]> Pileus Git - ~andy/linux/blob - drivers/net/s2io.c
[PATCH] S2io: New link handling scheme for Xframe II
[~andy/linux] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for S2IO 10GbE Server NIC
3  * Copyright(c) 2002-2005 Neterion Inc.
4
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explaination of all the variables.
29  * rx_ring_num : This can be used to program the number of receive rings used
30  * in the driver.
31  * rx_ring_len: This defines the number of descriptors each ring can have. This
32  * is also an array of size 8.
33  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
34  * tx_fifo_len: This too is an array of 8. Each element defines the number of
35  * Tx descriptors that can be associated with each corresponding FIFO.
36  ************************************************************************/
37
38 #include <linux/config.h>
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/errno.h>
42 #include <linux/ioport.h>
43 #include <linux/pci.h>
44 #include <linux/dma-mapping.h>
45 #include <linux/kernel.h>
46 #include <linux/netdevice.h>
47 #include <linux/etherdevice.h>
48 #include <linux/skbuff.h>
49 #include <linux/init.h>
50 #include <linux/delay.h>
51 #include <linux/stddef.h>
52 #include <linux/ioctl.h>
53 #include <linux/timex.h>
54 #include <linux/sched.h>
55 #include <linux/ethtool.h>
56 #include <linux/version.h>
57 #include <linux/workqueue.h>
58 #include <linux/if_vlan.h>
59
60 #include <asm/system.h>
61 #include <asm/uaccess.h>
62 #include <asm/io.h>
63
64 /* local include */
65 #include "s2io.h"
66 #include "s2io-regs.h"
67
68 /* S2io Driver name & version. */
69 static char s2io_driver_name[] = "Neterion";
70 static char s2io_driver_version[] = "Version 2.0.2.0";
71
72 static inline int RXD_IS_UP2DT(RxD_t *rxdp)
73 {
74         int ret;
75
76         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
77                 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
78
79         return ret;
80 }
81
82 /*
83  * Cards with following subsystem_id have a link state indication
84  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
85  * macro below identifies these cards given the subsystem_id.
86  */
87 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
88         (dev_type == XFRAME_I_DEVICE) ?                 \
89                 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
90                  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
91
92 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
93                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
94 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
95 #define PANIC   1
96 #define LOW     2
97 static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
98 {
99         int level = 0;
100         mac_info_t *mac_control;
101
102         mac_control = &sp->mac_control;
103         if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16) {
104                 level = LOW;
105                 if (rxb_size <= MAX_RXDS_PER_BLOCK) {
106                         level = PANIC;
107                 }
108         }
109
110         return level;
111 }
112
113 /* Ethtool related variables and Macros. */
114 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
115         "Register test\t(offline)",
116         "Eeprom test\t(offline)",
117         "Link test\t(online)",
118         "RLDRAM test\t(offline)",
119         "BIST Test\t(offline)"
120 };
121
122 static char ethtool_stats_keys[][ETH_GSTRING_LEN] = {
123         {"tmac_frms"},
124         {"tmac_data_octets"},
125         {"tmac_drop_frms"},
126         {"tmac_mcst_frms"},
127         {"tmac_bcst_frms"},
128         {"tmac_pause_ctrl_frms"},
129         {"tmac_any_err_frms"},
130         {"tmac_vld_ip_octets"},
131         {"tmac_vld_ip"},
132         {"tmac_drop_ip"},
133         {"tmac_icmp"},
134         {"tmac_rst_tcp"},
135         {"tmac_tcp"},
136         {"tmac_udp"},
137         {"rmac_vld_frms"},
138         {"rmac_data_octets"},
139         {"rmac_fcs_err_frms"},
140         {"rmac_drop_frms"},
141         {"rmac_vld_mcst_frms"},
142         {"rmac_vld_bcst_frms"},
143         {"rmac_in_rng_len_err_frms"},
144         {"rmac_long_frms"},
145         {"rmac_pause_ctrl_frms"},
146         {"rmac_discarded_frms"},
147         {"rmac_usized_frms"},
148         {"rmac_osized_frms"},
149         {"rmac_frag_frms"},
150         {"rmac_jabber_frms"},
151         {"rmac_ip"},
152         {"rmac_ip_octets"},
153         {"rmac_hdr_err_ip"},
154         {"rmac_drop_ip"},
155         {"rmac_icmp"},
156         {"rmac_tcp"},
157         {"rmac_udp"},
158         {"rmac_err_drp_udp"},
159         {"rmac_pause_cnt"},
160         {"rmac_accepted_ip"},
161         {"rmac_err_tcp"},
162         {"\n DRIVER STATISTICS"},
163         {"single_bit_ecc_errs"},
164         {"double_bit_ecc_errs"},
165 };
166
167 #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN
168 #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN
169
170 #define S2IO_TEST_LEN   sizeof(s2io_gstrings) / ETH_GSTRING_LEN
171 #define S2IO_STRINGS_LEN        S2IO_TEST_LEN * ETH_GSTRING_LEN
172
173 #define S2IO_TIMER_CONF(timer, handle, arg, exp)                \
174                         init_timer(&timer);                     \
175                         timer.function = handle;                \
176                         timer.data = (unsigned long) arg;       \
177                         mod_timer(&timer, (jiffies + exp))      \
178
179 /* Add the vlan */
180 static void s2io_vlan_rx_register(struct net_device *dev,
181                                         struct vlan_group *grp)
182 {
183         nic_t *nic = dev->priv;
184         unsigned long flags;
185
186         spin_lock_irqsave(&nic->tx_lock, flags);
187         nic->vlgrp = grp;
188         spin_unlock_irqrestore(&nic->tx_lock, flags);
189 }
190
191 /* Unregister the vlan */
192 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned long vid)
193 {
194         nic_t *nic = dev->priv;
195         unsigned long flags;
196
197         spin_lock_irqsave(&nic->tx_lock, flags);
198         if (nic->vlgrp)
199                 nic->vlgrp->vlan_devices[vid] = NULL;
200         spin_unlock_irqrestore(&nic->tx_lock, flags);
201 }
202
203 /*
204  * Constants to be programmed into the Xena's registers, to configure
205  * the XAUI.
206  */
207
208 #define SWITCH_SIGN     0xA5A5A5A5A5A5A5A5ULL
209 #define END_SIGN        0x0
210
211 static u64 herc_act_dtx_cfg[] = {
212         /* Set address */
213         0x80000515BA750000ULL, 0x80000515BA7500E0ULL,
214         /* Write data */
215         0x80000515BA750004ULL, 0x80000515BA7500E4ULL,
216         /* Set address */
217         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
218         /* Write data */
219         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
220         /* Set address */
221         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
222         /* Write data */
223         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
224         /* Done */
225         END_SIGN
226 };
227
228 static u64 xena_mdio_cfg[] = {
229         /* Reset PMA PLL */
230         0xC001010000000000ULL, 0xC0010100000000E0ULL,
231         0xC0010100008000E4ULL,
232         /* Remove Reset from PMA PLL */
233         0xC001010000000000ULL, 0xC0010100000000E0ULL,
234         0xC0010100000000E4ULL,
235         END_SIGN
236 };
237
238 static u64 xena_dtx_cfg[] = {
239         0x8000051500000000ULL, 0x80000515000000E0ULL,
240         0x80000515D93500E4ULL, 0x8001051500000000ULL,
241         0x80010515000000E0ULL, 0x80010515001E00E4ULL,
242         0x8002051500000000ULL, 0x80020515000000E0ULL,
243         0x80020515F21000E4ULL,
244         /* Set PADLOOPBACKN */
245         0x8002051500000000ULL, 0x80020515000000E0ULL,
246         0x80020515B20000E4ULL, 0x8003051500000000ULL,
247         0x80030515000000E0ULL, 0x80030515B20000E4ULL,
248         0x8004051500000000ULL, 0x80040515000000E0ULL,
249         0x80040515B20000E4ULL, 0x8005051500000000ULL,
250         0x80050515000000E0ULL, 0x80050515B20000E4ULL,
251         SWITCH_SIGN,
252         /* Remove PADLOOPBACKN */
253         0x8002051500000000ULL, 0x80020515000000E0ULL,
254         0x80020515F20000E4ULL, 0x8003051500000000ULL,
255         0x80030515000000E0ULL, 0x80030515F20000E4ULL,
256         0x8004051500000000ULL, 0x80040515000000E0ULL,
257         0x80040515F20000E4ULL, 0x8005051500000000ULL,
258         0x80050515000000E0ULL, 0x80050515F20000E4ULL,
259         END_SIGN
260 };
261
262 /*
263  * Constants for Fixing the MacAddress problem seen mostly on
264  * Alpha machines.
265  */
266 static u64 fix_mac[] = {
267         0x0060000000000000ULL, 0x0060600000000000ULL,
268         0x0040600000000000ULL, 0x0000600000000000ULL,
269         0x0020600000000000ULL, 0x0060600000000000ULL,
270         0x0020600000000000ULL, 0x0060600000000000ULL,
271         0x0020600000000000ULL, 0x0060600000000000ULL,
272         0x0020600000000000ULL, 0x0060600000000000ULL,
273         0x0020600000000000ULL, 0x0060600000000000ULL,
274         0x0020600000000000ULL, 0x0060600000000000ULL,
275         0x0020600000000000ULL, 0x0060600000000000ULL,
276         0x0020600000000000ULL, 0x0060600000000000ULL,
277         0x0020600000000000ULL, 0x0060600000000000ULL,
278         0x0020600000000000ULL, 0x0060600000000000ULL,
279         0x0020600000000000ULL, 0x0000600000000000ULL,
280         0x0040600000000000ULL, 0x0060600000000000ULL,
281         END_SIGN
282 };
283
284 /* Module Loadable parameters. */
285 static unsigned int tx_fifo_num = 1;
286 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
287     {[0 ...(MAX_TX_FIFOS - 1)] = 0 };
288 static unsigned int rx_ring_num = 1;
289 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
290     {[0 ...(MAX_RX_RINGS - 1)] = 0 };
291 static unsigned int rts_frm_len[MAX_RX_RINGS] =
292     {[0 ...(MAX_RX_RINGS - 1)] = 0 };
293 static unsigned int use_continuous_tx_intrs = 1;
294 static unsigned int rmac_pause_time = 65535;
295 static unsigned int mc_pause_threshold_q0q3 = 187;
296 static unsigned int mc_pause_threshold_q4q7 = 187;
297 static unsigned int shared_splits;
298 static unsigned int tmac_util_period = 5;
299 static unsigned int rmac_util_period = 5;
300 static unsigned int bimodal = 0;
301 #ifndef CONFIG_S2IO_NAPI
302 static unsigned int indicate_max_pkts;
303 #endif
304
305 /*
306  * S2IO device table.
307  * This table lists all the devices that this driver supports.
308  */
309 static struct pci_device_id s2io_tbl[] __devinitdata = {
310         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
311          PCI_ANY_ID, PCI_ANY_ID},
312         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
313          PCI_ANY_ID, PCI_ANY_ID},
314         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
315          PCI_ANY_ID, PCI_ANY_ID},
316         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
317          PCI_ANY_ID, PCI_ANY_ID},
318         {0,}
319 };
320
321 MODULE_DEVICE_TABLE(pci, s2io_tbl);
322
323 static struct pci_driver s2io_driver = {
324       .name = "S2IO",
325       .id_table = s2io_tbl,
326       .probe = s2io_init_nic,
327       .remove = __devexit_p(s2io_rem_nic),
328 };
329
330 /* A simplifier macro used both by init and free shared_mem Fns(). */
331 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
332
333 /**
334  * init_shared_mem - Allocation and Initialization of Memory
335  * @nic: Device private variable.
336  * Description: The function allocates all the memory areas shared
337  * between the NIC and the driver. This includes Tx descriptors,
338  * Rx descriptors and the statistics block.
339  */
340
341 static int init_shared_mem(struct s2io_nic *nic)
342 {
343         u32 size;
344         void *tmp_v_addr, *tmp_v_addr_next;
345         dma_addr_t tmp_p_addr, tmp_p_addr_next;
346         RxD_block_t *pre_rxd_blk = NULL;
347         int i, j, blk_cnt, rx_sz, tx_sz;
348         int lst_size, lst_per_page;
349         struct net_device *dev = nic->dev;
350 #ifdef CONFIG_2BUFF_MODE
351         u64 tmp;
352         buffAdd_t *ba;
353 #endif
354
355         mac_info_t *mac_control;
356         struct config_param *config;
357
358         mac_control = &nic->mac_control;
359         config = &nic->config;
360
361
362         /* Allocation and initialization of TXDLs in FIOFs */
363         size = 0;
364         for (i = 0; i < config->tx_fifo_num; i++) {
365                 size += config->tx_cfg[i].fifo_len;
366         }
367         if (size > MAX_AVAILABLE_TXDS) {
368                 DBG_PRINT(ERR_DBG, "%s: Total number of Tx FIFOs ",
369                           dev->name);
370                 DBG_PRINT(ERR_DBG, "exceeds the maximum value ");
371                 DBG_PRINT(ERR_DBG, "that can be used\n");
372                 return FAILURE;
373         }
374
375         lst_size = (sizeof(TxD_t) * config->max_txds);
376         tx_sz = lst_size * size;
377         lst_per_page = PAGE_SIZE / lst_size;
378
379         for (i = 0; i < config->tx_fifo_num; i++) {
380                 int fifo_len = config->tx_cfg[i].fifo_len;
381                 int list_holder_size = fifo_len * sizeof(list_info_hold_t);
382                 mac_control->fifos[i].list_info = kmalloc(list_holder_size,
383                                                           GFP_KERNEL);
384                 if (!mac_control->fifos[i].list_info) {
385                         DBG_PRINT(ERR_DBG,
386                                   "Malloc failed for list_info\n");
387                         return -ENOMEM;
388                 }
389                 memset(mac_control->fifos[i].list_info, 0, list_holder_size);
390         }
391         for (i = 0; i < config->tx_fifo_num; i++) {
392                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
393                                                 lst_per_page);
394                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
395                 mac_control->fifos[i].tx_curr_put_info.fifo_len =
396                     config->tx_cfg[i].fifo_len - 1;
397                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
398                 mac_control->fifos[i].tx_curr_get_info.fifo_len =
399                     config->tx_cfg[i].fifo_len - 1;
400                 mac_control->fifos[i].fifo_no = i;
401                 mac_control->fifos[i].nic = nic;
402                 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS;
403
404                 for (j = 0; j < page_num; j++) {
405                         int k = 0;
406                         dma_addr_t tmp_p;
407                         void *tmp_v;
408                         tmp_v = pci_alloc_consistent(nic->pdev,
409                                                      PAGE_SIZE, &tmp_p);
410                         if (!tmp_v) {
411                                 DBG_PRINT(ERR_DBG,
412                                           "pci_alloc_consistent ");
413                                 DBG_PRINT(ERR_DBG, "failed for TxDL\n");
414                                 return -ENOMEM;
415                         }
416                         while (k < lst_per_page) {
417                                 int l = (j * lst_per_page) + k;
418                                 if (l == config->tx_cfg[i].fifo_len)
419                                         break;
420                                 mac_control->fifos[i].list_info[l].list_virt_addr =
421                                     tmp_v + (k * lst_size);
422                                 mac_control->fifos[i].list_info[l].list_phy_addr =
423                                     tmp_p + (k * lst_size);
424                                 k++;
425                         }
426                 }
427         }
428
429         /* Allocation and initialization of RXDs in Rings */
430         size = 0;
431         for (i = 0; i < config->rx_ring_num; i++) {
432                 if (config->rx_cfg[i].num_rxd % (MAX_RXDS_PER_BLOCK + 1)) {
433                         DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
434                         DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
435                                   i);
436                         DBG_PRINT(ERR_DBG, "RxDs per Block");
437                         return FAILURE;
438                 }
439                 size += config->rx_cfg[i].num_rxd;
440                 mac_control->rings[i].block_count =
441                     config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1);
442                 mac_control->rings[i].pkt_cnt =
443                     config->rx_cfg[i].num_rxd - mac_control->rings[i].block_count;
444         }
445         size = (size * (sizeof(RxD_t)));
446         rx_sz = size;
447
448         for (i = 0; i < config->rx_ring_num; i++) {
449                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
450                 mac_control->rings[i].rx_curr_get_info.offset = 0;
451                 mac_control->rings[i].rx_curr_get_info.ring_len =
452                     config->rx_cfg[i].num_rxd - 1;
453                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
454                 mac_control->rings[i].rx_curr_put_info.offset = 0;
455                 mac_control->rings[i].rx_curr_put_info.ring_len =
456                     config->rx_cfg[i].num_rxd - 1;
457                 mac_control->rings[i].nic = nic;
458                 mac_control->rings[i].ring_no = i;
459
460                 blk_cnt =
461                     config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1);
462                 /*  Allocating all the Rx blocks */
463                 for (j = 0; j < blk_cnt; j++) {
464 #ifndef CONFIG_2BUFF_MODE
465                         size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t));
466 #else
467                         size = SIZE_OF_BLOCK;
468 #endif
469                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
470                                                           &tmp_p_addr);
471                         if (tmp_v_addr == NULL) {
472                                 /*
473                                  * In case of failure, free_shared_mem()
474                                  * is called, which should free any
475                                  * memory that was alloced till the
476                                  * failure happened.
477                                  */
478                                 mac_control->rings[i].rx_blocks[j].block_virt_addr =
479                                     tmp_v_addr;
480                                 return -ENOMEM;
481                         }
482                         memset(tmp_v_addr, 0, size);
483                         mac_control->rings[i].rx_blocks[j].block_virt_addr =
484                                 tmp_v_addr;
485                         mac_control->rings[i].rx_blocks[j].block_dma_addr =
486                                 tmp_p_addr;
487                 }
488                 /* Interlinking all Rx Blocks */
489                 for (j = 0; j < blk_cnt; j++) {
490                         tmp_v_addr =
491                                 mac_control->rings[i].rx_blocks[j].block_virt_addr;
492                         tmp_v_addr_next =
493                                 mac_control->rings[i].rx_blocks[(j + 1) %
494                                               blk_cnt].block_virt_addr;
495                         tmp_p_addr =
496                                 mac_control->rings[i].rx_blocks[j].block_dma_addr;
497                         tmp_p_addr_next =
498                                 mac_control->rings[i].rx_blocks[(j + 1) %
499                                               blk_cnt].block_dma_addr;
500
501                         pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
502                         pre_rxd_blk->reserved_1 = END_OF_BLOCK; /* last RxD
503                                                                  * marker.
504                                                                  */
505 #ifndef CONFIG_2BUFF_MODE
506                         pre_rxd_blk->reserved_2_pNext_RxD_block =
507                             (unsigned long) tmp_v_addr_next;
508 #endif
509                         pre_rxd_blk->pNext_RxD_Blk_physical =
510                             (u64) tmp_p_addr_next;
511                 }
512         }
513
514 #ifdef CONFIG_2BUFF_MODE
515         /*
516          * Allocation of Storages for buffer addresses in 2BUFF mode
517          * and the buffers as well.
518          */
519         for (i = 0; i < config->rx_ring_num; i++) {
520                 blk_cnt =
521                     config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1);
522                 mac_control->rings[i].ba = kmalloc((sizeof(buffAdd_t *) * blk_cnt),
523                                      GFP_KERNEL);
524                 if (!mac_control->rings[i].ba)
525                         return -ENOMEM;
526                 for (j = 0; j < blk_cnt; j++) {
527                         int k = 0;
528                         mac_control->rings[i].ba[j] = kmalloc((sizeof(buffAdd_t) *
529                                                  (MAX_RXDS_PER_BLOCK + 1)),
530                                                 GFP_KERNEL);
531                         if (!mac_control->rings[i].ba[j])
532                                 return -ENOMEM;
533                         while (k != MAX_RXDS_PER_BLOCK) {
534                                 ba = &mac_control->rings[i].ba[j][k];
535
536                                 ba->ba_0_org = (void *) kmalloc
537                                     (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
538                                 if (!ba->ba_0_org)
539                                         return -ENOMEM;
540                                 tmp = (u64) ba->ba_0_org;
541                                 tmp += ALIGN_SIZE;
542                                 tmp &= ~((u64) ALIGN_SIZE);
543                                 ba->ba_0 = (void *) tmp;
544
545                                 ba->ba_1_org = (void *) kmalloc
546                                     (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
547                                 if (!ba->ba_1_org)
548                                         return -ENOMEM;
549                                 tmp = (u64) ba->ba_1_org;
550                                 tmp += ALIGN_SIZE;
551                                 tmp &= ~((u64) ALIGN_SIZE);
552                                 ba->ba_1 = (void *) tmp;
553                                 k++;
554                         }
555                 }
556         }
557 #endif
558
559         /* Allocation and initialization of Statistics block */
560         size = sizeof(StatInfo_t);
561         mac_control->stats_mem = pci_alloc_consistent
562             (nic->pdev, size, &mac_control->stats_mem_phy);
563
564         if (!mac_control->stats_mem) {
565                 /*
566                  * In case of failure, free_shared_mem() is called, which
567                  * should free any memory that was alloced till the
568                  * failure happened.
569                  */
570                 return -ENOMEM;
571         }
572         mac_control->stats_mem_sz = size;
573
574         tmp_v_addr = mac_control->stats_mem;
575         mac_control->stats_info = (StatInfo_t *) tmp_v_addr;
576         memset(tmp_v_addr, 0, size);
577         DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
578                   (unsigned long long) tmp_p_addr);
579
580         return SUCCESS;
581 }
582
583 /**
584  * free_shared_mem - Free the allocated Memory
585  * @nic:  Device private variable.
586  * Description: This function is to free all memory locations allocated by
587  * the init_shared_mem() function and return it to the kernel.
588  */
589
590 static void free_shared_mem(struct s2io_nic *nic)
591 {
592         int i, j, blk_cnt, size;
593         void *tmp_v_addr;
594         dma_addr_t tmp_p_addr;
595         mac_info_t *mac_control;
596         struct config_param *config;
597         int lst_size, lst_per_page;
598
599
600         if (!nic)
601                 return;
602
603         mac_control = &nic->mac_control;
604         config = &nic->config;
605
606         lst_size = (sizeof(TxD_t) * config->max_txds);
607         lst_per_page = PAGE_SIZE / lst_size;
608
609         for (i = 0; i < config->tx_fifo_num; i++) {
610                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
611                                                 lst_per_page);
612                 for (j = 0; j < page_num; j++) {
613                         int mem_blks = (j * lst_per_page);
614                         if (!mac_control->fifos[i].list_info[mem_blks].
615                             list_virt_addr)
616                                 break;
617                         pci_free_consistent(nic->pdev, PAGE_SIZE,
618                                             mac_control->fifos[i].
619                                             list_info[mem_blks].
620                                             list_virt_addr,
621                                             mac_control->fifos[i].
622                                             list_info[mem_blks].
623                                             list_phy_addr);
624                 }
625                 kfree(mac_control->fifos[i].list_info);
626         }
627
628 #ifndef CONFIG_2BUFF_MODE
629         size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t));
630 #else
631         size = SIZE_OF_BLOCK;
632 #endif
633         for (i = 0; i < config->rx_ring_num; i++) {
634                 blk_cnt = mac_control->rings[i].block_count;
635                 for (j = 0; j < blk_cnt; j++) {
636                         tmp_v_addr = mac_control->rings[i].rx_blocks[j].
637                                 block_virt_addr;
638                         tmp_p_addr = mac_control->rings[i].rx_blocks[j].
639                                 block_dma_addr;
640                         if (tmp_v_addr == NULL)
641                                 break;
642                         pci_free_consistent(nic->pdev, size,
643                                             tmp_v_addr, tmp_p_addr);
644                 }
645         }
646
647 #ifdef CONFIG_2BUFF_MODE
648         /* Freeing buffer storage addresses in 2BUFF mode. */
649         for (i = 0; i < config->rx_ring_num; i++) {
650                 blk_cnt =
651                     config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1);
652                 for (j = 0; j < blk_cnt; j++) {
653                         int k = 0;
654                         if (!mac_control->rings[i].ba[j])
655                                 continue;
656                         while (k != MAX_RXDS_PER_BLOCK) {
657                                 buffAdd_t *ba = &mac_control->rings[i].ba[j][k];
658                                 kfree(ba->ba_0_org);
659                                 kfree(ba->ba_1_org);
660                                 k++;
661                         }
662                         kfree(mac_control->rings[i].ba[j]);
663                 }
664                 if (mac_control->rings[i].ba)
665                         kfree(mac_control->rings[i].ba);
666         }
667 #endif
668
669         if (mac_control->stats_mem) {
670                 pci_free_consistent(nic->pdev,
671                                     mac_control->stats_mem_sz,
672                                     mac_control->stats_mem,
673                                     mac_control->stats_mem_phy);
674         }
675 }
676
677 /**
678  * s2io_verify_pci_mode -
679  */
680
681 static int s2io_verify_pci_mode(nic_t *nic)
682 {
683         XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
684         register u64 val64 = 0;
685         int     mode;
686
687         val64 = readq(&bar0->pci_mode);
688         mode = (u8)GET_PCI_MODE(val64);
689
690         if ( val64 & PCI_MODE_UNKNOWN_MODE)
691                 return -1;      /* Unknown PCI mode */
692         return mode;
693 }
694
695
696 /**
697  * s2io_print_pci_mode -
698  */
699 static int s2io_print_pci_mode(nic_t *nic)
700 {
701         XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
702         register u64 val64 = 0;
703         int     mode;
704         struct config_param *config = &nic->config;
705
706         val64 = readq(&bar0->pci_mode);
707         mode = (u8)GET_PCI_MODE(val64);
708
709         if ( val64 & PCI_MODE_UNKNOWN_MODE)
710                 return -1;      /* Unknown PCI mode */
711
712         if (val64 & PCI_MODE_32_BITS) {
713                 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
714         } else {
715                 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
716         }
717
718         switch(mode) {
719                 case PCI_MODE_PCI_33:
720                         DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
721                         config->bus_speed = 33;
722                         break;
723                 case PCI_MODE_PCI_66:
724                         DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
725                         config->bus_speed = 133;
726                         break;
727                 case PCI_MODE_PCIX_M1_66:
728                         DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
729                         config->bus_speed = 133; /* Herc doubles the clock rate */
730                         break;
731                 case PCI_MODE_PCIX_M1_100:
732                         DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
733                         config->bus_speed = 200;
734                         break;
735                 case PCI_MODE_PCIX_M1_133:
736                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
737                         config->bus_speed = 266;
738                         break;
739                 case PCI_MODE_PCIX_M2_66:
740                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
741                         config->bus_speed = 133;
742                         break;
743                 case PCI_MODE_PCIX_M2_100:
744                         DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
745                         config->bus_speed = 200;
746                         break;
747                 case PCI_MODE_PCIX_M2_133:
748                         DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
749                         config->bus_speed = 266;
750                         break;
751                 default:
752                         return -1;      /* Unsupported bus speed */
753         }
754
755         return mode;
756 }
757
758 /**
759  *  init_nic - Initialization of hardware
760  *  @nic: device peivate variable
761  *  Description: The function sequentially configures every block
762  *  of the H/W from their reset values.
