u32 val = 0;
3966         int len = 0;
3967         u32 val_len;
3968         static int loop = 0;
3969
3970         if (priv->status & STATUS_RF_KILL_MASK)
3971                 return 0;
3972
3973         if (loop >= ARRAY_SIZE(ord_data))
3974                 loop = 0;
3975
3976         /* sysfs provides us PAGE_SIZE buffer */
3977         while (len < PAGE_SIZE - 128 && loop < ARRAY_SIZE(ord_data)) {
3978                 val_len = sizeof(u32);
3979
3980                 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3981                                         &val_len))
3982                         len += sprintf(buf + len, "[0x%02X] = ERROR    %s\n",
3983                                        ord_data[loop].index,
3984                                        ord_data[loop].desc);
3985                 else
3986                         len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3987                                        ord_data[loop].index, val,
3988                                        ord_data[loop].desc);
3989                 loop++;
3990         }
3991
3992         return len;
3993 }
3994
3995 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3996
3997 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3998                           char *buf)
3999 {
4000         struct ipw2100_priv *priv = dev_get_drvdata(d);
4001         char *out = buf;
4002
4003         out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
4004                        priv->interrupts, priv->tx_interrupts,
4005                        priv->rx_interrupts, priv->inta_other);
4006         out += sprintf(out, "firmware resets: %d\n", priv->resets);
4007         out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
4008 #ifdef CONFIG_IPW2100_DEBUG
4009         out += sprintf(out, "packet mismatch image: %s\n",
4010                        priv->snapshot[0] ? "YES" : "NO");
4011 #endif
4012
4013         return out - buf;
4014 }
4015
4016 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
4017
4018 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
4019 {
4020         int err;
4021
4022         if (mode == priv->ieee->iw_mode)
4023                 return 0;
4024
4025         err = ipw2100_disable_adapter(priv);
4026         if (err) {
4027                 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
4028                        priv->net_dev->name, err);
4029                 return err;
4030         }
4031
4032         switch (mode) {
4033         case IW_MODE_INFRA:
4034                 priv->net_dev->type = ARPHRD_ETHER;
4035                 break;
4036         case IW_MODE_ADHOC:
4037                 priv->net_dev->type = ARPHRD_ETHER;
4038                 break;
4039 #ifdef CONFIG_IPW2100_MONITOR
4040         case IW_MODE_MONITOR:
4041                 priv->last_mode = priv->ieee->iw_mode;
4042                 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
4043                 break;
4044 #endif                          /* CONFIG_IPW2100_MONITOR */
4045         }
4046
4047         priv->ieee->iw_mode = mode;
4048
4049 #ifdef CONFIG_PM
4050         /* Indicate ipw2100_download_firmware download firmware
4051          * from disk instead of memory. */
4052         ipw2100_firmware.version = 0;
4053 #endif
4054
4055         printk(KERN_INFO "%s: Resetting on mode change.\n", priv->net_dev->name);
4056         priv->reset_backoff = 0;
4057         schedule_reset(priv);
4058
4059         return 0;
4060 }
4061
4062 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
4063                               char *buf)
4064 {
4065         struct ipw2100_priv *priv = dev_get_drvdata(d);
4066         int len = 0;
4067
4068 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
4069
4070         if (priv->status & STATUS_ASSOCIATED)
4071                 len += sprintf(buf + len, "connected: %lu\n",
4072                                get_seconds() - priv->connect_start);
4073         else
4074                 len += sprintf(buf + len, "not connected\n");
4075
4076         DUMP_VAR(ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx], "p");
4077         DUMP_VAR(status, "08lx");
4078         DUMP_VAR(config, "08lx");
4079         DUMP_VAR(capability, "08lx");
4080
4081         len +=
4082             sprintf(buf + len, "last_rtc: %lu\n",
4083                     (unsigned long)priv->last_rtc);
4084
4085         DUMP_VAR(fatal_error, "d");
4086         DUMP_VAR(stop_hang_check, "d");
4087         DUMP_VAR(stop_rf_kill, "d");
4088         DUMP_VAR(messages_sent, "d");
4089
4090         DUMP_VAR(tx_pend_stat.value, "d");
4091         DUMP_VAR(tx_pend_stat.hi, "d");
4092
4093         DUMP_VAR(tx_free_stat.value, "d");
4094         DUMP_VAR(tx_free_stat.lo, "d");
4095
4096         DUMP_VAR(msg_free_stat.value, "d");
4097         DUMP_VAR(msg_free_stat.lo, "d");
4098
4099         DUMP_VAR(msg_pend_stat.value, "d");
4100         DUMP_VAR(msg_pend_stat.hi, "d");
4101
4102         DUMP_VAR(fw_pend_stat.value, "d");
4103         DUMP_VAR(fw_pend_stat.hi, "d");
4104
4105         DUMP_VAR(txq_stat.value, "d");
4106         DUMP_VAR(txq_stat.lo, "d");
4107
4108         DUMP_VAR(ieee->scans, "d");
4109         DUMP_VAR(reset_backoff, "d");
4110
4111         return len;
4112 }
4113
4114 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4115
4116 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4117                             char *buf)
4118 {
4119         struct ipw2100_priv *priv = dev_get_drvdata(d);
4120         char essid[IW_ESSID_MAX_SIZE + 1];
4121         u8 bssid[ETH_ALEN];
4122         u32 chan = 0;
4123         char *out = buf;
4124         unsigned int length;
4125         int ret;
4126
4127         if (priv->status & STATUS_RF_KILL_MASK)
4128                 return 0;
4129
4130         memset(essid, 0, sizeof(essid));
4131         memset(bssid, 0, sizeof(bssid));
4132
4133         length = IW_ESSID_MAX_SIZE;
4134         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4135         if (ret)
4136                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4137                                __LINE__);
4138
4139         length = sizeof(bssid);
4140         ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4141                                   bssid, &length);
4142         if (ret)
4143                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4144                                __LINE__);
4145
4146         length = sizeof(u32);
4147         ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4148         if (ret)
4149                 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4150                                __LINE__);
4151
4152         out += sprintf(out, "ESSID: %s\n", essid);
4153         out += sprintf(out, "BSSID:   %pM\n", bssid);
4154         out += sprintf(out, "Channel: %d\n", chan);
4155
4156         return out - buf;
4157 }
4158
4159 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4160
4161 #ifdef CONFIG_IPW2100_DEBUG
4162 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4163 {
4164         return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4165 }
4166
4167 static ssize_t store_debug_level(struct device_driver *d,
4168                                  const char *buf, size_t count)
4169 {
4170         u32 val;
4171         int ret;
4172
4173         ret = kstrtou32(buf, 0, &val);
4174         if (ret)
4175                 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4176         else
4177                 ipw2100_debug_level = val;
4178
4179         return strnlen(buf, count);
4180 }
4181
4182 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4183                    store_debug_level);
4184 #endif                          /* CONFIG_IPW2100_DEBUG */
4185
4186 static ssize_t show_fatal_error(struct device *d,
4187                                 struct device_attribute *attr, char *buf)
4188 {
4189         struct ipw2100_priv *priv = dev_get_drvdata(d);
4190         char *out = buf;
4191         int i;
4192
4193         if (priv->fatal_error)
4194                 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4195         else
4196                 out += sprintf(out, "0\n");
4197
4198         for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4199                 if (!priv->fatal_errors[(priv->fatal_index - i) %
4200                                         IPW2100_ERROR_QUEUE])
4201                         continue;
4202
4203                 out += sprintf(out, "%d. 0x%08X\n", i,
4204                                priv->fatal_errors[(priv->fatal_index - i) %
4205                                                   IPW2100_ERROR_QUEUE]);
4206         }
4207
4208         return out - buf;
4209 }
4210
4211 static ssize_t store_fatal_error(struct device *d,
4212                                  struct device_attribute *attr, const char *buf,
4213                                  size_t count)
4214 {
4215         struct ipw2100_priv *priv = dev_get_drvdata(d);
4216         schedule_reset(priv);
4217         return count;
4218 }
4219
4220 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4221                    store_fatal_error);
4222
4223 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4224                              char *buf)
4225 {
4226         struct ipw2100_priv *priv = dev_get_drvdata(d);
4227         return sprintf(buf, "%d\n", priv->ieee->scan_age);
4228 }
4229
4230 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4231                               const char *buf, size_t count)
4232 {
4233         struct ipw2100_priv *priv = dev_get_drvdata(d);
4234         struct net_device *dev = priv->net_dev;
4235         unsigned long val;
4236         int ret;
4237
4238         (void)dev;              /* kill unused-var warning for debug-only code */
4239
4240         IPW_DEBUG_INFO("enter\n");
4241
4242         ret = kstrtoul(buf, 0, &val);
4243         if (ret) {
4244                 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4245         } else {
4246                 priv->ieee->scan_age = val;
4247                 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4248         }
4249
4250         IPW_DEBUG_INFO("exit\n");
4251         return strnlen(buf, count);
4252 }
4253
4254 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4255
4256 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4257                             char *buf)
4258 {
4259         /* 0 - RF kill not enabled
4260            1 - SW based RF kill active (sysfs)
4261            2 - HW based RF kill active
4262            3 - Both HW and SW baed RF kill active */
4263         struct ipw2100_priv *priv = dev_get_drvdata(d);
4264         int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4265             (rf_kill_active(priv) ? 0x2 : 0x0);
4266         return sprintf(buf, "%i\n", val);
4267 }
4268
4269 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4270 {
4271         if ((disable_radio ? 1 : 0) ==
4272             (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4273                 return 0;
4274
4275         IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
4276                           disable_radio ? "OFF" : "ON");
4277
4278         mutex_lock(&priv->action_mutex);
4279
4280         if (disable_radio) {
4281                 priv->status |= STATUS_RF_KILL_SW;
4282                 ipw2100_down(priv);
4283         } else {
4284                 priv->status &= ~STATUS_RF_KILL_SW;
4285                 if (rf_kill_active(priv)) {
4286                         IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4287                                           "disabled by HW switch\n");
4288                         /* Make sure the RF_KILL check timer is running */
4289                         priv->stop_rf_kill = 0;
4290                         mod_delayed_work(system_wq, &priv->rf_kill,
4291                                          round_jiffies_relative(HZ));
4292                 } else
4293                         schedule_reset(priv);
4294         }
4295
4296         mutex_unlock(&priv->action_mutex);
4297         return 1;
4298 }
4299
4300 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4301                              const char *buf, size_t count)
4302 {
4303         struct ipw2100_priv *priv = dev_get_drvdata(d);
4304         ipw_radio_kill_sw(priv, buf[0] == '1');
4305         return count;
4306 }
4307
4308 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4309
4310 static struct attribute *ipw2100_sysfs_entries[] = {
4311         &dev_attr_hardware.attr,
4312         &dev_attr_registers.attr,
4313         &dev_attr_ordinals.attr,
4314         &dev_attr_pci.attr,
4315         &dev_attr_stats.attr,
4316         &dev_attr_internals.attr,
4317         &dev_attr_bssinfo.attr,
4318         &dev_attr_memory.attr,
4319         &dev_attr_scan_age.attr,
4320         &dev_attr_fatal_error.attr,
4321         &dev_attr_rf_kill.attr,
4322         &dev_attr_cfg.attr,
4323         &dev_attr_status.attr,
4324         &dev_attr_capability.attr,
4325         NULL,
4326 };
4327
4328 static struct attribute_group ipw2100_attribute_group = {
4329         .attrs = ipw2100_sysfs_entries,
4330 };
4331
4332 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4333 {
4334         struct ipw2100_status_queue *q = &priv->status_queue;
4335
4336         IPW_DEBUG_INFO("enter\n");
4337
4338         q->size = entries * sizeof(struct ipw2100_status);
4339         q->drv =
4340             (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4341                                                           q->size, &q->nic);
4342         if (!q->drv) {
4343                 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4344                 return -ENOMEM;
4345         }
4346
4347         memset(q->drv, 0, q->size);
4348
4349         IPW_DEBUG_INFO("exit\n");
4350
4351         return 0;
4352 }
4353
4354 static void status_queue_free(struct ipw2100_priv *priv)
4355 {
4356         IPW_DEBUG_INFO("enter\n");
4357
4358         if (priv->status_queue.drv) {
4359                 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4360                                     priv->status_queue.drv,
4361                                     priv->status_queue.nic);
4362                 priv->status_queue.drv = NULL;
4363         }
4364
4365         IPW_DEBUG_INFO("exit\n");
4366 }
4367
4368 static int bd_queue_allocate(struct ipw2100_priv *priv,
4369                              struct ipw2100_bd_queue *q, int entries)
4370 {
4371         IPW_DEBUG_INFO("enter\n");
4372
4373         memset(q, 0, sizeof(struct ipw2100_bd_queue));
4374
4375         q->entries = entries;
4376         q->size = entries * sizeof(struct ipw2100_bd);
4377         q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4378         if (!q->drv) {
4379                 IPW_DEBUG_INFO
4380                     ("can't allocate shared memory for buffer descriptors\n");
4381                 return -ENOMEM;
4382         }
4383         memset(q->drv, 0, q->size);
4384
4385         IPW_DEBUG_INFO("exit\n");
4386
4387         return 0;
4388 }
4389
4390 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4391 {
4392         IPW_DEBUG_INFO("enter\n");
4393
4394         if (!q)
4395                 return;
4396
4397         if (q->drv) {
4398                 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4399                 q->drv = NULL;
4400         }
4401
4402         IPW_DEBUG_INFO("exit\n");
4403 }
4404
4405 static void bd_queue_initialize(struct ipw2100_priv *priv,
4406                                 struct ipw2100_bd_queue *q, u32 base, u32 size,
4407                                 u32 r, u32 w)
4408 {
4409         IPW_DEBUG_INFO("enter\n");
4410
4411         IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4412                        (u32) q->nic);
4413
4414         write_register(priv->net_dev, base, q->nic);
4415         write_register(priv->net_dev, size, q->entries);
4416         write_register(priv->net_dev, r, q->oldest);
4417         write_register(priv->net_dev, w, q->next);
4418
4419         IPW_DEBUG_INFO("exit\n");
4420 }
4421
4422 static void ipw2100_kill_works(struct ipw2100_priv *priv)
4423 {
4424         priv->stop_rf_kill = 1;
4425         priv->stop_hang_check = 1;
4426         cancel_delayed_work_sync(&priv->reset_work);
4427         cancel_delayed_work_sync(&priv->security_work);
4428         cancel_delayed_work_sync(&priv->wx_event_work);
4429         cancel_delayed_work_sync(&priv->hang_check);
4430         cancel_delayed_work_sync(&priv->rf_kill);
4431         cancel_delayed_work_sync(&priv->scan_event);
4432 }
4433
4434 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4435 {
4436         int i, j, err = -EINVAL;
4437         void *v;
4438         dma_addr_t p;
4439
4440         IPW_DEBUG_INFO("enter\n");
4441
4442         err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4443         if (err) {
4444                 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4445                                 priv->net_dev->name);
4446                 return err;
4447         }
4448
4449         priv->tx_buffers = kmalloc_array(TX_PENDED_QUEUE_LENGTH,
4450                                          sizeof(struct ipw2100_tx_packet),
4451                                          GFP_ATOMIC);
4452         if (!priv->tx_buffers) {
4453                 bd_queue_free(priv, &priv->tx_queue);
4454                 return -ENOMEM;
4455         }
4456
4457         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4458                 v = pci_alloc_consistent(priv->pci_dev,
4459                                          sizeof(struct ipw2100_data_header),
4460                                          &p);
4461                 if (!v) {
4462                         printk(KERN_ERR DRV_NAME
4463                                ": %s: PCI alloc failed for tx " "buffers.\n",
4464                                priv->net_dev->name);
4465                         err = -ENOMEM;
4466                         break;
4467                 }
4468
4469                 priv->tx_buffers[i].type = DATA;
4470                 priv->tx_buffers[i].info.d_struct.data =
4471                     (struct ipw2100_data_header *)v;
4472                 priv->tx_buffers[i].info.d_struct.data_phys = p;
4473                 priv->tx_buffers[i].info.d_struct.txb = NULL;
4474         }
4475
4476         if (i == TX_PENDED_QUEUE_LENGTH)
4477                 return 0;
4478
4479         for (j = 0; j < i; j++) {
4480                 pci_free_consistent(priv->pci_dev,
4481                                     sizeof(struct ipw2100_data_header),
4482                                     priv->tx_buffers[j].info.d_struct.data,
4483                                     priv->tx_buffers[j].info.d_struct.
4484                                     data_phys);
4485         }
4486
4487         kfree(priv->tx_buffers);
4488         priv->tx_buffers = NULL;
4489
4490         return err;
4491 }
4492
4493 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4494 {
4495         int i;
4496
4497         IPW_DEBUG_INFO("enter\n");
4498
4499         /*
4500          * reinitialize packet info lists
4501          */
4502         INIT_LIST_HEAD(&priv->fw_pend_list);
4503         INIT_STAT(&priv->fw_pend_stat);
4504
4505         /*
4506          * reinitialize lists
4507          */
4508         INIT_LIST_HEAD(&priv->tx_pend_list);
4509         INIT_LIST_HEAD(&priv->tx_free_list);
4510         INIT_STAT(&priv->tx_pend_stat);
4511         INIT_STAT(&priv->tx_free_stat);
4512
4513         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4514                 /* We simply drop any SKBs that have been queued for
4515                  * transmit */
4516                 if (priv->tx_buffers[i].info.d_struct.txb) {
4517                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4518                                            txb);
4519                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4520                 }
4521
4522                 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4523         }
4524
4525         SET_STAT(&priv->tx_free_stat, i);
4526
4527         priv->tx_queue.oldest = 0;
4528         priv->tx_queue.available = priv->tx_queue.entries;
4529         priv->tx_queue.next = 0;
4530         INIT_STAT(&priv->txq_stat);
4531         SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4532
4533         bd_queue_initialize(priv, &priv->tx_queue,
4534                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4535                             IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4536                             IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4537                             IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4538
4539         IPW_DEBUG_INFO("exit\n");
4540
4541 }
4542
4543 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4544 {
4545         int i;
4546
4547         IPW_DEBUG_INFO("enter\n");
4548
4549         bd_queue_free(priv, &priv->tx_queue);
4550
4551         if (!priv->tx_buffers)
4552                 return;
4553
4554         for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4555                 if (priv->tx_buffers[i].info.d_struct.txb) {
4556                         libipw_txb_free(priv->tx_buffers[i].info.d_struct.
