]> Pileus Git - ~andy/linux/blob - drivers/net/irda/sh_sir.c
ath5k: Use high bitrates for ACK/CTS
[~andy/linux] / drivers / net / irda / sh_sir.c
1 /*
2  * SuperH IrDA Driver
3  *
4  * Copyright (C) 2009 Renesas Solutions Corp.
5  * Kuninori Morimoto <morimoto.kuninori@renesas.com>
6  *
7  * Based on bfin_sir.c
8  * Copyright 2006-2009 Analog Devices Inc.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  */
14
15 #include <linux/module.h>
16 #include <linux/platform_device.h>
17 #include <net/irda/wrapper.h>
18 #include <net/irda/irda_device.h>
19 #include <asm/clock.h>
20
21 #define DRIVER_NAME "sh_sir"
22
23 #define RX_PHASE        (1 << 0)
24 #define TX_PHASE        (1 << 1)
25 #define TX_COMP_PHASE   (1 << 2) /* tx complete */
26 #define NONE_PHASE      (1 << 31)
27
28 #define IRIF_RINTCLR    0x0016 /* DMA rx interrupt source clear */
29 #define IRIF_TINTCLR    0x0018 /* DMA tx interrupt source clear */
30 #define IRIF_SIR0       0x0020 /* IrDA-SIR10 control */
31 #define IRIF_SIR1       0x0022 /* IrDA-SIR10 baudrate error correction */
32 #define IRIF_SIR2       0x0024 /* IrDA-SIR10 baudrate count */
33 #define IRIF_SIR3       0x0026 /* IrDA-SIR10 status */
34 #define IRIF_SIR_FRM    0x0028 /* Hardware frame processing set */
35 #define IRIF_SIR_EOF    0x002A /* EOF value */
36 #define IRIF_SIR_FLG    0x002C /* Flag clear */
37 #define IRIF_UART_STS2  0x002E /* UART status 2 */
38 #define IRIF_UART0      0x0030 /* UART control */
39 #define IRIF_UART1      0x0032 /* UART status */
40 #define IRIF_UART2      0x0034 /* UART mode */
41 #define IRIF_UART3      0x0036 /* UART transmit data */
42 #define IRIF_UART4      0x0038 /* UART receive data */
43 #define IRIF_UART5      0x003A /* UART interrupt mask */
44 #define IRIF_UART6      0x003C /* UART baud rate error correction */
45 #define IRIF_UART7      0x003E /* UART baud rate count set */
46 #define IRIF_CRC0       0x0040 /* CRC engine control */
47 #define IRIF_CRC1       0x0042 /* CRC engine input data */
48 #define IRIF_CRC2       0x0044 /* CRC engine calculation */
49 #define IRIF_CRC3       0x0046 /* CRC engine output data 1 */
50 #define IRIF_CRC4       0x0048 /* CRC engine output data 2 */
51
52 /* IRIF_SIR0 */
53 #define IRTPW           (1 << 1) /* transmit pulse width select */
54 #define IRERRC          (1 << 0) /* Clear receive pulse width error */
55
56 /* IRIF_SIR3 */
57 #define IRERR           (1 << 0) /* received pulse width Error */
58
59 /* IRIF_SIR_FRM */
60 #define EOFD            (1 << 9) /* EOF detection flag */
61 #define FRER            (1 << 8) /* Frame Error bit */
62 #define FRP             (1 << 0) /* Frame processing set */
63
64 /* IRIF_UART_STS2 */
65 #define IRSME           (1 << 6) /* Receive Sum     Error flag */
66 #define IROVE           (1 << 5) /* Receive Overrun Error flag */
67 #define IRFRE           (1 << 4) /* Receive Framing Error flag */
68 #define IRPRE           (1 << 3) /* Receive Parity  Error flag */
69
70 /* IRIF_UART0_*/
71 #define TBEC            (1 << 2) /* Transmit Data Clear */
72 #define RIE             (1 << 1) /* Receive Enable */
73 #define TIE             (1 << 0) /* Transmit Enable */
74
75 /* IRIF_UART1 */
76 #define URSME           (1 << 6) /* Receive Sum Error Flag */
77 #define UROVE           (1 << 5) /* Receive Overrun Error Flag */
78 #define URFRE           (1 << 4) /* Receive Framing Error Flag */
79 #define URPRE           (1 << 3) /* Receive Parity Error Flag */
80 #define RBF             (1 << 2) /* Receive Buffer Full Flag */
81 #define TSBE            (1 << 1) /* Transmit Shift Buffer Empty Flag */
82 #define TBE             (1 << 0) /* Transmit Buffer Empty flag */
83 #define TBCOMP          (TSBE | TBE)
84