763  *  Return Value:  SUCCESS on success and
764  *  '-1' on failure (endian settings incorrect).
765  */
766
767 static int init_nic(struct s2io_nic *nic)
768 {
769         XENA_dev_config_t __iomem *bar0 = nic->bar0;
770         struct net_device *dev = nic->dev;
771         register u64 val64 = 0;
772         void __iomem *add;
773         u32 time;
774         int i, j;
775         mac_info_t *mac_control;
776         struct config_param *config;
777         int mdio_cnt = 0, dtx_cnt = 0;
778         unsigned long long mem_share;
779         int mem_size;
780
781         mac_control = &nic->mac_control;
782         config = &nic->config;
783
784         /* to set the swapper controle on the card */
785         if(s2io_set_swapper(nic)) {
786                 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
787                 return -1;
788         }
789
790         /*
791          * Herc requires EOI to be removed from reset before XGXS, so..
792          */
793         if (nic->device_type & XFRAME_II_DEVICE) {
794                 val64 = 0xA500000000ULL;
795                 writeq(val64, &bar0->sw_reset);
796                 msleep(500);
797                 val64 = readq(&bar0->sw_reset);
798         }
799
800         /* Remove XGXS from reset state */
801         val64 = 0;
802         writeq(val64, &bar0->sw_reset);
803         msleep(500);
804         val64 = readq(&bar0->sw_reset);
805
806         /*  Enable Receiving broadcasts */
807         add = &bar0->mac_cfg;
808         val64 = readq(&bar0->mac_cfg);
809         val64 |= MAC_RMAC_BCAST_ENABLE;
810         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
811         writel((u32) val64, add);
812         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
813         writel((u32) (val64 >> 32), (add + 4));
814
815         /* Read registers in all blocks */
816         val64 = readq(&bar0->mac_int_mask);
817         val64 = readq(&bar0->mc_int_mask);
818         val64 = readq(&bar0->xgxs_int_mask);
819
820         /*  Set MTU */
821         val64 = dev->mtu;
822         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
823
824         /*
825          * Configuring the XAUI Interface of Xena.
826          * ***************************************
827          * To Configure the Xena's XAUI, one has to write a series
828          * of 64 bit values into two registers in a particular
829          * sequence. Hence a macro 'SWITCH_SIGN' has been defined
830          * which will be defined in the array of configuration values
831          * (xena_dtx_cfg & xena_mdio_cfg) at appropriate places
832          * to switch writing from one regsiter to another. We continue
833          * writing these values until we encounter the 'END_SIGN' macro.
834          * For example, After making a series of 21 writes into
835          * dtx_control register the 'SWITCH_SIGN' appears and hence we
836          * start writing into mdio_control until we encounter END_SIGN.
837          */
838         if (nic->device_type & XFRAME_II_DEVICE) {
839                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
840                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
841                                           &bar0->dtx_control, UF);
842                         if (dtx_cnt & 0x1)
843                                 msleep(1); /* Necessary!! */
844                         dtx_cnt++;
845                 }
846         } else {
847                 while (1) {
848                       dtx_cfg:
849                         while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
850                                 if (xena_dtx_cfg[dtx_cnt] == SWITCH_SIGN) {
851                                         dtx_cnt++;
852                                         goto mdio_cfg;
853                                 }
854                                 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
855                                                   &bar0->dtx_control, UF);
856                                 val64 = readq(&bar0->dtx_control);
857                                 dtx_cnt++;
858                         }
859                       mdio_cfg:
860                         while (xena_mdio_cfg[mdio_cnt] != END_SIGN) {
861                                 if (xena_mdio_cfg[mdio_cnt] == SWITCH_SIGN) {
862                                         mdio_cnt++;
863                                         goto dtx_cfg;
864                                 }
865                                 SPECIAL_REG_WRITE(xena_mdio_cfg[mdio_cnt],
866                                                   &bar0->mdio_control, UF);
867                                 val64 = readq(&bar0->mdio_control);
868                                 mdio_cnt++;
869                         }
870                         if ((xena_dtx_cfg[dtx_cnt] == END_SIGN) &&
871                             (xena_mdio_cfg[mdio_cnt] == END_SIGN)) {
872                                 break;
873                         } else {
874                                 goto dtx_cfg;
875                         }
876                 }
877         }
878
879         /*  Tx DMA Initialization */
880         val64 = 0;
881         writeq(val64, &bar0->tx_fifo_partition_0);
882         writeq(val64, &bar0->tx_fifo_partition_1);
883         writeq(val64, &bar0->tx_fifo_partition_2);
884         writeq(val64, &bar0->tx_fifo_partition_3);
885
886
887         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
888                 val64 |=
889                     vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
890                          13) | vBIT(config->tx_cfg[i].fifo_priority,
891                                     ((i * 32) + 5), 3);
892
893                 if (i == (config->tx_fifo_num - 1)) {
894                         if (i % 2 == 0)
895                                 i++;
896                 }
897
898                 switch (i) {
899                 case 1:
900                         writeq(val64, &bar0->tx_fifo_partition_0);
901                         val64 = 0;
902                         break;
903                 case 3:
904                         writeq(val64, &bar0->tx_fifo_partition_1);
905                         val64 = 0;
906                         break;
907                 case 5:
908                         writeq(val64, &bar0->tx_fifo_partition_2);
909                         val64 = 0;
910                         break;
911                 case 7:
912                         writeq(val64, &bar0->tx_fifo_partition_3);
913                         break;
914                 }
915         }
916
917         /* Enable Tx FIFO partition 0. */
918         val64 = readq(&bar0->tx_fifo_partition_0);
919         val64 |= BIT(0);        /* To enable the FIFO partition. */
920         writeq(val64, &bar0->tx_fifo_partition_0);
921
922         /*
923          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
924          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
925          */
926         if ((nic->device_type == XFRAME_I_DEVICE) &&
927                 (get_xena_rev_id(nic->pdev) < 4))
928                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
929
930         val64 = readq(&bar0->tx_fifo_partition_0);
931         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
932                   &bar0->tx_fifo_partition_0, (unsigned long long) val64);
933
934         /*
935          * Initialization of Tx_PA_CONFIG register to ignore packet
936          * integrity checking.
937          */
938         val64 = readq(&bar0->tx_pa_cfg);
939         val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
940             TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
941         writeq(val64, &bar0->tx_pa_cfg);
942
943         /* Rx DMA intialization. */
944         val64 = 0;
945         for (i = 0; i < config->rx_ring_num; i++) {
946                 val64 |=
947                     vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
948                          3);
949         }
950         writeq(val64, &bar0->rx_queue_priority);
951
952         /*
953          * Allocating equal share of memory to all the
954          * configured Rings.
955          */
956         val64 = 0;
957         if (nic->device_type & XFRAME_II_DEVICE)
958                 mem_size = 32;
959         else
960                 mem_size = 64;
961
962         for (i = 0; i < config->rx_ring_num; i++) {
963                 switch (i) {
964                 case 0:
965                         mem_share = (mem_size / config->rx_ring_num +
966                                      mem_size % config->rx_ring_num);
967                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
968                         continue;
969                 case 1:
970                         mem_share = (mem_size / config->rx_ring_num);
971                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
972                         continue;
973                 case 2:
974                         mem_share = (mem_size / config->rx_ring_num);
975                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
976                         continue;
977                 case 3:
978                         mem_share = (mem_size / config->rx_ring_num);
979                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
980                         continue;
981                 case 4:
982                         mem_share = (mem_size / config->rx_ring_num);
983                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
984                         continue;
985                 case 5:
986                         mem_share = (mem_size / config->rx_ring_num);
987                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
988                         continue;
989                 case 6:
990                         mem_share = (mem_size / config->rx_ring_num);
991                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
992                         continue;
993                 case 7:
994                         mem_share = (mem_size / config->rx_ring_num);
995                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
996                         continue;
997                 }
998         }
999         writeq(val64, &bar0->rx_queue_cfg);
1000
1001         /*
1002          * Filling Tx round robin registers
1003          * as per the number of FIFOs
1004          */
1005         switch (config->tx_fifo_num) {
1006         case 1:
1007                 val64 = 0x0000000000000000ULL;
1008                 writeq(val64, &bar0->tx_w_round_robin_0);
1009                 writeq(val64, &bar0->tx_w_round_robin_1);
1010                 writeq(val64, &bar0->tx_w_round_robin_2);
1011                 writeq(val64, &bar0->tx_w_round_robin_3);
1012                 writeq(val64, &bar0->tx_w_round_robin_4);
1013                 break;
1014         case 2:
1015                 val64 = 0x0000010000010000ULL;
1016                 writeq(val64, &bar0->tx_w_round_robin_0);
1017                 val64 = 0x0100000100000100ULL;
1018                 writeq(val64, &bar0->tx_w_round_robin_1);
1019                 val64 = 0x0001000001000001ULL;
1020                 writeq(val64, &bar0->tx_w_round_robin_2);
1021                 val64 = 0x0000010000010000ULL;
1022                 writeq(val64, &bar0->tx_w_round_robin_3);
1023                 val64 = 0x0100000000000000ULL;
1024                 writeq(val64, &bar0->tx_w_round_robin_4);
1025                 break;
1026         case 3:
1027                 val64 = 0x0001000102000001ULL;
1028                 writeq(val64, &bar0->tx_w_round_robin_0);
1029                 val64 = 0x0001020000010001ULL;
1030                 writeq(val64, &bar0->tx_w_round_robin_1);
1031                 val64 = 0x0200000100010200ULL;
1032                 writeq(val64, &bar0->tx_w_round_robin_2);
1033                 val64 = 0x0001000102000001ULL;
1034                 writeq(val64, &bar0->tx_w_round_robin_3);
1035                 val64 = 0x0001020000000000ULL;
1036                 writeq(val64, &bar0->tx_w_round_robin_4);
1037                 break;
1038         case 4:
1039                 val64 = 0x0001020300010200ULL;
1040                 writeq(val64, &bar0->tx_w_round_robin_0);
1041                 val64 = 0x0100000102030001ULL;
1042                 writeq(val64, &bar0->tx_w_round_robin_1);
1043                 val64 = 0x0200010000010203ULL;
1044                 writeq(val64, &bar0->tx_w_round_robin_2);
1045                 val64 = 0x0001020001000001ULL;
1046                 writeq(val64, &bar0->tx_w_round_robin_3);
1047                 val64 = 0x0203000100000000ULL;
1048                 writeq(val64, &bar0->tx_w_round_robin_4);
1049                 break;
1050         case 5:
1051                 val64 = 0x0001000203000102ULL;
1052                 writeq(val64, &bar0->tx_w_round_robin_0);
1053                 val64 = 0x0001020001030004ULL;
1054                 writeq(val64, &bar0->tx_w_round_robin_1);
1055                 val64 = 0x0001000203000102ULL;
1056                 writeq(val64, &bar0->tx_w_round_robin_2);
1057                 val64 = 0x0001020001030004ULL;
1058                 writeq(val64, &bar0->tx_w_round_robin_3);
1059                 val64 = 0x0001000000000000ULL;
1060                 writeq(val64, &bar0->tx_w_round_robin_4);
1061                 break;
1062         case 6:
1063                 val64 = 0x0001020304000102ULL;
1064                 writeq(val64, &bar0->tx_w_round_robin_0);
1065                 val64 = 0x0304050001020001ULL;
1066                 writeq(val64, &bar0->tx_w_round_robin_1);
1067                 val64 = 0x0203000100000102ULL;
1068                 writeq(val64, &bar0->tx_w_round_robin_2);
1069                 val64 = 0x0304000102030405ULL;
1070                 writeq(val64, &bar0->tx_w_round_robin_3);
1071                 val64 = 0x0001000200000000ULL;
1072                 writeq(val64, &bar0->tx_w_round_robin_4);
1073                 break;
1074         case 7:
1075                 val64 = 0x0001020001020300ULL;
1076                 writeq(val64, &bar0->tx_w_round_robin_0);
1077                 val64 = 0x0102030400010203ULL;
1078                 writeq(val64, &bar0->tx_w_round_robin_1);
1079                 val64 = 0x0405060001020001ULL;
1080                 writeq(val64, &bar0->tx_w_round_robin_2);
1081                 val64 = 0x0304050000010200ULL;
1082                 writeq(val64, &bar0->tx_w_round_robin_3);
1083                 val64 = 0x0102030000000000ULL;
1084                 writeq(val64, &bar0->tx_w_round_robin_4);
1085                 break;
1086         case 8:
1087                 val64 = 0x0001020300040105ULL;
1088                 writeq(val64, &bar0->tx_w_round_robin_0);
1089                 val64 = 0x0200030106000204ULL;
1090                 writeq(val64, &bar0->tx_w_round_robin_1);
1091                 val64 = 0x0103000502010007ULL;
1092                 writeq(val64, &bar0->tx_w_round_robin_2);
1093                 val64 = 0x0304010002060500ULL;
1094                 writeq(val64, &bar0->tx_w_round_robin_3);
1095                 val64 = 0x0103020400000000ULL;
1096                 writeq(val64, &bar0->tx_w_round_robin_4);
1097                 break;
1098         }
1099
1100         /* Filling the Rx round robin registers as per the
1101          * number of Rings and steering based on QoS.
1102          */
1103         switch (config->rx_ring_num) {
1104         case 1:
1105                 val64 = 0x8080808080808080ULL;
1106                 writeq(val64, &bar0->rts_qos_steering);
1107                 break;
1108         case 2:
1109                 val64 = 0x0000010000010000ULL;
1110                 writeq(val64, &bar0->rx_w_round_robin_0);
1111                 val64 = 0x0100000100000100ULL;
1112                 writeq(val64, &bar0->rx_w_round_robin_1);
1113                 val64 = 0x0001000001000001ULL;
1114                 writeq(val64, &bar0->rx_w_round_robin_2);
1115                 val64 = 0x0000010000010000ULL;
1116                 writeq(val64, &bar0->rx_w_round_robin_3);
1117                 val64 = 0x0100000000000000ULL;
1118                 writeq(val64, &bar0->rx_w_round_robin_4);
1119
1120                 val64 = 0x8080808040404040ULL;
1121                 writeq(val64, &bar0->rts_qos_steering);
1122                 break;
1123         case 3:
1124                 val64 = 0x0001000102000001ULL;
1125                 writeq(val64, &bar0->rx_w_round_robin_0);
1126                 val64 = 0x0001020000010001ULL;
1127                 writeq(val64, &bar0->rx_w_round_robin_1);
1128                 val64 = 0x0200000100010200ULL;
1129                 writeq(val64, &bar0->rx_w_round_robin_2);
1130                 val64 = 0x0001000102000001ULL;
1131                 writeq(val64, &bar0->rx_w_round_robin_3);
1132                 val64 = 0x0001020000000000ULL;
1133                 writeq(val64, &bar0->rx_w_round_robin_4);
1134
1135                 val64 = 0x8080804040402020ULL;
1136                 writeq(val64, &bar0->rts_qos_steering);
1137                 break;
1138         case 4:
1139                 val64 = 0x0001020300010200ULL;
1140                 writeq(val64, &bar0->rx_w_round_robin_0);
1141                 val64 = 0x0100000102030001ULL;
1142                 writeq(val64, &bar0->rx_w_round_robin_1);
1143                 val64 = 0x0200010000010203ULL;
1144                 writeq(val64, &bar0->rx_w_round_robin_2);
1145                 val64 = 0x0001020001000001ULL;  
1146                 writeq(val64, &bar0->rx_w_round_robin_3);
1147                 val64 = 0x0203000100000000ULL;
1148                 writeq(val64, &bar0->rx_w_round_robin_4);
1149
1150                 val64 = 0x8080404020201010ULL;
1151                 writeq(val64, &bar0->rts_qos_steering);
1152                 break;
1153         case 5:
1154                 val64 = 0x0001000203000102ULL;
1155                 writeq(val64, &bar0->rx_w_round_robin_0);
1156                 val64 = 0x0001020001030004ULL;
1157                 writeq(val64, &bar0->rx_w_round_robin_1);
1158                 val64 = 0x0001000203000102ULL;
1159                 writeq(val64, &bar0->rx_w_round_robin_2);
1160                 val64 = 0x0001020001030004ULL;
1161                 writeq(val64, &bar0->rx_w_round_robin_3);
1162                 val64 = 0x0001000000000000ULL;
1163                 writeq(val64, &bar0->rx_w_round_robin_4);
1164
1165                 val64 = 0x8080404020201008ULL;
1166                 writeq(val64, &bar0->rts_qos_steering);
1167                 break;
1168         case 6:
1169                 val64 = 0x0001020304000102ULL;
1170                 writeq(val64, &bar0->rx_w_round_robin_0);
1171                 val64 = 0x0304050001020001ULL;
1172                 writeq(val64, &bar0->rx_w_round_robin_1);
1173                 val64 = 0x0203000100000102ULL;
1174                 writeq(val64, &bar0->rx_w_round_robin_2);
1175                 val64 = 0x0304000102030405ULL;
1176                 writeq(val64, &bar0->rx_w_round_robin_3);
1177                 val64 = 0x0001000200000000ULL;
1178                 writeq(val64, &bar0->rx_w_round_robin_4);
1179
1180                 val64 = 0x8080404020100804ULL;
1181                 writeq(val64, &bar0->rts_qos_steering);
1182                 break;
1183         case 7:
1184                 val64 = 0x0001020001020300ULL;
1185                 writeq(val64, &bar0->rx_w_round_robin_0);
1186                 val64 = 0x0102030400010203ULL;
1187                 writeq(val64, &bar0->rx_w_round_robin_1);
1188                 val64 = 0x0405060001020001ULL;
1189                 writeq(val64, &bar0->rx_w_round_robin_2);
1190                 val64 = 0x0304050000010200ULL;
1191                 writeq(val64, &bar0->rx_w_round_robin_3);
1192                 val64 = 0x0102030000000000ULL;
1193                 writeq(val64, &bar0->rx_w_round_robin_4);
1194
1195                 val64 = 0x8080402010080402ULL;
1196                 writeq(val64, &bar0->rts_qos_steering);
1197                 break;
1198         case 8:
1199                 val64 = 0x0001020300040105ULL;
1200                 writeq(val64, &bar0->rx_w_round_robin_0);
1201                 val64 = 0x0200030106000204ULL;
1202                 writeq(val64, &bar0->rx_w_round_robin_1);
1203                 val64 = 0x0103000502010007ULL;
1204                 writeq(val64, &bar0->rx_w_round_robin_2);
1205                 val64 = 0x0304010002060500ULL;
1206                 writeq(val64, &bar0->rx_w_round_robin_3);
1207                 val64 = 0x0103020400000000ULL;
1208                 writeq(val64, &bar0->rx_w_round_robin_4);
1209
1210                 val64 = 0x8040201008040201ULL;
1211                 writeq(val64, &bar0->rts_qos_steering);
1212                 break;
1213         }
1214
1215         /* UDP Fix */
1216         val64 = 0;
1217         for (i = 0; i < 8; i++)
1218                 writeq(val64, &bar0->rts_frm_len_n[i]);
1219
1220         /* Set the default rts frame length for the rings configured */
1221         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1222         for (i = 0 ; i < config->rx_ring_num ; i++)
1223                 writeq(val64, &bar0->rts_frm_len_n[i]);
1224
1225         /* Set the frame length for the configured rings
1226          * desired by the user
1227          */
1228         for (i = 0; i < config->rx_ring_num; i++) {
1229                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1230                  * specified frame length steering.
1231                  * If the user provides the frame length then program
1232                  * the rts_frm_len register for those values or else
1233                  * leave it as it is.
1234                  */
1235                 if (rts_frm_len[i] != 0) {
1236                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1237                                 &bar0->rts_frm_len_n[i]);
1238                 }
1239         }
1240
1241         /* Program statistics memory */
1242         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1243
1244         if (nic->device_type == XFRAME_II_DEVICE) {
1245                 val64 = STAT_BC(0x320);
1246                 writeq(val64, &bar0->stat_byte_cnt);
1247         }
1248
1249         /*
1250          * Initializing the sampling rate for the device to calculate the
1251          * bandwidth utilization.
1252          */
1253         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1254             MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1255         writeq(val64, &bar0->mac_link_util);
1256
1257
1258         /*
1259          * Initializing the Transmit and Receive Traffic Interrupt
1260          * Scheme.
1261          */
1262         /*
1263          * TTI Initialization. Default Tx timer gets us about
1264          * 250 interrupts per sec. Continuous interrupts are enabled
1265          * by default.
1266          */
1267         if (nic->device_type == XFRAME_II_DEVICE) {
1268                 int count = (nic->config.bus_speed * 125)/2;
1269                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1270         } else {
1271
1272                 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1273         }
1274         val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1275             TTI_DATA1_MEM_TX_URNG_B(0x10) |
1276             TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1277                 if (use_continuous_tx_intrs)
1278                         val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1279         writeq(val64, &bar0->tti_data1_mem);
1280
1281         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1282             TTI_DATA2_MEM_TX_UFC_B(0x20) |
1283             TTI_DATA2_MEM_TX_UFC_C(0x70) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1284         writeq(val64, &bar0->tti_data2_mem);
1285
1286         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1287         writeq(val64, &bar0->tti_command_mem);
1288
1289         /*
1290          * Once the operation completes, the Strobe bit of the command
1291          * register will be reset. We poll for this particular condition
1292          * We wait for a maximum of 500ms for the operation to complete,
1293          * if it's not complete by then we return error.
1294          */
1295         time = 0;
1296         while (TRUE) {
1297                 val64 = readq(&bar0->tti_command_mem);
1298                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1299                         break;
1300                 }
1301                 if (time > 10) {
1302                         DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1303                                   dev->name);
1304                         return -1;
1305                 }
1306                 msleep(50);
1307                 time++;
1308         }
1309
1310         if (nic->config.bimodal) {
1311                 int k = 0;
1312                 for (k = 0; k < config->rx_ring_num; k++) {
1313                         val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1314                         val64 |= TTI_CMD_MEM_OFFSET(0x38+k);
1315                         writeq(val64, &bar0->tti_command_mem);
1316
1317                 /*
1318                  * Once the operation completes, the Strobe bit of the command
1319                  * register will be reset. We poll for this particular condition
1320                  * We wait for a maximum of 500ms for the operation to complete,
1321                  * if it's not complete by then we return error.
1322                 */
1323                         time = 0;
1324                         while (TRUE) {
1325                                 val64 = readq(&bar0->tti_command_mem);
1326                                 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1327                                         break;
1328                                 }
1329                                 if (time > 10) {
1330                                         DBG_PRINT(ERR_DBG,
1331                                                 "%s: TTI init Failed\n",
1332                                         dev->name);
1333                                         return -1;
1334                                 }
1335                                 time++;
1336                                 msleep(50);
1337                         }
1338                 }
1339         } else {
1340
1341                 /* RTI Initialization */
1342                 if (nic->device_type == XFRAME_II_DEVICE) {
1343                         /*
1344                          * Programmed to generate Apprx 500 Intrs per
1345                          * second
1346                          */
1347                         int count = (nic->config.bus_speed * 125)/4;
1348                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1349                 } else {
1350                         val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1351                 }
1352                 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1353                     RTI_DATA1_MEM_RX_URNG_B(0x10) |
1354                     RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1355
1356                 writeq(val64, &bar0->rti_data1_mem);
1357
1358                 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1359                     RTI_DATA2_MEM_RX_UFC_B(0x2) |
1360                     RTI_DATA2_MEM_RX_UFC_C(0x40) | RTI_DATA2_MEM_RX_UFC_D(0x80);
1361                 writeq(val64, &bar0->rti_data2_mem);
1362
1363                 for (i = 0; i < config->rx_ring_num; i++) {
1364                         val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1365                                         | RTI_CMD_MEM_OFFSET(i);
1366                         writeq(val64, &bar0->rti_command_mem);
1367
1368                         /*
1369                          * Once the operation completes, the Strobe bit of the
1370                          * command register will be reset. We poll for this
1371                          * particular condition. We wait for a maximum of 500ms
1372                          * for the operation to complete, if it's not complete
1373                          * by then we return error.
1374                          */
1375                         time = 0;
1376                         while (TRUE) {
1377                                 val64 = readq(&bar0->rti_command_mem);
1378                                 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) {
1379                                         break;
1380                                 }
1381                                 if (time > 10) {
1382                                         DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1383                                                   dev->name);
1384                                         return -1;
1385                                 }
1386                                 time++;
1387                                 msleep(50);
1388                         }
1389                 }
1390         }
1391
1392         /*
1393          * Initializing proper values as Pause threshold into all
1394          * the 8 Queues on Rx side.