4557                                            txb);
4558                         priv->tx_buffers[i].info.d_struct.txb = NULL;
4559                 }
4560                 if (priv->tx_buffers[i].info.d_struct.data)
4561                         pci_free_consistent(priv->pci_dev,
4562                                             sizeof(struct ipw2100_data_header),
4563                                             priv->tx_buffers[i].info.d_struct.
4564                                             data,
4565                                             priv->tx_buffers[i].info.d_struct.
4566                                             data_phys);
4567         }
4568
4569         kfree(priv->tx_buffers);
4570         priv->tx_buffers = NULL;
4571
4572         IPW_DEBUG_INFO("exit\n");
4573 }
4574
4575 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4576 {
4577         int i, j, err = -EINVAL;
4578
4579         IPW_DEBUG_INFO("enter\n");
4580
4581         err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4582         if (err) {
4583                 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4584                 return err;
4585         }
4586
4587         err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4588         if (err) {
4589                 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4590                 bd_queue_free(priv, &priv->rx_queue);
4591                 return err;
4592         }
4593
4594         /*
4595          * allocate packets
4596          */
4597         priv->rx_buffers = kmalloc(RX_QUEUE_LENGTH *
4598                                    sizeof(struct ipw2100_rx_packet),
4599                                    GFP_KERNEL);
4600         if (!priv->rx_buffers) {
4601                 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4602
4603                 bd_queue_free(priv, &priv->rx_queue);
4604
4605                 status_queue_free(priv);
4606
4607                 return -ENOMEM;
4608         }
4609
4610         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4611                 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4612
4613                 err = ipw2100_alloc_skb(priv, packet);
4614                 if (unlikely(err)) {
4615                         err = -ENOMEM;
4616                         break;
4617                 }
4618
4619                 /* The BD holds the cache aligned address */
4620                 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4621                 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4622                 priv->status_queue.drv[i].status_fields = 0;
4623         }
4624
4625         if (i == RX_QUEUE_LENGTH)
4626                 return 0;
4627
4628         for (j = 0; j < i; j++) {
4629                 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4630                                  sizeof(struct ipw2100_rx_packet),
4631                                  PCI_DMA_FROMDEVICE);
4632                 dev_kfree_skb(priv->rx_buffers[j].skb);
4633         }
4634
4635         kfree(priv->rx_buffers);
4636         priv->rx_buffers = NULL;
4637
4638         bd_queue_free(priv, &priv->rx_queue);
4639
4640         status_queue_free(priv);
4641
4642         return err;
4643 }
4644
4645 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4646 {
4647         IPW_DEBUG_INFO("enter\n");
4648
4649         priv->rx_queue.oldest = 0;
4650         priv->rx_queue.available = priv->rx_queue.entries - 1;
4651         priv->rx_queue.next = priv->rx_queue.entries - 1;
4652
4653         INIT_STAT(&priv->rxq_stat);
4654         SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4655
4656         bd_queue_initialize(priv, &priv->rx_queue,
4657                             IPW_MEM_HOST_SHARED_RX_BD_BASE,
4658                             IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4659                             IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4660                             IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4661
4662         /* set up the status queue */
4663         write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4664                        priv->status_queue.nic);
4665
4666         IPW_DEBUG_INFO("exit\n");
4667 }
4668
4669 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4670 {
4671         int i;
4672
4673         IPW_DEBUG_INFO("enter\n");
4674
4675         bd_queue_free(priv, &priv->rx_queue);
4676         status_queue_free(priv);
4677
4678         if (!priv->rx_buffers)
4679                 return;
4680
4681         for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4682                 if (priv->rx_buffers[i].rxp) {
4683                         pci_unmap_single(priv->pci_dev,
4684                                          priv->rx_buffers[i].dma_addr,
4685                                          sizeof(struct ipw2100_rx),
4686                                          PCI_DMA_FROMDEVICE);
4687                         dev_kfree_skb(priv->rx_buffers[i].skb);
4688                 }
4689         }
4690
4691         kfree(priv->rx_buffers);
4692         priv->rx_buffers = NULL;
4693
4694         IPW_DEBUG_INFO("exit\n");
4695 }
4696
4697 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4698 {
4699         u32 length = ETH_ALEN;
4700         u8 addr[ETH_ALEN];
4701
4702         int err;
4703
4704         err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, addr, &length);
4705         if (err) {
4706                 IPW_DEBUG_INFO("MAC address read failed\n");
4707                 return -EIO;
4708         }
4709
4710         memcpy(priv->net_dev->dev_addr, addr, ETH_ALEN);
4711         IPW_DEBUG_INFO("card MAC is %pM\n", priv->net_dev->dev_addr);
4712
4713         return 0;
4714 }
4715
4716 /********************************************************************
4717  *
4718  * Firmware Commands
4719  *
4720  ********************************************************************/
4721
4722 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4723 {
4724         struct host_command cmd = {
4725                 .host_command = ADAPTER_ADDRESS,
4726                 .host_command_sequence = 0,
4727                 .host_command_length = ETH_ALEN
4728         };
4729         int err;
4730
4731         IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4732
4733         IPW_DEBUG_INFO("enter\n");
4734
4735         if (priv->config & CFG_CUSTOM_MAC) {
4736                 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4737                 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4738         } else
4739                 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4740                        ETH_ALEN);
4741
4742         err = ipw2100_hw_send_command(priv, &cmd);
4743
4744         IPW_DEBUG_INFO("exit\n");
4745         return err;
4746 }
4747
4748 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4749                                  int batch_mode)
4750 {
4751         struct host_command cmd = {
4752                 .host_command = PORT_TYPE,
4753                 .host_command_sequence = 0,
4754                 .host_command_length = sizeof(u32)
4755         };
4756         int err;
4757
4758         switch (port_type) {
4759         case IW_MODE_INFRA:
4760                 cmd.host_command_parameters[0] = IPW_BSS;
4761                 break;
4762         case IW_MODE_ADHOC:
4763                 cmd.host_command_parameters[0] = IPW_IBSS;
4764                 break;
4765         }
4766
4767         IPW_DEBUG_HC("PORT_TYPE: %s\n",
4768                      port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4769
4770         if (!batch_mode) {
4771                 err = ipw2100_disable_adapter(priv);
4772                 if (err) {
4773                         printk(KERN_ERR DRV_NAME
4774                                ": %s: Could not disable adapter %d\n",
4775                                priv->net_dev->name, err);
4776                         return err;
4777                 }
4778         }
4779
4780         /* send cmd to firmware */
4781         err = ipw2100_hw_send_command(priv, &cmd);
4782
4783         if (!batch_mode)
4784                 ipw2100_enable_adapter(priv);
4785
4786         return err;
4787 }
4788
4789 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4790                                int batch_mode)
4791 {
4792         struct host_command cmd = {
4793                 .host_command = CHANNEL,
4794                 .host_command_sequence = 0,
4795                 .host_command_length = sizeof(u32)
4796         };
4797         int err;
4798
4799         cmd.host_command_parameters[0] = channel;
4800
4801         IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4802
4803         /* If BSS then we don't support channel selection */
4804         if (priv->ieee->iw_mode == IW_MODE_INFRA)
4805                 return 0;
4806
4807         if ((channel != 0) &&
4808             ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4809                 return -EINVAL;
4810
4811         if (!batch_mode) {
4812                 err = ipw2100_disable_adapter(priv);
4813                 if (err)
4814                         return err;
4815         }
4816
4817         err = ipw2100_hw_send_command(priv, &cmd);
4818         if (err) {
4819                 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4820                 return err;
4821         }
4822
4823         if (channel)
4824                 priv->config |= CFG_STATIC_CHANNEL;
4825         else
4826                 priv->config &= ~CFG_STATIC_CHANNEL;
4827
4828         priv->channel = channel;
4829
4830         if (!batch_mode) {
4831                 err = ipw2100_enable_adapter(priv);
4832                 if (err)
4833                         return err;
4834         }
4835
4836         return 0;
4837 }
4838
4839 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4840 {
4841         struct host_command cmd = {
4842                 .host_command = SYSTEM_CONFIG,
4843                 .host_command_sequence = 0,
4844                 .host_command_length = 12,
4845         };
4846         u32 ibss_mask, len = sizeof(u32);
4847         int err;
4848
4849         /* Set system configuration */
4850
4851         if (!batch_mode) {
4852                 err = ipw2100_disable_adapter(priv);
4853                 if (err)
4854                         return err;
4855         }
4856
4857         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4858                 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4859
4860         cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4861             IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4862
4863         if (!(priv->config & CFG_LONG_PREAMBLE))
4864                 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4865
4866         err = ipw2100_get_ordinal(priv,
4867                                   IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4868                                   &ibss_mask, &len);
4869         if (err)
4870                 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4871
4872         cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4873         cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4874
4875         /* 11b only */
4876         /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4877
4878         err = ipw2100_hw_send_command(priv, &cmd);
4879         if (err)
4880                 return err;
4881
4882 /* If IPv6 is configured in the kernel then we don't want to filter out all
4883  * of the multicast packets as IPv6 needs some. */
4884 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4885         cmd.host_command = ADD_MULTICAST;
4886         cmd.host_command_sequence = 0;
4887         cmd.host_command_length = 0;
4888
4889         ipw2100_hw_send_command(priv, &cmd);
4890 #endif
4891         if (!batch_mode) {
4892                 err = ipw2100_enable_adapter(priv);
4893                 if (err)
4894                         return err;
4895         }
4896
4897         return 0;
4898 }
4899
4900 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4901                                 int batch_mode)
4902 {
4903         struct host_command cmd = {
4904                 .host_command = BASIC_TX_RATES,
4905                 .host_command_sequence = 0,
4906                 .host_command_length = 4
4907         };
4908         int err;
4909
4910         cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4911
4912         if (!batch_mode) {
4913                 err = ipw2100_disable_adapter(priv);
4914                 if (err)
4915                         return err;
4916         }
4917
4918         /* Set BASIC TX Rate first */
4919         ipw2100_hw_send_command(priv, &cmd);
4920
4921         /* Set TX Rate */
4922         cmd.host_command = TX_RATES;
4923         ipw2100_hw_send_command(priv, &cmd);
4924
4925         /* Set MSDU TX Rate */
4926         cmd.host_command = MSDU_TX_RATES;
4927         ipw2100_hw_send_command(priv, &cmd);
4928
4929         if (!batch_mode) {
4930                 err = ipw2100_enable_adapter(priv);
4931                 if (err)
4932                         return err;
4933         }
4934
4935         priv->tx_rates = rate;
4936
4937         return 0;
4938 }
4939
4940 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4941 {
4942         struct host_command cmd = {
4943                 .host_command = POWER_MODE,
4944                 .host_command_sequence = 0,
4945                 .host_command_length = 4
4946         };
4947         int err;
4948
4949         cmd.host_command_parameters[0] = power_level;
4950
4951         err = ipw2100_hw_send_command(priv, &cmd);
4952         if (err)
4953                 return err;
4954
4955         if (power_level == IPW_POWER_MODE_CAM)
4956                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4957         else
4958                 priv->power_mode = IPW_POWER_ENABLED | power_level;
4959
4960 #ifdef IPW2100_TX_POWER
4961         if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4962                 /* Set beacon interval */
4963                 cmd.host_command = TX_POWER_INDEX;
4964                 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4965
4966                 err = ipw2100_hw_send_command(priv, &cmd);
4967                 if (err)
4968                         return err;
4969         }
4970 #endif
4971
4972         return 0;
4973 }
4974
4975 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4976 {
4977         struct host_command cmd = {
4978                 .host_command = RTS_THRESHOLD,
4979                 .host_command_sequence = 0,
4980                 .host_command_length = 4
4981         };
4982         int err;
4983
4984         if (threshold & RTS_DISABLED)
4985                 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4986         else
4987                 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4988
4989         err = ipw2100_hw_send_command(priv, &cmd);
4990         if (err)
4991                 return err;
4992
4993         priv->rts_threshold = threshold;
4994
4995         return 0;
4996 }
4997
4998 #if 0
4999 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
5000                                         u32 threshold, int batch_mode)
5001 {
5002         struct host_command cmd = {
5003                 .host_command = FRAG_THRESHOLD,
5004                 .host_command_sequence = 0,
5005                 .host_command_length = 4,
5006                 .host_command_parameters[0] = 0,
5007         };
5008         int err;
5009
5010         if (!batch_mode) {
5011                 err = ipw2100_disable_adapter(priv);
5012                 if (err)
5013                         return err;
5014         }
5015
5016         if (threshold == 0)
5017                 threshold = DEFAULT_FRAG_THRESHOLD;
5018         else {
5019                 threshold = max(threshold, MIN_FRAG_THRESHOLD);
5020                 threshold = min(threshold, MAX_FRAG_THRESHOLD);
5021         }
5022
5023         cmd.host_command_parameters[0] = threshold;
5024
5025         IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
5026
5027         err = ipw2100_hw_send_command(priv, &cmd);
5028
5029         if (!batch_mode)
5030                 ipw2100_enable_adapter(priv);
5031
5032         if (!err)
5033                 priv->frag_threshold = threshold;
5034
5035         return err;
5036 }
5037 #endif
5038
5039 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
5040 {
5041         struct host_command cmd = {
5042                 .host_command = SHORT_RETRY_LIMIT,
5043                 .host_command_sequence = 0,
5044                 .host_command_length = 4
5045         };
5046         int err;
5047
5048         cmd.host_command_parameters[0] = retry;
5049
5050         err = ipw2100_hw_send_command(priv, &cmd);
5051         if (err)
5052                 return err;
5053
5054         priv->short_retry_limit = retry;
5055
5056         return 0;
5057 }
5058
5059 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5060 {
5061         struct host_command cmd = {
5062                 .host_command = LONG_RETRY_LIMIT,
5063                 .host_command_sequence = 0,
5064                 .host_command_length = 4
5065         };
5066         int err;
5067
5068         cmd.host_command_parameters[0] = retry;
5069
5070         err = ipw2100_hw_send_command(priv, &cmd);
5071         if (err)
5072                 return err;
5073
5074         priv->long_retry_limit = retry;
5075
5076         return 0;
5077 }
5078
5079 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5080                                        int batch_mode)
5081 {
5082         struct host_command cmd = {
5083                 .host_command = MANDATORY_BSSID,
5084                 .host_command_sequence = 0,
5085                 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5086         };
5087         int err;
5088
5089 #ifdef CONFIG_IPW2100_DEBUG
5090         if (bssid != NULL)
5091                 IPW_DEBUG_HC("MANDATORY_BSSID: %pM\n", bssid);
5092         else
5093                 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5094 #endif
5095         /* if BSSID is empty then we disable mandatory bssid mode */
5096         if (bssid != NULL)
5097                 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5098
5099         if (!batch_mode) {
5100                 err = ipw2100_disable_adapter(priv);
5101                 if (err)
5102                         return err;
5103         }
5104
5105         err = ipw2100_hw_send_command(priv, &cmd);
5106
5107         if (!batch_mode)
5108                 ipw2100_enable_adapter(priv);
5109
5110         return err;
5111 }
5112
5113 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5114 {
5115         struct host_command cmd = {
5116                 .host_command = DISASSOCIATION_BSSID,
5117                 .host_command_sequence = 0,
5118                 .host_command_length = ETH_ALEN
5119         };
5120         int err;
5121         int len;
5122
5123         IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5124
5125         len = ETH_ALEN;
5126         /* The Firmware currently ignores the BSSID and just disassociates from
5127          * the currently associated AP -- but in the off chance that a future
5128          * firmware does use the BSSID provided here, we go ahead and try and
5129          * set it to the currently associated AP's BSSID */
5130         memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5131
5132         err = ipw2100_hw_send_command(priv, &cmd);
5133
5134         return err;
5135 }
5136
5137 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5138                               struct ipw2100_wpa_assoc_frame *, int)
5139     __attribute__ ((unused));
5140
5141 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5142                               struct ipw2100_wpa_assoc_frame *wpa_frame,
5143                               int batch_mode)
5144 {
5145         struct host_command cmd = {
5146                 .host_command = SET_WPA_IE,
5147                 .host_command_sequence = 0,
5148                 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5149         };
5150         int err;
5151
5152         IPW_DEBUG_HC("SET_WPA_IE\n");
5153
5154         if (!batch_mode) {
5155                 err = ipw2100_disable_adapter(priv);
5156                 if (err)
5157                         return err;
5158         }
5159
5160         memcpy(cmd.host_command_parameters, wpa_frame,
5161                sizeof(struct ipw2100_wpa_assoc_frame));
5162
5163         err = ipw2100_hw_send_command(priv, &cmd);
5164
5165         if (!batch_mode) {
5166                 if (ipw2100_enable_adapter(priv))
5167                         err = -EIO;
5168         }
5169
5170         return err;
5171 }
5172
5173 struct security_info_params {
5174         u32 allowed_ciphers;
5175         u16 version;
5176         u8 auth_mode;
5177         u8 replay_counters_number;
5178         u8 unicast_using_group;
5179 } __packed;
5180
5181 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5182                                             int auth_mode,
5183                                             int security_level,
5184                                             int unicast_using_group,
5185                                             int batch_mode)
5186 {
5187         struct host_command cmd = {
5188                 .host_command = SET_SECURITY_INFORMATION,
5189                 .host_command_sequence = 0,
5190                 .host_command_length = sizeof(struct security_info_params)
5191         };
5192         struct security_info_params *security =
5193             (struct security_info_params *)&cmd.host_command_parameters;
5194         int err;
5195         memset(security, 0, sizeof(*security));
5196
5197         /* If shared key AP authentication is turned on, then we need to
5198          * configure the firmware to try and use it.
