]> Pileus Git - ~andy/linux/blob - drivers/net/igbvf/netdev.c
rapidio: fix new kernel-doc warnings
[~andy/linux] / drivers / net / igbvf / netdev.c
1 /*******************************************************************************
2
3   Intel(R) 82576 Virtual Function Linux driver
4   Copyright(c) 2009 - 2010 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/pci.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pagemap.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/tcp.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44
45 #include "igbvf.h"
46
47 #define DRV_VERSION "1.0.8-k0"
48 char igbvf_driver_name[] = "igbvf";
49 const char igbvf_driver_version[] = DRV_VERSION;
50 static const char igbvf_driver_string[] =
51                                 "Intel(R) Virtual Function Network Driver";
52 static const char igbvf_copyright[] =
53                                 "Copyright (c) 2009 - 2010 Intel Corporation.";
54
55 static int igbvf_poll(struct napi_struct *napi, int budget);
56 static void igbvf_reset(struct igbvf_adapter *);
57 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
58 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
59
60 static struct igbvf_info igbvf_vf_info = {
61         .mac                    = e1000_vfadapt,
62         .flags                  = 0,
63         .pba                    = 10,
64         .init_ops               = e1000_init_function_pointers_vf,
65 };
66
67 static struct igbvf_info igbvf_i350_vf_info = {
68         .mac                    = e1000_vfadapt_i350,
69         .flags                  = 0,
70         .pba                    = 10,
71         .init_ops               = e1000_init_function_pointers_vf,
72 };
73
74 static const struct igbvf_info *igbvf_info_tbl[] = {
75         [board_vf]              = &igbvf_vf_info,
76         [board_i350_vf]         = &igbvf_i350_vf_info,
77 };
78
79 /**
80  * igbvf_desc_unused - calculate if we have unused descriptors
81  **/
82 static int igbvf_desc_unused(struct igbvf_ring *ring)
83 {
84         if (ring->next_to_clean > ring->next_to_use)
85                 return ring->next_to_clean - ring->next_to_use - 1;
86
87         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
88 }
89
90 /**
91  * igbvf_receive_skb - helper function to handle Rx indications
92  * @adapter: board private structure
93  * @status: descriptor status field as written by hardware
94  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
95  * @skb: pointer to sk_buff to be indicated to stack
96  **/
97 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
98                               struct net_device *netdev,
99                               struct sk_buff *skb,
100                               u32 status, u16 vlan)
101 {
102         if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
103                 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
104                                          le16_to_cpu(vlan) &
105                                          E1000_RXD_SPC_VLAN_MASK);
106         else
107                 netif_receive_skb(skb);
108 }
109
110 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
111                                          u32 status_err, struct sk_buff *skb)
112 {
113         skb_checksum_none_assert(skb);
114
115         /* Ignore Checksum bit is set or checksum is disabled through ethtool */
116         if ((status_err & E1000_RXD_STAT_IXSM) ||
117             (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
118                 return;
119
120         /* TCP/UDP checksum error bit is set */
121         if (status_err &
122             (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
123                 /* let the stack verify checksum errors */
124                 adapter->hw_csum_err++;
125                 return;
126         }
127
128         /* It must be a TCP or UDP packet with a valid checksum */
129         if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
130                 skb->ip_summed = CHECKSUM_UNNECESSARY;
131
132         adapter->hw_csum_good++;
133 }
134
135 /**
136  * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
137  * @rx_ring: address of ring structure to repopulate
138  * @cleaned_count: number of buffers to repopulate
139  **/
140 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
141                                    int cleaned_count)
142 {
143         struct igbvf_adapter *adapter = rx_ring->adapter;
144         struct net_device *netdev = adapter->netdev;
145         struct pci_dev *pdev = adapter->pdev;
146         union e1000_adv_rx_desc *rx_desc;
147         struct igbvf_buffer *buffer_info;
148         struct sk_buff *skb;
149         unsigned int i;
150         int bufsz;
151
152         i = rx_ring->next_to_use;
153         buffer_info = &rx_ring->buffer_info[i];
154
155         if (adapter->rx_ps_hdr_size)
156                 bufsz = adapter->rx_ps_hdr_size;
157         else
158                 bufsz = adapter->rx_buffer_len;
159
160         while (cleaned_count--) {
161                 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
162
163                 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
164                         if (!buffer_info->page) {
165                                 buffer_info->page = alloc_page(GFP_ATOMIC);
166                                 if (!buffer_info->page) {
167                                         adapter->alloc_rx_buff_failed++;
168                                         goto no_buffers;
169                                 }
170                                 buffer_info->page_offset = 0;
171                         } else {
172                                 buffer_info->page_offset ^= PAGE_SIZE / 2;
173                         }
174                         buffer_info->page_dma =
175                                 dma_map_page(&pdev->dev, buffer_info->page,
176                                              buffer_info->page_offset,
177                                              PAGE_SIZE / 2,
178                                              DMA_FROM_DEVICE);
179                 }
180
181                 if (!buffer_info->skb) {
182                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
183                         if (!skb) {
184                                 adapter->alloc_rx_buff_failed++;
185                                 goto no_buffers;
186                         }
187
188                         buffer_info->skb = skb;
189                         buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
190                                                           bufsz,
191                                                           DMA_FROM_DEVICE);
192                 }
193                 /* Refresh the desc even if buffer_addrs didn't change because
194                  * each write-back erases this info. */
195                 if (adapter->rx_ps_hdr_size) {
196                         rx_desc->read.pkt_addr =
197                              cpu_to_le64(buffer_info->page_dma);
198                         rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
199                 } else {
200                         rx_desc->read.pkt_addr =
201                              cpu_to_le64(buffer_info->dma);
202                         rx_desc->read.hdr_addr = 0;
203                 }
204
205                 i++;
206                 if (i == rx_ring->count)
207                         i = 0;
208                 buffer_info = &rx_ring->buffer_info[i];
209         }
210
211 no_buffers:
212         if (rx_ring->next_to_use != i) {
213                 rx_ring->next_to_use = i;
214                 if (i == 0)
215                         i = (rx_ring->count - 1);
216                 else
217                         i--;
218
219                 /* Force memory writes to complete before letting h/w
220                  * know there are new descriptors to fetch.  (Only
221                  * applicable for weak-ordered memory model archs,
222                  * such as IA-64). */
223                 wmb();
224                 writel(i, adapter->hw.hw_addr + rx_ring->tail);
225         }
226 }
227
228 /**
229  * igbvf_clean_rx_irq - Send received data up the network stack; legacy
230  * @adapter: board private structure
231  *
232  * the return value indicates whether actual cleaning was done, there
233  * is no guarantee that everything was cleaned
234  **/
235 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
236                                int *work_done, int work_to_do)
237 {
238         struct igbvf_ring *rx_ring = adapter->rx_ring;
239         struct net_device *netdev = adapter->netdev;
240         struct pci_dev *pdev = adapter->pdev;
241         union e1000_adv_rx_desc *rx_desc, *next_rxd;
242         struct igbvf_buffer *buffer_info, *next_buffer;
243         struct sk_buff *skb;
244         bool cleaned = false;
245         int cleaned_count = 0;
246         unsigned int total_bytes = 0, total_packets = 0;
247         unsigned int i;
248         u32 length, hlen, staterr;
249
250         i = rx_ring->next_to_clean;
251         rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
252         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
253
254         while (staterr & E1000_RXD_STAT_DD) {
255                 if (*work_done >= work_to_do)
256                         break;
257                 (*work_done)++;
258                 rmb(); /* read descriptor and rx_buffer_info after status DD */
259
260                 buffer_info = &rx_ring->buffer_info[i];
261
262                 /* HW will not DMA in data larger than the given buffer, even
263                  * if it parses the (NFS, of course) header to be larger.  In
264                  * that case, it fills the header buffer and spills the rest
265                  * into the page.
266                  */
267                 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
268                   E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
269                 if (hlen > adapter->rx_ps_hdr_size)
270                         hlen = adapter->rx_ps_hdr_size;
271
272                 length = le16_to_cpu(rx_desc->wb.upper.length);
273                 cleaned = true;
274                 cleaned_count++;
275
276                 skb = buffer_info->skb;
277                 prefetch(skb->data - NET_IP_ALIGN);
278                 buffer_info->skb = NULL;
279                 if (!adapter->rx_ps_hdr_size) {
280                         dma_unmap_single(&pdev->dev, buffer_info->dma,
281                                          adapter->rx_buffer_len,
282                                          DMA_FROM_DEVICE);
283                         buffer_info->dma = 0;
284                         skb_put(skb, length);
285                         goto send_up;
286                 }
287
288                 if (!skb_shinfo(skb)->nr_frags) {
289                         dma_unmap_single(&pdev->dev, buffer_info->dma,
290                                          adapter->rx_ps_hdr_size,
291                                          DMA_FROM_DEVICE);
292                         skb_put(skb, hlen);
293                 }
294
295                 if (length) {
296                         dma_unmap_page(&pdev->dev, buffer_info->page_dma,
297                                        PAGE_SIZE / 2,
298                                        DMA_FROM_DEVICE);
299                         buffer_info->page_dma = 0;
300
301                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
302                                            buffer_info->page,
303                                            buffer_info->page_offset,
304                                            length);
305
306                         if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
307                             (page_count(buffer_info->page) != 1))
308                                 buffer_info->page = NULL;
309                         else
310                                 get_page(buffer_info->page);
311
312                         skb->len += length;
313                         skb->data_len += length;
314                         skb->truesize += length;
315                 }
316 send_up:
317                 i++;
318                 if (i == rx_ring->count)
319                         i = 0;
320                 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
321                 prefetch(next_rxd);
322                 next_buffer = &rx_ring->buffer_info[i];
323
324                 if (!(staterr & E1000_RXD_STAT_EOP)) {
325                         buffer_info->skb = next_buffer->skb;
326                         buffer_info->dma = next_buffer->dma;
327                         next_buffer->skb = skb;
328                         next_buffer->dma = 0;
329                         goto next_desc;
330                 }
331
332                 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
333                         dev_kfree_skb_irq(skb);
334                         goto next_desc;
335                 }
336
337                 total_bytes += skb->len;
338                 total_packets++;
339
340                 igbvf_rx_checksum_adv(adapter, staterr, skb);
341
342                 skb->protocol = eth_type_trans(skb, netdev);
343
344                 igbvf_receive_skb(adapter, netdev, skb, staterr,
345                                   rx_desc->wb.upper.vlan);
346
347 next_desc:
348                 rx_desc->wb.upper.status_error = 0;
349
350                 /* return some buffers to hardware, one at a time is too slow */
351                 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
352                         igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
353                         cleaned_count = 0;
354                 }
355
356                 /* use prefetched values */
357                 rx_desc = next_rxd;
358                 buffer_info = next_buffer;
359
360                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
361         }
362
363         rx_ring->next_to_clean = i;
364         cleaned_count = igbvf_desc_unused(rx_ring);
365
366         if (cleaned_count)
367                 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
368
369         adapter->total_rx_packets += total_packets;
370         adapter->total_rx_bytes += total_bytes;
371         adapter->net_stats.rx_bytes += total_bytes;
372         adapter->net_stats.rx_packets += total_packets;
373         return cleaned;
