]> Pileus Git - ~andy/linux/blob - drivers/net/ethernet/sfc/falcon.c
Merge branch 'for-davem' of git://git.kernel.org/pub/scm/linux/kernel/git/linville...
[~andy/linux] / drivers / net / ethernet / sfc / falcon.c
1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "farch_regs.h"
24 #include "io.h"
25 #include "phy.h"
26 #include "workarounds.h"
27 #include "selftest.h"
28 #include "mdio_10g.h"
29
30 /* Hardware control for SFC4000 (aka Falcon). */
31
32 /**************************************************************************
33  *
34  * NIC stats
35  *
36  **************************************************************************
37  */
38
39 #define FALCON_MAC_STATS_SIZE 0x100
40
41 #define XgRxOctets_offset 0x0
42 #define XgRxOctets_WIDTH 48
43 #define XgRxOctetsOK_offset 0x8
44 #define XgRxOctetsOK_WIDTH 48
45 #define XgRxPkts_offset 0x10
46 #define XgRxPkts_WIDTH 32
47 #define XgRxPktsOK_offset 0x14
48 #define XgRxPktsOK_WIDTH 32
49 #define XgRxBroadcastPkts_offset 0x18
50 #define XgRxBroadcastPkts_WIDTH 32
51 #define XgRxMulticastPkts_offset 0x1C
52 #define XgRxMulticastPkts_WIDTH 32
53 #define XgRxUnicastPkts_offset 0x20
54 #define XgRxUnicastPkts_WIDTH 32
55 #define XgRxUndersizePkts_offset 0x24
56 #define XgRxUndersizePkts_WIDTH 32
57 #define XgRxOversizePkts_offset 0x28
58 #define XgRxOversizePkts_WIDTH 32
59 #define XgRxJabberPkts_offset 0x2C
60 #define XgRxJabberPkts_WIDTH 32
61 #define XgRxUndersizeFCSerrorPkts_offset 0x30
62 #define XgRxUndersizeFCSerrorPkts_WIDTH 32
63 #define XgRxDropEvents_offset 0x34
64 #define XgRxDropEvents_WIDTH 32
65 #define XgRxFCSerrorPkts_offset 0x38
66 #define XgRxFCSerrorPkts_WIDTH 32
67 #define XgRxAlignError_offset 0x3C
68 #define XgRxAlignError_WIDTH 32
69 #define XgRxSymbolError_offset 0x40
70 #define XgRxSymbolError_WIDTH 32
71 #define XgRxInternalMACError_offset 0x44
72 #define XgRxInternalMACError_WIDTH 32
73 #define XgRxControlPkts_offset 0x48
74 #define XgRxControlPkts_WIDTH 32
75 #define XgRxPausePkts_offset 0x4C
76 #define XgRxPausePkts_WIDTH 32
77 #define XgRxPkts64Octets_offset 0x50
78 #define XgRxPkts64Octets_WIDTH 32
79 #define XgRxPkts65to127Octets_offset 0x54
80 #define XgRxPkts65to127Octets_WIDTH 32
81 #define XgRxPkts128to255Octets_offset 0x58
82 #define XgRxPkts128to255Octets_WIDTH 32
83 #define XgRxPkts256to511Octets_offset 0x5C
84 #define XgRxPkts256to511Octets_WIDTH 32
85 #define XgRxPkts512to1023Octets_offset 0x60
86 #define XgRxPkts512to1023Octets_WIDTH 32
87 #define XgRxPkts1024to15xxOctets_offset 0x64
88 #define XgRxPkts1024to15xxOctets_WIDTH 32
89 #define XgRxPkts15xxtoMaxOctets_offset 0x68
90 #define XgRxPkts15xxtoMaxOctets_WIDTH 32
91 #define XgRxLengthError_offset 0x6C
92 #define XgRxLengthError_WIDTH 32
93 #define XgTxPkts_offset 0x80
94 #define XgTxPkts_WIDTH 32
95 #define XgTxOctets_offset 0x88
96 #define XgTxOctets_WIDTH 48
97 #define XgTxMulticastPkts_offset 0x90
98 #define XgTxMulticastPkts_WIDTH 32
99 #define XgTxBroadcastPkts_offset 0x94
100 #define XgTxBroadcastPkts_WIDTH 32
101 #define XgTxUnicastPkts_offset 0x98
102 #define XgTxUnicastPkts_WIDTH 32
103 #define XgTxControlPkts_offset 0x9C
104 #define XgTxControlPkts_WIDTH 32
105 #define XgTxPausePkts_offset 0xA0
106 #define XgTxPausePkts_WIDTH 32
107 #define XgTxPkts64Octets_offset 0xA4
108 #define XgTxPkts64Octets_WIDTH 32
109 #define XgTxPkts65to127Octets_offset 0xA8
110 #define XgTxPkts65to127Octets_WIDTH 32
111 #define XgTxPkts128to255Octets_offset 0xAC
112 #define XgTxPkts128to255Octets_WIDTH 32
113 #define XgTxPkts256to511Octets_offset 0xB0
114 #define XgTxPkts256to511Octets_WIDTH 32
115 #define XgTxPkts512to1023Octets_offset 0xB4
116 #define XgTxPkts512to1023Octets_WIDTH 32
117 #define XgTxPkts1024to15xxOctets_offset 0xB8
118 #define XgTxPkts1024to15xxOctets_WIDTH 32
119 #define XgTxPkts1519toMaxOctets_offset 0xBC
120 #define XgTxPkts1519toMaxOctets_WIDTH 32
121 #define XgTxUndersizePkts_offset 0xC0
122 #define XgTxUndersizePkts_WIDTH 32
123 #define XgTxOversizePkts_offset 0xC4
124 #define XgTxOversizePkts_WIDTH 32
125 #define XgTxNonTcpUdpPkt_offset 0xC8
126 #define XgTxNonTcpUdpPkt_WIDTH 16
127 #define XgTxMacSrcErrPkt_offset 0xCC
128 #define XgTxMacSrcErrPkt_WIDTH 16
129 #define XgTxIpSrcErrPkt_offset 0xD0
130 #define XgTxIpSrcErrPkt_WIDTH 16
131 #define XgDmaDone_offset 0xD4
132 #define XgDmaDone_WIDTH 32
133
134 #define FALCON_XMAC_STATS_DMA_FLAG(efx)                         \
135         (*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
136
137 #define FALCON_DMA_STAT(ext_name, hw_name)                              \
138         [FALCON_STAT_ ## ext_name] =                                    \
139         { #ext_name,                                                    \
140           /* 48-bit stats are zero-padded to 64 on DMA */               \
141           hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH,     \
142           hw_name ## _ ## offset }
143 #define FALCON_OTHER_STAT(ext_name)                                     \
144         [FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
145
146 static const struct efx_hw_stat_desc falcon_stat_desc[FALCON_STAT_COUNT] = {
147         FALCON_DMA_STAT(tx_bytes, XgTxOctets),
148         FALCON_DMA_STAT(tx_packets, XgTxPkts),
149         FALCON_DMA_STAT(tx_pause, XgTxPausePkts),
150         FALCON_DMA_STAT(tx_control, XgTxControlPkts),
151         FALCON_DMA_STAT(tx_unicast, XgTxUnicastPkts),
152         FALCON_DMA_STAT(tx_multicast, XgTxMulticastPkts),
153         FALCON_DMA_STAT(tx_broadcast, XgTxBroadcastPkts),
154         FALCON_DMA_STAT(tx_lt64, XgTxUndersizePkts),
155         FALCON_DMA_STAT(tx_64, XgTxPkts64Octets),
156         FALCON_DMA_STAT(tx_65_to_127, XgTxPkts65to127Octets),
157         FALCON_DMA_STAT(tx_128_to_255, XgTxPkts128to255Octets),
158         FALCON_DMA_STAT(tx_256_to_511, XgTxPkts256to511Octets),
159         FALCON_DMA_STAT(tx_512_to_1023, XgTxPkts512to1023Octets),
160         FALCON_DMA_STAT(tx_1024_to_15xx, XgTxPkts1024to15xxOctets),
161         FALCON_DMA_STAT(tx_15xx_to_jumbo, XgTxPkts1519toMaxOctets),
162         FALCON_DMA_STAT(tx_gtjumbo, XgTxOversizePkts),
163         FALCON_DMA_STAT(tx_non_tcpudp, XgTxNonTcpUdpPkt),
164         FALCON_DMA_STAT(tx_mac_src_error, XgTxMacSrcErrPkt),
165         FALCON_DMA_STAT(tx_ip_src_error, XgTxIpSrcErrPkt),
166         FALCON_DMA_STAT(rx_bytes, XgRxOctets),
167         FALCON_DMA_STAT(rx_good_bytes, XgRxOctetsOK),
168         FALCON_OTHER_STAT(rx_bad_bytes),
169         FALCON_DMA_STAT(rx_packets, XgRxPkts),
170         FALCON_DMA_STAT(rx_good, XgRxPktsOK),
171         FALCON_DMA_STAT(rx_bad, XgRxFCSerrorPkts),
172         FALCON_DMA_STAT(rx_pause, XgRxPausePkts),
173         FALCON_DMA_STAT(rx_control, XgRxControlPkts),
174         FALCON_DMA_STAT(rx_unicast, XgRxUnicastPkts),
175         FALCON_DMA_STAT(rx_multicast, XgRxMulticastPkts),
176         FALCON_DMA_STAT(rx_broadcast, XgRxBroadcastPkts),
177         FALCON_DMA_STAT(rx_lt64, XgRxUndersizePkts),
178         FALCON_DMA_STAT(rx_64, XgRxPkts64Octets),
179         FALCON_DMA_STAT(rx_65_to_127, XgRxPkts65to127Octets),
180         FALCON_DMA_STAT(rx_128_to_255, XgRxPkts128to255Octets),
181         FALCON_DMA_STAT(rx_256_to_511, XgRxPkts256to511Octets),
182         FALCON_DMA_STAT(rx_512_to_1023, XgRxPkts512to1023Octets),
183         FALCON_DMA_STAT(rx_1024_to_15xx, XgRxPkts1024to15xxOctets),
184         FALCON_DMA_STAT(rx_15xx_to_jumbo, XgRxPkts15xxtoMaxOctets),
185         FALCON_DMA_STAT(rx_gtjumbo, XgRxOversizePkts),
186         FALCON_DMA_STAT(rx_bad_lt64, XgRxUndersizeFCSerrorPkts),
187         FALCON_DMA_STAT(rx_bad_gtjumbo, XgRxJabberPkts),
188         FALCON_DMA_STAT(rx_overflow, XgRxDropEvents),
189         FALCON_DMA_STAT(rx_symbol_error, XgRxSymbolError),
190         FALCON_DMA_STAT(rx_align_error, XgRxAlignError),
191         FALCON_DMA_STAT(rx_length_error, XgRxLengthError),
192         FALCON_DMA_STAT(rx_internal_error, XgRxInternalMACError),
193         FALCON_OTHER_STAT(rx_nodesc_drop_cnt),
194 };
195 static const unsigned long falcon_stat_mask[] = {
196         [0 ... BITS_TO_LONGS(FALCON_STAT_COUNT) - 1] = ~0UL,
197 };
198
199 /**************************************************************************
200  *
201  * Basic SPI command set and bit definitions
202  *
203  *************************************************************************/
204
205 #define SPI_WRSR 0x01           /* Write status register */
206 #define SPI_WRITE 0x02          /* Write data to memory array */
207 #define SPI_READ 0x03           /* Read data from memory array */
208 #define SPI_WRDI 0x04           /* Reset write enable latch */
209 #define SPI_RDSR 0x05           /* Read status register */
210 #define SPI_WREN 0x06           /* Set write enable latch */
211 #define SPI_SST_EWSR 0x50       /* SST: Enable write to status register */
212
213 #define SPI_STATUS_WPEN 0x80    /* Write-protect pin enabled */
214 #define SPI_STATUS_BP2 0x10     /* Block protection bit 2 */
215 #define SPI_STATUS_BP1 0x08     /* Block protection bit 1 */
216 #define SPI_STATUS_BP0 0x04     /* Block protection bit 0 */
217 #define SPI_STATUS_WEN 0x02     /* State of the write enable latch */
218 #define SPI_STATUS_NRDY 0x01    /* Device busy flag */
219
220 /**************************************************************************
221  *
222  * Non-volatile memory layout
223  *
224  **************************************************************************
225  */
226
227 /* SFC4000 flash is partitioned into:
228  *     0-0x400       chip and board config (see struct falcon_nvconfig)
229  *     0x400-0x8000  unused (or may contain VPD if EEPROM not present)
230  *     0x8000-end    boot code (mapped to PCI expansion ROM)
231  * SFC4000 small EEPROM (size < 0x400) is used for VPD only.
