]> Pileus Git - ~andy/linux/blob - drivers/net/ethernet/sfc/farch.c
378d6b968c4c7b20855e180ae41f1f928c446451
[~andy/linux] / drivers / net / ethernet / sfc / farch.c
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/crc32.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "farch_regs.h"
23 #include "io.h"
24 #include "workarounds.h"
25
26 /* Falcon-architecture (SFC4000 and SFC9000-family) support */
27
28 /**************************************************************************
29  *
30  * Configurable values
31  *
32  **************************************************************************
33  */
34
35 /* This is set to 16 for a good reason.  In summary, if larger than
36  * 16, the descriptor cache holds more than a default socket
37  * buffer's worth of packets (for UDP we can only have at most one
38  * socket buffer's worth outstanding).  This combined with the fact
39  * that we only get 1 TX event per descriptor cache means the NIC
40  * goes idle.
41  */
42 #define TX_DC_ENTRIES 16
43 #define TX_DC_ENTRIES_ORDER 1
44
45 #define RX_DC_ENTRIES 64
46 #define RX_DC_ENTRIES_ORDER 3
47
48 /* If EFX_MAX_INT_ERRORS internal errors occur within
49  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
50  * disable it.
51  */
52 #define EFX_INT_ERROR_EXPIRE 3600
53 #define EFX_MAX_INT_ERRORS 5
54
55 /* Depth of RX flush request fifo */
56 #define EFX_RX_FLUSH_COUNT 4
57
58 /* Driver generated events */
59 #define _EFX_CHANNEL_MAGIC_TEST         0x000101
60 #define _EFX_CHANNEL_MAGIC_FILL         0x000102
61 #define _EFX_CHANNEL_MAGIC_RX_DRAIN     0x000103
62 #define _EFX_CHANNEL_MAGIC_TX_DRAIN     0x000104
63
64 #define _EFX_CHANNEL_MAGIC(_code, _data)        ((_code) << 8 | (_data))
65 #define _EFX_CHANNEL_MAGIC_CODE(_magic)         ((_magic) >> 8)
66
67 #define EFX_CHANNEL_MAGIC_TEST(_channel)                                \
68         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
69 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)                               \
70         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,                     \
71                            efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)                           \
73         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,                 \
74                            efx_rx_queue_index(_rx_queue))
75 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)                           \
76         _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,                 \
77                            (_tx_queue)->queue)
78
79 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
80
81 /**************************************************************************
82  *
83  * Hardware access
84  *
85  **************************************************************************/
86
87 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
88                                      unsigned int index)
89 {
90         efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
91                         value, index);
92 }
93
94 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
95                                      const efx_oword_t *mask)
96 {
97         return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
98                 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
99 }
100
101 int efx_farch_test_registers(struct efx_nic *efx,
102                              const struct efx_farch_register_test *regs,
103                              size_t n_regs)
104 {
105         unsigned address = 0, i, j;
106         efx_oword_t mask, imask, original, reg, buf;
107
108         for (i = 0; i < n_regs; ++i) {
109                 address = regs[i].address;
110                 mask = imask = regs[i].mask;
111                 EFX_INVERT_OWORD(imask);
112
113                 efx_reado(efx, &original, address);
114
115                 /* bit sweep on and off */
116                 for (j = 0; j < 128; j++) {
117                         if (!EFX_EXTRACT_OWORD32(mask, j, j))
118                                 continue;
119
120                         /* Test this testable bit can be set in isolation */
121                         EFX_AND_OWORD(reg, original, mask);
122                         EFX_SET_OWORD32(reg, j, j, 1);
123
124                         efx_writeo(efx, &reg, address);
125                         efx_reado(efx, &buf, address);
126
127                         if (efx_masked_compare_oword(&reg, &buf, &mask))
128                                 goto fail;
129
130                         /* Test this testable bit can be cleared in isolation */
131                         EFX_OR_OWORD(reg, original, mask);
132                         EFX_SET_OWORD32(reg, j, j, 0);
133
134                         efx_writeo(efx, &reg, address);
135                         efx_reado(efx, &buf, address);
136
137                         if (efx_masked_compare_oword(&reg, &buf, &mask))
138                                 goto fail;
139                 }
140
141                 efx_writeo(efx, &original, address);
142         }
143
144         return 0;
145
146 fail:
147         netif_err(efx, hw, efx->net_dev,
148                   "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
149                   " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
150                   EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
151         return -EIO;
152 }
153
154 /**************************************************************************
155  *
156  * Special buffer handling
157  * Special buffers are used for event queues and the TX and RX
158  * descriptor rings.
159  *
160  *************************************************************************/
161
162 /*
163  * Initialise a special buffer
164  *
165  * This will define a buffer (previously allocated via
166  * efx_alloc_special_buffer()) in the buffer table, allowing
167  * it to be used for event queues, descriptor rings etc.
168  */
169 static void
170 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
171 {
172         efx_qword_t buf_desc;
173         unsigned int index;
174         dma_addr_t dma_addr;
175         int i;
176
177         EFX_BUG_ON_PARANOID(!buffer->buf.addr);
178
179         /* Write buffer descriptors to NIC */
180         for (i = 0; i < buffer->entries; i++) {
181                 index = buffer->index + i;
182                 dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
183                 netif_dbg(efx, probe, efx->net_dev,
184                           "mapping special buffer %d at %llx\n",
185                           index, (unsigned long long)dma_addr);
186                 EFX_POPULATE_QWORD_3(buf_desc,
187                                      FRF_AZ_BUF_ADR_REGION, 0,
188                                      FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
189                                      FRF_AZ_BUF_OWNER_ID_FBUF, 0);
190                 efx_write_buf_tbl(efx, &buf_desc, index);
191         }
192 }
193
194 /* Unmaps a buffer and clears the buffer table entries */
195 static void
196 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
197 {
198         efx_oword_t buf_tbl_upd;
199         unsigned int start = buffer->index;
200         unsigned int end = (buffer->index + buffer->entries - 1);
201
202         if (!buffer->entries)
203                 return;
204
205         netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
206                   buffer->index, buffer->index + buffer->entries - 1);
207
208         EFX_POPULATE_OWORD_4(buf_tbl_upd,
209                              FRF_AZ_BUF_UPD_CMD, 0,
210                              FRF_AZ_BUF_CLR_CMD, 1,
211                              FRF_AZ_BUF_CLR_END_ID, end,
212                              FRF_AZ_BUF_CLR_START_ID, start);
213         efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
214 }
215
216 /*
217  * Allocate a new special buffer
218  *
219  * This allocates memory for a new buffer, clears it and allocates a
220  * new buffer ID range.  It does not write into the buffer table.
221  *
222  * This call will allocate 4KB buffers, since 8KB buffers can't be
223  * used for event queues and descriptor rings.
224  */
225 static int efx_alloc_special_buffer(struct efx_nic *efx,
226                                     struct efx_special_buffer *buffer,
227                                     unsigned int len)
228 {
229         len = ALIGN(len, EFX_BUF_SIZE);
230
231         if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
232                 return -ENOMEM;
233         buffer->entries = len / EFX_BUF_SIZE;
234         BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
235
236         /* Select new buffer ID */
237         buffer->index = efx->next_buffer_table;
238         efx->next_buffer_table += buffer->entries;
239 #ifdef CONFIG_SFC_SRIOV
240         BUG_ON(efx_sriov_enabled(efx) &&
241                efx->vf_buftbl_base < efx->next_buffer_table);
242 #endif
243
244         netif_dbg(efx, probe, efx->net_dev,
245                   "allocating special buffers %d-%d at %llx+%x "
246                   "(virt %p phys %llx)\n", buffer->index,
247                   buffer->index + buffer->entries - 1,
248                   (u64)buffer->buf.dma_addr, len,
249                   buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
250
251         return 0;
252 }
253
254 static void
255 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
256 {
257         if (!buffer->buf.addr)
258                 return;
259
260         netif_dbg(efx, hw, efx->net_dev,
261                   "deallocating special buffers %d-%d at %llx+%x "
262                   "(virt %p phys %llx)\n", buffer->index,
263                   buffer->index + buffer->entries - 1,
264                   (u64)buffer->buf.dma_addr, buffer->buf.len,
265                   buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
266
267         efx_nic_free_buffer(efx, &buffer->buf);
268         buffer->entries = 0;
269 }
270
271 /**************************************************************************
272  *
273  * TX path
274  *
275  **************************************************************************/
276
277 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
278 static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
279 {
280         unsigned write_ptr;
281         efx_dword_t reg;
282
283         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
284         EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
285         efx_writed_page(tx_queue->efx, &reg,
286                         FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
287 }
288
289 /* Write pointer and first descriptor for TX descriptor ring */
290 static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
291                                           const efx_qword_t *txd)
292 {
293         unsigned write_ptr;
294         efx_oword_t reg;
295
296         BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
297         BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
298
299         write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
300         EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
301                              FRF_AZ_TX_DESC_WPTR, write_ptr);
302         reg.qword[0] = *txd;
303         efx_writeo_page(tx_queue->efx, &reg,
304                         FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
305 }
306
307
308 /* For each entry inserted into the software descriptor ring, create a
309  * descriptor in the hardware TX descriptor ring (in host memory), and
310  * write a doorbell.