85 /* IRIF_UART5 */
86 #define RSEIM           (1 << 6) /* Receive Sum Error Flag IRQ Mask */
87 #define RBFIM           (1 << 2) /* Receive Buffer Full Flag IRQ Mask */
88 #define TSBEIM          (1 << 1) /* Transmit Shift Buffer Empty Flag IRQ Mask */
89 #define TBEIM           (1 << 0) /* Transmit Buffer Empty Flag IRQ Mask */
90 #define RX_MASK         (RSEIM  | RBFIM)
91
92 /* IRIF_CRC0 */
93 #define CRC_RST         (1 << 15) /* CRC Engine Reset */
94 #define CRC_CT_MASK     0x0FFF
95
96 /************************************************************************
97
98
99                         structure
100
101
102 ************************************************************************/
103 struct sh_sir_self {
104         void __iomem            *membase;
105         unsigned int             irq;
106         struct clk              *clk;
107
108         struct net_device       *ndev;
109
110         struct irlap_cb         *irlap;
111         struct qos_info         qos;
112
113         iobuff_t                tx_buff;
114         iobuff_t                rx_buff;
115 };
116
117 /************************************************************************
118
119
120                         common function
121
122
123 ************************************************************************/
124 static void sh_sir_write(struct sh_sir_self *self, u32 offset, u16 data)
125 {
126         iowrite16(data, self->membase + offset);
127 }
128
129 static u16 sh_sir_read(struct sh_sir_self *self, u32 offset)
130 {
131         return ioread16(self->membase + offset);
132 }
133
134 static void sh_sir_update_bits(struct sh_sir_self *self, u32 offset,
135                                u16 mask, u16 data)
136 {
137         u16 old, new;
138
139         old = sh_sir_read(self, offset);
140         new = (old & ~mask) | data;
141         if (old != new)
142                 sh_sir_write(self, offset, new);
143 }
144
145 /************************************************************************
146
147
148                         CRC function
149
150
151 ************************************************************************/
152 static void sh_sir_crc_reset(struct sh_sir_self *self)
153 {
154         sh_sir_write(self, IRIF_CRC0, CRC_RST);
155 }
156
157 static void sh_sir_crc_add(struct sh_sir_self *self, u8 data)
158 {
159         sh_sir_write(self, IRIF_CRC1, (u16)data);
160 }
161
162 static u16 sh_sir_crc_cnt(struct sh_sir_self *self)
163 {
164         return CRC_CT_MASK & sh_sir_read(self, IRIF_CRC0);
165 }
166
167 static u16 sh_sir_crc_out(struct sh_sir_self *self)
168 {
169         return sh_sir_read(self, IRIF_CRC4);
170 }
171
172 static int sh_sir_crc_init(struct sh_sir_self *self)
173 {
174         struct device *dev = &self->ndev->dev;
175         int ret = -EIO;
176         u16 val;
177
178         sh_sir_crc_reset(self);
179
180         sh_sir_crc_add(self, 0xCC);
181         sh_sir_crc_add(self, 0xF5);
182         sh_sir_crc_add(self, 0xF1);
183         sh_sir_crc_add(self, 0xA7);
184
185         val = sh_sir_crc_cnt(self);
186         if (4 != val) {
187                 dev_err(dev, "CRC count error %x\n", val);
188                 goto crc_init_out;
189         }
190
191         val = sh_sir_crc_out(self);
192         if (0x51DF != val) {
193                 dev_err(dev, "CRC result error%x\n", val);
194                 goto crc_init_out;
195         }
196
197         ret = 0;
198
199 crc_init_out:
200
201         sh_sir_crc_reset(self);
202         return ret;
203 }
204
205 /************************************************************************
206
207
208                         baud rate functions
209
210
211 ************************************************************************/