232  * SFC4000 large EEPROM (size >= 0x400) is partitioned into:
233  *     0-0x400       chip and board config
234  *     configurable  VPD
235  *     0x800-0x1800  boot config
236  * Aside from the chip and board config, all of these are optional and may
237  * be absent or truncated depending on the devices used.
238  */
239 #define FALCON_NVCONFIG_END 0x400U
240 #define FALCON_FLASH_BOOTCODE_START 0x8000U
241 #define FALCON_EEPROM_BOOTCONFIG_START 0x800U
242 #define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
243
244 /* Board configuration v2 (v1 is obsolete; later versions are compatible) */
245 struct falcon_nvconfig_board_v2 {
246         __le16 nports;
247         u8 port0_phy_addr;
248         u8 port0_phy_type;
249         u8 port1_phy_addr;
250         u8 port1_phy_type;
251         __le16 asic_sub_revision;
252         __le16 board_revision;
253 } __packed;
254
255 /* Board configuration v3 extra information */
256 struct falcon_nvconfig_board_v3 {
257         __le32 spi_device_type[2];
258 } __packed;
259
260 /* Bit numbers for spi_device_type */
261 #define SPI_DEV_TYPE_SIZE_LBN 0
262 #define SPI_DEV_TYPE_SIZE_WIDTH 5
263 #define SPI_DEV_TYPE_ADDR_LEN_LBN 6
264 #define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
265 #define SPI_DEV_TYPE_ERASE_CMD_LBN 8
266 #define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
267 #define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
268 #define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
269 #define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
270 #define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
271 #define SPI_DEV_TYPE_FIELD(type, field)                                 \
272         (((type) >> EFX_LOW_BIT(field)) & EFX_MASK32(EFX_WIDTH(field)))
273
274 #define FALCON_NVCONFIG_OFFSET 0x300
275
276 #define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
277 struct falcon_nvconfig {
278         efx_oword_t ee_vpd_cfg_reg;                     /* 0x300 */
279         u8 mac_address[2][8];                   /* 0x310 */
280         efx_oword_t pcie_sd_ctl0123_reg;                /* 0x320 */
281         efx_oword_t pcie_sd_ctl45_reg;                  /* 0x330 */
282         efx_oword_t pcie_pcs_ctl_stat_reg;              /* 0x340 */
283         efx_oword_t hw_init_reg;                        /* 0x350 */
284         efx_oword_t nic_stat_reg;                       /* 0x360 */
285         efx_oword_t glb_ctl_reg;                        /* 0x370 */
286         efx_oword_t srm_cfg_reg;                        /* 0x380 */
287         efx_oword_t spare_reg;                          /* 0x390 */
288         __le16 board_magic_num;                 /* 0x3A0 */
289         __le16 board_struct_ver;
290         __le16 board_checksum;
291         struct falcon_nvconfig_board_v2 board_v2;
292         efx_oword_t ee_base_page_reg;                   /* 0x3B0 */
293         struct falcon_nvconfig_board_v3 board_v3;       /* 0x3C0 */
294 } __packed;
295
296 /*************************************************************************/
297
298 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method);
299 static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx);
300
301 static const unsigned int
302 /* "Large" EEPROM device: Atmel AT25640 or similar
303  * 8 KB, 16-bit address, 32 B write block */
304 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
305                      | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
306                      | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
307 /* Default flash device: Atmel AT25F1024
308  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
309 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
310                       | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
311                       | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
312                       | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
313                       | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
314
315 /**************************************************************************
316  *
317  * I2C bus - this is a bit-bashing interface using GPIO pins
318  * Note that it uses the output enables to tristate the outputs
319  * SDA is the data pin and SCL is the clock
320  *
321  **************************************************************************
322  */
323 static void falcon_setsda(void *data, int state)
324 {
325         struct efx_nic *efx = (struct efx_nic *)data;
326         efx_oword_t reg;
327
328         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
329         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
330         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
331 }
332
333 static void falcon_setscl(void *data, int state)
334 {
335         struct efx_nic *efx = (struct efx_nic *)data;
336         efx_oword_t reg;
337
338         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
339         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
340         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
341 }
342
343 static int falcon_getsda(void *data)
344 {
345         struct efx_nic *efx = (struct efx_nic *)data;
346         efx_oword_t reg;
347
348         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
349         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
350 }
351
352 static int falcon_getscl(void *data)
353 {
354         struct efx_nic *efx = (struct efx_nic *)data;
355         efx_oword_t reg;
356
357         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
358         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
359 }
360
361 static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
362         .setsda         = falcon_setsda,
363         .setscl         = falcon_setscl,
364         .getsda         = falcon_getsda,
365         .getscl         = falcon_getscl,
366         .udelay         = 5,
367         /* Wait up to 50 ms for slave to let us pull SCL high */
368         .timeout        = DIV_ROUND_UP(HZ, 20),
369 };
370
371 static void falcon_push_irq_moderation(struct efx_channel *channel)
372 {
373         efx_dword_t timer_cmd;
374         struct efx_nic *efx = channel->efx;
375
376         /* Set timer register */
377         if (channel->irq_moderation) {
378                 EFX_POPULATE_DWORD_2(timer_cmd,
379                                      FRF_AB_TC_TIMER_MODE,
380                                      FFE_BB_TIMER_MODE_INT_HLDOFF,
381                                      FRF_AB_TC_TIMER_VAL,
382                                      channel->irq_moderation - 1);
383         } else {
384                 EFX_POPULATE_DWORD_2(timer_cmd,
385                                      FRF_AB_TC_TIMER_MODE,
386                                      FFE_BB_TIMER_MODE_DIS,
387                                      FRF_AB_TC_TIMER_VAL, 0);
388         }
389         BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
390         efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
391                                channel->channel);
392 }
393
394 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
395
396 static void falcon_prepare_flush(struct efx_nic *efx)
397 {
398         falcon_deconfigure_mac_wrapper(efx);
399
400         /* Wait for the tx and rx fifo's to get to the next packet boundary
401          * (~1ms without back-pressure), then to drain the remainder of the
402          * fifo's at data path speeds (negligible), with a healthy margin. */
403         msleep(10);
404 }
405
406 /* Acknowledge a legacy interrupt from Falcon
407  *
408  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
409  *
410  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
411  * BIU. Interrupt acknowledge is read sensitive so must write instead
412  * (then read to ensure the BIU collector is flushed)
413  *
414  * NB most hardware supports MSI interrupts
415  */
416 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
417 {
418         efx_dword_t reg;
419
420         EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
421         efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
422         efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
423 }
424
425
426 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
427 {
428         struct efx_nic *efx = dev_id;
429         efx_oword_t *int_ker = efx->irq_status.addr;
430         int syserr;
431         int queues;
432
433         /* Check to see if this is our interrupt.  If it isn't, we
434          * exit without having touched the hardware.
435          */
436         if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
437                 netif_vdbg(efx, intr, efx->net_dev,
438                            "IRQ %d on CPU %d not for me\n", irq,
439                            raw_smp_processor_id());
440                 return IRQ_NONE;
441         }
442         efx->last_irq_cpu = raw_smp_processor_id();
443         netif_vdbg(efx, intr, efx->net_dev,
444                    "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
445                    irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
446
447         if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
448                 return IRQ_HANDLED;
449
450         /* Check to see if we have a serious error condition */
451         syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
452         if (unlikely(syserr))
453                 return efx_farch_fatal_interrupt(efx);
454
455         /* Determine interrupting queues, clear interrupt status
456          * register and acknowledge the device interrupt.
457          */
458         BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
459         queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
460         EFX_ZERO_OWORD(*int_ker);
461         wmb(); /* Ensure the vector is cleared before interrupt ack */
462         falcon_irq_ack_a1(efx);
463
464         if (queues & 1)
465                 efx_schedule_channel_irq(efx_get_channel(efx, 0));
466         if (queues & 2)
467                 efx_schedule_channel_irq(efx_get_channel(efx, 1));
468         return IRQ_HANDLED;
469 }
470 /**************************************************************************
471  *
472  * EEPROM/flash
473  *
474  **************************************************************************
475  */
476
477 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
478
479 static int falcon_spi_poll(struct efx_nic *efx)
480 {
481         efx_oword_t reg;
482         efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
483         return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
484 }
485
486 /* Wait for SPI command completion */
487 static int falcon_spi_wait(struct efx_nic *efx)
488 {
489         /* Most commands will finish quickly, so we start polling at
490          * very short intervals.  Sometimes the command may have to
491          * wait for VPD or expansion ROM access outside of our
492          * control, so we allow up to 100 ms. */
493         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
494         int i;
495
496         for (i = 0; i < 10; i++) {
497                 if (!falcon_spi_poll(efx))
498                         return 0;
499                 udelay(10);
500         }
501
502         for (;;) {
503                 if (!falcon_spi_poll(efx))
504                         return 0;
505                 if (time_after_eq(jiffies, timeout)) {
506                         netif_err(efx, hw, efx->net_dev,
507                                   "timed out waiting for SPI\n");
508                         return -ETIMEDOUT;
509                 }
510                 schedule_timeout_uninterruptible(1);
511         }
512 }
513
514 static int
515 falcon_spi_cmd(struct efx_nic *efx, const struct falcon_spi_device *spi,
516                unsigned int command, int address,
517                const void *in, void *out, size_t len)
518 {
519         bool addressed = (address >= 0);
520         bool reading = (out != NULL);
521         efx_oword_t reg;
522         int rc;
523
524         /* Input validation */
525         if (len > FALCON_SPI_MAX_LEN)
526                 return -EINVAL;
527
528         /* Check that previous command is not still running */
529         rc = falcon_spi_poll(efx);
530         if (rc)
531                 return rc;
532
533         /* Program address register, if we have an address */
534         if (addressed) {
535                 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
536                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
537         }
538
539         /* Program data register, if we have data */
540         if (in != NULL) {
541                 memcpy(&reg, in, len);
542                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
543         }
544
545         /* Issue read/write command */
546         EFX_POPULATE_OWORD_7(reg,
547                              FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
548                              FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
549                              FRF_AB_EE_SPI_HCMD_DABCNT, len,
550                              FRF_AB_EE_SPI_HCMD_READ, reading,
551                              FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
552                              FRF_AB_EE_SPI_HCMD_ADBCNT,
553                              (addressed ? spi->addr_len : 0),
554                              FRF_AB_EE_SPI_HCMD_ENC, command);
555         efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
556
557         /* Wait for read/write to complete */
558         rc = falcon_spi_wait(efx);
559         if (rc)
560                 return rc;
561
562         /* Read data */
563         if (out != NULL) {
564                 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
565                 memcpy(out, &reg, len);
566         }
567
568         return 0;
569 }
570
571 static inline u8
572 falcon_spi_munge_command(const struct falcon_spi_device *spi,
573                          const u8 command, const unsigned int address)
574 {
575         return command | (((address >> 8) & spi->munge_address) << 3);
576 }
577
578 static int
579 falcon_spi_read(struct efx_nic *efx, const struct falcon_spi_device *spi,
580                 loff_t start, size_t len, size_t *retlen, u8 *buffer)
581 {
582         size_t block_len, pos = 0;
583         unsigned int command;
584         int rc = 0;
585
586         while (pos < len) {
587                 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
588
589                 command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
590                 rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
591                                     buffer + pos, block_len);
592                 if (rc)
593                         break;
594                 pos += block_len;
595
596                 /* Avoid locking up the system */
597                 cond_resched();
598                 if (signal_pending(current)) {
599                         rc = -EINTR;
600                         break;
601                 }
602         }
603
604         if (retlen)
605                 *retlen = pos;
606         return rc;
607 }
608
609 #ifdef CONFIG_SFC_MTD
610
611 struct falcon_mtd_partition {
612         struct efx_mtd_partition common;
613         const struct falcon_spi_device *spi;
614         size_t offset;
615 };
616
617 #define to_falcon_mtd_partition(mtd)                            \
618         container_of(mtd, struct falcon_mtd_partition, common.mtd)
619
620 static size_t
621 falcon_spi_write_limit(const struct falcon_spi_device *spi, size_t start)
622 {
623         return min(FALCON_SPI_MAX_LEN,
624                    (spi->block_size - (start & (spi->block_size - 1))));
625 }
626
627 /* Wait up to 10 ms for buffered write completion */
628 static int
629 falcon_spi_wait_write(struct efx_nic *efx, const struct falcon_spi_device *spi)
630 {
631         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
632         u8 status;
633         int rc;
634
635         for (;;) {
636                 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
637                                     &status, sizeof(status));
638                 if (rc)
639                         return rc;