374 }
375
376 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
377                             struct igbvf_buffer *buffer_info)
378 {
379         if (buffer_info->dma) {
380                 if (buffer_info->mapped_as_page)
381                         dma_unmap_page(&adapter->pdev->dev,
382                                        buffer_info->dma,
383                                        buffer_info->length,
384                                        DMA_TO_DEVICE);
385                 else
386                         dma_unmap_single(&adapter->pdev->dev,
387                                          buffer_info->dma,
388                                          buffer_info->length,
389                                          DMA_TO_DEVICE);
390                 buffer_info->dma = 0;
391         }
392         if (buffer_info->skb) {
393                 dev_kfree_skb_any(buffer_info->skb);
394                 buffer_info->skb = NULL;
395         }
396         buffer_info->time_stamp = 0;
397 }
398
399 static void igbvf_print_tx_hang(struct igbvf_adapter *adapter)
400 {
401         struct igbvf_ring *tx_ring = adapter->tx_ring;
402         unsigned int i = tx_ring->next_to_clean;
403         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
404         union e1000_adv_tx_desc *eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
405
406         /* detected Tx unit hang */
407         dev_err(&adapter->pdev->dev,
408                 "Detected Tx Unit Hang:\n"
409                 "  TDH                  <%x>\n"
410                 "  TDT                  <%x>\n"
411                 "  next_to_use          <%x>\n"
412                 "  next_to_clean        <%x>\n"
413                 "buffer_info[next_to_clean]:\n"
414                 "  time_stamp           <%lx>\n"
415                 "  next_to_watch        <%x>\n"
416                 "  jiffies              <%lx>\n"
417                 "  next_to_watch.status <%x>\n",
418                 readl(adapter->hw.hw_addr + tx_ring->head),
419                 readl(adapter->hw.hw_addr + tx_ring->tail),
420                 tx_ring->next_to_use,
421                 tx_ring->next_to_clean,
422                 tx_ring->buffer_info[eop].time_stamp,
423                 eop,
424                 jiffies,
425                 eop_desc->wb.status);
426 }
427
428 /**
429  * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
430  * @adapter: board private structure
431  *
432  * Return 0 on success, negative on failure
433  **/
434 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
435                              struct igbvf_ring *tx_ring)
436 {
437         struct pci_dev *pdev = adapter->pdev;
438         int size;
439
440         size = sizeof(struct igbvf_buffer) * tx_ring->count;
441         tx_ring->buffer_info = vzalloc(size);
442         if (!tx_ring->buffer_info)
443                 goto err;
444
445         /* round up to nearest 4K */
446         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
447         tx_ring->size = ALIGN(tx_ring->size, 4096);
448
449         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
450                                            &tx_ring->dma, GFP_KERNEL);
451
452         if (!tx_ring->desc)
453                 goto err;
454
455         tx_ring->adapter = adapter;
456         tx_ring->next_to_use = 0;
457         tx_ring->next_to_clean = 0;
458
459         return 0;
460 err:
461         vfree(tx_ring->buffer_info);
462         dev_err(&adapter->pdev->dev,
463                 "Unable to allocate memory for the transmit descriptor ring\n");
464         return -ENOMEM;
465 }
466
467 /**
468  * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
469  * @adapter: board private structure
470  *
471  * Returns 0 on success, negative on failure
472  **/
473 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
474                              struct igbvf_ring *rx_ring)
475 {
476         struct pci_dev *pdev = adapter->pdev;
477         int size, desc_len;
478
479         size = sizeof(struct igbvf_buffer) * rx_ring->count;
480         rx_ring->buffer_info = vzalloc(size);
481         if (!rx_ring->buffer_info)
482                 goto err;
483
484         desc_len = sizeof(union e1000_adv_rx_desc);
485
486         /* Round up to nearest 4K */
487         rx_ring->size = rx_ring->count * desc_len;
488         rx_ring->size = ALIGN(rx_ring->size, 4096);
489
490         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
491                                            &rx_ring->dma, GFP_KERNEL);
492
493         if (!rx_ring->desc)
494                 goto err;
495
496         rx_ring->next_to_clean = 0;
497         rx_ring->next_to_use = 0;
498
499         rx_ring->adapter = adapter;
500
501         return 0;
502
503 err:
504         vfree(rx_ring->buffer_info);
505         rx_ring->buffer_info = NULL;
506         dev_err(&adapter->pdev->dev,
507                 "Unable to allocate memory for the receive descriptor ring\n");
508         return -ENOMEM;
509 }
510
511 /**
512  * igbvf_clean_tx_ring - Free Tx Buffers
513  * @tx_ring: ring to be cleaned
514  **/
515 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
516 {
517         struct igbvf_adapter *adapter = tx_ring->adapter;
518         struct igbvf_buffer *buffer_info;
519         unsigned long size;
520         unsigned int i;
521
522         if (!tx_ring->buffer_info)
523                 return;
524
525         /* Free all the Tx ring sk_buffs */
526         for (i = 0; i < tx_ring->count; i++) {
527                 buffer_info = &tx_ring->buffer_info[i];
528                 igbvf_put_txbuf(adapter, buffer_info);
529         }
530
531         size = sizeof(struct igbvf_buffer) * tx_ring->count;
532         memset(tx_ring->buffer_info, 0, size);
533
534         /* Zero out the descriptor ring */
535         memset(tx_ring->desc, 0, tx_ring->size);
536
537         tx_ring->next_to_use = 0;
538         tx_ring->next_to_clean = 0;
539
540         writel(0, adapter->hw.hw_addr + tx_ring->head);
541         writel(0, adapter->hw.hw_addr + tx_ring->tail);
542 }
543
544 /**
545  * igbvf_free_tx_resources - Free Tx Resources per Queue
546  * @tx_ring: ring to free resources from
547  *
548  * Free all transmit software resources
549  **/
550 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
551 {
552         struct pci_dev *pdev = tx_ring->adapter->pdev;
553
554         igbvf_clean_tx_ring(tx_ring);
555
556         vfree(tx_ring->buffer_info);
557         tx_ring->buffer_info = NULL;
558
559         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
560                           tx_ring->dma);
561
562         tx_ring->desc = NULL;
563 }
564
565 /**
566  * igbvf_clean_rx_ring - Free Rx Buffers per Queue
567  * @adapter: board private structure
568  **/
569 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
570 {
571         struct igbvf_adapter *adapter = rx_ring->adapter;
572         struct igbvf_buffer *buffer_info;
573         struct pci_dev *pdev = adapter->pdev;
574         unsigned long size;
575         unsigned int i;
576
577         if (!rx_ring->buffer_info)
578                 return;
579
580         /* Free all the Rx ring sk_buffs */
581         for (i = 0; i < rx_ring->count; i++) {
582                 buffer_info = &rx_ring->buffer_info[i];
583                 if (buffer_info->dma) {
584                         if (adapter->rx_ps_hdr_size){
585                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
586                                                  adapter->rx_ps_hdr_size,
587                                                  DMA_FROM_DEVICE);
588                         } else {
589                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
590                                                  adapter->rx_buffer_len,
591                                                  DMA_FROM_DEVICE);
592                         }
593                         buffer_info->dma = 0;
594                 }
595
596                 if (buffer_info->skb) {
597                         dev_kfree_skb(buffer_info->skb);
598                         buffer_info->skb = NULL;
599                 }
600
601                 if (buffer_info->page) {
602                         if (buffer_info->page_dma)
603                                 dma_unmap_page(&pdev->dev,
604                                                buffer_info->page_dma,
605                                                PAGE_SIZE / 2,
606                                                DMA_FROM_DEVICE);
607                         put_page(buffer_info->page);
608                         buffer_info->page = NULL;
609                         buffer_info->page_dma = 0;
610                         buffer_info->page_offset = 0;
611                 }
612         }
613
614         size = sizeof(struct igbvf_buffer) * rx_ring->count;
615         memset(rx_ring->buffer_info, 0, size);
616
617         /* Zero out the descriptor ring */
618         memset(rx_ring->desc, 0, rx_ring->size);
619
620         rx_ring->next_to_clean = 0;
621         rx_ring->next_to_use = 0;
622
623         writel(0, adapter->hw.hw_addr + rx_ring->head);
624         writel(0, adapter->hw.hw_addr + rx_ring->tail);
625 }
626
627 /**
628  * igbvf_free_rx_resources - Free Rx Resources
629  * @rx_ring: ring to clean the resources from
630  *
631  * Free all receive software resources
632  **/
633
634 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
635 {
636         struct pci_dev *pdev = rx_ring->adapter->pdev;
637
638         igbvf_clean_rx_ring(rx_ring);
639
640         vfree(rx_ring->buffer_info);
641         rx_ring->buffer_info = NULL;
642
643         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
644                           rx_ring->dma);
645         rx_ring->desc = NULL;
646 }
647
648 /**
649  * igbvf_update_itr - update the dynamic ITR value based on statistics
650  * @adapter: pointer to adapter
651  * @itr_setting: current adapter->itr
652  * @packets: the number of packets during this measurement interval
653  * @bytes: the number of bytes during this measurement interval
654  *
655  *      Stores a new ITR value based on packets and byte
656  *      counts during the last interrupt.  The advantage of per interrupt
657  *      computation is faster updates and more accurate ITR for the current
658  *      traffic pattern.  Constants in this function were computed
659  *      based on theoretical maximum wire speed and thresholds were set based
660  *      on testing data as well as attempting to minimize response time
661  *      while increasing bulk throughput.  This functionality is controlled
662  *      by the InterruptThrottleRate module parameter.
663  **/
664 static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter,
665                                      u16 itr_setting, int packets,
666                                      int bytes)
667 {
668         unsigned int retval = itr_setting;
669
670         if (packets == 0)
671                 goto update_itr_done;
672
673         switch (itr_setting) {
674         case lowest_latency:
675                 /* handle TSO and jumbo frames */
676                 if (bytes/packets > 8000)
677                         retval = bulk_latency;
678                 else if ((packets < 5) && (bytes > 512))
679                         retval = low_latency;
680                 break;
681         case low_latency:  /* 50 usec aka 20000 ints/s */
682                 if (bytes > 10000) {
683                         /* this if handles the TSO accounting */
684                         if (bytes/packets > 8000)
685                                 retval = bulk_latency;
686                         else if ((packets < 10) || ((bytes/packets) > 1200))
687                                 retval = bulk_latency;
688                         else if ((packets > 35))
689                                 retval = lowest_latency;
690                 } else if (bytes/packets > 2000) {
691                         retval = bulk_latency;
692                 } else if (packets <= 2 && bytes < 512) {
693                         retval = lowest_latency;
694                 }
695                 break;
696         case bulk_latency: /* 250 usec aka 4000 ints/s */
697                 if (bytes > 25000) {
698                         if (packets > 35)
699                                 retval = low_latency;
700                 } else if (bytes < 6000) {
701                         retval = low_latency;
702                 }
703                 break;
704         }
705
706 update_itr_done:
707         return retval;
708 }
709
710 static void igbvf_set_itr(struct igbvf_adapter *adapter)
711 {
712         struct e1000_hw *hw = &adapter->hw;
713         u16 current_itr;
714         u32 new_itr = adapter->itr;
715
716         adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr,
717                                            adapter->total_tx_packets,
718                                            adapter->total_tx_bytes);
719         /* conservative mode (itr 3) eliminates the lowest_latency setting */
720         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
721                 adapter->tx_itr = low_latency;
722
723         adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr,
724                                            adapter->total_rx_packets,
725                                            adapter->total_rx_bytes);
726         /* conservative mode (itr 3) eliminates the lowest_latency setting */
727         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
728                 adapter->rx_itr = low_latency;
729
730         current_itr = max(adapter->rx_itr, adapter->tx_itr);
731
732         switch (current_itr) {
733         /* counts and packets in update_itr are dependent on these numbers */
734         case lowest_latency:
735                 new_itr = 70000;
736                 break;
737         case low_latency:
738                 new_itr = 20000; /* aka hwitr = ~200 */
739                 break;
740         case bulk_latency:
741                 new_itr = 4000;
742                 break;
743         default:
744                 break;
745         }
746
747         if (new_itr != adapter->itr) {
748                 /*
749                  * this attempts to bias the interrupt rate towards Bulk
750                  * by adding intermediate steps when interrupt rate is
751                  * increasing
752                  */
753                 new_itr = new_itr > adapter->itr ?