311  */
312 void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
313 {
314
315         struct efx_tx_buffer *buffer;
316         efx_qword_t *txd;
317         unsigned write_ptr;
318         unsigned old_write_count = tx_queue->write_count;
319
320         BUG_ON(tx_queue->write_count == tx_queue->insert_count);
321
322         do {
323                 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
324                 buffer = &tx_queue->buffer[write_ptr];
325                 txd = efx_tx_desc(tx_queue, write_ptr);
326                 ++tx_queue->write_count;
327
328                 EFX_BUG_ON_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
329
330                 /* Create TX descriptor ring entry */
331                 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
332                 EFX_POPULATE_QWORD_4(*txd,
333                                      FSF_AZ_TX_KER_CONT,
334                                      buffer->flags & EFX_TX_BUF_CONT,
335                                      FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
336                                      FSF_AZ_TX_KER_BUF_REGION, 0,
337                                      FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
338         } while (tx_queue->write_count != tx_queue->insert_count);
339
340         wmb(); /* Ensure descriptors are written before they are fetched */
341
342         if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
343                 txd = efx_tx_desc(tx_queue,
344                                   old_write_count & tx_queue->ptr_mask);
345                 efx_farch_push_tx_desc(tx_queue, txd);
346                 ++tx_queue->pushes;
347         } else {
348                 efx_farch_notify_tx_desc(tx_queue);
349         }
350 }
351
352 /* Allocate hardware resources for a TX queue */
353 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
354 {
355         struct efx_nic *efx = tx_queue->efx;
356         unsigned entries;
357
358         entries = tx_queue->ptr_mask + 1;
359         return efx_alloc_special_buffer(efx, &tx_queue->txd,
360                                         entries * sizeof(efx_qword_t));
361 }
362
363 void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
364 {
365         struct efx_nic *efx = tx_queue->efx;
366         efx_oword_t reg;
367
368         /* Pin TX descriptor ring */
369         efx_init_special_buffer(efx, &tx_queue->txd);
370
371         /* Push TX descriptor ring to card */
372         EFX_POPULATE_OWORD_10(reg,
373                               FRF_AZ_TX_DESCQ_EN, 1,
374                               FRF_AZ_TX_ISCSI_DDIG_EN, 0,
375                               FRF_AZ_TX_ISCSI_HDIG_EN, 0,
376                               FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
377                               FRF_AZ_TX_DESCQ_EVQ_ID,
378                               tx_queue->channel->channel,
379                               FRF_AZ_TX_DESCQ_OWNER_ID, 0,
380                               FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
381                               FRF_AZ_TX_DESCQ_SIZE,
382                               __ffs(tx_queue->txd.entries),
383                               FRF_AZ_TX_DESCQ_TYPE, 0,
384                               FRF_BZ_TX_NON_IP_DROP_DIS, 1);
385
386         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
387                 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
388                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
389                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
390                                     !csum);
391         }
392
393         efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
394                          tx_queue->queue);
395
396         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
397                 /* Only 128 bits in this register */
398                 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
399
400                 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
401                 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
402                         __clear_bit_le(tx_queue->queue, &reg);
403                 else
404                         __set_bit_le(tx_queue->queue, &reg);
405                 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
406         }
407
408         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
409                 EFX_POPULATE_OWORD_1(reg,
410                                      FRF_BZ_TX_PACE,
411                                      (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
412                                      FFE_BZ_TX_PACE_OFF :
413                                      FFE_BZ_TX_PACE_RESERVED);
414                 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
415                                  tx_queue->queue);
416         }
417 }
418
419 static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
420 {
421         struct efx_nic *efx = tx_queue->efx;
422         efx_oword_t tx_flush_descq;
423
424         WARN_ON(atomic_read(&tx_queue->flush_outstanding));
425         atomic_set(&tx_queue->flush_outstanding, 1);
426
427         EFX_POPULATE_OWORD_2(tx_flush_descq,
428                              FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
429                              FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
430         efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
431 }
432
433 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
434 {
435         struct efx_nic *efx = tx_queue->efx;
436         efx_oword_t tx_desc_ptr;
437
438         /* Remove TX descriptor ring from card */
439         EFX_ZERO_OWORD(tx_desc_ptr);
440         efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
441                          tx_queue->queue);
442
443         /* Unpin TX descriptor ring */
444         efx_fini_special_buffer(efx, &tx_queue->txd);
445 }
446
447 /* Free buffers backing TX queue */
448 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
449 {
450         efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
451 }
452
453 /**************************************************************************
454  *
455  * RX path
456  *
457  **************************************************************************/
458
459 /* This creates an entry in the RX descriptor queue */
460 static inline void
461 efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
462 {
463         struct efx_rx_buffer *rx_buf;
464         efx_qword_t *rxd;
465
466         rxd = efx_rx_desc(rx_queue, index);
467         rx_buf = efx_rx_buffer(rx_queue, index);
468         EFX_POPULATE_QWORD_3(*rxd,
469                              FSF_AZ_RX_KER_BUF_SIZE,
470                              rx_buf->len -
471                              rx_queue->efx->type->rx_buffer_padding,
472                              FSF_AZ_RX_KER_BUF_REGION, 0,
473                              FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
474 }
475
476 /* This writes to the RX_DESC_WPTR register for the specified receive
477  * descriptor ring.
478  */
479 void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
480 {
481         struct efx_nic *efx = rx_queue->efx;
482         efx_dword_t reg;
483         unsigned write_ptr;
484
485         while (rx_queue->notified_count != rx_queue->added_count) {
486                 efx_farch_build_rx_desc(
487                         rx_queue,
488                         rx_queue->notified_count & rx_queue->ptr_mask);
489                 ++rx_queue->notified_count;
490         }
491
492         wmb();
493         write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
494         EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
495         efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
496                         efx_rx_queue_index(rx_queue));
497 }
498
499 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
500 {
501         struct efx_nic *efx = rx_queue->efx;
502         unsigned entries;
503
504         entries = rx_queue->ptr_mask + 1;
505         return efx_alloc_special_buffer(efx, &rx_queue->rxd,
506                                         entries * sizeof(efx_qword_t));
507 }
508
509 void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
510 {
511         efx_oword_t rx_desc_ptr;
512         struct efx_nic *efx = rx_queue->efx;
513         bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
514         bool iscsi_digest_en = is_b0;
515         bool jumbo_en;
516
517         /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
518          * DMA to continue after a PCIe page boundary (and scattering
519          * is not possible).  In Falcon B0 and Siena, it enables
520          * scatter.
521          */
522         jumbo_en = !is_b0 || efx->rx_scatter;
523
524         netif_dbg(efx, hw, efx->net_dev,
525                   "RX queue %d ring in special buffers %d-%d\n",
526                   efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
527                   rx_queue->rxd.index + rx_queue->rxd.entries - 1);
528
529         rx_queue->scatter_n = 0;
530
531         /* Pin RX descriptor ring */
532         efx_init_special_buffer(efx, &rx_queue->rxd);
533
534         /* Push RX descriptor ring to card */
535         EFX_POPULATE_OWORD_10(rx_desc_ptr,
536                               FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
537                               FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
538                               FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
539                               FRF_AZ_RX_DESCQ_EVQ_ID,
540                               efx_rx_queue_channel(rx_queue)->channel,
541                               FRF_AZ_RX_DESCQ_OWNER_ID, 0,
542                               FRF_AZ_RX_DESCQ_LABEL,
543                               efx_rx_queue_index(rx_queue),
544                               FRF_AZ_RX_DESCQ_SIZE,
545                               __ffs(rx_queue->rxd.entries),
546                               FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
547                               FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
548                               FRF_AZ_RX_DESCQ_EN, 1);
549         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
550                          efx_rx_queue_index(rx_queue));
551 }
552
553 static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
554 {
555         struct efx_nic *efx = rx_queue->efx;
556         efx_oword_t rx_flush_descq;
557
558         EFX_POPULATE_OWORD_2(rx_flush_descq,
559                              FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
560                              FRF_AZ_RX_FLUSH_DESCQ,
561                              efx_rx_queue_index(rx_queue));
562         efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
563 }
564
565 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
566 {
567         efx_oword_t rx_desc_ptr;
568         struct efx_nic *efx = rx_queue->efx;
569
570         /* Remove RX descriptor ring from card */
571         EFX_ZERO_OWORD(rx_desc_ptr);
572         efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
573                          efx_rx_queue_index(rx_queue));
574
575         /* Unpin RX descriptor ring */
576         efx_fini_special_buffer(efx, &rx_queue->rxd);
577 }
578
579 /* Free buffers backing RX queue */
580 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
581 {
582         efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
583 }
584
585 /**************************************************************************
586  *
587  * Flush handling
588  *
589  **************************************************************************/
590
591 /* efx_farch_flush_queues() must be woken up when all flushes are completed,
592  * or more RX flushes can be kicked off.
593  */
594 static bool efx_farch_flush_wake(struct efx_nic *efx)
595 {
596         /* Ensure that all updates are visible to efx_farch_flush_queues() */
597         smp_mb();
598
599         return (atomic_read(&efx->active_queues) == 0 ||
600                 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
601                  && atomic_read(&efx->rxq_flush_pending) > 0));
602 }
603
604 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
605 {
606         bool i = true;
607         efx_oword_t txd_ptr_tbl;
608         struct efx_channel *channel;
609         struct efx_tx_queue *tx_queue;
610
611         efx_for_each_channel(channel, efx) {
612                 efx_for_each_channel_tx_queue(tx_queue, channel) {
613                         efx_reado_table(efx, &txd_ptr_tbl,
614                                         FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
615                         if (EFX_OWORD_FIELD(txd_ptr_tbl,
616                                             FRF_AZ_TX_DESCQ_FLUSH) ||
617                             EFX_OWORD_FIELD(txd_ptr_tbl,
618                                             FRF_AZ_TX_DESCQ_EN)) {
619                                 netif_dbg(efx, hw, efx->net_dev,
620                                           "flush did not complete on TXQ %d\n",
621                                           tx_queue->queue);
622                                 i = false;
623                         } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
624                                                   1, 0)) {
625                                 /* The flush is complete, but we didn't
626                                  * receive a flush completion event
627                                  */
628                                 netif_dbg(efx, hw, efx->net_dev,
629                                           "flush complete on TXQ %d, so drain "
630                                           "the queue\n", tx_queue->queue);
631                                 /* Don't need to increment active_queues as it
632                                  * has already been incremented for the queues
633                                  * which did not drain
634                                  */
635                                 efx_farch_magic_event(channel,
636                                                       EFX_CHANNEL_MAGIC_TX_DRAIN(
637                                                               tx_queue));
638                         }
639                 }
640         }
641
642         return i;
643 }
644
645 /* Flush all the transmit queues, and continue flushing receive queues until
646  * they're all flushed. Wait for the DRAIN events to be recieved so that there
647  * are no more RX and TX events left on any channel. */
648 static int efx_farch_do_flush(struct efx_nic *efx)
649 {
650         unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
651         struct efx_channel *channel;
652         struct efx_rx_queue *rx_queue;
653         struct efx_tx_queue *tx_queue;
654         int rc = 0;
655
656         efx_for_each_channel(channel, efx) {
657                 efx_for_each_channel_tx_queue(tx_queue, channel) {
658                         efx_farch_flush_tx_queue(tx_queue);
659                 }
660                 efx_for_each_channel_rx_queue(rx_queue, channel) {
661                         rx_queue->flush_pending = true;
662                         atomic_inc(&efx->rxq_flush_pending);
663                 }
664         }
665
666         while (timeout && atomic_read(&efx->active_queues) > 0) {
667                 /* If SRIOV is enabled, then offload receive queue flushing to
668                  * the firmware (though we will still have to poll for
669                  * completion). If that fails, fall back to the old scheme.
670                  */
671                 if (efx_sriov_enabled(efx)) {
672                         rc = efx_mcdi_flush_rxqs(efx);
673                         if (!rc)
674                                 goto wait;
675                 }
676
677                 /* The hardware supports four concurrent rx flushes, each of
678                  * which may need to be retried if there is an outstanding
679                  * descriptor fetch
680                  */
681                 efx_for_each_channel(channel, efx) {
682                         efx_for_each_channel_rx_queue(rx_queue, channel) {
683                                 if (atomic_read(&efx->rxq_flush_outstanding) >=
684                                     EFX_RX_FLUSH_COUNT)
685                                         break;
686
687                                 if (rx_queue->flush_pending) {
688                                         rx_queue->flush_pending = false;
689                                         atomic_dec(&efx->rxq_flush_pending);
690                                         atomic_inc(&efx->rxq_flush_outstanding);
691                                         efx_farch_flush_rx_queue(rx_queue);
692                                 }
693                         }
694                 }
695
696         wait:
697                 timeout = wait_event_timeout(efx->flush_wq,
698                                              efx_farch_flush_wake(efx),
699                                              timeout);
700         }
701
702         if (atomic_read(&efx->active_queues) &&
703             !efx_check_tx_flush_complete(efx)) {
704                 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
705                           "(rx %d+%d)\n", atomic_read(&efx->active_queues),
706                           atomic_read(&efx->rxq_flush_outstanding),
707                           atomic_read(&efx->rxq_flush_pending));
708                 rc = -ETIMEDOUT;
709
710                 atomic_set(&efx->active_queues, 0);
711                 atomic_set(&efx->rxq_flush_pending, 0);
712                 atomic_set(&efx->rxq_flush_outstanding, 0);
713         }
714
715         return rc;
716 }
717
718 int efx_farch_fini_dmaq(struct efx_nic *efx)
719 {
720         struct efx_channel *channel;
721         struct efx_tx_queue *tx_queue;
722         struct efx_rx_queue *rx_queue;
723         int rc = 0;
724
725         /* Do not attempt to write to the NIC during EEH recovery */
726         if (efx->state != STATE_RECOVERY) {
727                 /* Only perform flush if DMA is enabled */
728                 if (efx->pci_dev->is_busmaster) {
729                         efx->type->prepare_flush(efx);
730                         rc = efx_farch_do_flush(efx);
731                         efx->type->finish_flush(efx);
732                 }
733
734                 efx_for_each_channel(channel, efx) {
735                         efx_for_each_channel_rx_queue(rx_queue, channel)
736                                 efx_farch_rx_fini(rx_queue);
737                         efx_for_each_channel_tx_queue(tx_queue, channel)
738                                 efx_farch_tx_fini(tx_queue);
739                 }
740         }
741
742         return rc;
743 }
744
745 /**************************************************************************
746  *
747  * Event queue processing
748  * Event queues are processed by per-channel tasklets.