640                 if (!(status & SPI_STATUS_NRDY))
641                         return 0;
642                 if (time_after_eq(jiffies, timeout)) {
643                         netif_err(efx, hw, efx->net_dev,
644                                   "SPI write timeout on device %d"
645                                   " last status=0x%02x\n",
646                                   spi->device_id, status);
647                         return -ETIMEDOUT;
648                 }
649                 schedule_timeout_uninterruptible(1);
650         }
651 }
652
653 static int
654 falcon_spi_write(struct efx_nic *efx, const struct falcon_spi_device *spi,
655                  loff_t start, size_t len, size_t *retlen, const u8 *buffer)
656 {
657         u8 verify_buffer[FALCON_SPI_MAX_LEN];
658         size_t block_len, pos = 0;
659         unsigned int command;
660         int rc = 0;
661
662         while (pos < len) {
663                 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
664                 if (rc)
665                         break;
666
667                 block_len = min(len - pos,
668                                 falcon_spi_write_limit(spi, start + pos));
669                 command = falcon_spi_munge_command(spi, SPI_WRITE, start + pos);
670                 rc = falcon_spi_cmd(efx, spi, command, start + pos,
671                                     buffer + pos, NULL, block_len);
672                 if (rc)
673                         break;
674
675                 rc = falcon_spi_wait_write(efx, spi);
676                 if (rc)
677                         break;
678
679                 command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
680                 rc = falcon_spi_cmd(efx, spi, command, start + pos,
681                                     NULL, verify_buffer, block_len);
682                 if (memcmp(verify_buffer, buffer + pos, block_len)) {
683                         rc = -EIO;
684                         break;
685                 }
686
687                 pos += block_len;
688
689                 /* Avoid locking up the system */
690                 cond_resched();
691                 if (signal_pending(current)) {
692                         rc = -EINTR;
693                         break;
694                 }
695         }
696
697         if (retlen)
698                 *retlen = pos;
699         return rc;
700 }
701
702 static int
703 falcon_spi_slow_wait(struct falcon_mtd_partition *part, bool uninterruptible)
704 {
705         const struct falcon_spi_device *spi = part->spi;
706         struct efx_nic *efx = part->common.mtd.priv;
707         u8 status;
708         int rc, i;
709
710         /* Wait up to 4s for flash/EEPROM to finish a slow operation. */
711         for (i = 0; i < 40; i++) {
712                 __set_current_state(uninterruptible ?
713                                     TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE);
714                 schedule_timeout(HZ / 10);
715                 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
716                                     &status, sizeof(status));
717                 if (rc)
718                         return rc;
719                 if (!(status & SPI_STATUS_NRDY))
720                         return 0;
721                 if (signal_pending(current))
722                         return -EINTR;
723         }
724         pr_err("%s: timed out waiting for %s\n",
725                part->common.name, part->common.dev_type_name);
726         return -ETIMEDOUT;
727 }
728
729 static int
730 falcon_spi_unlock(struct efx_nic *efx, const struct falcon_spi_device *spi)
731 {
732         const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 |
733                                 SPI_STATUS_BP0);
734         u8 status;
735         int rc;
736
737         rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
738                             &status, sizeof(status));
739         if (rc)
740                 return rc;
741
742         if (!(status & unlock_mask))
743                 return 0; /* already unlocked */
744
745         rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
746         if (rc)
747                 return rc;
748         rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0);
749         if (rc)
750                 return rc;
751
752         status &= ~unlock_mask;
753         rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status,
754                             NULL, sizeof(status));
755         if (rc)
756                 return rc;
757         rc = falcon_spi_wait_write(efx, spi);
758         if (rc)
759                 return rc;
760
761         return 0;
762 }
763
764 #define FALCON_SPI_VERIFY_BUF_LEN 16
765
766 static int
767 falcon_spi_erase(struct falcon_mtd_partition *part, loff_t start, size_t len)
768 {
769         const struct falcon_spi_device *spi = part->spi;
770         struct efx_nic *efx = part->common.mtd.priv;
771         unsigned pos, block_len;
772         u8 empty[FALCON_SPI_VERIFY_BUF_LEN];
773         u8 buffer[FALCON_SPI_VERIFY_BUF_LEN];
774         int rc;
775
776         if (len != spi->erase_size)
777                 return -EINVAL;
778
779         if (spi->erase_command == 0)
780                 return -EOPNOTSUPP;
781
782         rc = falcon_spi_unlock(efx, spi);
783         if (rc)
784                 return rc;
785         rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
786         if (rc)
787                 return rc;
788         rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL,
789                             NULL, 0);
790         if (rc)
791                 return rc;
792         rc = falcon_spi_slow_wait(part, false);
793
794         /* Verify the entire region has been wiped */
795         memset(empty, 0xff, sizeof(empty));
796         for (pos = 0; pos < len; pos += block_len) {
797                 block_len = min(len - pos, sizeof(buffer));
798                 rc = falcon_spi_read(efx, spi, start + pos, block_len,
799                                      NULL, buffer);
800                 if (rc)
801                         return rc;
802                 if (memcmp(empty, buffer, block_len))
803                         return -EIO;
804
805                 /* Avoid locking up the system */
806                 cond_resched();
807                 if (signal_pending(current))
808                         return -EINTR;
809         }
810
811         return rc;
812 }
813
814 static void falcon_mtd_rename(struct efx_mtd_partition *part)
815 {
816         struct efx_nic *efx = part->mtd.priv;
817
818         snprintf(part->name, sizeof(part->name), "%s %s",
819                  efx->name, part->type_name);
820 }
821
822 static int falcon_mtd_read(struct mtd_info *mtd, loff_t start,
823                            size_t len, size_t *retlen, u8 *buffer)
824 {
825         struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
826         struct efx_nic *efx = mtd->priv;
827         struct falcon_nic_data *nic_data = efx->nic_data;
828         int rc;
829
830         rc = mutex_lock_interruptible(&nic_data->spi_lock);
831         if (rc)
832                 return rc;
833         rc = falcon_spi_read(efx, part->spi, part->offset + start,
834                              len, retlen, buffer);
835         mutex_unlock(&nic_data->spi_lock);
836         return rc;
837 }
838
839 static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
840 {
841         struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
842         struct efx_nic *efx = mtd->priv;
843         struct falcon_nic_data *nic_data = efx->nic_data;
844         int rc;
845
846         rc = mutex_lock_interruptible(&nic_data->spi_lock);
847         if (rc)
848                 return rc;
849         rc = falcon_spi_erase(part, part->offset + start, len);
850         mutex_unlock(&nic_data->spi_lock);
851         return rc;
852 }
853
854 static int falcon_mtd_write(struct mtd_info *mtd, loff_t start,
855                             size_t len, size_t *retlen, const u8 *buffer)
856 {
857         struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
858         struct efx_nic *efx = mtd->priv;
859         struct falcon_nic_data *nic_data = efx->nic_data;
860         int rc;
861
862         rc = mutex_lock_interruptible(&nic_data->spi_lock);
863         if (rc)
864                 return rc;
865         rc = falcon_spi_write(efx, part->spi, part->offset + start,
866                               len, retlen, buffer);
867         mutex_unlock(&nic_data->spi_lock);
868         return rc;
869 }
870
871 static int falcon_mtd_sync(struct mtd_info *mtd)
872 {
873         struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
874         struct efx_nic *efx = mtd->priv;
875         struct falcon_nic_data *nic_data = efx->nic_data;
876         int rc;
877
878         mutex_lock(&nic_data->spi_lock);
879         rc = falcon_spi_slow_wait(part, true);
880         mutex_unlock(&nic_data->spi_lock);
881         return rc;
882 }
883
884 static int falcon_mtd_probe(struct efx_nic *efx)
885 {
886         struct falcon_nic_data *nic_data = efx->nic_data;
887         struct falcon_mtd_partition *parts;
888         struct falcon_spi_device *spi;
889         size_t n_parts;
890         int rc = -ENODEV;
891
892         ASSERT_RTNL();
893
894         /* Allocate space for maximum number of partitions */
895         parts = kcalloc(2, sizeof(*parts), GFP_KERNEL);
896         if (!parts)
897                 return -ENOMEM;
898         n_parts = 0;
899
900         spi = &nic_data->spi_flash;
901         if (falcon_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) {
902                 parts[n_parts].spi = spi;
903                 parts[n_parts].offset = FALCON_FLASH_BOOTCODE_START;
904                 parts[n_parts].common.dev_type_name = "flash";
905                 parts[n_parts].common.type_name = "sfc_flash_bootrom";
906                 parts[n_parts].common.mtd.type = MTD_NORFLASH;
907                 parts[n_parts].common.mtd.flags = MTD_CAP_NORFLASH;
908                 parts[n_parts].common.mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START;
909                 parts[n_parts].common.mtd.erasesize = spi->erase_size;
910                 n_parts++;
911         }
912
913         spi = &nic_data->spi_eeprom;
914         if (falcon_spi_present(spi) && spi->size > FALCON_EEPROM_BOOTCONFIG_START) {
915                 parts[n_parts].spi = spi;
916                 parts[n_parts].offset = FALCON_EEPROM_BOOTCONFIG_START;
917                 parts[n_parts].common.dev_type_name = "EEPROM";
918                 parts[n_parts].common.type_name = "sfc_bootconfig";
919                 parts[n_parts].common.mtd.type = MTD_RAM;
920                 parts[n_parts].common.mtd.flags = MTD_CAP_RAM;
921                 parts[n_parts].common.mtd.size =
922                         min(spi->size, FALCON_EEPROM_BOOTCONFIG_END) -
923                         FALCON_EEPROM_BOOTCONFIG_START;
924                 parts[n_parts].common.mtd.erasesize = spi->erase_size;
925                 n_parts++;
926         }
927
928         rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
929         if (rc)
930                 kfree(parts);
931         return rc;
932 }
933
934 #endif /* CONFIG_SFC_MTD */
935
936 /**************************************************************************
937  *
938  * XMAC operations
939  *
940  **************************************************************************
941  */
942
943 /* Configure the XAUI driver that is an output from Falcon */
944 static void falcon_setup_xaui(struct efx_nic *efx)
945 {
946         efx_oword_t sdctl, txdrv;
947
948         /* Move the XAUI into low power, unless there is no PHY, in
949          * which case the XAUI will have to drive a cable. */
950         if (efx->phy_type == PHY_TYPE_NONE)
951                 return;
952
953         efx_reado(efx, &sdctl, FR_AB_XX_SD_CTL);
954         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
955         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
956         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
957         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
958         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
959         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
960         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
961         EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
962         efx_writeo(efx, &sdctl, FR_AB_XX_SD_CTL);
963
964         EFX_POPULATE_OWORD_8(txdrv,
965                              FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF,
966                              FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF,
967                              FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF,
968                              FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF,
969                              FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF,
970                              FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF,
971                              FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF,
972                              FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF);
973         efx_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL);
974 }
975
976 int falcon_reset_xaui(struct efx_nic *efx)
977 {
978         struct falcon_nic_data *nic_data = efx->nic_data;
979         efx_oword_t reg;
980         int count;
981
982         /* Don't fetch MAC statistics over an XMAC reset */
983         WARN_ON(nic_data->stats_disable_count == 0);
984
985         /* Start reset sequence */
986         EFX_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1);
987         efx_writeo(efx, &reg, FR_AB_XX_PWR_RST);
988
989         /* Wait up to 10 ms for completion, then reinitialise */
990         for (count = 0; count < 1000; count++) {
991                 efx_reado(efx, &reg, FR_AB_XX_PWR_RST);
992                 if (EFX_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 &&
993                     EFX_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) {
994                         falcon_setup_xaui(efx);
995                         return 0;
996                 }
997                 udelay(10);
998         }
999         netif_err(efx, hw, efx->net_dev,
1000                   "timed out waiting for XAUI/XGXS reset\n");
1001         return -ETIMEDOUT;
1002 }
1003
1004 static void falcon_ack_status_intr(struct efx_nic *efx)
1005 {
1006         struct falcon_nic_data *nic_data = efx->nic_data;
1007         efx_oword_t reg;
1008
1009         if ((efx_nic_rev(efx) != EFX_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx))
1010                 return;
1011
1012         /* We expect xgmii faults if the wireside link is down */
1013         if (!efx->link_state.up)
1014                 return;
1015
1016         /* We can only use this interrupt to signal the negative edge of
1017          * xaui_align [we have to poll the positive edge]. */
1018         if (nic_data->xmac_poll_required)
1019                 return;
1020
1021         efx_reado(efx, &reg, FR_AB_XM_MGT_INT_MSK);
1022 }
1023
1024 static bool falcon_xgxs_link_ok(struct efx_nic *efx)
1025 {
1026         efx_oword_t reg;
1027         bool align_done, link_ok = false;
1028         int sync_status;
1029
1030         /* Read link status */
1031         efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1032
1033         align_done = EFX_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE);
1034         sync_status = EFX_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT);
1035         if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES))
1036                 link_ok = true;
1037
1038         /* Clear link status ready for next read */
1039         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES);
1040         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES);
1041         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES);
1042         efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1043
1044         return link_ok;
1045 }
1046
1047 static bool falcon_xmac_link_ok(struct efx_nic *efx)
1048 {
1049         /*
1050          * Check MAC's XGXS link status except when using XGMII loopback
1051          * which bypasses the XGXS block.
