]> Pileus Git - ~andy/linux/blob - drivers/net/ethernet/sfc/nic.c
sfc: Fix IRQ cleanup in case of a probe failure
[~andy/linux] / drivers / net / ethernet / sfc / nic.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2011 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/cpu_rmap.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "regs.h"
23 #include "io.h"
24 #include "workarounds.h"
25
26 /**************************************************************************
27  *
28  * Configurable values
29  *
30  **************************************************************************
31  */
32
33 /* This is set to 16 for a good reason.  In summary, if larger than
34  * 16, the descriptor cache holds more than a default socket
35  * buffer's worth of packets (for UDP we can only have at most one
36  * socket buffer's worth outstanding).  This combined with the fact
37  * that we only get 1 TX event per descriptor cache means the NIC
38  * goes idle.
39  */
40 #define TX_DC_ENTRIES 16
41 #define TX_DC_ENTRIES_ORDER 1
42
43 #define RX_DC_ENTRIES 64
44 #define RX_DC_ENTRIES_ORDER 3
45
46 /* If EFX_MAX_INT_ERRORS internal errors occur within
47  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
48  * disable it.
49  */
50 #define EFX_INT_ERROR_EXPIRE 3600
51 #define EFX_MAX_INT_ERRORS 5
52
53 /* Depth of RX flush request fifo */
54 #define EFX_RX_FLUSH_COUNT 4
55
56 /* Driver generated events */
57 #define _EFX_CHANNEL_MAGIC_TEST         0x000101
58 #define _EFX_CHANNEL_MAGIC_FILL         0x000102
59 #define _EFX_CHANNEL_MAGIC_RX_DRAIN     0x000103
60 #define _EFX_CHANNEL_MAGIC_TX_DRAIN     0x000104
61
62 #define _EFX_CHANNEL_MAGIC(_code, _data)        ((_code) << 8 | (_data))
63 #define _EFX_CHANNEL_MAGIC_CODE(_magic)         ((_magic) >> 8)
64
65 #define EFX_CHANNEL_MAGIC_TEST(_channel)                                \
66         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
67 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)                               \
68         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,                     \
69                            efx_rx_queue_index(_rx_queue))
70 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)                           \
71         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,                 \
72                            efx_rx_queue_index(_rx_queue))
73 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)                           \
74         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,                 \
75                            (_tx_queue)->queue)
76
77 static void efx_magic_event(struct efx_channel *channel, u32 magic);
78
79 /**************************************************************************
80  *
81  * Solarstorm hardware access
82  *
83  **************************************************************************/
84
85 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
86                                      unsigned int index)
87 {
88         efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
89                         value, index);
90 }
91
92 /* Read the current event from the event queue */
93 static inline efx_qword_t *efx_event(struct efx_channel *channel,
94                                      unsigned int index)
95 {
96         return ((efx_qword_t *) (channel->eventq.addr)) +
97                 (index & channel->eventq_mask);
98 }
99
100 /* See if an event is present
101  *
102  * We check both the high and low dword of the event for all ones.  We
103  * wrote all ones when we cleared the event, and no valid event can
104  * have all ones in either its high or low dwords.  This approach is
105  * robust against reordering.
106  *
107  * Note that using a single 64-bit comparison is incorrect; even
108  * though the CPU read will be atomic, the DMA write may not be.
109  */
110 static inline int efx_event_present(efx_qword_t *event)
111 {
112         return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
113                   EFX_DWORD_IS_ALL_ONES(event->dword[1]));
114 }
115
116 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
117                                      const efx_oword_t *mask)
118 {
119         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
120                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
121 }
122
123 int efx_nic_test_registers(struct efx_nic *efx,
124                            const struct efx_nic_register_test *regs,
125                            size_t n_regs)
126 {
127         unsigned address = 0, i, j;
128         efx_oword_t mask, imask, original, reg, buf;
129
130         for (i = 0; i < n_regs; ++i) {
131                 address = regs[i].address;
132                 mask = imask = regs[i].mask;
133                 EFX_INVERT_OWORD(imask);
134
135                 efx_reado(efx, &original, address);
136
137                 /* bit sweep on and off */
138                 for (j = 0; j < 128; j++) {
139                         if (!EFX_EXTRACT_OWORD32(mask, j, j))
140                                 continue;
141
142                         /* Test this testable bit can be set in isolation */
143                         EFX_AND_OWORD(reg, original, mask);
144                         EFX_SET_OWORD32(reg, j, j, 1);
145
146                         efx_writeo(efx, &reg, address);
147                         efx_reado(efx, &buf, address);
148
149                         if (efx_masked_compare_oword(&reg, &buf, &mask))
150                                 goto fail;
151
152                         /* Test this testable bit can be cleared in isolation */
153                         EFX_OR_OWORD(reg, original, mask);
154                         EFX_SET_OWORD32(reg, j, j, 0);
155
156                         efx_writeo(efx, &reg, address);
157                         efx_reado(efx, &buf, address);
158
159                         if (efx_masked_compare_oword(&reg, &buf, &mask))
160                                 goto fail;
161                 }
162
163                 efx_writeo(efx, &original, address);
164         }
165
166         return 0;
167
168 fail:
169         netif_err(efx, hw, efx->net_dev,
170                   "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
171                   " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
172                   EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
173         return -EIO;
174 }
175
176 /**************************************************************************
177  *
178  * Special buffer handling
179  * Special buffers are used for event queues and the TX and RX
180  * descriptor rings.
181  *
182  *************************************************************************/
183
184 /*
185  * Initialise a special buffer
186  *
187  * This will define a buffer (previously allocated via
188  * efx_alloc_special_buffer()) in the buffer table, allowing
189  * it to be used for event queues, descriptor rings etc.
190  */
191 static void
192 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
193 {
194         efx_qword_t buf_desc;
195         unsigned int index;
196         dma_addr_t dma_addr;
197         int i;
198
199         EFX_BUG_ON_PARANOID(!buffer->addr);
200
201         /* Write buffer descriptors to NIC */
202         for (i = 0; i < buffer->entries; i++) {
203                 index = buffer->index + i;
204                 dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE);
205                 netif_dbg(efx, probe, efx->net_dev,
206                           "mapping special buffer %d at %llx\n",
207                           index, (unsigned long long)dma_addr);
208                 EFX_POPULATE_QWORD_3(buf_desc,
209                                      FRF_AZ_BUF_ADR_REGION, 0,
210                                      FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
211                                      FRF_AZ_BUF_OWNER_ID_FBUF, 0);
212                 efx_write_buf_tbl(efx, &buf_desc, index);
213         }
214 }
215
216 /* Unmaps a buffer and clears the buffer table entries */
217 static void
218 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
219 {
220         efx_oword_t buf_tbl_upd;
221         unsigned int start = buffer->index;
222         unsigned int end = (buffer->index + buffer->entries - 1);
223
224         if (!buffer->entries)
225                 return;
226
227         netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
228                   buffer->index, buffer->index + buffer->entries - 1);
229
230         EFX_POPULATE_OWORD_4(buf_tbl_upd,
231                              FRF_AZ_BUF_UPD_CMD, 0,
232                              FRF_AZ_BUF_CLR_CMD, 1,
233                              FRF_AZ_BUF_CLR_END_ID, end,
234                              FRF_AZ_BUF_CLR_START_ID, start);
235         efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
236 }
237
238 /*
239  * Allocate a new special buffer
240  *
241  * This allocates memory for a new buffer, clears it and allocates a
242  * new buffer ID range.  It does not write into the buffer table.
243  *
244  * This call will allocate 4KB buffers, since 8KB buffers can't be
245  * used for event queues and descriptor rings.
246  */
247 static int efx_alloc_special_buffer(struct efx_nic *efx,
248                                     struct efx_special_buffer *buffer,
249                                     unsigned int len)
250 {
251         len = ALIGN(len, EFX_BUF_SIZE);
252
253         buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
254                                           &buffer->dma_addr, GFP_KERNEL);
255         if (!buffer->addr)
256                 return -ENOMEM;
257         buffer->len = len;
258         buffer->entries = len / EFX_BUF_SIZE;
259         BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
260
261         /* Select new buffer ID */
262         buffer->index = efx->next_buffer_table;
263         efx->next_buffer_table += buffer->entries;
264 #ifdef CONFIG_SFC_SRIOV
265         BUG_ON(efx_sriov_enabled(efx) &&
266                efx->vf_buftbl_base < efx->next_buffer_table);
267 #endif
268
269         netif_dbg(efx, probe, efx->net_dev,
270                   "allocating special buffers %d-%d at %llx+%x "
271                   "(virt %p phys %llx)\n", buffer->index,
272                   buffer->index + buffer->entries - 1,
273                   (u64)buffer->dma_addr, len,
274                   buffer->addr, (u64)virt_to_phys(buffer->addr));
275
276         return 0;
277 }
278
279 static void
280 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
281 {
282         if (!buffer->addr)
283                 return;
284
285         netif_dbg(efx, hw, efx->net_dev,
286                   "deallocating special buffers %d-%d at %llx+%x "
287                   "(virt %p phys %llx)\n", buffer->index,
288                   buffer->index + buffer->entries - 1,
289                   (u64)buffer->dma_addr, buffer->len,
290                   buffer->addr, (u64)virt_to_phys(buffer->addr));
291
292         dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
293                           buffer->dma_addr);
294         buffer->addr = NULL;
295         buffer->entries = 0;
296 }
297
298 /**************************************************************************
299  *
300  * Generic buffer handling
301  * These buffers are used for interrupt status, MAC stats, etc.