1395          */
1396         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1397         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1398
1399         /* Disable RMAC PAD STRIPPING */
1400         add = (void *) &bar0->mac_cfg;
1401         val64 = readq(&bar0->mac_cfg);
1402         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1403         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1404         writel((u32) (val64), add);
1405         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1406         writel((u32) (val64 >> 32), (add + 4));
1407         val64 = readq(&bar0->mac_cfg);
1408
1409         /*
1410          * Set the time value to be inserted in the pause frame
1411          * generated by xena.
1412          */
1413         val64 = readq(&bar0->rmac_pause_cfg);
1414         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1415         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1416         writeq(val64, &bar0->rmac_pause_cfg);
1417
1418         /*
1419          * Set the Threshold Limit for Generating the pause frame
1420          * If the amount of data in any Queue exceeds ratio of
1421          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1422          * pause frame is generated
1423          */
1424         val64 = 0;
1425         for (i = 0; i < 4; i++) {
1426                 val64 |=
1427                     (((u64) 0xFF00 | nic->mac_control.
1428                       mc_pause_threshold_q0q3)
1429                      << (i * 2 * 8));
1430         }
1431         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1432
1433         val64 = 0;
1434         for (i = 0; i < 4; i++) {
1435                 val64 |=
1436                     (((u64) 0xFF00 | nic->mac_control.
1437                       mc_pause_threshold_q4q7)
1438                      << (i * 2 * 8));
1439         }
1440         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1441
1442         /*
1443          * TxDMA will stop Read request if the number of read split has
1444          * exceeded the limit pointed by shared_splits
1445          */
1446         val64 = readq(&bar0->pic_control);
1447         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1448         writeq(val64, &bar0->pic_control);
1449
1450         /*
1451          * Programming the Herc to split every write transaction
1452          * that does not start on an ADB to reduce disconnects.
1453          */
1454         if (nic->device_type == XFRAME_II_DEVICE) {
1455                 val64 = WREQ_SPLIT_MASK_SET_MASK(255);
1456                 writeq(val64, &bar0->wreq_split_mask);
1457         }
1458
1459         /* Setting Link stability period to 64 ms */ 
1460         if (nic->device_type == XFRAME_II_DEVICE) {
1461                 val64 = MISC_LINK_STABILITY_PRD(3);
1462                 writeq(val64, &bar0->misc_control);
1463         }
1464
1465         return SUCCESS;
1466 }
1467 #define LINK_UP_DOWN_INTERRUPT          1
1468 #define MAC_RMAC_ERR_TIMER              2
1469
1470 #if defined(CONFIG_MSI_MODE) || defined(CONFIG_MSIX_MODE)
1471 #define s2io_link_fault_indication(x) MAC_RMAC_ERR_TIMER
1472 #else
1473 int s2io_link_fault_indication(nic_t *nic)
1474 {
1475         if (nic->device_type == XFRAME_II_DEVICE)
1476                 return LINK_UP_DOWN_INTERRUPT;
1477         else
1478                 return MAC_RMAC_ERR_TIMER;
1479 }
1480 #endif
1481
1482 /**
1483  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1484  *  @nic: device private variable,
1485  *  @mask: A mask indicating which Intr block must be modified and,
1486  *  @flag: A flag indicating whether to enable or disable the Intrs.
1487  *  Description: This function will either disable or enable the interrupts
1488  *  depending on the flag argument. The mask argument can be used to
1489  *  enable/disable any Intr block.
1490  *  Return Value: NONE.
1491  */
1492
1493 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1494 {
1495         XENA_dev_config_t __iomem *bar0 = nic->bar0;
1496         register u64 val64 = 0, temp64 = 0;
1497
1498         /*  Top level interrupt classification */
1499         /*  PIC Interrupts */
1500         if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) {
1501                 /*  Enable PIC Intrs in the general intr mask register */
1502                 val64 = TXPIC_INT_M | PIC_RX_INT_M;
1503                 if (flag == ENABLE_INTRS) {
1504                         temp64 = readq(&bar0->general_int_mask);
1505                         temp64 &= ~((u64) val64);
1506                         writeq(temp64, &bar0->general_int_mask);
1507                         /*
1508                          * If Hercules adapter enable GPIO otherwise
1509                          * disabled all PCIX, Flash, MDIO, IIC and GPIO
1510                          * interrupts for now.
1511                          * TODO
1512                          */
1513                         if (s2io_link_fault_indication(nic) ==
1514                                         LINK_UP_DOWN_INTERRUPT ) {
1515                                 temp64 = readq(&bar0->pic_int_mask);
1516                                 temp64 &= ~((u64) PIC_INT_GPIO);
1517                                 writeq(temp64, &bar0->pic_int_mask);
1518                                 temp64 = readq(&bar0->gpio_int_mask);
1519                                 temp64 &= ~((u64) GPIO_INT_MASK_LINK_UP);
1520                                 writeq(temp64, &bar0->gpio_int_mask);
1521                         } else {
1522                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1523                         }
1524                         /*
1525                          * No MSI Support is available presently, so TTI and
1526                          * RTI interrupts are also disabled.
1527                          */
1528                 } else if (flag == DISABLE_INTRS) {
1529                         /*
1530                          * Disable PIC Intrs in the general
1531                          * intr mask register
1532                          */
1533                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1534                         temp64 = readq(&bar0->general_int_mask);
1535                         val64 |= temp64;
1536                         writeq(val64, &bar0->general_int_mask);
1537                 }
1538         }
1539
1540         /*  DMA Interrupts */
1541         /*  Enabling/Disabling Tx DMA interrupts */
1542         if (mask & TX_DMA_INTR) {
1543                 /* Enable TxDMA Intrs in the general intr mask register */
1544                 val64 = TXDMA_INT_M;
1545                 if (flag == ENABLE_INTRS) {
1546                         temp64 = readq(&bar0->general_int_mask);
1547                         temp64 &= ~((u64) val64);
1548                         writeq(temp64, &bar0->general_int_mask);
1549                         /*
1550                          * Keep all interrupts other than PFC interrupt
1551                          * and PCC interrupt disabled in DMA level.
1552                          */
1553                         val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M |
1554                                                       TXDMA_PCC_INT_M);
1555                         writeq(val64, &bar0->txdma_int_mask);
1556                         /*
1557                          * Enable only the MISC error 1 interrupt in PFC block
1558                          */
1559                         val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1);
1560                         writeq(val64, &bar0->pfc_err_mask);
1561                         /*
1562                          * Enable only the FB_ECC error interrupt in PCC block
1563                          */
1564                         val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR);
1565                         writeq(val64, &bar0->pcc_err_mask);
1566                 } else if (flag == DISABLE_INTRS) {
1567                         /*
1568                          * Disable TxDMA Intrs in the general intr mask
1569                          * register
1570                          */
1571                         writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask);
1572                         writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask);
1573                         temp64 = readq(&bar0->general_int_mask);
1574                         val64 |= temp64;
1575                         writeq(val64, &bar0->general_int_mask);
1576                 }
1577         }
1578
1579         /*  Enabling/Disabling Rx DMA interrupts */
1580         if (mask & RX_DMA_INTR) {
1581                 /*  Enable RxDMA Intrs in the general intr mask register */
1582                 val64 = RXDMA_INT_M;
1583                 if (flag == ENABLE_INTRS) {
1584                         temp64 = readq(&bar0->general_int_mask);
1585                         temp64 &= ~((u64) val64);
1586                         writeq(temp64, &bar0->general_int_mask);
1587                         /*
1588                          * All RxDMA block interrupts are disabled for now
1589                          * TODO
1590                          */
1591                         writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1592                 } else if (flag == DISABLE_INTRS) {
1593                         /*
1594                          * Disable RxDMA Intrs in the general intr mask
1595                          * register
1596                          */
1597                         writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask);
1598                         temp64 = readq(&bar0->general_int_mask);
1599                         val64 |= temp64;
1600                         writeq(val64, &bar0->general_int_mask);
1601                 }
1602         }
1603
1604         /*  MAC Interrupts */
1605         /*  Enabling/Disabling MAC interrupts */
1606         if (mask & (TX_MAC_INTR | RX_MAC_INTR)) {
1607                 val64 = TXMAC_INT_M | RXMAC_INT_M;
1608                 if (flag == ENABLE_INTRS) {
1609                         temp64 = readq(&bar0->general_int_mask);
1610                         temp64 &= ~((u64) val64);
1611                         writeq(temp64, &bar0->general_int_mask);
1612                         /*
1613                          * All MAC block error interrupts are disabled for now
1614                          * TODO
1615                          */
1616                 } else if (flag == DISABLE_INTRS) {
1617                         /*
1618                          * Disable MAC Intrs in the general intr mask register
1619                          */
1620                         writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask);
1621                         writeq(DISABLE_ALL_INTRS,
1622                                &bar0->mac_rmac_err_mask);
1623
1624                         temp64 = readq(&bar0->general_int_mask);
1625                         val64 |= temp64;
1626                         writeq(val64, &bar0->general_int_mask);
1627                 }
1628         }
1629
1630         /*  XGXS Interrupts */
1631         if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) {
1632                 val64 = TXXGXS_INT_M | RXXGXS_INT_M;
1633                 if (flag == ENABLE_INTRS) {
1634                         temp64 = readq(&bar0->general_int_mask);
1635                         temp64 &= ~((u64) val64);
1636                         writeq(temp64, &bar0->general_int_mask);
1637                         /*
1638                          * All XGXS block error interrupts are disabled for now
1639                          * TODO
1640                          */
1641                         writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1642                 } else if (flag == DISABLE_INTRS) {
1643                         /*
1644                          * Disable MC Intrs in the general intr mask register
1645                          */
1646                         writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask);
1647                         temp64 = readq(&bar0->general_int_mask);
1648                         val64 |= temp64;
1649                         writeq(val64, &bar0->general_int_mask);
1650                 }
1651         }
1652
1653         /*  Memory Controller(MC) interrupts */
1654         if (mask & MC_INTR) {
1655                 val64 = MC_INT_M;
1656                 if (flag == ENABLE_INTRS) {
1657                         temp64 = readq(&bar0->general_int_mask);
1658                         temp64 &= ~((u64) val64);
1659                         writeq(temp64, &bar0->general_int_mask);
1660                         /*
1661                          * Enable all MC Intrs.
1662                          */
1663                         writeq(0x0, &bar0->mc_int_mask);
1664                         writeq(0x0, &bar0->mc_err_mask);
1665                 } else if (flag == DISABLE_INTRS) {
1666                         /*
1667                          * Disable MC Intrs in the general intr mask register
1668                          */
1669                         writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask);
1670                         temp64 = readq(&bar0->general_int_mask);
1671                         val64 |= temp64;
1672                         writeq(val64, &bar0->general_int_mask);
1673                 }
1674         }
1675
1676
1677         /*  Tx traffic interrupts */
1678         if (mask & TX_TRAFFIC_INTR) {
1679                 val64 = TXTRAFFIC_INT_M;
1680                 if (flag == ENABLE_INTRS) {
1681                         temp64 = readq(&bar0->general_int_mask);
1682                         temp64 &= ~((u64) val64);
1683                         writeq(temp64, &bar0->general_int_mask);
1684                         /*
1685                          * Enable all the Tx side interrupts
1686                          * writing 0 Enables all 64 TX interrupt levels
1687                          */
1688                         writeq(0x0, &bar0->tx_traffic_mask);
1689                 } else if (flag == DISABLE_INTRS) {
1690                         /*
1691                          * Disable Tx Traffic Intrs in the general intr mask
1692                          * register.
1693                          */
1694                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1695                         temp64 = readq(&bar0->general_int_mask);
1696                         val64 |= temp64;
1697                         writeq(val64, &bar0->general_int_mask);
1698                 }
1699         }
1700
1701         /*  Rx traffic interrupts */
1702         if (mask & RX_TRAFFIC_INTR) {
1703                 val64 = RXTRAFFIC_INT_M;
1704                 if (flag == ENABLE_INTRS) {
1705                         temp64 = readq(&bar0->general_int_mask);
1706                         temp64 &= ~((u64) val64);
1707                         writeq(temp64, &bar0->general_int_mask);
1708                         /* writing 0 Enables all 8 RX interrupt levels */
1709                         writeq(0x0, &bar0->rx_traffic_mask);
1710                 } else if (flag == DISABLE_INTRS) {
1711                         /*
1712                          * Disable Rx Traffic Intrs in the general intr mask
1713                          * register.
1714                          */
1715                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1716                         temp64 = readq(&bar0->general_int_mask);
1717                         val64 |= temp64;
1718                         writeq(val64, &bar0->general_int_mask);
1719                 }
1720         }
1721 }
1722
1723 static int check_prc_pcc_state(u64 val64, int flag, int rev_id, int herc)
1724 {
1725         int ret = 0;
1726
1727         if (flag == FALSE) {
1728                 if ((!herc && (rev_id >= 4)) || herc) {
1729                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1730                             ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1731                              ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1732                                 ret = 1;
1733                         }
1734                 }else {
1735                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1736                             ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1737                              ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
1738                                 ret = 1;
1739                         }
1740                 }
1741         } else {
1742                 if ((!herc && (rev_id >= 4)) || herc) {
1743                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
1744                              ADAPTER_STATUS_RMAC_PCC_IDLE) &&
1745                             (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1746                              ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1747                               ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1748                                 ret = 1;
1749                         }
1750                 } else {
1751                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
1752                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) &&
1753                             (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ||
1754                              ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
1755                               ADAPTER_STATUS_RC_PRC_QUIESCENT))) {
1756                                 ret = 1;
1757                         }
1758                 }
1759         }
1760
1761         return ret;
1762 }
1763 /**
1764  *  verify_xena_quiescence - Checks whether the H/W is ready
1765  *  @val64 :  Value read from adapter status register.
1766  *  @flag : indicates if the adapter enable bit was ever written once
1767  *  before.
1768  *  Description: Returns whether the H/W is ready to go or not. Depending
1769  *  on whether adapter enable bit was written or not the comparison
1770  *  differs and the calling function passes the input argument flag to
1771  *  indicate this.
1772  *  Return: 1 If xena is quiescence
1773  *          0 If Xena is not quiescence
1774  */
1775
1776 static int verify_xena_quiescence(nic_t *sp, u64 val64, int flag)
1777 {
1778         int ret = 0, herc;
1779         u64 tmp64 = ~((u64) val64);
1780         int rev_id = get_xena_rev_id(sp->pdev);
1781
1782         herc = (sp->device_type == XFRAME_II_DEVICE);
1783         if (!
1784             (tmp64 &
1785              (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY |
1786               ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY |
1787               ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY |
1788               ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK |
1789               ADAPTER_STATUS_P_PLL_LOCK))) {
1790                 ret = check_prc_pcc_state(val64, flag, rev_id, herc);
1791         }
1792
1793         return ret;
1794 }
1795
1796 /**
1797  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
1798  * @sp: Pointer to device specifc structure
1799  * Description :
1800  * New procedure to clear mac address reading  problems on Alpha platforms
1801  *
1802  */
1803
1804 void fix_mac_address(nic_t * sp)
1805 {
1806         XENA_dev_config_t __iomem *bar0 = sp->bar0;
1807         u64 val64;
1808         int i = 0;
1809
1810         while (fix_mac[i] != END_SIGN) {
1811                 writeq(fix_mac[i++], &bar0->gpio_control);
1812                 udelay(10);
1813                 val64 = readq(&bar0->gpio_control);
1814         }
1815 }
1816
1817 /**
1818  *  start_nic - Turns the device on
1819  *  @nic : device private variable.
1820  *  Description:
1821  *  This function actually turns the device on. Before this  function is
1822  *  called,all Registers are configured from their reset states
1823  *  and shared memory is allocated but the NIC is still quiescent. On
1824  *  calling this function, the device interrupts are cleared and the NIC is
1825  *  literally switched on by writing into the adapter control register.
1826  *  Return Value:
1827  *  SUCCESS on success and -1 on failure.
1828  */
1829
1830 static int start_nic(struct s2io_nic *nic)
1831 {
1832         XENA_dev_config_t __iomem *bar0 = nic->bar0;
1833         struct net_device *dev = nic->dev;
1834         register u64 val64 = 0;
1835         u16 interruptible;
1836         u16 subid, i;
1837         mac_info_t *mac_control;
1838         struct config_param *config;
1839
1840         mac_control = &nic->mac_control;
1841         config = &nic->config;
1842
1843         /*  PRC Initialization and configuration */
1844         for (i = 0; i < config->rx_ring_num; i++) {
1845                 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
1846                        &bar0->prc_rxd0_n[i]);
1847
1848                 val64 = readq(&bar0->prc_ctrl_n[i]);
1849                 if (nic->config.bimodal)
1850                         val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
1851 #ifndef CONFIG_2BUFF_MODE
1852                 val64 |= PRC_CTRL_RC_ENABLED;
1853 #else
1854                 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
1855 #endif
1856                 writeq(val64, &bar0->prc_ctrl_n[i]);
1857         }
1858
1859 #ifdef CONFIG_2BUFF_MODE
1860         /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
1861         val64 = readq(&bar0->rx_pa_cfg);
1862         val64 |= RX_PA_CFG_IGNORE_L2_ERR;
1863         writeq(val64, &bar0->rx_pa_cfg);
1864 #endif
1865
1866         /*
1867          * Enabling MC-RLDRAM. After enabling the device, we timeout
1868          * for around 100ms, which is approximately the time required
1869          * for the device to be ready for operation.
1870          */
1871         val64 = readq(&bar0->mc_rldram_mrs);
1872         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
1873         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
1874         val64 = readq(&bar0->mc_rldram_mrs);
1875
1876         msleep(100);    /* Delay by around 100 ms. */
1877
1878         /* Enabling ECC Protection. */
1879         val64 = readq(&bar0->adapter_control);
1880         val64 &= ~ADAPTER_ECC_EN;
1881         writeq(val64, &bar0->adapter_control);
1882
1883         /*
1884          * Clearing any possible Link state change interrupts that
1885          * could have popped up just before Enabling the card.
1886          */
1887         val64 = readq(&bar0->mac_rmac_err_reg);
1888         if (val64)
1889                 writeq(val64, &bar0->mac_rmac_err_reg);
1890
1891         /*
1892          * Verify if the device is ready to be enabled, if so enable
1893          * it.
1894          */
1895         val64 = readq(&bar0->adapter_status);
1896         if (!verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
1897                 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
1898                 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
1899                           (unsigned long long) val64);
1900                 return FAILURE;
1901         }
1902
1903         /*  Enable select interrupts */
1904         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR | MC_INTR;
1905         interruptible |= TX_PIC_INTR | RX_PIC_INTR;
1906         interruptible |= TX_MAC_INTR | RX_MAC_INTR;
1907
1908         en_dis_able_nic_intrs(nic, interruptible, ENABLE_INTRS);
1909
1910         /*
1911          * With some switches, link might be already up at this point.
1912          * Because of this weird behavior, when we enable laser,
1913          * we may not get link. We need to handle this. We cannot
1914          * figure out which switch is misbehaving. So we are forced to
1915          * make a global change.
1916          */
1917
1918         /* Enabling Laser. */
1919         val64 = readq(&bar0->adapter_control);
1920         val64 |= ADAPTER_EOI_TX_ON;
1921         writeq(val64, &bar0->adapter_control);
1922
1923         /* SXE-002: Initialize link and activity LED */
1924         subid = nic->pdev->subsystem_device;
1925         if (((subid & 0xFF) >= 0x07) &&
1926             (nic->device_type == XFRAME_I_DEVICE)) {
1927                 val64 = readq(&bar0->gpio_control);
1928                 val64 |= 0x0000800000000000ULL;
1929                 writeq(val64, &bar0->gpio_control);
1930                 val64 = 0x0411040400000000ULL;
1931                 writeq(val64, (void __iomem *) ((u8 *) bar0 + 0x2700));
1932         }
1933
1934         /*
1935          * Don't see link state interrupts on certain switches, so
1936          * directly scheduling a link state task from here.
1937          */
1938         schedule_work(&nic->set_link_task);
1939
1940         return SUCCESS;
1941 }
1942
1943 /**
1944  *  free_tx_buffers - Free all queued Tx buffers
1945  *  @nic : device private variable.
1946  *  Description:
1947  *  Free all queued Tx buffers.
1948  *  Return Value: void
1949 */
1950
1951 static void free_tx_buffers(struct s2io_nic *nic)
1952 {
1953         struct net_device *dev = nic->dev;
1954         struct sk_buff *skb;
1955         TxD_t *txdp;
1956         int i, j;
1957         mac_info_t *mac_control;
1958         struct config_param *config;
1959         int cnt = 0, frg_cnt;
1960
1961         mac_control = &nic->mac_control;
1962         config = &nic->config;
1963
1964         for (i = 0; i < config->tx_fifo_num; i++) {
1965                 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
1966                         txdp = (TxD_t *) mac_control->fifos[i].list_info[j].
1967                             list_virt_addr;
1968                         skb =
1969                             (struct sk_buff *) ((unsigned long) txdp->
1970                                                 Host_Control);
1971                         if (skb == NULL) {
1972                                 memset(txdp, 0, sizeof(TxD_t) *
1973                                        config->max_txds);
1974                                 continue;
1975                         }
1976                         frg_cnt = skb_shinfo(skb)->nr_frags;
1977                         pci_unmap_single(nic->pdev, (dma_addr_t)
1978                                          txdp->Buffer_Pointer,
1979                                          skb->len - skb->data_len,
1980                                          PCI_DMA_TODEVICE);
1981                         if (frg_cnt) {
1982                                 TxD_t *temp;
1983                                 temp = txdp;
1984                                 txdp++;
1985                                 for (j = 0; j < frg_cnt; j++, txdp++) {
1986                                         skb_frag_t *frag =
1987                                             &skb_shinfo(skb)->frags[j];
1988                                         pci_unmap_page(nic->pdev,
1989                                                        (dma_addr_t)
1990                                                        txdp->
1991                                                        Buffer_Pointer,
1992                                                        frag->size,
1993                                                        PCI_DMA_TODEVICE);
1994                                 }
1995                                 txdp = temp;
1996                         }
1997                         dev_kfree_skb(skb);
1998                         memset(txdp, 0, sizeof(TxD_t) * config->max_txds);
1999                         cnt++;
2000                 }
2001                 DBG_PRINT(INTR_DBG,
2002                           "%s:forcibly freeing %d skbs on FIFO%d\n",
2003                           dev->name, cnt, i);
2004                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2005                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2006         }
2007 }
2008
2009 /**
2010  *   stop_nic -  To stop the nic
2011  *   @nic ; device private variable.
2012  *   Description:
2013  *   This function does exactly the opposite of what the start_nic()
2014  *   function does. This function is called to stop the device.
2015  *   Return Value:
2016  *   void.
2017  */
2018
2019 static void stop_nic(struct s2io_nic *nic)
2020 {
2021         XENA_dev_config_t __iomem *bar0 = nic->bar0;
2022         register u64 val64 = 0;
2023         u16 interruptible, i;
2024         mac_info_t *mac_control;
2025         struct config_param *config;
2026
2027         mac_control = &nic->mac_control;
2028         config = &nic->config;
2029
2030         /*  Disable all interrupts */
2031         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR | MC_INTR;
2032         interruptible |= TX_PIC_INTR | RX_PIC_INTR;
2033         interruptible |= TX_MAC_INTR | RX_MAC_INTR;
2034         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2035
2036         /*  Disable PRCs */
2037         for (i = 0; i < config->rx_ring_num; i++) {
2038                 val64 = readq(&bar0->prc_ctrl_n[i]);
2039                 val64 &= ~((u64) PRC_CTRL_RC_ENABLED);
2040                 writeq(val64, &bar0->prc_ctrl_n[i]);
2041         }
2042 }
2043
2044 /**
2045  *  fill_rx_buffers - Allocates the Rx side skbs
2046  *  @nic:  device private variable
2047  *  @ring_no: ring number
2048  *  Description:
2049  *  The function allocates Rx side skbs and puts the physical
2050  *  address of these buffers into the RxD buffer pointers, so that the NIC
2051  *  can DMA the received frame into these locations.
2052  *  The NIC supports 3 receive modes, viz
2053  *  1. single buffer,
2054  *  2. three buffer and
2055  *  3. Five buffer modes.
2056  *  Each mode defines how many fragments the received frame will be split
2057  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2058  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2059  *  is split into 3 fragments. As of now only single buffer mode is
2060  *  supported.
2061  *   Return Value:
2062  *  SUCCESS on success or an appropriate -ve value on failure.
2063  */
2064
2065 int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2066 {
2067         struct net_device *dev = nic->dev;
2068         struct sk_buff *skb;
2069         RxD_t *rxdp;
2070         int off, off1, size, block_no, block_no1;
2071         int offset, offset1;
2072         u32 alloc_tab = 0;
2073         u32 alloc_cnt;
2074         mac_info_t *mac_control;
2075         struct config_param *config;
2076 #ifdef CONFIG_2BUFF_MODE
2077         RxD_t *rxdpnext;
2078         int nextblk;
2079         u64 tmp;
2080         buffAdd_t *ba;
2081         dma_addr_t rxdpphys;
2082 #endif
2083 #ifndef CONFIG_S2IO_NAPI
2084         unsigned long flags;
2085 #endif
2086
2087         mac_control = &nic->mac_control;
2088         config = &nic->config;
2089         alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2090             atomic_read(&nic->rx_bufs_left[ring_no]);
2091         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2092             HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2093
2094         while (alloc_tab < alloc_cnt) {
2095                 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2096                     block_index;
2097                 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.