1052          * If possible, check PHY's XGXS link status except when using
1053          * MAC loopback.
1054          */
1055         return (efx->loopback_mode == LOOPBACK_XGMII ||
1056                 falcon_xgxs_link_ok(efx)) &&
1057                 (!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) ||
1058                  LOOPBACK_INTERNAL(efx) ||
1059                  efx_mdio_phyxgxs_lane_sync(efx));
1060 }
1061
1062 static void falcon_reconfigure_xmac_core(struct efx_nic *efx)
1063 {
1064         unsigned int max_frame_len;
1065         efx_oword_t reg;
1066         bool rx_fc = !!(efx->link_state.fc & EFX_FC_RX);
1067         bool tx_fc = !!(efx->link_state.fc & EFX_FC_TX);
1068
1069         /* Configure MAC  - cut-thru mode is hard wired on */
1070         EFX_POPULATE_OWORD_3(reg,
1071                              FRF_AB_XM_RX_JUMBO_MODE, 1,
1072                              FRF_AB_XM_TX_STAT_EN, 1,
1073                              FRF_AB_XM_RX_STAT_EN, 1);
1074         efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1075
1076         /* Configure TX */
1077         EFX_POPULATE_OWORD_6(reg,
1078                              FRF_AB_XM_TXEN, 1,
1079                              FRF_AB_XM_TX_PRMBL, 1,
1080                              FRF_AB_XM_AUTO_PAD, 1,
1081                              FRF_AB_XM_TXCRC, 1,
1082                              FRF_AB_XM_FCNTL, tx_fc,
1083                              FRF_AB_XM_IPG, 0x3);
1084         efx_writeo(efx, &reg, FR_AB_XM_TX_CFG);
1085
1086         /* Configure RX */
1087         EFX_POPULATE_OWORD_5(reg,
1088                              FRF_AB_XM_RXEN, 1,
1089                              FRF_AB_XM_AUTO_DEPAD, 0,
1090                              FRF_AB_XM_ACPT_ALL_MCAST, 1,
1091                              FRF_AB_XM_ACPT_ALL_UCAST, !efx->unicast_filter,
1092                              FRF_AB_XM_PASS_CRC_ERR, 1);
1093         efx_writeo(efx, &reg, FR_AB_XM_RX_CFG);
1094
1095         /* Set frame length */
1096         max_frame_len = EFX_MAX_FRAME_LEN(efx->net_dev->mtu);
1097         EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len);
1098         efx_writeo(efx, &reg, FR_AB_XM_RX_PARAM);
1099         EFX_POPULATE_OWORD_2(reg,
1100                              FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len,
1101                              FRF_AB_XM_TX_JUMBO_MODE, 1);
1102         efx_writeo(efx, &reg, FR_AB_XM_TX_PARAM);
1103
1104         EFX_POPULATE_OWORD_2(reg,
1105                              FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */
1106                              FRF_AB_XM_DIS_FCNTL, !rx_fc);
1107         efx_writeo(efx, &reg, FR_AB_XM_FC);
1108
1109         /* Set MAC address */
1110         memcpy(&reg, &efx->net_dev->dev_addr[0], 4);
1111         efx_writeo(efx, &reg, FR_AB_XM_ADR_LO);
1112         memcpy(&reg, &efx->net_dev->dev_addr[4], 2);
1113         efx_writeo(efx, &reg, FR_AB_XM_ADR_HI);
1114 }
1115
1116 static void falcon_reconfigure_xgxs_core(struct efx_nic *efx)
1117 {
1118         efx_oword_t reg;
1119         bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS);
1120         bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI);
1121         bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII);
1122         bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback;
1123
1124         /* XGXS block is flaky and will need to be reset if moving
1125          * into our out of XGMII, XGXS or XAUI loopbacks. */
1126         efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1127         old_xgxs_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN);
1128         old_xgmii_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN);
1129
1130         efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
1131         old_xaui_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_LPBKA);
1132
1133         /* The PHY driver may have turned XAUI off */
1134         if ((xgxs_loopback != old_xgxs_loopback) ||
1135             (xaui_loopback != old_xaui_loopback) ||
1136             (xgmii_loopback != old_xgmii_loopback))
1137                 falcon_reset_xaui(efx);
1138
1139         efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1140         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG,
1141                             (xgxs_loopback || xaui_loopback) ?
1142                             FFE_AB_XX_FORCE_SIG_ALL_LANES : 0);
1143         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback);
1144         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback);
1145         efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1146
1147         efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
1148         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback);
1149         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback);
1150         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback);
1151         EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback);
1152         efx_writeo(efx, &reg, FR_AB_XX_SD_CTL);
1153 }
1154
1155
1156 /* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
1157 static bool falcon_xmac_link_ok_retry(struct efx_nic *efx, int tries)
1158 {
1159         bool mac_up = falcon_xmac_link_ok(efx);
1160
1161         if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS ||
1162             efx_phy_mode_disabled(efx->phy_mode))
1163                 /* XAUI link is expected to be down */
1164                 return mac_up;
1165
1166         falcon_stop_nic_stats(efx);
1167
1168         while (!mac_up && tries) {
1169                 netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n");
1170                 falcon_reset_xaui(efx);
1171                 udelay(200);
1172
1173                 mac_up = falcon_xmac_link_ok(efx);
1174                 --tries;
1175         }
1176
1177         falcon_start_nic_stats(efx);
1178
1179         return mac_up;
1180 }
1181
1182 static bool falcon_xmac_check_fault(struct efx_nic *efx)
1183 {
1184         return !falcon_xmac_link_ok_retry(efx, 5);
1185 }
1186
1187 static int falcon_reconfigure_xmac(struct efx_nic *efx)
1188 {
1189         struct falcon_nic_data *nic_data = efx->nic_data;
1190
1191         efx_farch_filter_sync_rx_mode(efx);
1192
1193         falcon_reconfigure_xgxs_core(efx);
1194         falcon_reconfigure_xmac_core(efx);
1195
1196         falcon_reconfigure_mac_wrapper(efx);
1197
1198         nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5);
1199         falcon_ack_status_intr(efx);
1200
1201         return 0;
1202 }
1203
1204 static void falcon_poll_xmac(struct efx_nic *efx)
1205 {
1206         struct falcon_nic_data *nic_data = efx->nic_data;
1207
1208         /* We expect xgmii faults if the wireside link is down */
1209         if (!efx->link_state.up || !nic_data->xmac_poll_required)
1210                 return;
1211
1212         nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1);
1213         falcon_ack_status_intr(efx);
1214 }
1215
1216 /**************************************************************************
1217  *
1218  * MAC wrapper
1219  *
1220  **************************************************************************
1221  */
1222
1223 static void falcon_push_multicast_hash(struct efx_nic *efx)
1224 {
1225         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1226
1227         WARN_ON(!mutex_is_locked(&efx->mac_lock));
1228
1229         efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
1230         efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
1231 }
1232
1233 static void falcon_reset_macs(struct efx_nic *efx)
1234 {
1235         struct falcon_nic_data *nic_data = efx->nic_data;
1236         efx_oword_t reg, mac_ctrl;
1237         int count;
1238
1239         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
1240                 /* It's not safe to use GLB_CTL_REG to reset the
1241                  * macs, so instead use the internal MAC resets
1242                  */
1243                 EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1244                 efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1245
1246                 for (count = 0; count < 10000; count++) {
1247                         efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1248                         if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1249                             0)
1250                                 return;
1251                         udelay(10);
1252                 }
1253
1254                 netif_err(efx, hw, efx->net_dev,
1255                           "timed out waiting for XMAC core reset\n");
1256         }
1257
1258         /* Mac stats will fail whist the TX fifo is draining */
1259         WARN_ON(nic_data->stats_disable_count == 0);
1260
1261         efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1262         EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
1263         efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1264
1265         efx_reado(efx, &reg, FR_AB_GLB_CTL);
1266         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1267         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1268         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1269         efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1270
1271         count = 0;
1272         while (1) {
1273                 efx_reado(efx, &reg, FR_AB_GLB_CTL);
1274                 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1275                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1276                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1277                         netif_dbg(efx, hw, efx->net_dev,
1278                                   "Completed MAC reset after %d loops\n",
1279                                   count);
1280                         break;
1281                 }
1282                 if (count > 20) {
1283                         netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
1284                         break;
1285                 }
1286                 count++;
1287                 udelay(10);
1288         }
1289
1290         /* Ensure the correct MAC is selected before statistics
1291          * are re-enabled by the caller */
1292         efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1293
1294         falcon_setup_xaui(efx);
1295 }
1296
1297 static void falcon_drain_tx_fifo(struct efx_nic *efx)
1298 {
1299         efx_oword_t reg;
1300
1301         if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
1302             (efx->loopback_mode != LOOPBACK_NONE))
1303                 return;
1304
1305         efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1306         /* There is no point in draining more than once */
1307         if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1308                 return;
1309
1310         falcon_reset_macs(efx);
1311 }
1312
1313 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1314 {
1315         efx_oword_t reg;
1316
1317         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1318                 return;
1319
1320         /* Isolate the MAC -> RX */
1321         efx_reado(efx, &reg, FR_AZ_RX_CFG);
1322         EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1323         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1324
1325         /* Isolate TX -> MAC */
1326         falcon_drain_tx_fifo(efx);
1327 }
1328
1329 static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1330 {
1331         struct efx_link_state *link_state = &efx->link_state;
1332         efx_oword_t reg;
1333         int link_speed, isolate;
1334
1335         isolate = !!ACCESS_ONCE(efx->reset_pending);
1336
1337         switch (link_state->speed) {
1338         case 10000: link_speed = 3; break;
1339         case 1000:  link_speed = 2; break;
1340         case 100:   link_speed = 1; break;
1341         default:    link_speed = 0; break;
1342         }
1343         /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1344          * as advertised.  Disable to ensure packets are not
1345          * indefinitely held and TX queue can be flushed at any point
1346          * while the link is down. */
1347         EFX_POPULATE_OWORD_5(reg,
1348                              FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1349                              FRF_AB_MAC_BCAD_ACPT, 1,
1350                              FRF_AB_MAC_UC_PROM, !efx->unicast_filter,
1351                              FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1352                              FRF_AB_MAC_SPEED, link_speed);
1353         /* On B0, MAC backpressure can be disabled and packets get
1354          * discarded. */
1355         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1356                 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1357                                     !link_state->up || isolate);
1358         }
1359
1360         efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1361
1362         /* Restore the multicast hash registers. */
1363         falcon_push_multicast_hash(efx);
1364
1365         efx_reado(efx, &reg, FR_AZ_RX_CFG);
1366         /* Enable XOFF signal from RX FIFO (we enabled it during NIC
1367          * initialisation but it may read back as 0) */
1368         EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1369         /* Unisolate the MAC -> RX */
1370         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1371                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
1372         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1373 }
1374
1375 static void falcon_stats_request(struct efx_nic *efx)
1376 {
1377         struct falcon_nic_data *nic_data = efx->nic_data;
1378         efx_oword_t reg;
1379
1380         WARN_ON(nic_data->stats_pending);
1381         WARN_ON(nic_data->stats_disable_count);
1382
1383         FALCON_XMAC_STATS_DMA_FLAG(efx) = 0;
1384         nic_data->stats_pending = true;
1385         wmb(); /* ensure done flag is clear */
1386
1387         /* Initiate DMA transfer of stats */
1388         EFX_POPULATE_OWORD_2(reg,
1389                              FRF_AB_MAC_STAT_DMA_CMD, 1,
1390                              FRF_AB_MAC_STAT_DMA_ADR,
1391                              efx->stats_buffer.dma_addr);
1392         efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
1393