749  *
750  **************************************************************************/
751
752 /* Update a channel's event queue's read pointer (RPTR) register
753  *
754  * This writes the EVQ_RPTR_REG register for the specified channel's
755  * event queue.
756  */
757 void efx_farch_ev_read_ack(struct efx_channel *channel)
758 {
759         efx_dword_t reg;
760         struct efx_nic *efx = channel->efx;
761
762         EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
763                              channel->eventq_read_ptr & channel->eventq_mask);
764
765         /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
766          * of 4 bytes, but it is really 16 bytes just like later revisions.
767          */
768         efx_writed(efx, &reg,
769                    efx->type->evq_rptr_tbl_base +
770                    FR_BZ_EVQ_RPTR_STEP * channel->channel);
771 }
772
773 /* Use HW to insert a SW defined event */
774 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
775                               efx_qword_t *event)
776 {
777         efx_oword_t drv_ev_reg;
778
779         BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
780                      FRF_AZ_DRV_EV_DATA_WIDTH != 64);
781         drv_ev_reg.u32[0] = event->u32[0];
782         drv_ev_reg.u32[1] = event->u32[1];
783         drv_ev_reg.u32[2] = 0;
784         drv_ev_reg.u32[3] = 0;
785         EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
786         efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
787 }
788
789 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
790 {
791         efx_qword_t event;
792
793         EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
794                              FSE_AZ_EV_CODE_DRV_GEN_EV,
795                              FSF_AZ_DRV_GEN_EV_MAGIC, magic);
796         efx_farch_generate_event(channel->efx, channel->channel, &event);
797 }
798
799 /* Handle a transmit completion event
800  *
801  * The NIC batches TX completion events; the message we receive is of
802  * the form "complete all TX events up to this index".
803  */
804 static int
805 efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
806 {
807         unsigned int tx_ev_desc_ptr;
808         unsigned int tx_ev_q_label;
809         struct efx_tx_queue *tx_queue;
810         struct efx_nic *efx = channel->efx;
811         int tx_packets = 0;
812
813         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
814                 return 0;
815
816         if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
817                 /* Transmit completion */
818                 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
819                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
820                 tx_queue = efx_channel_get_tx_queue(
821                         channel, tx_ev_q_label % EFX_TXQ_TYPES);
822                 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
823                               tx_queue->ptr_mask);
824                 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
825         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
826                 /* Rewrite the FIFO write pointer */
827                 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
828                 tx_queue = efx_channel_get_tx_queue(
829                         channel, tx_ev_q_label % EFX_TXQ_TYPES);
830
831                 netif_tx_lock(efx->net_dev);
832                 efx_farch_notify_tx_desc(tx_queue);
833                 netif_tx_unlock(efx->net_dev);
834         } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
835                 efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
836         } else {
837                 netif_err(efx, tx_err, efx->net_dev,
838                           "channel %d unexpected TX event "
839                           EFX_QWORD_FMT"\n", channel->channel,
840                           EFX_QWORD_VAL(*event));
841         }
842
843         return tx_packets;
844 }
845
846 /* Detect errors included in the rx_evt_pkt_ok bit. */
847 static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
848                                       const efx_qword_t *event)
849 {
850         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
851         struct efx_nic *efx = rx_queue->efx;
852         bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
853         bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
854         bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
855         bool rx_ev_other_err, rx_ev_pause_frm;
856         bool rx_ev_hdr_type, rx_ev_mcast_pkt;
857         unsigned rx_ev_pkt_type;
858
859         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
860         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
861         rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
862         rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
863         rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
864                                                  FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
865         rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
866                                                   FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
867         rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
868                                                    FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
869         rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
870         rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
871         rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
872                           0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
873         rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
874
875         /* Every error apart from tobe_disc and pause_frm */
876         rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
877                            rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
878                            rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
879
880         /* Count errors that are not in MAC stats.  Ignore expected
881          * checksum errors during self-test. */
882         if (rx_ev_frm_trunc)
883                 ++channel->n_rx_frm_trunc;
884         else if (rx_ev_tobe_disc)
885                 ++channel->n_rx_tobe_disc;
886         else if (!efx->loopback_selftest) {
887                 if (rx_ev_ip_hdr_chksum_err)
888                         ++channel->n_rx_ip_hdr_chksum_err;
889                 else if (rx_ev_tcp_udp_chksum_err)
890                         ++channel->n_rx_tcp_udp_chksum_err;
891         }
892
893         /* TOBE_DISC is expected on unicast mismatches; don't print out an
894          * error message.  FRM_TRUNC indicates RXDP dropped the packet due
895          * to a FIFO overflow.
896          */
897 #ifdef DEBUG
898         if (rx_ev_other_err && net_ratelimit()) {
899                 netif_dbg(efx, rx_err, efx->net_dev,
900                           " RX queue %d unexpected RX event "
901                           EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
902                           efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
903                           rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
904                           rx_ev_ip_hdr_chksum_err ?
905                           " [IP_HDR_CHKSUM_ERR]" : "",
906                           rx_ev_tcp_udp_chksum_err ?
907                           " [TCP_UDP_CHKSUM_ERR]" : "",
908                           rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
909                           rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
910                           rx_ev_drib_nib ? " [DRIB_NIB]" : "",
911                           rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
912                           rx_ev_pause_frm ? " [PAUSE]" : "");
913         }
914 #endif
915
916         /* The frame must be discarded if any of these are true. */
917         return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
918                 rx_ev_tobe_disc | rx_ev_pause_frm) ?
919                 EFX_RX_PKT_DISCARD : 0;
920 }
921
922 /* Handle receive events that are not in-order. Return true if this
923  * can be handled as a partial packet discard, false if it's more
924  * serious.
925  */
926 static bool
927 efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
928 {
929         struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
930         struct efx_nic *efx = rx_queue->efx;
931         unsigned expected, dropped;
932
933         if (rx_queue->scatter_n &&
934             index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
935                       rx_queue->ptr_mask)) {
936                 ++channel->n_rx_nodesc_trunc;
937                 return true;
938         }
939
940         expected = rx_queue->removed_count & rx_queue->ptr_mask;
941         dropped = (index - expected) & rx_queue->ptr_mask;
942         netif_info(efx, rx_err, efx->net_dev,
943                    "dropped %d events (index=%d expected=%d)\n",
944                    dropped, index, expected);
945
946         efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
947                            RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
948         return false;
949 }
950
951 /* Handle a packet received event
952  *
953  * The NIC gives a "discard" flag if it's a unicast packet with the
954  * wrong destination address
955  * Also "is multicast" and "matches multicast filter" flags can be used to
956  * discard non-matching multicast packets.
957  */
958 static void
959 efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
960 {
961         unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
962         unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
963         unsigned expected_ptr;
964         bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
965         u16 flags;
966         struct efx_rx_queue *rx_queue;
967         struct efx_nic *efx = channel->efx;
968
969         if (unlikely(ACCESS_ONCE(efx->reset_pending)))
970                 return;
971
972         rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
973         rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
974         WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
975                 channel->channel);
976
977         rx_queue = efx_channel_get_rx_queue(channel);
978
979         rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
980         expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
981                         rx_queue->ptr_mask);
982
983         /* Check for partial drops and other errors */
984         if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
985             unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
986                 if (rx_ev_desc_ptr != expected_ptr &&
987                     !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
988                         return;
989
990                 /* Discard all pending fragments */
991                 if (rx_queue->scatter_n) {
992                         efx_rx_packet(
993                                 rx_queue,
994                                 rx_queue->removed_count & rx_queue->ptr_mask,
995                                 rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
996                         rx_queue->removed_count += rx_queue->scatter_n;
997                         rx_queue->scatter_n = 0;
998                 }
999
1000                 /* Return if there is no new fragment */
1001                 if (rx_ev_desc_ptr != expected_ptr)
1002                         return;
1003
1004                 /* Discard new fragment if not SOP */
1005                 if (!rx_ev_sop) {
1006                         efx_rx_packet(
1007                                 rx_queue,
1008                                 rx_queue->removed_count & rx_queue->ptr_mask,
1009                                 1, 0, EFX_RX_PKT_DISCARD);
1010                         ++rx_queue->removed_count;
1011                         return;
1012                 }
1013         }
1014
1015         ++rx_queue->scatter_n;
1016         if (rx_ev_cont)
1017                 return;
1018
1019         rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1020         rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1021         rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1022
1023         if (likely(rx_ev_pkt_ok)) {
1024                 /* If packet is marked as OK then we can rely on the
1025                  * hardware checksum and classification.
1026                  */
1027                 flags = 0;
1028                 switch (rx_ev_hdr_type) {
1029                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1030                         flags |= EFX_RX_PKT_TCP;
1031                         /* fall through */
1032                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1033                         flags |= EFX_RX_PKT_CSUMMED;
1034                         /* fall through */
1035                 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1036                 case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1037                         break;
1038                 }
1039         } else {
1040                 flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1041         }
1042
1043         /* Detect multicast packets that didn't match the filter */
1044         rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1045         if (rx_ev_mcast_pkt) {
1046                 unsigned int rx_ev_mcast_hash_match =
1047                         EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1048
1049                 if (unlikely(!rx_ev_mcast_hash_match)) {
1050                         ++channel->n_rx_mcast_mismatch;
1051                         flags |= EFX_RX_PKT_DISCARD;
1052                 }
1053         }
1054
1055         channel->irq_mod_score += 2;
1056
1057         /* Handle received packet */
1058         efx_rx_packet(rx_queue,
1059                       rx_queue->removed_count & rx_queue->ptr_mask,
1060                       rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1061         rx_queue->removed_count += rx_queue->scatter_n;
1062         rx_queue->scatter_n = 0;
1063 }
1064
1065 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1066  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1067  * of all transmit completions.
1068  */
1069 static void
1070 efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1071 {
1072         struct efx_tx_queue *tx_queue;
1073         int qid;
1074
1075         qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1076         if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1077                 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1078                                             qid % EFX_TXQ_TYPES);
1079                 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1080                         efx_farch_magic_event(tx_queue->channel,
1081                                               EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1082                 }
1083         }
1084 }
1085
1086 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1087  * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1088  * the RX queue back to the mask of RX queues in need of flushing.
1089  */
1090 static void
1091 efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1092 {
1093         struct efx_channel *channel;
1094         struct efx_rx_queue *rx_queue;
1095         int qid;
1096         bool failed;
1097
1098         qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1099         failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1100         if (qid >= efx->n_channels)
1101                 return;
1102         channel = efx_get_channel(efx, qid);
1103         if (!efx_channel_has_rx_queue(channel))
1104                 return;
1105         rx_queue = efx_channel_get_rx_queue(channel);
1106
1107         if (failed) {
1108                 netif_info(efx, hw, efx->net_dev,
1109                            "RXQ %d flush retry\n", qid);
1110                 rx_queue->flush_pending = true;
1111                 atomic_inc(&efx->rxq_flush_pending);
1112         } else {
1113                 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1114                                       EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1115         }
1116         atomic_dec(&efx->rxq_flush_outstanding);
1117         if (efx_farch_flush_wake(efx))
1118                 wake_up(&efx->flush_wq);
1119 }
1120
1121 static void
1122 efx_farch_handle_drain_event(struct efx_channel *channel)
1123 {
1124         struct efx_nic *efx = channel->efx;
1125
1126         WARN_ON(atomic_read(&efx->active_queues) == 0);
1127         atomic_dec(&efx->active_queues);
1128         if (efx_farch_flush_wake(efx))
1129                 wake_up(&efx->flush_wq);
1130 }
1131
1132 static void efx_farch_handle_generated_event(struct efx_channel *channel,
1133                                              efx_qword_t *event)
1134 {
1135         struct efx_nic *efx = channel->efx;
1136         struct efx_rx_queue *rx_queue =
1137                 efx_channel_has_rx_queue(channel) ?