302  *
303  **************************************************************************/
304
305 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
306                          unsigned int len)
307 {
308         buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
309                                           &buffer->dma_addr,
310                                           GFP_ATOMIC | __GFP_ZERO);
311         if (!buffer->addr)
312                 return -ENOMEM;
313         buffer->len = len;
314         return 0;
315 }
316
317 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
318 {
319         if (buffer->addr) {
320                 dma_free_coherent(&efx->pci_dev->dev, buffer->len,
321                                   buffer->addr, buffer->dma_addr);
322                 buffer->addr = NULL;
323         }
324 }
325
326 /**************************************************************************
327  *
328  * TX path
329  *
330  **************************************************************************/
331
332 /* Returns a pointer to the specified transmit descriptor in the TX
333  * descriptor queue belonging to the specified channel.
334  */
335 static inline efx_qword_t *
336 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
337 {
338         return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
339 }
340
341 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
342 static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
343 {
344         unsigned write_ptr;
345         efx_dword_t reg;
346
347         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
348         EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
349         efx_writed_page(tx_queue->efx, &reg,
350                         FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
351 }
352
353 /* Write pointer and first descriptor for TX descriptor ring */
354 static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
355                                     const efx_qword_t *txd)
356 {
357         unsigned write_ptr;
358         efx_oword_t reg;
359
360         BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
361         BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
362
363         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
364         EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
365                              FRF_AZ_TX_DESC_WPTR, write_ptr);
366         reg.qword[0] = *txd;
367         efx_writeo_page(tx_queue->efx, &reg,
368                         FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
369 }
370
371 static inline bool
372 efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
373 {
374         unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
375
376         if (empty_read_count == 0)
377                 return false;
378
379         tx_queue->empty_read_count = 0;
380         return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0
381                 && tx_queue->write_count - write_count == 1;
382 }
383
384 /* For each entry inserted into the software descriptor ring, create a
385  * descriptor in the hardware TX descriptor ring (in host memory), and
386  * write a doorbell.
387  */
388 void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
389 {
390
391         struct efx_tx_buffer *buffer;
392         efx_qword_t *txd;
393         unsigned write_ptr;
394         unsigned old_write_count = tx_queue->write_count;
395
396         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
397
398         do {
399                 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
400                 buffer = &tx_queue->buffer[write_ptr];
401                 txd = efx_tx_desc(tx_queue, write_ptr);
402                 ++tx_queue->write_count;
403
404                 /* Create TX descriptor ring entry */
405                 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
406                 EFX_POPULATE_QWORD_4(*txd,
407                                      FSF_AZ_TX_KER_CONT,
408                                      buffer->flags & EFX_TX_BUF_CONT,
409                                      FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
410                                      FSF_AZ_TX_KER_BUF_REGION, 0,
411                                      FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
412         } while (tx_queue->write_count != tx_queue->insert_count);
413
414         wmb(); /* Ensure descriptors are written before they are fetched */
415
416         if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
417                 txd = efx_tx_desc(tx_queue,
418                                   old_write_count & tx_queue->ptr_mask);
419                 efx_push_tx_desc(tx_queue, txd);
420                 ++tx_queue->pushes;
421         } else {
422                 efx_notify_tx_desc(tx_queue);
423         }
424 }
425
426 /* Allocate hardware resources for a TX queue */
427 int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
428 {
429         struct efx_nic *efx = tx_queue->efx;
430         unsigned entries;
431
432         entries = tx_queue->ptr_mask + 1;
433         return efx_alloc_special_buffer(efx, &tx_queue->txd,
434                                         entries * sizeof(efx_qword_t));
435 }
436
437 void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
438 {
439         struct efx_nic *efx = tx_queue->efx;
440         efx_oword_t reg;
441
442         /* Pin TX descriptor ring */
443         efx_init_special_buffer(efx, &tx_queue->txd);
444
445         /* Push TX descriptor ring to card */
446         EFX_POPULATE_OWORD_10(reg,
447                               FRF_AZ_TX_DESCQ_EN, 1,
448                               FRF_AZ_TX_ISCSI_DDIG_EN, 0,
449                               FRF_AZ_TX_ISCSI_HDIG_EN, 0,
450                               FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
451                               FRF_AZ_TX_DESCQ_EVQ_ID,
452                               tx_queue->channel->channel,
453                               FRF_AZ_TX_DESCQ_OWNER_ID, 0,
454                               FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
455                               FRF_AZ_TX_DESCQ_SIZE,
456                               __ffs(tx_queue->txd.entries),
457                               FRF_AZ_TX_DESCQ_TYPE, 0,
458                               FRF_BZ_TX_NON_IP_DROP_DIS, 1);
459
460         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
461                 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
462                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
463                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
464                                     !csum);
465         }
466
467         efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
468                          tx_queue->queue);
469
470         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
471                 /* Only 128 bits in this register */
472                 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
473
474                 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
475                 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
476                         __clear_bit_le(tx_queue->queue, &reg);
477                 else
478                         __set_bit_le(tx_queue->queue, &reg);
479                 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
480         }
481
482         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
483                 EFX_POPULATE_OWORD_1(reg,
484                                      FRF_BZ_TX_PACE,
485                                      (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
486                                      FFE_BZ_TX_PACE_OFF :
487                                      FFE_BZ_TX_PACE_RESERVED);
488                 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
489                                  tx_queue->queue);
490         }
491 }
492
493 static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
494 {
495         struct efx_nic *efx = tx_queue->efx;
496         efx_oword_t tx_flush_descq;
497
498         WARN_ON(atomic_read(&tx_queue->flush_outstanding));
499         atomic_set(&tx_queue->flush_outstanding, 1);
500
501         EFX_POPULATE_OWORD_2(tx_flush_descq,
502                              FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
503                              FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
504         efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
505 }
506
507 void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
508 {
509         struct efx_nic *efx = tx_queue->efx;
510         efx_oword_t tx_desc_ptr;
511
512         /* Remove TX descriptor ring from card */
513         EFX_ZERO_OWORD(tx_desc_ptr);
514         efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
515                          tx_queue->queue);
516
517         /* Unpin TX descriptor ring */
518         efx_fini_special_buffer(efx, &tx_queue->txd);
519 }
520
521 /* Free buffers backing TX queue */
522 void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
523 {
524         efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
525 }
526
527 /**************************************************************************
528  *
529  * RX path
530  *
531  **************************************************************************/
532
533 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
534 static inline efx_qword_t *
535 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
536 {
537         return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
538 }
539
540 /* This creates an entry in the RX descriptor queue */
541 static inline void
542 efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
543 {
544         struct efx_rx_buffer *rx_buf;
545         efx_qword_t *rxd;
546
547         rxd = efx_rx_desc(rx_queue, index);
548         rx_buf = efx_rx_buffer(rx_queue, index);
549         EFX_POPULATE_QWORD_3(*rxd,
550                              FSF_AZ_RX_KER_BUF_SIZE,
551                              rx_buf->len -
552                              rx_queue->efx->type->rx_buffer_padding,
553                              FSF_AZ_RX_KER_BUF_REGION, 0,
554                              FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
555 }
556
557 /* This writes to the RX_DESC_WPTR register for the specified receive
558  * descriptor ring.
559  */
560 void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
561 {
562         struct efx_nic *efx = rx_queue->efx;
563         efx_dword_t reg;
564         unsigned write_ptr;
565
566         while (rx_queue->notified_count != rx_queue->added_count) {
567                 efx_build_rx_desc(
568                         rx_queue,
569                         rx_queue->notified_count & rx_queue->ptr_mask);
570                 ++rx_queue->notified_count;
571         }
572
573         wmb();
574         write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
575         EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
576         efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
577                         efx_rx_queue_index(rx_queue));
578 }
579
580 int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
581 {
582         struct efx_nic *efx = rx_queue->efx;
583         unsigned entries;
584
585         entries = rx_queue->ptr_mask + 1;
586         return efx_alloc_special_buffer(efx, &rx_queue->rxd,
587                                         entries * sizeof(efx_qword_t));
588 }
589
590 void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
591 {
592         efx_oword_t rx_desc_ptr;
593         struct efx_nic *efx = rx_queue->efx;
594         bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
595         bool iscsi_digest_en = is_b0;
596         bool jumbo_en;
597
598         /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
599          * DMA to continue after a PCIe page boundary (and scattering
600          * is not possible).  In Falcon B0 and Siena, it enables
601          * scatter.