1394         mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
1395 }
1396
1397 static void falcon_stats_complete(struct efx_nic *efx)
1398 {
1399         struct falcon_nic_data *nic_data = efx->nic_data;
1400
1401         if (!nic_data->stats_pending)
1402                 return;
1403
1404         nic_data->stats_pending = false;
1405         if (FALCON_XMAC_STATS_DMA_FLAG(efx)) {
1406                 rmb(); /* read the done flag before the stats */
1407                 efx_nic_update_stats(falcon_stat_desc, FALCON_STAT_COUNT,
1408                                      falcon_stat_mask, nic_data->stats,
1409                                      efx->stats_buffer.addr, true);
1410         } else {
1411                 netif_err(efx, hw, efx->net_dev,
1412                           "timed out waiting for statistics\n");
1413         }
1414 }
1415
1416 static void falcon_stats_timer_func(unsigned long context)
1417 {
1418         struct efx_nic *efx = (struct efx_nic *)context;
1419         struct falcon_nic_data *nic_data = efx->nic_data;
1420
1421         spin_lock(&efx->stats_lock);
1422
1423         falcon_stats_complete(efx);
1424         if (nic_data->stats_disable_count == 0)
1425                 falcon_stats_request(efx);
1426
1427         spin_unlock(&efx->stats_lock);
1428 }
1429
1430 static bool falcon_loopback_link_poll(struct efx_nic *efx)
1431 {
1432         struct efx_link_state old_state = efx->link_state;
1433
1434         WARN_ON(!mutex_is_locked(&efx->mac_lock));
1435         WARN_ON(!LOOPBACK_INTERNAL(efx));
1436
1437         efx->link_state.fd = true;
1438         efx->link_state.fc = efx->wanted_fc;
1439         efx->link_state.up = true;
1440         efx->link_state.speed = 10000;
1441
1442         return !efx_link_state_equal(&efx->link_state, &old_state);
1443 }
1444
1445 static int falcon_reconfigure_port(struct efx_nic *efx)
1446 {
1447         int rc;
1448
1449         WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
1450
1451         /* Poll the PHY link state *before* reconfiguring it. This means we
1452          * will pick up the correct speed (in loopback) to select the correct
1453          * MAC.
1454          */
1455         if (LOOPBACK_INTERNAL(efx))
1456                 falcon_loopback_link_poll(efx);
1457         else
1458                 efx->phy_op->poll(efx);
1459
1460         falcon_stop_nic_stats(efx);
1461         falcon_deconfigure_mac_wrapper(efx);
1462
1463         falcon_reset_macs(efx);
1464
1465         efx->phy_op->reconfigure(efx);
1466         rc = falcon_reconfigure_xmac(efx);
1467         BUG_ON(rc);
1468
1469         falcon_start_nic_stats(efx);
1470
1471         /* Synchronise efx->link_state with the kernel */
1472         efx_link_status_changed(efx);
1473
1474         return 0;
1475 }
1476
1477 /* TX flow control may automatically turn itself off if the link
1478  * partner (intermittently) stops responding to pause frames. There
1479  * isn't any indication that this has happened, so the best we do is
1480  * leave it up to the user to spot this and fix it by cycling transmit
1481  * flow control on this end.
1482  */
1483
1484 static void falcon_a1_prepare_enable_fc_tx(struct efx_nic *efx)
1485 {
1486         /* Schedule a reset to recover */
1487         efx_schedule_reset(efx, RESET_TYPE_INVISIBLE);
1488 }
1489
1490 static void falcon_b0_prepare_enable_fc_tx(struct efx_nic *efx)
1491 {
1492         /* Recover by resetting the EM block */
1493         falcon_stop_nic_stats(efx);
1494         falcon_drain_tx_fifo(efx);
1495         falcon_reconfigure_xmac(efx);
1496         falcon_start_nic_stats(efx);
1497 }
1498
1499 /**************************************************************************
1500  *
1501  * PHY access via GMII
1502  *
1503  **************************************************************************
1504  */
1505
1506 /* Wait for GMII access to complete */
1507 static int falcon_gmii_wait(struct efx_nic *efx)
1508 {
1509         efx_oword_t md_stat;
1510         int count;
1511
1512         /* wait up to 50ms - taken max from datasheet */
1513         for (count = 0; count < 5000; count++) {
1514                 efx_reado(efx, &md_stat, FR_AB_MD_STAT);
1515                 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
1516                         if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
1517                             EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
1518                                 netif_err(efx, hw, efx->net_dev,
1519                                           "error from GMII access "
1520                                           EFX_OWORD_FMT"\n",
1521                                           EFX_OWORD_VAL(md_stat));
1522                                 return -EIO;
1523                         }
1524                         return 0;
1525                 }
1526                 udelay(10);
1527         }
1528         netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
1529         return -ETIMEDOUT;
1530 }
1531
1532 /* Write an MDIO register of a PHY connected to Falcon. */
1533 static int falcon_mdio_write(struct net_device *net_dev,
1534                              int prtad, int devad, u16 addr, u16 value)
1535 {
1536         struct efx_nic *efx = netdev_priv(net_dev);
1537         struct falcon_nic_data *nic_data = efx->nic_data;
1538         efx_oword_t reg;
1539         int rc;
1540
1541         netif_vdbg(efx, hw, efx->net_dev,
1542                    "writing MDIO %d register %d.%d with 0x%04x\n",
1543                     prtad, devad, addr, value);
1544
1545         mutex_lock(&nic_data->mdio_lock);
1546
1547         /* Check MDIO not currently being accessed */
1548         rc = falcon_gmii_wait(efx);
1549         if (rc)
1550                 goto out;
1551
1552         /* Write the address/ID register */
1553         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1554         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1555
1556         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1557                              FRF_AB_MD_DEV_ADR, devad);
1558         efx_writeo(efx, &reg, FR_AB_MD_ID);
1559
1560         /* Write data */
1561         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
1562         efx_writeo(efx, &reg, FR_AB_MD_TXD);
1563
1564         EFX_POPULATE_OWORD_2(reg,
1565                              FRF_AB_MD_WRC, 1,
1566                              FRF_AB_MD_GC, 0);
1567         efx_writeo(efx, &reg, FR_AB_MD_CS);
1568
1569         /* Wait for data to be written */
1570         rc = falcon_gmii_wait(efx);
1571         if (rc) {
1572                 /* Abort the write operation */
1573                 EFX_POPULATE_OWORD_2(reg,
1574                                      FRF_AB_MD_WRC, 0,
1575                                      FRF_AB_MD_GC, 1);
1576                 efx_writeo(efx, &reg, FR_AB_MD_CS);
1577                 udelay(10);
1578         }
1579
1580 out:
1581         mutex_unlock(&nic_data->mdio_lock);
1582         return rc;
1583 }
1584
1585 /* Read an MDIO register of a PHY connected to Falcon. */
1586 static int falcon_mdio_read(struct net_device *net_dev,
1587                             int prtad, int devad, u16 addr)
1588 {
1589         struct efx_nic *efx = netdev_priv(net_dev);
1590         struct falcon_nic_data *nic_data = efx->nic_data;
1591         efx_oword_t reg;
1592         int rc;
1593
1594         mutex_lock(&nic_data->mdio_lock);
1595
1596         /* Check MDIO not currently being accessed */
1597         rc = falcon_gmii_wait(efx);
1598         if (rc)
1599                 goto out;
1600
1601         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1602         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1603
1604         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1605                              FRF_AB_MD_DEV_ADR, devad);
1606         efx_writeo(efx, &reg, FR_AB_MD_ID);
1607
1608         /* Request data to be read */
1609         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
1610         efx_writeo(efx, &reg, FR_AB_MD_CS);
1611
1612         /* Wait for data to become available */
1613         rc = falcon_gmii_wait(efx);
1614         if (rc == 0) {
1615                 efx_reado(efx, &reg, FR_AB_MD_RXD);
1616                 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
1617                 netif_vdbg(efx, hw, efx->net_dev,
1618                            "read from MDIO %d register %d.%d, got %04x\n",
1619                            prtad, devad, addr, rc);
1620         } else {
1621                 /* Abort the read operation */
1622                 EFX_POPULATE_OWORD_2(reg,
1623                                      FRF_AB_MD_RIC, 0,
1624                                      FRF_AB_MD_GC, 1);
1625                 efx_writeo(efx, &reg, FR_AB_MD_CS);
1626
1627                 netif_dbg(efx, hw, efx->net_dev,
1628                           "read from MDIO %d register %d.%d, got error %d\n",
1629                           prtad, devad, addr, rc);
1630         }
1631
1632 out:
1633         mutex_unlock(&nic_data->mdio_lock);
1634         return rc;
1635 }
1636
1637 /* This call is responsible for hooking in the MAC and PHY operations */
1638 static int falcon_probe_port(struct efx_nic *efx)
1639 {
1640         struct falcon_nic_data *nic_data = efx->nic_data;
1641         int rc;
1642
1643         switch (efx->phy_type) {
1644         case PHY_TYPE_SFX7101:
1645                 efx->phy_op = &falcon_sfx7101_phy_ops;
1646                 break;
1647         case PHY_TYPE_QT2022C2:
1648         case PHY_TYPE_QT2025C:
1649                 efx->phy_op = &falcon_qt202x_phy_ops;
1650                 break;
1651         case PHY_TYPE_TXC43128:
1652                 efx->phy_op = &falcon_txc_phy_ops;
1653                 break;
1654         default:
1655                 netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
1656                           efx->phy_type);
1657                 return -ENODEV;
1658         }
1659
1660         /* Fill out MDIO structure and loopback modes */
1661         mutex_init(&nic_data->mdio_lock);
1662         efx->mdio.mdio_read = falcon_mdio_read;
1663         efx->mdio.mdio_write = falcon_mdio_write;
1664         rc = efx->phy_op->probe(efx);
1665         if (rc != 0)
1666                 return rc;
1667
1668         /* Initial assumption */
1669         efx->link_state.speed = 10000;
1670         efx->link_state.fd = true;
1671
1672         /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
1673         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1674                 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
1675         else
1676                 efx->wanted_fc = EFX_FC_RX;
1677         if (efx->mdio.mmds & MDIO_DEVS_AN)
1678                 efx->wanted_fc |= EFX_FC_AUTO;
1679
1680         /* Allocate buffer for stats */
1681         rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
1682                                   FALCON_MAC_STATS_SIZE, GFP_KERNEL);
1683         if (rc)
1684                 return rc;
1685         netif_dbg(efx, probe, efx->net_dev,
1686                   "stats buffer at %llx (virt %p phys %llx)\n",
1687                   (u64)efx->stats_buffer.dma_addr,
1688                   efx->stats_buffer.addr,
1689                   (u64)virt_to_phys(efx->stats_buffer.addr));
1690
1691         return 0;
1692 }
1693
1694 static void falcon_remove_port(struct efx_nic *efx)
1695 {
1696         efx->phy_op->remove(efx);
1697         efx_nic_free_buffer(efx, &efx->stats_buffer);
1698 }
1699
1700 /* Global events are basically PHY events */
1701 static bool
1702 falcon_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
1703 {
1704         struct efx_nic *efx = channel->efx;
1705         struct falcon_nic_data *nic_data = efx->nic_data;
1706
1707         if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
1708             EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
1709             EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
1710                 /* Ignored */
1711                 return true;
1712
1713         if ((efx_nic_rev(efx) == EFX_REV_FALCON_B0) &&
1714             EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
1715                 nic_data->xmac_poll_required = true;
1716                 return true;
1717         }
1718
1719         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
1720             EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
1721             EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
1722                 netif_err(efx, rx_err, efx->net_dev,
1723                           "channel %d seen global RX_RESET event. Resetting.\n",
1724                           channel->channel);
1725
1726                 atomic_inc(&efx->rx_reset);
1727                 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
1728                                    RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1729                 return true;
1730         }
1731
1732         return false;
1733 }
1734
1735 /**************************************************************************
1736  *
1737  * Falcon test code
1738  *
1739  **************************************************************************/
1740
1741 static int
1742 falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
1743 {
1744         struct falcon_nic_data *nic_data = efx->nic_data;
1745         struct falcon_nvconfig *nvconfig;
1746         struct falcon_spi_device *spi;
1747         void *region;
1748         int rc, magic_num, struct_ver;
1749         __le16 *word, *limit;
1750         u32 csum;
1751
1752         if (falcon_spi_present(&nic_data->spi_flash))
1753                 spi = &nic_data->spi_flash;
1754         else if (falcon_spi_present(&nic_data->spi_eeprom))
1755                 spi = &nic_data->spi_eeprom;
1756         else
1757                 return -EINVAL;
1758
1759         region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
1760         if (!region)
1761                 return -ENOMEM;
1762         nvconfig = region + FALCON_NVCONFIG_OFFSET;
1763
1764         mutex_lock(&nic_data->spi_lock);
1765         rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
1766         mutex_unlock(&nic_data->spi_lock);
1767         if (rc) {
1768                 netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
1769                           falcon_spi_present(&nic_data->spi_flash) ?