1138                 efx_channel_get_rx_queue(channel) : NULL;
1139         unsigned magic, code;
1140
1141         magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1142         code = _EFX_CHANNEL_MAGIC_CODE(magic);
1143
1144         if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1145                 channel->event_test_cpu = raw_smp_processor_id();
1146         } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1147                 /* The queue must be empty, so we won't receive any rx
1148                  * events, so efx_process_channel() won't refill the
1149                  * queue. Refill it here */
1150                 efx_fast_push_rx_descriptors(rx_queue, true);
1151         } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1152                 efx_farch_handle_drain_event(channel);
1153         } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1154                 efx_farch_handle_drain_event(channel);
1155         } else {
1156                 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1157                           "generated event "EFX_QWORD_FMT"\n",
1158                           channel->channel, EFX_QWORD_VAL(*event));
1159         }
1160 }
1161
1162 static void
1163 efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1164 {
1165         struct efx_nic *efx = channel->efx;
1166         unsigned int ev_sub_code;
1167         unsigned int ev_sub_data;
1168
1169         ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1170         ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1171
1172         switch (ev_sub_code) {
1173         case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1174                 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1175                            channel->channel, ev_sub_data);
1176                 efx_farch_handle_tx_flush_done(efx, event);
1177                 efx_sriov_tx_flush_done(efx, event);
1178                 break;
1179         case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1180                 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1181                            channel->channel, ev_sub_data);
1182                 efx_farch_handle_rx_flush_done(efx, event);
1183                 efx_sriov_rx_flush_done(efx, event);
1184                 break;
1185         case FSE_AZ_EVQ_INIT_DONE_EV:
1186                 netif_dbg(efx, hw, efx->net_dev,
1187                           "channel %d EVQ %d initialised\n",
1188                           channel->channel, ev_sub_data);
1189                 break;
1190         case FSE_AZ_SRM_UPD_DONE_EV:
1191                 netif_vdbg(efx, hw, efx->net_dev,
1192                            "channel %d SRAM update done\n", channel->channel);
1193                 break;
1194         case FSE_AZ_WAKE_UP_EV:
1195                 netif_vdbg(efx, hw, efx->net_dev,
1196                            "channel %d RXQ %d wakeup event\n",
1197                            channel->channel, ev_sub_data);
1198                 break;
1199         case FSE_AZ_TIMER_EV:
1200                 netif_vdbg(efx, hw, efx->net_dev,
1201                            "channel %d RX queue %d timer expired\n",
1202                            channel->channel, ev_sub_data);
1203                 break;
1204         case FSE_AA_RX_RECOVER_EV:
1205                 netif_err(efx, rx_err, efx->net_dev,
1206                           "channel %d seen DRIVER RX_RESET event. "
1207                         "Resetting.\n", channel->channel);
1208                 atomic_inc(&efx->rx_reset);
1209                 efx_schedule_reset(efx,
1210                                    EFX_WORKAROUND_6555(efx) ?
1211                                    RESET_TYPE_RX_RECOVERY :
1212                                    RESET_TYPE_DISABLE);
1213                 break;
1214         case FSE_BZ_RX_DSC_ERROR_EV:
1215                 if (ev_sub_data < EFX_VI_BASE) {
1216                         netif_err(efx, rx_err, efx->net_dev,
1217                                   "RX DMA Q %d reports descriptor fetch error."
1218                                   " RX Q %d is disabled.\n", ev_sub_data,
1219                                   ev_sub_data);
1220                         efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1221                 } else
1222                         efx_sriov_desc_fetch_err(efx, ev_sub_data);
1223                 break;
1224         case FSE_BZ_TX_DSC_ERROR_EV:
1225                 if (ev_sub_data < EFX_VI_BASE) {
1226                         netif_err(efx, tx_err, efx->net_dev,
1227                                   "TX DMA Q %d reports descriptor fetch error."
1228                                   " TX Q %d is disabled.\n", ev_sub_data,
1229                                   ev_sub_data);
1230                         efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1231                 } else
1232                         efx_sriov_desc_fetch_err(efx, ev_sub_data);
1233                 break;
1234         default:
1235                 netif_vdbg(efx, hw, efx->net_dev,
1236                            "channel %d unknown driver event code %d "
1237                            "data %04x\n", channel->channel, ev_sub_code,
1238                            ev_sub_data);
1239                 break;
1240         }
1241 }
1242
1243 int efx_farch_ev_process(struct efx_channel *channel, int budget)
1244 {
1245         struct efx_nic *efx = channel->efx;
1246         unsigned int read_ptr;
1247         efx_qword_t event, *p_event;
1248         int ev_code;
1249         int tx_packets = 0;
1250         int spent = 0;
1251
1252         read_ptr = channel->eventq_read_ptr;
1253
1254         for (;;) {
1255                 p_event = efx_event(channel, read_ptr);
1256                 event = *p_event;
1257
1258                 if (!efx_event_present(&event))
1259                         /* End of events */
1260                         break;
1261
1262                 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1263                            "channel %d event is "EFX_QWORD_FMT"\n",
1264                            channel->channel, EFX_QWORD_VAL(event));
1265
1266                 /* Clear this event by marking it all ones */
1267                 EFX_SET_QWORD(*p_event);
1268
1269                 ++read_ptr;
1270
1271                 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1272
1273                 switch (ev_code) {
1274                 case FSE_AZ_EV_CODE_RX_EV:
1275                         efx_farch_handle_rx_event(channel, &event);
1276                         if (++spent == budget)
1277                                 goto out;
1278                         break;
1279                 case FSE_AZ_EV_CODE_TX_EV:
1280                         tx_packets += efx_farch_handle_tx_event(channel,
1281                                                                 &event);
1282                         if (tx_packets > efx->txq_entries) {
1283                                 spent = budget;
1284                                 goto out;
1285                         }
1286                         break;
1287                 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1288                         efx_farch_handle_generated_event(channel, &event);
1289                         break;
1290                 case FSE_AZ_EV_CODE_DRIVER_EV:
1291                         efx_farch_handle_driver_event(channel, &event);
1292                         break;
1293                 case FSE_CZ_EV_CODE_USER_EV:
1294                         efx_sriov_event(channel, &event);
1295                         break;
1296                 case FSE_CZ_EV_CODE_MCDI_EV:
1297                         efx_mcdi_process_event(channel, &event);
1298                         break;
1299                 case FSE_AZ_EV_CODE_GLOBAL_EV:
1300                         if (efx->type->handle_global_event &&
1301                             efx->type->handle_global_event(channel, &event))
1302                                 break;
1303                         /* else fall through */
1304                 default:
1305                         netif_err(channel->efx, hw, channel->efx->net_dev,
1306                                   "channel %d unknown event type %d (data "
1307                                   EFX_QWORD_FMT ")\n", channel->channel,
1308                                   ev_code, EFX_QWORD_VAL(event));
1309                 }
1310         }
1311
1312 out:
1313         channel->eventq_read_ptr = read_ptr;
1314         return spent;
1315 }
1316
1317 /* Allocate buffer table entries for event queue */
1318 int efx_farch_ev_probe(struct efx_channel *channel)
1319 {
1320         struct efx_nic *efx = channel->efx;
1321         unsigned entries;
1322
1323         entries = channel->eventq_mask + 1;
1324         return efx_alloc_special_buffer(efx, &channel->eventq,
1325                                         entries * sizeof(efx_qword_t));
1326 }
1327
1328 int efx_farch_ev_init(struct efx_channel *channel)
1329 {
1330         efx_oword_t reg;
1331         struct efx_nic *efx = channel->efx;
1332
1333         netif_dbg(efx, hw, efx->net_dev,
1334                   "channel %d event queue in special buffers %d-%d\n",
1335                   channel->channel, channel->eventq.index,
1336                   channel->eventq.index + channel->eventq.entries - 1);
1337
1338         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1339                 EFX_POPULATE_OWORD_3(reg,
1340                                      FRF_CZ_TIMER_Q_EN, 1,
1341                                      FRF_CZ_HOST_NOTIFY_MODE, 0,
1342                                      FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1343                 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1344         }
1345
1346         /* Pin event queue buffer */
1347         efx_init_special_buffer(efx, &channel->eventq);
1348
1349         /* Fill event queue with all ones (i.e. empty events) */
1350         memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1351
1352         /* Push event queue to card */
1353         EFX_POPULATE_OWORD_3(reg,
1354                              FRF_AZ_EVQ_EN, 1,
1355                              FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1356                              FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1357         efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1358                          channel->channel);
1359
1360         return 0;
1361 }
1362
1363 void efx_farch_ev_fini(struct efx_channel *channel)
1364 {
1365         efx_oword_t reg;
1366         struct efx_nic *efx = channel->efx;
1367
1368         /* Remove event queue from card */
1369         EFX_ZERO_OWORD(reg);
1370         efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1371                          channel->channel);
1372         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1373                 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1374
1375         /* Unpin event queue */
1376         efx_fini_special_buffer(efx, &channel->eventq);
1377 }
1378
1379 /* Free buffers backing event queue */
1380 void efx_farch_ev_remove(struct efx_channel *channel)
1381 {
1382         efx_free_special_buffer(channel->efx, &channel->eventq);
1383 }
1384
1385
1386 void efx_farch_ev_test_generate(struct efx_channel *channel)
1387 {
1388         efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1389 }
1390
1391 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1392 {
1393         efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1394                               EFX_CHANNEL_MAGIC_FILL(rx_queue));
1395 }
1396
1397 /**************************************************************************
1398  *
1399  * Hardware interrupts
1400  * The hardware interrupt handler does very little work; all the event
1401  * queue processing is carried out by per-channel tasklets.
1402  *
1403  **************************************************************************/
1404
1405 /* Enable/disable/generate interrupts */
1406 static inline void efx_farch_interrupts(struct efx_nic *efx,
1407                                       bool enabled, bool force)
1408 {
1409         efx_oword_t int_en_reg_ker;
1410
1411         EFX_POPULATE_OWORD_3(int_en_reg_ker,
1412                              FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1413                              FRF_AZ_KER_INT_KER, force,
1414                              FRF_AZ_DRV_INT_EN_KER, enabled);
1415         efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1416 }
1417
1418 void efx_farch_irq_enable_master(struct efx_nic *efx)
1419 {
1420         EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1421         wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1422
1423         efx_farch_interrupts(efx, true, false);
1424 }
1425
1426 void efx_farch_irq_disable_master(struct efx_nic *efx)
1427 {
1428         /* Disable interrupts */
1429         efx_farch_interrupts(efx, false, false);
1430 }
1431
1432 /* Generate a test interrupt
1433  * Interrupt must already have been enabled, otherwise nasty things
1434  * may happen.