754                              min(adapter->itr + (new_itr >> 2), new_itr) :
755                              new_itr;
756                 adapter->itr = new_itr;
757                 adapter->rx_ring->itr_val = 1952;
758
759                 if (adapter->msix_entries)
760                         adapter->rx_ring->set_itr = 1;
761                 else
762                         ew32(ITR, 1952);
763         }
764 }
765
766 /**
767  * igbvf_clean_tx_irq - Reclaim resources after transmit completes
768  * @adapter: board private structure
769  * returns true if ring is completely cleaned
770  **/
771 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
772 {
773         struct igbvf_adapter *adapter = tx_ring->adapter;
774         struct e1000_hw *hw = &adapter->hw;
775         struct net_device *netdev = adapter->netdev;
776         struct igbvf_buffer *buffer_info;
777         struct sk_buff *skb;
778         union e1000_adv_tx_desc *tx_desc, *eop_desc;
779         unsigned int total_bytes = 0, total_packets = 0;
780         unsigned int i, eop, count = 0;
781         bool cleaned = false;
782
783         i = tx_ring->next_to_clean;
784         eop = tx_ring->buffer_info[i].next_to_watch;
785         eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
786
787         while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
788                (count < tx_ring->count)) {
789                 rmb();  /* read buffer_info after eop_desc status */
790                 for (cleaned = false; !cleaned; count++) {
791                         tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
792                         buffer_info = &tx_ring->buffer_info[i];
793                         cleaned = (i == eop);
794                         skb = buffer_info->skb;
795
796                         if (skb) {
797                                 unsigned int segs, bytecount;
798
799                                 /* gso_segs is currently only valid for tcp */
800                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
801                                 /* multiply data chunks by size of headers */
802                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
803                                             skb->len;
804                                 total_packets += segs;
805                                 total_bytes += bytecount;
806                         }
807
808                         igbvf_put_txbuf(adapter, buffer_info);
809                         tx_desc->wb.status = 0;
810
811                         i++;
812                         if (i == tx_ring->count)
813                                 i = 0;
814                 }
815                 eop = tx_ring->buffer_info[i].next_to_watch;
816                 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
817         }
818
819         tx_ring->next_to_clean = i;
820
821         if (unlikely(count &&
822                      netif_carrier_ok(netdev) &&
823                      igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
824                 /* Make sure that anybody stopping the queue after this
825                  * sees the new next_to_clean.
826                  */
827                 smp_mb();
828                 if (netif_queue_stopped(netdev) &&
829                     !(test_bit(__IGBVF_DOWN, &adapter->state))) {
830                         netif_wake_queue(netdev);
831                         ++adapter->restart_queue;
832                 }
833         }
834
835         if (adapter->detect_tx_hung) {
836                 /* Detect a transmit hang in hardware, this serializes the
837                  * check with the clearing of time_stamp and movement of i */
838                 adapter->detect_tx_hung = false;
839                 if (tx_ring->buffer_info[i].time_stamp &&
840                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
841                                (adapter->tx_timeout_factor * HZ)) &&
842                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
843
844                         tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
845                         /* detected Tx unit hang */
846                         igbvf_print_tx_hang(adapter);
847
848                         netif_stop_queue(netdev);
849                 }
850         }
851         adapter->net_stats.tx_bytes += total_bytes;
852         adapter->net_stats.tx_packets += total_packets;
853         return count < tx_ring->count;
854 }
855
856 static irqreturn_t igbvf_msix_other(int irq, void *data)
857 {
858         struct net_device *netdev = data;
859         struct igbvf_adapter *adapter = netdev_priv(netdev);
860         struct e1000_hw *hw = &adapter->hw;
861
862         adapter->int_counter1++;
863
864         netif_carrier_off(netdev);
865         hw->mac.get_link_status = 1;
866         if (!test_bit(__IGBVF_DOWN, &adapter->state))
867                 mod_timer(&adapter->watchdog_timer, jiffies + 1);
868
869         ew32(EIMS, adapter->eims_other);
870
871         return IRQ_HANDLED;
872 }
873
874 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
875 {
876         struct net_device *netdev = data;
877         struct igbvf_adapter *adapter = netdev_priv(netdev);
878         struct e1000_hw *hw = &adapter->hw;
879         struct igbvf_ring *tx_ring = adapter->tx_ring;
880
881
882         adapter->total_tx_bytes = 0;
883         adapter->total_tx_packets = 0;
884
885         /* auto mask will automatically reenable the interrupt when we write
886          * EICS */
887         if (!igbvf_clean_tx_irq(tx_ring))
888                 /* Ring was not completely cleaned, so fire another interrupt */
889                 ew32(EICS, tx_ring->eims_value);
890         else
891                 ew32(EIMS, tx_ring->eims_value);
892
893         return IRQ_HANDLED;
894 }
895
896 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
897 {
898         struct net_device *netdev = data;
899         struct igbvf_adapter *adapter = netdev_priv(netdev);
900
901         adapter->int_counter0++;
902
903         /* Write the ITR value calculated at the end of the
904          * previous interrupt.
905          */
906         if (adapter->rx_ring->set_itr) {
907                 writel(adapter->rx_ring->itr_val,
908                        adapter->hw.hw_addr + adapter->rx_ring->itr_register);
909                 adapter->rx_ring->set_itr = 0;
910         }
911
912         if (napi_schedule_prep(&adapter->rx_ring->napi)) {
913                 adapter->total_rx_bytes = 0;
914                 adapter->total_rx_packets = 0;
915                 __napi_schedule(&adapter->rx_ring->napi);
916         }
917
918         return IRQ_HANDLED;
919 }
920
921 #define IGBVF_NO_QUEUE -1
922
923 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
924                                 int tx_queue, int msix_vector)
925 {
926         struct e1000_hw *hw = &adapter->hw;
927         u32 ivar, index;
928
929         /* 82576 uses a table-based method for assigning vectors.
930            Each queue has a single entry in the table to which we write
931            a vector number along with a "valid" bit.  Sadly, the layout
932            of the table is somewhat counterintuitive. */
933         if (rx_queue > IGBVF_NO_QUEUE) {
934                 index = (rx_queue >> 1);
935                 ivar = array_er32(IVAR0, index);
936                 if (rx_queue & 0x1) {
937                         /* vector goes into third byte of register */
938                         ivar = ivar & 0xFF00FFFF;
939                         ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
940                 } else {
941                         /* vector goes into low byte of register */
942                         ivar = ivar & 0xFFFFFF00;
943                         ivar |= msix_vector | E1000_IVAR_VALID;
944                 }
945                 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
946                 array_ew32(IVAR0, index, ivar);
947         }
948         if (tx_queue > IGBVF_NO_QUEUE) {
949                 index = (tx_queue >> 1);
950                 ivar = array_er32(IVAR0, index);
951                 if (tx_queue & 0x1) {
952                         /* vector goes into high byte of register */
953                         ivar = ivar & 0x00FFFFFF;
954                         ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
955                 } else {
956                         /* vector goes into second byte of register */
957                         ivar = ivar & 0xFFFF00FF;
958                         ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
959                 }
960                 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
961                 array_ew32(IVAR0, index, ivar);
962         }
963 }
964
965 /**
966  * igbvf_configure_msix - Configure MSI-X hardware
967  *
968  * igbvf_configure_msix sets up the hardware to properly
969  * generate MSI-X interrupts.
970  **/
971 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
972 {
973         u32 tmp;
974         struct e1000_hw *hw = &adapter->hw;
975         struct igbvf_ring *tx_ring = adapter->tx_ring;
976         struct igbvf_ring *rx_ring = adapter->rx_ring;
977         int vector = 0;
978
979         adapter->eims_enable_mask = 0;
980
981         igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
982         adapter->eims_enable_mask |= tx_ring->eims_value;
983         if (tx_ring->itr_val)
984                 writel(tx_ring->itr_val,
985                        hw->hw_addr + tx_ring->itr_register);
986         else
987                 writel(1952, hw->hw_addr + tx_ring->itr_register);
988
989         igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
990         adapter->eims_enable_mask |= rx_ring->eims_value;
991         if (rx_ring->itr_val)
992                 writel(rx_ring->itr_val,
993                        hw->hw_addr + rx_ring->itr_register);
994         else
995                 writel(1952, hw->hw_addr + rx_ring->itr_register);
996
997         /* set vector for other causes, i.e. link changes */
998
999         tmp = (vector++ | E1000_IVAR_VALID);
1000
1001         ew32(IVAR_MISC, tmp);
1002
1003         adapter->eims_enable_mask = (1 << (vector)) - 1;
1004         adapter->eims_other = 1 << (vector - 1);
1005         e1e_flush();
1006 }
1007
1008 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1009 {
1010         if (adapter->msix_entries) {
1011                 pci_disable_msix(adapter->pdev);
1012                 kfree(adapter->msix_entries);
1013                 adapter->msix_entries = NULL;
1014         }
1015 }
1016
1017 /**
1018  * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1019  *
1020  * Attempt to configure interrupts using the best available
1021  * capabilities of the hardware and kernel.
1022  **/
1023 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1024 {
1025         int err = -ENOMEM;
1026         int i;
1027
1028         /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1029         adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1030                                         GFP_KERNEL);
1031         if (adapter->msix_entries) {
1032                 for (i = 0; i < 3; i++)
1033                         adapter->msix_entries[i].entry = i;
1034
1035                 err = pci_enable_msix(adapter->pdev,
1036                                       adapter->msix_entries, 3);
1037         }
1038
1039         if (err) {
1040                 /* MSI-X failed */
1041                 dev_err(&adapter->pdev->dev,
1042                         "Failed to initialize MSI-X interrupts.\n");
1043                 igbvf_reset_interrupt_capability(adapter);
1044         }
1045 }
1046
1047 /**
1048  * igbvf_request_msix - Initialize MSI-X interrupts
1049  *
1050  * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1051  * kernel.
1052  **/
1053 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1054 {
1055         struct net_device *netdev = adapter->netdev;
1056         int err = 0, vector = 0;
1057
1058         if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1059                 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1060                 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1061         } else {
1062                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1063                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1064         }
1065
1066         err = request_irq(adapter->msix_entries[vector].vector,
1067                           igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1068                           netdev);
1069         if (err)
1070                 goto out;
1071
1072         adapter->tx_ring->itr_register = E1000_EITR(vector);
1073         adapter->tx_ring->itr_val = 1952;
1074         vector++;
1075
1076         err = request_irq(adapter->msix_entries[vector].vector,
1077                           igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1078                           netdev);
1079         if (err)
1080                 goto out;
1081
1082         adapter->rx_ring->itr_register = E1000_EITR(vector);
1083         adapter->rx_ring->itr_val = 1952;
1084         vector++;
1085
1086         err = request_irq(adapter->msix_entries[vector].vector,
1087                           igbvf_msix_other, 0, netdev->name, netdev);
1088         if (err)
1089                 goto out;
1090
1091         igbvf_configure_msix(adapter);
1092         return 0;
1093 out:
1094         return err;
1095 }
1096
1097 /**
1098  * igbvf_alloc_queues - Allocate memory for all rings
1099  * @adapter: board private structure to initialize
1100  **/
1101 static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
1102 {
1103         struct net_device *netdev = adapter->netdev;
1104
1105         adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1106         if (!adapter->tx_ring)
1107                 return -ENOMEM;
1108
1109         adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1110         if (!adapter->rx_ring) {
1111                 kfree(adapter->tx_ring);
1112                 return -ENOMEM;
1113         }
1114
1115         netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1116
1117         return 0;
1118 }
1119
1120 /**
1121  * igbvf_request_irq - initialize interrupts
1122  *
1123  * Attempts to configure interrupts using the best available
1124  * capabilities of the hardware and kernel.