1770                           "flash" : "EEPROM");
1771                 rc = -EIO;
1772                 goto out;
1773         }
1774
1775         magic_num = le16_to_cpu(nvconfig->board_magic_num);
1776         struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
1777
1778         rc = -EINVAL;
1779         if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
1780                 netif_err(efx, hw, efx->net_dev,
1781                           "NVRAM bad magic 0x%x\n", magic_num);
1782                 goto out;
1783         }
1784         if (struct_ver < 2) {
1785                 netif_err(efx, hw, efx->net_dev,
1786                           "NVRAM has ancient version 0x%x\n", struct_ver);
1787                 goto out;
1788         } else if (struct_ver < 4) {
1789                 word = &nvconfig->board_magic_num;
1790                 limit = (__le16 *) (nvconfig + 1);
1791         } else {
1792                 word = region;
1793                 limit = region + FALCON_NVCONFIG_END;
1794         }
1795         for (csum = 0; word < limit; ++word)
1796                 csum += le16_to_cpu(*word);
1797
1798         if (~csum & 0xffff) {
1799                 netif_err(efx, hw, efx->net_dev,
1800                           "NVRAM has incorrect checksum\n");
1801                 goto out;
1802         }
1803
1804         rc = 0;
1805         if (nvconfig_out)
1806                 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
1807
1808  out:
1809         kfree(region);
1810         return rc;
1811 }
1812
1813 static int falcon_test_nvram(struct efx_nic *efx)
1814 {
1815         return falcon_read_nvram(efx, NULL);
1816 }
1817
1818 static const struct efx_farch_register_test falcon_b0_register_tests[] = {
1819         { FR_AZ_ADR_REGION,
1820           EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1821         { FR_AZ_RX_CFG,
1822           EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1823         { FR_AZ_TX_CFG,
1824           EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1825         { FR_AZ_TX_RESERVED,
1826           EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1827         { FR_AB_MAC_CTRL,
1828           EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1829         { FR_AZ_SRM_TX_DC_CFG,
1830           EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1831         { FR_AZ_RX_DC_CFG,
1832           EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1833         { FR_AZ_RX_DC_PF_WM,
1834           EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1835         { FR_BZ_DP_CTRL,
1836           EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1837         { FR_AB_GM_CFG2,
1838           EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1839         { FR_AB_GMF_CFG0,
1840           EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1841         { FR_AB_XM_GLB_CFG,
1842           EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1843         { FR_AB_XM_TX_CFG,
1844           EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1845         { FR_AB_XM_RX_CFG,
1846           EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1847         { FR_AB_XM_RX_PARAM,
1848           EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1849         { FR_AB_XM_FC,
1850           EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1851         { FR_AB_XM_ADR_LO,
1852           EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1853         { FR_AB_XX_SD_CTL,
1854           EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1855 };
1856
1857 static int
1858 falcon_b0_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
1859 {
1860         enum reset_type reset_method = RESET_TYPE_INVISIBLE;
1861         int rc, rc2;
1862
1863         mutex_lock(&efx->mac_lock);
1864         if (efx->loopback_modes) {
1865                 /* We need the 312 clock from the PHY to test the XMAC
1866                  * registers, so move into XGMII loopback if available */
1867                 if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
1868                         efx->loopback_mode = LOOPBACK_XGMII;
1869                 else
1870                         efx->loopback_mode = __ffs(efx->loopback_modes);
1871         }
1872         __efx_reconfigure_port(efx);
1873         mutex_unlock(&efx->mac_lock);
1874
1875         efx_reset_down(efx, reset_method);
1876
1877         tests->registers =
1878                 efx_farch_test_registers(efx, falcon_b0_register_tests,
1879                                          ARRAY_SIZE(falcon_b0_register_tests))
1880                 ? -1 : 1;
1881
1882         rc = falcon_reset_hw(efx, reset_method);
1883         rc2 = efx_reset_up(efx, reset_method, rc == 0);
1884         return rc ? rc : rc2;
1885 }
1886
1887 /**************************************************************************
1888  *
1889  * Device reset
1890  *
1891  **************************************************************************
1892  */
1893
1894 static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1895 {
1896         switch (reason) {
1897         case RESET_TYPE_RX_RECOVERY:
1898         case RESET_TYPE_DMA_ERROR:
1899         case RESET_TYPE_TX_SKIP:
1900                 /* These can occasionally occur due to hardware bugs.
1901                  * We try to reset without disrupting the link.
1902                  */
1903                 return RESET_TYPE_INVISIBLE;
1904         default:
1905                 return RESET_TYPE_ALL;
1906         }
1907 }
1908
1909 static int falcon_map_reset_flags(u32 *flags)
1910 {
1911         enum {
1912                 FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1913                                           ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1914                 FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1915                 FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1916         };
1917
1918         if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1919                 *flags &= ~FALCON_RESET_WORLD;
1920                 return RESET_TYPE_WORLD;
1921         }
1922
1923         if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1924                 *flags &= ~FALCON_RESET_ALL;
1925                 return RESET_TYPE_ALL;
1926         }
1927
1928         if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1929                 *flags &= ~FALCON_RESET_INVISIBLE;
1930                 return RESET_TYPE_INVISIBLE;
1931         }
1932
1933         return -EINVAL;
1934 }
1935
1936 /* Resets NIC to known state.  This routine must be called in process
1937  * context and is allowed to sleep. */
1938 static int __falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1939 {
1940         struct falcon_nic_data *nic_data = efx->nic_data;
1941         efx_oword_t glb_ctl_reg_ker;
1942         int rc;
1943
1944         netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1945                   RESET_TYPE(method));
1946
1947         /* Initiate device reset */
1948         if (method == RESET_TYPE_WORLD) {
1949                 rc = pci_save_state(efx->pci_dev);
1950                 if (rc) {
1951                         netif_err(efx, drv, efx->net_dev,
1952                                   "failed to backup PCI state of primary "
1953                                   "function prior to hardware reset\n");
1954                         goto fail1;
1955                 }
1956                 if (efx_nic_is_dual_func(efx)) {
1957                         rc = pci_save_state(nic_data->pci_dev2);
1958                         if (rc) {
1959                                 netif_err(efx, drv, efx->net_dev,
1960                                           "failed to backup PCI state of "
1961                                           "secondary function prior to "
1962                                           "hardware reset\n");
1963                                 goto fail2;
1964                         }
1965                 }
1966
1967                 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
1968                                      FRF_AB_EXT_PHY_RST_DUR,
1969                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
1970                                      FRF_AB_SWRST, 1);
1971         } else {
1972                 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
1973                                      /* exclude PHY from "invisible" reset */
1974                                      FRF_AB_EXT_PHY_RST_CTL,
1975                                      method == RESET_TYPE_INVISIBLE,
1976                                      /* exclude EEPROM/flash and PCIe */
1977                                      FRF_AB_PCIE_CORE_RST_CTL, 1,
1978                                      FRF_AB_PCIE_NSTKY_RST_CTL, 1,
1979                                      FRF_AB_PCIE_SD_RST_CTL, 1,
1980                                      FRF_AB_EE_RST_CTL, 1,
1981                                      FRF_AB_EXT_PHY_RST_DUR,
1982                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
1983                                      FRF_AB_SWRST, 1);
1984         }
1985         efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1986
1987         netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
1988         schedule_timeout_uninterruptible(HZ / 20);
1989
1990         /* Restore PCI configuration if needed */
1991         if (method == RESET_TYPE_WORLD) {
1992                 if (efx_nic_is_dual_func(efx))
1993                         pci_restore_state(nic_data->pci_dev2);
1994                 pci_restore_state(efx->pci_dev);
1995                 netif_dbg(efx, drv, efx->net_dev,
1996                           "successfully restored PCI config\n");
1997         }
1998
1999         /* Assert that reset complete */
2000         efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2001         if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2002                 rc = -ETIMEDOUT;
2003                 netif_err(efx, hw, efx->net_dev,
2004                           "timed out waiting for hardware reset\n");
2005                 goto fail3;
2006         }
2007         netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
2008
2009         return 0;
2010
2011         /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2012 fail2:
2013         pci_restore_state(efx->pci_dev);
2014 fail1:
2015 fail3:
2016         return rc;
2017 }
2018
2019 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2020 {
2021         struct falcon_nic_data *nic_data = efx->nic_data;
2022         int rc;
2023
2024         mutex_lock(&nic_data->spi_lock);
2025         rc = __falcon_reset_hw(efx, method);
2026         mutex_unlock(&nic_data->spi_lock);
2027
2028         return rc;
2029 }
2030
2031 static void falcon_monitor(struct efx_nic *efx)
2032 {
2033         bool link_changed;
2034         int rc;
2035
2036         BUG_ON(!mutex_is_locked(&efx->mac_lock));
2037
2038         rc = falcon_board(efx)->type->monitor(efx);
2039         if (rc) {
2040                 netif_err(efx, hw, efx->net_dev,
2041                           "Board sensor %s; shutting down PHY\n",
2042                           (rc == -ERANGE) ? "reported fault" : "failed");
2043                 efx->phy_mode |= PHY_MODE_LOW_POWER;
2044                 rc = __efx_reconfigure_port(efx);
2045                 WARN_ON(rc);
2046         }
2047
2048         if (LOOPBACK_INTERNAL(efx))
2049                 link_changed = falcon_loopback_link_poll(efx);
2050         else
2051                 link_changed = efx->phy_op->poll(efx);
2052
2053         if (link_changed) {
2054                 falcon_stop_nic_stats(efx);
2055                 falcon_deconfigure_mac_wrapper(efx);
2056
2057                 falcon_reset_macs(efx);
2058                 rc = falcon_reconfigure_xmac(efx);
2059                 BUG_ON(rc);
2060
2061                 falcon_start_nic_stats(efx);
2062
2063                 efx_link_status_changed(efx);
2064         }
2065
2066         falcon_poll_xmac(efx);
2067 }
2068
2069 /* Zeroes out the SRAM contents.  This routine must be called in
2070  * process context and is allowed to sleep.