1435  */
1436 void efx_farch_irq_test_generate(struct efx_nic *efx)
1437 {
1438         efx_farch_interrupts(efx, true, true);
1439 }
1440
1441 /* Process a fatal interrupt
1442  * Disable bus mastering ASAP and schedule a reset
1443  */
1444 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1445 {
1446         struct falcon_nic_data *nic_data = efx->nic_data;
1447         efx_oword_t *int_ker = efx->irq_status.addr;
1448         efx_oword_t fatal_intr;
1449         int error, mem_perr;
1450
1451         efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1452         error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1453
1454         netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1455                   EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1456                   EFX_OWORD_VAL(fatal_intr),
1457                   error ? "disabling bus mastering" : "no recognised error");
1458
1459         /* If this is a memory parity error dump which blocks are offending */
1460         mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1461                     EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1462         if (mem_perr) {
1463                 efx_oword_t reg;
1464                 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1465                 netif_err(efx, hw, efx->net_dev,
1466                           "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1467                           EFX_OWORD_VAL(reg));
1468         }
1469
1470         /* Disable both devices */
1471         pci_clear_master(efx->pci_dev);
1472         if (efx_nic_is_dual_func(efx))
1473                 pci_clear_master(nic_data->pci_dev2);
1474         efx_farch_irq_disable_master(efx);
1475
1476         /* Count errors and reset or disable the NIC accordingly */
1477         if (efx->int_error_count == 0 ||
1478             time_after(jiffies, efx->int_error_expire)) {
1479                 efx->int_error_count = 0;
1480                 efx->int_error_expire =
1481                         jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1482         }
1483         if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1484                 netif_err(efx, hw, efx->net_dev,
1485                           "SYSTEM ERROR - reset scheduled\n");
1486                 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1487         } else {
1488                 netif_err(efx, hw, efx->net_dev,
1489                           "SYSTEM ERROR - max number of errors seen."
1490                           "NIC will be disabled\n");
1491                 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1492         }
1493
1494         return IRQ_HANDLED;
1495 }
1496
1497 /* Handle a legacy interrupt
1498  * Acknowledges the interrupt and schedule event queue processing.
1499  */
1500 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1501 {
1502         struct efx_nic *efx = dev_id;
1503         bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1504         efx_oword_t *int_ker = efx->irq_status.addr;
1505         irqreturn_t result = IRQ_NONE;
1506         struct efx_channel *channel;
1507         efx_dword_t reg;
1508         u32 queues;
1509         int syserr;
1510
1511         /* Read the ISR which also ACKs the interrupts */
1512         efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1513         queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1514
1515         /* Legacy interrupts are disabled too late by the EEH kernel
1516          * code. Disable them earlier.
1517          * If an EEH error occurred, the read will have returned all ones.
1518          */
1519         if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1520             !efx->eeh_disabled_legacy_irq) {
1521                 disable_irq_nosync(efx->legacy_irq);
1522                 efx->eeh_disabled_legacy_irq = true;
1523         }
1524
1525         /* Handle non-event-queue sources */
1526         if (queues & (1U << efx->irq_level) && soft_enabled) {
1527                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1528                 if (unlikely(syserr))
1529                         return efx_farch_fatal_interrupt(efx);
1530                 efx->last_irq_cpu = raw_smp_processor_id();
1531         }
1532
1533         if (queues != 0) {
1534                 efx->irq_zero_count = 0;
1535
1536                 /* Schedule processing of any interrupting queues */
1537                 if (likely(soft_enabled)) {
1538                         efx_for_each_channel(channel, efx) {
1539                                 if (queues & 1)
1540                                         efx_schedule_channel_irq(channel);
1541                                 queues >>= 1;
1542                         }
1543                 }
1544                 result = IRQ_HANDLED;
1545
1546         } else {
1547                 efx_qword_t *event;
1548
1549                 /* Legacy ISR read can return zero once (SF bug 15783) */
1550
1551                 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1552                  * because this might be a shared interrupt. */
1553                 if (efx->irq_zero_count++ == 0)
1554                         result = IRQ_HANDLED;
1555
1556                 /* Ensure we schedule or rearm all event queues */
1557                 if (likely(soft_enabled)) {
1558                         efx_for_each_channel(channel, efx) {
1559                                 event = efx_event(channel,
1560                                                   channel->eventq_read_ptr);
1561                                 if (efx_event_present(event))
1562                                         efx_schedule_channel_irq(channel);
1563                                 else
1564                                         efx_farch_ev_read_ack(channel);
1565                         }
1566                 }
1567         }
1568
1569         if (result == IRQ_HANDLED)
1570                 netif_vdbg(efx, intr, efx->net_dev,
1571                            "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1572                            irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1573
1574         return result;
1575 }
1576
1577 /* Handle an MSI interrupt
1578  *
1579  * Handle an MSI hardware interrupt.  This routine schedules event
1580  * queue processing.  No interrupt acknowledgement cycle is necessary.
1581  * Also, we never need to check that the interrupt is for us, since
1582  * MSI interrupts cannot be shared.
1583  */
1584 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1585 {
1586         struct efx_msi_context *context = dev_id;
1587         struct efx_nic *efx = context->efx;
1588         efx_oword_t *int_ker = efx->irq_status.addr;
1589         int syserr;
1590
1591         netif_vdbg(efx, intr, efx->net_dev,
1592                    "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1593                    irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1594
1595         if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
1596                 return IRQ_HANDLED;
1597
1598         /* Handle non-event-queue sources */
1599         if (context->index == efx->irq_level) {
1600                 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1601                 if (unlikely(syserr))
1602                         return efx_farch_fatal_interrupt(efx);
1603                 efx->last_irq_cpu = raw_smp_processor_id();
1604         }
1605
1606         /* Schedule processing of the channel */
1607         efx_schedule_channel_irq(efx->channel[context->index]);
1608
1609         return IRQ_HANDLED;
1610 }
1611
1612
1613 /* Setup RSS indirection table.
1614  * This maps from the hash value of the packet to RXQ
1615  */
1616 void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1617 {
1618         size_t i = 0;
1619         efx_dword_t dword;
1620
1621         BUG_ON(efx_nic_rev(efx) < EFX_REV_FALCON_B0);
1622
1623         BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1624                      FR_BZ_RX_INDIRECTION_TBL_ROWS);
1625
1626         for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1627                 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1628                                      efx->rx_indir_table[i]);
1629                 efx_writed(efx, &dword,
1630                            FR_BZ_RX_INDIRECTION_TBL +
1631                            FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1632         }
1633 }
1634
1635 /* Looks at available SRAM resources and works out how many queues we
1636  * can support, and where things like descriptor caches should live.
1637  *
1638  * SRAM is split up as follows:
1639  * 0                          buftbl entries for channels
1640  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1641  * efx->rx_dc_base            RX descriptor caches
1642  * efx->tx_dc_base            TX descriptor caches
1643  */
1644 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1645 {
1646         unsigned vi_count, buftbl_min;
1647
1648         /* Account for the buffer table entries backing the datapath channels
1649          * and the descriptor caches for those channels.
1650          */
1651         buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1652                        efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1653                        efx->n_channels * EFX_MAX_EVQ_SIZE)
1654                       * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1655         vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1656
1657 #ifdef CONFIG_SFC_SRIOV
1658         if (efx_sriov_wanted(efx)) {
1659                 unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1660
1661                 efx->vf_buftbl_base = buftbl_min;
1662
1663                 vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1664                 vi_count = max(vi_count, EFX_VI_BASE);
1665                 buftbl_free = (sram_lim_qw - buftbl_min -
1666                                vi_count * vi_dc_entries);
1667
1668                 entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1669                                   efx_vf_size(efx));
1670                 vf_limit = min(buftbl_free / entries_per_vf,
1671                                (1024U - EFX_VI_BASE) >> efx->vi_scale);
1672
1673                 if (efx->vf_count > vf_limit) {
1674                         netif_err(efx, probe, efx->net_dev,
1675                                   "Reducing VF count from from %d to %d\n",
1676                                   efx->vf_count, vf_limit);
1677                         efx->vf_count = vf_limit;
1678                 }
1679                 vi_count += efx->vf_count * efx_vf_size(efx);
1680         }
1681 #endif
1682
1683         efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1684         efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1685 }
1686
1687 u32 efx_farch_fpga_ver(struct efx_nic *efx)
1688 {
1689         efx_oword_t altera_build;
1690         efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1691         return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1692 }
1693
1694 void efx_farch_init_common(struct efx_nic *efx)
1695 {
1696         efx_oword_t temp;
1697
1698         /* Set positions of descriptor caches in SRAM. */
1699         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1700         efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1701         EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1702         efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1703
1704         /* Set TX descriptor cache size. */
1705         BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1706         EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1707         efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1708
1709         /* Set RX descriptor cache size.  Set low watermark to size-8, as
1710          * this allows most efficient prefetching.
1711          */
1712         BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1713         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1714         efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1715         EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1716         efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1717
1718         /* Program INT_KER address */
1719         EFX_POPULATE_OWORD_2(temp,
1720                              FRF_AZ_NORM_INT_VEC_DIS_KER,
1721                              EFX_INT_MODE_USE_MSI(efx),
1722                              FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1723         efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1724
1725         if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1726                 /* Use an interrupt level unused by event queues */
1727                 efx->irq_level = 0x1f;
1728         else
1729                 /* Use a valid MSI-X vector */
1730                 efx->irq_level = 0;
1731
1732         /* Enable all the genuinely fatal interrupts.  (They are still
1733          * masked by the overall interrupt mask, controlled by
1734          * falcon_interrupts()).
1735          *
1736          * Note: All other fatal interrupts are enabled
1737          */
1738         EFX_POPULATE_OWORD_3(temp,
1739                              FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1740                              FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1741                              FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1742         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1743                 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1744         EFX_INVERT_OWORD(temp);
1745         efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1746
1747         /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1748          * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1749          */
1750         efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1751         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1752         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1753         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1754         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1755         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1756         /* Enable SW_EV to inherit in char driver - assume harmless here */
1757         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1758         /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1759         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1760         /* Disable hardware watchdog which can misfire */
1761         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1762         /* Squash TX of packets of 16 bytes or less */
1763         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1764                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1765         efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1766
1767         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1768                 EFX_POPULATE_OWORD_4(temp,
1769                                      /* Default values */
1770                                      FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1771                                      FRF_BZ_TX_PACE_SB_AF, 0xb,
1772                                      FRF_BZ_TX_PACE_FB_BASE, 0,
1773                                      /* Allow large pace values in the
1774                                       * fast bin. */
1775                                      FRF_BZ_TX_PACE_BIN_TH,
1776                                      FFE_BZ_TX_PACE_RESERVED);
1777                 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1778         }
1779 }
1780
1781 /**************************************************************************
1782  *
1783  * Filter tables
1784  *
1785  **************************************************************************
1786  */
1787
1788 /* "Fudge factors" - difference between programmed value and actual depth.
1789  * Due to pipelined implementation we need to program H/W with a value that
1790  * is larger than the hop limit we want.
1791  */
1792 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1793 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1794
1795 /* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1796  * We also need to avoid infinite loops in efx_farch_filter_search() when the
1797  * table is full.