1125  **/
1126 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1127 {
1128         int err = -1;
1129
1130         /* igbvf supports msi-x only */
1131         if (adapter->msix_entries)
1132                 err = igbvf_request_msix(adapter);
1133
1134         if (!err)
1135                 return err;
1136
1137         dev_err(&adapter->pdev->dev,
1138                 "Unable to allocate interrupt, Error: %d\n", err);
1139
1140         return err;
1141 }
1142
1143 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1144 {
1145         struct net_device *netdev = adapter->netdev;
1146         int vector;
1147
1148         if (adapter->msix_entries) {
1149                 for (vector = 0; vector < 3; vector++)
1150                         free_irq(adapter->msix_entries[vector].vector, netdev);
1151         }
1152 }
1153
1154 /**
1155  * igbvf_irq_disable - Mask off interrupt generation on the NIC
1156  **/
1157 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1158 {
1159         struct e1000_hw *hw = &adapter->hw;
1160
1161         ew32(EIMC, ~0);
1162
1163         if (adapter->msix_entries)
1164                 ew32(EIAC, 0);
1165 }
1166
1167 /**
1168  * igbvf_irq_enable - Enable default interrupt generation settings
1169  **/
1170 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1171 {
1172         struct e1000_hw *hw = &adapter->hw;
1173
1174         ew32(EIAC, adapter->eims_enable_mask);
1175         ew32(EIAM, adapter->eims_enable_mask);
1176         ew32(EIMS, adapter->eims_enable_mask);
1177 }
1178
1179 /**
1180  * igbvf_poll - NAPI Rx polling callback
1181  * @napi: struct associated with this polling callback
1182  * @budget: amount of packets driver is allowed to process this poll
1183  **/
1184 static int igbvf_poll(struct napi_struct *napi, int budget)
1185 {
1186         struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1187         struct igbvf_adapter *adapter = rx_ring->adapter;
1188         struct e1000_hw *hw = &adapter->hw;
1189         int work_done = 0;
1190
1191         igbvf_clean_rx_irq(adapter, &work_done, budget);
1192
1193         /* If not enough Rx work done, exit the polling mode */
1194         if (work_done < budget) {
1195                 napi_complete(napi);
1196
1197                 if (adapter->itr_setting & 3)
1198                         igbvf_set_itr(adapter);
1199
1200                 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1201                         ew32(EIMS, adapter->rx_ring->eims_value);
1202         }
1203
1204         return work_done;
1205 }
1206
1207 /**
1208  * igbvf_set_rlpml - set receive large packet maximum length
1209  * @adapter: board private structure
1210  *
1211  * Configure the maximum size of packets that will be received
1212  */
1213 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1214 {
1215         int max_frame_size = adapter->max_frame_size;
1216         struct e1000_hw *hw = &adapter->hw;
1217
1218         if (adapter->vlgrp)
1219                 max_frame_size += VLAN_TAG_SIZE;
1220
1221         e1000_rlpml_set_vf(hw, max_frame_size);
1222 }
1223
1224 static void igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1225 {
1226         struct igbvf_adapter *adapter = netdev_priv(netdev);
1227         struct e1000_hw *hw = &adapter->hw;
1228
1229         if (hw->mac.ops.set_vfta(hw, vid, true))
1230                 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1231 }
1232
1233 static void igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1234 {
1235         struct igbvf_adapter *adapter = netdev_priv(netdev);
1236         struct e1000_hw *hw = &adapter->hw;
1237
1238         igbvf_irq_disable(adapter);
1239         vlan_group_set_device(adapter->vlgrp, vid, NULL);
1240
1241         if (!test_bit(__IGBVF_DOWN, &adapter->state))
1242                 igbvf_irq_enable(adapter);
1243
1244         if (hw->mac.ops.set_vfta(hw, vid, false))
1245                 dev_err(&adapter->pdev->dev,
1246                         "Failed to remove vlan id %d\n", vid);
1247 }
1248
1249 static void igbvf_vlan_rx_register(struct net_device *netdev,
1250                                    struct vlan_group *grp)
1251 {
1252         struct igbvf_adapter *adapter = netdev_priv(netdev);
1253
1254         adapter->vlgrp = grp;
1255 }
1256
1257 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1258 {
1259         u16 vid;
1260
1261         if (!adapter->vlgrp)
1262                 return;
1263
1264         for (vid = 0; vid < VLAN_N_VID; vid++) {
1265                 if (!vlan_group_get_device(adapter->vlgrp, vid))
1266                         continue;
1267                 igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1268         }
1269
1270         igbvf_set_rlpml(adapter);
1271 }
1272
1273 /**
1274  * igbvf_configure_tx - Configure Transmit Unit after Reset
1275  * @adapter: board private structure
1276  *
1277  * Configure the Tx unit of the MAC after a reset.
1278  **/
1279 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1280 {
1281         struct e1000_hw *hw = &adapter->hw;
1282         struct igbvf_ring *tx_ring = adapter->tx_ring;
1283         u64 tdba;
1284         u32 txdctl, dca_txctrl;
1285
1286         /* disable transmits */
1287         txdctl = er32(TXDCTL(0));
1288         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1289         msleep(10);
1290
1291         /* Setup the HW Tx Head and Tail descriptor pointers */
1292         ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1293         tdba = tx_ring->dma;
1294         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1295         ew32(TDBAH(0), (tdba >> 32));
1296         ew32(TDH(0), 0);
1297         ew32(TDT(0), 0);
1298         tx_ring->head = E1000_TDH(0);
1299         tx_ring->tail = E1000_TDT(0);
1300
1301         /* Turn off Relaxed Ordering on head write-backs.  The writebacks
1302          * MUST be delivered in order or it will completely screw up
1303          * our bookeeping.
1304          */
1305         dca_txctrl = er32(DCA_TXCTRL(0));
1306         dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1307         ew32(DCA_TXCTRL(0), dca_txctrl);
1308
1309         /* enable transmits */
1310         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1311         ew32(TXDCTL(0), txdctl);
1312
1313         /* Setup Transmit Descriptor Settings for eop descriptor */
1314         adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1315
1316         /* enable Report Status bit */
1317         adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1318 }
1319
1320 /**
1321  * igbvf_setup_srrctl - configure the receive control registers
1322  * @adapter: Board private structure
1323  **/
1324 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1325 {
1326         struct e1000_hw *hw = &adapter->hw;
1327         u32 srrctl = 0;
1328
1329         srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1330                     E1000_SRRCTL_BSIZEHDR_MASK |
1331                     E1000_SRRCTL_BSIZEPKT_MASK);
1332
1333         /* Enable queue drop to avoid head of line blocking */
1334         srrctl |= E1000_SRRCTL_DROP_EN;
1335
1336         /* Setup buffer sizes */
1337         srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1338                   E1000_SRRCTL_BSIZEPKT_SHIFT;
1339
1340         if (adapter->rx_buffer_len < 2048) {
1341                 adapter->rx_ps_hdr_size = 0;
1342                 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1343         } else {
1344                 adapter->rx_ps_hdr_size = 128;
1345                 srrctl |= adapter->rx_ps_hdr_size <<
1346                           E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1347                 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1348         }
1349
1350         ew32(SRRCTL(0), srrctl);
1351 }
1352
1353 /**
1354  * igbvf_configure_rx - Configure Receive Unit after Reset
1355  * @adapter: board private structure
1356  *
1357  * Configure the Rx unit of the MAC after a reset.
1358  **/
1359 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1360 {
1361         struct e1000_hw *hw = &adapter->hw;
1362         struct igbvf_ring *rx_ring = adapter->rx_ring;
1363         u64 rdba;
1364         u32 rdlen, rxdctl;
1365
1366         /* disable receives */
1367         rxdctl = er32(RXDCTL(0));
1368         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1369         msleep(10);
1370
1371         rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1372
1373         /*
1374          * Setup the HW Rx Head and Tail Descriptor Pointers and
1375          * the Base and Length of the Rx Descriptor Ring
1376          */
1377         rdba = rx_ring->dma;
1378         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1379         ew32(RDBAH(0), (rdba >> 32));
1380         ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1381         rx_ring->head = E1000_RDH(0);
1382         rx_ring->tail = E1000_RDT(0);
1383         ew32(RDH(0), 0);
1384         ew32(RDT(0), 0);
1385
1386         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1387         rxdctl &= 0xFFF00000;
1388         rxdctl |= IGBVF_RX_PTHRESH;
1389         rxdctl |= IGBVF_RX_HTHRESH << 8;
1390         rxdctl |= IGBVF_RX_WTHRESH << 16;
1391
1392         igbvf_set_rlpml(adapter);
1393
1394         /* enable receives */
1395         ew32(RXDCTL(0), rxdctl);
1396 }
1397
1398 /**
1399  * igbvf_set_multi - Multicast and Promiscuous mode set
1400  * @netdev: network interface device structure
1401  *
1402  * The set_multi entry point is called whenever the multicast address
1403  * list or the network interface flags are updated.  This routine is
1404  * responsible for configuring the hardware for proper multicast,
1405  * promiscuous mode, and all-multi behavior.
1406  **/
1407 static void igbvf_set_multi(struct net_device *netdev)
1408 {
1409         struct igbvf_adapter *adapter = netdev_priv(netdev);
1410         struct e1000_hw *hw = &adapter->hw;
1411         struct netdev_hw_addr *ha;
1412         u8  *mta_list = NULL;
1413         int i;
1414
1415         if (!netdev_mc_empty(netdev)) {
1416                 mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
1417                 if (!mta_list) {
1418                         dev_err(&adapter->pdev->dev,
1419                                 "failed to allocate multicast filter list\n");
1420                         return;
1421                 }
1422         }
1423
1424         /* prepare a packed array of only addresses. */
1425         i = 0;
1426         netdev_for_each_mc_addr(ha, netdev)
1427                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1428
1429         hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1430         kfree(mta_list);
1431 }
1432
1433 /**
1434  * igbvf_configure - configure the hardware for Rx and Tx
1435  * @adapter: private board structure
1436  **/
1437 static void igbvf_configure(struct igbvf_adapter *adapter)
1438 {
1439         igbvf_set_multi(adapter->netdev);
1440
1441         igbvf_restore_vlan(adapter);
1442
1443         igbvf_configure_tx(adapter);
1444         igbvf_setup_srrctl(adapter);
1445         igbvf_configure_rx(adapter);
1446         igbvf_alloc_rx_buffers(adapter->rx_ring,
1447                                igbvf_desc_unused(adapter->rx_ring));
1448 }
1449
1450 /* igbvf_reset - bring the hardware into a known good state
1451  *
1452  * This function boots the hardware and enables some settings that
1453  * require a configuration cycle of the hardware - those cannot be
1454  * set/changed during runtime. After reset the device needs to be
1455  * properly configured for Rx, Tx etc.