602          */
603         jumbo_en = !is_b0 || efx->rx_scatter;
604
605         netif_dbg(efx, hw, efx->net_dev,
606                   "RX queue %d ring in special buffers %d-%d\n",
607                   efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
608                   rx_queue->rxd.index + rx_queue->rxd.entries - 1);
609
610         rx_queue->scatter_n = 0;
611
612         /* Pin RX descriptor ring */
613         efx_init_special_buffer(efx, &rx_queue->rxd);
614
615         /* Push RX descriptor ring to card */
616         EFX_POPULATE_OWORD_10(rx_desc_ptr,
617                               FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
618                               FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
619                               FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
620                               FRF_AZ_RX_DESCQ_EVQ_ID,
621                               efx_rx_queue_channel(rx_queue)->channel,
622                               FRF_AZ_RX_DESCQ_OWNER_ID, 0,
623                               FRF_AZ_RX_DESCQ_LABEL,
624                               efx_rx_queue_index(rx_queue),
625                               FRF_AZ_RX_DESCQ_SIZE,
626                               __ffs(rx_queue->rxd.entries),
627                               FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
628                               FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
629                               FRF_AZ_RX_DESCQ_EN, 1);
630         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
631                          efx_rx_queue_index(rx_queue));
632 }
633
634 static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
635 {
636         struct efx_nic *efx = rx_queue->efx;
637         efx_oword_t rx_flush_descq;
638
639         EFX_POPULATE_OWORD_2(rx_flush_descq,
640                              FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
641                              FRF_AZ_RX_FLUSH_DESCQ,
642                              efx_rx_queue_index(rx_queue));
643         efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
644 }
645
646 void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
647 {
648         efx_oword_t rx_desc_ptr;
649         struct efx_nic *efx = rx_queue->efx;
650
651         /* Remove RX descriptor ring from card */
652         EFX_ZERO_OWORD(rx_desc_ptr);
653         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
654                          efx_rx_queue_index(rx_queue));
655
656         /* Unpin RX descriptor ring */
657         efx_fini_special_buffer(efx, &rx_queue->rxd);
658 }
659
660 /* Free buffers backing RX queue */
661 void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
662 {
663         efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
664 }
665
666 /**************************************************************************
667  *
668  * Flush handling
669  *
670  **************************************************************************/
671
672 /* efx_nic_flush_queues() must be woken up when all flushes are completed,
673  * or more RX flushes can be kicked off.
674  */
675 static bool efx_flush_wake(struct efx_nic *efx)
676 {
677         /* Ensure that all updates are visible to efx_nic_flush_queues() */
678         smp_mb();
679
680         return (atomic_read(&efx->drain_pending) == 0 ||
681                 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
682                  && atomic_read(&efx->rxq_flush_pending) > 0));
683 }
684
685 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
686 {
687         bool i = true;
688         efx_oword_t txd_ptr_tbl;
689         struct efx_channel *channel;
690         struct efx_tx_queue *tx_queue;
691
692         efx_for_each_channel(channel, efx) {
693                 efx_for_each_channel_tx_queue(tx_queue, channel) {
694                         efx_reado_table(efx, &txd_ptr_tbl,
695                                         FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
696                         if (EFX_OWORD_FIELD(txd_ptr_tbl,
697                                             FRF_AZ_TX_DESCQ_FLUSH) ||
698                             EFX_OWORD_FIELD(txd_ptr_tbl,
699                                             FRF_AZ_TX_DESCQ_EN)) {
700                                 netif_dbg(efx, hw, efx->net_dev,
701                                           "flush did not complete on TXQ %d\n",
702                                           tx_queue->queue);
703                                 i = false;
704                         } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
705                                                   1, 0)) {
706                                 /* The flush is complete, but we didn't
707                                  * receive a flush completion event
708                                  */
709                                 netif_dbg(efx, hw, efx->net_dev,
710                                           "flush complete on TXQ %d, so drain "
711                                           "the queue\n", tx_queue->queue);
712                                 /* Don't need to increment drain_pending as it
713                                  * has already been incremented for the queues
714                                  * which did not drain
715                                  */
716                                 efx_magic_event(channel,
717                                                 EFX_CHANNEL_MAGIC_TX_DRAIN(
718                                                         tx_queue));
719                         }
720                 }
721         }
722
723         return i;
724 }
725
726 /* Flush all the transmit queues, and continue flushing receive queues until
727  * they're all flushed. Wait for the DRAIN events to be recieved so that there
728  * are no more RX and TX events left on any channel. */
729 int efx_nic_flush_queues(struct efx_nic *efx)
730 {
731         unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
732         struct efx_channel *channel;
733         struct efx_rx_queue *rx_queue;
734         struct efx_tx_queue *tx_queue;
735         int rc = 0;
736
737         efx->type->prepare_flush(efx);
738
739         efx_for_each_channel(channel, efx) {
740                 efx_for_each_channel_tx_queue(tx_queue, channel) {
741                         atomic_inc(&efx->drain_pending);
742                         efx_flush_tx_queue(tx_queue);
743                 }
744                 efx_for_each_channel_rx_queue(rx_queue, channel) {
745                         atomic_inc(&efx->drain_pending);
746                         rx_queue->flush_pending = true;
747                         atomic_inc(&efx->rxq_flush_pending);
748                 }
749         }
750
751         while (timeout && atomic_read(&efx->drain_pending) > 0) {
752                 /* If SRIOV is enabled, then offload receive queue flushing to
753                  * the firmware (though we will still have to poll for
754                  * completion). If that fails, fall back to the old scheme.
755                  */
756                 if (efx_sriov_enabled(efx)) {
757                         rc = efx_mcdi_flush_rxqs(efx);
758                         if (!rc)
759                                 goto wait;
760                 }
761
762                 /* The hardware supports four concurrent rx flushes, each of
763                  * which may need to be retried if there is an outstanding
764                  * descriptor fetch
765                  */
766                 efx_for_each_channel(channel, efx) {
767                         efx_for_each_channel_rx_queue(rx_queue, channel) {
768                                 if (atomic_read(&efx->rxq_flush_outstanding) >=
769                                     EFX_RX_FLUSH_COUNT)
770                                         break;
771
772                                 if (rx_queue->flush_pending) {
773                                         rx_queue->flush_pending = false;
774                                         atomic_dec(&efx->rxq_flush_pending);
775                                         atomic_inc(&efx->rxq_flush_outstanding);
776                                         efx_flush_rx_queue(rx_queue);
777                                 }
778                         }
779                 }
780
781         wait:
782                 timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
783                                              timeout);
784         }
785
786         if (atomic_read(&efx->drain_pending) &&
787             !efx_check_tx_flush_complete(efx)) {
788                 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
789                           "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
790                           atomic_read(&efx->rxq_flush_outstanding),
791                           atomic_read(&efx->rxq_flush_pending));
792                 rc = -ETIMEDOUT;
793
794                 atomic_set(&efx->drain_pending, 0);
795                 atomic_set(&efx->rxq_flush_pending, 0);
796                 atomic_set(&efx->rxq_flush_outstanding, 0);
797         }
798
799         efx->type->finish_flush(efx);
800
801         return rc;
802 }
803
804 /**************************************************************************
805  *
806  * Event queue processing
807  * Event queues are processed by per-channel tasklets.
808  *
809  **************************************************************************/
810
811 /* Update a channel's event queue's read pointer (RPTR) register
812  *
813  * This writes the EVQ_RPTR_REG register for the specified channel's
814  * event queue.
815  */
816 void efx_nic_eventq_read_ack(struct efx_channel *channel)
817 {
818         efx_dword_t reg;
819         struct efx_nic *efx = channel->efx;
820
821         EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
822                              channel->eventq_read_ptr & channel->eventq_mask);
823
824         /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
825          * of 4 bytes, but it is really 16 bytes just like later revisions.
826          */
827         efx_writed(efx, &reg,
828                    efx->type->evq_rptr_tbl_base +
829                    FR_BZ_EVQ_RPTR_STEP * channel->channel);
830 }
831
832 /* Use HW to insert a SW defined event */
833 void efx_generate_event(struct efx_nic *efx, unsigned int evq,
834                         efx_qword_t *event)
835 {
836         efx_oword_t drv_ev_reg;
837
838         BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
839                      FRF_AZ_DRV_EV_DATA_WIDTH != 64);
840         drv_ev_reg.u32[0] = event->u32[0];
841         drv_ev_reg.u32[1] = event->u32[1];
842         drv_ev_reg.u32[2] = 0;
843         drv_ev_reg.u32[3] = 0;
844         EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
845         efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
846 }
847
848 static void efx_magic_event(struct efx_channel *channel, u32 magic)
849 {
850         efx_qword_t event;
851
852         EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
853                              FSE_AZ_EV_CODE_DRV_GEN_EV,
854                              FSF_AZ_DRV_GEN_EV_MAGIC, magic);
855         efx_generate_event(channel->efx, channel->channel, &event);
856 }
857
858 /* Handle a transmit completion event
859  *
860  * The NIC batches TX completion events; the message we receive is of
861  * the form "complete all TX events up to this index".