5199          *
5200          * Actual data encryption/decryption is handled by the host. */
5201         security->auth_mode = auth_mode;
5202         security->unicast_using_group = unicast_using_group;
5203
5204         switch (security_level) {
5205         default:
5206         case SEC_LEVEL_0:
5207                 security->allowed_ciphers = IPW_NONE_CIPHER;
5208                 break;
5209         case SEC_LEVEL_1:
5210                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5211                     IPW_WEP104_CIPHER;
5212                 break;
5213         case SEC_LEVEL_2:
5214                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5215                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5216                 break;
5217         case SEC_LEVEL_2_CKIP:
5218                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5219                     IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5220                 break;
5221         case SEC_LEVEL_3:
5222                 security->allowed_ciphers = IPW_WEP40_CIPHER |
5223                     IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5224                 break;
5225         }
5226
5227         IPW_DEBUG_HC
5228             ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5229              security->auth_mode, security->allowed_ciphers, security_level);
5230
5231         security->replay_counters_number = 0;
5232
5233         if (!batch_mode) {
5234                 err = ipw2100_disable_adapter(priv);
5235                 if (err)
5236                         return err;
5237         }
5238
5239         err = ipw2100_hw_send_command(priv, &cmd);
5240
5241         if (!batch_mode)
5242                 ipw2100_enable_adapter(priv);
5243
5244         return err;
5245 }
5246
5247 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5248 {
5249         struct host_command cmd = {
5250                 .host_command = TX_POWER_INDEX,
5251                 .host_command_sequence = 0,
5252                 .host_command_length = 4
5253         };
5254         int err = 0;
5255         u32 tmp = tx_power;
5256
5257         if (tx_power != IPW_TX_POWER_DEFAULT)
5258                 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5259                       (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5260
5261         cmd.host_command_parameters[0] = tmp;
5262
5263         if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5264                 err = ipw2100_hw_send_command(priv, &cmd);
5265         if (!err)
5266                 priv->tx_power = tx_power;
5267
5268         return 0;
5269 }
5270
5271 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5272                                             u32 interval, int batch_mode)
5273 {
5274         struct host_command cmd = {
5275                 .host_command = BEACON_INTERVAL,
5276                 .host_command_sequence = 0,
5277                 .host_command_length = 4
5278         };
5279         int err;
5280
5281         cmd.host_command_parameters[0] = interval;
5282
5283         IPW_DEBUG_INFO("enter\n");
5284
5285         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5286                 if (!batch_mode) {
5287                         err = ipw2100_disable_adapter(priv);
5288                         if (err)
5289                                 return err;
5290                 }
5291
5292                 ipw2100_hw_send_command(priv, &cmd);
5293
5294                 if (!batch_mode) {
5295                         err = ipw2100_enable_adapter(priv);
5296                         if (err)
5297                                 return err;
5298                 }
5299         }
5300
5301         IPW_DEBUG_INFO("exit\n");
5302
5303         return 0;
5304 }
5305
5306 static void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5307 {
5308         ipw2100_tx_initialize(priv);
5309         ipw2100_rx_initialize(priv);
5310         ipw2100_msg_initialize(priv);
5311 }
5312
5313 static void ipw2100_queues_free(struct ipw2100_priv *priv)
5314 {
5315         ipw2100_tx_free(priv);
5316         ipw2100_rx_free(priv);
5317         ipw2100_msg_free(priv);
5318 }
5319
5320 static int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5321 {
5322         if (ipw2100_tx_allocate(priv) ||
5323             ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5324                 goto fail;
5325
5326         return 0;
5327
5328       fail:
5329         ipw2100_tx_free(priv);
5330         ipw2100_rx_free(priv);
5331         ipw2100_msg_free(priv);
5332         return -ENOMEM;
5333 }
5334
5335 #define IPW_PRIVACY_CAPABLE 0x0008
5336
5337 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5338                                  int batch_mode)
5339 {
5340         struct host_command cmd = {
5341                 .host_command = WEP_FLAGS,
5342                 .host_command_sequence = 0,
5343                 .host_command_length = 4
5344         };
5345         int err;
5346
5347         cmd.host_command_parameters[0] = flags;
5348
5349         IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5350
5351         if (!batch_mode) {
5352                 err = ipw2100_disable_adapter(priv);
5353                 if (err) {
5354                         printk(KERN_ERR DRV_NAME
5355                                ": %s: Could not disable adapter %d\n",
5356                                priv->net_dev->name, err);
5357                         return err;
5358                 }
5359         }
5360
5361         /* send cmd to firmware */
5362         err = ipw2100_hw_send_command(priv, &cmd);
5363
5364         if (!batch_mode)
5365                 ipw2100_enable_adapter(priv);
5366
5367         return err;
5368 }
5369
5370 struct ipw2100_wep_key {
5371         u8 idx;
5372         u8 len;
5373         u8 key[13];
5374 };
5375
5376 /* Macros to ease up priting WEP keys */
5377 #define WEP_FMT_64  "%02X%02X%02X%02X-%02X"
5378 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5379 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5380 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5381
5382 /**
5383  * Set a the wep key
5384  *
5385  * @priv: struct to work on
5386  * @idx: index of the key we want to set
5387  * @key: ptr to the key data to set
5388  * @len: length of the buffer at @key
5389  * @batch_mode: FIXME perform the operation in batch mode, not
5390  *              disabling the device.
5391  *
5392  * @returns 0 if OK, < 0 errno code on error.
5393  *
5394  * Fill out a command structure with the new wep key, length an
5395  * index and send it down the wire.
5396  */
5397 static int ipw2100_set_key(struct ipw2100_priv *priv,
5398                            int idx, char *key, int len, int batch_mode)
5399 {
5400         int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5401         struct host_command cmd = {
5402                 .host_command = WEP_KEY_INFO,
5403                 .host_command_sequence = 0,
5404                 .host_command_length = sizeof(struct ipw2100_wep_key),
5405         };
5406         struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5407         int err;
5408
5409         IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5410                      idx, keylen, len);
5411
5412         /* NOTE: We don't check cached values in case the firmware was reset
5413          * or some other problem is occurring.  If the user is setting the key,
5414          * then we push the change */
5415
5416         wep_key->idx = idx;
5417         wep_key->len = keylen;
5418
5419         if (keylen) {
5420                 memcpy(wep_key->key, key, len);
5421                 memset(wep_key->key + len, 0, keylen - len);
5422         }
5423
5424         /* Will be optimized out on debug not being configured in */
5425         if (keylen == 0)
5426                 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5427                               priv->net_dev->name, wep_key->idx);
5428         else if (keylen == 5)
5429                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5430                               priv->net_dev->name, wep_key->idx, wep_key->len,
5431                               WEP_STR_64(wep_key->key));
5432         else
5433                 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5434                               "\n",
5435                               priv->net_dev->name, wep_key->idx, wep_key->len,
5436                               WEP_STR_128(wep_key->key));
5437
5438         if (!batch_mode) {
5439                 err = ipw2100_disable_adapter(priv);
5440                 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5441                 if (err) {
5442                         printk(KERN_ERR DRV_NAME
5443                                ": %s: Could not disable adapter %d\n",
5444                                priv->net_dev->name, err);
5445                         return err;
5446                 }
5447         }
5448
5449         /* send cmd to firmware */
5450         err = ipw2100_hw_send_command(priv, &cmd);
5451
5452         if (!batch_mode) {
5453                 int err2 = ipw2100_enable_adapter(priv);
5454                 if (err == 0)
5455                         err = err2;
5456         }
5457         return err;
5458 }
5459
5460 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5461                                  int idx, int batch_mode)
5462 {
5463         struct host_command cmd = {
5464                 .host_command = WEP_KEY_INDEX,
5465                 .host_command_sequence = 0,
5466                 .host_command_length = 4,
5467                 .host_command_parameters = {idx},
5468         };
5469         int err;
5470
5471         IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5472
5473         if (idx < 0 || idx > 3)
5474                 return -EINVAL;
5475
5476         if (!batch_mode) {
5477                 err = ipw2100_disable_adapter(priv);
5478                 if (err) {
5479                         printk(KERN_ERR DRV_NAME
5480                                ": %s: Could not disable adapter %d\n",
5481                                priv->net_dev->name, err);
5482                         return err;
5483                 }
5484         }
5485
5486         /* send cmd to firmware */
5487         err = ipw2100_hw_send_command(priv, &cmd);
5488
5489         if (!batch_mode)
5490                 ipw2100_enable_adapter(priv);
5491
5492         return err;
5493 }
5494
5495 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5496 {
5497         int i, err, auth_mode, sec_level, use_group;
5498
5499         if (!(priv->status & STATUS_RUNNING))
5500                 return 0;
5501
5502         if (!batch_mode) {
5503                 err = ipw2100_disable_adapter(priv);
5504                 if (err)
5505                         return err;
5506         }
5507
5508         if (!priv->ieee->sec.enabled) {
5509                 err =
5510                     ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5511                                                      SEC_LEVEL_0, 0, 1);
5512         } else {
5513                 auth_mode = IPW_AUTH_OPEN;
5514                 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5515                         if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5516                                 auth_mode = IPW_AUTH_SHARED;
5517                         else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5518                                 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5519                 }
5520
5521                 sec_level = SEC_LEVEL_0;
5522                 if (priv->ieee->sec.flags & SEC_LEVEL)
5523                         sec_level = priv->ieee->sec.level;
5524
5525                 use_group = 0;
5526                 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5527                         use_group = priv->ieee->sec.unicast_uses_group;
5528
5529                 err =
5530                     ipw2100_set_security_information(priv, auth_mode, sec_level,
5531                                                      use_group, 1);
5532         }
5533
5534         if (err)
5535                 goto exit;
5536
5537         if (priv->ieee->sec.enabled) {
5538                 for (i = 0; i < 4; i++) {
5539                         if (!(priv->ieee->sec.flags & (1 << i))) {
5540                                 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5541                                 priv->ieee->sec.key_sizes[i] = 0;
5542                         } else {
5543                                 err = ipw2100_set_key(priv, i,
5544                                                       priv->ieee->sec.keys[i],
5545                                                       priv->ieee->sec.
5546                                                       key_sizes[i], 1);
5547                                 if (err)
5548                                         goto exit;
5549                         }
5550                 }
5551
5552                 ipw2100_set_key_index(priv, priv->ieee->crypt_info.tx_keyidx, 1);
5553         }
5554
5555         /* Always enable privacy so the Host can filter WEP packets if
5556          * encrypted data is sent up */
5557         err =
5558             ipw2100_set_wep_flags(priv,
5559                                   priv->ieee->sec.
5560                                   enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5561         if (err)
5562                 goto exit;
5563
5564         priv->status &= ~STATUS_SECURITY_UPDATED;
5565
5566       exit:
5567         if (!batch_mode)
5568                 ipw2100_enable_adapter(priv);
5569
5570         return err;
5571 }
5572
5573 static void ipw2100_security_work(struct work_struct *work)
5574 {
5575         struct ipw2100_priv *priv =
5576                 container_of(work, struct ipw2100_priv, security_work.work);
5577
5578         /* If we happen to have reconnected before we get a chance to
5579          * process this, then update the security settings--which causes
5580          * a disassociation to occur */
5581         if (!(priv->status & STATUS_ASSOCIATED) &&
5582             priv->status & STATUS_SECURITY_UPDATED)
5583                 ipw2100_configure_security(priv, 0);
5584 }
5585
5586 static void shim__set_security(struct net_device *dev,
5587                                struct libipw_security *sec)
5588 {
5589         struct ipw2100_priv *priv = libipw_priv(dev);
5590         int i, force_update = 0;
5591
5592         mutex_lock(&priv->action_mutex);
5593         if (!(priv->status & STATUS_INITIALIZED))
5594                 goto done;
5595
5596         for (i = 0; i < 4; i++) {
5597                 if (sec->flags & (1 << i)) {
5598                         priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5599                         if (sec->key_sizes[i] == 0)
5600                                 priv->ieee->sec.flags &= ~(1 << i);
5601                         else
5602                                 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5603                                        sec->key_sizes[i]);
5604                         if (sec->level == SEC_LEVEL_1) {
5605                                 priv->ieee->sec.flags |= (1 << i);
5606                                 priv->status |= STATUS_SECURITY_UPDATED;
5607                         } else
5608                                 priv->ieee->sec.flags &= ~(1 << i);
5609                 }
5610         }
5611
5612         if ((sec->flags & SEC_ACTIVE_KEY) &&
5613             priv->ieee->sec.active_key != sec->active_key) {
5614                 if (sec->active_key <= 3) {
5615                         priv->ieee->sec.active_key = sec->active_key;
5616                         priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5617                 } else
5618                         priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5619
5620                 priv->status |= STATUS_SECURITY_UPDATED;
5621         }
5622
5623         if ((sec->flags & SEC_AUTH_MODE) &&
5624             (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5625                 priv->ieee->sec.auth_mode = sec->auth_mode;
5626                 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5627                 priv->status |= STATUS_SECURITY_UPDATED;
5628         }
5629
5630         if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5631                 priv->ieee->sec.flags |= SEC_ENABLED;
5632                 priv->ieee->sec.enabled = sec->enabled;
5633                 priv->status |= STATUS_SECURITY_UPDATED;
5634                 force_update = 1;
5635         }
5636
5637         if (sec->flags & SEC_ENCRYPT)
5638                 priv->ieee->sec.encrypt = sec->encrypt;
5639
5640         if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5641                 priv->ieee->sec.level = sec->level;
5642                 priv->ieee->sec.flags |= SEC_LEVEL;
5643                 priv->status |= STATUS_SECURITY_UPDATED;
5644         }
5645
5646         IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5647                       priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5648                       priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5649                       priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5650                       priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5651                       priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5652                       priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5653                       priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5654                       priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5655                       priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5656
5657 /* As a temporary work around to enable WPA until we figure out why
5658  * wpa_supplicant toggles the security capability of the driver, which
5659  * forces a disassocation with force_update...
5660  *
5661  *      if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5662         if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5663                 ipw2100_configure_security(priv, 0);
5664       done:
5665         mutex_unlock(&priv->action_mutex);
5666 }
5667
5668 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5669 {
5670         int err;
5671         int batch_mode = 1;
5672         u8 *bssid;
5673
5674         IPW_DEBUG_INFO("enter\n");
5675
5676         err = ipw2100_disable_adapter(priv);
5677         if (err)
5678                 return err;
5679 #ifdef CONFIG_IPW2100_MONITOR
5680         if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5681                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5682                 if (err)
5683                         return err;
5684
5685                 IPW_DEBUG_INFO("exit\n");
5686
5687                 return 0;
5688         }
5689 #endif                          /* CONFIG_IPW2100_MONITOR */
5690
5691         err = ipw2100_read_mac_address(priv);
5692         if (err)
5693                 return -EIO;
5694
5695         err = ipw2100_set_mac_address(priv, batch_mode);
5696         if (err)
5697                 return err;
5698
5699         err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5700         if (err)
5701                 return err;
5702
5703         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5704                 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5705                 if (err)
5706                         return err;
5707         }
5708
5709         err = ipw2100_system_config(priv, batch_mode);
5710         if (err)
5711                 return err;
5712
5713         err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5714         if (err)
5715                 return err;
5716
5717         /* Default to power mode OFF */
5718         err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5719         if (err)
5720                 return err;
5721
5722         err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5723         if (err)
5724                 return err;
5725
5726         if (priv->config & CFG_STATIC_BSSID)
5727                 bssid = priv->bssid;
5728         else
5729                 bssid = NULL;
5730         err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5731         if (err)
5732                 return err;
5733
5734         if (priv->config & CFG_STATIC_ESSID)
5735                 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5736                                         batch_mode);
5737         else
5738                 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5739         if (err)
5740                 return err;
5741
5742         err = ipw2100_configure_security(priv, batch_mode);
5743         if (err)
5744                 return err;
5745
5746         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5747                 err =
5748                     ipw2100_set_ibss_beacon_interval(priv,
5749                                                      priv->beacon_interval,
5750                                                      batch_mode);
5751                 if (err)
5752                         return err;
5753
5754                 err = ipw2100_set_tx_power(priv, priv->tx_power);
5755                 if (err)
5756                         return err;
5757         }
5758
5759         /*
5760            err = ipw2100_set_fragmentation_threshold(
5761            priv, priv->frag_threshold, batch_mode);
5762            if (err)
5763            return err;
5764          */
5765
5766         IPW_DEBUG_INFO("exit\n");
5767
5768         return 0;
5769 }
5770
5771 /*************************************************************************
5772  *
5773  * EXTERNALLY CALLED METHODS
5774  *
5775  *************************************************************************/
5776
5777 /* This method is called by the network layer -- not to be confused with
5778  * ipw2100_set_mac_address() declared above called by this driver (and this
5779  * method as well) to talk to the firmware */
5780 static int ipw2100_set_address(struct net_device *dev, void *p)
5781 {
5782         struct ipw2100_priv *priv = libipw_priv(dev);
5783         struct sockaddr *addr = p;
5784         int err = 0;