1456  */
1457 static void igbvf_reset(struct igbvf_adapter *adapter)
1458 {
1459         struct e1000_mac_info *mac = &adapter->hw.mac;
1460         struct net_device *netdev = adapter->netdev;
1461         struct e1000_hw *hw = &adapter->hw;
1462
1463         /* Allow time for pending master requests to run */
1464         if (mac->ops.reset_hw(hw))
1465                 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1466
1467         mac->ops.init_hw(hw);
1468
1469         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1470                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1471                        netdev->addr_len);
1472                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1473                        netdev->addr_len);
1474         }
1475
1476         adapter->last_reset = jiffies;
1477 }
1478
1479 int igbvf_up(struct igbvf_adapter *adapter)
1480 {
1481         struct e1000_hw *hw = &adapter->hw;
1482
1483         /* hardware has been reset, we need to reload some things */
1484         igbvf_configure(adapter);
1485
1486         clear_bit(__IGBVF_DOWN, &adapter->state);
1487
1488         napi_enable(&adapter->rx_ring->napi);
1489         if (adapter->msix_entries)
1490                 igbvf_configure_msix(adapter);
1491
1492         /* Clear any pending interrupts. */
1493         er32(EICR);
1494         igbvf_irq_enable(adapter);
1495
1496         /* start the watchdog */
1497         hw->mac.get_link_status = 1;
1498         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1499
1500
1501         return 0;
1502 }
1503
1504 void igbvf_down(struct igbvf_adapter *adapter)
1505 {
1506         struct net_device *netdev = adapter->netdev;
1507         struct e1000_hw *hw = &adapter->hw;
1508         u32 rxdctl, txdctl;
1509
1510         /*
1511          * signal that we're down so the interrupt handler does not
1512          * reschedule our watchdog timer
1513          */
1514         set_bit(__IGBVF_DOWN, &adapter->state);
1515
1516         /* disable receives in the hardware */
1517         rxdctl = er32(RXDCTL(0));
1518         ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1519
1520         netif_stop_queue(netdev);
1521
1522         /* disable transmits in the hardware */
1523         txdctl = er32(TXDCTL(0));
1524         ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1525
1526         /* flush both disables and wait for them to finish */
1527         e1e_flush();
1528         msleep(10);
1529
1530         napi_disable(&adapter->rx_ring->napi);
1531
1532         igbvf_irq_disable(adapter);
1533
1534         del_timer_sync(&adapter->watchdog_timer);
1535
1536         netif_carrier_off(netdev);
1537
1538         /* record the stats before reset*/
1539         igbvf_update_stats(adapter);
1540
1541         adapter->link_speed = 0;
1542         adapter->link_duplex = 0;
1543
1544         igbvf_reset(adapter);
1545         igbvf_clean_tx_ring(adapter->tx_ring);
1546         igbvf_clean_rx_ring(adapter->rx_ring);
1547 }
1548
1549 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1550 {
1551         might_sleep();
1552         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1553                 msleep(1);
1554         igbvf_down(adapter);
1555         igbvf_up(adapter);
1556         clear_bit(__IGBVF_RESETTING, &adapter->state);
1557 }
1558
1559 /**
1560  * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1561  * @adapter: board private structure to initialize
1562  *
1563  * igbvf_sw_init initializes the Adapter private data structure.
1564  * Fields are initialized based on PCI device information and
1565  * OS network device settings (MTU size).
1566  **/
1567 static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
1568 {
1569         struct net_device *netdev = adapter->netdev;
1570         s32 rc;
1571
1572         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1573         adapter->rx_ps_hdr_size = 0;
1574         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1575         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1576
1577         adapter->tx_int_delay = 8;
1578         adapter->tx_abs_int_delay = 32;
1579         adapter->rx_int_delay = 0;
1580         adapter->rx_abs_int_delay = 8;
1581         adapter->itr_setting = 3;
1582         adapter->itr = 20000;
1583
1584         /* Set various function pointers */
1585         adapter->ei->init_ops(&adapter->hw);
1586
1587         rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1588         if (rc)
1589                 return rc;
1590
1591         rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1592         if (rc)
1593                 return rc;
1594
1595         igbvf_set_interrupt_capability(adapter);
1596
1597         if (igbvf_alloc_queues(adapter))
1598                 return -ENOMEM;
1599
1600         spin_lock_init(&adapter->tx_queue_lock);
1601
1602         /* Explicitly disable IRQ since the NIC can be in any state. */
1603         igbvf_irq_disable(adapter);
1604
1605         spin_lock_init(&adapter->stats_lock);
1606
1607         set_bit(__IGBVF_DOWN, &adapter->state);
1608         return 0;
1609 }
1610
1611 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1612 {
1613         struct e1000_hw *hw = &adapter->hw;
1614
1615         adapter->stats.last_gprc = er32(VFGPRC);
1616         adapter->stats.last_gorc = er32(VFGORC);
1617         adapter->stats.last_gptc = er32(VFGPTC);
1618         adapter->stats.last_gotc = er32(VFGOTC);
1619         adapter->stats.last_mprc = er32(VFMPRC);
1620         adapter->stats.last_gotlbc = er32(VFGOTLBC);
1621         adapter->stats.last_gptlbc = er32(VFGPTLBC);
1622         adapter->stats.last_gorlbc = er32(VFGORLBC);
1623         adapter->stats.last_gprlbc = er32(VFGPRLBC);
1624
1625         adapter->stats.base_gprc = er32(VFGPRC);
1626         adapter->stats.base_gorc = er32(VFGORC);
1627         adapter->stats.base_gptc = er32(VFGPTC);
1628         adapter->stats.base_gotc = er32(VFGOTC);
1629         adapter->stats.base_mprc = er32(VFMPRC);
1630         adapter->stats.base_gotlbc = er32(VFGOTLBC);
1631         adapter->stats.base_gptlbc = er32(VFGPTLBC);
1632         adapter->stats.base_gorlbc = er32(VFGORLBC);
1633         adapter->stats.base_gprlbc = er32(VFGPRLBC);
1634 }
1635
1636 /**
1637  * igbvf_open - Called when a network interface is made active
1638  * @netdev: network interface device structure
1639  *
1640  * Returns 0 on success, negative value on failure
1641  *
1642  * The open entry point is called when a network interface is made
1643  * active by the system (IFF_UP).  At this point all resources needed
1644  * for transmit and receive operations are allocated, the interrupt
1645  * handler is registered with the OS, the watchdog timer is started,
1646  * and the stack is notified that the interface is ready.
1647  **/
1648 static int igbvf_open(struct net_device *netdev)
1649 {
1650         struct igbvf_adapter *adapter = netdev_priv(netdev);
1651         struct e1000_hw *hw = &adapter->hw;
1652         int err;
1653
1654         /* disallow open during test */
1655         if (test_bit(__IGBVF_TESTING, &adapter->state))
1656                 return -EBUSY;
1657
1658         /* allocate transmit descriptors */
1659         err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1660         if (err)
1661                 goto err_setup_tx;
1662
1663         /* allocate receive descriptors */
1664         err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1665         if (err)
1666                 goto err_setup_rx;
1667
1668         /*
1669          * before we allocate an interrupt, we must be ready to handle it.
1670          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1671          * as soon as we call pci_request_irq, so we have to setup our
1672          * clean_rx handler before we do so.
1673          */
1674         igbvf_configure(adapter);
1675
1676         err = igbvf_request_irq(adapter);
1677         if (err)
1678                 goto err_req_irq;
1679
1680         /* From here on the code is the same as igbvf_up() */
1681         clear_bit(__IGBVF_DOWN, &adapter->state);
1682
1683         napi_enable(&adapter->rx_ring->napi);
1684
1685         /* clear any pending interrupts */
1686         er32(EICR);
1687
1688         igbvf_irq_enable(adapter);
1689
1690         /* start the watchdog */
1691         hw->mac.get_link_status = 1;
1692         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1693
1694         return 0;
1695
1696 err_req_irq:
1697         igbvf_free_rx_resources(adapter->rx_ring);
1698 err_setup_rx:
1699         igbvf_free_tx_resources(adapter->tx_ring);
1700 err_setup_tx:
1701         igbvf_reset(adapter);
1702
1703         return err;
1704 }
1705
1706 /**
1707  * igbvf_close - Disables a network interface
1708  * @netdev: network interface device structure
1709  *
1710  * Returns 0, this is not allowed to fail
1711  *
1712  * The close entry point is called when an interface is de-activated
1713  * by the OS.  The hardware is still under the drivers control, but
1714  * needs to be disabled.  A global MAC reset is issued to stop the
1715  * hardware, and all transmit and receive resources are freed.
1716  **/
1717 static int igbvf_close(struct net_device *netdev)
1718 {
1719         struct igbvf_adapter *adapter = netdev_priv(netdev);
1720
1721         WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1722         igbvf_down(adapter);
1723
1724         igbvf_free_irq(adapter);
1725
1726         igbvf_free_tx_resources(adapter->tx_ring);
1727         igbvf_free_rx_resources(adapter->rx_ring);
1728
1729         return 0;
1730 }
1731 /**
1732  * igbvf_set_mac - Change the Ethernet Address of the NIC
1733  * @netdev: network interface device structure
1734  * @p: pointer to an address structure
1735  *
1736  * Returns 0 on success, negative on failure
1737  **/
1738 static int igbvf_set_mac(struct net_device *netdev, void *p)
1739 {
1740         struct igbvf_adapter *adapter = netdev_priv(netdev);
1741         struct e1000_hw *hw = &adapter->hw;
1742         struct sockaddr *addr = p;
1743
1744         if (!is_valid_ether_addr(addr->sa_data))
1745                 return -EADDRNOTAVAIL;
1746
1747         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1748
1749         hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1750
1751         if (memcmp(addr->sa_data, hw->mac.addr, 6))
1752                 return -EADDRNOTAVAIL;
1753
1754         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1755
1756         return 0;
1757 }
1758
1759 #define UPDATE_VF_COUNTER(reg, name)                                    \
1760         {                                                               \
1761                 u32 current_counter = er32(reg);                        \
1762                 if (current_counter < adapter->stats.last_##name)       \
1763                         adapter->stats.name += 0x100000000LL;           \
1764                 adapter->stats.last_##name = current_counter;           \
1765                 adapter->stats.name &= 0xFFFFFFFF00000000LL;            \
1766                 adapter->stats.name |= current_counter;                 \
1767         }
1768
1769 /**
1770  * igbvf_update_stats - Update the board statistics counters
1771  * @adapter: board private structure
1772 **/
1773 void igbvf_update_stats(struct igbvf_adapter *adapter)
1774 {
1775         struct e1000_hw *hw = &adapter->hw;
1776         struct pci_dev *pdev = adapter->pdev;
1777
1778         /*
1779          * Prevent stats update while adapter is being reset, link is down
1780          * or if the pci connection is down.
1781          */
1782         if (adapter->link_speed == 0)
1783                 return;
1784
1785         if (test_bit(__IGBVF_RESETTING, &adapter->state))
1786                 return;
1787
1788         if (pci_channel_offline(pdev))
1789                 return;
1790
1791         UPDATE_VF_COUNTER(VFGPRC, gprc);
1792         UPDATE_VF_COUNTER(VFGORC, gorc);
1793         UPDATE_VF_COUNTER(VFGPTC, gptc);
1794         UPDATE_VF_COUNTER(VFGOTC, gotc);
1795         UPDATE_VF_COUNTER(VFMPRC, mprc);
1796         UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1797         UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1798         UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1799         UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1800
1801         /* Fill out the OS statistics structure */
1802         adapter->net_stats.multicast = adapter->stats.mprc;
1803 }
1804
1805 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1806 {
1807         dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s\n",
1808                  adapter->link_speed,
1809                  ((adapter->link_duplex == FULL_DUPLEX) ?