1798  */
1799 #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1800
1801 /* Don't try very hard to find space for performance hints, as this is
1802  * counter-productive. */
1803 #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1804
1805 enum efx_farch_filter_type {
1806         EFX_FARCH_FILTER_TCP_FULL = 0,
1807         EFX_FARCH_FILTER_TCP_WILD,
1808         EFX_FARCH_FILTER_UDP_FULL,
1809         EFX_FARCH_FILTER_UDP_WILD,
1810         EFX_FARCH_FILTER_MAC_FULL = 4,
1811         EFX_FARCH_FILTER_MAC_WILD,
1812         EFX_FARCH_FILTER_UC_DEF = 8,
1813         EFX_FARCH_FILTER_MC_DEF,
1814         EFX_FARCH_FILTER_TYPE_COUNT,            /* number of specific types */
1815 };
1816
1817 enum efx_farch_filter_table_id {
1818         EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1819         EFX_FARCH_FILTER_TABLE_RX_MAC,
1820         EFX_FARCH_FILTER_TABLE_RX_DEF,
1821         EFX_FARCH_FILTER_TABLE_TX_MAC,
1822         EFX_FARCH_FILTER_TABLE_COUNT,
1823 };
1824
1825 enum efx_farch_filter_index {
1826         EFX_FARCH_FILTER_INDEX_UC_DEF,
1827         EFX_FARCH_FILTER_INDEX_MC_DEF,
1828         EFX_FARCH_FILTER_SIZE_RX_DEF,
1829 };
1830
1831 struct efx_farch_filter_spec {
1832         u8      type:4;
1833         u8      priority:4;
1834         u8      flags;
1835         u16     dmaq_id;
1836         u32     data[3];
1837 };
1838
1839 struct efx_farch_filter_table {
1840         enum efx_farch_filter_table_id id;
1841         u32             offset;         /* address of table relative to BAR */
1842         unsigned        size;           /* number of entries */
1843         unsigned        step;           /* step between entries */
1844         unsigned        used;           /* number currently used */
1845         unsigned long   *used_bitmap;
1846         struct efx_farch_filter_spec *spec;
1847         unsigned        search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1848 };
1849
1850 struct efx_farch_filter_state {
1851         struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1852 };
1853
1854 static void
1855 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1856                                    struct efx_farch_filter_table *table,
1857                                    unsigned int filter_idx);
1858
1859 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1860  * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1861 static u16 efx_farch_filter_hash(u32 key)
1862 {
1863         u16 tmp;
1864
1865         /* First 16 rounds */
1866         tmp = 0x1fff ^ key >> 16;
1867         tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1868         tmp = tmp ^ tmp >> 9;
1869         /* Last 16 rounds */
1870         tmp = tmp ^ tmp << 13 ^ key;
1871         tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1872         return tmp ^ tmp >> 9;
1873 }
1874
1875 /* To allow for hash collisions, filter search continues at these
1876  * increments from the first possible entry selected by the hash. */
1877 static u16 efx_farch_filter_increment(u32 key)
1878 {
1879         return key * 2 - 1;
1880 }
1881
1882 static enum efx_farch_filter_table_id
1883 efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1884 {
1885         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1886                      (EFX_FARCH_FILTER_TCP_FULL >> 2));
1887         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1888                      (EFX_FARCH_FILTER_TCP_WILD >> 2));
1889         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1890                      (EFX_FARCH_FILTER_UDP_FULL >> 2));
1891         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1892                      (EFX_FARCH_FILTER_UDP_WILD >> 2));
1893         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1894                      (EFX_FARCH_FILTER_MAC_FULL >> 2));
1895         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1896                      (EFX_FARCH_FILTER_MAC_WILD >> 2));
1897         BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1898                      EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1899         return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1900 }
1901
1902 static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1903 {
1904         struct efx_farch_filter_state *state = efx->filter_state;
1905         struct efx_farch_filter_table *table;
1906         efx_oword_t filter_ctl;
1907
1908         efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1909
1910         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1911         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1912                             table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1913                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1914         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1915                             table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1916                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1917         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1918                             table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1919                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1920         EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1921                             table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1922                             EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1923
1924         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1925         if (table->size) {
1926                 EFX_SET_OWORD_FIELD(
1927                         filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1928                         table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1929                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1930                 EFX_SET_OWORD_FIELD(
1931                         filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1932                         table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1933                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1934         }
1935
1936         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1937         if (table->size) {
1938                 EFX_SET_OWORD_FIELD(
1939                         filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1940                         table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1941                 EFX_SET_OWORD_FIELD(
1942                         filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1943                         !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1944                            EFX_FILTER_FLAG_RX_RSS));
1945                 EFX_SET_OWORD_FIELD(
1946                         filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1947                         table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1948                 EFX_SET_OWORD_FIELD(
1949                         filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1950                         !!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1951                            EFX_FILTER_FLAG_RX_RSS));
1952
1953                 /* There is a single bit to enable RX scatter for all
1954                  * unmatched packets.  Only set it if scatter is
1955                  * enabled in both filter specs.
1956                  */
1957                 EFX_SET_OWORD_FIELD(
1958                         filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1959                         !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1960                            table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1961                            EFX_FILTER_FLAG_RX_SCATTER));
1962         } else if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1963                 /* We don't expose 'default' filters because unmatched
1964                  * packets always go to the queue number found in the
1965                  * RSS table.  But we still need to set the RX scatter
1966                  * bit here.
1967                  */
1968                 EFX_SET_OWORD_FIELD(
1969                         filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1970                         efx->rx_scatter);
1971         }
1972
1973         efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1974 }
1975
1976 static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
1977 {
1978         struct efx_farch_filter_state *state = efx->filter_state;
1979         struct efx_farch_filter_table *table;
1980         efx_oword_t tx_cfg;
1981
1982         efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
1983
1984         table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
1985         if (table->size) {
1986                 EFX_SET_OWORD_FIELD(
1987                         tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
1988                         table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1989                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1990                 EFX_SET_OWORD_FIELD(
1991                         tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
1992                         table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1993                         EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1994         }
1995
1996         efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
1997 }
1998
1999 static int
2000 efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2001                                const struct efx_filter_spec *gen_spec)
2002 {
2003         bool is_full = false;
2004
2005         if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) &&
2006             gen_spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT)
2007                 return -EINVAL;
2008
2009         spec->priority = gen_spec->priority;
2010         spec->flags = gen_spec->flags;
2011         spec->dmaq_id = gen_spec->dmaq_id;
2012
2013         switch (gen_spec->match_flags) {
2014         case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2015               EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2016               EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2017                 is_full = true;
2018                 /* fall through */
2019         case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2020               EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2021                 __be32 rhost, host1, host2;
2022                 __be16 rport, port1, port2;
2023
2024                 EFX_BUG_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2025
2026                 if (gen_spec->ether_type != htons(ETH_P_IP))
2027                         return -EPROTONOSUPPORT;
2028                 if (gen_spec->loc_port == 0 ||
2029                     (is_full && gen_spec->rem_port == 0))
2030                         return -EADDRNOTAVAIL;
2031                 switch (gen_spec->ip_proto) {
2032                 case IPPROTO_TCP:
2033                         spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2034                                       EFX_FARCH_FILTER_TCP_WILD);
2035                         break;
2036                 case IPPROTO_UDP:
2037                         spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2038                                       EFX_FARCH_FILTER_UDP_WILD);
2039                         break;
2040                 default:
2041                         return -EPROTONOSUPPORT;
2042                 }
2043
2044                 /* Filter is constructed in terms of source and destination,
2045                  * with the odd wrinkle that the ports are swapped in a UDP
2046                  * wildcard filter.  We need to convert from local and remote
2047                  * (= zero for wildcard) addresses.
2048                  */
2049                 rhost = is_full ? gen_spec->rem_host[0] : 0;
2050                 rport = is_full ? gen_spec->rem_port : 0;
2051                 host1 = rhost;
2052                 host2 = gen_spec->loc_host[0];
2053                 if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2054                         port1 = gen_spec->loc_port;
2055                         port2 = rport;
2056                 } else {
2057                         port1 = rport;
2058                         port2 = gen_spec->loc_port;
2059                 }
2060                 spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2061                 spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2062                 spec->data[2] = ntohl(host2);
2063
2064                 break;
2065         }
2066
2067         case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2068                 is_full = true;
2069                 /* fall through */
2070         case EFX_FILTER_MATCH_LOC_MAC:
2071                 spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2072                               EFX_FARCH_FILTER_MAC_WILD);
2073                 spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2074                 spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2075                                  gen_spec->loc_mac[3] << 16 |
2076                                  gen_spec->loc_mac[4] << 8 |
2077                                  gen_spec->loc_mac[5]);
2078                 spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2079                                  gen_spec->loc_mac[1]);
2080                 break;
2081
2082         case EFX_FILTER_MATCH_LOC_MAC_IG:
2083                 spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2084                               EFX_FARCH_FILTER_MC_DEF :
2085                               EFX_FARCH_FILTER_UC_DEF);
2086                 memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2087                 break;
2088
2089         default:
2090                 return -EPROTONOSUPPORT;
2091         }
2092
2093         return 0;
2094 }
2095
2096 static void
2097 efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2098                              const struct efx_farch_filter_spec *spec)
2099 {
2100         bool is_full = false;
2101
2102         /* *gen_spec should be completely initialised, to be consistent
2103          * with efx_filter_init_{rx,tx}() and in case we want to copy
2104          * it back to userland.
2105          */
2106         memset(gen_spec, 0, sizeof(*gen_spec));
2107
2108         gen_spec->priority = spec->priority;
2109         gen_spec->flags = spec->flags;
2110         gen_spec->dmaq_id = spec->dmaq_id;
2111
2112         switch (spec->type) {
2113         case EFX_FARCH_FILTER_TCP_FULL:
2114         case EFX_FARCH_FILTER_UDP_FULL:
2115                 is_full = true;
2116                 /* fall through */
2117         case EFX_FARCH_FILTER_TCP_WILD:
2118         case EFX_FARCH_FILTER_UDP_WILD: {
2119                 __be32 host1, host2;
2120                 __be16 port1, port2;
2121
2122                 gen_spec->match_flags =
2123                         EFX_FILTER_MATCH_ETHER_TYPE |
2124                         EFX_FILTER_MATCH_IP_PROTO |
2125                         EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2126                 if (is_full)
2127                         gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2128                                                   EFX_FILTER_MATCH_REM_PORT);
2129                 gen_spec->ether_type = htons(ETH_P_IP);
2130                 gen_spec->ip_proto =
2131                         (spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2132                          spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2133                         IPPROTO_TCP : IPPROTO_UDP;
2134
2135                 host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2136                 port1 = htons(spec->data[0]);
2137                 host2 = htonl(spec->data[2]);
2138                 port2 = htons(spec->data[1] >> 16);
2139                 if (spec->flags & EFX_FILTER_FLAG_TX) {
2140                         gen_spec->loc_host[0] = host1;
2141                         gen_spec->rem_host[0] = host2;
2142                 } else {
2143                         gen_spec->loc_host[0] = host2;
2144                         gen_spec->rem_host[0] = host1;
2145                 }
2146                 if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2147                     (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2148                         gen_spec->loc_port = port1;
2149                         gen_spec->rem_port = port2;
2150                 } else {
2151                         gen_spec->loc_port = port2;
2152                         gen_spec->rem_port = port1;
2153                 }
2154
2155                 break;
2156         }
2157
2158         case EFX_FARCH_FILTER_MAC_FULL:
2159                 is_full = true;
2160                 /* fall through */
2161         case EFX_FARCH_FILTER_MAC_WILD:
2162                 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2163                 if (is_full)
2164                         gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2165                 gen_spec->loc_mac[0] = spec->data[2] >> 8;
2166                 gen_spec->loc_mac[1] = spec->data[2];
2167                 gen_spec->loc_mac[2] = spec->data[1] >> 24;
2168                 gen_spec->loc_mac[3] = spec->data[1] >> 16;
2169                 gen_spec->loc_mac[4] = spec->data[1] >> 8;
2170                 gen_spec->loc_mac[5] = spec->data[1];
2171                 gen_spec->outer_vid = htons(spec->data[0]);
2172                 break;
2173
2174         case EFX_FARCH_FILTER_UC_DEF:
2175         case EFX_FARCH_FILTER_MC_DEF:
2176                 gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2177                 gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2178                 break;
2179
2180         default:
2181                 WARN_ON(1);
2182                 break;
2183         }
2184 }
2185
2186 static void
2187 efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2188                               struct efx_farch_filter_spec *spec)
2189 {
2190         /* If there's only one channel then disable RSS for non VF
2191          * traffic, thereby allowing VFs to use RSS when the PF can't.