862  */
863 static int
864 efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
865 {
866         unsigned int tx_ev_desc_ptr;
867         unsigned int tx_ev_q_label;
868         struct efx_tx_queue *tx_queue;
869         struct efx_nic *efx = channel->efx;
870         int tx_packets = 0;
871
872         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
873                 return 0;
874
875         if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
876                 /* Transmit completion */
877                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
878                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
879                 tx_queue = efx_channel_get_tx_queue(
880                         channel, tx_ev_q_label % EFX_TXQ_TYPES);
881                 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
882                               tx_queue->ptr_mask);
883                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
884         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
885                 /* Rewrite the FIFO write pointer */
886                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
887                 tx_queue = efx_channel_get_tx_queue(
888                         channel, tx_ev_q_label % EFX_TXQ_TYPES);
889
890                 netif_tx_lock(efx->net_dev);
891                 efx_notify_tx_desc(tx_queue);
892                 netif_tx_unlock(efx->net_dev);
893         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
894                    EFX_WORKAROUND_10727(efx)) {
895                 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
896         } else {
897                 netif_err(efx, tx_err, efx->net_dev,
898                           "channel %d unexpected TX event "
899                           EFX_QWORD_FMT"\n", channel->channel,
900                           EFX_QWORD_VAL(*event));
901         }
902
903         return tx_packets;
904 }
905
906 /* Detect errors included in the rx_evt_pkt_ok bit. */
907 static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
908                                 const efx_qword_t *event)
909 {
910         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
911         struct efx_nic *efx = rx_queue->efx;
912         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
913         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
914         bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
915         bool rx_ev_other_err, rx_ev_pause_frm;
916         bool rx_ev_hdr_type, rx_ev_mcast_pkt;
917         unsigned rx_ev_pkt_type;
918
919         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
920         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
921         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
922         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
923         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
924                                                  FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
925         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
926                                                   FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
927         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
928                                                    FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
929         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
930         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
931         rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
932                           0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
933         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
934
935         /* Every error apart from tobe_disc and pause_frm */
936         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
937                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
938                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
939
940         /* Count errors that are not in MAC stats.  Ignore expected
941          * checksum errors during self-test. */
942         if (rx_ev_frm_trunc)
943                 ++channel->n_rx_frm_trunc;
944         else if (rx_ev_tobe_disc)
945                 ++channel->n_rx_tobe_disc;
946         else if (!efx->loopback_selftest) {
947                 if (rx_ev_ip_hdr_chksum_err)
948                         ++channel->n_rx_ip_hdr_chksum_err;
949                 else if (rx_ev_tcp_udp_chksum_err)
950                         ++channel->n_rx_tcp_udp_chksum_err;
951         }
952
953         /* TOBE_DISC is expected on unicast mismatches; don't print out an
954          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
955          * to a FIFO overflow.
956          */
957 #ifdef DEBUG
958         if (rx_ev_other_err && net_ratelimit()) {
959                 netif_dbg(efx, rx_err, efx->net_dev,
960                           " RX queue %d unexpected RX event "
961                           EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
962                           efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
963                           rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
964                           rx_ev_ip_hdr_chksum_err ?
965                           " [IP_HDR_CHKSUM_ERR]" : "",
966                           rx_ev_tcp_udp_chksum_err ?
967                           " [TCP_UDP_CHKSUM_ERR]" : "",
968                           rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
969                           rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
970                           rx_ev_drib_nib ? " [DRIB_NIB]" : "",
971                           rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
972                           rx_ev_pause_frm ? " [PAUSE]" : "");
973         }
974 #endif
975
976         /* The frame must be discarded if any of these are true. */
977         return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
978                 rx_ev_tobe_disc | rx_ev_pause_frm) ?
979                 EFX_RX_PKT_DISCARD : 0;
980 }
981
982 /* Handle receive events that are not in-order. Return true if this
983  * can be handled as a partial packet discard, false if it's more
984  * serious.
985  */
986 static bool
987 efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
988 {
989         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
990         struct efx_nic *efx = rx_queue->efx;
991         unsigned expected, dropped;
992
993         if (rx_queue->scatter_n &&
994             index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
995                       rx_queue->ptr_mask)) {
996                 ++channel->n_rx_nodesc_trunc;
997                 return true;
998         }
999
1000         expected = rx_queue->removed_count & rx_queue->ptr_mask;
1001         dropped = (index - expected) & rx_queue->ptr_mask;
1002         netif_info(efx, rx_err, efx->net_dev,
1003                    "dropped %d events (index=%d expected=%d)\n",
1004                    dropped, index, expected);
1005
1006         efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
1007                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1008         return false;
1009 }
1010
1011 /* Handle a packet received event
1012  *
1013  * The NIC gives a "discard" flag if it's a unicast packet with the
1014  * wrong destination address
1015  * Also "is multicast" and "matches multicast filter" flags can be used to
1016  * discard non-matching multicast packets.
1017  */
1018 static void
1019 efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
1020 {
1021         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
1022         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
1023         unsigned expected_ptr;
1024         bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
1025         u16 flags;
1026         struct efx_rx_queue *rx_queue;
1027         struct efx_nic *efx = channel->efx;
1028
1029         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1030                 return;
1031
1032         rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
1033         rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
1034         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
1035                 channel->channel);
1036
1037         rx_queue = efx_channel_get_rx_queue(channel);
1038
1039         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1040         expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1041                         rx_queue->ptr_mask);
1042
1043         /* Check for partial drops and other errors */
1044         if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1045             unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1046                 if (rx_ev_desc_ptr != expected_ptr &&
1047                     !efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1048                         return;
1049
1050                 /* Discard all pending fragments */
1051                 if (rx_queue->scatter_n) {
1052                         efx_rx_packet(
1053                                 rx_queue,
1054                                 rx_queue->removed_count & rx_queue->ptr_mask,
1055                                 rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1056                         rx_queue->removed_count += rx_queue->scatter_n;
1057                         rx_queue->scatter_n = 0;
1058                 }
1059
1060                 /* Return if there is no new fragment */
1061                 if (rx_ev_desc_ptr != expected_ptr)
1062                         return;
1063
1064                 /* Discard new fragment if not SOP */
1065                 if (!rx_ev_sop) {
1066                         efx_rx_packet(
1067                                 rx_queue,
1068                                 rx_queue->removed_count & rx_queue->ptr_mask,
1069                                 1, 0, EFX_RX_PKT_DISCARD);
1070                         ++rx_queue->removed_count;
1071                         return;
1072                 }
1073         }
1074
1075         ++rx_queue->scatter_n;
1076         if (rx_ev_cont)
1077                 return;
1078
1079         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1080         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1081         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1082
1083         if (likely(rx_ev_pkt_ok)) {
1084                 /* If packet is marked as OK then we can rely on the
1085                  * hardware checksum and classification.
1086                  */
1087                 flags = 0;
1088                 switch (rx_ev_hdr_type) {
1089                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1090                         flags |= EFX_RX_PKT_TCP;
1091                         /* fall through */
1092                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1093                         flags |= EFX_RX_PKT_CSUMMED;
1094                         /* fall through */
1095                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1096                 case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1097                         break;
1098                 }
1099         } else {
1100                 flags = efx_handle_rx_not_ok(rx_queue, event);
1101         }
1102
1103         /* Detect multicast packets that didn't match the filter */
1104         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1105         if (rx_ev_mcast_pkt) {
1106                 unsigned int rx_ev_mcast_hash_match =
1107                         EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1108
1109                 if (unlikely(!rx_ev_mcast_hash_match)) {
1110                         ++channel->n_rx_mcast_mismatch;
1111                         flags |= EFX_RX_PKT_DISCARD;
1112                 }
1113         }
1114
1115         channel->irq_mod_score += 2;
1116
1117         /* Handle received packet */
1118         efx_rx_packet(rx_queue,
1119                       rx_queue->removed_count & rx_queue->ptr_mask,
1120                       rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1121         rx_queue->removed_count += rx_queue->scatter_n;
1122         rx_queue->scatter_n = 0;
1123 }
1124
1125 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1126  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1127  * of all transmit completions.
1128  */
1129 static void
1130 efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1131 {
1132         struct efx_tx_queue *tx_queue;
1133         int qid;
1134
1135         qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1136         if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1137                 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1138                                             qid % EFX_TXQ_TYPES);
1139                 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1140                         efx_magic_event(tx_queue->channel,
1141                                         EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1142                 }
1143         }
1144 }
1145
1146 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1147  * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1148  * the RX queue back to the mask of RX queues in need of flushing.
1149  */
1150 static void
1151 efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1152 {
1153         struct efx_channel *channel;
1154         struct efx_rx_queue *rx_queue;
1155         int qid;
1156         bool failed;
1157
1158         qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1159         failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1160         if (qid >= efx->n_channels)
1161                 return;
1162         channel = efx_get_channel(efx, qid);
1163         if (!efx_channel_has_rx_queue(channel))
1164                 return;
1165         rx_queue = efx_channel_get_rx_queue(channel);
1166
1167         if (failed) {
1168                 netif_info(efx, hw, efx->net_dev,
1169                            "RXQ %d flush retry\n", qid);
1170                 rx_queue->flush_pending = true;
1171                 atomic_inc(&efx->rxq_flush_pending);
1172         } else {
1173                 efx_magic_event(efx_rx_queue_channel(rx_queue),
1174                                 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1175         }
1176         atomic_dec(&efx->rxq_flush_outstanding);
1177         if (efx_flush_wake(efx))
1178                 wake_up(&efx->flush_wq);
1179 }
1180
1181 static void
1182 efx_handle_drain_event(struct efx_channel *channel)
1183 {
1184         struct efx_nic *efx = channel->efx;
1185
1186         WARN_ON(atomic_read(&efx->drain_pending) == 0);
1187         atomic_dec(&efx->drain_pending);
1188         if (efx_flush_wake(efx))
1189                 wake_up(&efx->flush_wq);
1190 }
1191
1192 static void
1193 efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
1194 {
1195         struct efx_nic *efx = channel->efx;
1196         struct efx_rx_queue *rx_queue =
1197                 efx_channel_has_rx_queue(channel) ?