1810                   "Full Duplex" : "Half Duplex"));
1811 }
1812
1813 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1814 {
1815         struct e1000_hw *hw = &adapter->hw;
1816         s32 ret_val = E1000_SUCCESS;
1817         bool link_active;
1818
1819         /* If interface is down, stay link down */
1820         if (test_bit(__IGBVF_DOWN, &adapter->state))
1821                 return false;
1822
1823         ret_val = hw->mac.ops.check_for_link(hw);
1824         link_active = !hw->mac.get_link_status;
1825
1826         /* if check for link returns error we will need to reset */
1827         if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1828                 schedule_work(&adapter->reset_task);
1829
1830         return link_active;
1831 }
1832
1833 /**
1834  * igbvf_watchdog - Timer Call-back
1835  * @data: pointer to adapter cast into an unsigned long
1836  **/
1837 static void igbvf_watchdog(unsigned long data)
1838 {
1839         struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1840
1841         /* Do the rest outside of interrupt context */
1842         schedule_work(&adapter->watchdog_task);
1843 }
1844
1845 static void igbvf_watchdog_task(struct work_struct *work)
1846 {
1847         struct igbvf_adapter *adapter = container_of(work,
1848                                                      struct igbvf_adapter,
1849                                                      watchdog_task);
1850         struct net_device *netdev = adapter->netdev;
1851         struct e1000_mac_info *mac = &adapter->hw.mac;
1852         struct igbvf_ring *tx_ring = adapter->tx_ring;
1853         struct e1000_hw *hw = &adapter->hw;
1854         u32 link;
1855         int tx_pending = 0;
1856
1857         link = igbvf_has_link(adapter);
1858
1859         if (link) {
1860                 if (!netif_carrier_ok(netdev)) {
1861                         mac->ops.get_link_up_info(&adapter->hw,
1862                                                   &adapter->link_speed,
1863                                                   &adapter->link_duplex);
1864                         igbvf_print_link_info(adapter);
1865
1866                         /* adjust timeout factor according to speed/duplex */
1867                         adapter->tx_timeout_factor = 1;
1868                         switch (adapter->link_speed) {
1869                         case SPEED_10:
1870                                 adapter->tx_timeout_factor = 16;
1871                                 break;
1872                         case SPEED_100:
1873                                 /* maybe add some timeout factor ? */
1874                                 break;
1875                         }
1876
1877                         netif_carrier_on(netdev);
1878                         netif_wake_queue(netdev);
1879                 }
1880         } else {
1881                 if (netif_carrier_ok(netdev)) {
1882                         adapter->link_speed = 0;
1883                         adapter->link_duplex = 0;
1884                         dev_info(&adapter->pdev->dev, "Link is Down\n");
1885                         netif_carrier_off(netdev);
1886                         netif_stop_queue(netdev);
1887                 }
1888         }
1889
1890         if (netif_carrier_ok(netdev)) {
1891                 igbvf_update_stats(adapter);
1892         } else {
1893                 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1894                               tx_ring->count);
1895                 if (tx_pending) {
1896                         /*
1897                          * We've lost link, so the controller stops DMA,
1898                          * but we've got queued Tx work that's never going
1899                          * to get done, so reset controller to flush Tx.
1900                          * (Do the reset outside of interrupt context).
1901                          */
1902                         adapter->tx_timeout_count++;
1903                         schedule_work(&adapter->reset_task);
1904                 }
1905         }
1906
1907         /* Cause software interrupt to ensure Rx ring is cleaned */
1908         ew32(EICS, adapter->rx_ring->eims_value);
1909
1910         /* Force detection of hung controller every watchdog period */
1911         adapter->detect_tx_hung = 1;
1912
1913         /* Reset the timer */
1914         if (!test_bit(__IGBVF_DOWN, &adapter->state))
1915                 mod_timer(&adapter->watchdog_timer,
1916                           round_jiffies(jiffies + (2 * HZ)));
1917 }
1918
1919 #define IGBVF_TX_FLAGS_CSUM             0x00000001
1920 #define IGBVF_TX_FLAGS_VLAN             0x00000002
1921 #define IGBVF_TX_FLAGS_TSO              0x00000004
1922 #define IGBVF_TX_FLAGS_IPV4             0x00000008
1923 #define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1924 #define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1925
1926 static int igbvf_tso(struct igbvf_adapter *adapter,
1927                      struct igbvf_ring *tx_ring,
1928                      struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1929 {
1930         struct e1000_adv_tx_context_desc *context_desc;
1931         unsigned int i;
1932         int err;
1933         struct igbvf_buffer *buffer_info;
1934         u32 info = 0, tu_cmd = 0;
1935         u32 mss_l4len_idx, l4len;
1936         *hdr_len = 0;
1937
1938         if (skb_header_cloned(skb)) {
1939                 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1940                 if (err) {
1941                         dev_err(&adapter->pdev->dev,
1942                                 "igbvf_tso returning an error\n");
1943                         return err;
1944                 }
1945         }
1946
1947         l4len = tcp_hdrlen(skb);
1948         *hdr_len += l4len;
1949
1950         if (skb->protocol == htons(ETH_P_IP)) {
1951                 struct iphdr *iph = ip_hdr(skb);
1952                 iph->tot_len = 0;
1953                 iph->check = 0;
1954                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1955                                                          iph->daddr, 0,
1956                                                          IPPROTO_TCP,
1957                                                          0);
1958         } else if (skb_is_gso_v6(skb)) {
1959                 ipv6_hdr(skb)->payload_len = 0;
1960                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1961                                                        &ipv6_hdr(skb)->daddr,
1962                                                        0, IPPROTO_TCP, 0);
1963         }
1964
1965         i = tx_ring->next_to_use;
1966
1967         buffer_info = &tx_ring->buffer_info[i];
1968         context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1969         /* VLAN MACLEN IPLEN */
1970         if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1971                 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1972         info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1973         *hdr_len += skb_network_offset(skb);
1974         info |= (skb_transport_header(skb) - skb_network_header(skb));
1975         *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1976         context_desc->vlan_macip_lens = cpu_to_le32(info);
1977
1978         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1979         tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1980
1981         if (skb->protocol == htons(ETH_P_IP))
1982                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1983         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1984
1985         context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1986
1987         /* MSS L4LEN IDX */
1988         mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1989         mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1990
1991         context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1992         context_desc->seqnum_seed = 0;
1993
1994         buffer_info->time_stamp = jiffies;
1995         buffer_info->next_to_watch = i;
1996         buffer_info->dma = 0;
1997         i++;
1998         if (i == tx_ring->count)
1999                 i = 0;
2000
2001         tx_ring->next_to_use = i;
2002
2003         return true;
2004 }
2005
2006 static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
2007                                  struct igbvf_ring *tx_ring,
2008                                  struct sk_buff *skb, u32 tx_flags)
2009 {
2010         struct e1000_adv_tx_context_desc *context_desc;
2011         unsigned int i;
2012         struct igbvf_buffer *buffer_info;
2013         u32 info = 0, tu_cmd = 0;
2014
2015         if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2016             (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
2017                 i = tx_ring->next_to_use;
2018                 buffer_info = &tx_ring->buffer_info[i];
2019                 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
2020
2021                 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2022                         info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
2023
2024                 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2025                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2026                         info |= (skb_transport_header(skb) -
2027                                  skb_network_header(skb));
2028
2029
2030                 context_desc->vlan_macip_lens = cpu_to_le32(info);
2031
2032                 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2033
2034                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2035                         switch (skb->protocol) {
2036                         case __constant_htons(ETH_P_IP):
2037                                 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2038                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2039                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2040                                 break;
2041                         case __constant_htons(ETH_P_IPV6):
2042                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2043                                         tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2044                                 break;
2045                         default:
2046                                 break;
2047                         }
2048                 }
2049
2050                 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2051                 context_desc->seqnum_seed = 0;
2052                 context_desc->mss_l4len_idx = 0;
2053
2054                 buffer_info->time_stamp = jiffies;
2055                 buffer_info->next_to_watch = i;
2056                 buffer_info->dma = 0;
2057                 i++;
2058                 if (i == tx_ring->count)
2059                         i = 0;
2060                 tx_ring->next_to_use = i;
2061
2062                 return true;
2063         }
2064
2065         return false;
2066 }
2067
2068 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2069 {
2070         struct igbvf_adapter *adapter = netdev_priv(netdev);
2071
2072         /* there is enough descriptors then we don't need to worry  */
2073         if (igbvf_desc_unused(adapter->tx_ring) >= size)
2074                 return 0;
2075
2076         netif_stop_queue(netdev);
2077
2078         smp_mb();
2079
2080         /* We need to check again just in case room has been made available */
2081         if (igbvf_desc_unused(adapter->tx_ring) < size)
2082                 return -EBUSY;
2083
2084         netif_wake_queue(netdev);
2085
2086         ++adapter->restart_queue;
2087         return 0;
2088 }
2089
2090 #define IGBVF_MAX_TXD_PWR       16
2091 #define IGBVF_MAX_DATA_PER_TXD  (1 << IGBVF_MAX_TXD_PWR)
2092
2093 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2094                                    struct igbvf_ring *tx_ring,
2095                                    struct sk_buff *skb,
2096                                    unsigned int first)
2097 {
2098         struct igbvf_buffer *buffer_info;
2099         struct pci_dev *pdev = adapter->pdev;
2100         unsigned int len = skb_headlen(skb);
2101         unsigned int count = 0, i;
2102         unsigned int f;
2103
2104         i = tx_ring->next_to_use;
2105
2106         buffer_info = &tx_ring->buffer_info[i];
2107         BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2108         buffer_info->length = len;
2109         /* set time_stamp *before* dma to help avoid a possible race */
2110         buffer_info->time_stamp = jiffies;
2111         buffer_info->next_to_watch = i;
2112         buffer_info->mapped_as_page = false;
2113         buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2114                                           DMA_TO_DEVICE);
2115         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2116                 goto dma_error;
2117
2118
2119         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2120                 struct skb_frag_struct *frag;
2121
2122                 count++;
2123                 i++;
2124                 if (i == tx_ring->count)
2125                         i = 0;
2126
2127                 frag = &skb_shinfo(skb)->frags[f];
2128                 len = frag->size;
2129
2130                 buffer_info = &tx_ring->buffer_info[i];
2131                 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2132                 buffer_info->length = len;
2133                 buffer_info->time_stamp = jiffies;
2134                 buffer_info->next_to_watch = i;
2135                 buffer_info->mapped_as_page = true;
2136                 buffer_info->dma = dma_map_page(&pdev->dev,
2137                                                 frag->page,
2138                                                 frag->page_offset,
2139                                                 len,
2140                                                 DMA_TO_DEVICE);
2141                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2142                         goto dma_error;
2143         }
2144
2145         tx_ring->buffer_info[i].skb = skb;
2146         tx_ring->buffer_info[first].next_to_watch = i;
2147
2148         return ++count;
2149
2150 dma_error:
2151         dev_err(&pdev->dev, "TX DMA map failed\n");
2152
2153         /* clear timestamp and dma mappings for failed buffer_info mapping */
2154         buffer_info->dma = 0;
2155         buffer_info->time_stamp = 0;
2156         buffer_info->length = 0;
2157         buffer_info->next_to_watch = 0;
2158         buffer_info->mapped_as_page = false;
2159         if (count)
2160                 count--;
2161
2162         /* clear timestamp and dma mappings for remaining portion of packet */
2163         while (count--) {
2164                 if (i==0)
2165                         i += tx_ring->count;
2166                 i--;
2167                 buffer_info = &tx_ring->buffer_info[i];
2168                 igbvf_put_txbuf(adapter, buffer_info);
2169         }
2170
2171         return 0;
2172 }
2173
2174 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2175                                       struct igbvf_ring *tx_ring,
2176                                       int tx_flags, int count, u32 paylen,
2177                                       u8 hdr_len)
2178 {
2179         union e1000_adv_tx_desc *tx_desc = NULL;
2180         struct igbvf_buffer *buffer_info;
2181         u32 olinfo_status = 0, cmd_type_len;
2182         unsigned int i;
2183
2184         cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2185                         E1000_ADVTXD_DCMD_DEXT);
2186
2187         if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2188                 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2189
2190         if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2191                 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2192
2193                 /* insert tcp checksum */
2194                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2195
2196                 /* insert ip checksum */
2197                 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2198                         olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2199
2200         } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2201                 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2202         }
2203
2204         olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2205
2206         i = tx_ring->next_to_use;
2207         while (count--) {
2208                 buffer_info = &tx_ring->buffer_info[i];
2209                 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2210                 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2211                 tx_desc->read.cmd_type_len =
2212                          cpu_to_le32(cmd_type_len | buffer_info->length);
2213                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2214                 i++;
2215                 if (i == tx_ring->count)
2216                         i = 0;
2217         }
2218
2219         tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2220         /* Force memory writes to complete before letting h/w
2221          * know there are new descriptors to fetch.  (Only
2222          * applicable for weak-ordered memory model archs,
2223          * such as IA-64). */
2224         wmb();
2225
2226         tx_ring->next_to_use = i;
2227         writel(i, adapter->hw.hw_addr + tx_ring->tail);
2228         /* we need this if more than one processor can write to our tail
2229          * at a time, it syncronizes IO on IA64/Altix systems */
2230         mmiowb();
2231 }
2232
2233 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2234                                              struct net_device *netdev,
2235                                              struct igbvf_ring *tx_ring)
2236 {
2237         struct igbvf_adapter *adapter = netdev_priv(netdev);
2238         unsigned int first, tx_flags = 0;
2239         u8 hdr_len = 0;
2240         int count = 0;
2241         int tso = 0;
2242
2243         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2244                 dev_kfree_skb_any(skb);
2245                 return NETDEV_TX_OK;
2246         }
2247
2248         if (skb->len <= 0) {
2249                 dev_kfree_skb_any(skb);
2250                 return NETDEV_TX_OK;
2251         }
2252
2253         /*
2254          * need: count + 4 desc gap to keep tail from touching
2255          *       + 2 desc gap to keep tail from touching head,
2256          *       + 1 desc for skb->data,
2257          *       + 1 desc for context descriptor,
2258          * head, otherwise try next time
2259          */
2260         if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2261                 /* this is a hard error */
2262                 return NETDEV_TX_BUSY;
2263         }
2264
2265         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2266                 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2267                 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2268         }
2269
2270         if (skb->protocol == htons(ETH_P_IP))
2271                 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2272
2273         first = tx_ring->next_to_use;
2274
2275         tso = skb_is_gso(skb) ?