2098                     block_index;
2099                 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2100                 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2101 #ifndef CONFIG_2BUFF_MODE
2102                 offset = block_no * (MAX_RXDS_PER_BLOCK + 1) + off;
2103                 offset1 = block_no1 * (MAX_RXDS_PER_BLOCK + 1) + off1;
2104 #else
2105                 offset = block_no * (MAX_RXDS_PER_BLOCK) + off;
2106                 offset1 = block_no1 * (MAX_RXDS_PER_BLOCK) + off1;
2107 #endif
2108
2109                 rxdp = mac_control->rings[ring_no].rx_blocks[block_no].
2110                     block_virt_addr + off;
2111                 if ((offset == offset1) && (rxdp->Host_Control)) {
2112                         DBG_PRINT(INTR_DBG, "%s: Get and Put", dev->name);
2113                         DBG_PRINT(INTR_DBG, " info equated\n");
2114                         goto end;
2115                 }
2116 #ifndef CONFIG_2BUFF_MODE
2117                 if (rxdp->Control_1 == END_OF_BLOCK) {
2118                         mac_control->rings[ring_no].rx_curr_put_info.
2119                             block_index++;
2120                         mac_control->rings[ring_no].rx_curr_put_info.
2121                             block_index %= mac_control->rings[ring_no].block_count;
2122                         block_no = mac_control->rings[ring_no].rx_curr_put_info.
2123                                 block_index;
2124                         off++;
2125                         off %= (MAX_RXDS_PER_BLOCK + 1);
2126                         mac_control->rings[ring_no].rx_curr_put_info.offset =
2127                             off;
2128                         rxdp = (RxD_t *) ((unsigned long) rxdp->Control_2);
2129                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2130                                   dev->name, rxdp);
2131                 }
2132 #ifndef CONFIG_S2IO_NAPI
2133                 spin_lock_irqsave(&nic->put_lock, flags);
2134                 mac_control->rings[ring_no].put_pos =
2135                     (block_no * (MAX_RXDS_PER_BLOCK + 1)) + off;
2136                 spin_unlock_irqrestore(&nic->put_lock, flags);
2137 #endif
2138 #else
2139                 if (rxdp->Host_Control == END_OF_BLOCK) {
2140                         mac_control->rings[ring_no].rx_curr_put_info.
2141                             block_index++;
2142                         mac_control->rings[ring_no].rx_curr_put_info.block_index
2143                             %= mac_control->rings[ring_no].block_count;
2144                         block_no = mac_control->rings[ring_no].rx_curr_put_info
2145                             .block_index;
2146                         off = 0;
2147                         DBG_PRINT(INTR_DBG, "%s: block%d at: 0x%llx\n",
2148                                   dev->name, block_no,
2149                                   (unsigned long long) rxdp->Control_1);
2150                         mac_control->rings[ring_no].rx_curr_put_info.offset =
2151                             off;
2152                         rxdp = mac_control->rings[ring_no].rx_blocks[block_no].
2153                             block_virt_addr;
2154                 }
2155 #ifndef CONFIG_S2IO_NAPI
2156                 spin_lock_irqsave(&nic->put_lock, flags);
2157                 mac_control->rings[ring_no].put_pos = (block_no *
2158                                          (MAX_RXDS_PER_BLOCK + 1)) + off;
2159                 spin_unlock_irqrestore(&nic->put_lock, flags);
2160 #endif
2161 #endif
2162
2163 #ifndef CONFIG_2BUFF_MODE
2164                 if (rxdp->Control_1 & RXD_OWN_XENA)
2165 #else
2166                 if (rxdp->Control_2 & BIT(0))
2167 #endif
2168                 {
2169                         mac_control->rings[ring_no].rx_curr_put_info.
2170                             offset = off;
2171                         goto end;
2172                 }
2173 #ifdef  CONFIG_2BUFF_MODE
2174                 /*
2175                  * RxDs Spanning cache lines will be replenished only
2176                  * if the succeeding RxD is also owned by Host. It
2177                  * will always be the ((8*i)+3) and ((8*i)+6)
2178                  * descriptors for the 48 byte descriptor. The offending
2179                  * decsriptor is of-course the 3rd descriptor.
2180                  */
2181                 rxdpphys = mac_control->rings[ring_no].rx_blocks[block_no].
2182                     block_dma_addr + (off * sizeof(RxD_t));
2183                 if (((u64) (rxdpphys)) % 128 > 80) {
2184                         rxdpnext = mac_control->rings[ring_no].rx_blocks[block_no].
2185                             block_virt_addr + (off + 1);
2186                         if (rxdpnext->Host_Control == END_OF_BLOCK) {
2187                                 nextblk = (block_no + 1) %
2188                                     (mac_control->rings[ring_no].block_count);
2189                                 rxdpnext = mac_control->rings[ring_no].rx_blocks
2190                                     [nextblk].block_virt_addr;
2191                         }
2192                         if (rxdpnext->Control_2 & BIT(0))
2193                                 goto end;
2194                 }
2195 #endif
2196
2197 #ifndef CONFIG_2BUFF_MODE
2198                 skb = dev_alloc_skb(size + NET_IP_ALIGN);
2199 #else
2200                 skb = dev_alloc_skb(dev->mtu + ALIGN_SIZE + BUF0_LEN + 4);
2201 #endif
2202                 if (!skb) {
2203                         DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
2204                         DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
2205                         return -ENOMEM;
2206                 }
2207 #ifndef CONFIG_2BUFF_MODE
2208                 skb_reserve(skb, NET_IP_ALIGN);
2209                 memset(rxdp, 0, sizeof(RxD_t));
2210                 rxdp->Buffer0_ptr = pci_map_single
2211                     (nic->pdev, skb->data, size, PCI_DMA_FROMDEVICE);
2212                 rxdp->Control_2 &= (~MASK_BUFFER0_SIZE);
2213                 rxdp->Control_2 |= SET_BUFFER0_SIZE(size);
2214                 rxdp->Host_Control = (unsigned long) (skb);
2215                 rxdp->Control_1 |= RXD_OWN_XENA;
2216                 off++;
2217                 off %= (MAX_RXDS_PER_BLOCK + 1);
2218                 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2219 #else
2220                 ba = &mac_control->rings[ring_no].ba[block_no][off];
2221                 skb_reserve(skb, BUF0_LEN);
2222                 tmp = ((unsigned long) skb->data & ALIGN_SIZE);
2223                 if (tmp)
2224                         skb_reserve(skb, (ALIGN_SIZE + 1) - tmp);
2225
2226                 memset(rxdp, 0, sizeof(RxD_t));
2227                 rxdp->Buffer2_ptr = pci_map_single
2228                     (nic->pdev, skb->data, dev->mtu + BUF0_LEN + 4,
2229                      PCI_DMA_FROMDEVICE);
2230                 rxdp->Buffer0_ptr =
2231                     pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2232                                    PCI_DMA_FROMDEVICE);
2233                 rxdp->Buffer1_ptr =
2234                     pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN,
2235                                    PCI_DMA_FROMDEVICE);
2236
2237                 rxdp->Control_2 = SET_BUFFER2_SIZE(dev->mtu + 4);
2238                 rxdp->Control_2 |= SET_BUFFER0_SIZE(BUF0_LEN);
2239                 rxdp->Control_2 |= SET_BUFFER1_SIZE(1); /* dummy. */
2240                 rxdp->Control_2 |= BIT(0);      /* Set Buffer_Empty bit. */
2241                 rxdp->Host_Control = (u64) ((unsigned long) (skb));
2242                 rxdp->Control_1 |= RXD_OWN_XENA;
2243                 off++;
2244                 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2245 #endif
2246                 rxdp->Control_2 |= SET_RXD_MARKER;
2247
2248                 atomic_inc(&nic->rx_bufs_left[ring_no]);
2249                 alloc_tab++;
2250         }
2251
2252       end:
2253         return SUCCESS;
2254 }
2255
2256 /**
2257  *  free_rx_buffers - Frees all Rx buffers
2258  *  @sp: device private variable.
2259  *  Description:
2260  *  This function will free all Rx buffers allocated by host.
2261  *  Return Value:
2262  *  NONE.
2263  */
2264
2265 static void free_rx_buffers(struct s2io_nic *sp)
2266 {
2267         struct net_device *dev = sp->dev;
2268         int i, j, blk = 0, off, buf_cnt = 0;
2269         RxD_t *rxdp;
2270         struct sk_buff *skb;
2271         mac_info_t *mac_control;
2272         struct config_param *config;
2273 #ifdef CONFIG_2BUFF_MODE
2274         buffAdd_t *ba;
2275 #endif
2276
2277         mac_control = &sp->mac_control;
2278         config = &sp->config;
2279
2280         for (i = 0; i < config->rx_ring_num; i++) {
2281                 for (j = 0, blk = 0; j < config->rx_cfg[i].num_rxd; j++) {
2282                         off = j % (MAX_RXDS_PER_BLOCK + 1);
2283                         rxdp = mac_control->rings[i].rx_blocks[blk].
2284                                 block_virt_addr + off;
2285
2286 #ifndef CONFIG_2BUFF_MODE
2287                         if (rxdp->Control_1 == END_OF_BLOCK) {
2288                                 rxdp =
2289                                     (RxD_t *) ((unsigned long) rxdp->
2290                                                Control_2);
2291                                 j++;
2292                                 blk++;
2293                         }
2294 #else
2295                         if (rxdp->Host_Control == END_OF_BLOCK) {
2296                                 blk++;
2297                                 continue;
2298                         }
2299 #endif
2300
2301                         if (!(rxdp->Control_1 & RXD_OWN_XENA)) {
2302                                 memset(rxdp, 0, sizeof(RxD_t));
2303                                 continue;
2304                         }
2305
2306                         skb =
2307                             (struct sk_buff *) ((unsigned long) rxdp->
2308                                                 Host_Control);
2309                         if (skb) {
2310 #ifndef CONFIG_2BUFF_MODE
2311                                 pci_unmap_single(sp->pdev, (dma_addr_t)
2312                                                  rxdp->Buffer0_ptr,
2313                                                  dev->mtu +
2314                                                  HEADER_ETHERNET_II_802_3_SIZE
2315                                                  + HEADER_802_2_SIZE +
2316                                                  HEADER_SNAP_SIZE,
2317                                                  PCI_DMA_FROMDEVICE);
2318 #else
2319                                 ba = &mac_control->rings[i].ba[blk][off];
2320                                 pci_unmap_single(sp->pdev, (dma_addr_t)
2321                                                  rxdp->Buffer0_ptr,
2322                                                  BUF0_LEN,
2323                                                  PCI_DMA_FROMDEVICE);
2324                                 pci_unmap_single(sp->pdev, (dma_addr_t)
2325                                                  rxdp->Buffer1_ptr,
2326                                                  BUF1_LEN,
2327                                                  PCI_DMA_FROMDEVICE);
2328                                 pci_unmap_single(sp->pdev, (dma_addr_t)
2329                                                  rxdp->Buffer2_ptr,
2330                                                  dev->mtu + BUF0_LEN + 4,
2331                                                  PCI_DMA_FROMDEVICE);
2332 #endif
2333                                 dev_kfree_skb(skb);
2334                                 atomic_dec(&sp->rx_bufs_left[i]);
2335                                 buf_cnt++;
2336                         }
2337                         memset(rxdp, 0, sizeof(RxD_t));
2338                 }
2339                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2340                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2341                 mac_control->rings[i].rx_curr_put_info.offset = 0;
2342                 mac_control->rings[i].rx_curr_get_info.offset = 0;
2343                 atomic_set(&sp->rx_bufs_left[i], 0);
2344                 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2345                           dev->name, buf_cnt, i);
2346         }
2347 }
2348
2349 /**
2350  * s2io_poll - Rx interrupt handler for NAPI support
2351  * @dev : pointer to the device structure.
2352  * @budget : The number of packets that were budgeted to be processed
2353  * during  one pass through the 'Poll" function.
2354  * Description:
2355  * Comes into picture only if NAPI support has been incorporated. It does
2356  * the same thing that rx_intr_handler does, but not in a interrupt context
2357  * also It will process only a given number of packets.
2358  * Return value:
2359  * 0 on success and 1 if there are No Rx packets to be processed.
2360  */
2361
2362 #if defined(CONFIG_S2IO_NAPI)
2363 static int s2io_poll(struct net_device *dev, int *budget)
2364 {
2365         nic_t *nic = dev->priv;
2366         int pkt_cnt = 0, org_pkts_to_process;
2367         mac_info_t *mac_control;
2368         struct config_param *config;
2369         XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
2370         u64 val64;
2371         int i;
2372
2373         atomic_inc(&nic->isr_cnt);
2374         mac_control = &nic->mac_control;
2375         config = &nic->config;
2376
2377         nic->pkts_to_process = *budget;
2378         if (nic->pkts_to_process > dev->quota)
2379                 nic->pkts_to_process = dev->quota;
2380         org_pkts_to_process = nic->pkts_to_process;
2381
2382         val64 = readq(&bar0->rx_traffic_int);
2383         writeq(val64, &bar0->rx_traffic_int);
2384
2385         for (i = 0; i < config->rx_ring_num; i++) {
2386                 rx_intr_handler(&mac_control->rings[i]);
2387                 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2388                 if (!nic->pkts_to_process) {
2389                         /* Quota for the current iteration has been met */
2390                         goto no_rx;
2391                 }
2392         }
2393         if (!pkt_cnt)
2394                 pkt_cnt = 1;
2395
2396         dev->quota -= pkt_cnt;
2397         *budget -= pkt_cnt;
2398         netif_rx_complete(dev);
2399
2400         for (i = 0; i < config->rx_ring_num; i++) {
2401                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2402                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2403                         DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2404                         break;
2405                 }
2406         }
2407         /* Re enable the Rx interrupts. */
2408         en_dis_able_nic_intrs(nic, RX_TRAFFIC_INTR, ENABLE_INTRS);
2409         atomic_dec(&nic->isr_cnt);
2410         return 0;
2411
2412 no_rx:
2413         dev->quota -= pkt_cnt;
2414         *budget -= pkt_cnt;
2415
2416         for (i = 0; i < config->rx_ring_num; i++) {
2417                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2418                         DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name);
2419                         DBG_PRINT(ERR_DBG, " in Rx Poll!!\n");
2420                         break;
2421                 }
2422         }
2423         atomic_dec(&nic->isr_cnt);
2424         return 1;
2425 }
2426 #endif
2427
2428 /**
2429  *  rx_intr_handler - Rx interrupt handler
2430  *  @nic: device private variable.
2431  *  Description:
2432  *  If the interrupt is because of a received frame or if the
2433  *  receive ring contains fresh as yet un-processed frames,this function is
2434  *  called. It picks out the RxD at which place the last Rx processing had
2435  *  stopped and sends the skb to the OSM's Rx handler and then increments
2436  *  the offset.
2437  *  Return Value:
2438  *  NONE.
2439  */
2440 static void rx_intr_handler(ring_info_t *ring_data)
2441 {
2442         nic_t *nic = ring_data->nic;
2443         struct net_device *dev = (struct net_device *) nic->dev;
2444         int get_block, get_offset, put_block, put_offset, ring_bufs;
2445         rx_curr_get_info_t get_info, put_info;
2446         RxD_t *rxdp;
2447         struct sk_buff *skb;
2448 #ifndef CONFIG_S2IO_NAPI
2449         int pkt_cnt = 0;
2450 #endif
2451         spin_lock(&nic->rx_lock);
2452         if (atomic_read(&nic->card_state) == CARD_DOWN) {
2453                 DBG_PRINT(ERR_DBG, "%s: %s going down for reset\n",
2454                           __FUNCTION__, dev->name);
2455                 spin_unlock(&nic->rx_lock);
2456         }
2457
2458         get_info = ring_data->rx_curr_get_info;
2459         get_block = get_info.block_index;
2460         put_info = ring_data->rx_curr_put_info;
2461         put_block = put_info.block_index;
2462         ring_bufs = get_info.ring_len+1;
2463         rxdp = ring_data->rx_blocks[get_block].block_virt_addr +
2464                     get_info.offset;
2465         get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) +
2466                 get_info.offset;
2467 #ifndef CONFIG_S2IO_NAPI
2468         spin_lock(&nic->put_lock);
2469         put_offset = ring_data->put_pos;
2470         spin_unlock(&nic->put_lock);
2471 #else
2472         put_offset = (put_block * (MAX_RXDS_PER_BLOCK + 1)) +
2473                 put_info.offset;
2474 #endif
2475         while (RXD_IS_UP2DT(rxdp) &&
2476                (((get_offset + 1) % ring_bufs) != put_offset)) {
2477                 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2478                 if (skb == NULL) {
2479                         DBG_PRINT(ERR_DBG, "%s: The skb is ",
2480                                   dev->name);
2481                         DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2482                         spin_unlock(&nic->rx_lock);
2483                         return;
2484                 }
2485 #ifndef CONFIG_2BUFF_MODE
2486                 pci_unmap_single(nic->pdev, (dma_addr_t)
2487                                  rxdp->Buffer0_ptr,
2488                                  dev->mtu +
2489                                  HEADER_ETHERNET_II_802_3_SIZE +
2490                                  HEADER_802_2_SIZE +
2491                                  HEADER_SNAP_SIZE,
2492                                  PCI_DMA_FROMDEVICE);
2493 #else
2494                 pci_unmap_single(nic->pdev, (dma_addr_t)
2495                                  rxdp->Buffer0_ptr,
2496                                  BUF0_LEN, PCI_DMA_FROMDEVICE);
2497                 pci_unmap_single(nic->pdev, (dma_addr_t)
2498                                  rxdp->Buffer1_ptr,
2499                                  BUF1_LEN, PCI_DMA_FROMDEVICE);
2500                 pci_unmap_single(nic->pdev, (dma_addr_t)
2501                                  rxdp->Buffer2_ptr,
2502                                  dev->mtu + BUF0_LEN + 4,
2503                                  PCI_DMA_FROMDEVICE);
2504 #endif
2505                 rx_osm_handler(ring_data, rxdp);
2506                 get_info.offset++;
2507                 ring_data->rx_curr_get_info.offset =
2508                     get_info.offset;
2509                 rxdp = ring_data->rx_blocks[get_block].block_virt_addr +
2510                     get_info.offset;
2511                 if (get_info.offset &&
2512                     (!(get_info.offset % MAX_RXDS_PER_BLOCK))) {
2513                         get_info.offset = 0;
2514                         ring_data->rx_curr_get_info.offset
2515                             = get_info.offset;
2516                         get_block++;
2517                         get_block %= ring_data->block_count;
2518                         ring_data->rx_curr_get_info.block_index
2519                             = get_block;
2520                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2521                 }
2522
2523                 get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) +
2524                             get_info.offset;
2525 #ifdef CONFIG_S2IO_NAPI
2526                 nic->pkts_to_process -= 1;
2527                 if (!nic->pkts_to_process)
2528                         break;
2529 #else
2530                 pkt_cnt++;
2531                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2532                         break;
2533 #endif
2534         }
2535         spin_unlock(&nic->rx_lock);
2536 }
2537
2538 /**
2539  *  tx_intr_handler - Transmit interrupt handler
2540  *  @nic : device private variable
2541  *  Description:
2542  *  If an interrupt was raised to indicate DMA complete of the
2543  *  Tx packet, this function is called. It identifies the last TxD
2544  *  whose buffer was freed and frees all skbs whose data have already
2545  *  DMA'ed into the NICs internal memory.
2546  *  Return Value:
2547  *  NONE
2548  */
2549
2550 static void tx_intr_handler(fifo_info_t *fifo_data)
2551 {
2552         nic_t *nic = fifo_data->nic;
2553         struct net_device *dev = (struct net_device *) nic->dev;
2554         tx_curr_get_info_t get_info, put_info;
2555         struct sk_buff *skb;
2556         TxD_t *txdlp;
2557         u16 j, frg_cnt;
2558
2559         get_info = fifo_data->tx_curr_get_info;
2560         put_info = fifo_data->tx_curr_put_info;
2561         txdlp = (TxD_t *) fifo_data->list_info[get_info.offset].
2562             list_virt_addr;
2563         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2564                (get_info.offset != put_info.offset) &&
2565                (txdlp->Host_Control)) {
2566                 /* Check for TxD errors */
2567                 if (txdlp->Control_1 & TXD_T_CODE) {
2568                         unsigned long long err;
2569                         err = txdlp->Control_1 & TXD_T_CODE;
2570                         DBG_PRINT(ERR_DBG, "***TxD error %llx\n",
2571                                   err);
2572                 }
2573
2574                 skb = (struct sk_buff *) ((unsigned long)
2575                                 txdlp->Host_Control);
2576                 if (skb == NULL) {
2577                         DBG_PRINT(ERR_DBG, "%s: Null skb ",
2578                         __FUNCTION__);
2579                         DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2580                         return;
2581                 }
2582
2583                 frg_cnt = skb_shinfo(skb)->nr_frags;
2584                 nic->tx_pkt_count++;
2585
2586                 pci_unmap_single(nic->pdev, (dma_addr_t)
2587                                  txdlp->Buffer_Pointer,
2588                                  skb->len - skb->data_len,
2589                                  PCI_DMA_TODEVICE);
2590                 if (frg_cnt) {
2591                         TxD_t *temp;
2592                         temp = txdlp;
2593                         txdlp++;
2594                         for (j = 0; j < frg_cnt; j++, txdlp++) {
2595                                 skb_frag_t *frag =
2596                                     &skb_shinfo(skb)->frags[j];
2597                                 pci_unmap_page(nic->pdev,
2598                                                (dma_addr_t)
2599                                                txdlp->
2600                                                Buffer_Pointer,
2601                                                frag->size,
2602                                                PCI_DMA_TODEVICE);
2603                         }
2604                         txdlp = temp;
2605                 }
2606                 memset(txdlp, 0,
2607                        (sizeof(TxD_t) * fifo_data->max_txds));
2608
2609                 /* Updating the statistics block */
2610                 nic->stats.tx_bytes += skb->len;
2611                 dev_kfree_skb_irq(skb);
2612
2613                 get_info.offset++;
2614                 get_info.offset %= get_info.fifo_len + 1;
2615                 txdlp = (TxD_t *) fifo_data->list_info
2616                     [get_info.offset].list_virt_addr;
2617                 fifo_data->tx_curr_get_info.offset =
2618                     get_info.offset;
2619         }
2620
2621         spin_lock(&nic->tx_lock);
2622         if (netif_queue_stopped(dev))
2623                 netif_wake_queue(dev);
2624         spin_unlock(&nic->tx_lock);
2625 }
2626
2627 /**
2628  *  alarm_intr_handler - Alarm Interrrupt handler
2629  *  @nic: device private variable
2630  *  Description: If the interrupt was neither because of Rx packet or Tx
2631  *  complete, this function is called. If the interrupt was to indicate
2632  *  a loss of link, the OSM link status handler is invoked for any other
2633  *  alarm interrupt the block that raised the interrupt is displayed
2634  *  and a H/W reset is issued.
2635  *  Return Value:
2636  *  NONE
2637 */
2638
2639 static void alarm_intr_handler(struct s2io_nic *nic)
2640 {
2641         struct net_device *dev = (struct net_device *) nic->dev;
2642         XENA_dev_config_t __iomem *bar0 = nic->bar0;
2643         register u64 val64 = 0, err_reg = 0;
2644
2645         /* Handling link status change error Intr */
2646         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2647                 err_reg = readq(&bar0->mac_rmac_err_reg);
2648                 writeq(err_reg, &bar0->mac_rmac_err_reg);
2649                 if (err_reg & RMAC_LINK_STATE_CHANGE_INT) {
2650                         schedule_work(&nic->set_link_task);
2651                 }
2652         }
2653
2654         /* Handling Ecc errors */
2655         val64 = readq(&bar0->mc_err_reg);
2656         writeq(val64, &bar0->mc_err_reg);
2657         if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
2658                 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
2659                         nic->mac_control.stats_info->sw_stat.
2660                                 double_ecc_errs++;
2661                         DBG_PRINT(ERR_DBG, "%s: Device indicates ",
2662                                   dev->name);
2663                         DBG_PRINT(ERR_DBG, "double ECC error!!\n");
2664                         netif_stop_queue(dev);
2665                         schedule_work(&nic->rst_timer_task);
2666                 } else {
2667                         nic->mac_control.stats_info->sw_stat.
2668                                 single_ecc_errs++;
2669                 }
2670         }
2671
2672         /* In case of a serious error, the device will be Reset. */
2673         val64 = readq(&bar0->serr_source);
2674         if (val64 & SERR_SOURCE_ANY) {
2675                 DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name);
2676                 DBG_PRINT(ERR_DBG, "serious error!!\n");
2677                 netif_stop_queue(dev);
2678                 schedule_work(&nic->rst_timer_task);
2679         }
2680
2681         /*
2682          * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
2683          * Error occurs, the adapter will be recycled by disabling the
2684          * adapter enable bit and enabling it again after the device
2685          * becomes Quiescent.
2686          */
2687         val64 = readq(&bar0->pcc_err_reg);
2688         writeq(val64, &bar0->pcc_err_reg);
2689         if (val64 & PCC_FB_ECC_DB_ERR) {
2690                 u64 ac = readq(&bar0->adapter_control);
2691                 ac &= ~(ADAPTER_CNTL_EN);
2692                 writeq(ac, &bar0->adapter_control);
2693                 ac = readq(&bar0->adapter_control);
2694                 schedule_work(&nic->set_link_task);
2695         }
2696
2697         /* Other type of interrupts are not being handled now,  TODO */
2698 }
2699
2700 /**
2701  *  wait_for_cmd_complete - waits for a command to complete.
2702  *  @sp : private member of the device structure, which is a pointer to the
2703  *  s2io_nic structure.