212 #define SCLK_BASE 1843200 /* 1.8432MHz */
213
214 static u32 sh_sir_find_sclk(struct clk *irda_clk)
215 {
216         struct cpufreq_frequency_table *freq_table = irda_clk->freq_table;
217         struct clk *pclk = clk_get(NULL, "peripheral_clk");
218         u32 limit, min = 0xffffffff, tmp;
219         int i, index = 0;
220
221         limit = clk_get_rate(pclk);
222         clk_put(pclk);
223
224         /* IrDA can not set over peripheral_clk */
225         for (i = 0;
226              freq_table[i].frequency != CPUFREQ_TABLE_END;
227              i++) {
228                 u32 freq = freq_table[i].frequency;
229
230                 if (freq == CPUFREQ_ENTRY_INVALID)
231                         continue;
232
233                 /* IrDA should not over peripheral_clk */
234                 if (freq > limit)
235                         continue;
236
237                 tmp = freq % SCLK_BASE;
238                 if (tmp < min) {
239                         min = tmp;
240                         index = i;
241                 }
242         }
243
244         return freq_table[index].frequency;
245 }
246
247 #define ERR_ROUNDING(a) ((a + 5000) / 10000)
248 static int sh_sir_set_baudrate(struct sh_sir_self *self, u32 baudrate)
249 {
250         struct clk *clk;
251         struct device *dev = &self->ndev->dev;
252         u32 rate;
253         u16 uabca, uabc;
254         u16 irbca, irbc;
255         u32 min, rerr, tmp;
256         int i;
257
258         /* Baud Rate Error Correction x 10000 */
259         u32 rate_err_array[] = {
260                 0000, 0625, 1250, 1875,
261                 2500, 3125, 3750, 4375,
262                 5000, 5625, 6250, 6875,
263                 7500, 8125, 8750, 9375,
264         };
265
266         /*
267          * FIXME
268          *
269          * it support 9600 only now
270          */
271         switch (baudrate) {
272         case 9600:
273                 break;
274         default:
275                 dev_err(dev, "un-supported baudrate %d\n", baudrate);
276                 return -EIO;
277         }
278
279         clk = clk_get(NULL, "irda_clk");
280         if (!clk) {
281                 dev_err(dev, "can not get irda_clk\n");
282                 return -EIO;
283         }
284
285         clk_set_rate(clk, sh_sir_find_sclk(clk));
286         rate = clk_get_rate(clk);
287         clk_put(clk);
288
289         dev_dbg(dev, "selected sclk = %d\n", rate);
290
291         /*
292          * CALCULATION
293          *
294          * 1843200 = system rate / (irbca + (irbc + 1))
295          */
296
297         irbc = rate / SCLK_BASE;
298
299         tmp = rate - (SCLK_BASE * irbc);
300         tmp *= 10000;
301
302         rerr = tmp / SCLK_BASE;
303
304         min = 0xffffffff;
305         irbca = 0;
306         for (i = 0; i < ARRAY_SIZE(rate_err_array); i++) {
307                 tmp = abs(rate_err_array[i] - rerr);
308                 if (min > tmp) {
309                         min = tmp;
310                         irbca = i;
311                 }
312         }
313
314         tmp = rate / (irbc + ERR_ROUNDING(rate_err_array[irbca]));
315         if ((SCLK_BASE / 100) < abs(tmp - SCLK_BASE))
316                 dev_warn(dev, "IrDA freq error margin over %d\n", tmp);
317
318         dev_dbg(dev, "target = %d, result = %d, infrared = %d.%d\n",
319                SCLK_BASE, tmp, irbc, rate_err_array[irbca]);
320
321         irbca = (irbca & 0xF) << 4;
322         irbc  = (irbc - 1) & 0xF;
323
324         if (!irbc) {
325                 dev_err(dev, "sh_sir can not set 0 in IRIF_SIR2\n");
326                 return -EIO;
327         }
328