5785
5786         if (!is_valid_ether_addr(addr->sa_data))
5787                 return -EADDRNOTAVAIL;
5788
5789         mutex_lock(&priv->action_mutex);
5790
5791         priv->config |= CFG_CUSTOM_MAC;
5792         memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5793
5794         err = ipw2100_set_mac_address(priv, 0);
5795         if (err)
5796                 goto done;
5797
5798         priv->reset_backoff = 0;
5799         mutex_unlock(&priv->action_mutex);
5800         ipw2100_reset_adapter(&priv->reset_work.work);
5801         return 0;
5802
5803       done:
5804         mutex_unlock(&priv->action_mutex);
5805         return err;
5806 }
5807
5808 static int ipw2100_open(struct net_device *dev)
5809 {
5810         struct ipw2100_priv *priv = libipw_priv(dev);
5811         unsigned long flags;
5812         IPW_DEBUG_INFO("dev->open\n");
5813
5814         spin_lock_irqsave(&priv->low_lock, flags);
5815         if (priv->status & STATUS_ASSOCIATED) {
5816                 netif_carrier_on(dev);
5817                 netif_start_queue(dev);
5818         }
5819         spin_unlock_irqrestore(&priv->low_lock, flags);
5820
5821         return 0;
5822 }
5823
5824 static int ipw2100_close(struct net_device *dev)
5825 {
5826         struct ipw2100_priv *priv = libipw_priv(dev);
5827         unsigned long flags;
5828         struct list_head *element;
5829         struct ipw2100_tx_packet *packet;
5830
5831         IPW_DEBUG_INFO("enter\n");
5832
5833         spin_lock_irqsave(&priv->low_lock, flags);
5834
5835         if (priv->status & STATUS_ASSOCIATED)
5836                 netif_carrier_off(dev);
5837         netif_stop_queue(dev);
5838
5839         /* Flush the TX queue ... */
5840         while (!list_empty(&priv->tx_pend_list)) {
5841                 element = priv->tx_pend_list.next;
5842                 packet = list_entry(element, struct ipw2100_tx_packet, list);
5843
5844                 list_del(element);
5845                 DEC_STAT(&priv->tx_pend_stat);
5846
5847                 libipw_txb_free(packet->info.d_struct.txb);
5848                 packet->info.d_struct.txb = NULL;
5849
5850                 list_add_tail(element, &priv->tx_free_list);
5851                 INC_STAT(&priv->tx_free_stat);
5852         }
5853         spin_unlock_irqrestore(&priv->low_lock, flags);
5854
5855         IPW_DEBUG_INFO("exit\n");
5856
5857         return 0;
5858 }
5859
5860 /*
5861  * TODO:  Fix this function... its just wrong
5862  */
5863 static void ipw2100_tx_timeout(struct net_device *dev)
5864 {
5865         struct ipw2100_priv *priv = libipw_priv(dev);
5866
5867         dev->stats.tx_errors++;
5868
5869 #ifdef CONFIG_IPW2100_MONITOR
5870         if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5871                 return;
5872 #endif
5873
5874         IPW_DEBUG_INFO("%s: TX timed out.  Scheduling firmware restart.\n",
5875                        dev->name);
5876         schedule_reset(priv);
5877 }
5878
5879 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5880 {
5881         /* This is called when wpa_supplicant loads and closes the driver
5882          * interface. */
5883         priv->ieee->wpa_enabled = value;
5884         return 0;
5885 }
5886
5887 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5888 {
5889
5890         struct libipw_device *ieee = priv->ieee;
5891         struct libipw_security sec = {
5892                 .flags = SEC_AUTH_MODE,
5893         };
5894         int ret = 0;
5895
5896         if (value & IW_AUTH_ALG_SHARED_KEY) {
5897                 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5898                 ieee->open_wep = 0;
5899         } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5900                 sec.auth_mode = WLAN_AUTH_OPEN;
5901                 ieee->open_wep = 1;
5902         } else if (value & IW_AUTH_ALG_LEAP) {
5903                 sec.auth_mode = WLAN_AUTH_LEAP;
5904                 ieee->open_wep = 1;
5905         } else
5906                 return -EINVAL;
5907
5908         if (ieee->set_security)
5909                 ieee->set_security(ieee->dev, &sec);
5910         else
5911                 ret = -EOPNOTSUPP;
5912
5913         return ret;
5914 }
5915
5916 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5917                                     char *wpa_ie, int wpa_ie_len)
5918 {
5919
5920         struct ipw2100_wpa_assoc_frame frame;
5921
5922         frame.fixed_ie_mask = 0;
5923
5924         /* copy WPA IE */
5925         memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5926         frame.var_ie_len = wpa_ie_len;
5927
5928         /* make sure WPA is enabled */
5929         ipw2100_wpa_enable(priv, 1);
5930         ipw2100_set_wpa_ie(priv, &frame, 0);
5931 }
5932
5933 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5934                                     struct ethtool_drvinfo *info)
5935 {
5936         struct ipw2100_priv *priv = libipw_priv(dev);
5937         char fw_ver[64], ucode_ver[64];
5938
5939         strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
5940         strlcpy(info->version, DRV_VERSION, sizeof(info->version));
5941
5942         ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5943         ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5944
5945         snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5946                  fw_ver, priv->eeprom_version, ucode_ver);
5947
5948         strlcpy(info->bus_info, pci_name(priv->pci_dev),
5949                 sizeof(info->bus_info));
5950 }
5951
5952 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5953 {
5954         struct ipw2100_priv *priv = libipw_priv(dev);
5955         return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5956 }
5957
5958 static const struct ethtool_ops ipw2100_ethtool_ops = {
5959         .get_link = ipw2100_ethtool_get_link,
5960         .get_drvinfo = ipw_ethtool_get_drvinfo,
5961 };
5962
5963 static void ipw2100_hang_check(struct work_struct *work)
5964 {
5965         struct ipw2100_priv *priv =
5966                 container_of(work, struct ipw2100_priv, hang_check.work);
5967         unsigned long flags;
5968         u32 rtc = 0xa5a5a5a5;
5969         u32 len = sizeof(rtc);
5970         int restart = 0;
5971
5972         spin_lock_irqsave(&priv->low_lock, flags);
5973
5974         if (priv->fatal_error != 0) {
5975                 /* If fatal_error is set then we need to restart */
5976                 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5977                                priv->net_dev->name);
5978
5979                 restart = 1;
5980         } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5981                    (rtc == priv->last_rtc)) {
5982                 /* Check if firmware is hung */
5983                 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5984                                priv->net_dev->name);
5985
5986                 restart = 1;
5987         }
5988
5989         if (restart) {
5990                 /* Kill timer */
5991                 priv->stop_hang_check = 1;
5992                 priv->hangs++;
5993
5994                 /* Restart the NIC */
5995                 schedule_reset(priv);
5996         }
5997
5998         priv->last_rtc = rtc;
5999
6000         if (!priv->stop_hang_check)
6001                 schedule_delayed_work(&priv->hang_check, HZ / 2);
6002
6003         spin_unlock_irqrestore(&priv->low_lock, flags);
6004 }
6005
6006 static void ipw2100_rf_kill(struct work_struct *work)
6007 {
6008         struct ipw2100_priv *priv =
6009                 container_of(work, struct ipw2100_priv, rf_kill.work);
6010         unsigned long flags;
6011
6012         spin_lock_irqsave(&priv->low_lock, flags);
6013
6014         if (rf_kill_active(priv)) {
6015                 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
6016                 if (!priv->stop_rf_kill)
6017                         schedule_delayed_work(&priv->rf_kill,
6018                                               round_jiffies_relative(HZ));
6019                 goto exit_unlock;
6020         }
6021
6022         /* RF Kill is now disabled, so bring the device back up */
6023
6024         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6025                 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
6026                                   "device\n");
6027                 schedule_reset(priv);
6028         } else
6029                 IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
6030                                   "enabled\n");
6031
6032       exit_unlock:
6033         spin_unlock_irqrestore(&priv->low_lock, flags);
6034 }
6035
6036 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
6037
6038 static const struct net_device_ops ipw2100_netdev_ops = {
6039         .ndo_open               = ipw2100_open,
6040         .ndo_stop               = ipw2100_close,
6041         .ndo_start_xmit         = libipw_xmit,
6042         .ndo_change_mtu         = libipw_change_mtu,
6043         .ndo_tx_timeout         = ipw2100_tx_timeout,
6044         .ndo_set_mac_address    = ipw2100_set_address,
6045         .ndo_validate_addr      = eth_validate_addr,
6046 };
6047
6048 /* Look into using netdev destructor to shutdown libipw? */
6049
6050 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
6051                                                void __iomem * ioaddr)
6052 {
6053         struct ipw2100_priv *priv;
6054         struct net_device *dev;
6055
6056         dev = alloc_libipw(sizeof(struct ipw2100_priv), 0);
6057         if (!dev)
6058                 return NULL;
6059         priv = libipw_priv(dev);
6060         priv->ieee = netdev_priv(dev);
6061         priv->pci_dev = pci_dev;
6062         priv->net_dev = dev;
6063         priv->ioaddr = ioaddr;
6064
6065         priv->ieee->hard_start_xmit = ipw2100_tx;
6066         priv->ieee->set_security = shim__set_security;
6067
6068         priv->ieee->perfect_rssi = -20;
6069         priv->ieee->worst_rssi = -85;
6070
6071         dev->netdev_ops = &ipw2100_netdev_ops;
6072         dev->ethtool_ops = &ipw2100_ethtool_ops;
6073         dev->wireless_handlers = &ipw2100_wx_handler_def;
6074         priv->wireless_data.libipw = priv->ieee;
6075         dev->wireless_data = &priv->wireless_data;
6076         dev->watchdog_timeo = 3 * HZ;
6077         dev->irq = 0;
6078
6079         /* NOTE: We don't use the wireless_handlers hook
6080          * in dev as the system will start throwing WX requests
6081          * to us before we're actually initialized and it just
6082          * ends up causing problems.  So, we just handle
6083          * the WX extensions through the ipw2100_ioctl interface */
6084
6085         /* memset() puts everything to 0, so we only have explicitly set
6086          * those values that need to be something else */
6087
6088         /* If power management is turned on, default to AUTO mode */
6089         priv->power_mode = IPW_POWER_AUTO;
6090
6091 #ifdef CONFIG_IPW2100_MONITOR
6092         priv->config |= CFG_CRC_CHECK;
6093 #endif
6094         priv->ieee->wpa_enabled = 0;
6095         priv->ieee->drop_unencrypted = 0;
6096         priv->ieee->privacy_invoked = 0;
6097         priv->ieee->ieee802_1x = 1;
6098
6099         /* Set module parameters */
6100         switch (network_mode) {
6101         case 1:
6102                 priv->ieee->iw_mode = IW_MODE_ADHOC;
6103                 break;
6104 #ifdef CONFIG_IPW2100_MONITOR
6105         case 2:
6106                 priv->ieee->iw_mode = IW_MODE_MONITOR;
6107                 break;
6108 #endif
6109         default:
6110         case 0:
6111                 priv->ieee->iw_mode = IW_MODE_INFRA;
6112                 break;
6113         }
6114
6115         if (disable == 1)
6116                 priv->status |= STATUS_RF_KILL_SW;
6117
6118         if (channel != 0 &&
6119             ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6120                 priv->config |= CFG_STATIC_CHANNEL;
6121                 priv->channel = channel;
6122         }
6123
6124         if (associate)
6125                 priv->config |= CFG_ASSOCIATE;
6126
6127         priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6128         priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6129         priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6130         priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6131         priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6132         priv->tx_power = IPW_TX_POWER_DEFAULT;
6133         priv->tx_rates = DEFAULT_TX_RATES;
6134
6135         strcpy(priv->nick, "ipw2100");
6136
6137         spin_lock_init(&priv->low_lock);
6138         mutex_init(&priv->action_mutex);
6139         mutex_init(&priv->adapter_mutex);
6140
6141         init_waitqueue_head(&priv->wait_command_queue);
6142
6143         netif_carrier_off(dev);
6144
6145         INIT_LIST_HEAD(&priv->msg_free_list);
6146         INIT_LIST_HEAD(&priv->msg_pend_list);
6147         INIT_STAT(&priv->msg_free_stat);
6148         INIT_STAT(&priv->msg_pend_stat);
6149
6150         INIT_LIST_HEAD(&priv->tx_free_list);
6151         INIT_LIST_HEAD(&priv->tx_pend_list);
6152         INIT_STAT(&priv->tx_free_stat);
6153         INIT_STAT(&priv->tx_pend_stat);
6154
6155         INIT_LIST_HEAD(&priv->fw_pend_list);
6156         INIT_STAT(&priv->fw_pend_stat);
6157
6158         INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6159         INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6160         INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6161         INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6162         INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6163         INIT_DELAYED_WORK(&priv->scan_event, ipw2100_scan_event);
6164
6165         tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6166                      ipw2100_irq_tasklet, (unsigned long)priv);
6167
6168         /* NOTE:  We do not start the deferred work for status checks yet */
6169         priv->stop_rf_kill = 1;
6170         priv->stop_hang_check = 1;
6171
6172         return dev;
6173 }
6174
6175 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6176                                 const struct pci_device_id *ent)
6177 {
6178         void __iomem *ioaddr;
6179         struct net_device *dev = NULL;
6180         struct ipw2100_priv *priv = NULL;
6181         int err = 0;
6182         int registered = 0;
6183         u32 val;
6184
6185         IPW_DEBUG_INFO("enter\n");
6186
6187         if (!(pci_resource_flags(pci_dev, 0) & IORESOURCE_MEM)) {
6188                 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6189                 err = -ENODEV;
6190                 goto out;
6191         }
6192
6193         ioaddr = pci_iomap(pci_dev, 0, 0);
6194         if (!ioaddr) {
6195                 printk(KERN_WARNING DRV_NAME
6196                        "Error calling ioremap_nocache.\n");
6197                 err = -EIO;
6198                 goto fail;
6199         }
6200
6201         /* allocate and initialize our net_device */
6202         dev = ipw2100_alloc_device(pci_dev, ioaddr);
6203         if (!dev) {
6204                 printk(KERN_WARNING DRV_NAME
6205                        "Error calling ipw2100_alloc_device.\n");
6206                 err = -ENOMEM;
6207                 goto fail;
6208         }
6209
6210         /* set up PCI mappings for device */
6211         err = pci_enable_device(pci_dev);
6212         if (err) {
6213                 printk(KERN_WARNING DRV_NAME
6214                        "Error calling pci_enable_device.\n");
6215                 return err;
6216         }
6217
6218         priv = libipw_priv(dev);
6219
6220         pci_set_master(pci_dev);
6221         pci_set_drvdata(pci_dev, priv);
6222
6223         err = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32));
6224         if (err) {
6225                 printk(KERN_WARNING DRV_NAME
6226                        "Error calling pci_set_dma_mask.\n");
6227                 pci_disable_device(pci_dev);
6228                 return err;
6229         }
6230
6231         err = pci_request_regions(pci_dev, DRV_NAME);
6232         if (err) {
6233                 printk(KERN_WARNING DRV_NAME
6234                        "Error calling pci_request_regions.\n");
6235                 pci_disable_device(pci_dev);
6236                 return err;
6237         }
6238
6239         /* We disable the RETRY_TIMEOUT register (0x41) to keep
6240          * PCI Tx retries from interfering with C3 CPU state */
6241         pci_read_config_dword(pci_dev, 0x40, &val);
6242         if ((val & 0x0000ff00) != 0)
6243                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6244
6245         if (!ipw2100_hw_is_adapter_in_system(dev)) {
6246                 printk(KERN_WARNING DRV_NAME
6247                        "Device not found via register read.\n");
6248                 err = -ENODEV;
6249                 goto fail;
6250         }
6251
6252         SET_NETDEV_DEV(dev, &pci_dev->dev);
6253
6254         /* Force interrupts to be shut off on the device */
6255         priv->status |= STATUS_INT_ENABLED;
6256         ipw2100_disable_interrupts(priv);
6257
6258         /* Allocate and initialize the Tx/Rx queues and lists */
6259         if (ipw2100_queues_allocate(priv)) {
6260                 printk(KERN_WARNING DRV_NAME
6261                        "Error calling ipw2100_queues_allocate.\n");
6262                 err = -ENOMEM;
6263                 goto fail;
6264         }
6265         ipw2100_queues_initialize(priv);
6266
6267         err = request_irq(pci_dev->irq,
6268                           ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6269         if (err) {
6270                 printk(KERN_WARNING DRV_NAME
6271                        "Error calling request_irq: %d.\n", pci_dev->irq);
6272                 goto fail;
6273         }
6274         dev->irq = pci_dev->irq;
6275
6276         IPW_DEBUG_INFO("Attempting to register device...\n");
6277
6278         printk(KERN_INFO DRV_NAME
6279                ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6280
6281         err = ipw2100_up(priv, 1);
6282         if (err)
6283                 goto fail;
6284
6285         err = ipw2100_wdev_init(dev);
6286         if (err)
6287                 goto fail;
6288         registered = 1;
6289
6290         /* Bring up the interface.  Pre 0.46, after we registered the
6291          * network device we would call ipw2100_up.  This introduced a race
6292          * condition with newer hotplug configurations (network was coming
6293          * up and making calls before the device was initialized).
6294          */
6295         err = register_netdev(dev);
6296         if (err) {
6297                 printk(KERN_WARNING DRV_NAME
6298                        "Error calling register_netdev.\n");
6299                 goto fail;
6300         }
6301         registered = 2;
6302
6303         mutex_lock(&priv->action_mutex);
6304
6305         IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6306
6307         /* perform this after register_netdev so that dev->name is set */
6308         err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6309         if (err)
6310                 goto fail_unlock;
6311
6312         /* If the RF Kill switch is disabled, go ahead and complete the
6313          * startup sequence */
6314         if (!(priv->status & STATUS_RF_KILL_MASK)) {
6315                 /* Enable the adapter - sends HOST_COMPLETE */
6316                 if (ipw2100_enable_adapter(priv)) {
6317                         printk(KERN_WARNING DRV_NAME
6318                                ": %s: failed in call to enable adapter.\n",
6319                                priv->net_dev->name);
6320                         ipw2100_hw_stop_adapter(priv);
6321                         err = -EIO;
6322                         goto fail_unlock;
6323                 }
6324
6325                 /* Start a scan . . . */
6326                 ipw2100_set_scan_options(priv);
6327                 ipw2100_start_scan(priv);
6328         }
6329
6330         IPW_DEBUG_INFO("exit\n");
6331
6332         priv->status |= STATUS_INITIALIZED;
6333
6334         mutex_unlock(&priv->action_mutex);
6335 out:
6336         return err;
6337
6338       fail_unlock:
6339         mutex_unlock(&priv->action_mutex);
6340       fail:
6341         if (dev) {
6342                 if (registered >= 2)
6343                         unregister_netdev(dev);
6344
6345                 if (registered) {
6346                         wiphy_unregister(priv->ieee->wdev.wiphy);
6347                         kfree(priv->ieee->bg_band.channels);
6348                 }
6349
6350                 ipw2100_hw_stop_adapter(priv);
6351
6352                 ipw2100_disable_interrupts(priv);
6353
6354                 if (dev->irq)
6355                         free_irq(dev->irq, priv);
6356
6357                 ipw2100_kill_works(priv);
6358
6359                 /* These are safe to call even if they weren't allocated */
6360                 ipw2100_queues_free(priv);
6361                 sysfs_remove_group(&pci_dev->dev.kobj,
6362                                    &ipw2100_attribute_group);
6363
6364                 free_libipw(dev, 0);
6365         }
6366
6367         pci_iounmap(pci_dev, ioaddr);
6368
6369         pci_release_regions(pci_dev);
6370         pci_disable_device(pci_dev);
6371         goto out;
6372 }
6373
6374 static void ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6375 {
6376         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6377         struct net_device *dev = priv->net_dev;
6378
6379         mutex_lock(&priv->action_mutex);
6380
6381         priv->status &= ~STATUS_INITIALIZED;
6382
6383         sysfs_remove_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6384
6385 #ifdef CONFIG_PM
6386         if (ipw2100_firmware.version)
6387                 ipw2100_release_firmware(priv, &ipw2100_firmware);
6388 #endif
6389         /* Take down the hardware */
6390         ipw2100_down(priv);
6391
6392         /* Release the mutex so that the network subsystem can
6393          * complete any needed calls into the driver... */
6394         mutex_unlock(&priv->action_mutex);
6395
6396         /* Unregister the device first - this results in close()
6397          * being called if the device is open.  If we free storage
6398          * first, then close() will crash.