2704  *  Description: Function that waits for a command to Write into RMAC
2705  *  ADDR DATA registers to be completed and returns either success or
2706  *  error depending on whether the command was complete or not.
2707  *  Return value:
2708  *   SUCCESS on success and FAILURE on failure.
2709  */
2710
2711 int wait_for_cmd_complete(nic_t * sp)
2712 {
2713         XENA_dev_config_t __iomem *bar0 = sp->bar0;
2714         int ret = FAILURE, cnt = 0;
2715         u64 val64;
2716
2717         while (TRUE) {
2718                 val64 = readq(&bar0->rmac_addr_cmd_mem);
2719                 if (!(val64 & RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) {
2720                         ret = SUCCESS;
2721                         break;
2722                 }
2723                 msleep(50);
2724                 if (cnt++ > 10)
2725                         break;
2726         }
2727
2728         return ret;
2729 }
2730
2731 /**
2732  *  s2io_reset - Resets the card.
2733  *  @sp : private member of the device structure.
2734  *  Description: Function to Reset the card. This function then also
2735  *  restores the previously saved PCI configuration space registers as
2736  *  the card reset also resets the configuration space.
2737  *  Return value:
2738  *  void.
2739  */
2740
2741 void s2io_reset(nic_t * sp)
2742 {
2743         XENA_dev_config_t __iomem *bar0 = sp->bar0;
2744         u64 val64;
2745         u16 subid, pci_cmd;
2746
2747         val64 = SW_RESET_ALL;
2748         writeq(val64, &bar0->sw_reset);
2749
2750         /*
2751          * At this stage, if the PCI write is indeed completed, the
2752          * card is reset and so is the PCI Config space of the device.
2753          * So a read cannot be issued at this stage on any of the
2754          * registers to ensure the write into "sw_reset" register
2755          * has gone through.
2756          * Question: Is there any system call that will explicitly force
2757          * all the write commands still pending on the bus to be pushed
2758          * through?
2759          * As of now I'am just giving a 250ms delay and hoping that the
2760          * PCI write to sw_reset register is done by this time.
2761          */
2762         msleep(250);
2763
2764         if (!(sp->device_type & XFRAME_II_DEVICE)) {
2765         /* Restore the PCI state saved during initializarion. */
2766                 pci_restore_state(sp->pdev);
2767         } else {
2768                 pci_set_master(sp->pdev);
2769         }
2770         s2io_init_pci(sp);
2771
2772         msleep(250);
2773
2774         /* Set swapper to enable I/O register access */
2775         s2io_set_swapper(sp);
2776
2777         /* Clear certain PCI/PCI-X fields after reset */
2778         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
2779         pci_cmd &= 0x7FFF; /* Clear parity err detect bit */
2780         pci_write_config_word(sp->pdev, PCI_COMMAND, pci_cmd);
2781
2782         val64 = readq(&bar0->txpic_int_reg);
2783         val64 &= ~BIT(62); /* Clearing PCI_STATUS error reflected here */
2784         writeq(val64, &bar0->txpic_int_reg);
2785
2786         /* Clearing PCIX Ecc status register */
2787         pci_write_config_dword(sp->pdev, 0x68, 0);
2788
2789         /* Reset device statistics maintained by OS */
2790         memset(&sp->stats, 0, sizeof (struct net_device_stats));
2791
2792         /* SXE-002: Configure link and activity LED to turn it off */
2793         subid = sp->pdev->subsystem_device;
2794         if (((subid & 0xFF) >= 0x07) &&
2795             (sp->device_type == XFRAME_I_DEVICE)) {
2796                 val64 = readq(&bar0->gpio_control);
2797                 val64 |= 0x0000800000000000ULL;
2798                 writeq(val64, &bar0->gpio_control);
2799                 val64 = 0x0411040400000000ULL;
2800                 writeq(val64, (void __iomem *) ((u8 *) bar0 + 0x2700));
2801         }
2802
2803         /*
2804          * Clear spurious ECC interrupts that would have occured on
2805          * XFRAME II cards after reset.
2806          */
2807         if (sp->device_type == XFRAME_II_DEVICE) {
2808                 val64 = readq(&bar0->pcc_err_reg);
2809                 writeq(val64, &bar0->pcc_err_reg);
2810         }
2811
2812         sp->device_enabled_once = FALSE;
2813 }
2814
2815 /**
2816  *  s2io_set_swapper - to set the swapper controle on the card
2817  *  @sp : private member of the device structure,
2818  *  pointer to the s2io_nic structure.
2819  *  Description: Function to set the swapper control on the card
2820  *  correctly depending on the 'endianness' of the system.
2821  *  Return value:
2822  *  SUCCESS on success and FAILURE on failure.
2823  */
2824
2825 int s2io_set_swapper(nic_t * sp)
2826 {
2827         struct net_device *dev = sp->dev;
2828         XENA_dev_config_t __iomem *bar0 = sp->bar0;
2829         u64 val64, valt, valr;
2830
2831         /*
2832          * Set proper endian settings and verify the same by reading
2833          * the PIF Feed-back register.
2834          */
2835
2836         val64 = readq(&bar0->pif_rd_swapper_fb);
2837         if (val64 != 0x0123456789ABCDEFULL) {
2838                 int i = 0;
2839                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
2840                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
2841                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
2842                                 0};                     /* FE=0, SE=0 */
2843
2844                 while(i<4) {
2845                         writeq(value[i], &bar0->swapper_ctrl);
2846                         val64 = readq(&bar0->pif_rd_swapper_fb);
2847                         if (val64 == 0x0123456789ABCDEFULL)
2848                                 break;
2849                         i++;
2850                 }
2851                 if (i == 4) {
2852                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
2853                                 dev->name);
2854                         DBG_PRINT(ERR_DBG, "feedback read %llx\n",
2855                                 (unsigned long long) val64);
2856                         return FAILURE;
2857                 }
2858                 valr = value[i];
2859         } else {
2860                 valr = readq(&bar0->swapper_ctrl);
2861         }
2862
2863         valt = 0x0123456789ABCDEFULL;
2864         writeq(valt, &bar0->xmsi_address);
2865         val64 = readq(&bar0->xmsi_address);
2866
2867         if(val64 != valt) {
2868                 int i = 0;
2869                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
2870                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
2871                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
2872                                 0};                     /* FE=0, SE=0 */
2873
2874                 while(i<4) {
2875                         writeq((value[i] | valr), &bar0->swapper_ctrl);
2876                         writeq(valt, &bar0->xmsi_address);
2877                         val64 = readq(&bar0->xmsi_address);
2878                         if(val64 == valt)
2879                                 break;
2880                         i++;
2881                 }
2882                 if(i == 4) {
2883                         unsigned long long x = val64;
2884                         DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
2885                         DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
2886                         return FAILURE;
2887                 }
2888         }
2889         val64 = readq(&bar0->swapper_ctrl);
2890         val64 &= 0xFFFF000000000000ULL;
2891
2892 #ifdef  __BIG_ENDIAN
2893         /*
2894          * The device by default set to a big endian format, so a
2895          * big endian driver need not set anything.
2896          */
2897         val64 |= (SWAPPER_CTRL_TXP_FE |
2898                  SWAPPER_CTRL_TXP_SE |
2899                  SWAPPER_CTRL_TXD_R_FE |
2900                  SWAPPER_CTRL_TXD_W_FE |
2901                  SWAPPER_CTRL_TXF_R_FE |
2902                  SWAPPER_CTRL_RXD_R_FE |
2903                  SWAPPER_CTRL_RXD_W_FE |
2904                  SWAPPER_CTRL_RXF_W_FE |
2905                  SWAPPER_CTRL_XMSI_FE |
2906                  SWAPPER_CTRL_XMSI_SE |
2907                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
2908         writeq(val64, &bar0->swapper_ctrl);
2909 #else
2910         /*
2911          * Initially we enable all bits to make it accessible by the
2912          * driver, then we selectively enable only those bits that
2913          * we want to set.
2914          */
2915         val64 |= (SWAPPER_CTRL_TXP_FE |
2916                  SWAPPER_CTRL_TXP_SE |
2917                  SWAPPER_CTRL_TXD_R_FE |
2918                  SWAPPER_CTRL_TXD_R_SE |
2919                  SWAPPER_CTRL_TXD_W_FE |
2920                  SWAPPER_CTRL_TXD_W_SE |
2921                  SWAPPER_CTRL_TXF_R_FE |
2922                  SWAPPER_CTRL_RXD_R_FE |
2923                  SWAPPER_CTRL_RXD_R_SE |
2924                  SWAPPER_CTRL_RXD_W_FE |
2925                  SWAPPER_CTRL_RXD_W_SE |
2926                  SWAPPER_CTRL_RXF_W_FE |
2927                  SWAPPER_CTRL_XMSI_FE |
2928                  SWAPPER_CTRL_XMSI_SE |
2929                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
2930         writeq(val64, &bar0->swapper_ctrl);
2931 #endif
2932         val64 = readq(&bar0->swapper_ctrl);
2933
2934         /*
2935          * Verifying if endian settings are accurate by reading a
2936          * feedback register.
2937          */
2938         val64 = readq(&bar0->pif_rd_swapper_fb);
2939         if (val64 != 0x0123456789ABCDEFULL) {
2940                 /* Endian settings are incorrect, calls for another dekko. */
2941                 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
2942                           dev->name);
2943                 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
2944                           (unsigned long long) val64);
2945                 return FAILURE;
2946         }
2947
2948         return SUCCESS;
2949 }
2950
2951 /* ********************************************************* *
2952  * Functions defined below concern the OS part of the driver *
2953  * ********************************************************* */
2954
2955 /**
2956  *  s2io_open - open entry point of the driver
2957  *  @dev : pointer to the device structure.
2958  *  Description:
2959  *  This function is the open entry point of the driver. It mainly calls a
2960  *  function to allocate Rx buffers and inserts them into the buffer
2961  *  descriptors and then enables the Rx part of the NIC.
2962  *  Return value:
2963  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2964  *   file on failure.
2965  */
2966
2967 int s2io_open(struct net_device *dev)
2968 {
2969         nic_t *sp = dev->priv;
2970         int err = 0;
2971
2972         /*
2973          * Make sure you have link off by default every time
2974          * Nic is initialized
2975          */
2976         netif_carrier_off(dev);
2977         sp->last_link_state = LINK_DOWN;
2978
2979         /* Initialize H/W and enable interrupts */
2980         if (s2io_card_up(sp)) {
2981                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
2982                           dev->name);
2983                 err = -ENODEV;
2984                 goto hw_init_failed;
2985         }
2986
2987         /* After proper initialization of H/W, register ISR */
2988         err = request_irq((int) sp->pdev->irq, s2io_isr, SA_SHIRQ,
2989                           sp->name, dev);
2990         if (err) {
2991                 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
2992                           dev->name);
2993                 goto isr_registration_failed;
2994         }
2995
2996         if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) {
2997                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
2998                 err = -ENODEV;
2999                 goto setting_mac_address_failed;
3000         }
3001
3002         netif_start_queue(dev);
3003         return 0;
3004
3005 setting_mac_address_failed:
3006         free_irq(sp->pdev->irq, dev);
3007 isr_registration_failed:
3008         del_timer_sync(&sp->alarm_timer);
3009         s2io_reset(sp);
3010 hw_init_failed:
3011         return err;
3012 }
3013
3014 /**
3015  *  s2io_close -close entry point of the driver
3016  *  @dev : device pointer.
3017  *  Description:
3018  *  This is the stop entry point of the driver. It needs to undo exactly
3019  *  whatever was done by the open entry point,thus it's usually referred to
3020  *  as the close function.Among other things this function mainly stops the
3021  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3022  *  Return value:
3023  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3024  *  file on failure.
3025  */
3026
3027 int s2io_close(struct net_device *dev)
3028 {
3029         nic_t *sp = dev->priv;
3030         flush_scheduled_work();
3031         netif_stop_queue(dev);
3032         /* Reset card, kill tasklet and free Tx and Rx buffers. */
3033         s2io_card_down(sp);
3034
3035         free_irq(sp->pdev->irq, dev);
3036         sp->device_close_flag = TRUE;   /* Device is shut down. */
3037         return 0;
3038 }
3039
3040 /**
3041  *  s2io_xmit - Tx entry point of te driver
3042  *  @skb : the socket buffer containing the Tx data.
3043  *  @dev : device pointer.
3044  *  Description :
3045  *  This function is the Tx entry point of the driver. S2IO NIC supports
3046  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
3047  *  NOTE: when device cant queue the pkt,just the trans_start variable will
3048  *  not be upadted.
3049  *  Return value:
3050  *  0 on success & 1 on failure.
3051  */
3052
3053 int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3054 {
3055         nic_t *sp = dev->priv;
3056         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3057         register u64 val64;
3058         TxD_t *txdp;
3059         TxFIFO_element_t __iomem *tx_fifo;
3060         unsigned long flags;
3061 #ifdef NETIF_F_TSO
3062         int mss;
3063 #endif
3064         u16 vlan_tag = 0;
3065         int vlan_priority = 0;
3066         mac_info_t *mac_control;
3067         struct config_param *config;
3068
3069         mac_control = &sp->mac_control;
3070         config = &sp->config;
3071
3072         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3073         spin_lock_irqsave(&sp->tx_lock, flags);
3074         if (atomic_read(&sp->card_state) == CARD_DOWN) {
3075                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3076                           dev->name);
3077                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3078                 dev_kfree_skb(skb);
3079                 return 0;
3080         }
3081
3082         queue = 0;
3083
3084         /* Get Fifo number to Transmit based on vlan priority */
3085         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3086                 vlan_tag = vlan_tx_tag_get(skb);
3087                 vlan_priority = vlan_tag >> 13;
3088                 queue = config->fifo_mapping[vlan_priority];
3089         }
3090
3091         put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3092         get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3093         txdp = (TxD_t *) mac_control->fifos[queue].list_info[put_off].
3094                 list_virt_addr;
3095
3096         queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3097         /* Avoid "put" pointer going beyond "get" pointer */
3098         if (txdp->Host_Control || (((put_off + 1) % queue_len) == get_off)) {
3099                 DBG_PRINT(ERR_DBG, "Error in xmit, No free TXDs.\n");
3100                 netif_stop_queue(dev);
3101                 dev_kfree_skb(skb);
3102                 spin_unlock_irqrestore(&sp->tx_lock, flags);
3103                 return 0;
3104         }
3105 #ifdef NETIF_F_TSO
3106         mss = skb_shinfo(skb)->tso_size;
3107         if (mss) {
3108                 txdp->Control_1 |= TXD_TCP_LSO_EN;
3109                 txdp->Control_1 |= TXD_TCP_LSO_MSS(mss);
3110         }
3111 #endif
3112
3113         frg_cnt = skb_shinfo(skb)->nr_frags;
3114         frg_len = skb->len - skb->data_len;
3115
3116         txdp->Buffer_Pointer = pci_map_single
3117             (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
3118         txdp->Host_Control = (unsigned long) skb;
3119         if (skb->ip_summed == CHECKSUM_HW) {
3120                 txdp->Control_2 |=
3121                     (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
3122                      TXD_TX_CKO_UDP_EN);
3123         }
3124
3125         txdp->Control_2 |= config->tx_intr_type;
3126
3127         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3128                 txdp->Control_2 |= TXD_VLAN_ENABLE;
3129                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
3130         }
3131
3132         txdp->Control_1 |= (TXD_BUFFER0_SIZE(frg_len) |
3133                             TXD_GATHER_CODE_FIRST);
3134         txdp->Control_1 |= TXD_LIST_OWN_XENA;
3135
3136         /* For fragmented SKB. */
3137         for (i = 0; i < frg_cnt; i++) {
3138                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3139                 txdp++;
3140                 txdp->Buffer_Pointer = (u64) pci_map_page
3141                     (sp->pdev, frag->page, frag->page_offset,
3142                      frag->size, PCI_DMA_TODEVICE);
3143                 txdp->Control_1 |= TXD_BUFFER0_SIZE(frag->size);
3144         }
3145         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
3146
3147         tx_fifo = mac_control->tx_FIFO_start[queue];
3148         val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
3149         writeq(val64, &tx_fifo->TxDL_Pointer);
3150
3151         wmb();
3152
3153         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
3154                  TX_FIFO_LAST_LIST);
3155
3156 #ifdef NETIF_F_TSO
3157         if (mss)
3158                 val64 |= TX_FIFO_SPECIAL_FUNC;
3159 #endif
3160         writeq(val64, &tx_fifo->List_Control);
3161
3162         put_off++;
3163         put_off %= mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3164         mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
3165
3166         /* Avoid "put" pointer going beyond "get" pointer */
3167         if (((put_off + 1) % queue_len) == get_off) {
3168                 DBG_PRINT(TX_DBG,
3169                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
3170                           put_off, get_off);
3171                 netif_stop_queue(dev);
3172         }
3173
3174         dev->trans_start = jiffies;
3175         spin_unlock_irqrestore(&sp->tx_lock, flags);
3176
3177         return 0;
3178 }
3179
3180 static void
3181 s2io_alarm_handle(unsigned long data)
3182 {
3183         nic_t *sp = (nic_t *)data;
3184
3185         alarm_intr_handler(sp);
3186         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
3187 }
3188
3189 static void s2io_txpic_intr_handle(nic_t *sp)
3190 {
3191         XENA_dev_config_t *bar0 = (XENA_dev_config_t *) sp->bar0;
3192         u64 val64;
3193
3194         val64 = readq(&bar0->pic_int_status);
3195         if (val64 & PIC_INT_GPIO) {
3196                 val64 = readq(&bar0->gpio_int_reg);
3197                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
3198                     (val64 & GPIO_INT_REG_LINK_UP)) {
3199                         val64 |=  GPIO_INT_REG_LINK_DOWN;
3200                         val64 |= GPIO_INT_REG_LINK_UP;
3201                         writeq(val64, &bar0->gpio_int_reg);
3202                         goto masking;
3203                 }
3204
3205                 if (((sp->last_link_state == LINK_UP) &&
3206                         (val64 & GPIO_INT_REG_LINK_DOWN)) ||
3207                 ((sp->last_link_state == LINK_DOWN) &&
3208                 (val64 & GPIO_INT_REG_LINK_UP))) {
3209                         val64 = readq(&bar0->gpio_int_mask);
3210                         val64 |=  GPIO_INT_MASK_LINK_DOWN;
3211                         val64 |= GPIO_INT_MASK_LINK_UP;
3212                         writeq(val64, &bar0->gpio_int_mask);
3213                         s2io_set_link((unsigned long)sp);
3214                 }
3215 masking:
3216                 if (sp->last_link_state == LINK_UP) {
3217                         /*enable down interrupt */
3218                         val64 = readq(&bar0->gpio_int_mask);
3219                         /* unmasks link down intr */
3220                         val64 &=  ~GPIO_INT_MASK_LINK_DOWN;
3221                         /* masks link up intr */
3222                         val64 |= GPIO_INT_MASK_LINK_UP;
3223                         writeq(val64, &bar0->gpio_int_mask);
3224                 } else {
3225                         /*enable UP Interrupt */
3226                         val64 = readq(&bar0->gpio_int_mask);
3227                         /* unmasks link up interrupt */
3228                         val64 &= ~GPIO_INT_MASK_LINK_UP;
3229                         /* masks link down interrupt */
3230                         val64 |=  GPIO_INT_MASK_LINK_DOWN;
3231                         writeq(val64, &bar0->gpio_int_mask);
3232                 }
3233         }
3234 }
3235
3236 /**
3237  *  s2io_isr - ISR handler of the device .
3238  *  @irq: the irq of the device.
3239  *  @dev_id: a void pointer to the dev structure of the NIC.
3240  *  @pt_regs: pointer to the registers pushed on the stack.
3241  *  Description:  This function is the ISR handler of the device. It
3242  *  identifies the reason for the interrupt and calls the relevant
3243  *  service routines. As a contongency measure, this ISR allocates the
3244  *  recv buffers, if their numbers are below the panic value which is
3245  *  presently set to 25% of the original number of rcv buffers allocated.
3246  *  Return value:
3247  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
3248  *   IRQ_NONE: will be returned if interrupt is not from our device
3249  */
3250 static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs)
3251 {
3252         struct net_device *dev = (struct net_device *) dev_id;
3253         nic_t *sp = dev->priv;
3254         XENA_dev_config_t __iomem *bar0 = sp->bar0;
3255         int i;
3256         u64 reason = 0, val64;
3257         mac_info_t *mac_control;
3258         struct config_param *config;
3259
3260         atomic_inc(&sp->isr_cnt);
3261         mac_control = &sp->mac_control;
3262         config = &sp->config;
3263
3264         /*
3265          * Identify the cause for interrupt and call the appropriate
3266          * interrupt handler. Causes for the interrupt could be;
3267          * 1. Rx of packet.
3268          * 2. Tx complete.
3269          * 3. Link down.
3270          * 4. Error in any functional blocks of the NIC.
3271          */
3272         reason = readq(&bar0->general_int_status);
3273
3274         if (!reason) {
3275                 /* The interrupt was not raised by Xena. */
3276                 atomic_dec(&sp->isr_cnt);
3277                 return IRQ_NONE;
3278         }
3279
3280 #ifdef CONFIG_S2IO_NAPI
3281         if (reason & GEN_INTR_RXTRAFFIC) {
3282                 if (netif_rx_schedule_prep(dev)) {
3283                         en_dis_able_nic_intrs(sp, RX_TRAFFIC_INTR,
3284                                               DISABLE_INTRS);
3285                         __netif_rx_schedule(dev);
3286                 }
3287         }
3288 #else
3289         /* If Intr is because of Rx Traffic */
3290         if (reason & GEN_INTR_RXTRAFFIC) {
3291                 /*
3292                  * rx_traffic_int reg is an R1 register, writing all 1's
3293                  * will ensure that the actual interrupt causing bit get's
3294                  * cleared and hence a read can be avoided.
3295                  */
3296                 val64 = 0xFFFFFFFFFFFFFFFFULL;
3297                 writeq(val64, &bar0->rx_traffic_int);
3298                 for (i = 0; i < config->rx_ring_num; i++) {
3299                         rx_intr_handler(&mac_control->rings[i]);
3300                 }
3301         }
3302 #endif
3303
3304         /* If Intr is because of Tx Traffic */
3305         if (reason & GEN_INTR_TXTRAFFIC) {
3306                 /*
3307                  * tx_traffic_int reg is an R1 register, writing all 1's
3308                  * will ensure that the actual interrupt causing bit get's
3309                  * cleared and hence a read can be avoided.
3310                  */
3311                 val64 = 0xFFFFFFFFFFFFFFFFULL;
3312                 writeq(val64, &bar0->tx_traffic_int);
3313
3314                 for (i = 0; i < config->tx_fifo_num; i++)
3315                         tx_intr_handler(&mac_control->fifos[i]);
3316         }
3317
3318         if (reason & GEN_INTR_TXPIC)
3319                 s2io_txpic_intr_handle(sp);
3320         /*
3321          * If the Rx buffer count is below the panic threshold then
3322          * reallocate the buffers from the interrupt handler itself,
3323          * else schedule a tasklet to reallocate the buffers.
3324          */
3325 #ifndef CONFIG_S2IO_NAPI
3326         for (i = 0; i < config->rx_ring_num; i++) {
3327                 int ret;
3328                 int rxb_size = atomic_read(&sp->rx_bufs_left[i]);
3329                 int level = rx_buffer_level(sp, rxb_size, i);
3330
3331                 if ((level == PANIC) && (!TASKLET_IN_USE)) {
3332                         DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", dev->name);
3333                         DBG_PRINT(INTR_DBG, "PANIC levels\n");
3334                         if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) {
3335                                 DBG_PRINT(ERR_DBG, "%s:Out of memory",
3336                                           dev->name);
3337                                 DBG_PRINT(ERR_DBG, " in ISR!!\n");
3338                                 clear_bit(0, (&sp->tasklet_status));
3339                                 atomic_dec(&sp->isr_cnt);
3340                                 return IRQ_HANDLED;
3341                         }
3342                         clear_bit(0, (&sp->tasklet_status));
3343                 } else if (level == LOW) {
3344                         tasklet_schedule(&sp->task);
3345                 }
3346         }
3347 #endif
3348
3349         atomic_dec(&sp->isr_cnt);
3350         return IRQ_HANDLED;
3351 }
3352
3353 /**
3354  * s2io_updt_stats -
3355  */
3356 static void s2io_updt_stats(nic_t *sp)
3357 {
3358         XENA_dev_config_t __iomem *bar0 = sp->bar0;
3359         u64 val64;
3360         int cnt = 0;
3361
3362         if (atomic_read(&sp->card_state) == CARD_UP) {
3363                 /* Apprx 30us on a 133 MHz bus */
3364                 val64 = SET_UPDT_CLICKS(10) |
3365                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
3366                 writeq(val64, &bar0->stat_cfg);
3367                 do {
3368                         udelay(100);
3369                         val64 = readq(&bar0->stat_cfg);
3370                         if (!(val64 & BIT(0)))
3371                                 break;
3372                         cnt++;
3373                         if (cnt == 5)
3374                                 break; /* Updt failed */
3375                 } while(1);
3376         }
3377 }
3378
3379 /**
3380  *  s2io_get_stats - Updates the device statistics structure.
3381  *  @dev : pointer to the device structure.
3382  *  Description:
3383  *  This function updates the device statistics structure in the s2io_nic
3384  *  structure and returns a pointer to the same.
3385  *  Return value:
3386  *  pointer to the updated net_device_stats structure.