329         sh_sir_write(self, IRIF_SIR0, IRTPW | IRERRC);
330         sh_sir_write(self, IRIF_SIR1, irbca);
331         sh_sir_write(self, IRIF_SIR2, irbc);
332
333         /*
334          * CALCULATION
335          *
336          * BaudRate[bps] = system rate / (uabca + (uabc + 1) x 16)
337          */
338
339         uabc = rate / baudrate;
340         uabc = (uabc / 16) - 1;
341         uabc = (uabc + 1) * 16;
342
343         tmp = rate - (uabc * baudrate);
344         tmp *= 10000;
345
346         rerr = tmp / baudrate;
347
348         min = 0xffffffff;
349         uabca = 0;
350         for (i = 0; i < ARRAY_SIZE(rate_err_array); i++) {
351                 tmp = abs(rate_err_array[i] - rerr);
352                 if (min > tmp) {
353                         min = tmp;
354                         uabca = i;
355                 }
356         }
357
358         tmp = rate / (uabc + ERR_ROUNDING(rate_err_array[uabca]));
359         if ((baudrate / 100) < abs(tmp - baudrate))
360                 dev_warn(dev, "UART freq error margin over %d\n", tmp);
361
362         dev_dbg(dev, "target = %d, result = %d, uart = %d.%d\n",
363                baudrate, tmp,
364                uabc, rate_err_array[uabca]);
365
366         uabca = (uabca & 0xF) << 4;
367         uabc  = (uabc / 16) - 1;
368
369         sh_sir_write(self, IRIF_UART6, uabca);
370         sh_sir_write(self, IRIF_UART7, uabc);
371
372         return 0;
373 }
374
375 /************************************************************************
376
377
378                         iobuf function
379
380
381 ************************************************************************/
382 static int __sh_sir_init_iobuf(iobuff_t *io, int size)
383 {
384         io->head = kmalloc(size, GFP_KERNEL);
385         if (!io->head)
386                 return -ENOMEM;
387
388         io->truesize    = size;
389         io->in_frame    = FALSE;
390         io->state       = OUTSIDE_FRAME;
391         io->data        = io->head;
392
393         return 0;
394 }
395
396 static void sh_sir_remove_iobuf(struct sh_sir_self *self)
397 {
398         kfree(self->rx_buff.head);
399         kfree(self->tx_buff.head);
400
401         self->rx_buff.head = NULL;
402         self->tx_buff.head = NULL;
403 }
404
405 static int sh_sir_init_iobuf(struct sh_sir_self *self, int rxsize, int txsize)
406 {
407         int err = -ENOMEM;
408
409         if (self->rx_buff.head ||
410             self->tx_buff.head) {
411                 dev_err(&self->ndev->dev, "iobuff has already existed.");
412                 return err;
413         }
414
415         err = __sh_sir_init_iobuf(&self->rx_buff, rxsize);
416         if (err)
417                 goto iobuf_err;
418
419         err = __sh_sir_init_iobuf(&self->tx_buff, txsize);
420
421 iobuf_err:
422         if (err)
423                 sh_sir_remove_iobuf(self);
424
425         return err;
426 }
427
428 /************************************************************************
429
430
431                         status function
432
433
434 ************************************************************************/
435 static void sh_sir_clear_all_err(struct sh_sir_self *self)
436 {
437         /* Clear error flag for receive pulse width */
438         sh_sir_update_bits(self, IRIF_SIR0, IRERRC, IRERRC);
439
440         /* Clear frame / EOF error flag */
441         sh_sir_write(self, IRIF_SIR_FLG, 0xffff);
442
443         /* Clear all status error */
444         sh_sir_write(self, IRIF_UART_STS2, 0);
445 }
446
447 static void sh_sir_set_phase(struct sh_sir_self *self, int phase)
448 {
449         u16 uart5 = 0;
450         u16 uart0 = 0;
451
452         switch (phase) {
453         case TX_PHASE:
454                 uart5 = TBEIM;
455                 uart0 = TBEC | TIE;
456                 break;
457         case TX_COMP_PHASE:
458                 uart5 = TSBEIM;
459                 uart0 = TIE;
460                 break;
461         case RX_PHASE:
462                 uart5 = RX_MASK;
463                 uart0 = RIE;
464                 break;
465         default:
466                 break;
467         }
468
469         sh_sir_write(self, IRIF_UART5, uart5);
470         sh_sir_write(self, IRIF_UART0, uart0);
471 }
472
473 static int sh_sir_is_which_phase(struct sh_sir_self *self)
474 {
475         u16 val = sh_sir_read(self, IRIF_UART5);
476
477         if (val & TBEIM)
478                 return TX_PHASE;
479
480         if (val & TSBEIM)
481                 return TX_COMP_PHASE;
482
483         if (val & RX_MASK)
484                 return RX_PHASE;
485
486         return NONE_PHASE;
487 }
488
489 static void sh_sir_tx(struct sh_sir_self *self, int phase)
490 {
491         switch (phase) {
492         case TX_PHASE:
493                 if (0 >= self->tx_buff.len) {
494                         sh_sir_set_phase(self, TX_COMP_PHASE);
495                 } else {
496                         sh_sir_write(self, IRIF_UART3, self->tx_buff.data[0]);
497                         self->tx_buff.len--;
498                         self->tx_buff.data++;
499                 }
500                 break;
501         case TX_COMP_PHASE:
502                 sh_sir_set_phase(self, RX_PHASE);
503                 netif_wake_queue(self->ndev);
504                 break;
505         default:
506                 dev_err(&self->ndev->dev, "should not happen\n");
507                 break;
508         }
509 }
510
511 static int sh_sir_read_data(struct sh_sir_self *self)
512 {
513         u16 val;
514         int timeout = 1024;
515
516         while (timeout--) {
517                 val = sh_sir_read(self, IRIF_UART1);
518
519                 /* data get */
520                 if (val & RBF) {
521                         if (val & (URSME | UROVE | URFRE | URPRE))
522                                 break;
523
524                         return (int)sh_sir_read(self, IRIF_UART4);
525                 }
526
527                 udelay(1);
528         }
529
530         dev_err(&self->ndev->dev, "UART1 %04x : STATUS %04x\n",
531                 val, sh_sir_read(self, IRIF_UART_STS2));
532
533         /* read data register for clear error */
534         sh_sir_read(self, IRIF_UART4);
535
536         return -1;
537 }
538
539 static void sh_sir_rx(struct sh_sir_self *self)
540 {
541         int timeout = 1024;
542         int data;
543
544         while (timeout--) {
545                 data = sh_sir_read_data(self);
546                 if (data < 0)
547                         break;
548
549                 async_unwrap_char(self->ndev, &self->ndev->stats,
550                                   &self->rx_buff, (u8)data);
551                 self->ndev->last_rx = jiffies;
552
553                 if (EOFD & sh_sir_read(self, IRIF_SIR_FRM))
554                         continue;
555
556                 break;
557         }
558 }
559
560 static irqreturn_t sh_sir_irq(int irq, void *dev_id)
561 {
562         struct sh_sir_self *self = dev_id;
563         struct device *dev = &self->ndev->dev;
564         int phase = sh_sir_is_which_phase(self);
565
566         switch (phase) {
567         case TX_COMP_PHASE:
568         case TX_PHASE:
569                 sh_sir_tx(self, phase);
570                 break;
571         case RX_PHASE:
572                 if (sh_sir_read(self, IRIF_SIR3))
573                         dev_err(dev, "rcv pulse width error occurred\n");
574
575                 sh_sir_rx(self);