2192          */
2193         spec->priority = EFX_FILTER_PRI_AUTO;
2194         spec->flags = (EFX_FILTER_FLAG_RX |
2195                        (efx->n_rx_channels > 1 ? EFX_FILTER_FLAG_RX_RSS : 0) |
2196                        (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2197         spec->dmaq_id = 0;
2198 }
2199
2200 /* Build a filter entry and return its n-tuple key. */
2201 static u32 efx_farch_filter_build(efx_oword_t *filter,
2202                                   struct efx_farch_filter_spec *spec)
2203 {
2204         u32 data3;
2205
2206         switch (efx_farch_filter_spec_table_id(spec)) {
2207         case EFX_FARCH_FILTER_TABLE_RX_IP: {
2208                 bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2209                                spec->type == EFX_FARCH_FILTER_UDP_WILD);
2210                 EFX_POPULATE_OWORD_7(
2211                         *filter,
2212                         FRF_BZ_RSS_EN,
2213                         !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2214                         FRF_BZ_SCATTER_EN,
2215                         !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2216                         FRF_BZ_TCP_UDP, is_udp,
2217                         FRF_BZ_RXQ_ID, spec->dmaq_id,
2218                         EFX_DWORD_2, spec->data[2],
2219                         EFX_DWORD_1, spec->data[1],
2220                         EFX_DWORD_0, spec->data[0]);
2221                 data3 = is_udp;
2222                 break;
2223         }
2224
2225         case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2226                 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2227                 EFX_POPULATE_OWORD_7(
2228                         *filter,
2229                         FRF_CZ_RMFT_RSS_EN,
2230                         !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2231                         FRF_CZ_RMFT_SCATTER_EN,
2232                         !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2233                         FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2234                         FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2235                         FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2236                         FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2237                         FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2238                 data3 = is_wild;
2239                 break;
2240         }
2241
2242         case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2243                 bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2244                 EFX_POPULATE_OWORD_5(*filter,
2245                                      FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2246                                      FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2247                                      FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2248                                      FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2249                                      FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2250                 data3 = is_wild | spec->dmaq_id << 1;
2251                 break;
2252         }
2253
2254         default:
2255                 BUG();
2256         }
2257
2258         return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2259 }
2260
2261 static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2262                                    const struct efx_farch_filter_spec *right)
2263 {
2264         if (left->type != right->type ||
2265             memcmp(left->data, right->data, sizeof(left->data)))
2266                 return false;
2267
2268         if (left->flags & EFX_FILTER_FLAG_TX &&
2269             left->dmaq_id != right->dmaq_id)
2270                 return false;
2271
2272         return true;
2273 }
2274
2275 /*
2276  * Construct/deconstruct external filter IDs.  At least the RX filter
2277  * IDs must be ordered by matching priority, for RX NFC semantics.
2278  *
2279  * Deconstruction needs to be robust against invalid IDs so that
2280  * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2281  * accept user-provided IDs.
2282  */
2283
2284 #define EFX_FARCH_FILTER_MATCH_PRI_COUNT        5
2285
2286 static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2287         [EFX_FARCH_FILTER_TCP_FULL]     = 0,
2288         [EFX_FARCH_FILTER_UDP_FULL]     = 0,
2289         [EFX_FARCH_FILTER_TCP_WILD]     = 1,
2290         [EFX_FARCH_FILTER_UDP_WILD]     = 1,
2291         [EFX_FARCH_FILTER_MAC_FULL]     = 2,
2292         [EFX_FARCH_FILTER_MAC_WILD]     = 3,
2293         [EFX_FARCH_FILTER_UC_DEF]       = 4,
2294         [EFX_FARCH_FILTER_MC_DEF]       = 4,
2295 };
2296
2297 static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2298         EFX_FARCH_FILTER_TABLE_RX_IP,   /* RX match pri 0 */
2299         EFX_FARCH_FILTER_TABLE_RX_IP,
2300         EFX_FARCH_FILTER_TABLE_RX_MAC,
2301         EFX_FARCH_FILTER_TABLE_RX_MAC,
2302         EFX_FARCH_FILTER_TABLE_RX_DEF,  /* RX match pri 4 */
2303         EFX_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 0 */
2304         EFX_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 1 */
2305 };
2306
2307 #define EFX_FARCH_FILTER_INDEX_WIDTH 13
2308 #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2309
2310 static inline u32
2311 efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2312                          unsigned int index)
2313 {
2314         unsigned int range;
2315
2316         range = efx_farch_filter_type_match_pri[spec->type];
2317         if (!(spec->flags & EFX_FILTER_FLAG_RX))
2318                 range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2319
2320         return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2321 }
2322
2323 static inline enum efx_farch_filter_table_id
2324 efx_farch_filter_id_table_id(u32 id)
2325 {
2326         unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2327
2328         if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2329                 return efx_farch_filter_range_table[range];
2330         else
2331                 return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2332 }
2333
2334 static inline unsigned int efx_farch_filter_id_index(u32 id)
2335 {
2336         return id & EFX_FARCH_FILTER_INDEX_MASK;
2337 }
2338
2339 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2340 {
2341         struct efx_farch_filter_state *state = efx->filter_state;
2342         unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2343         enum efx_farch_filter_table_id table_id;
2344
2345         do {
2346                 table_id = efx_farch_filter_range_table[range];
2347                 if (state->table[table_id].size != 0)
2348                         return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2349                                 state->table[table_id].size;
2350         } while (range--);
2351
2352         return 0;
2353 }
2354
2355 s32 efx_farch_filter_insert(struct efx_nic *efx,
2356                             struct efx_filter_spec *gen_spec,
2357                             bool replace_equal)
2358 {
2359         struct efx_farch_filter_state *state = efx->filter_state;
2360         struct efx_farch_filter_table *table;
2361         struct efx_farch_filter_spec spec;
2362         efx_oword_t filter;
2363         int rep_index, ins_index;
2364         unsigned int depth = 0;
2365         int rc;
2366
2367         rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2368         if (rc)
2369                 return rc;
2370
2371         table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2372         if (table->size == 0)
2373                 return -EINVAL;
2374
2375         netif_vdbg(efx, hw, efx->net_dev,
2376                    "%s: type %d search_limit=%d", __func__, spec.type,
2377                    table->search_limit[spec.type]);
2378
2379         if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2380                 /* One filter spec per type */
2381                 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2382                 BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2383                              EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2384                 rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2385                 ins_index = rep_index;
2386
2387                 spin_lock_bh(&efx->filter_lock);
2388         } else {
2389                 /* Search concurrently for
2390                  * (1) a filter to be replaced (rep_index): any filter
2391                  *     with the same match values, up to the current
2392                  *     search depth for this type, and
2393                  * (2) the insertion point (ins_index): (1) or any
2394                  *     free slot before it or up to the maximum search
2395                  *     depth for this priority
2396                  * We fail if we cannot find (2).
2397                  *
2398                  * We can stop once either
2399                  * (a) we find (1), in which case we have definitely
2400                  *     found (2) as well; or
2401                  * (b) we have searched exhaustively for (1), and have
2402                  *     either found (2) or searched exhaustively for it
2403                  */
2404                 u32 key = efx_farch_filter_build(&filter, &spec);
2405                 unsigned int hash = efx_farch_filter_hash(key);
2406                 unsigned int incr = efx_farch_filter_increment(key);
2407                 unsigned int max_rep_depth = table->search_limit[spec.type];
2408                 unsigned int max_ins_depth =
2409                         spec.priority <= EFX_FILTER_PRI_HINT ?
2410                         EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2411                         EFX_FARCH_FILTER_CTL_SRCH_MAX;
2412                 unsigned int i = hash & (table->size - 1);
2413
2414                 ins_index = -1;
2415                 depth = 1;
2416
2417                 spin_lock_bh(&efx->filter_lock);
2418
2419                 for (;;) {
2420                         if (!test_bit(i, table->used_bitmap)) {
2421                                 if (ins_index < 0)
2422                                         ins_index = i;
2423                         } else if (efx_farch_filter_equal(&spec,
2424                                                           &table->spec[i])) {
2425                                 /* Case (a) */
2426                                 if (ins_index < 0)
2427                                         ins_index = i;
2428                                 rep_index = i;
2429                                 break;
2430                         }
2431
2432                         if (depth >= max_rep_depth &&
2433                             (ins_index >= 0 || depth >= max_ins_depth)) {
2434                                 /* Case (b) */
2435                                 if (ins_index < 0) {
2436                                         rc = -EBUSY;
2437                                         goto out;
2438                                 }
2439                                 rep_index = -1;
2440                                 break;
2441                         }
2442
2443                         i = (i + incr) & (table->size - 1);
2444                         ++depth;
2445                 }
2446         }
2447
2448         /* If we found a filter to be replaced, check whether we
2449          * should do so
2450          */
2451         if (rep_index >= 0) {
2452                 struct efx_farch_filter_spec *saved_spec =
2453                         &table->spec[rep_index];
2454
2455                 if (spec.priority == saved_spec->priority && !replace_equal) {
2456                         rc = -EEXIST;
2457                         goto out;
2458                 }
2459                 if (spec.priority < saved_spec->priority) {
2460                         rc = -EPERM;
2461                         goto out;
2462                 }
2463                 if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2464                     saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2465                         spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2466         }
2467
2468         /* Insert the filter */
2469         if (ins_index != rep_index) {
2470                 __set_bit(ins_index, table->used_bitmap);
2471                 ++table->used;
2472         }
2473         table->spec[ins_index] = spec;
2474
2475         if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2476                 efx_farch_filter_push_rx_config(efx);
2477         } else {
2478                 if (table->search_limit[spec.type] < depth) {
2479                         table->search_limit[spec.type] = depth;
2480                         if (spec.flags & EFX_FILTER_FLAG_TX)
2481                                 efx_farch_filter_push_tx_limits(efx);
2482                         else
2483                                 efx_farch_filter_push_rx_config(efx);
2484                 }
2485
2486                 efx_writeo(efx, &filter,
2487                            table->offset + table->step * ins_index);
2488
2489                 /* If we were able to replace a filter by inserting
2490                  * at a lower depth, clear the replaced filter
2491                  */
2492                 if (ins_index != rep_index && rep_index >= 0)
2493                         efx_farch_filter_table_clear_entry(efx, table,
2494                                                            rep_index);
2495         }
2496
2497         netif_vdbg(efx, hw, efx->net_dev,
2498                    "%s: filter type %d index %d rxq %u set",
2499                    __func__, spec.type, ins_index, spec.dmaq_id);
2500         rc = efx_farch_filter_make_id(&spec, ins_index);
2501
2502 out:
2503         spin_unlock_bh(&efx->filter_lock);
2504         return rc;
2505 }
2506
2507 static void
2508 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2509                                    struct efx_farch_filter_table *table,
2510                                    unsigned int filter_idx)
2511 {
2512         static efx_oword_t filter;
2513
2514         EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2515         BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2516
2517         __clear_bit(filter_idx, table->used_bitmap);
2518         --table->used;
2519         memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2520
2521         efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2522
2523         /* If this filter required a greater search depth than
2524          * any other, the search limit for its type can now be
2525          * decreased.  However, it is hard to determine that
2526          * unless the table has become completely empty - in
2527          * which case, all its search limits can be set to 0.