2071  */
2072 static int falcon_reset_sram(struct efx_nic *efx)
2073 {
2074         efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2075         int count;
2076
2077         /* Set the SRAM wake/sleep GPIO appropriately. */
2078         efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2079         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2080         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2081         efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2082
2083         /* Initiate SRAM reset */
2084         EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2085                              FRF_AZ_SRM_INIT_EN, 1,
2086                              FRF_AZ_SRM_NB_SZ, 0);
2087         efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2088
2089         /* Wait for SRAM reset to complete */
2090         count = 0;
2091         do {
2092                 netif_dbg(efx, hw, efx->net_dev,
2093                           "waiting for SRAM reset (attempt %d)...\n", count);
2094
2095                 /* SRAM reset is slow; expect around 16ms */
2096                 schedule_timeout_uninterruptible(HZ / 50);
2097
2098                 /* Check for reset complete */
2099                 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2100                 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2101                         netif_dbg(efx, hw, efx->net_dev,
2102                                   "SRAM reset complete\n");
2103
2104                         return 0;
2105                 }
2106         } while (++count < 20); /* wait up to 0.4 sec */
2107
2108         netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
2109         return -ETIMEDOUT;
2110 }
2111
2112 static void falcon_spi_device_init(struct efx_nic *efx,
2113                                   struct falcon_spi_device *spi_device,
2114                                   unsigned int device_id, u32 device_type)
2115 {
2116         if (device_type != 0) {
2117                 spi_device->device_id = device_id;
2118                 spi_device->size =
2119                         1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2120                 spi_device->addr_len =
2121                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2122                 spi_device->munge_address = (spi_device->size == 1 << 9 &&
2123                                              spi_device->addr_len == 1);
2124                 spi_device->erase_command =
2125                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2126                 spi_device->erase_size =
2127                         1 << SPI_DEV_TYPE_FIELD(device_type,
2128                                                 SPI_DEV_TYPE_ERASE_SIZE);
2129                 spi_device->block_size =
2130                         1 << SPI_DEV_TYPE_FIELD(device_type,
2131                                                 SPI_DEV_TYPE_BLOCK_SIZE);
2132         } else {
2133                 spi_device->size = 0;
2134         }
2135 }
2136
2137 /* Extract non-volatile configuration */
2138 static int falcon_probe_nvconfig(struct efx_nic *efx)
2139 {
2140         struct falcon_nic_data *nic_data = efx->nic_data;
2141         struct falcon_nvconfig *nvconfig;
2142         int rc;
2143
2144         nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2145         if (!nvconfig)
2146                 return -ENOMEM;
2147
2148         rc = falcon_read_nvram(efx, nvconfig);
2149         if (rc)
2150                 goto out;
2151
2152         efx->phy_type = nvconfig->board_v2.port0_phy_type;
2153         efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
2154
2155         if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2156                 falcon_spi_device_init(
2157                         efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2158                         le32_to_cpu(nvconfig->board_v3
2159                                     .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
2160                 falcon_spi_device_init(
2161                         efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2162                         le32_to_cpu(nvconfig->board_v3
2163                                     .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
2164         }
2165
2166         /* Read the MAC addresses */
2167         memcpy(efx->net_dev->perm_addr, nvconfig->mac_address[0], ETH_ALEN);
2168
2169         netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
2170                   efx->phy_type, efx->mdio.prtad);
2171
2172         rc = falcon_probe_board(efx,
2173                                 le16_to_cpu(nvconfig->board_v2.board_revision));
2174 out:
2175         kfree(nvconfig);
2176         return rc;
2177 }
2178
2179 static int falcon_dimension_resources(struct efx_nic *efx)
2180 {
2181         efx->rx_dc_base = 0x20000;
2182         efx->tx_dc_base = 0x26000;
2183         return 0;
2184 }
2185
2186 /* Probe all SPI devices on the NIC */
2187 static void falcon_probe_spi_devices(struct efx_nic *efx)
2188 {
2189         struct falcon_nic_data *nic_data = efx->nic_data;
2190         efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2191         int boot_dev;
2192
2193         efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2194         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2195         efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2196
2197         if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2198                 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2199                             FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2200                 netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
2201                           boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
2202                           "flash" : "EEPROM");
2203         } else {
2204                 /* Disable VPD and set clock dividers to safe
2205                  * values for initial programming. */
2206                 boot_dev = -1;
2207                 netif_dbg(efx, probe, efx->net_dev,
2208                           "Booted from internal ASIC settings;"
2209                           " setting SPI config\n");
2210                 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2211                                      /* 125 MHz / 7 ~= 20 MHz */
2212                                      FRF_AB_EE_SF_CLOCK_DIV, 7,
2213                                      /* 125 MHz / 63 ~= 2 MHz */
2214                                      FRF_AB_EE_EE_CLOCK_DIV, 63);
2215                 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2216         }
2217
2218         mutex_init(&nic_data->spi_lock);
2219
2220         if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2221                 falcon_spi_device_init(efx, &nic_data->spi_flash,
2222                                        FFE_AB_SPI_DEVICE_FLASH,
2223                                        default_flash_type);
2224         if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2225                 falcon_spi_device_init(efx, &nic_data->spi_eeprom,
2226                                        FFE_AB_SPI_DEVICE_EEPROM,
2227                                        large_eeprom_type);
2228 }
2229
2230 static unsigned int falcon_a1_mem_map_size(struct efx_nic *efx)
2231 {
2232         return 0x20000;
2233 }
2234
2235 static unsigned int falcon_b0_mem_map_size(struct efx_nic *efx)
2236 {
2237         /* Map everything up to and including the RSS indirection table.
2238          * The PCI core takes care of mapping the MSI-X tables.
2239          */
2240         return FR_BZ_RX_INDIRECTION_TBL +
2241                 FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS;
2242 }
2243
2244 static int falcon_probe_nic(struct efx_nic *efx)
2245 {
2246         struct falcon_nic_data *nic_data;
2247         struct falcon_board *board;
2248         int rc;
2249
2250         /* Allocate storage for hardware specific data */
2251         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2252         if (!nic_data)
2253                 return -ENOMEM;
2254         efx->nic_data = nic_data;
2255
2256         rc = -ENODEV;
2257
2258         if (efx_farch_fpga_ver(efx) != 0) {
2259                 netif_err(efx, probe, efx->net_dev,
2260                           "Falcon FPGA not supported\n");
2261                 goto fail1;
2262         }
2263
2264         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2265                 efx_oword_t nic_stat;
2266                 struct pci_dev *dev;
2267                 u8 pci_rev = efx->pci_dev->revision;
2268
2269                 if ((pci_rev == 0xff) || (pci_rev == 0)) {
2270                         netif_err(efx, probe, efx->net_dev,
2271                                   "Falcon rev A0 not supported\n");
2272                         goto fail1;
2273                 }
2274                 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2275                 if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
2276                         netif_err(efx, probe, efx->net_dev,
2277                                   "Falcon rev A1 1G not supported\n");
2278                         goto fail1;
2279                 }
2280                 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2281                         netif_err(efx, probe, efx->net_dev,
2282                                   "Falcon rev A1 PCI-X not supported\n");
2283                         goto fail1;
2284                 }
2285
2286                 dev = pci_dev_get(efx->pci_dev);
2287                 while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
2288                                              PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
2289                                              dev))) {
2290                         if (dev->bus == efx->pci_dev->bus &&
2291                             dev->devfn == efx->pci_dev->devfn + 1) {
2292                                 nic_data->pci_dev2 = dev;
2293                                 break;
2294                         }
2295                 }
2296                 if (!nic_data->pci_dev2) {
2297                         netif_err(efx, probe, efx->net_dev,
2298                                   "failed to find secondary function\n");
2299                         rc = -ENODEV;
2300                         goto fail2;
2301                 }
2302         }
2303
2304         /* Now we can reset the NIC */
2305         rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
2306         if (rc) {
2307                 netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
2308                 goto fail3;
2309         }
2310
2311         /* Allocate memory for INT_KER */
2312         rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t),
2313                                   GFP_KERNEL);
2314         if (rc)
2315                 goto fail4;
2316         BUG_ON(efx->irq_status.dma_addr & 0x0f);
2317
2318         netif_dbg(efx, probe, efx->net_dev,
2319                   "INT_KER at %llx (virt %p phys %llx)\n",
2320                   (u64)efx->irq_status.dma_addr,
2321                   efx->irq_status.addr,
2322                   (u64)virt_to_phys(efx->irq_status.addr));
2323
2324         falcon_probe_spi_devices(efx);
2325
2326         /* Read in the non-volatile configuration */
2327         rc = falcon_probe_nvconfig(efx);
2328         if (rc) {
2329                 if (rc == -EINVAL)
2330                         netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
2331                 goto fail5;
2332         }
2333
2334         efx->max_channels = (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ? 4 :
2335                              EFX_MAX_CHANNELS);
2336         efx->timer_quantum_ns = 4968; /* 621 cycles */
2337
2338         /* Initialise I2C adapter */
2339         board = falcon_board(efx);
2340         board->i2c_adap.owner = THIS_MODULE;
2341         board->i2c_data = falcon_i2c_bit_operations;
2342         board->i2c_data.data = efx;
2343         board->i2c_adap.algo_data = &board->i2c_data;
2344         board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2345         strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2346                 sizeof(board->i2c_adap.name));
2347         rc = i2c_bit_add_bus(&board->i2c_adap);
2348         if (rc)
2349                 goto fail5;
2350
2351         rc = falcon_board(efx)->type->init(efx);
2352         if (rc) {
2353                 netif_err(efx, probe, efx->net_dev,
2354                           "failed to initialise board\n");
2355                 goto fail6;
2356         }
2357
2358         nic_data->stats_disable_count = 1;
2359         setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
2360                     (unsigned long)efx);
2361
2362         return 0;
2363
2364  fail6:
2365         i2c_del_adapter(&board->i2c_adap);
2366         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2367  fail5:
2368         efx_nic_free_buffer(efx, &efx->irq_status);
2369  fail4:
2370  fail3:
2371         if (nic_data->pci_dev2) {
2372                 pci_dev_put(nic_data->pci_dev2);
2373                 nic_data->pci_dev2 = NULL;
2374         }
2375  fail2:
2376  fail1:
2377         kfree(efx->nic_data);
2378         return rc;
2379 }
2380
2381 static void falcon_init_rx_cfg(struct efx_nic *efx)
2382 {
2383         /* RX control FIFO thresholds (32 entries) */
2384         const unsigned ctrl_xon_thr = 20;
2385         const unsigned ctrl_xoff_thr = 25;
2386         efx_oword_t reg;
2387
2388         efx_reado(efx, &reg, FR_AZ_RX_CFG);
2389         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2390                 /* Data FIFO size is 5.5K.  The RX DMA engine only
2391                  * supports scattering for user-mode queues, but will
2392                  * split DMA writes at intervals of RX_USR_BUF_SIZE
2393                  * (32-byte units) even for kernel-mode queues.  We
2394                  * set it to be so large that that never happens.