6399          * FIXME: remove the comment above. */
6400         unregister_netdev(dev);
6401
6402         ipw2100_kill_works(priv);
6403
6404         ipw2100_queues_free(priv);
6405
6406         /* Free potential debugging firmware snapshot */
6407         ipw2100_snapshot_free(priv);
6408
6409         free_irq(dev->irq, priv);
6410
6411         pci_iounmap(pci_dev, priv->ioaddr);
6412
6413         /* wiphy_unregister needs to be here, before free_libipw */
6414         wiphy_unregister(priv->ieee->wdev.wiphy);
6415         kfree(priv->ieee->bg_band.channels);
6416         free_libipw(dev, 0);
6417
6418         pci_release_regions(pci_dev);
6419         pci_disable_device(pci_dev);
6420
6421         IPW_DEBUG_INFO("exit\n");
6422 }
6423
6424 #ifdef CONFIG_PM
6425 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6426 {
6427         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6428         struct net_device *dev = priv->net_dev;
6429
6430         IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6431
6432         mutex_lock(&priv->action_mutex);
6433         if (priv->status & STATUS_INITIALIZED) {
6434                 /* Take down the device; powers it off, etc. */
6435                 ipw2100_down(priv);
6436         }
6437
6438         /* Remove the PRESENT state of the device */
6439         netif_device_detach(dev);
6440
6441         pci_save_state(pci_dev);
6442         pci_disable_device(pci_dev);
6443         pci_set_power_state(pci_dev, PCI_D3hot);
6444
6445         priv->suspend_at = get_seconds();
6446
6447         mutex_unlock(&priv->action_mutex);
6448
6449         return 0;
6450 }
6451
6452 static int ipw2100_resume(struct pci_dev *pci_dev)
6453 {
6454         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6455         struct net_device *dev = priv->net_dev;
6456         int err;
6457         u32 val;
6458
6459         if (IPW2100_PM_DISABLED)
6460                 return 0;
6461
6462         mutex_lock(&priv->action_mutex);
6463
6464         IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6465
6466         pci_set_power_state(pci_dev, PCI_D0);
6467         err = pci_enable_device(pci_dev);
6468         if (err) {
6469                 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6470                        dev->name);
6471                 mutex_unlock(&priv->action_mutex);
6472                 return err;
6473         }
6474         pci_restore_state(pci_dev);
6475
6476         /*
6477          * Suspend/Resume resets the PCI configuration space, so we have to
6478          * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6479          * from interfering with C3 CPU state. pci_restore_state won't help
6480          * here since it only restores the first 64 bytes pci config header.
6481          */
6482         pci_read_config_dword(pci_dev, 0x40, &val);
6483         if ((val & 0x0000ff00) != 0)
6484                 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6485
6486         /* Set the device back into the PRESENT state; this will also wake
6487          * the queue of needed */
6488         netif_device_attach(dev);
6489
6490         priv->suspend_time = get_seconds() - priv->suspend_at;
6491
6492         /* Bring the device back up */
6493         if (!(priv->status & STATUS_RF_KILL_SW))
6494                 ipw2100_up(priv, 0);
6495
6496         mutex_unlock(&priv->action_mutex);
6497
6498         return 0;
6499 }
6500 #endif
6501
6502 static void ipw2100_shutdown(struct pci_dev *pci_dev)
6503 {
6504         struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6505
6506         /* Take down the device; powers it off, etc. */
6507         ipw2100_down(priv);
6508
6509         pci_disable_device(pci_dev);
6510 }
6511
6512 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6513
6514 static DEFINE_PCI_DEVICE_TABLE(ipw2100_pci_id_table) = {
6515         IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6516         IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6517         IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6518         IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6519         IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6520         IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6521         IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6522         IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6523         IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6524         IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6525         IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6526         IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6527         IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6528
6529         IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6530         IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6531         IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6532         IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6533         IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6534
6535         IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6536         IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6537         IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6538         IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6539         IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6540         IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6541         IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6542
6543         IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6544
6545         IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6546         IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6547         IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6548         IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6549         IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6550         IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6551         IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6552
6553         IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6554         IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6555         IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6556         IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6557         IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6558         IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6559
6560         IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6561         {0,},
6562 };
6563
6564 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6565
6566 static struct pci_driver ipw2100_pci_driver = {
6567         .name = DRV_NAME,
6568         .id_table = ipw2100_pci_id_table,
6569         .probe = ipw2100_pci_init_one,
6570         .remove = ipw2100_pci_remove_one,
6571 #ifdef CONFIG_PM
6572         .suspend = ipw2100_suspend,
6573         .resume = ipw2100_resume,
6574 #endif
6575         .shutdown = ipw2100_shutdown,
6576 };
6577
6578 /**
6579  * Initialize the ipw2100 driver/module
6580  *
6581  * @returns 0 if ok, < 0 errno node con error.
6582  *
6583  * Note: we cannot init the /proc stuff until the PCI driver is there,
6584  * or we risk an unlikely race condition on someone accessing
6585  * uninitialized data in the PCI dev struct through /proc.
6586  */
6587 static int __init ipw2100_init(void)
6588 {
6589         int ret;
6590
6591         printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6592         printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6593
6594         pm_qos_add_request(&ipw2100_pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
6595                            PM_QOS_DEFAULT_VALUE);
6596
6597         ret = pci_register_driver(&ipw2100_pci_driver);
6598         if (ret)
6599                 goto out;
6600
6601 #ifdef CONFIG_IPW2100_DEBUG
6602         ipw2100_debug_level = debug;
6603         ret = driver_create_file(&ipw2100_pci_driver.driver,
6604                                  &driver_attr_debug_level);
6605 #endif
6606
6607 out:
6608         return ret;
6609 }
6610
6611 /**
6612  * Cleanup ipw2100 driver registration
6613  */
6614 static void __exit ipw2100_exit(void)
6615 {
6616         /* FIXME: IPG: check that we have no instances of the devices open */
6617 #ifdef CONFIG_IPW2100_DEBUG
6618         driver_remove_file(&ipw2100_pci_driver.driver,
6619                            &driver_attr_debug_level);
6620 #endif
6621         pci_unregister_driver(&ipw2100_pci_driver);
6622         pm_qos_remove_request(&ipw2100_pm_qos_req);
6623 }
6624
6625 module_init(ipw2100_init);
6626 module_exit(ipw2100_exit);
6627
6628 static int ipw2100_wx_get_name(struct net_device *dev,
6629                                struct iw_request_info *info,
6630                                union iwreq_data *wrqu, char *extra)
6631 {
6632         /*
6633          * This can be called at any time.  No action lock required
6634          */
6635
6636         struct ipw2100_priv *priv = libipw_priv(dev);
6637         if (!(priv->status & STATUS_ASSOCIATED))
6638                 strcpy(wrqu->name, "unassociated");
6639         else
6640                 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6641
6642         IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6643         return 0;
6644 }
6645
6646 static int ipw2100_wx_set_freq(struct net_device *dev,
6647                                struct iw_request_info *info,
6648                                union iwreq_data *wrqu, char *extra)
6649 {
6650         struct ipw2100_priv *priv = libipw_priv(dev);
6651         struct iw_freq *fwrq = &wrqu->freq;
6652         int err = 0;
6653
6654         if (priv->ieee->iw_mode == IW_MODE_INFRA)
6655                 return -EOPNOTSUPP;
6656
6657         mutex_lock(&priv->action_mutex);
6658         if (!(priv->status & STATUS_INITIALIZED)) {
6659                 err = -EIO;
6660                 goto done;
6661         }
6662
6663         /* if setting by freq convert to channel */
6664         if (fwrq->e == 1) {
6665                 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6666                         int f = fwrq->m / 100000;
6667                         int c = 0;
6668
6669                         while ((c < REG_MAX_CHANNEL) &&
6670                                (f != ipw2100_frequencies[c]))
6671                                 c++;
6672
6673                         /* hack to fall through */
6674                         fwrq->e = 0;
6675                         fwrq->m = c + 1;
6676                 }
6677         }
6678
6679         if (fwrq->e > 0 || fwrq->m > 1000) {
6680                 err = -EOPNOTSUPP;
6681                 goto done;
6682         } else {                /* Set the channel */
6683                 IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
6684                 err = ipw2100_set_channel(priv, fwrq->m, 0);
6685         }
6686
6687       done:
6688         mutex_unlock(&priv->action_mutex);
6689         return err;
6690 }
6691
6692 static int ipw2100_wx_get_freq(struct net_device *dev,
6693                                struct iw_request_info *info,
6694                                union iwreq_data *wrqu, char *extra)
6695 {
6696         /*
6697          * This can be called at any time.  No action lock required
6698          */
6699
6700         struct ipw2100_priv *priv = libipw_priv(dev);
6701
6702         wrqu->freq.e = 0;
6703
6704         /* If we are associated, trying to associate, or have a statically
6705          * configured CHANNEL then return that; otherwise return ANY */
6706         if (priv->config & CFG_STATIC_CHANNEL ||
6707             priv->status & STATUS_ASSOCIATED)
6708                 wrqu->freq.m = priv->channel;
6709         else
6710                 wrqu->freq.m = 0;
6711
6712         IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
6713         return 0;
6714
6715 }
6716
6717 static int ipw2100_wx_set_mode(struct net_device *dev,
6718                                struct iw_request_info *info,
6719                                union iwreq_data *wrqu, char *extra)
6720 {
6721         struct ipw2100_priv *priv = libipw_priv(dev);
6722         int err = 0;
6723
6724         IPW_DEBUG_WX("SET Mode -> %d\n", wrqu->mode);
6725
6726         if (wrqu->mode == priv->ieee->iw_mode)
6727                 return 0;
6728
6729         mutex_lock(&priv->action_mutex);
6730         if (!(priv->status & STATUS_INITIALIZED)) {
6731                 err = -EIO;
6732                 goto done;
6733         }
6734
6735         switch (wrqu->mode) {
6736 #ifdef CONFIG_IPW2100_MONITOR
6737         case IW_MODE_MONITOR:
6738                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6739                 break;
6740 #endif                          /* CONFIG_IPW2100_MONITOR */
6741         case IW_MODE_ADHOC:
6742                 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6743                 break;
6744         case IW_MODE_INFRA:
6745         case IW_MODE_AUTO:
6746         default:
6747                 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6748                 break;
6749         }
6750
6751       done:
6752         mutex_unlock(&priv->action_mutex);
6753         return err;
6754 }
6755
6756 static int ipw2100_wx_get_mode(struct net_device *dev,
6757                                struct iw_request_info *info,
6758                                union iwreq_data *wrqu, char *extra)
6759 {
6760         /*
6761          * This can be called at any time.  No action lock required
6762          */
6763
6764         struct ipw2100_priv *priv = libipw_priv(dev);
6765
6766         wrqu->mode = priv->ieee->iw_mode;
6767         IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6768
6769         return 0;
6770 }
6771
6772 #define POWER_MODES 5
6773
6774 /* Values are in microsecond */
6775 static const s32 timeout_duration[POWER_MODES] = {
6776         350000,
6777         250000,
6778         75000,
6779         37000,
6780         25000,
6781 };
6782
6783 static const s32 period_duration[POWER_MODES] = {
6784         400000,
6785         700000,
6786         1000000,
6787         1000000,
6788         1000000
6789 };
6790
6791 static int ipw2100_wx_get_range(struct net_device *dev,
6792                                 struct iw_request_info *info,
6793                                 union iwreq_data *wrqu, char *extra)
6794 {
6795         /*
6796          * This can be called at any time.  No action lock required
6797          */
6798
6799         struct ipw2100_priv *priv = libipw_priv(dev);
6800         struct iw_range *range = (struct iw_range *)extra;
6801         u16 val;
6802         int i, level;
6803
6804         wrqu->data.length = sizeof(*range);
6805         memset(range, 0, sizeof(*range));
6806
6807         /* Let's try to keep this struct in the same order as in
6808          * linux/include/wireless.h
6809          */
6810
6811         /* TODO: See what values we can set, and remove the ones we can't
6812          * set, or fill them with some default data.
6813          */
6814
6815         /* ~5 Mb/s real (802.11b) */
6816         range->throughput = 5 * 1000 * 1000;
6817
6818 //      range->sensitivity;     /* signal level threshold range */
6819
6820         range->max_qual.qual = 100;
6821         /* TODO: Find real max RSSI and stick here */
6822         range->max_qual.level = 0;
6823         range->max_qual.noise = 0;
6824         range->max_qual.updated = 7;    /* Updated all three */
6825
6826         range->avg_qual.qual = 70;      /* > 8% missed beacons is 'bad' */
6827         /* TODO: Find real 'good' to 'bad' threshold value for RSSI */
6828         range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6829         range->avg_qual.noise = 0;
6830         range->avg_qual.updated = 7;    /* Updated all three */
6831
6832         range->num_bitrates = RATE_COUNT;
6833
6834         for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6835                 range->bitrate[i] = ipw2100_bg_rates[i].bitrate * 100 * 1000;
6836         }
6837
6838         range->min_rts = MIN_RTS_THRESHOLD;
6839         range->max_rts = MAX_RTS_THRESHOLD;
6840         range->min_frag = MIN_FRAG_THRESHOLD;
6841         range->max_frag = MAX_FRAG_THRESHOLD;
6842
6843         range->min_pmp = period_duration[0];    /* Minimal PM period */
6844         range->max_pmp = period_duration[POWER_MODES - 1];      /* Maximal PM period */
6845         range->min_pmt = timeout_duration[POWER_MODES - 1];     /* Minimal PM timeout */
6846         range->max_pmt = timeout_duration[0];   /* Maximal PM timeout */
6847
6848         /* How to decode max/min PM period */
6849         range->pmp_flags = IW_POWER_PERIOD;
6850         /* How to decode max/min PM period */
6851         range->pmt_flags = IW_POWER_TIMEOUT;
6852         /* What PM options are supported */
6853         range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6854
6855         range->encoding_size[0] = 5;
6856         range->encoding_size[1] = 13;   /* Different token sizes */
6857         range->num_encoding_sizes = 2;  /* Number of entry in the list */
6858         range->max_encoding_tokens = WEP_KEYS;  /* Max number of tokens */
6859 //      range->encoding_login_index;            /* token index for login token */
6860
6861         if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6862                 range->txpower_capa = IW_TXPOW_DBM;
6863                 range->num_txpower = IW_MAX_TXPOWER;
6864                 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6865                      i < IW_MAX_TXPOWER;
6866                      i++, level -=
6867                      ((IPW_TX_POWER_MAX_DBM -
6868                        IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6869                         range->txpower[i] = level / 16;
6870         } else {
6871                 range->txpower_capa = 0;
6872                 range->num_txpower = 0;
6873         }
6874
6875         /* Set the Wireless Extension versions */
6876         range->we_version_compiled = WIRELESS_EXT;
6877         range->we_version_source = 18;
6878
6879 //      range->retry_capa;      /* What retry options are supported */
6880 //      range->retry_flags;     /* How to decode max/min retry limit */
6881 //      range->r_time_flags;    /* How to decode max/min retry life */
6882 //      range->min_retry;       /* Minimal number of retries */
6883 //      range->max_retry;       /* Maximal number of retries */
6884 //      range->min_r_time;      /* Minimal retry lifetime */
6885 //      range->max_r_time;      /* Maximal retry lifetime */
6886
6887         range->num_channels = FREQ_COUNT;
6888
6889         val = 0;
6890         for (i = 0; i < FREQ_COUNT; i++) {
6891                 // TODO: Include only legal frequencies for some countries
6892 //              if (local->channel_mask & (1 << i)) {
6893                 range->freq[val].i = i + 1;
6894                 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6895                 range->freq[val].e = 1;
6896                 val++;
6897 //              }
6898                 if (val == IW_MAX_FREQUENCIES)
6899                         break;
6900         }
6901         range->num_frequency = val;
6902
6903         /* Event capability (kernel + driver) */
6904         range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6905                                 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6906         range->event_capa[1] = IW_EVENT_CAPA_K_1;
6907
6908         range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6909                 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6910
6911         IPW_DEBUG_WX("GET Range\n");
6912
6913         return 0;
6914 }
6915
6916 static int ipw2100_wx_set_wap(struct net_device *dev,
6917                               struct iw_request_info *info,
6918                               union iwreq_data *wrqu, char *extra)
6919 {
6920         struct ipw2100_priv *priv = libipw_priv(dev);
6921         int err = 0;
6922
6923         // sanity checks
6924         if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6925                 return -EINVAL;
6926
6927         mutex_lock(&priv->action_mutex);
6928         if (!(priv->status & STATUS_INITIALIZED)) {
6929                 err = -EIO;
6930                 goto done;
6931         }
6932
6933         if (is_broadcast_ether_addr(wrqu->ap_addr.sa_data) ||
6934             is_zero_ether_addr(wrqu->ap_addr.sa_data)) {
6935                 /* we disable mandatory BSSID association */
6936                 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6937                 priv->config &= ~CFG_STATIC_BSSID;
6938                 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6939                 goto done;
6940         }
6941
6942         priv->config |= CFG_STATIC_BSSID;
6943         memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6944
6945         err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6946
6947         IPW_DEBUG_WX("SET BSSID -> %pM\n", wrqu->ap_addr.sa_data);
6948
6949       done:
6950         mutex_unlock(&priv->action_mutex);
6951         return err;
6952 }
6953
6954 static int ipw2100_wx_get_wap(struct net_device *dev,
6955                               struct iw_request_info *info,
6956                               union iwreq_data *wrqu, char *extra)
6957 {
6958         /*
6959          * This can be called at any time.  No action lock required
6960          */
6961
6962         struct ipw2100_priv *priv = libipw_priv(dev);
6963
6964         /* If we are associated, trying to associate, or have a statically
6965          * configured BSSID then return that; otherwise return ANY */
6966         if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6967                 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6968                 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6969         } else
6970                 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6971
6972         IPW_DEBUG_WX("Getting WAP BSSID: %pM\n", wrqu->ap_addr.sa_data);
6973         return 0;
6974 }
6975
6976 static int ipw2100_wx_set_essid(struct net_device *dev,
6977                                 struct iw_request_info *info,
6978                                 union iwreq_data *wrqu, char *extra)
6979 {
6980         struct ipw2100_priv *priv = libipw_priv(dev);
6981         char *essid = "";       /* ANY */
6982         int length = 0;
6983         int err = 0;
6984         DECLARE_SSID_BUF(ssid);
6985
6986         mutex_lock(&priv->action_mutex);
6987         if (!(priv->status & STATUS_INITIALIZED)) {
6988                 err = -EIO;
6989                 goto done;
6990         }
6991
6992         if (wrqu->essid.flags && wrqu->essid.length) {
6993                 length = wrqu->essid.length;
6994                 essid = extra;
6995         }
6996
6997         if (length == 0) {
6998                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6999                 priv->config &= ~CFG_STATIC_ESSID;
7000                 err = ipw2100_set_essid(priv, NULL, 0, 0);
7001                 goto done;
7002         }
7003
7004         length = min(length, IW_ESSID_MAX_SIZE);
7005
7006         priv->config |= CFG_STATIC_ESSID;
7007
7008         if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
7009                 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
7010                 err = 0;
7011                 goto done;
7012         }
7013
7014         IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
7015                      print_ssid(ssid, essid, length), length);
7016
7017         priv->essid_len = length;
7018         memcpy(priv->essid, essid, priv->essid_len);
7019
7020         err = ipw2100_set_essid(priv, essid, length, 0);
7021
7022       done:
7023         mutex_unlock(&priv->action_mutex);
7024         return err;
7025 }
7026
7027 static int ipw2100_wx_get_essid(struct net_device *dev,