1198                 efx_channel_get_rx_queue(channel) : NULL;
1199         unsigned magic, code;
1200
1201         magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1202         code = _EFX_CHANNEL_MAGIC_CODE(magic);
1203
1204         if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1205                 channel->event_test_cpu = raw_smp_processor_id();
1206         } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1207                 /* The queue must be empty, so we won't receive any rx
1208                  * events, so efx_process_channel() won't refill the
1209                  * queue. Refill it here */
1210                 efx_fast_push_rx_descriptors(rx_queue);
1211         } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1212                 rx_queue->enabled = false;
1213                 efx_handle_drain_event(channel);
1214         } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1215                 efx_handle_drain_event(channel);
1216         } else {
1217                 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1218                           "generated event "EFX_QWORD_FMT"\n",
1219                           channel->channel, EFX_QWORD_VAL(*event));
1220         }
1221 }
1222
1223 static void
1224 efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1225 {
1226         struct efx_nic *efx = channel->efx;
1227         unsigned int ev_sub_code;
1228         unsigned int ev_sub_data;
1229
1230         ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1231         ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1232
1233         switch (ev_sub_code) {
1234         case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1235                 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1236                            channel->channel, ev_sub_data);
1237                 efx_handle_tx_flush_done(efx, event);
1238                 efx_sriov_tx_flush_done(efx, event);
1239                 break;
1240         case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1241                 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1242                            channel->channel, ev_sub_data);
1243                 efx_handle_rx_flush_done(efx, event);
1244                 efx_sriov_rx_flush_done(efx, event);
1245                 break;
1246         case FSE_AZ_EVQ_INIT_DONE_EV:
1247                 netif_dbg(efx, hw, efx->net_dev,
1248                           "channel %d EVQ %d initialised\n",
1249                           channel->channel, ev_sub_data);
1250                 break;
1251         case FSE_AZ_SRM_UPD_DONE_EV:
1252                 netif_vdbg(efx, hw, efx->net_dev,
1253                            "channel %d SRAM update done\n", channel->channel);
1254                 break;
1255         case FSE_AZ_WAKE_UP_EV:
1256                 netif_vdbg(efx, hw, efx->net_dev,
1257                            "channel %d RXQ %d wakeup event\n",
1258                            channel->channel, ev_sub_data);
1259                 break;
1260         case FSE_AZ_TIMER_EV:
1261                 netif_vdbg(efx, hw, efx->net_dev,
1262                            "channel %d RX queue %d timer expired\n",
1263                            channel->channel, ev_sub_data);
1264                 break;
1265         case FSE_AA_RX_RECOVER_EV:
1266                 netif_err(efx, rx_err, efx->net_dev,
1267                           "channel %d seen DRIVER RX_RESET event. "
1268                         "Resetting.\n", channel->channel);
1269                 atomic_inc(&efx->rx_reset);
1270                 efx_schedule_reset(efx,
1271                                    EFX_WORKAROUND_6555(efx) ?
1272                                    RESET_TYPE_RX_RECOVERY :
1273                                    RESET_TYPE_DISABLE);
1274                 break;
1275         case FSE_BZ_RX_DSC_ERROR_EV:
1276                 if (ev_sub_data < EFX_VI_BASE) {
1277                         netif_err(efx, rx_err, efx->net_dev,
1278                                   "RX DMA Q %d reports descriptor fetch error."
1279                                   " RX Q %d is disabled.\n", ev_sub_data,
1280                                   ev_sub_data);
1281                         efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1282                 } else
1283                         efx_sriov_desc_fetch_err(efx, ev_sub_data);
1284                 break;
1285         case FSE_BZ_TX_DSC_ERROR_EV:
1286                 if (ev_sub_data < EFX_VI_BASE) {
1287                         netif_err(efx, tx_err, efx->net_dev,
1288                                   "TX DMA Q %d reports descriptor fetch error."
1289                                   " TX Q %d is disabled.\n", ev_sub_data,
1290                                   ev_sub_data);
1291                         efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1292                 } else
1293                         efx_sriov_desc_fetch_err(efx, ev_sub_data);
1294                 break;
1295         default:
1296                 netif_vdbg(efx, hw, efx->net_dev,
1297                            "channel %d unknown driver event code %d "
1298                            "data %04x\n", channel->channel, ev_sub_code,
1299                            ev_sub_data);
1300                 break;
1301         }
1302 }
1303
1304 int efx_nic_process_eventq(struct efx_channel *channel, int budget)
1305 {
1306         struct efx_nic *efx = channel->efx;
1307         unsigned int read_ptr;
1308         efx_qword_t event, *p_event;
1309         int ev_code;
1310         int tx_packets = 0;
1311         int spent = 0;
1312
1313         read_ptr = channel->eventq_read_ptr;
1314
1315         for (;;) {
1316                 p_event = efx_event(channel, read_ptr);
1317                 event = *p_event;
1318
1319                 if (!efx_event_present(&event))
1320                         /* End of events */
1321                         break;
1322
1323                 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1324                            "channel %d event is "EFX_QWORD_FMT"\n",
1325                            channel->channel, EFX_QWORD_VAL(event));
1326
1327                 /* Clear this event by marking it all ones */
1328                 EFX_SET_QWORD(*p_event);
1329
1330                 ++read_ptr;
1331
1332                 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1333
1334                 switch (ev_code) {
1335                 case FSE_AZ_EV_CODE_RX_EV:
1336                         efx_handle_rx_event(channel, &event);
1337                         if (++spent == budget)
1338                                 goto out;
1339                         break;
1340                 case FSE_AZ_EV_CODE_TX_EV:
1341                         tx_packets += efx_handle_tx_event(channel, &event);
1342                         if (tx_packets > efx->txq_entries) {
1343                                 spent = budget;
1344                                 goto out;
1345                         }
1346                         break;
1347                 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1348                         efx_handle_generated_event(channel, &event);
1349                         break;
1350                 case FSE_AZ_EV_CODE_DRIVER_EV:
1351                         efx_handle_driver_event(channel, &event);
1352                         break;
1353                 case FSE_CZ_EV_CODE_USER_EV:
1354                         efx_sriov_event(channel, &event);
1355                         break;
1356                 case FSE_CZ_EV_CODE_MCDI_EV:
1357                         efx_mcdi_process_event(channel, &event);
1358                         break;
1359                 case FSE_AZ_EV_CODE_GLOBAL_EV:
1360                         if (efx->type->handle_global_event &&
1361                             efx->type->handle_global_event(channel, &event))
1362                                 break;
1363                         /* else fall through */
1364                 default:
1365                         netif_err(channel->efx, hw, channel->efx->net_dev,
1366                                   "channel %d unknown event type %d (data "
1367                                   EFX_QWORD_FMT ")\n", channel->channel,
1368                                   ev_code, EFX_QWORD_VAL(event));
1369                 }
1370         }
1371
1372 out:
1373         channel->eventq_read_ptr = read_ptr;
1374         return spent;
1375 }
1376
1377 /* Check whether an event is present in the eventq at the current
1378  * read pointer.  Only useful for self-test.
1379  */
1380 bool efx_nic_event_present(struct efx_channel *channel)
1381 {
1382         return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
1383 }
1384
1385 /* Allocate buffer table entries for event queue */
1386 int efx_nic_probe_eventq(struct efx_channel *channel)
1387 {
1388         struct efx_nic *efx = channel->efx;
1389         unsigned entries;
1390
1391         entries = channel->eventq_mask + 1;
1392         return efx_alloc_special_buffer(efx, &channel->eventq,
1393                                         entries * sizeof(efx_qword_t));
1394 }
1395
1396 void efx_nic_init_eventq(struct efx_channel *channel)
1397 {
1398         efx_oword_t reg;
1399         struct efx_nic *efx = channel->efx;
1400
1401         netif_dbg(efx, hw, efx->net_dev,
1402                   "channel %d event queue in special buffers %d-%d\n",
1403                   channel->channel, channel->eventq.index,
1404                   channel->eventq.index + channel->eventq.entries - 1);
1405
1406         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1407                 EFX_POPULATE_OWORD_3(reg,
1408                                      FRF_CZ_TIMER_Q_EN, 1,
1409                                      FRF_CZ_HOST_NOTIFY_MODE, 0,
1410                                      FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1411                 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1412         }
1413
1414         /* Pin event queue buffer */
1415         efx_init_special_buffer(efx, &channel->eventq);
1416
1417         /* Fill event queue with all ones (i.e. empty events) */
1418         memset(channel->eventq.addr, 0xff, channel->eventq.len);
1419
1420         /* Push event queue to card */
1421         EFX_POPULATE_OWORD_3(reg,
1422                              FRF_AZ_EVQ_EN, 1,
1423                              FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1424                              FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1425         efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1426                          channel->channel);
1427
1428         efx->type->push_irq_moderation(channel);
1429 }
1430
1431 void efx_nic_fini_eventq(struct efx_channel *channel)
1432 {
1433         efx_oword_t reg;
1434         struct efx_nic *efx = channel->efx;
1435
1436         /* Remove event queue from card */
1437         EFX_ZERO_OWORD(reg);
1438         efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1439                          channel->channel);
1440         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1441                 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1442
1443         /* Unpin event queue */
1444         efx_fini_special_buffer(efx, &channel->eventq);
1445 }
1446
1447 /* Free buffers backing event queue */
1448 void efx_nic_remove_eventq(struct efx_channel *channel)
1449 {
1450         efx_free_special_buffer(channel->efx, &channel->eventq);
1451 }
1452
1453
1454 void efx_nic_event_test_start(struct efx_channel *channel)
1455 {
1456         channel->event_test_cpu = -1;
1457         smp_wmb();
1458         efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1459 }
1460
1461 void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
1462 {
1463         efx_magic_event(efx_rx_queue_channel(rx_queue),
1464                         EFX_CHANNEL_MAGIC_FILL(rx_queue));
1465 }
1466
1467 /**************************************************************************
1468  *
1469  * Hardware interrupts
1470  * The hardware interrupt handler does very little work; all the event
1471  * queue processing is carried out by per-channel tasklets.