576                 sh_sir_clear_all_err(self);
577                 break;
578         default:
579                 dev_err(dev, "unknown interrupt\n");
580         }
581
582          return IRQ_HANDLED;
583 }
584
585 /************************************************************************
586
587
588                         net_device_ops function
589
590
591 ************************************************************************/
592 static int sh_sir_hard_xmit(struct sk_buff *skb, struct net_device *ndev)
593 {
594         struct sh_sir_self *self = netdev_priv(ndev);
595         int speed = irda_get_next_speed(skb);
596
597         if ((0 < speed) &&
598             (9600 != speed)) {
599                 dev_err(&ndev->dev, "support 9600 only (%d)\n", speed);
600                 return -EIO;
601         }
602
603         netif_stop_queue(ndev);
604
605         self->tx_buff.data = self->tx_buff.head;
606         self->tx_buff.len = 0;
607         if (skb->len)
608                 self->tx_buff.len = async_wrap_skb(skb, self->tx_buff.data,
609                                                    self->tx_buff.truesize);
610
611         sh_sir_set_phase(self, TX_PHASE);
612         dev_kfree_skb(skb);
613
614         return 0;
615 }
616
617 static int sh_sir_ioctl(struct net_device *ndev, struct ifreq *ifreq, int cmd)
618 {
619         /*
620          * FIXME
621          *
622          * This function is needed for irda framework.
623          * But nothing to do now
624          */
625         return 0;
626 }
627
628 static struct net_device_stats *sh_sir_stats(struct net_device *ndev)
629 {
630         struct sh_sir_self *self = netdev_priv(ndev);
631
632         return &self->ndev->stats;
633 }
634
635 static int sh_sir_open(struct net_device *ndev)
636 {
637         struct sh_sir_self *self = netdev_priv(ndev);
638         int err;
639
640         clk_enable(self->clk);
641         err = sh_sir_crc_init(self);
642         if (err)
643                 goto open_err;
644
645         sh_sir_set_baudrate(self, 9600);
646
647         self->irlap = irlap_open(ndev, &self->qos, DRIVER_NAME);
648         if (!self->irlap)
649                 goto open_err;
650
651         /*
652          * Now enable the interrupt then start the queue
653          */
654         sh_sir_update_bits(self, IRIF_SIR_FRM, FRP, FRP);
655         sh_sir_read(self, IRIF_UART1); /* flag clear */
656         sh_sir_read(self, IRIF_UART4); /* flag clear */
657         sh_sir_set_phase(self, RX_PHASE);
658
659         netif_start_queue(ndev);
660
661         dev_info(&self->ndev->dev, "opened\n");
662
663         return 0;
664
665 open_err:
666         clk_disable(self->clk);
667
668         return err;
669 }
670
671 static int sh_sir_stop(struct net_device *ndev)
672 {
673         struct sh_sir_self *self = netdev_priv(ndev);
674
675         /* Stop IrLAP */
676         if (self->irlap) {
677                 irlap_close(self->irlap);
678                 self->irlap = NULL;
679         }
680
681         netif_stop_queue(ndev);
682
683         dev_info(&ndev->dev, "stoped\n");
684
685         return 0;
686 }
687
688 static const struct net_device_ops sh_sir_ndo = {
689         .ndo_open               = sh_sir_open,
690         .ndo_stop               = sh_sir_stop,
691         .ndo_start_xmit         = sh_sir_hard_xmit,
692         .ndo_do_ioctl           = sh_sir_ioctl,
693         .ndo_get_stats          = sh_sir_stats,
694 };
695
696 /************************************************************************
697
698
699                         platform_driver function
700
701
702 ************************************************************************/