2528          */
2529         if (unlikely(table->used == 0)) {
2530                 memset(table->search_limit, 0, sizeof(table->search_limit));
2531                 if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2532                         efx_farch_filter_push_tx_limits(efx);
2533                 else
2534                         efx_farch_filter_push_rx_config(efx);
2535         }
2536 }
2537
2538 static int efx_farch_filter_remove(struct efx_nic *efx,
2539                                    struct efx_farch_filter_table *table,
2540                                    unsigned int filter_idx,
2541                                    enum efx_filter_priority priority)
2542 {
2543         struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2544
2545         if (!test_bit(filter_idx, table->used_bitmap) ||
2546             spec->priority > priority)
2547                 return -ENOENT;
2548
2549         if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2550                 efx_farch_filter_init_rx_auto(efx, spec);
2551                 efx_farch_filter_push_rx_config(efx);
2552         } else {
2553                 efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2554         }
2555
2556         return 0;
2557 }
2558
2559 int efx_farch_filter_remove_safe(struct efx_nic *efx,
2560                                  enum efx_filter_priority priority,
2561                                  u32 filter_id)
2562 {
2563         struct efx_farch_filter_state *state = efx->filter_state;
2564         enum efx_farch_filter_table_id table_id;
2565         struct efx_farch_filter_table *table;
2566         unsigned int filter_idx;
2567         struct efx_farch_filter_spec *spec;
2568         int rc;
2569
2570         table_id = efx_farch_filter_id_table_id(filter_id);
2571         if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2572                 return -ENOENT;
2573         table = &state->table[table_id];
2574
2575         filter_idx = efx_farch_filter_id_index(filter_id);
2576         if (filter_idx >= table->size)
2577                 return -ENOENT;
2578         spec = &table->spec[filter_idx];
2579
2580         spin_lock_bh(&efx->filter_lock);
2581         rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2582         spin_unlock_bh(&efx->filter_lock);
2583
2584         return rc;
2585 }
2586
2587 int efx_farch_filter_get_safe(struct efx_nic *efx,
2588                               enum efx_filter_priority priority,
2589                               u32 filter_id, struct efx_filter_spec *spec_buf)
2590 {
2591         struct efx_farch_filter_state *state = efx->filter_state;
2592         enum efx_farch_filter_table_id table_id;
2593         struct efx_farch_filter_table *table;
2594         struct efx_farch_filter_spec *spec;
2595         unsigned int filter_idx;
2596         int rc;
2597
2598         table_id = efx_farch_filter_id_table_id(filter_id);
2599         if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2600                 return -ENOENT;
2601         table = &state->table[table_id];
2602
2603         filter_idx = efx_farch_filter_id_index(filter_id);
2604         if (filter_idx >= table->size)
2605                 return -ENOENT;
2606         spec = &table->spec[filter_idx];
2607
2608         spin_lock_bh(&efx->filter_lock);
2609
2610         if (test_bit(filter_idx, table->used_bitmap) &&
2611             spec->priority == priority) {
2612                 efx_farch_filter_to_gen_spec(spec_buf, spec);
2613                 rc = 0;
2614         } else {
2615                 rc = -ENOENT;
2616         }
2617
2618         spin_unlock_bh(&efx->filter_lock);
2619
2620         return rc;
2621 }
2622
2623 static void
2624 efx_farch_filter_table_clear(struct efx_nic *efx,
2625                              enum efx_farch_filter_table_id table_id,
2626                              enum efx_filter_priority priority)
2627 {
2628         struct efx_farch_filter_state *state = efx->filter_state;
2629         struct efx_farch_filter_table *table = &state->table[table_id];
2630         unsigned int filter_idx;
2631
2632         spin_lock_bh(&efx->filter_lock);
2633         for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2634                 if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2635                         efx_farch_filter_remove(efx, table,
2636                                                 filter_idx, priority);
2637         }
2638         spin_unlock_bh(&efx->filter_lock);
2639 }
2640
2641 void efx_farch_filter_clear_rx(struct efx_nic *efx,
2642                                enum efx_filter_priority priority)
2643 {
2644         efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2645                                      priority);
2646         efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2647                                      priority);
2648         efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2649                                      priority);
2650 }
2651
2652 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2653                                    enum efx_filter_priority priority)
2654 {
2655         struct efx_farch_filter_state *state = efx->filter_state;
2656         enum efx_farch_filter_table_id table_id;
2657         struct efx_farch_filter_table *table;
2658         unsigned int filter_idx;
2659         u32 count = 0;
2660
2661         spin_lock_bh(&efx->filter_lock);
2662
2663         for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2664              table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2665              table_id++) {
2666                 table = &state->table[table_id];
2667                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2668                         if (test_bit(filter_idx, table->used_bitmap) &&
2669                             table->spec[filter_idx].priority == priority)
2670                                 ++count;
2671                 }
2672         }
2673
2674         spin_unlock_bh(&efx->filter_lock);
2675
2676         return count;
2677 }
2678
2679 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2680                                 enum efx_filter_priority priority,
2681                                 u32 *buf, u32 size)
2682 {
2683         struct efx_farch_filter_state *state = efx->filter_state;
2684         enum efx_farch_filter_table_id table_id;
2685         struct efx_farch_filter_table *table;
2686         unsigned int filter_idx;
2687         s32 count = 0;
2688
2689         spin_lock_bh(&efx->filter_lock);
2690
2691         for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2692              table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2693              table_id++) {
2694                 table = &state->table[table_id];
2695                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2696                         if (test_bit(filter_idx, table->used_bitmap) &&
2697                             table->spec[filter_idx].priority == priority) {
2698                                 if (count == size) {
2699                                         count = -EMSGSIZE;
2700                                         goto out;
2701                                 }
2702                                 buf[count++] = efx_farch_filter_make_id(
2703                                         &table->spec[filter_idx], filter_idx);
2704                         }
2705                 }
2706         }
2707 out:
2708         spin_unlock_bh(&efx->filter_lock);
2709
2710         return count;
2711 }
2712
2713 /* Restore filter stater after reset */
2714 void efx_farch_filter_table_restore(struct efx_nic *efx)
2715 {
2716         struct efx_farch_filter_state *state = efx->filter_state;
2717         enum efx_farch_filter_table_id table_id;
2718         struct efx_farch_filter_table *table;
2719         efx_oword_t filter;
2720         unsigned int filter_idx;
2721
2722         spin_lock_bh(&efx->filter_lock);
2723
2724         for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2725                 table = &state->table[table_id];
2726
2727                 /* Check whether this is a regular register table */
2728                 if (table->step == 0)
2729                         continue;
2730
2731                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2732                         if (!test_bit(filter_idx, table->used_bitmap))
2733                                 continue;
2734                         efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2735                         efx_writeo(efx, &filter,
2736                                    table->offset + table->step * filter_idx);
2737                 }
2738         }
2739
2740         efx_farch_filter_push_rx_config(efx);
2741         efx_farch_filter_push_tx_limits(efx);
2742
2743         spin_unlock_bh(&efx->filter_lock);
2744 }
2745
2746 void efx_farch_filter_table_remove(struct efx_nic *efx)
2747 {
2748         struct efx_farch_filter_state *state = efx->filter_state;
2749         enum efx_farch_filter_table_id table_id;
2750
2751         for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2752                 kfree(state->table[table_id].used_bitmap);
2753                 vfree(state->table[table_id].spec);
2754         }
2755         kfree(state);
2756 }
2757
2758 int efx_farch_filter_table_probe(struct efx_nic *efx)
2759 {
2760         struct efx_farch_filter_state *state;
2761         struct efx_farch_filter_table *table;
2762         unsigned table_id;
2763
2764         state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2765         if (!state)
2766                 return -ENOMEM;
2767         efx->filter_state = state;
2768
2769         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2770                 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2771                 table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2772                 table->offset = FR_BZ_RX_FILTER_TBL0;
2773                 table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2774                 table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2775         }
2776
2777         if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
2778                 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2779                 table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2780                 table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2781                 table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2782                 table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2783
2784                 table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2785                 table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2786                 table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2787
2788                 table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2789                 table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2790                 table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2791                 table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2792                 table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2793         }
2794
2795         for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2796                 table = &state->table[table_id];
2797                 if (table->size == 0)
2798                         continue;
2799                 table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2800                                              sizeof(unsigned long),
2801                                              GFP_KERNEL);
2802                 if (!table->used_bitmap)
2803                         goto fail;
2804                 table->spec = vzalloc(table->size * sizeof(*table->spec));
2805                 if (!table->spec)
2806                         goto fail;
2807         }
2808
2809         table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2810         if (table->size) {
2811                 /* RX default filters must always exist */
2812                 struct efx_farch_filter_spec *spec;
2813                 unsigned i;
2814
2815                 for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2816                         spec = &table->spec[i];
2817                         spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2818                         efx_farch_filter_init_rx_auto(efx, spec);
2819                         __set_bit(i, table->used_bitmap);
2820                 }
2821         }
2822
2823         efx_farch_filter_push_rx_config(efx);
2824
2825         return 0;
2826
2827 fail:
2828         efx_farch_filter_table_remove(efx);
2829         return -ENOMEM;
2830 }
2831
2832 /* Update scatter enable flags for filters pointing to our own RX queues */
2833 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2834 {
2835         struct efx_farch_filter_state *state = efx->filter_state;
2836         enum efx_farch_filter_table_id table_id;
2837         struct efx_farch_filter_table *table;
2838         efx_oword_t filter;
2839         unsigned int filter_idx;
2840
2841         spin_lock_bh(&efx->filter_lock);
2842
2843         for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2844              table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2845              table_id++) {
2846                 table = &state->table[table_id];
2847
2848                 for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2849                         if (!test_bit(filter_idx, table->used_bitmap) ||
2850                             table->spec[filter_idx].dmaq_id >=
2851                             efx->n_rx_channels)
2852                                 continue;
2853
2854                         if (efx->rx_scatter)
2855                                 table->spec[filter_idx].flags |=
2856                                         EFX_FILTER_FLAG_RX_SCATTER;
2857                         else
2858                                 table->spec[filter_idx].flags &=
2859                                         ~EFX_FILTER_FLAG_RX_SCATTER;
2860
2861                         if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2862                                 /* Pushed by efx_farch_filter_push_rx_config() */
2863                                 continue;
2864
2865                         efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2866                         efx_writeo(efx, &filter,
2867                                    table->offset + table->step * filter_idx);
2868                 }
2869         }
2870
2871         efx_farch_filter_push_rx_config(efx);
2872
2873         spin_unlock_bh(&efx->filter_lock);
2874 }
2875
2876 #ifdef CONFIG_RFS_ACCEL
2877
2878 s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
2879                                 struct efx_filter_spec *gen_spec)
2880 {
2881         return efx_farch_filter_insert(efx, gen_spec, true);
2882 }
2883
2884 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2885                                      unsigned int index)
2886 {
2887         struct efx_farch_filter_state *state = efx->filter_state;
2888         struct efx_farch_filter_table *table =
2889                 &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2890
2891         if (test_bit(index, table->used_bitmap) &&
2892             table->spec[index].priority == EFX_FILTER_PRI_HINT &&
2893             rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2894                                 flow_id, index)) {
2895                 efx_farch_filter_table_clear_entry(efx, table, index);
2896                 return true;
2897         }
2898
2899         return false;
2900 }
2901
2902 #endif /* CONFIG_RFS_ACCEL */
2903
2904 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2905 {
2906         struct net_device *net_dev = efx->net_dev;
2907         struct netdev_hw_addr *ha;
2908         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2909         u32 crc;
2910         int bit;
2911
2912         netif_addr_lock_bh(net_dev);
2913
2914         efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2915
2916         /* Build multicast hash table */
2917         if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2918                 memset(mc_hash, 0xff, sizeof(*mc_hash));
2919         } else {
2920                 memset(mc_hash, 0x00, sizeof(*mc_hash));
2921                 netdev_for_each_mc_addr(ha, net_dev) {
2922                         crc = ether_crc_le(ETH_ALEN, ha->addr);
2923                         bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2924                         __set_bit_le(bit, mc_hash);
2925                 }
2926
2927                 /* Broadcast packets go through the multicast hash filter.
2928                  * ether_crc_le() of the broadcast address is 0xbe2612ff
2929                  * so we always add bit 0xff to the mask.
2930                  */
2931                 __set_bit_le(0xff, mc_hash);
2932         }
2933
2934         netif_addr_unlock_bh(net_dev);
2935 }