7028                                 struct iw_request_info *info,
7029                                 union iwreq_data *wrqu, char *extra)
7030 {
7031         /*
7032          * This can be called at any time.  No action lock required
7033          */
7034
7035         struct ipw2100_priv *priv = libipw_priv(dev);
7036         DECLARE_SSID_BUF(ssid);
7037
7038         /* If we are associated, trying to associate, or have a statically
7039          * configured ESSID then return that; otherwise return ANY */
7040         if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7041                 IPW_DEBUG_WX("Getting essid: '%s'\n",
7042                              print_ssid(ssid, priv->essid, priv->essid_len));
7043                 memcpy(extra, priv->essid, priv->essid_len);
7044                 wrqu->essid.length = priv->essid_len;
7045                 wrqu->essid.flags = 1;  /* active */
7046         } else {
7047                 IPW_DEBUG_WX("Getting essid: ANY\n");
7048                 wrqu->essid.length = 0;
7049                 wrqu->essid.flags = 0;  /* active */
7050         }
7051
7052         return 0;
7053 }
7054
7055 static int ipw2100_wx_set_nick(struct net_device *dev,
7056                                struct iw_request_info *info,
7057                                union iwreq_data *wrqu, char *extra)
7058 {
7059         /*
7060          * This can be called at any time.  No action lock required
7061          */
7062
7063         struct ipw2100_priv *priv = libipw_priv(dev);
7064
7065         if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7066                 return -E2BIG;
7067
7068         wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7069         memset(priv->nick, 0, sizeof(priv->nick));
7070         memcpy(priv->nick, extra, wrqu->data.length);
7071
7072         IPW_DEBUG_WX("SET Nickname -> %s\n", priv->nick);
7073
7074         return 0;
7075 }
7076
7077 static int ipw2100_wx_get_nick(struct net_device *dev,
7078                                struct iw_request_info *info,
7079                                union iwreq_data *wrqu, char *extra)
7080 {
7081         /*
7082          * This can be called at any time.  No action lock required
7083          */
7084
7085         struct ipw2100_priv *priv = libipw_priv(dev);
7086
7087         wrqu->data.length = strlen(priv->nick);
7088         memcpy(extra, priv->nick, wrqu->data.length);
7089         wrqu->data.flags = 1;   /* active */
7090
7091         IPW_DEBUG_WX("GET Nickname -> %s\n", extra);
7092
7093         return 0;
7094 }
7095
7096 static int ipw2100_wx_set_rate(struct net_device *dev,
7097                                struct iw_request_info *info,
7098                                union iwreq_data *wrqu, char *extra)
7099 {
7100         struct ipw2100_priv *priv = libipw_priv(dev);
7101         u32 target_rate = wrqu->bitrate.value;
7102         u32 rate;
7103         int err = 0;
7104
7105         mutex_lock(&priv->action_mutex);
7106         if (!(priv->status & STATUS_INITIALIZED)) {
7107                 err = -EIO;
7108                 goto done;
7109         }
7110
7111         rate = 0;
7112
7113         if (target_rate == 1000000 ||
7114             (!wrqu->bitrate.fixed && target_rate > 1000000))
7115                 rate |= TX_RATE_1_MBIT;
7116         if (target_rate == 2000000 ||
7117             (!wrqu->bitrate.fixed && target_rate > 2000000))
7118                 rate |= TX_RATE_2_MBIT;
7119         if (target_rate == 5500000 ||
7120             (!wrqu->bitrate.fixed && target_rate > 5500000))
7121                 rate |= TX_RATE_5_5_MBIT;
7122         if (target_rate == 11000000 ||
7123             (!wrqu->bitrate.fixed && target_rate > 11000000))
7124                 rate |= TX_RATE_11_MBIT;
7125         if (rate == 0)
7126                 rate = DEFAULT_TX_RATES;
7127
7128         err = ipw2100_set_tx_rates(priv, rate, 0);
7129
7130         IPW_DEBUG_WX("SET Rate -> %04X\n", rate);
7131       done:
7132         mutex_unlock(&priv->action_mutex);
7133         return err;
7134 }
7135
7136 static int ipw2100_wx_get_rate(struct net_device *dev,
7137                                struct iw_request_info *info,
7138                                union iwreq_data *wrqu, char *extra)
7139 {
7140         struct ipw2100_priv *priv = libipw_priv(dev);
7141         int val;
7142         unsigned int len = sizeof(val);
7143         int err = 0;
7144
7145         if (!(priv->status & STATUS_ENABLED) ||
7146             priv->status & STATUS_RF_KILL_MASK ||
7147             !(priv->status & STATUS_ASSOCIATED)) {
7148                 wrqu->bitrate.value = 0;
7149                 return 0;
7150         }
7151
7152         mutex_lock(&priv->action_mutex);
7153         if (!(priv->status & STATUS_INITIALIZED)) {
7154                 err = -EIO;
7155                 goto done;
7156         }
7157
7158         err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7159         if (err) {
7160                 IPW_DEBUG_WX("failed querying ordinals.\n");
7161                 goto done;
7162         }
7163
7164         switch (val & TX_RATE_MASK) {
7165         case TX_RATE_1_MBIT:
7166                 wrqu->bitrate.value = 1000000;
7167                 break;
7168         case TX_RATE_2_MBIT:
7169                 wrqu->bitrate.value = 2000000;
7170                 break;
7171         case TX_RATE_5_5_MBIT:
7172                 wrqu->bitrate.value = 5500000;
7173                 break;
7174         case TX_RATE_11_MBIT:
7175                 wrqu->bitrate.value = 11000000;
7176                 break;
7177         default:
7178                 wrqu->bitrate.value = 0;
7179         }
7180
7181         IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
7182
7183       done:
7184         mutex_unlock(&priv->action_mutex);
7185         return err;
7186 }
7187
7188 static int ipw2100_wx_set_rts(struct net_device *dev,
7189                               struct iw_request_info *info,
7190                               union iwreq_data *wrqu, char *extra)
7191 {
7192         struct ipw2100_priv *priv = libipw_priv(dev);
7193         int value, err;
7194
7195         /* Auto RTS not yet supported */
7196         if (wrqu->rts.fixed == 0)
7197                 return -EINVAL;
7198
7199         mutex_lock(&priv->action_mutex);
7200         if (!(priv->status & STATUS_INITIALIZED)) {
7201                 err = -EIO;
7202                 goto done;
7203         }
7204
7205         if (wrqu->rts.disabled)
7206                 value = priv->rts_threshold | RTS_DISABLED;
7207         else {
7208                 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7209                         err = -EINVAL;
7210                         goto done;
7211                 }
7212                 value = wrqu->rts.value;
7213         }
7214
7215         err = ipw2100_set_rts_threshold(priv, value);
7216
7217         IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X\n", value);
7218       done:
7219         mutex_unlock(&priv->action_mutex);
7220         return err;
7221 }
7222
7223 static int ipw2100_wx_get_rts(struct net_device *dev,
7224                               struct iw_request_info *info,
7225                               union iwreq_data *wrqu, char *extra)
7226 {
7227         /*
7228          * This can be called at any time.  No action lock required
7229          */
7230
7231         struct ipw2100_priv *priv = libipw_priv(dev);
7232
7233         wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7234         wrqu->rts.fixed = 1;    /* no auto select */
7235
7236         /* If RTS is set to the default value, then it is disabled */
7237         wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7238
7239         IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X\n", wrqu->rts.value);
7240
7241         return 0;
7242 }
7243
7244 static int ipw2100_wx_set_txpow(struct net_device *dev,
7245                                 struct iw_request_info *info,
7246                                 union iwreq_data *wrqu, char *extra)
7247 {
7248         struct ipw2100_priv *priv = libipw_priv(dev);
7249         int err = 0, value;
7250         
7251         if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7252                 return -EINPROGRESS;
7253
7254         if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7255                 return 0;
7256
7257         if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7258                 return -EINVAL;
7259
7260         if (wrqu->txpower.fixed == 0)
7261                 value = IPW_TX_POWER_DEFAULT;
7262         else {
7263                 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7264                     wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7265                         return -EINVAL;
7266
7267                 value = wrqu->txpower.value;
7268         }
7269
7270         mutex_lock(&priv->action_mutex);
7271         if (!(priv->status & STATUS_INITIALIZED)) {
7272                 err = -EIO;
7273                 goto done;
7274         }
7275
7276         err = ipw2100_set_tx_power(priv, value);
7277
7278         IPW_DEBUG_WX("SET TX Power -> %d\n", value);
7279
7280       done:
7281         mutex_unlock(&priv->action_mutex);
7282         return err;
7283 }
7284
7285 static int ipw2100_wx_get_txpow(struct net_device *dev,
7286                                 struct iw_request_info *info,
7287                                 union iwreq_data *wrqu, char *extra)
7288 {
7289         /*
7290          * This can be called at any time.  No action lock required
7291          */
7292
7293         struct ipw2100_priv *priv = libipw_priv(dev);
7294
7295         wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7296
7297         if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7298                 wrqu->txpower.fixed = 0;
7299                 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7300         } else {
7301                 wrqu->txpower.fixed = 1;
7302                 wrqu->txpower.value = priv->tx_power;
7303         }
7304
7305         wrqu->txpower.flags = IW_TXPOW_DBM;
7306
7307         IPW_DEBUG_WX("GET TX Power -> %d\n", wrqu->txpower.value);
7308
7309         return 0;
7310 }
7311
7312 static int ipw2100_wx_set_frag(struct net_device *dev,
7313                                struct iw_request_info *info,
7314                                union iwreq_data *wrqu, char *extra)
7315 {
7316         /*
7317          * This can be called at any time.  No action lock required
7318          */
7319
7320         struct ipw2100_priv *priv = libipw_priv(dev);
7321
7322         if (!wrqu->frag.fixed)
7323                 return -EINVAL;
7324
7325         if (wrqu->frag.disabled) {
7326                 priv->frag_threshold |= FRAG_DISABLED;
7327                 priv->ieee->fts = DEFAULT_FTS;
7328         } else {
7329                 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7330                     wrqu->frag.value > MAX_FRAG_THRESHOLD)
7331                         return -EINVAL;
7332
7333                 priv->ieee->fts = wrqu->frag.value & ~0x1;
7334                 priv->frag_threshold = priv->ieee->fts;
7335         }
7336
7337         IPW_DEBUG_WX("SET Frag Threshold -> %d\n", priv->ieee->fts);
7338
7339         return 0;
7340 }
7341
7342 static int ipw2100_wx_get_frag(struct net_device *dev,
7343                                struct iw_request_info *info,
7344                                union iwreq_data *wrqu, char *extra)
7345 {
7346         /*
7347          * This can be called at any time.  No action lock required
7348          */
7349
7350         struct ipw2100_priv *priv = libipw_priv(dev);
7351         wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7352         wrqu->frag.fixed = 0;   /* no auto select */
7353         wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7354
7355         IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
7356
7357         return 0;
7358 }
7359
7360 static int ipw2100_wx_set_retry(struct net_device *dev,
7361                                 struct iw_request_info *info,
7362                                 union iwreq_data *wrqu, char *extra)
7363 {
7364         struct ipw2100_priv *priv = libipw_priv(dev);
7365         int err = 0;
7366
7367         if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7368                 return -EINVAL;
7369
7370         if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7371                 return 0;
7372
7373         mutex_lock(&priv->action_mutex);
7374         if (!(priv->status & STATUS_INITIALIZED)) {
7375                 err = -EIO;
7376                 goto done;
7377         }
7378
7379         if (wrqu->retry.flags & IW_RETRY_SHORT) {
7380                 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7381                 IPW_DEBUG_WX("SET Short Retry Limit -> %d\n",
7382                              wrqu->retry.value);
7383                 goto done;
7384         }
7385
7386         if (wrqu->retry.flags & IW_RETRY_LONG) {
7387                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7388                 IPW_DEBUG_WX("SET Long Retry Limit -> %d\n",
7389                              wrqu->retry.value);
7390                 goto done;
7391         }
7392
7393         err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7394         if (!err)
7395                 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7396
7397         IPW_DEBUG_WX("SET Both Retry Limits -> %d\n", wrqu->retry.value);
7398
7399       done:
7400         mutex_unlock(&priv->action_mutex);
7401         return err;
7402 }
7403
7404 static int ipw2100_wx_get_retry(struct net_device *dev,
7405                                 struct iw_request_info *info,
7406                                 union iwreq_data *wrqu, char *extra)
7407 {
7408         /*
7409          * This can be called at any time.  No action lock required
7410          */
7411
7412         struct ipw2100_priv *priv = libipw_priv(dev);
7413
7414         wrqu->retry.disabled = 0;       /* can't be disabled */
7415
7416         if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7417                 return -EINVAL;
7418
7419         if (wrqu->retry.flags & IW_RETRY_LONG) {
7420                 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7421                 wrqu->retry.value = priv->long_retry_limit;
7422         } else {
7423                 wrqu->retry.flags =
7424                     (priv->short_retry_limit !=
7425                      priv->long_retry_limit) ?
7426                     IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7427
7428                 wrqu->retry.value = priv->short_retry_limit;
7429         }
7430
7431         IPW_DEBUG_WX("GET Retry -> %d\n", wrqu->retry.value);
7432
7433         return 0;
7434 }
7435
7436 static int ipw2100_wx_set_scan(struct net_device *dev,
7437                                struct iw_request_info *info,
7438                                union iwreq_data *wrqu, char *extra)
7439 {
7440         struct ipw2100_priv *priv = libipw_priv(dev);
7441         int err = 0;
7442
7443         mutex_lock(&priv->action_mutex);
7444         if (!(priv->status & STATUS_INITIALIZED)) {
7445                 err = -EIO;
7446                 goto done;
7447         }
7448
7449         IPW_DEBUG_WX("Initiating scan...\n");
7450
7451         priv->user_requested_scan = 1;
7452         if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7453                 IPW_DEBUG_WX("Start scan failed.\n");
7454
7455                 /* TODO: Mark a scan as pending so when hardware initialized
7456                  *       a scan starts */
7457         }
7458
7459       done:
7460         mutex_unlock(&priv->action_mutex);
7461         return err;
7462 }
7463
7464 static int ipw2100_wx_get_scan(struct net_device *dev,
7465                                struct iw_request_info *info,
7466                                union iwreq_data *wrqu, char *extra)
7467 {
7468         /*
7469          * This can be called at any time.  No action lock required
7470          */
7471
7472         struct ipw2100_priv *priv = libipw_priv(dev);
7473         return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
7474 }
7475
7476 /*
7477  * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7478  */
7479 static int ipw2100_wx_set_encode(struct net_device *dev,
7480                                  struct iw_request_info *info,
7481                                  union iwreq_data *wrqu, char *key)
7482 {
7483         /*
7484          * No check of STATUS_INITIALIZED required
7485          */
7486
7487         struct ipw2100_priv *priv = libipw_priv(dev);
7488         return libipw_wx_set_encode(priv->ieee, info, wrqu, key);
7489 }
7490
7491 static int ipw2100_wx_get_encode(struct net_device *dev,
7492                                  struct iw_request_info *info,
7493                                  union iwreq_data *wrqu, char *key)
7494 {
7495         /*
7496          * This can be called at any time.  No action lock required
7497          */
7498
7499         struct ipw2100_priv *priv = libipw_priv(dev);
7500         return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
7501 }
7502
7503 static int ipw2100_wx_set_power(struct net_device *dev,
7504                                 struct iw_request_info *info,
7505                                 union iwreq_data *wrqu, char *extra)
7506 {
7507         struct ipw2100_priv *priv = libipw_priv(dev);
7508         int err = 0;
7509
7510         mutex_lock(&priv->action_mutex);
7511         if (!(priv->status & STATUS_INITIALIZED)) {
7512                 err = -EIO;
7513                 goto done;
7514         }
7515
7516         if (wrqu->power.disabled) {
7517                 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7518                 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7519                 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7520                 goto done;
7521         }
7522
7523         switch (wrqu->power.flags & IW_POWER_MODE) {
7524         case IW_POWER_ON:       /* If not specified */
7525         case IW_POWER_MODE:     /* If set all mask */
7526         case IW_POWER_ALL_R:    /* If explicitly state all */
7527                 break;
7528         default:                /* Otherwise we don't support it */
7529                 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7530                              wrqu->power.flags);
7531                 err = -EOPNOTSUPP;
7532                 goto done;
7533         }
7534
7535         /* If the user hasn't specified a power management mode yet, default
7536          * to BATTERY */
7537         priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7538         err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7539
7540         IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7541
7542       done:
7543         mutex_unlock(&priv->action_mutex);
7544         return err;
7545
7546 }
7547
7548 static int ipw2100_wx_get_power(struct net_device *dev,
7549                                 struct iw_request_info *info,
7550                                 union iwreq_data *wrqu, char *extra)
7551 {
7552         /*
7553          * This can be called at any time.  No action lock required
7554          */
7555
7556         struct ipw2100_priv *priv = libipw_priv(dev);
7557
7558         if (!(priv->power_mode & IPW_POWER_ENABLED))
7559                 wrqu->power.disabled = 1;
7560         else {
7561                 wrqu->power.disabled = 0;
7562                 wrqu->power.flags = 0;
7563         }
7564
7565         IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7566
7567         return 0;
7568 }
7569
7570 /*
7571  * WE-18 WPA support
7572  */
7573
7574 /* SIOCSIWGENIE */
7575 static int ipw2100_wx_set_genie(struct net_device *dev,
7576                                 struct iw_request_info *info,
7577                                 union iwreq_data *wrqu, char *extra)
7578 {
7579
7580         struct ipw2100_priv *priv = libipw_priv(dev);
7581         struct libipw_device *ieee = priv->ieee;
7582         u8 *buf;
7583
7584         if (!ieee->wpa_enabled)
7585                 return -EOPNOTSUPP;
7586
7587         if (wrqu->data.length > MAX_WPA_IE_LEN ||
7588             (wrqu->data.length && extra == NULL))
7589                 return -EINVAL;
7590
7591         if (wrqu->data.length) {
7592                 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7593                 if (buf == NULL)
7594                         return -ENOMEM;
7595
7596                 kfree(ieee->wpa_ie);
7597                 ieee->wpa_ie = buf;
7598                 ieee->wpa_ie_len = wrqu->data.length;
7599         } else {
7600                 kfree(ieee->wpa_ie);
7601                 ieee->wpa_ie = NULL;
7602                 ieee->wpa_ie_len = 0;
7603         }
7604
7605         ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7606
7607         return 0;
7608 }
7609
7610 /* SIOCGIWGENIE */
7611 static int ipw2100_wx_get_genie(struct net_device *dev,
7612                                 struct iw_request_info *info,
7613                                 union iwreq_data *wrqu, char *extra)
7614 {
7615         struct ipw2100_priv *priv = libipw_priv(dev);
7616         struct libipw_device *ieee = priv->ieee;
7617
7618         if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7619                 wrqu->data.length = 0;
7620                 return 0;
7621         }
7622
7623         if (wrqu->data.length < ieee->wpa_ie_len)
7624                 return -E2BIG;
7625
7626         wrqu->data.length = ieee->wpa_ie_len;
7627         memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7628
7629         return 0;
7630 }
7631
7632 /* SIOCSIWAUTH */
7633 static int ipw2100_wx_set_auth(struct net_device *dev,
7634                                struct iw_request_info *info,
7635                                union iwreq_data *wrqu, char *extra)
7636 {
7637         struct ipw2100_priv *priv = libipw_priv(dev);
7638         struct libipw_device *ieee = priv->ieee;
7639         struct iw_param *param = &wrqu->param;
7640         struct lib80211_crypt_data *crypt;
7641         unsigned long flags;
7642         int ret = 0;
7643
7644         switch (param->flags & IW_AUTH_INDEX) {
7645         case IW_AUTH_WPA_VERSION:
7646         case IW_AUTH_CIPHER_PAIRWISE:
7647         case IW_AUTH_CIPHER_GROUP:
7648         case IW_AUTH_KEY_MGMT:
7649                 /*
7650                  * ipw2200 does not use these parameters
7651                  */
7652                 break;
7653
7654         case IW_AUTH_TKIP_COUNTERMEASURES:
7655                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7656                 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7657                         break;
7658
7659                 flags = crypt->ops->get_flags(crypt->priv);
7660
7661                 if (param->value)
7662                         flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7663                 else
7664                         flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7665
7666                 crypt->ops->set_flags(flags, crypt->priv);
7667
7668                 break;
7669
7670         case IW_AUTH_DROP_UNENCRYPTED:{
7671                         /* HACK:
7672                          *
7673                          * wpa_supplicant calls set_wpa_enabled when the driver
7674                          * is loaded and unloaded, regardless of if WPA is being
7675                          * used.  No other calls are made which can be used to
7676                          * determine if encryption will be used or not prior to
7677                          * association being expected.  If encryption is not being
7678                          * used, drop_unencrypted is set to false, else true -- we
7679                          * can use this to determine if the CAP_PRIVACY_ON bit should
7680                          * be set.