3387  */
3388
3389 struct net_device_stats *s2io_get_stats(struct net_device *dev)
3390 {
3391         nic_t *sp = dev->priv;
3392         mac_info_t *mac_control;
3393         struct config_param *config;
3394
3395
3396         mac_control = &sp->mac_control;
3397         config = &sp->config;
3398
3399         /* Configure Stats for immediate updt */
3400         s2io_updt_stats(sp);
3401
3402         sp->stats.tx_packets =
3403                 le32_to_cpu(mac_control->stats_info->tmac_frms);
3404         sp->stats.tx_errors =
3405                 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
3406         sp->stats.rx_errors =
3407                 le32_to_cpu(mac_control->stats_info->rmac_drop_frms);
3408         sp->stats.multicast =
3409                 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
3410         sp->stats.rx_length_errors =
3411                 le32_to_cpu(mac_control->stats_info->rmac_long_frms);
3412
3413         return (&sp->stats);
3414 }
3415
3416 /**
3417  *  s2io_set_multicast - entry point for multicast address enable/disable.
3418  *  @dev : pointer to the device structure
3419  *  Description:
3420  *  This function is a driver entry point which gets called by the kernel
3421  *  whenever multicast addresses must be enabled/disabled. This also gets
3422  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
3423  *  determine, if multicast address must be enabled or if promiscuous mode
3424  *  is to be disabled etc.
3425  *  Return value:
3426  *  void.
3427  */
3428
3429 static void s2io_set_multicast(struct net_device *dev)
3430 {
3431         int i, j, prev_cnt;
3432         struct dev_mc_list *mclist;
3433         nic_t *sp = dev->priv;
3434         XENA_dev_config_t __iomem *bar0 = sp->bar0;
3435         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
3436             0xfeffffffffffULL;
3437         u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
3438         void __iomem *add;
3439
3440         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
3441                 /*  Enable all Multicast addresses */
3442                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
3443                        &bar0->rmac_addr_data0_mem);
3444                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
3445                        &bar0->rmac_addr_data1_mem);
3446                 val64 = RMAC_ADDR_CMD_MEM_WE |
3447                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
3448                     RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
3449                 writeq(val64, &bar0->rmac_addr_cmd_mem);
3450                 /* Wait till command completes */
3451                 wait_for_cmd_complete(sp);
3452
3453                 sp->m_cast_flg = 1;
3454                 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
3455         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
3456                 /*  Disable all Multicast addresses */
3457                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
3458                        &bar0->rmac_addr_data0_mem);
3459                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
3460                        &bar0->rmac_addr_data1_mem);
3461                 val64 = RMAC_ADDR_CMD_MEM_WE |
3462                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
3463                     RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
3464                 writeq(val64, &bar0->rmac_addr_cmd_mem);
3465                 /* Wait till command completes */
3466                 wait_for_cmd_complete(sp);
3467
3468                 sp->m_cast_flg = 0;
3469                 sp->all_multi_pos = 0;
3470         }
3471
3472         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
3473                 /*  Put the NIC into promiscuous mode */
3474                 add = &bar0->mac_cfg;
3475                 val64 = readq(&bar0->mac_cfg);
3476                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
3477
3478                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
3479                 writel((u32) val64, add);
3480                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
3481                 writel((u32) (val64 >> 32), (add + 4));
3482
3483                 val64 = readq(&bar0->mac_cfg);
3484                 sp->promisc_flg = 1;
3485                 DBG_PRINT(ERR_DBG, "%s: entered promiscuous mode\n",
3486                           dev->name);
3487         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
3488                 /*  Remove the NIC from promiscuous mode */
3489                 add = &bar0->mac_cfg;
3490                 val64 = readq(&bar0->mac_cfg);
3491                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
3492
3493                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
3494                 writel((u32) val64, add);
3495                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
3496                 writel((u32) (val64 >> 32), (add + 4));
3497
3498                 val64 = readq(&bar0->mac_cfg);
3499                 sp->promisc_flg = 0;
3500                 DBG_PRINT(ERR_DBG, "%s: left promiscuous mode\n",
3501                           dev->name);
3502         }
3503
3504         /*  Update individual M_CAST address list */
3505         if ((!sp->m_cast_flg) && dev->mc_count) {
3506                 if (dev->mc_count >
3507                     (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
3508                         DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
3509                                   dev->name);
3510                         DBG_PRINT(ERR_DBG, "can be added, please enable ");
3511                         DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
3512                         return;
3513                 }
3514
3515                 prev_cnt = sp->mc_addr_count;
3516                 sp->mc_addr_count = dev->mc_count;
3517
3518                 /* Clear out the previous list of Mc in the H/W. */
3519                 for (i = 0; i < prev_cnt; i++) {
3520                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
3521                                &bar0->rmac_addr_data0_mem);
3522                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
3523                                 &bar0->rmac_addr_data1_mem);
3524                         val64 = RMAC_ADDR_CMD_MEM_WE |
3525                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
3526                             RMAC_ADDR_CMD_MEM_OFFSET
3527                             (MAC_MC_ADDR_START_OFFSET + i);
3528                         writeq(val64, &bar0->rmac_addr_cmd_mem);
3529
3530                         /* Wait for command completes */
3531                         if (wait_for_cmd_complete(sp)) {
3532                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
3533                                           dev->name);
3534                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
3535                                 return;
3536                         }
3537                 }
3538
3539                 /* Create the new Rx filter list and update the same in H/W. */
3540                 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
3541                      i++, mclist = mclist->next) {
3542                         memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
3543                                ETH_ALEN);
3544                         for (j = 0; j < ETH_ALEN; j++) {
3545                                 mac_addr |= mclist->dmi_addr[j];
3546                                 mac_addr <<= 8;
3547                         }
3548                         mac_addr >>= 8;
3549                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
3550                                &bar0->rmac_addr_data0_mem);
3551                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
3552                                 &bar0->rmac_addr_data1_mem);
3553                         val64 = RMAC_ADDR_CMD_MEM_WE |
3554                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
3555                             RMAC_ADDR_CMD_MEM_OFFSET
3556                             (i + MAC_MC_ADDR_START_OFFSET);
3557                         writeq(val64, &bar0->rmac_addr_cmd_mem);
3558
3559                         /* Wait for command completes */
3560                         if (wait_for_cmd_complete(sp)) {
3561                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
3562                                           dev->name);
3563                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
3564                                 return;
3565                         }
3566                 }
3567         }
3568 }
3569
3570 /**
3571  *  s2io_set_mac_addr - Programs the Xframe mac address
3572  *  @dev : pointer to the device structure.
3573  *  @addr: a uchar pointer to the new mac address which is to be set.
3574  *  Description : This procedure will program the Xframe to receive
3575  *  frames with new Mac Address
3576  *  Return value: SUCCESS on success and an appropriate (-)ve integer
3577  *  as defined in errno.h file on failure.
3578  */
3579
3580 int s2io_set_mac_addr(struct net_device *dev, u8 * addr)
3581 {
3582         nic_t *sp = dev->priv;
3583         XENA_dev_config_t __iomem *bar0 = sp->bar0;
3584         register u64 val64, mac_addr = 0;
3585         int i;
3586
3587         /*
3588          * Set the new MAC address as the new unicast filter and reflect this
3589          * change on the device address registered with the OS. It will be
3590          * at offset 0.
3591          */
3592         for (i = 0; i < ETH_ALEN; i++) {
3593                 mac_addr <<= 8;
3594                 mac_addr |= addr[i];
3595         }
3596
3597         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
3598                &bar0->rmac_addr_data0_mem);
3599
3600         val64 =
3601             RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
3602             RMAC_ADDR_CMD_MEM_OFFSET(0);
3603         writeq(val64, &bar0->rmac_addr_cmd_mem);
3604         /* Wait till command completes */
3605         if (wait_for_cmd_complete(sp)) {
3606                 DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name);
3607                 return FAILURE;
3608         }
3609
3610         return SUCCESS;
3611 }
3612
3613 /**
3614  * s2io_ethtool_sset - Sets different link parameters.
3615  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
3616  * @info: pointer to the structure with parameters given by ethtool to set
3617  * link information.
3618  * Description:
3619  * The function sets different link parameters provided by the user onto
3620  * the NIC.
3621  * Return value:
3622  * 0 on success.
3623 */
3624
3625 static int s2io_ethtool_sset(struct net_device *dev,
3626                              struct ethtool_cmd *info)
3627 {
3628         nic_t *sp = dev->priv;
3629         if ((info->autoneg == AUTONEG_ENABLE) ||
3630             (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
3631                 return -EINVAL;
3632         else {
3633                 s2io_close(sp->dev);
3634                 s2io_open(sp->dev);
3635         }
3636
3637         return 0;
3638 }
3639
3640 /**
3641  * s2io_ethtol_gset - Return link specific information.
3642  * @sp : private member of the device structure, pointer to the
3643  *      s2io_nic structure.
3644  * @info : pointer to the structure with parameters given by ethtool
3645  * to return link information.
3646  * Description:
3647  * Returns link specific information like speed, duplex etc.. to ethtool.
3648  * Return value :
3649  * return 0 on success.
3650  */
3651
3652 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
3653 {
3654         nic_t *sp = dev->priv;
3655         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
3656         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
3657         info->port = PORT_FIBRE;
3658         /* info->transceiver?? TODO */
3659
3660         if (netif_carrier_ok(sp->dev)) {
3661                 info->speed = 10000;
3662                 info->duplex = DUPLEX_FULL;
3663         } else {
3664                 info->speed = -1;
3665                 info->duplex = -1;
3666         }
3667
3668         info->autoneg = AUTONEG_DISABLE;
3669         return 0;
3670 }
3671
3672 /**
3673  * s2io_ethtool_gdrvinfo - Returns driver specific information.
3674  * @sp : private member of the device structure, which is a pointer to the
3675  * s2io_nic structure.
3676  * @info : pointer to the structure with parameters given by ethtool to
3677  * return driver information.
3678  * Description:
3679  * Returns driver specefic information like name, version etc.. to ethtool.
3680  * Return value:
3681  *  void
3682  */
3683
3684 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
3685                                   struct ethtool_drvinfo *info)
3686 {
3687         nic_t *sp = dev->priv;
3688
3689         strncpy(info->driver, s2io_driver_name, sizeof(s2io_driver_name));
3690         strncpy(info->version, s2io_driver_version,
3691                 sizeof(s2io_driver_version));
3692         strncpy(info->fw_version, "", 32);
3693         strncpy(info->bus_info, pci_name(sp->pdev), 32);
3694         info->regdump_len = XENA_REG_SPACE;
3695         info->eedump_len = XENA_EEPROM_SPACE;
3696         info->testinfo_len = S2IO_TEST_LEN;
3697         info->n_stats = S2IO_STAT_LEN;
3698 }
3699
3700 /**
3701  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
3702  *  @sp: private member of the device structure, which is a pointer to the
3703  *  s2io_nic structure.
3704  *  @regs : pointer to the structure with parameters given by ethtool for
3705  *  dumping the registers.
3706  *  @reg_space: The input argumnet into which all the registers are dumped.
3707  *  Description:
3708  *  Dumps the entire register space of xFrame NIC into the user given
3709  *  buffer area.
3710  * Return value :
3711  * void .
3712 */
3713
3714 static void s2io_ethtool_gregs(struct net_device *dev,
3715                                struct ethtool_regs *regs, void *space)
3716 {
3717         int i;
3718         u64 reg;
3719         u8 *reg_space = (u8 *) space;
3720         nic_t *sp = dev->priv;
3721
3722         regs->len = XENA_REG_SPACE;
3723         regs->version = sp->pdev->subsystem_device;
3724
3725         for (i = 0; i < regs->len; i += 8) {
3726                 reg = readq(sp->bar0 + i);
3727                 memcpy((reg_space + i), &reg, 8);
3728         }
3729 }
3730
3731 /**
3732  *  s2io_phy_id  - timer function that alternates adapter LED.
3733  *  @data : address of the private member of the device structure, which
3734  *  is a pointer to the s2io_nic structure, provided as an u32.
3735  * Description: This is actually the timer function that alternates the
3736  * adapter LED bit of the adapter control bit to set/reset every time on
3737  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
3738  *  once every second.
3739 */
3740 static void s2io_phy_id(unsigned long data)
3741 {
3742         nic_t *sp = (nic_t *) data;
3743         XENA_dev_config_t __iomem *bar0 = sp->bar0;
3744         u64 val64 = 0;
3745         u16 subid;
3746
3747         subid = sp->pdev->subsystem_device;
3748         if ((sp->device_type == XFRAME_II_DEVICE) ||
3749                    ((subid & 0xFF) >= 0x07)) {
3750                 val64 = readq(&bar0->gpio_control);
3751                 val64 ^= GPIO_CTRL_GPIO_0;
3752                 writeq(val64, &bar0->gpio_control);
3753         } else {
3754                 val64 = readq(&bar0->adapter_control);
3755                 val64 ^= ADAPTER_LED_ON;
3756                 writeq(val64, &bar0->adapter_control);
3757         }
3758
3759         mod_timer(&sp->id_timer, jiffies + HZ / 2);
3760 }
3761
3762 /**
3763  * s2io_ethtool_idnic - To physically identify the nic on the system.
3764  * @sp : private member of the device structure, which is a pointer to the
3765  * s2io_nic structure.
3766  * @id : pointer to the structure with identification parameters given by
3767  * ethtool.
3768  * Description: Used to physically identify the NIC on the system.
3769  * The Link LED will blink for a time specified by the user for
3770  * identification.
3771  * NOTE: The Link has to be Up to be able to blink the LED. Hence
3772  * identification is possible only if it's link is up.
3773  * Return value:
3774  * int , returns 0 on success
3775  */
3776
3777 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
3778 {
3779         u64 val64 = 0, last_gpio_ctrl_val;
3780         nic_t *sp = dev->priv;
3781         XENA_dev_config_t __iomem *bar0 = sp->bar0;
3782         u16 subid;
3783
3784         subid = sp->pdev->subsystem_device;
3785         last_gpio_ctrl_val = readq(&bar0->gpio_control);
3786         if ((sp->device_type == XFRAME_I_DEVICE) &&
3787                 ((subid & 0xFF) < 0x07)) {
3788                 val64 = readq(&bar0->adapter_control);
3789                 if (!(val64 & ADAPTER_CNTL_EN)) {
3790                         printk(KERN_ERR
3791                                "Adapter Link down, cannot blink LED\n");
3792                         return -EFAULT;
3793                 }
3794         }
3795         if (sp->id_timer.function == NULL) {
3796                 init_timer(&sp->id_timer);
3797                 sp->id_timer.function = s2io_phy_id;
3798                 sp->id_timer.data = (unsigned long) sp;
3799         }
3800         mod_timer(&sp->id_timer, jiffies);
3801         if (data)
3802                 msleep_interruptible(data * HZ);
3803         else
3804                 msleep_interruptible(MAX_FLICKER_TIME);
3805         del_timer_sync(&sp->id_timer);
3806
3807         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
3808                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
3809                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
3810         }
3811
3812         return 0;
3813 }
3814
3815 /**
3816  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
3817  * @sp : private member of the device structure, which is a pointer to the
3818  *      s2io_nic structure.
3819  * @ep : pointer to the structure with pause parameters given by ethtool.
3820  * Description:
3821  * Returns the Pause frame generation and reception capability of the NIC.
3822  * Return value:
3823  *  void
3824  */
3825 static void s2io_ethtool_getpause_data(struct net_device *dev,
3826                                        struct ethtool_pauseparam *ep)
3827 {
3828         u64 val64;
3829         nic_t *sp = dev->priv;
3830         XENA_dev_config_t __iomem *bar0 = sp->bar0;
3831
3832         val64 = readq(&bar0->rmac_pause_cfg);
3833         if (val64 & RMAC_PAUSE_GEN_ENABLE)
3834                 ep->tx_pause = TRUE;
3835         if (val64 & RMAC_PAUSE_RX_ENABLE)
3836                 ep->rx_pause = TRUE;
3837         ep->autoneg = FALSE;
3838 }
3839
3840 /**
3841  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
3842  * @sp : private member of the device structure, which is a pointer to the
3843  *      s2io_nic structure.
3844  * @ep : pointer to the structure with pause parameters given by ethtool.
3845  * Description:
3846  * It can be used to set or reset Pause frame generation or reception
3847  * support of the NIC.
3848  * Return value:
3849  * int, returns 0 on Success
3850  */
3851
3852 static int s2io_ethtool_setpause_data(struct net_device *dev,
3853                                struct ethtool_pauseparam *ep)
3854 {
3855         u64 val64;
3856         nic_t *sp = dev->priv;
3857         XENA_dev_config_t __iomem *bar0 = sp->bar0;
3858
3859         val64 = readq(&bar0->rmac_pause_cfg);
3860         if (ep->tx_pause)
3861                 val64 |= RMAC_PAUSE_GEN_ENABLE;
3862         else
3863                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
3864         if (ep->rx_pause)
3865                 val64 |= RMAC_PAUSE_RX_ENABLE;
3866         else
3867                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
3868         writeq(val64, &bar0->rmac_pause_cfg);
3869         return 0;
3870 }
3871
3872 /**
3873  * read_eeprom - reads 4 bytes of data from user given offset.
3874  * @sp : private member of the device structure, which is a pointer to the
3875  *      s2io_nic structure.
3876  * @off : offset at which the data must be written
3877  * @data : Its an output parameter where the data read at the given
3878  *      offset is stored.
3879  * Description:
3880  * Will read 4 bytes of data from the user given offset and return the
3881  * read data.
3882  * NOTE: Will allow to read only part of the EEPROM visible through the
3883  *   I2C bus.
3884  * Return value:
3885  *  -1 on failure and 0 on success.
3886  */
3887
3888 #define S2IO_DEV_ID             5
3889 static int read_eeprom(nic_t * sp, int off, u32 * data)
3890 {
3891         int ret = -1;
3892         u32 exit_cnt = 0;
3893         u64 val64;
3894         XENA_dev_config_t __iomem *bar0 = sp->bar0;
3895
3896         val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
3897             I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
3898             I2C_CONTROL_CNTL_START;
3899         SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
3900
3901         while (exit_cnt < 5) {
3902                 val64 = readq(&bar0->i2c_control);
3903                 if (I2C_CONTROL_CNTL_END(val64)) {
3904                         *data = I2C_CONTROL_GET_DATA(val64);
3905                         ret = 0;
3906                         break;
3907                 }
3908                 msleep(50);
3909                 exit_cnt++;
3910         }
3911
3912         return ret;
3913 }
3914
3915 /**
3916  *  write_eeprom - actually writes the relevant part of the data value.
3917  *  @sp : private member of the device structure, which is a pointer to the
3918  *       s2io_nic structure.
3919  *  @off : offset at which the data must be written
3920  *  @data : The data that is to be written
3921  *  @cnt : Number of bytes of the data that are actually to be written into
3922  *  the Eeprom. (max of 3)
3923  * Description:
3924  *  Actually writes the relevant part of the data value into the Eeprom
3925  *  through the I2C bus.
3926  * Return value:
3927  *  0 on success, -1 on failure.
3928  */
3929
3930 static int write_eeprom(nic_t * sp, int off, u32 data, int cnt)
3931 {
3932         int exit_cnt = 0, ret = -1;
3933         u64 val64;
3934         XENA_dev_config_t __iomem *bar0 = sp->bar0;
3935
3936         val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
3937             I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA(data) |
3938             I2C_CONTROL_CNTL_START;
3939         SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
3940
3941         while (exit_cnt < 5) {
3942                 val64 = readq(&bar0->i2c_control);
3943                 if (I2C_CONTROL_CNTL_END(val64)) {
3944                         if (!(val64 & I2C_CONTROL_NACK))
3945                                 ret = 0;
3946                         break;
3947                 }
3948                 msleep(50);
3949                 exit_cnt++;
3950         }
3951
3952         return ret;
3953 }
3954
3955 /**
3956  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
3957  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
3958  *  @eeprom : pointer to the user level structure provided by ethtool,
3959  *  containing all relevant information.
3960  *  @data_buf : user defined value to be written into Eeprom.
3961  *  Description: Reads the values stored in the Eeprom at given offset
3962  *  for a given length. Stores these values int the input argument data
3963  *  buffer 'data_buf' and returns these to the caller (ethtool.)
3964  *  Return value:
3965  *  int  0 on success
3966  */
3967
3968 static int s2io_ethtool_geeprom(struct net_device *dev,
3969                          struct ethtool_eeprom *eeprom, u8 * data_buf)
3970 {
3971         u32 data, i, valid;
3972         nic_t *sp = dev->priv;
3973
3974         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
3975
3976         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
3977                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
3978
3979         for (i = 0; i < eeprom->len; i += 4) {
3980                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
3981                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
3982                         return -EFAULT;
3983                 }
3984                 valid = INV(data);
3985                 memcpy((data_buf + i), &valid, 4);
3986         }
3987         return 0;
3988 }
3989
3990 /**
3991  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
3992  *  @sp : private member of the device structure, which is a pointer to the
3993  *  s2io_nic structure.
3994  *  @eeprom : pointer to the user level structure provided by ethtool,
3995  *  containing all relevant information.
3996  *  @data_buf ; user defined value to be written into Eeprom.
3997  *  Description:
3998  *  Tries to write the user provided value in the Eeprom, at the offset
3999  *  given by the user.
4000  *  Return value:
4001  *  0 on success, -EFAULT on failure.
4002  */
4003
4004 static int s2io_ethtool_seeprom(struct net_device *dev,
4005                                 struct ethtool_eeprom *eeprom,
4006                                 u8 * data_buf)
4007 {
4008         int len = eeprom->len, cnt = 0;
4009         u32 valid = 0, data;
4010         nic_t *sp = dev->priv;
4011
4012         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
4013                 DBG_PRINT(ERR_DBG,
4014                           "ETHTOOL_WRITE_EEPROM Err: Magic value ");
4015                 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
4016                           eeprom->magic);
4017                 return -EFAULT;
4018         }
4019
4020         while (len) {
4021                 data = (u32) data_buf[cnt] & 0x000000FF;
4022                 if (data) {
4023                         valid = (u32) (data << 24);
4024                 } else
4025                         valid = data;
4026
4027                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
4028                         DBG_PRINT(ERR_DBG,
4029                                   "ETHTOOL_WRITE_EEPROM Err: Cannot ");
4030                         DBG_PRINT(ERR_DBG,
4031                                   "write into the specified offset\n");
4032                         return -EFAULT;
4033                 }
4034                 cnt++;
4035                 len--;
4036         }
4037
4038         return 0;
4039 }
4040
4041 /**
4042  * s2io_register_test - reads and writes into all clock domains.
4043  * @sp : private member of the device structure, which is a pointer to the
4044  * s2io_nic structure.
4045  * @data : variable that returns the result of each of the test conducted b
4046  * by the driver.
4047  * Description:
4048  * Read and write into all clock domains. The NIC has 3 clock domains,
4049  * see that registers in all the three regions are accessible.
4050  * Return value:
4051  * 0 on success.
4052  */
4053
4054 static int s2io_register_test(nic_t * sp, uint64_t * data)
4055 {
4056         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4057         u64 val64 = 0;
4058         int fail = 0;
4059
4060         val64 = readq(&bar0->pif_rd_swapper_fb);
4061         if (val64 != 0x123456789abcdefULL) {
4062                 fail = 1;
4063                 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
4064         }
4065
4066         val64 = readq(&bar0->rmac_pause_cfg);
4067         if (val64 != 0xc000ffff00000000ULL) {
4068                 fail = 1;
4069                 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
4070         }
4071
4072         val64 = readq(&bar0->rx_queue_cfg);
4073         if (val64 != 0x0808080808080808ULL) {
4074                 fail = 1;
4075                 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
4076         }
4077
4078         val64 = readq(&bar0->xgxs_efifo_cfg);
4079         if (val64 != 0x000000001923141EULL) {
4080                 fail = 1;
4081                 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
4082         }
4083
4084         val64 = 0x5A5A5A5A5A5A5A5AULL;
4085         writeq(val64, &bar0->xmsi_data);
4086         val64 = readq(&bar0->xmsi_data);
4087         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
4088                 fail = 1;
4089                 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
4090         }
4091
4092         val64 = 0xA5A5A5A5A5A5A5A5ULL;
4093         writeq(val64, &bar0->xmsi_data);
4094         val64 = readq(&bar0->xmsi_data);
4095         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
4096                 fail = 1;
4097                 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
4098         }
4099
4100         *data = fail;
4101         return 0;
4102 }
4103
4104 /**
4105  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
4106  * @sp : private member of the device structure, which is a pointer to the
4107  * s2io_nic structure.
4108  * @data:variable that returns the result of each of the test conducted by
4109  * the driver.
4110  * Description:
4111  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
4112  * register.
4113  * Return value:
4114  * 0 on success.
4115  */
4116
4117 static int s2io_eeprom_test(nic_t * sp, uint64_t * data)
4118 {
4119         int fail = 0;
4120         u32 ret_data;
4121
4122         /* Test Write Error at offset 0 */
4123         if (!write_eeprom(sp, 0, 0, 3))
4124                 fail = 1;
4125
4126         /* Test Write at offset 4f0 */
4127         if (write_eeprom(sp, 0x4F0, 0x01234567, 3))
4128                 fail = 1;
4129         if (read_eeprom(sp, 0x4F0, &ret_data))
4130                 fail = 1;
4131
4132         if (ret_data != 0x01234567)
4133                 fail = 1;
4134
4135         /* Reset the EEPROM data go FFFF */
4136         write_eeprom(sp, 0x4F0, 0xFFFFFFFF, 3);
4137
4138         /* Test Write Request Error at offset 0x7c */
4139         if (!write_eeprom(sp, 0x07C, 0, 3))
4140                 fail = 1;
4141
4142         /* Test Write Request at offset 0x7fc */
4143         if (write_eeprom(sp, 0x7FC, 0x01234567, 3))
4144                 fail = 1;
4145         if (read_eeprom(sp, 0x7FC, &ret_data))
4146                 fail = 1;
4147
4148         if (ret_data != 0x01234567)
4149                 fail = 1;
4150
4151         /* Reset the EEPROM data go FFFF */
4152         write_eeprom(sp, 0x7FC, 0xFFFFFFFF, 3);
4153
4154         /* Test Write Error at offset 0x80 */
4155         if (!write_eeprom(sp, 0x080, 0, 3))
4156                 fail = 1;
4157
4158         /* Test Write Error at offset 0xfc */
4159         if (!write_eeprom(sp, 0x0FC, 0, 3))
4160                 fail = 1;
4161
4162         /* Test Write Error at offset 0x100 */
4163         if (!write_eeprom(sp, 0x100, 0, 3))
4164                 fail = 1;
4165
4166         /* Test Write Error at offset 4ec */
4167         if (!write_eeprom(sp, 0x4EC, 0, 3))
4168                 fail = 1;
4169
4170         *data = fail;
4171         return 0;
4172 }
4173
4174 /**
4175  * s2io_bist_test - invokes the MemBist test of the card .