703 static int __devinit sh_sir_probe(struct platform_device *pdev)
704 {
705         struct net_device *ndev;
706         struct sh_sir_self *self;
707         struct resource *res;
708         char clk_name[8];
709         void __iomem *base;
710         unsigned int irq;
711         int err = -ENOMEM;
712
713         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
714         irq = platform_get_irq(pdev, 0);
715         if (!res || irq < 0) {
716                 dev_err(&pdev->dev, "Not enough platform resources.\n");
717                 goto exit;
718         }
719
720         ndev = alloc_irdadev(sizeof(*self));
721         if (!ndev)
722                 goto exit;
723
724         base = ioremap_nocache(res->start, resource_size(res));
725         if (!base) {
726                 err = -ENXIO;
727                 dev_err(&pdev->dev, "Unable to ioremap.\n");
728                 goto err_mem_1;
729         }
730
731         self = netdev_priv(ndev);
732         err = sh_sir_init_iobuf(self, IRDA_SKB_MAX_MTU, IRDA_SIR_MAX_FRAME);
733         if (err)
734                 goto err_mem_2;
735
736         snprintf(clk_name, sizeof(clk_name), "irda%d", pdev->id);
737         self->clk = clk_get(&pdev->dev, clk_name);
738         if (IS_ERR(self->clk)) {
739                 dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
740                 goto err_mem_3;
741         }
742
743         irda_init_max_qos_capabilies(&self->qos);
744
745         ndev->netdev_ops        = &sh_sir_ndo;
746         ndev->irq               = irq;
747
748         self->membase                   = base;
749         self->ndev                      = ndev;
750         self->qos.baud_rate.bits        &= IR_9600; /* FIXME */
751         self->qos.min_turn_time.bits    = 1; /* 10 ms or more */
752
753         irda_qos_bits_to_value(&self->qos);
754
755         err = register_netdev(ndev);
756         if (err)
757                 goto err_mem_4;
758
759         platform_set_drvdata(pdev, ndev);
760
761         if (request_irq(irq, sh_sir_irq, IRQF_DISABLED, "sh_sir", self)) {
762                 dev_warn(&pdev->dev, "Unable to attach sh_sir interrupt\n");
763                 goto err_mem_4;
764         }
765
766         dev_info(&pdev->dev, "SuperH IrDA probed\n");
767
768         goto exit;
769
770 err_mem_4:
771         clk_put(self->clk);
772 err_mem_3:
773         sh_sir_remove_iobuf(self);
774 err_mem_2:
775         iounmap(self->membase);
776 err_mem_1:
777         free_netdev(ndev);
778 exit:
779         return err;
780 }
781
782 static int __devexit sh_sir_remove(struct platform_device *pdev)
783 {
784         struct net_device *ndev = platform_get_drvdata(pdev);
785         struct sh_sir_self *self = netdev_priv(ndev);
786
787         if (!self)
788                 return 0;
789
790         unregister_netdev(ndev);
791         clk_put(self->clk);
792         sh_sir_remove_iobuf(self);
793         iounmap(self->membase);
794         free_netdev(ndev);
795         platform_set_drvdata(pdev, NULL);
796
797         return 0;
798 }
799
800 static struct platform_driver sh_sir_driver = {
801         .probe   = sh_sir_probe,
802         .remove  = __devexit_p(sh_sir_remove),
803         .driver  = {
804                 .name = DRIVER_NAME,
805         },
806 };
807
808 static int __init sh_sir_init(void)
809 {
810         return platform_driver_register(&sh_sir_driver);
811 }
812
813 static void __exit sh_sir_exit(void)
814 {
815         platform_driver_unregister(&sh_sir_driver);
816 }
817
818 module_init(sh_sir_init);
819 module_exit(sh_sir_exit);
820
821 MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");
822 MODULE_DESCRIPTION("SuperH IrDA driver");
823 MODULE_LICENSE("GPL");