1472  *
1473  **************************************************************************/
1474
1475 /* Enable/disable/generate interrupts */
1476 static inline void efx_nic_interrupts(struct efx_nic *efx,
1477                                       bool enabled, bool force)
1478 {
1479         efx_oword_t int_en_reg_ker;
1480
1481         EFX_POPULATE_OWORD_3(int_en_reg_ker,
1482                              FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1483                              FRF_AZ_KER_INT_KER, force,
1484                              FRF_AZ_DRV_INT_EN_KER, enabled);
1485         efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1486 }
1487
1488 void efx_nic_enable_interrupts(struct efx_nic *efx)
1489 {
1490         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1491         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1492
1493         efx_nic_interrupts(efx, true, false);
1494 }
1495
1496 void efx_nic_disable_interrupts(struct efx_nic *efx)
1497 {
1498         /* Disable interrupts */
1499         efx_nic_interrupts(efx, false, false);
1500 }
1501
1502 /* Generate a test interrupt
1503  * Interrupt must already have been enabled, otherwise nasty things
1504  * may happen.
1505  */
1506 void efx_nic_irq_test_start(struct efx_nic *efx)
1507 {
1508         efx->last_irq_cpu = -1;
1509         smp_wmb();
1510         efx_nic_interrupts(efx, true, true);
1511 }
1512
1513 /* Process a fatal interrupt
1514  * Disable bus mastering ASAP and schedule a reset
1515  */
1516 irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1517 {
1518         struct falcon_nic_data *nic_data = efx->nic_data;
1519         efx_oword_t *int_ker = efx->irq_status.addr;
1520         efx_oword_t fatal_intr;
1521         int error, mem_perr;
1522
1523         efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1524         error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1525
1526         netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1527                   EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1528                   EFX_OWORD_VAL(fatal_intr),
1529                   error ? "disabling bus mastering" : "no recognised error");
1530
1531         /* If this is a memory parity error dump which blocks are offending */
1532         mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1533                     EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1534         if (mem_perr) {
1535                 efx_oword_t reg;
1536                 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1537                 netif_err(efx, hw, efx->net_dev,
1538                           "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1539                           EFX_OWORD_VAL(reg));
1540         }
1541
1542         /* Disable both devices */
1543         pci_clear_master(efx->pci_dev);
1544         if (efx_nic_is_dual_func(efx))
1545                 pci_clear_master(nic_data->pci_dev2);
1546         efx_nic_disable_interrupts(efx);
1547
1548         /* Count errors and reset or disable the NIC accordingly */
1549         if (efx->int_error_count == 0 ||
1550             time_after(jiffies, efx->int_error_expire)) {
1551                 efx->int_error_count = 0;
1552                 efx->int_error_expire =
1553                         jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1554         }
1555         if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1556                 netif_err(efx, hw, efx->net_dev,
1557                           "SYSTEM ERROR - reset scheduled\n");
1558                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1559         } else {
1560                 netif_err(efx, hw, efx->net_dev,
1561                           "SYSTEM ERROR - max number of errors seen."
1562                           "NIC will be disabled\n");
1563                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1564         }
1565
1566         return IRQ_HANDLED;
1567 }
1568
1569 /* Handle a legacy interrupt
1570  * Acknowledges the interrupt and schedule event queue processing.
1571  */
1572 static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1573 {
1574         struct efx_nic *efx = dev_id;
1575         efx_oword_t *int_ker = efx->irq_status.addr;
1576         irqreturn_t result = IRQ_NONE;
1577         struct efx_channel *channel;
1578         efx_dword_t reg;
1579         u32 queues;
1580         int syserr;
1581
1582         /* Could this be ours?  If interrupts are disabled then the
1583          * channel state may not be valid.
1584          */
1585         if (!efx->legacy_irq_enabled)
1586                 return result;
1587
1588         /* Read the ISR which also ACKs the interrupts */
1589         efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1590         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1591
1592         /* Legacy interrupts are disabled too late by the EEH kernel
1593          * code. Disable them earlier.
1594          * If an EEH error occurred, the read will have returned all ones.
1595          */
1596         if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1597             !efx->eeh_disabled_legacy_irq) {
1598                 disable_irq_nosync(efx->legacy_irq);
1599                 efx->eeh_disabled_legacy_irq = true;
1600         }
1601
1602         /* Handle non-event-queue sources */
1603         if (queues & (1U << efx->irq_level)) {
1604                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1605                 if (unlikely(syserr))
1606                         return efx_nic_fatal_interrupt(efx);
1607                 efx->last_irq_cpu = raw_smp_processor_id();
1608         }
1609
1610         if (queues != 0) {
1611                 if (EFX_WORKAROUND_15783(efx))
1612                         efx->irq_zero_count = 0;
1613
1614                 /* Schedule processing of any interrupting queues */
1615                 efx_for_each_channel(channel, efx) {
1616                         if (queues & 1)
1617                                 efx_schedule_channel_irq(channel);
1618                         queues >>= 1;
1619                 }
1620                 result = IRQ_HANDLED;
1621
1622         } else if (EFX_WORKAROUND_15783(efx)) {
1623                 efx_qword_t *event;
1624
1625                 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1626                  * because this might be a shared interrupt. */
1627                 if (efx->irq_zero_count++ == 0)
1628                         result = IRQ_HANDLED;
1629
1630                 /* Ensure we schedule or rearm all event queues */
1631                 efx_for_each_channel(channel, efx) {
1632                         event = efx_event(channel, channel->eventq_read_ptr);
1633                         if (efx_event_present(event))
1634                                 efx_schedule_channel_irq(channel);
1635                         else
1636                                 efx_nic_eventq_read_ack(channel);
1637                 }
1638         }
1639
1640         if (result == IRQ_HANDLED)
1641                 netif_vdbg(efx, intr, efx->net_dev,
1642                            "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1643                            irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1644
1645         return result;
1646 }
1647
1648 /* Handle an MSI interrupt
1649  *
1650  * Handle an MSI hardware interrupt.  This routine schedules event
1651  * queue processing.  No interrupt acknowledgement cycle is necessary.
1652  * Also, we never need to check that the interrupt is for us, since
1653  * MSI interrupts cannot be shared.
1654  */
1655 static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1656 {
1657         struct efx_channel *channel = *(struct efx_channel **)dev_id;
1658         struct efx_nic *efx = channel->efx;
1659         efx_oword_t *int_ker = efx->irq_status.addr;
1660         int syserr;
1661
1662         netif_vdbg(efx, intr, efx->net_dev,
1663                    "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1664                    irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1665
1666         /* Handle non-event-queue sources */
1667         if (channel->channel == efx->irq_level) {
1668                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1669                 if (unlikely(syserr))
1670                         return efx_nic_fatal_interrupt(efx);
1671                 efx->last_irq_cpu = raw_smp_processor_id();
1672         }
1673
1674         /* Schedule processing of the channel */
1675         efx_schedule_channel_irq(channel);
1676
1677         return IRQ_HANDLED;
1678 }
1679
1680
1681 /* Setup RSS indirection table.
1682  * This maps from the hash value of the packet to RXQ
1683  */
1684 void efx_nic_push_rx_indir_table(struct efx_nic *efx)
1685 {
1686         size_t i = 0;
1687         efx_dword_t dword;
1688
1689         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1690                 return;
1691
1692         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1693                      FR_BZ_RX_INDIRECTION_TBL_ROWS);
1694
1695         for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1696                 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1697                                      efx->rx_indir_table[i]);
1698                 efx_writed(efx, &dword,
1699                            FR_BZ_RX_INDIRECTION_TBL +
1700                            FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1701         }
1702 }
1703
1704 /* Hook interrupt handler(s)
1705  * Try MSI and then legacy interrupts.