2276                 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2277         if (unlikely(tso < 0)) {
2278                 dev_kfree_skb_any(skb);
2279                 return NETDEV_TX_OK;
2280         }
2281
2282         if (tso)
2283                 tx_flags |= IGBVF_TX_FLAGS_TSO;
2284         else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2285                  (skb->ip_summed == CHECKSUM_PARTIAL))
2286                 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2287
2288         /*
2289          * count reflects descriptors mapped, if 0 then mapping error
2290          * has occured and we need to rewind the descriptor queue
2291          */
2292         count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2293
2294         if (count) {
2295                 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2296                                    skb->len, hdr_len);
2297                 /* Make sure there is space in the ring for the next send. */
2298                 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2299         } else {
2300                 dev_kfree_skb_any(skb);
2301                 tx_ring->buffer_info[first].time_stamp = 0;
2302                 tx_ring->next_to_use = first;
2303         }
2304
2305         return NETDEV_TX_OK;
2306 }
2307
2308 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2309                                     struct net_device *netdev)
2310 {
2311         struct igbvf_adapter *adapter = netdev_priv(netdev);
2312         struct igbvf_ring *tx_ring;
2313
2314         if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2315                 dev_kfree_skb_any(skb);
2316                 return NETDEV_TX_OK;
2317         }
2318
2319         tx_ring = &adapter->tx_ring[0];
2320
2321         return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2322 }
2323
2324 /**
2325  * igbvf_tx_timeout - Respond to a Tx Hang
2326  * @netdev: network interface device structure
2327  **/
2328 static void igbvf_tx_timeout(struct net_device *netdev)
2329 {
2330         struct igbvf_adapter *adapter = netdev_priv(netdev);
2331
2332         /* Do the reset outside of interrupt context */
2333         adapter->tx_timeout_count++;
2334         schedule_work(&adapter->reset_task);
2335 }
2336
2337 static void igbvf_reset_task(struct work_struct *work)
2338 {
2339         struct igbvf_adapter *adapter;
2340         adapter = container_of(work, struct igbvf_adapter, reset_task);
2341
2342         igbvf_reinit_locked(adapter);
2343 }
2344
2345 /**
2346  * igbvf_get_stats - Get System Network Statistics
2347  * @netdev: network interface device structure
2348  *
2349  * Returns the address of the device statistics structure.
2350  * The statistics are actually updated from the timer callback.
2351  **/
2352 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2353 {
2354         struct igbvf_adapter *adapter = netdev_priv(netdev);
2355
2356         /* only return the current stats */
2357         return &adapter->net_stats;
2358 }
2359
2360 /**
2361  * igbvf_change_mtu - Change the Maximum Transfer Unit
2362  * @netdev: network interface device structure
2363  * @new_mtu: new value for maximum frame size
2364  *
2365  * Returns 0 on success, negative on failure
2366  **/
2367 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2368 {
2369         struct igbvf_adapter *adapter = netdev_priv(netdev);
2370         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2371
2372         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2373                 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2374                 return -EINVAL;
2375         }
2376
2377 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2378         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2379                 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2380                 return -EINVAL;
2381         }
2382
2383         while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2384                 msleep(1);
2385         /* igbvf_down has a dependency on max_frame_size */
2386         adapter->max_frame_size = max_frame;
2387         if (netif_running(netdev))
2388                 igbvf_down(adapter);
2389
2390         /*
2391          * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2392          * means we reserve 2 more, this pushes us to allocate from the next
2393          * larger slab size.
2394          * i.e. RXBUFFER_2048 --> size-4096 slab
2395          * However with the new *_jumbo_rx* routines, jumbo receives will use
2396          * fragmented skbs
2397          */
2398
2399         if (max_frame <= 1024)
2400                 adapter->rx_buffer_len = 1024;
2401         else if (max_frame <= 2048)
2402                 adapter->rx_buffer_len = 2048;
2403         else
2404 #if (PAGE_SIZE / 2) > 16384
2405                 adapter->rx_buffer_len = 16384;
2406 #else
2407                 adapter->rx_buffer_len = PAGE_SIZE / 2;
2408 #endif
2409
2410
2411         /* adjust allocation if LPE protects us, and we aren't using SBP */
2412         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2413              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2414                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2415                                          ETH_FCS_LEN;
2416
2417         dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2418                  netdev->mtu, new_mtu);
2419         netdev->mtu = new_mtu;
2420
2421         if (netif_running(netdev))
2422                 igbvf_up(adapter);
2423         else
2424                 igbvf_reset(adapter);
2425
2426         clear_bit(__IGBVF_RESETTING, &adapter->state);
2427
2428         return 0;
2429 }
2430
2431 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2432 {
2433         switch (cmd) {
2434         default:
2435                 return -EOPNOTSUPP;
2436         }
2437 }
2438
2439 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2440 {
2441         struct net_device *netdev = pci_get_drvdata(pdev);
2442         struct igbvf_adapter *adapter = netdev_priv(netdev);
2443 #ifdef CONFIG_PM
2444         int retval = 0;
2445 #endif
2446
2447         netif_device_detach(netdev);
2448
2449         if (netif_running(netdev)) {
2450                 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2451                 igbvf_down(adapter);
2452                 igbvf_free_irq(adapter);
2453         }
2454
2455 #ifdef CONFIG_PM
2456         retval = pci_save_state(pdev);
2457         if (retval)
2458                 return retval;
2459 #endif
2460
2461         pci_disable_device(pdev);
2462
2463         return 0;
2464 }
2465
2466 #ifdef CONFIG_PM
2467 static int igbvf_resume(struct pci_dev *pdev)
2468 {
2469         struct net_device *netdev = pci_get_drvdata(pdev);
2470         struct igbvf_adapter *adapter = netdev_priv(netdev);
2471         u32 err;
2472
2473         pci_restore_state(pdev);
2474         err = pci_enable_device_mem(pdev);
2475         if (err) {
2476                 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2477                 return err;
2478         }
2479
2480         pci_set_master(pdev);
2481
2482         if (netif_running(netdev)) {
2483                 err = igbvf_request_irq(adapter);
2484                 if (err)
2485                         return err;
2486         }
2487
2488         igbvf_reset(adapter);
2489
2490         if (netif_running(netdev))
2491                 igbvf_up(adapter);
2492
2493         netif_device_attach(netdev);
2494
2495         return 0;
2496 }
2497 #endif
2498
2499 static void igbvf_shutdown(struct pci_dev *pdev)
2500 {
2501         igbvf_suspend(pdev, PMSG_SUSPEND);
2502 }
2503
2504 #ifdef CONFIG_NET_POLL_CONTROLLER
2505 /*
2506  * Polling 'interrupt' - used by things like netconsole to send skbs
2507  * without having to re-enable interrupts. It's not called while
2508  * the interrupt routine is executing.
2509  */
2510 static void igbvf_netpoll(struct net_device *netdev)
2511 {
2512         struct igbvf_adapter *adapter = netdev_priv(netdev);
2513
2514         disable_irq(adapter->pdev->irq);
2515
2516         igbvf_clean_tx_irq(adapter->tx_ring);
2517
2518         enable_irq(adapter->pdev->irq);
2519 }
2520 #endif
2521
2522 /**
2523  * igbvf_io_error_detected - called when PCI error is detected
2524  * @pdev: Pointer to PCI device
2525  * @state: The current pci connection state
2526  *
2527  * This function is called after a PCI bus error affecting
2528  * this device has been detected.
2529  */
2530 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2531                                                 pci_channel_state_t state)
2532 {
2533         struct net_device *netdev = pci_get_drvdata(pdev);
2534         struct igbvf_adapter *adapter = netdev_priv(netdev);
2535
2536         netif_device_detach(netdev);
2537
2538         if (state == pci_channel_io_perm_failure)
2539                 return PCI_ERS_RESULT_DISCONNECT;
2540
2541         if (netif_running(netdev))
2542                 igbvf_down(adapter);
2543         pci_disable_device(pdev);
2544
2545         /* Request a slot slot reset. */
2546         return PCI_ERS_RESULT_NEED_RESET;
2547 }
2548
2549 /**
2550  * igbvf_io_slot_reset - called after the pci bus has been reset.
2551  * @pdev: Pointer to PCI device
2552  *
2553  * Restart the card from scratch, as if from a cold-boot. Implementation
2554  * resembles the first-half of the igbvf_resume routine.
2555  */
2556 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2557 {
2558         struct net_device *netdev = pci_get_drvdata(pdev);
2559         struct igbvf_adapter *adapter = netdev_priv(netdev);
2560
2561         if (pci_enable_device_mem(pdev)) {
2562                 dev_err(&pdev->dev,
2563                         "Cannot re-enable PCI device after reset.\n");
2564                 return PCI_ERS_RESULT_DISCONNECT;
2565         }
2566         pci_set_master(pdev);
2567
2568         igbvf_reset(adapter);
2569
2570         return PCI_ERS_RESULT_RECOVERED;
2571 }
2572
2573 /**
2574  * igbvf_io_resume - called when traffic can start flowing again.
2575  * @pdev: Pointer to PCI device
2576  *
2577  * This callback is called when the error recovery driver tells us that
2578  * its OK to resume normal operation. Implementation resembles the
2579  * second-half of the igbvf_resume routine.