7681                          */
7682                         struct libipw_security sec = {
7683                                 .flags = SEC_ENABLED,
7684                                 .enabled = param->value,
7685                         };
7686                         priv->ieee->drop_unencrypted = param->value;
7687                         /* We only change SEC_LEVEL for open mode. Others
7688                          * are set by ipw_wpa_set_encryption.
7689                          */
7690                         if (!param->value) {
7691                                 sec.flags |= SEC_LEVEL;
7692                                 sec.level = SEC_LEVEL_0;
7693                         } else {
7694                                 sec.flags |= SEC_LEVEL;
7695                                 sec.level = SEC_LEVEL_1;
7696                         }
7697                         if (priv->ieee->set_security)
7698                                 priv->ieee->set_security(priv->ieee->dev, &sec);
7699                         break;
7700                 }
7701
7702         case IW_AUTH_80211_AUTH_ALG:
7703                 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7704                 break;
7705
7706         case IW_AUTH_WPA_ENABLED:
7707                 ret = ipw2100_wpa_enable(priv, param->value);
7708                 break;
7709
7710         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7711                 ieee->ieee802_1x = param->value;
7712                 break;
7713
7714                 //case IW_AUTH_ROAMING_CONTROL:
7715         case IW_AUTH_PRIVACY_INVOKED:
7716                 ieee->privacy_invoked = param->value;
7717                 break;
7718
7719         default:
7720                 return -EOPNOTSUPP;
7721         }
7722         return ret;
7723 }
7724
7725 /* SIOCGIWAUTH */
7726 static int ipw2100_wx_get_auth(struct net_device *dev,
7727                                struct iw_request_info *info,
7728                                union iwreq_data *wrqu, char *extra)
7729 {
7730         struct ipw2100_priv *priv = libipw_priv(dev);
7731         struct libipw_device *ieee = priv->ieee;
7732         struct lib80211_crypt_data *crypt;
7733         struct iw_param *param = &wrqu->param;
7734         int ret = 0;
7735
7736         switch (param->flags & IW_AUTH_INDEX) {
7737         case IW_AUTH_WPA_VERSION:
7738         case IW_AUTH_CIPHER_PAIRWISE:
7739         case IW_AUTH_CIPHER_GROUP:
7740         case IW_AUTH_KEY_MGMT:
7741                 /*
7742                  * wpa_supplicant will control these internally
7743                  */
7744                 ret = -EOPNOTSUPP;
7745                 break;
7746
7747         case IW_AUTH_TKIP_COUNTERMEASURES:
7748                 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
7749                 if (!crypt || !crypt->ops->get_flags) {
7750                         IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7751                                           "crypt not set!\n");
7752                         break;
7753                 }
7754
7755                 param->value = (crypt->ops->get_flags(crypt->priv) &
7756                                 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7757
7758                 break;
7759
7760         case IW_AUTH_DROP_UNENCRYPTED:
7761                 param->value = ieee->drop_unencrypted;
7762                 break;
7763
7764         case IW_AUTH_80211_AUTH_ALG:
7765                 param->value = priv->ieee->sec.auth_mode;
7766                 break;
7767
7768         case IW_AUTH_WPA_ENABLED:
7769                 param->value = ieee->wpa_enabled;
7770                 break;
7771
7772         case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7773                 param->value = ieee->ieee802_1x;
7774                 break;
7775
7776         case IW_AUTH_ROAMING_CONTROL:
7777         case IW_AUTH_PRIVACY_INVOKED:
7778                 param->value = ieee->privacy_invoked;
7779                 break;
7780
7781         default:
7782                 return -EOPNOTSUPP;
7783         }
7784         return 0;
7785 }
7786
7787 /* SIOCSIWENCODEEXT */
7788 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7789                                     struct iw_request_info *info,
7790                                     union iwreq_data *wrqu, char *extra)
7791 {
7792         struct ipw2100_priv *priv = libipw_priv(dev);
7793         return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7794 }
7795
7796 /* SIOCGIWENCODEEXT */
7797 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7798                                     struct iw_request_info *info,
7799                                     union iwreq_data *wrqu, char *extra)
7800 {
7801         struct ipw2100_priv *priv = libipw_priv(dev);
7802         return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7803 }
7804
7805 /* SIOCSIWMLME */
7806 static int ipw2100_wx_set_mlme(struct net_device *dev,
7807                                struct iw_request_info *info,
7808                                union iwreq_data *wrqu, char *extra)
7809 {
7810         struct ipw2100_priv *priv = libipw_priv(dev);
7811         struct iw_mlme *mlme = (struct iw_mlme *)extra;
7812         __le16 reason;
7813
7814         reason = cpu_to_le16(mlme->reason_code);
7815
7816         switch (mlme->cmd) {
7817         case IW_MLME_DEAUTH:
7818                 // silently ignore
7819                 break;
7820
7821         case IW_MLME_DISASSOC:
7822                 ipw2100_disassociate_bssid(priv);
7823                 break;
7824
7825         default:
7826                 return -EOPNOTSUPP;
7827         }
7828         return 0;
7829 }
7830
7831 /*
7832  *
7833  * IWPRIV handlers
7834  *
7835  */
7836 #ifdef CONFIG_IPW2100_MONITOR
7837 static int ipw2100_wx_set_promisc(struct net_device *dev,
7838                                   struct iw_request_info *info,
7839                                   union iwreq_data *wrqu, char *extra)
7840 {
7841         struct ipw2100_priv *priv = libipw_priv(dev);
7842         int *parms = (int *)extra;
7843         int enable = (parms[0] > 0);
7844         int err = 0;
7845
7846         mutex_lock(&priv->action_mutex);
7847         if (!(priv->status & STATUS_INITIALIZED)) {
7848                 err = -EIO;
7849                 goto done;
7850         }
7851
7852         if (enable) {
7853                 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7854                         err = ipw2100_set_channel(priv, parms[1], 0);
7855                         goto done;
7856                 }
7857                 priv->channel = parms[1];
7858                 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7859         } else {
7860                 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7861                         err = ipw2100_switch_mode(priv, priv->last_mode);
7862         }
7863       done:
7864         mutex_unlock(&priv->action_mutex);
7865         return err;
7866 }
7867
7868 static int ipw2100_wx_reset(struct net_device *dev,
7869                             struct iw_request_info *info,
7870                             union iwreq_data *wrqu, char *extra)
7871 {
7872         struct ipw2100_priv *priv = libipw_priv(dev);
7873         if (priv->status & STATUS_INITIALIZED)
7874                 schedule_reset(priv);
7875         return 0;
7876 }
7877
7878 #endif
7879
7880 static int ipw2100_wx_set_powermode(struct net_device *dev,
7881                                     struct iw_request_info *info,
7882                                     union iwreq_data *wrqu, char *extra)
7883 {
7884         struct ipw2100_priv *priv = libipw_priv(dev);
7885         int err = 0, mode = *(int *)extra;
7886
7887         mutex_lock(&priv->action_mutex);
7888         if (!(priv->status & STATUS_INITIALIZED)) {
7889                 err = -EIO;
7890                 goto done;
7891         }
7892
7893         if ((mode < 0) || (mode > POWER_MODES))
7894                 mode = IPW_POWER_AUTO;
7895
7896         if (IPW_POWER_LEVEL(priv->power_mode) != mode)
7897                 err = ipw2100_set_power_mode(priv, mode);
7898       done:
7899         mutex_unlock(&priv->action_mutex);
7900         return err;
7901 }
7902
7903 #define MAX_POWER_STRING 80
7904 static int ipw2100_wx_get_powermode(struct net_device *dev,
7905                                     struct iw_request_info *info,
7906                                     union iwreq_data *wrqu, char *extra)
7907 {
7908         /*
7909          * This can be called at any time.  No action lock required
7910          */
7911
7912         struct ipw2100_priv *priv = libipw_priv(dev);
7913         int level = IPW_POWER_LEVEL(priv->power_mode);
7914         s32 timeout, period;
7915
7916         if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7917                 snprintf(extra, MAX_POWER_STRING,
7918                          "Power save level: %d (Off)", level);
7919         } else {
7920                 switch (level) {
7921                 case IPW_POWER_MODE_CAM:
7922                         snprintf(extra, MAX_POWER_STRING,
7923                                  "Power save level: %d (None)", level);
7924                         break;
7925                 case IPW_POWER_AUTO:
7926                         snprintf(extra, MAX_POWER_STRING,
7927                                  "Power save level: %d (Auto)", level);
7928                         break;
7929                 default:
7930                         timeout = timeout_duration[level - 1] / 1000;
7931                         period = period_duration[level - 1] / 1000;
7932                         snprintf(extra, MAX_POWER_STRING,
7933                                  "Power save level: %d "
7934                                  "(Timeout %dms, Period %dms)",
7935                                  level, timeout, period);
7936                 }
7937         }
7938
7939         wrqu->data.length = strlen(extra) + 1;
7940
7941         return 0;
7942 }
7943
7944 static int ipw2100_wx_set_preamble(struct net_device *dev,
7945                                    struct iw_request_info *info,
7946                                    union iwreq_data *wrqu, char *extra)
7947 {
7948         struct ipw2100_priv *priv = libipw_priv(dev);
7949         int err, mode = *(int *)extra;
7950
7951         mutex_lock(&priv->action_mutex);
7952         if (!(priv->status & STATUS_INITIALIZED)) {
7953                 err = -EIO;
7954                 goto done;
7955         }
7956
7957         if (mode == 1)
7958                 priv->config |= CFG_LONG_PREAMBLE;
7959         else if (mode == 0)
7960                 priv->config &= ~CFG_LONG_PREAMBLE;
7961         else {
7962                 err = -EINVAL;
7963                 goto done;
7964         }
7965
7966         err = ipw2100_system_config(priv, 0);
7967
7968       done:
7969         mutex_unlock(&priv->action_mutex);
7970         return err;
7971 }
7972
7973 static int ipw2100_wx_get_preamble(struct net_device *dev,
7974                                    struct iw_request_info *info,
7975                                    union iwreq_data *wrqu, char *extra)
7976 {
7977         /*
7978          * This can be called at any time.  No action lock required
7979          */
7980
7981         struct ipw2100_priv *priv = libipw_priv(dev);
7982
7983         if (priv->config & CFG_LONG_PREAMBLE)
7984                 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7985         else
7986                 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7987
7988         return 0;
7989 }
7990
7991 #ifdef CONFIG_IPW2100_MONITOR
7992 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7993                                     struct iw_request_info *info,
7994                                     union iwreq_data *wrqu, char *extra)
7995 {
7996         struct ipw2100_priv *priv = libipw_priv(dev);
7997         int err, mode = *(int *)extra;
7998
7999         mutex_lock(&priv->action_mutex);
8000         if (!(priv->status & STATUS_INITIALIZED)) {
8001                 err = -EIO;
8002                 goto done;
8003         }
8004
8005         if (mode == 1)
8006                 priv->config |= CFG_CRC_CHECK;
8007         else if (mode == 0)
8008                 priv->config &= ~CFG_CRC_CHECK;
8009         else {
8010                 err = -EINVAL;
8011                 goto done;
8012         }
8013         err = 0;
8014
8015       done:
8016         mutex_unlock(&priv->action_mutex);
8017         return err;
8018 }
8019
8020 static int ipw2100_wx_get_crc_check(struct net_device *dev,
8021                                     struct iw_request_info *info,
8022                                     union iwreq_data *wrqu, char *extra)
8023 {
8024         /*
8025          * This can be called at any time.  No action lock required
8026          */
8027
8028         struct ipw2100_priv *priv = libipw_priv(dev);
8029
8030         if (priv->config & CFG_CRC_CHECK)
8031                 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8032         else
8033                 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8034
8035         return 0;
8036 }
8037 #endif                          /* CONFIG_IPW2100_MONITOR */
8038
8039 static iw_handler ipw2100_wx_handlers[] = {
8040         IW_HANDLER(SIOCGIWNAME, ipw2100_wx_get_name),
8041         IW_HANDLER(SIOCSIWFREQ, ipw2100_wx_set_freq),
8042         IW_HANDLER(SIOCGIWFREQ, ipw2100_wx_get_freq),
8043         IW_HANDLER(SIOCSIWMODE, ipw2100_wx_set_mode),
8044         IW_HANDLER(SIOCGIWMODE, ipw2100_wx_get_mode),
8045         IW_HANDLER(SIOCGIWRANGE, ipw2100_wx_get_range),
8046         IW_HANDLER(SIOCSIWAP, ipw2100_wx_set_wap),
8047         IW_HANDLER(SIOCGIWAP, ipw2100_wx_get_wap),
8048         IW_HANDLER(SIOCSIWMLME, ipw2100_wx_set_mlme),
8049         IW_HANDLER(SIOCSIWSCAN, ipw2100_wx_set_scan),
8050         IW_HANDLER(SIOCGIWSCAN, ipw2100_wx_get_scan),
8051         IW_HANDLER(SIOCSIWESSID, ipw2100_wx_set_essid),
8052         IW_HANDLER(SIOCGIWESSID, ipw2100_wx_get_essid),
8053         IW_HANDLER(SIOCSIWNICKN, ipw2100_wx_set_nick),
8054         IW_HANDLER(SIOCGIWNICKN, ipw2100_wx_get_nick),
8055         IW_HANDLER(SIOCSIWRATE, ipw2100_wx_set_rate),
8056         IW_HANDLER(SIOCGIWRATE, ipw2100_wx_get_rate),
8057         IW_HANDLER(SIOCSIWRTS, ipw2100_wx_set_rts),
8058         IW_HANDLER(SIOCGIWRTS, ipw2100_wx_get_rts),
8059         IW_HANDLER(SIOCSIWFRAG, ipw2100_wx_set_frag),
8060         IW_HANDLER(SIOCGIWFRAG, ipw2100_wx_get_frag),
8061         IW_HANDLER(SIOCSIWTXPOW, ipw2100_wx_set_txpow),
8062         IW_HANDLER(SIOCGIWTXPOW, ipw2100_wx_get_txpow),
8063         IW_HANDLER(SIOCSIWRETRY, ipw2100_wx_set_retry),
8064         IW_HANDLER(SIOCGIWRETRY, ipw2100_wx_get_retry),
8065         IW_HANDLER(SIOCSIWENCODE, ipw2100_wx_set_encode),
8066         IW_HANDLER(SIOCGIWENCODE, ipw2100_wx_get_encode),
8067         IW_HANDLER(SIOCSIWPOWER, ipw2100_wx_set_power),
8068         IW_HANDLER(SIOCGIWPOWER, ipw2100_wx_get_power),
8069         IW_HANDLER(SIOCSIWGENIE, ipw2100_wx_set_genie),
8070         IW_HANDLER(SIOCGIWGENIE, ipw2100_wx_get_genie),
8071         IW_HANDLER(SIOCSIWAUTH, ipw2100_wx_set_auth),
8072         IW_HANDLER(SIOCGIWAUTH, ipw2100_wx_get_auth),
8073         IW_HANDLER(SIOCSIWENCODEEXT, ipw2100_wx_set_encodeext),
8074         IW_HANDLER(SIOCGIWENCODEEXT, ipw2100_wx_get_encodeext),
8075 };
8076
8077 #define IPW2100_PRIV_SET_MONITOR        SIOCIWFIRSTPRIV
8078 #define IPW2100_PRIV_RESET              SIOCIWFIRSTPRIV+1
8079 #define IPW2100_PRIV_SET_POWER          SIOCIWFIRSTPRIV+2
8080 #define IPW2100_PRIV_GET_POWER          SIOCIWFIRSTPRIV+3
8081 #define IPW2100_PRIV_SET_LONGPREAMBLE   SIOCIWFIRSTPRIV+4
8082 #define IPW2100_PRIV_GET_LONGPREAMBLE   SIOCIWFIRSTPRIV+5
8083 #define IPW2100_PRIV_SET_CRC_CHECK      SIOCIWFIRSTPRIV+6
8084 #define IPW2100_PRIV_GET_CRC_CHECK      SIOCIWFIRSTPRIV+7
8085
8086 static const struct iw_priv_args ipw2100_private_args[] = {
8087
8088 #ifdef CONFIG_IPW2100_MONITOR
8089         {
8090          IPW2100_PRIV_SET_MONITOR,
8091          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8092         {
8093          IPW2100_PRIV_RESET,
8094          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8095 #endif                          /* CONFIG_IPW2100_MONITOR */
8096
8097         {
8098          IPW2100_PRIV_SET_POWER,
8099          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8100         {
8101          IPW2100_PRIV_GET_POWER,
8102          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8103          "get_power"},
8104         {
8105          IPW2100_PRIV_SET_LONGPREAMBLE,
8106          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8107         {
8108          IPW2100_PRIV_GET_LONGPREAMBLE,
8109          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8110 #ifdef CONFIG_IPW2100_MONITOR
8111         {
8112          IPW2100_PRIV_SET_CRC_CHECK,
8113          IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8114         {
8115          IPW2100_PRIV_GET_CRC_CHECK,
8116          0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8117 #endif                          /* CONFIG_IPW2100_MONITOR */
8118 };
8119
8120 static iw_handler ipw2100_private_handler[] = {
8121 #ifdef CONFIG_IPW2100_MONITOR
8122         ipw2100_wx_set_promisc,
8123         ipw2100_wx_reset,
8124 #else                           /* CONFIG_IPW2100_MONITOR */
8125         NULL,
8126         NULL,
8127 #endif                          /* CONFIG_IPW2100_MONITOR */
8128         ipw2100_wx_set_powermode,
8129         ipw2100_wx_get_powermode,
8130         ipw2100_wx_set_preamble,
8131         ipw2100_wx_get_preamble,
8132 #ifdef CONFIG_IPW2100_MONITOR
8133         ipw2100_wx_set_crc_check,
8134         ipw2100_wx_get_crc_check,
8135 #else                           /* CONFIG_IPW2100_MONITOR */
8136         NULL,
8137         NULL,
8138 #endif                          /* CONFIG_IPW2100_MONITOR */
8139 };
8140
8141 /*
8142  * Get wireless statistics.