1706  */
1707 int efx_nic_init_interrupt(struct efx_nic *efx)
1708 {
1709         struct efx_channel *channel;
1710         unsigned int n_irqs;
1711         int rc;
1712
1713         if (!EFX_INT_MODE_USE_MSI(efx)) {
1714                 irq_handler_t handler;
1715                 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1716                         handler = efx_legacy_interrupt;
1717                 else
1718                         handler = falcon_legacy_interrupt_a1;
1719
1720                 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1721                                  efx->name, efx);
1722                 if (rc) {
1723                         netif_err(efx, drv, efx->net_dev,
1724                                   "failed to hook legacy IRQ %d\n",
1725                                   efx->pci_dev->irq);
1726                         goto fail1;
1727                 }
1728                 return 0;
1729         }
1730
1731 #ifdef CONFIG_RFS_ACCEL
1732         if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1733                 efx->net_dev->rx_cpu_rmap =
1734                         alloc_irq_cpu_rmap(efx->n_rx_channels);
1735                 if (!efx->net_dev->rx_cpu_rmap) {
1736                         rc = -ENOMEM;
1737                         goto fail1;
1738                 }
1739         }
1740 #endif
1741
1742         /* Hook MSI or MSI-X interrupt */
1743         n_irqs = 0;
1744         efx_for_each_channel(channel, efx) {
1745                 rc = request_irq(channel->irq, efx_msi_interrupt,
1746                                  IRQF_PROBE_SHARED, /* Not shared */
1747                                  efx->channel_name[channel->channel],
1748                                  &efx->channel[channel->channel]);
1749                 if (rc) {
1750                         netif_err(efx, drv, efx->net_dev,
1751                                   "failed to hook IRQ %d\n", channel->irq);
1752                         goto fail2;
1753                 }
1754                 ++n_irqs;
1755
1756 #ifdef CONFIG_RFS_ACCEL
1757                 if (efx->interrupt_mode == EFX_INT_MODE_MSIX &&
1758                     channel->channel < efx->n_rx_channels) {
1759                         rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
1760                                               channel->irq);
1761                         if (rc)
1762                                 goto fail2;
1763                 }
1764 #endif
1765         }
1766
1767         return 0;
1768
1769  fail2:
1770 #ifdef CONFIG_RFS_ACCEL
1771         free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
1772         efx->net_dev->rx_cpu_rmap = NULL;
1773 #endif
1774         efx_for_each_channel(channel, efx) {
1775                 if (n_irqs-- == 0)
1776                         break;
1777                 free_irq(channel->irq, &efx->channel[channel->channel]);
1778         }
1779  fail1:
1780         return rc;
1781 }
1782
1783 void efx_nic_fini_interrupt(struct efx_nic *efx)
1784 {
1785         struct efx_channel *channel;
1786         efx_oword_t reg;
1787
1788 #ifdef CONFIG_RFS_ACCEL
1789         free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
1790         efx->net_dev->rx_cpu_rmap = NULL;
1791 #endif
1792
1793         /* Disable MSI/MSI-X interrupts */
1794         efx_for_each_channel(channel, efx)
1795                 free_irq(channel->irq, &efx->channel[channel->channel]);
1796
1797         /* ACK legacy interrupt */
1798         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1799                 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1800         else
1801                 falcon_irq_ack_a1(efx);
1802
1803         /* Disable legacy interrupt */
1804         if (efx->legacy_irq)
1805                 free_irq(efx->legacy_irq, efx);
1806 }
1807
1808 /* Looks at available SRAM resources and works out how many queues we
1809  * can support, and where things like descriptor caches should live.
1810  *
1811  * SRAM is split up as follows:
1812  * 0                          buftbl entries for channels
1813  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1814  * efx->rx_dc_base            RX descriptor caches
1815  * efx->tx_dc_base            TX descriptor caches
1816  */
1817 void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1818 {
1819         unsigned vi_count, buftbl_min;
1820
1821         /* Account for the buffer table entries backing the datapath channels
1822          * and the descriptor caches for those channels.
1823          */
1824         buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1825                        efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1826                        efx->n_channels * EFX_MAX_EVQ_SIZE)
1827                       * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1828         vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1829
1830 #ifdef CONFIG_SFC_SRIOV
1831         if (efx_sriov_wanted(efx)) {
1832                 unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1833
1834                 efx->vf_buftbl_base = buftbl_min;
1835
1836                 vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1837                 vi_count = max(vi_count, EFX_VI_BASE);
1838                 buftbl_free = (sram_lim_qw - buftbl_min -
1839                                vi_count * vi_dc_entries);
1840
1841                 entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1842                                   efx_vf_size(efx));
1843                 vf_limit = min(buftbl_free / entries_per_vf,
1844                                (1024U - EFX_VI_BASE) >> efx->vi_scale);
1845
1846                 if (efx->vf_count > vf_limit) {
1847                         netif_err(efx, probe, efx->net_dev,
1848                                   "Reducing VF count from from %d to %d\n",
1849                                   efx->vf_count, vf_limit);
1850                         efx->vf_count = vf_limit;
1851                 }
1852                 vi_count += efx->vf_count * efx_vf_size(efx);
1853         }
1854 #endif
1855
1856         efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1857         efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1858 }
1859
1860 u32 efx_nic_fpga_ver(struct efx_nic *efx)
1861 {
1862         efx_oword_t altera_build;
1863         efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1864         return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1865 }
1866
1867 void efx_nic_init_common(struct efx_nic *efx)
1868 {
1869         efx_oword_t temp;
1870
1871         /* Set positions of descriptor caches in SRAM. */
1872         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1873         efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1874         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1875         efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1876
1877         /* Set TX descriptor cache size. */
1878         BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1879         EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1880         efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1881
1882         /* Set RX descriptor cache size.  Set low watermark to size-8, as
1883          * this allows most efficient prefetching.
1884          */
1885         BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1886         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1887         efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1888         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1889         efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1890
1891         /* Program INT_KER address */
1892         EFX_POPULATE_OWORD_2(temp,
1893                              FRF_AZ_NORM_INT_VEC_DIS_KER,
1894                              EFX_INT_MODE_USE_MSI(efx),
1895                              FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1896         efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1897
1898         if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1899                 /* Use an interrupt level unused by event queues */
1900                 efx->irq_level = 0x1f;
1901         else
1902                 /* Use a valid MSI-X vector */
1903                 efx->irq_level = 0;
1904
1905         /* Enable all the genuinely fatal interrupts.  (They are still
1906          * masked by the overall interrupt mask, controlled by
1907          * falcon_interrupts()).
1908          *
1909          * Note: All other fatal interrupts are enabled
1910          */
1911         EFX_POPULATE_OWORD_3(temp,
1912                              FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1913                              FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1914                              FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1915         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1916                 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1917         EFX_INVERT_OWORD(temp);
1918         efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1919
1920         efx_nic_push_rx_indir_table(efx);
1921
1922         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1923          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1924          */
1925         efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1926         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1927         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1928         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1929         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1930         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1931         /* Enable SW_EV to inherit in char driver - assume harmless here */
1932         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1933         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1934         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1935         /* Disable hardware watchdog which can misfire */
1936         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1937         /* Squash TX of packets of 16 bytes or less */
1938         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1939                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1940         efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1941
1942         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1943                 EFX_POPULATE_OWORD_4(temp,
1944                                      /* Default values */
1945                                      FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1946                                      FRF_BZ_TX_PACE_SB_AF, 0xb,
1947                                      FRF_BZ_TX_PACE_FB_BASE, 0,
1948                                      /* Allow large pace values in the
1949                                       * fast bin. */
1950                                      FRF_BZ_TX_PACE_BIN_TH,
1951                                      FFE_BZ_TX_PACE_RESERVED);
1952                 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1953         }
1954 }
1955
1956 /* Register dump */
1957
1958 #define REGISTER_REVISION_A     1
1959 #define REGISTER_REVISION_B     2
1960 #define REGISTER_REVISION_C     3
1961 #define REGISTER_REVISION_Z     3       /* latest revision */
1962
1963 struct efx_nic_reg {
1964         u32 offset:24;
1965         u32 min_revision:2, max_revision:2;
1966 };
1967