4176  * @sp : private member of the device structure, which is a pointer to the
4177  * s2io_nic structure.
4178  * @data:variable that returns the result of each of the test conducted by
4179  * the driver.
4180  * Description:
4181  * This invokes the MemBist test of the card. We give around
4182  * 2 secs time for the Test to complete. If it's still not complete
4183  * within this peiod, we consider that the test failed.
4184  * Return value:
4185  * 0 on success and -1 on failure.
4186  */
4187
4188 static int s2io_bist_test(nic_t * sp, uint64_t * data)
4189 {
4190         u8 bist = 0;
4191         int cnt = 0, ret = -1;
4192
4193         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
4194         bist |= PCI_BIST_START;
4195         pci_write_config_word(sp->pdev, PCI_BIST, bist);
4196
4197         while (cnt < 20) {
4198                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
4199                 if (!(bist & PCI_BIST_START)) {
4200                         *data = (bist & PCI_BIST_CODE_MASK);
4201                         ret = 0;
4202                         break;
4203                 }
4204                 msleep(100);
4205                 cnt++;
4206         }
4207
4208         return ret;
4209 }
4210
4211 /**
4212  * s2io-link_test - verifies the link state of the nic
4213  * @sp ; private member of the device structure, which is a pointer to the
4214  * s2io_nic structure.
4215  * @data: variable that returns the result of each of the test conducted by
4216  * the driver.
4217  * Description:
4218  * The function verifies the link state of the NIC and updates the input
4219  * argument 'data' appropriately.
4220  * Return value:
4221  * 0 on success.
4222  */
4223
4224 static int s2io_link_test(nic_t * sp, uint64_t * data)
4225 {
4226         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4227         u64 val64;
4228
4229         val64 = readq(&bar0->adapter_status);
4230         if (val64 & ADAPTER_STATUS_RMAC_LOCAL_FAULT)
4231                 *data = 1;
4232
4233         return 0;
4234 }
4235
4236 /**
4237  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
4238  * @sp - private member of the device structure, which is a pointer to the
4239  * s2io_nic structure.
4240  * @data - variable that returns the result of each of the test
4241  * conducted by the driver.
4242  * Description:
4243  *  This is one of the offline test that tests the read and write
4244  *  access to the RldRam chip on the NIC.
4245  * Return value:
4246  *  0 on success.
4247  */
4248
4249 static int s2io_rldram_test(nic_t * sp, uint64_t * data)
4250 {
4251         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4252         u64 val64;
4253         int cnt, iteration = 0, test_pass = 0;
4254
4255         val64 = readq(&bar0->adapter_control);
4256         val64 &= ~ADAPTER_ECC_EN;
4257         writeq(val64, &bar0->adapter_control);
4258
4259         val64 = readq(&bar0->mc_rldram_test_ctrl);
4260         val64 |= MC_RLDRAM_TEST_MODE;
4261         writeq(val64, &bar0->mc_rldram_test_ctrl);
4262
4263         val64 = readq(&bar0->mc_rldram_mrs);
4264         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
4265         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
4266
4267         val64 |= MC_RLDRAM_MRS_ENABLE;
4268         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
4269
4270         while (iteration < 2) {
4271                 val64 = 0x55555555aaaa0000ULL;
4272                 if (iteration == 1) {
4273                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
4274                 }
4275                 writeq(val64, &bar0->mc_rldram_test_d0);
4276
4277                 val64 = 0xaaaa5a5555550000ULL;
4278                 if (iteration == 1) {
4279                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
4280                 }
4281                 writeq(val64, &bar0->mc_rldram_test_d1);
4282
4283                 val64 = 0x55aaaaaaaa5a0000ULL;
4284                 if (iteration == 1) {
4285                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
4286                 }
4287                 writeq(val64, &bar0->mc_rldram_test_d2);
4288
4289                 val64 = (u64) (0x0000003fffff0000ULL);
4290                 writeq(val64, &bar0->mc_rldram_test_add);
4291
4292
4293                 val64 = MC_RLDRAM_TEST_MODE;
4294                 writeq(val64, &bar0->mc_rldram_test_ctrl);
4295
4296                 val64 |=
4297                     MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
4298                     MC_RLDRAM_TEST_GO;
4299                 writeq(val64, &bar0->mc_rldram_test_ctrl);
4300
4301                 for (cnt = 0; cnt < 5; cnt++) {
4302                         val64 = readq(&bar0->mc_rldram_test_ctrl);
4303                         if (val64 & MC_RLDRAM_TEST_DONE)
4304                                 break;
4305                         msleep(200);
4306                 }
4307
4308                 if (cnt == 5)
4309                         break;
4310
4311                 val64 = MC_RLDRAM_TEST_MODE;
4312                 writeq(val64, &bar0->mc_rldram_test_ctrl);
4313
4314                 val64 |= MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
4315                 writeq(val64, &bar0->mc_rldram_test_ctrl);
4316
4317                 for (cnt = 0; cnt < 5; cnt++) {
4318                         val64 = readq(&bar0->mc_rldram_test_ctrl);
4319                         if (val64 & MC_RLDRAM_TEST_DONE)
4320                                 break;
4321                         msleep(500);
4322                 }
4323
4324                 if (cnt == 5)
4325                         break;
4326
4327                 val64 = readq(&bar0->mc_rldram_test_ctrl);
4328                 if (val64 & MC_RLDRAM_TEST_PASS)
4329                         test_pass = 1;
4330
4331                 iteration++;
4332         }
4333
4334         if (!test_pass)
4335                 *data = 1;
4336         else
4337                 *data = 0;
4338
4339         return 0;
4340 }
4341
4342 /**
4343  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
4344  *  @sp : private member of the device structure, which is a pointer to the
4345  *  s2io_nic structure.
4346  *  @ethtest : pointer to a ethtool command specific structure that will be
4347  *  returned to the user.
4348  *  @data : variable that returns the result of each of the test
4349  * conducted by the driver.
4350  * Description:
4351  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
4352  *  the health of the card.
4353  * Return value:
4354  *  void
4355  */
4356
4357 static void s2io_ethtool_test(struct net_device *dev,
4358                               struct ethtool_test *ethtest,
4359                               uint64_t * data)
4360 {
4361         nic_t *sp = dev->priv;
4362         int orig_state = netif_running(sp->dev);
4363
4364         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
4365                 /* Offline Tests. */
4366                 if (orig_state)
4367                         s2io_close(sp->dev);
4368
4369                 if (s2io_register_test(sp, &data[0]))
4370                         ethtest->flags |= ETH_TEST_FL_FAILED;
4371
4372                 s2io_reset(sp);
4373
4374                 if (s2io_rldram_test(sp, &data[3]))
4375                         ethtest->flags |= ETH_TEST_FL_FAILED;
4376
4377                 s2io_reset(sp);
4378
4379                 if (s2io_eeprom_test(sp, &data[1]))
4380                         ethtest->flags |= ETH_TEST_FL_FAILED;
4381
4382                 if (s2io_bist_test(sp, &data[4]))
4383                         ethtest->flags |= ETH_TEST_FL_FAILED;
4384
4385                 if (orig_state)
4386                         s2io_open(sp->dev);
4387
4388                 data[2] = 0;
4389         } else {
4390                 /* Online Tests. */
4391                 if (!orig_state) {
4392                         DBG_PRINT(ERR_DBG,
4393                                   "%s: is not up, cannot run test\n",
4394                                   dev->name);
4395                         data[0] = -1;
4396                         data[1] = -1;
4397                         data[2] = -1;
4398                         data[3] = -1;
4399                         data[4] = -1;
4400                 }
4401
4402                 if (s2io_link_test(sp, &data[2]))
4403                         ethtest->flags |= ETH_TEST_FL_FAILED;
4404
4405                 data[0] = 0;
4406                 data[1] = 0;
4407                 data[3] = 0;
4408                 data[4] = 0;
4409         }
4410 }
4411
4412 static void s2io_get_ethtool_stats(struct net_device *dev,
4413                                    struct ethtool_stats *estats,
4414                                    u64 * tmp_stats)
4415 {
4416         int i = 0;
4417         nic_t *sp = dev->priv;
4418         StatInfo_t *stat_info = sp->mac_control.stats_info;
4419
4420         s2io_updt_stats(sp);
4421         tmp_stats[i++] =
4422                 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32  |
4423                 le32_to_cpu(stat_info->tmac_frms);
4424         tmp_stats[i++] =
4425                 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
4426                 le32_to_cpu(stat_info->tmac_data_octets);
4427         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
4428         tmp_stats[i++] =
4429                 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
4430                 le32_to_cpu(stat_info->tmac_mcst_frms);
4431         tmp_stats[i++] =
4432                 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
4433                 le32_to_cpu(stat_info->tmac_bcst_frms);
4434         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
4435         tmp_stats[i++] =
4436                 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
4437                 le32_to_cpu(stat_info->tmac_any_err_frms);
4438         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
4439         tmp_stats[i++] =
4440                 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
4441                 le32_to_cpu(stat_info->tmac_vld_ip);
4442         tmp_stats[i++] =
4443                 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
4444                 le32_to_cpu(stat_info->tmac_drop_ip);
4445         tmp_stats[i++] =
4446                 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
4447                 le32_to_cpu(stat_info->tmac_icmp);
4448         tmp_stats[i++] =
4449                 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
4450                 le32_to_cpu(stat_info->tmac_rst_tcp);
4451         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
4452         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
4453                 le32_to_cpu(stat_info->tmac_udp);
4454         tmp_stats[i++] =
4455                 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
4456                 le32_to_cpu(stat_info->rmac_vld_frms);
4457         tmp_stats[i++] =
4458                 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
4459                 le32_to_cpu(stat_info->rmac_data_octets);
4460         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
4461         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
4462         tmp_stats[i++] =
4463                 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
4464                 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
4465         tmp_stats[i++] =
4466                 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
4467                 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
4468         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
4469         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
4470         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
4471         tmp_stats[i++] =
4472                 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
4473                 le32_to_cpu(stat_info->rmac_discarded_frms);
4474         tmp_stats[i++] =
4475                 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
4476                 le32_to_cpu(stat_info->rmac_usized_frms);
4477         tmp_stats[i++] =
4478                 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
4479                 le32_to_cpu(stat_info->rmac_osized_frms);
4480         tmp_stats[i++] =
4481                 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
4482                 le32_to_cpu(stat_info->rmac_frag_frms);
4483         tmp_stats[i++] =
4484                 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
4485                 le32_to_cpu(stat_info->rmac_jabber_frms);
4486         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
4487                 le32_to_cpu(stat_info->rmac_ip);
4488         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
4489         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
4490         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
4491                 le32_to_cpu(stat_info->rmac_drop_ip);
4492         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
4493                 le32_to_cpu(stat_info->rmac_icmp);
4494         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
4495         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
4496                 le32_to_cpu(stat_info->rmac_udp);
4497         tmp_stats[i++] =
4498                 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
4499                 le32_to_cpu(stat_info->rmac_err_drp_udp);
4500         tmp_stats[i++] =
4501                 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
4502                 le32_to_cpu(stat_info->rmac_pause_cnt);
4503         tmp_stats[i++] =
4504                 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
4505                 le32_to_cpu(stat_info->rmac_accepted_ip);
4506         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
4507         tmp_stats[i++] = 0;
4508         tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
4509         tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
4510 }
4511
4512 int s2io_ethtool_get_regs_len(struct net_device *dev)
4513 {
4514         return (XENA_REG_SPACE);
4515 }
4516
4517
4518 u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
4519 {
4520         nic_t *sp = dev->priv;
4521
4522         return (sp->rx_csum);
4523 }
4524 int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
4525 {
4526         nic_t *sp = dev->priv;
4527
4528         if (data)
4529                 sp->rx_csum = 1;
4530         else
4531                 sp->rx_csum = 0;
4532
4533         return 0;
4534 }
4535 int s2io_get_eeprom_len(struct net_device *dev)
4536 {
4537         return (XENA_EEPROM_SPACE);
4538 }
4539
4540 int s2io_ethtool_self_test_count(struct net_device *dev)
4541 {
4542         return (S2IO_TEST_LEN);
4543 }
4544 void s2io_ethtool_get_strings(struct net_device *dev,
4545                               u32 stringset, u8 * data)
4546 {
4547         switch (stringset) {
4548         case ETH_SS_TEST:
4549                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
4550                 break;
4551         case ETH_SS_STATS:
4552                 memcpy(data, &ethtool_stats_keys,
4553                        sizeof(ethtool_stats_keys));
4554         }
4555 }
4556 static int s2io_ethtool_get_stats_count(struct net_device *dev)
4557 {
4558         return (S2IO_STAT_LEN);
4559 }
4560
4561 int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
4562 {
4563         if (data)
4564                 dev->features |= NETIF_F_IP_CSUM;
4565         else
4566                 dev->features &= ~NETIF_F_IP_CSUM;
4567
4568         return 0;
4569 }
4570
4571
4572 static struct ethtool_ops netdev_ethtool_ops = {
4573         .get_settings = s2io_ethtool_gset,
4574         .set_settings = s2io_ethtool_sset,
4575         .get_drvinfo = s2io_ethtool_gdrvinfo,
4576         .get_regs_len = s2io_ethtool_get_regs_len,
4577         .get_regs = s2io_ethtool_gregs,
4578         .get_link = ethtool_op_get_link,
4579         .get_eeprom_len = s2io_get_eeprom_len,
4580         .get_eeprom = s2io_ethtool_geeprom,
4581         .set_eeprom = s2io_ethtool_seeprom,
4582         .get_pauseparam = s2io_ethtool_getpause_data,
4583         .set_pauseparam = s2io_ethtool_setpause_data,
4584         .get_rx_csum = s2io_ethtool_get_rx_csum,
4585         .set_rx_csum = s2io_ethtool_set_rx_csum,
4586         .get_tx_csum = ethtool_op_get_tx_csum,
4587         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
4588         .get_sg = ethtool_op_get_sg,
4589         .set_sg = ethtool_op_set_sg,
4590 #ifdef NETIF_F_TSO
4591         .get_tso = ethtool_op_get_tso,
4592         .set_tso = ethtool_op_set_tso,
4593 #endif
4594         .self_test_count = s2io_ethtool_self_test_count,
4595         .self_test = s2io_ethtool_test,
4596         .get_strings = s2io_ethtool_get_strings,
4597         .phys_id = s2io_ethtool_idnic,
4598         .get_stats_count = s2io_ethtool_get_stats_count,
4599         .get_ethtool_stats = s2io_get_ethtool_stats
4600 };
4601
4602 /**
4603  *  s2io_ioctl - Entry point for the Ioctl
4604  *  @dev :  Device pointer.
4605  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
4606  *  a proprietary structure used to pass information to the driver.
4607  *  @cmd :  This is used to distinguish between the different commands that
4608  *  can be passed to the IOCTL functions.
4609  *  Description:
4610  *  Currently there are no special functionality supported in IOCTL, hence
4611  *  function always return EOPNOTSUPPORTED
4612  */
4613
4614 int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
4615 {
4616         return -EOPNOTSUPP;
4617 }
4618
4619 /**
4620  *  s2io_change_mtu - entry point to change MTU size for the device.
4621  *   @dev : device pointer.
4622  *   @new_mtu : the new MTU size for the device.
4623  *   Description: A driver entry point to change MTU size for the device.
4624  *   Before changing the MTU the device must be stopped.
4625  *  Return value:
4626  *   0 on success and an appropriate (-)ve integer as defined in errno.h
4627  *   file on failure.
4628  */
4629
4630 int s2io_change_mtu(struct net_device *dev, int new_mtu)
4631 {
4632         nic_t *sp = dev->priv;
4633
4634         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
4635                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
4636                           dev->name);
4637                 return -EPERM;
4638         }
4639
4640         dev->mtu = new_mtu;
4641         if (netif_running(dev)) {
4642                 s2io_card_down(sp);
4643                 netif_stop_queue(dev);
4644                 if (s2io_card_up(sp)) {
4645                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
4646                                   __FUNCTION__);
4647                 }
4648                 if (netif_queue_stopped(dev))
4649                         netif_wake_queue(dev);
4650         } else { /* Device is down */
4651                 XENA_dev_config_t __iomem *bar0 = sp->bar0;
4652                 u64 val64 = new_mtu;
4653
4654                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
4655         }
4656
4657         return 0;
4658 }
4659
4660 /**
4661  *  s2io_tasklet - Bottom half of the ISR.
4662  *  @dev_adr : address of the device structure in dma_addr_t format.
4663  *  Description:
4664  *  This is the tasklet or the bottom half of the ISR. This is
4665  *  an extension of the ISR which is scheduled by the scheduler to be run
4666  *  when the load on the CPU is low. All low priority tasks of the ISR can
4667  *  be pushed into the tasklet. For now the tasklet is used only to
4668  *  replenish the Rx buffers in the Rx buffer descriptors.
4669  *  Return value:
4670  *  void.
4671  */
4672
4673 static void s2io_tasklet(unsigned long dev_addr)
4674 {
4675         struct net_device *dev = (struct net_device *) dev_addr;
4676         nic_t *sp = dev->priv;
4677         int i, ret;
4678         mac_info_t *mac_control;
4679         struct config_param *config;
4680
4681         mac_control = &sp->mac_control;
4682         config = &sp->config;
4683
4684         if (!TASKLET_IN_USE) {
4685                 for (i = 0; i < config->rx_ring_num; i++) {
4686                         ret = fill_rx_buffers(sp, i);
4687                         if (ret == -ENOMEM) {
4688                                 DBG_PRINT(ERR_DBG, "%s: Out of ",
4689                                           dev->name);
4690                                 DBG_PRINT(ERR_DBG, "memory in tasklet\n");
4691                                 break;
4692                         } else if (ret == -EFILL) {
4693                                 DBG_PRINT(ERR_DBG,
4694                                           "%s: Rx Ring %d is full\n",
4695                                           dev->name, i);
4696                                 break;
4697                         }
4698                 }
4699                 clear_bit(0, (&sp->tasklet_status));
4700         }
4701 }
4702
4703 /**
4704  * s2io_set_link - Set the LInk status
4705  * @data: long pointer to device private structue
4706  * Description: Sets the link status for the adapter
4707  */
4708
4709 static void s2io_set_link(unsigned long data)
4710 {
4711         nic_t *nic = (nic_t *) data;
4712         struct net_device *dev = nic->dev;
4713         XENA_dev_config_t __iomem *bar0 = nic->bar0;
4714         register u64 val64;
4715         u16 subid;
4716
4717         if (test_and_set_bit(0, &(nic->link_state))) {
4718                 /* The card is being reset, no point doing anything */
4719                 return;
4720         }
4721
4722         subid = nic->pdev->subsystem_device;
4723         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
4724                 /*
4725                  * Allow a small delay for the NICs self initiated
4726                  * cleanup to complete.
4727                  */
4728                 msleep(100);
4729         }
4730
4731         val64 = readq(&bar0->adapter_status);
4732         if (verify_xena_quiescence(nic, val64, nic->device_enabled_once)) {
4733                 if (LINK_IS_UP(val64)) {
4734                         val64 = readq(&bar0->adapter_control);
4735                         val64 |= ADAPTER_CNTL_EN;
4736                         writeq(val64, &bar0->adapter_control);
4737                         if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
4738                                                              subid)) {
4739                                 val64 = readq(&bar0->gpio_control);
4740                                 val64 |= GPIO_CTRL_GPIO_0;
4741                                 writeq(val64, &bar0->gpio_control);
4742                                 val64 = readq(&bar0->gpio_control);
4743                         } else {
4744                                 val64 |= ADAPTER_LED_ON;
4745                                 writeq(val64, &bar0->adapter_control);
4746                         }
4747                         if (s2io_link_fault_indication(nic) ==
4748                                                 MAC_RMAC_ERR_TIMER) {
4749                                 val64 = readq(&bar0->adapter_status);
4750                                 if (!LINK_IS_UP(val64)) {
4751                                         DBG_PRINT(ERR_DBG, "%s:", dev->name);
4752                                         DBG_PRINT(ERR_DBG, " Link down");
4753                                         DBG_PRINT(ERR_DBG, "after ");
4754                                         DBG_PRINT(ERR_DBG, "enabling ");
4755                                         DBG_PRINT(ERR_DBG, "device \n");
4756                                 }
4757                         }
4758                         if (nic->device_enabled_once == FALSE) {
4759                                 nic->device_enabled_once = TRUE;
4760                         }
4761                         s2io_link(nic, LINK_UP);
4762                 } else {
4763                         if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
4764                                                               subid)) {
4765                                 val64 = readq(&bar0->gpio_control);
4766                                 val64 &= ~GPIO_CTRL_GPIO_0;
4767                                 writeq(val64, &bar0->gpio_control);
4768                                 val64 = readq(&bar0->gpio_control);
4769                         }
4770                         s2io_link(nic, LINK_DOWN);
4771                 }
4772         } else {                /* NIC is not Quiescent. */
4773                 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
4774                 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
4775                 netif_stop_queue(dev);
4776         }
4777         clear_bit(0, &(nic->link_state));
4778 }
4779
4780 static void s2io_card_down(nic_t * sp)
4781 {
4782         int cnt = 0;
4783         XENA_dev_config_t __iomem *bar0 = sp->bar0;
4784         unsigned long flags;
4785         register u64 val64 = 0;
4786
4787         del_timer_sync(&sp->alarm_timer);
4788         /* If s2io_set_link task is executing, wait till it completes. */
4789         while (test_and_set_bit(0, &(sp->link_state))) {
4790                 msleep(50);
4791         }
4792         atomic_set(&sp->card_state, CARD_DOWN);
4793
4794         /* disable Tx and Rx traffic on the NIC */
4795         stop_nic(sp);
4796
4797         /* Kill tasklet. */
4798         tasklet_kill(&sp->task);
4799
4800         /* Check if the device is Quiescent and then Reset the NIC */
4801         do {
4802                 val64 = readq(&bar0->adapter_status);
4803                 if (verify_xena_quiescence(sp, val64, sp->device_enabled_once)) {
4804                         break;
4805                 }
4806
4807                 msleep(50);
4808                 cnt++;
4809                 if (cnt == 10) {
4810                         DBG_PRINT(ERR_DBG,
4811                                   "s2io_close:Device not Quiescent ");
4812                         DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
4813                                   (unsigned long long) val64);
4814                         break;
4815                 }
4816         } while (1);
4817         s2io_reset(sp);
4818
4819         /* Waiting till all Interrupt handlers are complete */
4820         cnt = 0;
4821         do {
4822                 msleep(10);
4823                 if (!atomic_read(&sp->isr_cnt))
4824                         break;
4825                 cnt++;
4826         } while(cnt < 5);
4827
4828         spin_lock_irqsave(&sp->tx_lock, flags);
4829         /* Free all Tx buffers */
4830         free_tx_buffers(sp);
4831         spin_unlock_irqrestore(&sp->tx_lock, flags);
4832
4833         /* Free all Rx buffers */
4834         spin_lock_irqsave(&sp->rx_lock, flags);
4835         free_rx_buffers(sp);
4836         spin_unlock_irqrestore(&sp->rx_lock, flags);
4837
4838         clear_bit(0, &(sp->link_state));
4839 }
4840
4841 static int s2io_card_up(nic_t * sp)
4842 {
4843         int i, ret;
4844         mac_info_t *mac_control;
4845         struct config_param *config;
4846         struct net_device *dev = (struct net_device *) sp->dev;
4847
4848         /* Initialize the H/W I/O registers */
4849         if (init_nic(sp) != 0) {
4850                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
4851                           dev->name);
4852                 return -ENODEV;
4853         }
4854
4855         /*
4856          * Initializing the Rx buffers. For now we are considering only 1
4857          * Rx ring and initializing buffers into 30 Rx blocks
4858          */
4859         mac_control = &sp->mac_control;
4860         config = &sp->config;
4861
4862         for (i = 0; i < config->rx_ring_num; i++) {
4863                 if ((ret = fill_rx_buffers(sp, i))) {
4864                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
4865                                   dev->name);
4866                         s2io_reset(sp);
4867                         free_rx_buffers(sp);
4868                         return -ENOMEM;
4869                 }
4870                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
4871                           atomic_read(&sp->rx_bufs_left[i]));
4872         }
4873
4874         /* Setting its receive mode */
4875         s2io_set_multicast(dev);
4876
4877         /* Enable tasklet for the device */
4878         tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
4879
4880         /* Enable Rx Traffic and interrupts on the NIC */
4881         if (start_nic(sp)) {
4882                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
4883                 tasklet_kill(&sp->task);
4884                 s2io_reset(sp);
4885                 free_irq(dev->irq, dev);
4886                 free_rx_buffers(sp);
4887                 return -ENODEV;
4888         }
4889
4890         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
4891
4892         atomic_set(&sp->card_state, CARD_UP);
4893         return 0;
4894 }
4895
4896 /**
4897  * s2io_restart_nic - Resets the NIC.