8143  * Called by /proc/net/wireless
8144  * Also called by SIOCGIWSTATS
8145  */
8146 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8147 {
8148         enum {
8149                 POOR = 30,
8150                 FAIR = 60,
8151                 GOOD = 80,
8152                 VERY_GOOD = 90,
8153                 EXCELLENT = 95,
8154                 PERFECT = 100
8155         };
8156         int rssi_qual;
8157         int tx_qual;
8158         int beacon_qual;
8159         int quality;
8160
8161         struct ipw2100_priv *priv = libipw_priv(dev);
8162         struct iw_statistics *wstats;
8163         u32 rssi, tx_retries, missed_beacons, tx_failures;
8164         u32 ord_len = sizeof(u32);
8165
8166         if (!priv)
8167                 return (struct iw_statistics *)NULL;
8168
8169         wstats = &priv->wstats;
8170
8171         /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8172          * ipw2100_wx_wireless_stats seems to be called before fw is
8173          * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
8174          * and associated; if not associcated, the values are all meaningless
8175          * anyway, so set them all to NULL and INVALID */
8176         if (!(priv->status & STATUS_ASSOCIATED)) {
8177                 wstats->miss.beacon = 0;
8178                 wstats->discard.retries = 0;
8179                 wstats->qual.qual = 0;
8180                 wstats->qual.level = 0;
8181                 wstats->qual.noise = 0;
8182                 wstats->qual.updated = 7;
8183                 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8184                     IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8185                 return wstats;
8186         }
8187
8188         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8189                                 &missed_beacons, &ord_len))
8190                 goto fail_get_ordinal;
8191
8192         /* If we don't have a connection the quality and level is 0 */
8193         if (!(priv->status & STATUS_ASSOCIATED)) {
8194                 wstats->qual.qual = 0;
8195                 wstats->qual.level = 0;
8196         } else {
8197                 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8198                                         &rssi, &ord_len))
8199                         goto fail_get_ordinal;
8200                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8201                 if (rssi < 10)
8202                         rssi_qual = rssi * POOR / 10;
8203                 else if (rssi < 15)
8204                         rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8205                 else if (rssi < 20)
8206                         rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8207                 else if (rssi < 30)
8208                         rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8209                             10 + GOOD;
8210                 else
8211                         rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8212                             10 + VERY_GOOD;
8213
8214                 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8215                                         &tx_retries, &ord_len))
8216                         goto fail_get_ordinal;
8217
8218                 if (tx_retries > 75)
8219                         tx_qual = (90 - tx_retries) * POOR / 15;
8220                 else if (tx_retries > 70)
8221                         tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8222                 else if (tx_retries > 65)
8223                         tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8224                 else if (tx_retries > 50)
8225                         tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8226                             15 + GOOD;
8227                 else
8228                         tx_qual = (50 - tx_retries) *
8229                             (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8230
8231                 if (missed_beacons > 50)
8232                         beacon_qual = (60 - missed_beacons) * POOR / 10;
8233                 else if (missed_beacons > 40)
8234                         beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8235                             10 + POOR;
8236                 else if (missed_beacons > 32)
8237                         beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8238                             18 + FAIR;
8239                 else if (missed_beacons > 20)
8240                         beacon_qual = (32 - missed_beacons) *
8241                             (VERY_GOOD - GOOD) / 20 + GOOD;
8242                 else
8243                         beacon_qual = (20 - missed_beacons) *
8244                             (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8245
8246                 quality = min(tx_qual, rssi_qual);
8247                 quality = min(beacon_qual, quality);
8248
8249 #ifdef CONFIG_IPW2100_DEBUG
8250                 if (beacon_qual == quality)
8251                         IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8252                 else if (tx_qual == quality)
8253                         IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8254                 else if (quality != 100)
8255                         IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8256                 else
8257                         IPW_DEBUG_WX("Quality not clamped.\n");
8258 #endif
8259
8260                 wstats->qual.qual = quality;
8261                 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8262         }
8263
8264         wstats->qual.noise = 0;
8265         wstats->qual.updated = 7;
8266         wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8267
8268         /* FIXME: this is percent and not a # */
8269         wstats->miss.beacon = missed_beacons;
8270
8271         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8272                                 &tx_failures, &ord_len))
8273                 goto fail_get_ordinal;
8274         wstats->discard.retries = tx_failures;
8275
8276         return wstats;
8277
8278       fail_get_ordinal:
8279         IPW_DEBUG_WX("failed querying ordinals.\n");
8280
8281         return (struct iw_statistics *)NULL;
8282 }
8283
8284 static struct iw_handler_def ipw2100_wx_handler_def = {
8285         .standard = ipw2100_wx_handlers,
8286         .num_standard = ARRAY_SIZE(ipw2100_wx_handlers),
8287         .num_private = ARRAY_SIZE(ipw2100_private_handler),
8288         .num_private_args = ARRAY_SIZE(ipw2100_private_args),
8289         .private = (iw_handler *) ipw2100_private_handler,
8290         .private_args = (struct iw_priv_args *)ipw2100_private_args,
8291         .get_wireless_stats = ipw2100_wx_wireless_stats,
8292 };
8293
8294 static void ipw2100_wx_event_work(struct work_struct *work)
8295 {
8296         struct ipw2100_priv *priv =
8297                 container_of(work, struct ipw2100_priv, wx_event_work.work);
8298         union iwreq_data wrqu;
8299         unsigned int len = ETH_ALEN;
8300
8301         if (priv->status & STATUS_STOPPING)
8302                 return;
8303
8304         mutex_lock(&priv->action_mutex);
8305
8306         IPW_DEBUG_WX("enter\n");
8307
8308         mutex_unlock(&priv->action_mutex);
8309
8310         wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8311
8312         /* Fetch BSSID from the hardware */
8313         if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8314             priv->status & STATUS_RF_KILL_MASK ||
8315             ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8316                                 &priv->bssid, &len)) {
8317                 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8318         } else {
8319                 /* We now have the BSSID, so can finish setting to the full
8320                  * associated state */
8321                 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8322                 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8323                 priv->status &= ~STATUS_ASSOCIATING;
8324                 priv->status |= STATUS_ASSOCIATED;
8325                 netif_carrier_on(priv->net_dev);
8326                 netif_wake_queue(priv->net_dev);
8327         }
8328
8329         if (!(priv->status & STATUS_ASSOCIATED)) {
8330                 IPW_DEBUG_WX("Configuring ESSID\n");
8331                 mutex_lock(&priv->action_mutex);
8332                 /* This is a disassociation event, so kick the firmware to
8333                  * look for another AP */
8334                 if (priv->config & CFG_STATIC_ESSID)
8335                         ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8336                                           0);
8337                 else
8338                         ipw2100_set_essid(priv, NULL, 0, 0);
8339                 mutex_unlock(&priv->action_mutex);
8340         }
8341
8342         wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8343 }
8344
8345 #define IPW2100_FW_MAJOR_VERSION 1
8346 #define IPW2100_FW_MINOR_VERSION 3
8347
8348 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8349 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8350
8351 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8352                              IPW2100_FW_MAJOR_VERSION)
8353
8354 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8355 "." __stringify(IPW2100_FW_MINOR_VERSION)
8356
8357 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8358
8359 /*
8360
8361 BINARY FIRMWARE HEADER FORMAT
8362
8363 offset      length   desc
8364 0           2        version
8365 2           2        mode == 0:BSS,1:IBSS,2:MONITOR
8366 4           4        fw_len
8367 8           4        uc_len
8368 C           fw_len   firmware data
8369 12 + fw_len uc_len   microcode data
8370
8371 */
8372
8373 struct ipw2100_fw_header {
8374         short version;
8375         short mode;
8376         unsigned int fw_size;
8377         unsigned int uc_size;
8378 } __packed;
8379
8380 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8381 {
8382         struct ipw2100_fw_header *h =
8383             (struct ipw2100_fw_header *)fw->fw_entry->data;
8384
8385         if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8386                 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8387                        "(detected version id of %u). "
8388                        "See Documentation/networking/README.ipw2100\n",
8389                        h->version);
8390                 return 1;
8391         }
8392
8393         fw->version = h->version;
8394         fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8395         fw->fw.size = h->fw_size;
8396         fw->uc.data = fw->fw.data + h->fw_size;
8397         fw->uc.size = h->uc_size;
8398
8399         return 0;
8400 }
8401
8402 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8403                                 struct ipw2100_fw *fw)
8404 {
8405         char *fw_name;
8406         int rc;
8407
8408         IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8409                        priv->net_dev->name);
8410
8411         switch (priv->ieee->iw_mode) {
8412         case IW_MODE_ADHOC:
8413                 fw_name = IPW2100_FW_NAME("-i");
8414                 break;
8415 #ifdef CONFIG_IPW2100_MONITOR
8416         case IW_MODE_MONITOR:
8417                 fw_name = IPW2100_FW_NAME("-p");
8418                 break;
8419 #endif
8420         case IW_MODE_INFRA:
8421         default:
8422                 fw_name = IPW2100_FW_NAME("");
8423                 break;
8424         }
8425
8426         rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8427
8428         if (rc < 0) {
8429                 printk(KERN_ERR DRV_NAME ": "
8430                        "%s: Firmware '%s' not available or load failed.\n",
8431                        priv->net_dev->name, fw_name);
8432                 return rc;
8433         }
8434         IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8435                        fw->fw_entry->size);
8436
8437         ipw2100_mod_firmware_load(fw);
8438
8439         return 0;
8440 }
8441
8442 MODULE_FIRMWARE(IPW2100_FW_NAME("-i"));
8443 #ifdef CONFIG_IPW2100_MONITOR
8444 MODULE_FIRMWARE(IPW2100_FW_NAME("-p"));
8445 #endif
8446 MODULE_FIRMWARE(IPW2100_FW_NAME(""));
8447
8448 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8449                                      struct ipw2100_fw *fw)
8450 {
8451         fw->version = 0;
8452         release_firmware(fw->fw_entry);
8453         fw->fw_entry = NULL;
8454 }
8455
8456 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8457                                  size_t max)
8458 {
8459         char ver[MAX_FW_VERSION_LEN];
8460         u32 len = MAX_FW_VERSION_LEN;
8461         u32 tmp;
8462         int i;
8463         /* firmware version is an ascii string (max len of 14) */
8464         if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8465                 return -EIO;
8466         tmp = max;
8467         if (len >= max)
8468                 len = max - 1;
8469         for (i = 0; i < len; i++)
8470                 buf[i] = ver[i];
8471         buf[i] = '\0';
8472         return tmp;
8473 }
8474
8475 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8476                                     size_t max)
8477 {
8478         u32 ver;
8479         u32 len = sizeof(ver);
8480         /* microcode version is a 32 bit integer */
8481         if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8482                 return -EIO;
8483         return snprintf(buf, max, "%08X", ver);
8484 }
8485
8486 /*
8487  * On exit, the firmware will have been freed from the fw list
8488  */
8489 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8490 {
8491         /* firmware is constructed of N contiguous entries, each entry is
8492          * structured as:
8493          *
8494          * offset    sie         desc
8495          * 0         4           address to write to
8496          * 4         2           length of data run
8497          * 6         length      data
8498          */
8499         unsigned int addr;
8500         unsigned short len;
8501
8502         const unsigned char *firmware_data = fw->fw.data;
8503         unsigned int firmware_data_left = fw->fw.size;
8504
8505         while (firmware_data_left > 0) {
8506                 addr = *(u32 *) (firmware_data);
8507                 firmware_data += 4;
8508                 firmware_data_left -= 4;
8509
8510                 len = *(u16 *) (firmware_data);
8511                 firmware_data += 2;
8512                 firmware_data_left -= 2;
8513
8514                 if (len > 32) {
8515                         printk(KERN_ERR DRV_NAME ": "
8516                                "Invalid firmware run-length of %d bytes\n",
8517                                len);
8518                         return -EINVAL;
8519                 }
8520
8521                 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8522                 firmware_data += len;
8523                 firmware_data_left -= len;
8524         }
8525
8526         return 0;
8527 }
8528
8529 struct symbol_alive_response {
8530         u8 cmd_id;
8531         u8 seq_num;
8532         u8 ucode_rev;
8533         u8 eeprom_valid;
8534         u16 valid_flags;
8535         u8 IEEE_addr[6];
8536         u16 flags;
8537         u16 pcb_rev;
8538         u16 clock_settle_time;  // 1us LSB
8539         u16 powerup_settle_time;        // 1us LSB
8540         u16 hop_settle_time;    // 1us LSB
8541         u8 date[3];             // month, day, year
8542         u8 time[2];             // hours, minutes
8543         u8 ucode_valid;
8544 };
8545
8546 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8547                                   struct ipw2100_fw *fw)
8548 {
8549         struct net_device *dev = priv->net_dev;
8550         const unsigned char *microcode_data = fw->uc.data;
8551         unsigned int microcode_data_left = fw->uc.size;
8552         void __iomem *reg = priv->ioaddr;
8553
8554         struct symbol_alive_response response;
8555         int i, j;
8556         u8 data;
8557
8558         /* Symbol control */
8559         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8560         readl(reg);
8561         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8562         readl(reg);
8563
8564         /* HW config */
8565         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8566         readl(reg);
8567         write_nic_byte(dev, 0x210014, 0x72);    /* fifo width =16 */
8568         readl(reg);
8569
8570         /* EN_CS_ACCESS bit to reset control store pointer */
8571         write_nic_byte(dev, 0x210000, 0x40);
8572         readl(reg);
8573         write_nic_byte(dev, 0x210000, 0x0);
8574         readl(reg);
8575         write_nic_byte(dev, 0x210000, 0x40);
8576         readl(reg);
8577
8578         /* copy microcode from buffer into Symbol */
8579
8580         while (microcode_data_left > 0) {
8581                 write_nic_byte(dev, 0x210010, *microcode_data++);
8582                 write_nic_byte(dev, 0x210010, *microcode_data++);
8583                 microcode_data_left -= 2;
8584         }
8585
8586         /* EN_CS_ACCESS bit to reset the control store pointer */
8587         write_nic_byte(dev, 0x210000, 0x0);
8588         readl(reg);
8589
8590         /* Enable System (Reg 0)
8591          * first enable causes garbage in RX FIFO */
8592         write_nic_byte(dev, 0x210000, 0x0);
8593         readl(reg);
8594         write_nic_byte(dev, 0x210000, 0x80);
8595         readl(reg);
8596
8597         /* Reset External Baseband Reg */
8598         write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8599         readl(reg);
8600         write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8601         readl(reg);
8602
8603         /* HW Config (Reg 5) */
8604         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8605         readl(reg);
8606         write_nic_byte(dev, 0x210014, 0x72);    // fifo width =16
8607         readl(reg);
8608
8609         /* Enable System (Reg 0)
8610          * second enable should be OK */
8611         write_nic_byte(dev, 0x210000, 0x00);    // clear enable system
8612         readl(reg);
8613         write_nic_byte(dev, 0x210000, 0x80);    // set enable system
8614
8615         /* check Symbol is enabled - upped this from 5 as it wasn't always
8616          * catching the update */
8617         for (i = 0; i < 10; i++) {
8618                 udelay(10);
8619
8620                 /* check Dino is enabled bit */
8621                 read_nic_byte(dev, 0x210000, &data);
8622                 if (data & 0x1)
8623                         break;
8624         }
8625
8626         if (i == 10) {
8627                 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8628                        dev->name);
8629                 return -EIO;
8630         }
8631
8632         /* Get Symbol alive response */
8633         for (i = 0; i < 30; i++) {
8634                 /* Read alive response structure */
8635                 for (j = 0;
8636                      j < (sizeof(struct symbol_alive_response) >> 1); j++)
8637                         read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8638
8639                 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8640                         break;
8641                 udelay(10);
8642         }
8643
8644         if (i == 30) {
8645                 printk(KERN_ERR DRV_NAME
8646                        ": %s: No response from Symbol - hw not alive\n",
8647                        dev->name);
8648                 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8649                 return -EIO;
8650         }
8651
8652         return 0;
8653 }