1968 #define REGISTER(name, min_rev, max_rev) {                              \
1969         FR_ ## min_rev ## max_rev ## _ ## name,                         \
1970         REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev    \
1971 }
1972 #define REGISTER_AA(name) REGISTER(name, A, A)
1973 #define REGISTER_AB(name) REGISTER(name, A, B)
1974 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1975 #define REGISTER_BB(name) REGISTER(name, B, B)
1976 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1977 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1978
1979 static const struct efx_nic_reg efx_nic_regs[] = {
1980         REGISTER_AZ(ADR_REGION),
1981         REGISTER_AZ(INT_EN_KER),
1982         REGISTER_BZ(INT_EN_CHAR),
1983         REGISTER_AZ(INT_ADR_KER),
1984         REGISTER_BZ(INT_ADR_CHAR),
1985         /* INT_ACK_KER is WO */
1986         /* INT_ISR0 is RC */
1987         REGISTER_AZ(HW_INIT),
1988         REGISTER_CZ(USR_EV_CFG),
1989         REGISTER_AB(EE_SPI_HCMD),
1990         REGISTER_AB(EE_SPI_HADR),
1991         REGISTER_AB(EE_SPI_HDATA),
1992         REGISTER_AB(EE_BASE_PAGE),
1993         REGISTER_AB(EE_VPD_CFG0),
1994         /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1995         /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1996         /* PCIE_CORE_INDIRECT is indirect */
1997         REGISTER_AB(NIC_STAT),
1998         REGISTER_AB(GPIO_CTL),
1999         REGISTER_AB(GLB_CTL),
2000         /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
2001         REGISTER_BZ(DP_CTRL),
2002         REGISTER_AZ(MEM_STAT),
2003         REGISTER_AZ(CS_DEBUG),
2004         REGISTER_AZ(ALTERA_BUILD),
2005         REGISTER_AZ(CSR_SPARE),
2006         REGISTER_AB(PCIE_SD_CTL0123),
2007         REGISTER_AB(PCIE_SD_CTL45),
2008         REGISTER_AB(PCIE_PCS_CTL_STAT),
2009         /* DEBUG_DATA_OUT is not used */
2010         /* DRV_EV is WO */
2011         REGISTER_AZ(EVQ_CTL),
2012         REGISTER_AZ(EVQ_CNT1),
2013         REGISTER_AZ(EVQ_CNT2),
2014         REGISTER_AZ(BUF_TBL_CFG),
2015         REGISTER_AZ(SRM_RX_DC_CFG),
2016         REGISTER_AZ(SRM_TX_DC_CFG),
2017         REGISTER_AZ(SRM_CFG),
2018         /* BUF_TBL_UPD is WO */
2019         REGISTER_AZ(SRM_UPD_EVQ),
2020         REGISTER_AZ(SRAM_PARITY),
2021         REGISTER_AZ(RX_CFG),
2022         REGISTER_BZ(RX_FILTER_CTL),
2023         /* RX_FLUSH_DESCQ is WO */
2024         REGISTER_AZ(RX_DC_CFG),
2025         REGISTER_AZ(RX_DC_PF_WM),
2026         REGISTER_BZ(RX_RSS_TKEY),
2027         /* RX_NODESC_DROP is RC */
2028         REGISTER_AA(RX_SELF_RST),
2029         /* RX_DEBUG, RX_PUSH_DROP are not used */
2030         REGISTER_CZ(RX_RSS_IPV6_REG1),
2031         REGISTER_CZ(RX_RSS_IPV6_REG2),
2032         REGISTER_CZ(RX_RSS_IPV6_REG3),
2033         /* TX_FLUSH_DESCQ is WO */
2034         REGISTER_AZ(TX_DC_CFG),
2035         REGISTER_AA(TX_CHKSM_CFG),
2036         REGISTER_AZ(TX_CFG),
2037         /* TX_PUSH_DROP is not used */
2038         REGISTER_AZ(TX_RESERVED),
2039         REGISTER_BZ(TX_PACE),
2040         /* TX_PACE_DROP_QID is RC */
2041         REGISTER_BB(TX_VLAN),
2042         REGISTER_BZ(TX_IPFIL_PORTEN),
2043         REGISTER_AB(MD_TXD),
2044         REGISTER_AB(MD_RXD),
2045         REGISTER_AB(MD_CS),
2046         REGISTER_AB(MD_PHY_ADR),
2047         REGISTER_AB(MD_ID),
2048         /* MD_STAT is RC */
2049         REGISTER_AB(MAC_STAT_DMA),
2050         REGISTER_AB(MAC_CTRL),
2051         REGISTER_BB(GEN_MODE),
2052         REGISTER_AB(MAC_MC_HASH_REG0),
2053         REGISTER_AB(MAC_MC_HASH_REG1),
2054         REGISTER_AB(GM_CFG1),
2055         REGISTER_AB(GM_CFG2),
2056         /* GM_IPG and GM_HD are not used */
2057         REGISTER_AB(GM_MAX_FLEN),
2058         /* GM_TEST is not used */
2059         REGISTER_AB(GM_ADR1),
2060         REGISTER_AB(GM_ADR2),
2061         REGISTER_AB(GMF_CFG0),
2062         REGISTER_AB(GMF_CFG1),
2063         REGISTER_AB(GMF_CFG2),
2064         REGISTER_AB(GMF_CFG3),
2065         REGISTER_AB(GMF_CFG4),
2066         REGISTER_AB(GMF_CFG5),
2067         REGISTER_BB(TX_SRC_MAC_CTL),
2068         REGISTER_AB(XM_ADR_LO),
2069         REGISTER_AB(XM_ADR_HI),
2070         REGISTER_AB(XM_GLB_CFG),
2071         REGISTER_AB(XM_TX_CFG),
2072         REGISTER_AB(XM_RX_CFG),
2073         REGISTER_AB(XM_MGT_INT_MASK),
2074         REGISTER_AB(XM_FC),
2075         REGISTER_AB(XM_PAUSE_TIME),
2076         REGISTER_AB(XM_TX_PARAM),
2077         REGISTER_AB(XM_RX_PARAM),
2078         /* XM_MGT_INT_MSK (note no 'A') is RC */
2079         REGISTER_AB(XX_PWR_RST),
2080         REGISTER_AB(XX_SD_CTL),
2081         REGISTER_AB(XX_TXDRV_CTL),
2082         /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
2083         /* XX_CORE_STAT is partly RC */
2084 };
2085
2086 struct efx_nic_reg_table {
2087         u32 offset:24;
2088         u32 min_revision:2, max_revision:2;
2089         u32 step:6, rows:21;
2090 };
2091
2092 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
2093         offset,                                                         \
2094         REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev,   \
2095         step, rows                                                      \
2096 }
2097 #define REGISTER_TABLE(name, min_rev, max_rev)                          \
2098         REGISTER_TABLE_DIMENSIONS(                                      \
2099                 name, FR_ ## min_rev ## max_rev ## _ ## name,           \
2100                 min_rev, max_rev,                                       \
2101                 FR_ ## min_rev ## max_rev ## _ ## name ## _STEP,        \
2102                 FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
2103 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
2104 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
2105 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
2106 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
2107 #define REGISTER_TABLE_BB_CZ(name)                                      \
2108         REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B,           \
2109                                   FR_BZ_ ## name ## _STEP,              \
2110                                   FR_BB_ ## name ## _ROWS),             \
2111         REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z,           \
2112                                   FR_BZ_ ## name ## _STEP,              \
2113                                   FR_CZ_ ## name ## _ROWS)
2114 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
2115
2116 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
2117         /* DRIVER is not used */
2118         /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
2119         REGISTER_TABLE_BB(TX_IPFIL_TBL),
2120         REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
2121         REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
2122         REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
2123         REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
2124         REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
2125         REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
2126         REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
2127         /* We can't reasonably read all of the buffer table (up to 8MB!).
2128          * However this driver will only use a few entries.  Reading
2129          * 1K entries allows for some expansion of queue count and
2130          * size before we need to change the version. */
2131         REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL_KER, FR_AA_BUF_FULL_TBL_KER,
2132                                   A, A, 8, 1024),
2133         REGISTER_TABLE_DIMENSIONS(BUF_FULL_TBL, FR_BZ_BUF_FULL_TBL,
2134                                   B, Z, 8, 1024),
2135         REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
2136         REGISTER_TABLE_BB_CZ(TIMER_TBL),
2137         REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
2138         REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
2139         /* TX_FILTER_TBL0 is huge and not used by this driver */
2140         REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
2141         REGISTER_TABLE_CZ(MC_TREG_SMEM),
2142         /* MSIX_PBA_TABLE is not mapped */
2143         /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
2144         REGISTER_TABLE_BZ(RX_FILTER_TBL0),
2145 };
2146
2147 size_t efx_nic_get_regs_len(struct efx_nic *efx)
2148 {
2149         const struct efx_nic_reg *reg;
2150         const struct efx_nic_reg_table *table;
2151         size_t len = 0;
2152
2153         for (reg = efx_nic_regs;
2154              reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2155              reg++)
2156                 if (efx->type->revision >= reg->min_revision &&
2157                     efx->type->revision <= reg->max_revision)
2158                         len += sizeof(efx_oword_t);
2159
2160         for (table = efx_nic_reg_tables;
2161              table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2162              table++)
2163                 if (efx->type->revision >= table->min_revision &&
2164                     efx->type->revision <= table->max_revision)
2165                         len += table->rows * min_t(size_t, table->step, 16);
2166
2167         return len;
2168 }
2169
2170 void efx_nic_get_regs(struct efx_nic *efx, void *buf)
2171 {
2172         const struct efx_nic_reg *reg;
2173         const struct efx_nic_reg_table *table;
2174
2175         for (reg = efx_nic_regs;
2176              reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2177              reg++) {
2178                 if (efx->type->revision >= reg->min_revision &&
2179                     efx->type->revision <= reg->max_revision) {
2180                         efx_reado(efx, (efx_oword_t *)buf, reg->offset);
2181                         buf += sizeof(efx_oword_t);
2182                 }
2183         }
2184
2185         for (table = efx_nic_reg_tables;
2186              table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2187              table++) {
2188                 size_t size, i;
2189
2190                 if (!(efx->type->revision >= table->min_revision &&
2191                       efx->type->revision <= table->max_revision))
2192                         continue;
2193
2194                 size = min_t(size_t, table->step, 16);
2195
2196                 for (i = 0; i < table->rows; i++) {
2197                         switch (table->step) {
2198                         case 4: /* 32-bit SRAM */
2199                                 efx_readd(efx, buf, table->offset + 4 * i);
2200                                 break;
2201                         case 8: /* 64-bit SRAM */
2202                                 efx_sram_readq(efx,
2203                                                efx->membase + table->offset,
2204                                                buf, i);
2205                                 break;
2206                         case 16: /* 128-bit-readable register */
2207                                 efx_reado_table(efx, buf, table->offset, i);
2208                                 break;
2209                         case 32: /* 128-bit register, interleaved */
2210                                 efx_reado_table(efx, buf, table->offset, 2 * i);
2211                                 break;
2212                         default:
2213                                 WARN_ON(1);
2214                                 return;
2215                         }
2216                         buf += size;
2217                 }
2218         }
2219 }