4898  * @data : long pointer to the device private structure
4899  * Description:
4900  * This function is scheduled to be run by the s2io_tx_watchdog
4901  * function after 0.5 secs to reset the NIC. The idea is to reduce
4902  * the run time of the watch dog routine which is run holding a
4903  * spin lock.
4904  */
4905
4906 static void s2io_restart_nic(unsigned long data)
4907 {
4908         struct net_device *dev = (struct net_device *) data;
4909         nic_t *sp = dev->priv;
4910
4911         s2io_card_down(sp);
4912         if (s2io_card_up(sp)) {
4913                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
4914                           dev->name);
4915         }
4916         netif_wake_queue(dev);
4917         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
4918                   dev->name);
4919
4920 }
4921
4922 /**
4923  *  s2io_tx_watchdog - Watchdog for transmit side.
4924  *  @dev : Pointer to net device structure
4925  *  Description:
4926  *  This function is triggered if the Tx Queue is stopped
4927  *  for a pre-defined amount of time when the Interface is still up.
4928  *  If the Interface is jammed in such a situation, the hardware is
4929  *  reset (by s2io_close) and restarted again (by s2io_open) to
4930  *  overcome any problem that might have been caused in the hardware.
4931  *  Return value:
4932  *  void
4933  */
4934
4935 static void s2io_tx_watchdog(struct net_device *dev)
4936 {
4937         nic_t *sp = dev->priv;
4938
4939         if (netif_carrier_ok(dev)) {
4940                 schedule_work(&sp->rst_timer_task);
4941         }
4942 }
4943
4944 /**
4945  *   rx_osm_handler - To perform some OS related operations on SKB.
4946  *   @sp: private member of the device structure,pointer to s2io_nic structure.
4947  *   @skb : the socket buffer pointer.
4948  *   @len : length of the packet
4949  *   @cksum : FCS checksum of the frame.
4950  *   @ring_no : the ring from which this RxD was extracted.
4951  *   Description:
4952  *   This function is called by the Tx interrupt serivce routine to perform
4953  *   some OS related operations on the SKB before passing it to the upper
4954  *   layers. It mainly checks if the checksum is OK, if so adds it to the
4955  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
4956  *   to the upper layer. If the checksum is wrong, it increments the Rx
4957  *   packet error count, frees the SKB and returns error.
4958  *   Return value:
4959  *   SUCCESS on success and -1 on failure.
4960  */
4961 static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
4962 {
4963         nic_t *sp = ring_data->nic;
4964         struct net_device *dev = (struct net_device *) sp->dev;
4965         struct sk_buff *skb = (struct sk_buff *)
4966                 ((unsigned long) rxdp->Host_Control);
4967         int ring_no = ring_data->ring_no;
4968         u16 l3_csum, l4_csum;
4969 #ifdef CONFIG_2BUFF_MODE
4970         int buf0_len = RXD_GET_BUFFER0_SIZE(rxdp->Control_2);
4971         int buf2_len = RXD_GET_BUFFER2_SIZE(rxdp->Control_2);
4972         int get_block = ring_data->rx_curr_get_info.block_index;
4973         int get_off = ring_data->rx_curr_get_info.offset;
4974         buffAdd_t *ba = &ring_data->ba[get_block][get_off];
4975         unsigned char *buff;
4976 #else
4977         u16 len = (u16) ((RXD_GET_BUFFER0_SIZE(rxdp->Control_2)) >> 48);;
4978 #endif
4979         skb->dev = dev;
4980         if (rxdp->Control_1 & RXD_T_CODE) {
4981                 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
4982                 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n",
4983                           dev->name, err);
4984                 dev_kfree_skb(skb);
4985                 sp->stats.rx_crc_errors++;
4986                 atomic_dec(&sp->rx_bufs_left[ring_no]);
4987                 rxdp->Host_Control = 0;
4988                 return 0;
4989         }
4990
4991         /* Updating statistics */
4992         rxdp->Host_Control = 0;
4993         sp->rx_pkt_count++;
4994         sp->stats.rx_packets++;
4995 #ifndef CONFIG_2BUFF_MODE
4996         sp->stats.rx_bytes += len;
4997 #else
4998         sp->stats.rx_bytes += buf0_len + buf2_len;
4999 #endif
5000
5001 #ifndef CONFIG_2BUFF_MODE
5002         skb_put(skb, len);
5003 #else
5004         buff = skb_push(skb, buf0_len);
5005         memcpy(buff, ba->ba_0, buf0_len);
5006         skb_put(skb, buf2_len);
5007 #endif
5008
5009         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
5010             (sp->rx_csum)) {
5011                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
5012                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
5013                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
5014                         /*
5015                          * NIC verifies if the Checksum of the received
5016                          * frame is Ok or not and accordingly returns
5017                          * a flag in the RxD.
5018                          */
5019                         skb->ip_summed = CHECKSUM_UNNECESSARY;
5020                 } else {
5021                         /*
5022                          * Packet with erroneous checksum, let the
5023                          * upper layers deal with it.
5024                          */
5025                         skb->ip_summed = CHECKSUM_NONE;
5026                 }
5027         } else {
5028                 skb->ip_summed = CHECKSUM_NONE;
5029         }
5030
5031         skb->protocol = eth_type_trans(skb, dev);
5032 #ifdef CONFIG_S2IO_NAPI
5033         if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
5034                 /* Queueing the vlan frame to the upper layer */
5035                 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
5036                         RXD_GET_VLAN_TAG(rxdp->Control_2));
5037         } else {
5038                 netif_receive_skb(skb);
5039         }
5040 #else
5041         if (sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2)) {
5042                 /* Queueing the vlan frame to the upper layer */
5043                 vlan_hwaccel_rx(skb, sp->vlgrp,
5044                         RXD_GET_VLAN_TAG(rxdp->Control_2));
5045         } else {
5046                 netif_rx(skb);
5047         }
5048 #endif
5049         dev->last_rx = jiffies;
5050         atomic_dec(&sp->rx_bufs_left[ring_no]);
5051         return SUCCESS;
5052 }
5053
5054 /**
5055  *  s2io_link - stops/starts the Tx queue.
5056  *  @sp : private member of the device structure, which is a pointer to the
5057  *  s2io_nic structure.
5058  *  @link : inidicates whether link is UP/DOWN.
5059  *  Description:
5060  *  This function stops/starts the Tx queue depending on whether the link
5061  *  status of the NIC is is down or up. This is called by the Alarm
5062  *  interrupt handler whenever a link change interrupt comes up.
5063  *  Return value:
5064  *  void.
5065  */
5066
5067 void s2io_link(nic_t * sp, int link)
5068 {
5069         struct net_device *dev = (struct net_device *) sp->dev;
5070
5071         if (link != sp->last_link_state) {
5072                 if (link == LINK_DOWN) {
5073                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
5074                         netif_carrier_off(dev);
5075                 } else {
5076                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
5077                         netif_carrier_on(dev);
5078                 }
5079         }
5080         sp->last_link_state = link;
5081 }
5082
5083 /**
5084  *  get_xena_rev_id - to identify revision ID of xena.
5085  *  @pdev : PCI Dev structure
5086  *  Description:
5087  *  Function to identify the Revision ID of xena.
5088  *  Return value:
5089  *  returns the revision ID of the device.
5090  */
5091
5092 int get_xena_rev_id(struct pci_dev *pdev)
5093 {
5094         u8 id = 0;
5095         int ret;
5096         ret = pci_read_config_byte(pdev, PCI_REVISION_ID, (u8 *) & id);
5097         return id;
5098 }
5099
5100 /**
5101  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
5102  *  @sp : private member of the device structure, which is a pointer to the
5103  *  s2io_nic structure.
5104  *  Description:
5105  *  This function initializes a few of the PCI and PCI-X configuration registers
5106  *  with recommended values.
5107  *  Return value:
5108  *  void
5109  */
5110
5111 static void s2io_init_pci(nic_t * sp)
5112 {
5113         u16 pci_cmd = 0, pcix_cmd = 0;
5114
5115         /* Enable Data Parity Error Recovery in PCI-X command register. */
5116         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5117                              &(pcix_cmd));
5118         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5119                               (pcix_cmd | 1));
5120         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5121                              &(pcix_cmd));
5122
5123         /* Set the PErr Response bit in PCI command register. */
5124         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
5125         pci_write_config_word(sp->pdev, PCI_COMMAND,
5126                               (pci_cmd | PCI_COMMAND_PARITY));
5127         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
5128
5129         /* Forcibly disabling relaxed ordering capability of the card. */
5130         pcix_cmd &= 0xfffd;
5131         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5132                               pcix_cmd);
5133         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
5134                              &(pcix_cmd));
5135 }
5136
5137 MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>");
5138 MODULE_LICENSE("GPL");
5139 module_param(tx_fifo_num, int, 0);
5140 module_param(rx_ring_num, int, 0);
5141 module_param_array(tx_fifo_len, uint, NULL, 0);
5142 module_param_array(rx_ring_sz, uint, NULL, 0);
5143 module_param_array(rts_frm_len, uint, NULL, 0);
5144 module_param(use_continuous_tx_intrs, int, 1);
5145 module_param(rmac_pause_time, int, 0);
5146 module_param(mc_pause_threshold_q0q3, int, 0);
5147 module_param(mc_pause_threshold_q4q7, int, 0);
5148 module_param(shared_splits, int, 0);
5149 module_param(tmac_util_period, int, 0);
5150 module_param(rmac_util_period, int, 0);
5151 module_param(bimodal, bool, 0);
5152 #ifndef CONFIG_S2IO_NAPI
5153 module_param(indicate_max_pkts, int, 0);
5154 #endif
5155
5156 /**
5157  *  s2io_init_nic - Initialization of the adapter .
5158  *  @pdev : structure containing the PCI related information of the device.
5159  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
5160  *  Description:
5161  *  The function initializes an adapter identified by the pci_dec structure.
5162  *  All OS related initialization including memory and device structure and
5163  *  initlaization of the device private variable is done. Also the swapper
5164  *  control register is initialized to enable read and write into the I/O
5165  *  registers of the device.
5166  *  Return value:
5167  *  returns 0 on success and negative on failure.
5168  */
5169
5170 static int __devinit
5171 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
5172 {
5173         nic_t *sp;
5174         struct net_device *dev;
5175         int i, j, ret;
5176         int dma_flag = FALSE;
5177         u32 mac_up, mac_down;
5178         u64 val64 = 0, tmp64 = 0;
5179         XENA_dev_config_t __iomem *bar0 = NULL;
5180         u16 subid;
5181         mac_info_t *mac_control;
5182         struct config_param *config;
5183         int mode;
5184
5185 #ifdef CONFIG_S2IO_NAPI
5186         DBG_PRINT(ERR_DBG, "NAPI support has been enabled\n");
5187 #endif
5188
5189         if ((ret = pci_enable_device(pdev))) {
5190                 DBG_PRINT(ERR_DBG,
5191                           "s2io_init_nic: pci_enable_device failed\n");
5192                 return ret;
5193         }
5194
5195         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
5196                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
5197                 dma_flag = TRUE;
5198                 if (pci_set_consistent_dma_mask
5199                     (pdev, DMA_64BIT_MASK)) {
5200                         DBG_PRINT(ERR_DBG,
5201                                   "Unable to obtain 64bit DMA for \
5202                                         consistent allocations\n");
5203                         pci_disable_device(pdev);
5204                         return -ENOMEM;
5205                 }
5206         } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
5207                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
5208         } else {
5209                 pci_disable_device(pdev);
5210                 return -ENOMEM;
5211         }
5212
5213         if (pci_request_regions(pdev, s2io_driver_name)) {
5214                 DBG_PRINT(ERR_DBG, "Request Regions failed\n"),
5215                     pci_disable_device(pdev);
5216                 return -ENODEV;
5217         }
5218
5219         dev = alloc_etherdev(sizeof(nic_t));
5220         if (dev == NULL) {
5221                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
5222                 pci_disable_device(pdev);
5223                 pci_release_regions(pdev);
5224                 return -ENODEV;
5225         }
5226
5227         pci_set_master(pdev);
5228         pci_set_drvdata(pdev, dev);
5229         SET_MODULE_OWNER(dev);
5230         SET_NETDEV_DEV(dev, &pdev->dev);
5231
5232         /*  Private member variable initialized to s2io NIC structure */
5233         sp = dev->priv;
5234         memset(sp, 0, sizeof(nic_t));
5235         sp->dev = dev;
5236         sp->pdev = pdev;
5237         sp->high_dma_flag = dma_flag;
5238         sp->device_enabled_once = FALSE;
5239
5240         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
5241                 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
5242                 sp->device_type = XFRAME_II_DEVICE;
5243         else
5244                 sp->device_type = XFRAME_I_DEVICE;
5245
5246         /* Initialize some PCI/PCI-X fields of the NIC. */
5247         s2io_init_pci(sp);
5248
5249         /*
5250          * Setting the device configuration parameters.
5251          * Most of these parameters can be specified by the user during
5252          * module insertion as they are module loadable parameters. If
5253          * these parameters are not not specified during load time, they
5254          * are initialized with default values.
5255          */
5256         mac_control = &sp->mac_control;
5257         config = &sp->config;
5258
5259         /* Tx side parameters. */
5260         tx_fifo_len[0] = DEFAULT_FIFO_LEN;      /* Default value. */
5261         config->tx_fifo_num = tx_fifo_num;
5262         for (i = 0; i < MAX_TX_FIFOS; i++) {
5263                 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
5264                 config->tx_cfg[i].fifo_priority = i;
5265         }
5266
5267         /* mapping the QoS priority to the configured fifos */
5268         for (i = 0; i < MAX_TX_FIFOS; i++)
5269                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
5270
5271         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
5272         for (i = 0; i < config->tx_fifo_num; i++) {
5273                 config->tx_cfg[i].f_no_snoop =
5274                     (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
5275                 if (config->tx_cfg[i].fifo_len < 65) {
5276                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
5277                         break;
5278                 }
5279         }
5280         config->max_txds = MAX_SKB_FRAGS;
5281
5282         /* Rx side parameters. */
5283         rx_ring_sz[0] = SMALL_BLK_CNT;  /* Default value. */
5284         config->rx_ring_num = rx_ring_num;
5285         for (i = 0; i < MAX_RX_RINGS; i++) {
5286                 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
5287                     (MAX_RXDS_PER_BLOCK + 1);
5288                 config->rx_cfg[i].ring_priority = i;
5289         }
5290
5291         for (i = 0; i < rx_ring_num; i++) {
5292                 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
5293                 config->rx_cfg[i].f_no_snoop =
5294                     (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
5295         }
5296
5297         /*  Setting Mac Control parameters */
5298         mac_control->rmac_pause_time = rmac_pause_time;
5299         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
5300         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
5301
5302
5303         /* Initialize Ring buffer parameters. */
5304         for (i = 0; i < config->rx_ring_num; i++)
5305                 atomic_set(&sp->rx_bufs_left[i], 0);
5306
5307         /* Initialize the number of ISRs currently running */
5308         atomic_set(&sp->isr_cnt, 0);
5309
5310         /*  initialize the shared memory used by the NIC and the host */
5311         if (init_shared_mem(sp)) {
5312                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
5313                           dev->name);
5314                 ret = -ENOMEM;
5315                 goto mem_alloc_failed;
5316         }
5317
5318         sp->bar0 = ioremap(pci_resource_start(pdev, 0),
5319                                      pci_resource_len(pdev, 0));
5320         if (!sp->bar0) {
5321                 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n",
5322                           dev->name);
5323                 ret = -ENOMEM;
5324                 goto bar0_remap_failed;
5325         }
5326
5327         sp->bar1 = ioremap(pci_resource_start(pdev, 2),
5328                                      pci_resource_len(pdev, 2));
5329         if (!sp->bar1) {
5330                 DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n",
5331                           dev->name);
5332                 ret = -ENOMEM;
5333                 goto bar1_remap_failed;
5334         }
5335
5336         dev->irq = pdev->irq;
5337         dev->base_addr = (unsigned long) sp->bar0;
5338
5339         /* Initializing the BAR1 address as the start of the FIFO pointer. */
5340         for (j = 0; j < MAX_TX_FIFOS; j++) {
5341                 mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *)
5342                     (sp->bar1 + (j * 0x00020000));
5343         }
5344
5345         /*  Driver entry points */
5346         dev->open = &s2io_open;
5347         dev->stop = &s2io_close;
5348         dev->hard_start_xmit = &s2io_xmit;
5349         dev->get_stats = &s2io_get_stats;
5350         dev->set_multicast_list = &s2io_set_multicast;
5351         dev->do_ioctl = &s2io_ioctl;
5352         dev->change_mtu = &s2io_change_mtu;
5353         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
5354         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
5355         dev->vlan_rx_register = s2io_vlan_rx_register;
5356         dev->vlan_rx_kill_vid = (void *)s2io_vlan_rx_kill_vid;
5357
5358         /*
5359          * will use eth_mac_addr() for  dev->set_mac_address
5360          * mac address will be set every time dev->open() is called
5361          */
5362 #if defined(CONFIG_S2IO_NAPI)
5363         dev->poll = s2io_poll;
5364         dev->weight = 32;
5365 #endif
5366
5367         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
5368         if (sp->high_dma_flag == TRUE)
5369                 dev->features |= NETIF_F_HIGHDMA;
5370 #ifdef NETIF_F_TSO
5371         dev->features |= NETIF_F_TSO;
5372 #endif
5373
5374         dev->tx_timeout = &s2io_tx_watchdog;
5375         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
5376         INIT_WORK(&sp->rst_timer_task,
5377                   (void (*)(void *)) s2io_restart_nic, dev);
5378         INIT_WORK(&sp->set_link_task,
5379                   (void (*)(void *)) s2io_set_link, sp);
5380
5381         if (!(sp->device_type & XFRAME_II_DEVICE)) {
5382                 pci_save_state(sp->pdev);
5383         }
5384
5385         /* Setting swapper control on the NIC, for proper reset operation */
5386         if (s2io_set_swapper(sp)) {
5387                 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
5388                           dev->name);
5389                 ret = -EAGAIN;
5390                 goto set_swap_failed;
5391         }
5392
5393         /* Verify if the Herc works on the slot its placed into */
5394         if (sp->device_type & XFRAME_II_DEVICE) {
5395                 mode = s2io_verify_pci_mode(sp);
5396                 if (mode < 0) {
5397                         DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
5398                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
5399                         ret = -EBADSLT;
5400                         goto set_swap_failed;
5401                 }
5402         }
5403
5404         /* Not needed for Herc */
5405         if (sp->device_type & XFRAME_I_DEVICE) {
5406                 /*
5407                  * Fix for all "FFs" MAC address problems observed on
5408                  * Alpha platforms
5409                  */
5410                 fix_mac_address(sp);
5411                 s2io_reset(sp);
5412         }
5413
5414         /*
5415          * MAC address initialization.
5416          * For now only one mac address will be read and used.
5417          */
5418         bar0 = sp->bar0;
5419         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5420             RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
5421         writeq(val64, &bar0->rmac_addr_cmd_mem);
5422         wait_for_cmd_complete(sp);
5423
5424         tmp64 = readq(&bar0->rmac_addr_data0_mem);
5425         mac_down = (u32) tmp64;
5426         mac_up = (u32) (tmp64 >> 32);
5427
5428         memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN));
5429
5430         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
5431         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
5432         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
5433         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
5434         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
5435         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
5436
5437         /*  Set the factory defined MAC address initially   */
5438         dev->addr_len = ETH_ALEN;
5439         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
5440
5441         /*
5442          * Initialize the tasklet status and link state flags
5443          * and the card state parameter
5444          */
5445         atomic_set(&(sp->card_state), 0);
5446         sp->tasklet_status = 0;
5447         sp->link_state = 0;
5448
5449         /* Initialize spinlocks */
5450         spin_lock_init(&sp->tx_lock);
5451 #ifndef CONFIG_S2IO_NAPI
5452         spin_lock_init(&sp->put_lock);
5453 #endif
5454         spin_lock_init(&sp->rx_lock);
5455
5456         /*
5457          * SXE-002: Configure link and activity LED to init state
5458          * on driver load.
5459          */
5460         subid = sp->pdev->subsystem_device;
5461         if ((subid & 0xFF) >= 0x07) {
5462                 val64 = readq(&bar0->gpio_control);
5463                 val64 |= 0x0000800000000000ULL;
5464                 writeq(val64, &bar0->gpio_control);
5465                 val64 = 0x0411040400000000ULL;
5466                 writeq(val64, (void __iomem *) bar0 + 0x2700);
5467                 val64 = readq(&bar0->gpio_control);
5468         }
5469
5470         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
5471
5472         if (register_netdev(dev)) {
5473                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
5474                 ret = -ENODEV;
5475                 goto register_failed;
5476         }
5477
5478         if (sp->device_type & XFRAME_II_DEVICE) {
5479                 DBG_PRINT(ERR_DBG, "%s: Neterion Xframe II 10GbE adapter ",
5480                           dev->name);
5481                 DBG_PRINT(ERR_DBG, "(rev %d), Driver %s\n",
5482                                 get_xena_rev_id(sp->pdev),
5483                                 s2io_driver_version);
5484                 DBG_PRINT(ERR_DBG, "MAC ADDR: %02x:%02x:%02x:%02x:%02x:%02x\n",
5485                           sp->def_mac_addr[0].mac_addr[0],
5486                           sp->def_mac_addr[0].mac_addr[1],
5487                           sp->def_mac_addr[0].mac_addr[2],
5488                           sp->def_mac_addr[0].mac_addr[3],
5489                           sp->def_mac_addr[0].mac_addr[4],
5490                           sp->def_mac_addr[0].mac_addr[5]);
5491                 int mode = s2io_print_pci_mode(sp);
5492                 if (mode < 0) {
5493                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode ");
5494                         ret = -EBADSLT;
5495                         goto set_swap_failed;
5496                 }
5497         } else {
5498                 DBG_PRINT(ERR_DBG, "%s: Neterion Xframe I 10GbE adapter ",
5499                           dev->name);
5500                 DBG_PRINT(ERR_DBG, "(rev %d), Driver %s\n",
5501                                         get_xena_rev_id(sp->pdev),
5502                                         s2io_driver_version);
5503                 DBG_PRINT(ERR_DBG, "MAC ADDR: %02x:%02x:%02x:%02x:%02x:%02x\n",
5504                           sp->def_mac_addr[0].mac_addr[0],
5505                           sp->def_mac_addr[0].mac_addr[1],
5506                           sp->def_mac_addr[0].mac_addr[2],
5507                           sp->def_mac_addr[0].mac_addr[3],
5508                           sp->def_mac_addr[0].mac_addr[4],
5509                           sp->def_mac_addr[0].mac_addr[5]);
5510         }
5511
5512         /* Initialize device name */
5513         strcpy(sp->name, dev->name);
5514         if (sp->device_type & XFRAME_II_DEVICE)
5515                 strcat(sp->name, ": Neterion Xframe II 10GbE adapter");
5516         else
5517                 strcat(sp->name, ": Neterion Xframe I 10GbE adapter");
5518
5519         /* Initialize bimodal Interrupts */
5520         sp->config.bimodal = bimodal;
5521         if (!(sp->device_type & XFRAME_II_DEVICE) && bimodal) {
5522                 sp->config.bimodal = 0;
5523                 DBG_PRINT(ERR_DBG,"%s:Bimodal intr not supported by Xframe I\n",
5524                         dev->name);
5525         }
5526
5527         /*
5528          * Make Link state as off at this point, when the Link change
5529          * interrupt comes the state will be automatically changed to
5530          * the right state.
5531          */
5532         netif_carrier_off(dev);
5533
5534         return 0;
5535
5536       register_failed:
5537       set_swap_failed:
5538         iounmap(sp->bar1);
5539       bar1_remap_failed:
5540         iounmap(sp->bar0);
5541       bar0_remap_failed:
5542       mem_alloc_failed:
5543         free_shared_mem(sp);
5544         pci_disable_device(pdev);
5545         pci_release_regions(pdev);
5546         pci_set_drvdata(pdev, NULL);
5547         free_netdev(dev);
5548
5549         return ret;
5550 }
5551
5552 /**
5553  * s2io_rem_nic - Free the PCI device
5554  * @pdev: structure containing the PCI related information of the device.
5555  * Description: This function is called by the Pci subsystem to release a
5556  * PCI device and free up all resource held up by the device. This could
5557  * be in response to a Hot plug event or when the driver is to be removed
5558  * from memory.
5559  */
5560
5561 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
5562 {
5563         struct net_device *dev =
5564             (struct net_device *) pci_get_drvdata(pdev);
5565         nic_t *sp;
5566
5567         if (dev == NULL) {
5568                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
5569                 return;
5570         }
5571
5572         sp = dev->priv;
5573         unregister_netdev(dev);
5574
5575         free_shared_mem(sp);
5576         iounmap(sp->bar0);
5577         iounmap(sp->bar1);
5578         pci_disable_device(pdev);
5579         pci_release_regions(pdev);
5580         pci_set_drvdata(pdev, NULL);
5581         free_netdev(dev);
5582 }
5583
5584 /**
5585  * s2io_starter - Entry point for the driver
5586  * Description: This function is the entry point for the driver. It verifies
5587  * the module loadable parameters and initializes PCI configuration space.
5588  */
5589
5590 int __init s2io_starter(void)
5591 {
5592         return pci_module_init(&s2io_driver);
5593 }
5594
5595 /**
5596  * s2io_closer - Cleanup routine for the driver
5597  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
5598  */
5599
5600 void s2io_closer(void)
5601 {
5602         pci_unregister_driver(&s2io_driver);
5603         DBG_PRINT(INIT_DBG, "cleanup done\n");
5604 }
5605
5606 module_init(s2io_starter);
5607 module_exit(s2io_closer);