2580  */
2581 static void igbvf_io_resume(struct pci_dev *pdev)
2582 {
2583         struct net_device *netdev = pci_get_drvdata(pdev);
2584         struct igbvf_adapter *adapter = netdev_priv(netdev);
2585
2586         if (netif_running(netdev)) {
2587                 if (igbvf_up(adapter)) {
2588                         dev_err(&pdev->dev,
2589                                 "can't bring device back up after reset\n");
2590                         return;
2591                 }
2592         }
2593
2594         netif_device_attach(netdev);
2595 }
2596
2597 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2598 {
2599         struct e1000_hw *hw = &adapter->hw;
2600         struct net_device *netdev = adapter->netdev;
2601         struct pci_dev *pdev = adapter->pdev;
2602
2603         dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2604         dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2605         dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
2606 }
2607
2608 static const struct net_device_ops igbvf_netdev_ops = {
2609         .ndo_open                       = igbvf_open,
2610         .ndo_stop                       = igbvf_close,
2611         .ndo_start_xmit                 = igbvf_xmit_frame,
2612         .ndo_get_stats                  = igbvf_get_stats,
2613         .ndo_set_multicast_list         = igbvf_set_multi,
2614         .ndo_set_mac_address            = igbvf_set_mac,
2615         .ndo_change_mtu                 = igbvf_change_mtu,
2616         .ndo_do_ioctl                   = igbvf_ioctl,
2617         .ndo_tx_timeout                 = igbvf_tx_timeout,
2618         .ndo_vlan_rx_register           = igbvf_vlan_rx_register,
2619         .ndo_vlan_rx_add_vid            = igbvf_vlan_rx_add_vid,
2620         .ndo_vlan_rx_kill_vid           = igbvf_vlan_rx_kill_vid,
2621 #ifdef CONFIG_NET_POLL_CONTROLLER
2622         .ndo_poll_controller            = igbvf_netpoll,
2623 #endif
2624 };
2625
2626 /**
2627  * igbvf_probe - Device Initialization Routine
2628  * @pdev: PCI device information struct
2629  * @ent: entry in igbvf_pci_tbl
2630  *
2631  * Returns 0 on success, negative on failure
2632  *
2633  * igbvf_probe initializes an adapter identified by a pci_dev structure.
2634  * The OS initialization, configuring of the adapter private structure,
2635  * and a hardware reset occur.
2636  **/
2637 static int __devinit igbvf_probe(struct pci_dev *pdev,
2638                                  const struct pci_device_id *ent)
2639 {
2640         struct net_device *netdev;
2641         struct igbvf_adapter *adapter;
2642         struct e1000_hw *hw;
2643         const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2644
2645         static int cards_found;
2646         int err, pci_using_dac;
2647
2648         err = pci_enable_device_mem(pdev);
2649         if (err)
2650                 return err;
2651
2652         pci_using_dac = 0;
2653         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2654         if (!err) {
2655                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2656                 if (!err)
2657                         pci_using_dac = 1;
2658         } else {
2659                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2660                 if (err) {
2661                         err = dma_set_coherent_mask(&pdev->dev,
2662                                                     DMA_BIT_MASK(32));
2663                         if (err) {
2664                                 dev_err(&pdev->dev, "No usable DMA "
2665                                         "configuration, aborting\n");
2666                                 goto err_dma;
2667                         }
2668                 }
2669         }
2670
2671         err = pci_request_regions(pdev, igbvf_driver_name);
2672         if (err)
2673                 goto err_pci_reg;
2674
2675         pci_set_master(pdev);
2676
2677         err = -ENOMEM;
2678         netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2679         if (!netdev)
2680                 goto err_alloc_etherdev;
2681
2682         SET_NETDEV_DEV(netdev, &pdev->dev);
2683
2684         pci_set_drvdata(pdev, netdev);
2685         adapter = netdev_priv(netdev);
2686         hw = &adapter->hw;
2687         adapter->netdev = netdev;
2688         adapter->pdev = pdev;
2689         adapter->ei = ei;
2690         adapter->pba = ei->pba;
2691         adapter->flags = ei->flags;
2692         adapter->hw.back = adapter;
2693         adapter->hw.mac.type = ei->mac;
2694         adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
2695
2696         /* PCI config space info */
2697
2698         hw->vendor_id = pdev->vendor;
2699         hw->device_id = pdev->device;
2700         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2701         hw->subsystem_device_id = pdev->subsystem_device;
2702
2703         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
2704
2705         err = -EIO;
2706         adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2707                                       pci_resource_len(pdev, 0));
2708
2709         if (!adapter->hw.hw_addr)
2710                 goto err_ioremap;
2711
2712         if (ei->get_variants) {
2713                 err = ei->get_variants(adapter);
2714                 if (err)
2715                         goto err_ioremap;
2716         }
2717
2718         /* setup adapter struct */
2719         err = igbvf_sw_init(adapter);
2720         if (err)
2721                 goto err_sw_init;
2722
2723         /* construct the net_device struct */
2724         netdev->netdev_ops = &igbvf_netdev_ops;
2725
2726         igbvf_set_ethtool_ops(netdev);
2727         netdev->watchdog_timeo = 5 * HZ;
2728         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2729
2730         adapter->bd_number = cards_found++;
2731
2732         netdev->features = NETIF_F_SG |
2733                            NETIF_F_IP_CSUM |
2734                            NETIF_F_HW_VLAN_TX |
2735                            NETIF_F_HW_VLAN_RX |
2736                            NETIF_F_HW_VLAN_FILTER;
2737
2738         netdev->features |= NETIF_F_IPV6_CSUM;
2739         netdev->features |= NETIF_F_TSO;
2740         netdev->features |= NETIF_F_TSO6;
2741
2742         if (pci_using_dac)
2743                 netdev->features |= NETIF_F_HIGHDMA;
2744
2745         netdev->vlan_features |= NETIF_F_TSO;
2746         netdev->vlan_features |= NETIF_F_TSO6;
2747         netdev->vlan_features |= NETIF_F_IP_CSUM;
2748         netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2749         netdev->vlan_features |= NETIF_F_SG;
2750
2751         /*reset the controller to put the device in a known good state */
2752         err = hw->mac.ops.reset_hw(hw);
2753         if (err) {
2754                 dev_info(&pdev->dev,
2755                          "PF still in reset state, assigning new address."
2756                          " Is the PF interface up?\n");
2757                 dev_hw_addr_random(adapter->netdev, hw->mac.addr);
2758         } else {
2759                 err = hw->mac.ops.read_mac_addr(hw);
2760                 if (err) {
2761                         dev_err(&pdev->dev, "Error reading MAC address\n");
2762                         goto err_hw_init;
2763                 }
2764         }
2765
2766         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
2767         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
2768
2769         if (!is_valid_ether_addr(netdev->perm_addr)) {
2770                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
2771                         netdev->dev_addr);
2772                 err = -EIO;
2773                 goto err_hw_init;
2774         }
2775
2776         setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2777                     (unsigned long) adapter);
2778
2779         INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2780         INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2781
2782         /* ring size defaults */
2783         adapter->rx_ring->count = 1024;
2784         adapter->tx_ring->count = 1024;
2785
2786         /* reset the hardware with the new settings */
2787         igbvf_reset(adapter);
2788
2789         strcpy(netdev->name, "eth%d");
2790         err = register_netdev(netdev);
2791         if (err)
2792                 goto err_hw_init;
2793
2794         /* tell the stack to leave us alone until igbvf_open() is called */
2795         netif_carrier_off(netdev);
2796         netif_stop_queue(netdev);
2797
2798         igbvf_print_device_info(adapter);
2799
2800         igbvf_initialize_last_counter_stats(adapter);
2801
2802         return 0;
2803
2804 err_hw_init:
2805         kfree(adapter->tx_ring);
2806         kfree(adapter->rx_ring);
2807 err_sw_init:
2808         igbvf_reset_interrupt_capability(adapter);
2809         iounmap(adapter->hw.hw_addr);
2810 err_ioremap:
2811         free_netdev(netdev);
2812 err_alloc_etherdev:
2813         pci_release_regions(pdev);
2814 err_pci_reg:
2815 err_dma:
2816         pci_disable_device(pdev);
2817         return err;
2818 }
2819
2820 /**
2821  * igbvf_remove - Device Removal Routine
2822  * @pdev: PCI device information struct
2823  *
2824  * igbvf_remove is called by the PCI subsystem to alert the driver
2825  * that it should release a PCI device.  The could be caused by a
2826  * Hot-Plug event, or because the driver is going to be removed from
2827  * memory.
2828  **/
2829 static void __devexit igbvf_remove(struct pci_dev *pdev)
2830 {
2831         struct net_device *netdev = pci_get_drvdata(pdev);
2832         struct igbvf_adapter *adapter = netdev_priv(netdev);
2833         struct e1000_hw *hw = &adapter->hw;
2834
2835         /*
2836          * The watchdog timer may be rescheduled, so explicitly
2837          * disable it from being rescheduled.
2838          */
2839         set_bit(__IGBVF_DOWN, &adapter->state);
2840         del_timer_sync(&adapter->watchdog_timer);
2841
2842         cancel_work_sync(&adapter->reset_task);
2843         cancel_work_sync(&adapter->watchdog_task);
2844
2845         unregister_netdev(netdev);
2846
2847         igbvf_reset_interrupt_capability(adapter);
2848
2849         /*
2850          * it is important to delete the napi struct prior to freeing the
2851          * rx ring so that you do not end up with null pointer refs
2852          */
2853         netif_napi_del(&adapter->rx_ring->napi);
2854         kfree(adapter->tx_ring);
2855         kfree(adapter->rx_ring);
2856
2857         iounmap(hw->hw_addr);
2858         if (hw->flash_address)
2859                 iounmap(hw->flash_address);
2860         pci_release_regions(pdev);
2861
2862         free_netdev(netdev);
2863
2864         pci_disable_device(pdev);
2865 }
2866
2867 /* PCI Error Recovery (ERS) */
2868 static struct pci_error_handlers igbvf_err_handler = {
2869         .error_detected = igbvf_io_error_detected,
2870         .slot_reset = igbvf_io_slot_reset,
2871         .resume = igbvf_io_resume,
2872 };
2873
2874 static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
2875         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2876         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2877         { } /* terminate list */
2878 };
2879 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2880
2881 /* PCI Device API Driver */
2882 static struct pci_driver igbvf_driver = {
2883         .name     = igbvf_driver_name,
2884         .id_table = igbvf_pci_tbl,
2885         .probe    = igbvf_probe,
2886         .remove   = __devexit_p(igbvf_remove),
2887 #ifdef CONFIG_PM
2888         /* Power Management Hooks */
2889         .suspend  = igbvf_suspend,
2890         .resume   = igbvf_resume,
2891 #endif
2892         .shutdown = igbvf_shutdown,
2893         .err_handler = &igbvf_err_handler
2894 };
2895
2896 /**
2897  * igbvf_init_module - Driver Registration Routine
2898  *
2899  * igbvf_init_module is the first routine called when the driver is
2900  * loaded. All it does is register with the PCI subsystem.
2901  **/
2902 static int __init igbvf_init_module(void)
2903 {
2904         int ret;
2905         printk(KERN_INFO "%s - version %s\n",
2906                igbvf_driver_string, igbvf_driver_version);
2907         printk(KERN_INFO "%s\n", igbvf_copyright);
2908
2909         ret = pci_register_driver(&igbvf_driver);
2910
2911         return ret;
2912 }
2913 module_init(igbvf_init_module);
2914
2915 /**
2916  * igbvf_exit_module - Driver Exit Cleanup Routine
2917  *
2918  * igbvf_exit_module is called just before the driver is removed
2919  * from memory.
2920  **/
2921 static void __exit igbvf_exit_module(void)
2922 {
2923         pci_unregister_driver(&igbvf_driver);
2924 }
2925 module_exit(igbvf_exit_module);
2926
2927
2928 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2929 MODULE_DESCRIPTION("Intel(R) 82576 Virtual Function Network Driver");
2930 MODULE_LICENSE("GPL");
2931 MODULE_VERSION(DRV_VERSION);
2932
2933 /* netdev.c */