2395                  */
2396                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2397                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2398                                     (3 * 4096) >> 5);
2399                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
2400                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
2401                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2402                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2403         } else {
2404                 /* Data FIFO size is 80K; register fields moved */
2405                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2406                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2407                                     EFX_RX_USR_BUF_SIZE >> 5);
2408                 /* Send XON and XOFF at ~3 * max MTU away from empty/full */
2409                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
2410                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
2411                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2412                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2413                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2414
2415                 /* Enable hash insertion. This is broken for the
2416                  * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
2417                  * IPv4 hashes. */
2418                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
2419                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
2420                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
2421         }
2422         /* Always enable XOFF signal from RX FIFO.  We enable
2423          * or disable transmission of pause frames at the MAC. */
2424         EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
2425         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
2426 }
2427
2428 /* This call performs hardware-specific global initialisation, such as
2429  * defining the descriptor cache sizes and number of RSS channels.
2430  * It does not set up any buffers, descriptor rings or event queues.
2431  */
2432 static int falcon_init_nic(struct efx_nic *efx)
2433 {
2434         efx_oword_t temp;
2435         int rc;
2436
2437         /* Use on-chip SRAM */
2438         efx_reado(efx, &temp, FR_AB_NIC_STAT);
2439         EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2440         efx_writeo(efx, &temp, FR_AB_NIC_STAT);
2441
2442         rc = falcon_reset_sram(efx);
2443         if (rc)
2444                 return rc;
2445
2446         /* Clear the parity enables on the TX data fifos as
2447          * they produce false parity errors because of timing issues
2448          */
2449         if (EFX_WORKAROUND_5129(efx)) {
2450                 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
2451                 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
2452                 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
2453         }
2454
2455         if (EFX_WORKAROUND_7244(efx)) {
2456                 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
2457                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
2458                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
2459                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
2460                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
2461                 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
2462         }
2463
2464         /* XXX This is documented only for Falcon A0/A1 */
2465         /* Setup RX.  Wait for descriptor is broken and must
2466          * be disabled.  RXDP recovery shouldn't be needed, but is.
2467          */
2468         efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
2469         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
2470         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
2471         if (EFX_WORKAROUND_5583(efx))
2472                 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
2473         efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
2474
2475         /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2476          * descriptors (which is bad).
2477          */
2478         efx_reado(efx, &temp, FR_AZ_TX_CFG);
2479         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
2480         efx_writeo(efx, &temp, FR_AZ_TX_CFG);
2481
2482         falcon_init_rx_cfg(efx);
2483
2484         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2485                 /* Set hash key for IPv4 */
2486                 memcpy(&temp, efx->rx_hash_key, sizeof(temp));
2487                 efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
2488
2489                 /* Set destination of both TX and RX Flush events */
2490                 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
2491                 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
2492         }
2493
2494         efx_farch_init_common(efx);
2495
2496         return 0;
2497 }
2498
2499 static void falcon_remove_nic(struct efx_nic *efx)
2500 {
2501         struct falcon_nic_data *nic_data = efx->nic_data;
2502         struct falcon_board *board = falcon_board(efx);
2503
2504         board->type->fini(efx);
2505
2506         /* Remove I2C adapter and clear it in preparation for a retry */
2507         i2c_del_adapter(&board->i2c_adap);
2508         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2509
2510         efx_nic_free_buffer(efx, &efx->irq_status);
2511
2512         __falcon_reset_hw(efx, RESET_TYPE_ALL);
2513
2514         /* Release the second function after the reset */
2515         if (nic_data->pci_dev2) {
2516                 pci_dev_put(nic_data->pci_dev2);
2517                 nic_data->pci_dev2 = NULL;
2518         }
2519
2520         /* Tear down the private nic state */
2521         kfree(efx->nic_data);
2522         efx->nic_data = NULL;
2523 }
2524
2525 static size_t falcon_describe_nic_stats(struct efx_nic *efx, u8 *names)
2526 {
2527         return efx_nic_describe_stats(falcon_stat_desc, FALCON_STAT_COUNT,
2528                                       falcon_stat_mask, names);
2529 }
2530
2531 static size_t falcon_update_nic_stats(struct efx_nic *efx, u64 *full_stats,
2532                                       struct rtnl_link_stats64 *core_stats)
2533 {
2534         struct falcon_nic_data *nic_data = efx->nic_data;
2535         u64 *stats = nic_data->stats;
2536         efx_oword_t cnt;
2537
2538         if (!nic_data->stats_disable_count) {
2539                 efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
2540                 stats[FALCON_STAT_rx_nodesc_drop_cnt] +=
2541                         EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
2542
2543                 if (nic_data->stats_pending &&
2544                     FALCON_XMAC_STATS_DMA_FLAG(efx)) {
2545                         nic_data->stats_pending = false;
2546                         rmb(); /* read the done flag before the stats */
2547                         efx_nic_update_stats(
2548                                 falcon_stat_desc, FALCON_STAT_COUNT,
2549                                 falcon_stat_mask,
2550                                 stats, efx->stats_buffer.addr, true);
2551                 }
2552
2553                 /* Update derived statistic */
2554                 efx_update_diff_stat(&stats[FALCON_STAT_rx_bad_bytes],
2555                                      stats[FALCON_STAT_rx_bytes] -
2556                                      stats[FALCON_STAT_rx_good_bytes] -
2557                                      stats[FALCON_STAT_rx_control] * 64);
2558         }
2559
2560         if (full_stats)
2561                 memcpy(full_stats, stats, sizeof(u64) * FALCON_STAT_COUNT);
2562
2563         if (core_stats) {
2564                 core_stats->rx_packets = stats[FALCON_STAT_rx_packets];
2565                 core_stats->tx_packets = stats[FALCON_STAT_tx_packets];
2566                 core_stats->rx_bytes = stats[FALCON_STAT_rx_bytes];
2567                 core_stats->tx_bytes = stats[FALCON_STAT_tx_bytes];
2568                 core_stats->rx_dropped = stats[FALCON_STAT_rx_nodesc_drop_cnt];
2569                 core_stats->multicast = stats[FALCON_STAT_rx_multicast];
2570                 core_stats->rx_length_errors =
2571                         stats[FALCON_STAT_rx_gtjumbo] +
2572                         stats[FALCON_STAT_rx_length_error];
2573                 core_stats->rx_crc_errors = stats[FALCON_STAT_rx_bad];
2574                 core_stats->rx_frame_errors = stats[FALCON_STAT_rx_align_error];
2575                 core_stats->rx_fifo_errors = stats[FALCON_STAT_rx_overflow];
2576
2577                 core_stats->rx_errors = (core_stats->rx_length_errors +
2578                                          core_stats->rx_crc_errors +
2579                                          core_stats->rx_frame_errors +
2580                                          stats[FALCON_STAT_rx_symbol_error]);
2581         }
2582
2583         return FALCON_STAT_COUNT;
2584 }
2585
2586 void falcon_start_nic_stats(struct efx_nic *efx)
2587 {
2588         struct falcon_nic_data *nic_data = efx->nic_data;
2589
2590         spin_lock_bh(&efx->stats_lock);
2591         if (--nic_data->stats_disable_count == 0)
2592                 falcon_stats_request(efx);
2593         spin_unlock_bh(&efx->stats_lock);
2594 }
2595
2596 void falcon_stop_nic_stats(struct efx_nic *efx)
2597 {
2598         struct falcon_nic_data *nic_data = efx->nic_data;
2599         int i;
2600
2601         might_sleep();
2602
2603         spin_lock_bh(&efx->stats_lock);
2604         ++nic_data->stats_disable_count;
2605         spin_unlock_bh(&efx->stats_lock);
2606
2607         del_timer_sync(&nic_data->stats_timer);
2608
2609         /* Wait enough time for the most recent transfer to
2610          * complete. */
2611         for (i = 0; i < 4 && nic_data->stats_pending; i++) {
2612                 if (FALCON_XMAC_STATS_DMA_FLAG(efx))
2613                         break;
2614                 msleep(1);
2615         }
2616
2617         spin_lock_bh(&efx->stats_lock);
2618         falcon_stats_complete(efx);
2619         spin_unlock_bh(&efx->stats_lock);
2620 }
2621
2622 static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
2623 {
2624         falcon_board(efx)->type->set_id_led(efx, mode);
2625 }
2626
2627 /**************************************************************************
2628  *
2629  * Wake on LAN
2630  *
2631  **************************************************************************
2632  */
2633
2634 static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2635 {
2636         wol->supported = 0;
2637         wol->wolopts = 0;
2638         memset(&wol->sopass, 0, sizeof(wol->sopass));
2639 }
2640
2641 static int falcon_set_wol(struct efx_nic *efx, u32 type)
2642 {
2643         if (type != 0)
2644                 return -EINVAL;
2645         return 0;
2646 }
2647
2648 /**************************************************************************
2649  *
2650  * Revision-dependent attributes used by efx.c and nic.c
2651  *
2652  **************************************************************************
2653  */
2654
2655 const struct efx_nic_type falcon_a1_nic_type = {
2656         .mem_map_size = falcon_a1_mem_map_size,
2657         .probe = falcon_probe_nic,
2658         .remove = falcon_remove_nic,
2659         .init = falcon_init_nic,
2660         .dimension_resources = falcon_dimension_resources,
2661         .fini = falcon_irq_ack_a1,
2662         .monitor = falcon_monitor,
2663         .map_reset_reason = falcon_map_reset_reason,
2664         .map_reset_flags = falcon_map_reset_flags,
2665         .reset = falcon_reset_hw,
2666         .probe_port = falcon_probe_port,
2667         .remove_port = falcon_remove_port,
2668         .handle_global_event = falcon_handle_global_event,
2669         .fini_dmaq = efx_farch_fini_dmaq,
2670         .prepare_flush = falcon_prepare_flush,
2671         .finish_flush = efx_port_dummy_op_void,
2672         .describe_stats = falcon_describe_nic_stats,
2673         .update_stats = falcon_update_nic_stats,
2674         .start_stats = falcon_start_nic_stats,
2675         .stop_stats = falcon_stop_nic_stats,
2676         .set_id_led = falcon_set_id_led,
2677         .push_irq_moderation = falcon_push_irq_moderation,
2678         .reconfigure_port = falcon_reconfigure_port,
2679         .prepare_enable_fc_tx = falcon_a1_prepare_enable_fc_tx,
2680         .reconfigure_mac = falcon_reconfigure_xmac,
2681         .check_mac_fault = falcon_xmac_check_fault,
2682         .get_wol = falcon_get_wol,
2683         .set_wol = falcon_set_wol,
2684         .resume_wol = efx_port_dummy_op_void,
2685         .test_nvram = falcon_test_nvram,
2686         .irq_enable_master = efx_farch_irq_enable_master,
2687         .irq_test_generate = efx_farch_irq_test_generate,
2688         .irq_disable_non_ev = efx_farch_irq_disable_master,
2689         .irq_handle_msi = efx_farch_msi_interrupt,
2690         .irq_handle_legacy = falcon_legacy_interrupt_a1,
2691         .tx_probe = efx_farch_tx_probe,
2692         .tx_init = efx_farch_tx_init,
2693         .tx_remove = efx_farch_tx_remove,
2694         .tx_write = efx_farch_tx_write,
2695         .rx_push_indir_table = efx_farch_rx_push_indir_table,
2696         .rx_probe = efx_farch_rx_probe,
2697         .rx_init = efx_farch_rx_init,
2698         .rx_remove = efx_farch_rx_remove,
2699         .rx_write = efx_farch_rx_write,
2700         .rx_defer_refill = efx_farch_rx_defer_refill,
2701         .ev_probe = efx_farch_ev_probe,
2702         .ev_init = efx_farch_ev_init,
2703         .ev_fini = efx_farch_ev_fini,
2704         .ev_remove = efx_farch_ev_remove,
2705         .ev_process = efx_farch_ev_process,
2706         .ev_read_ack = efx_farch_ev_read_ack,
2707         .ev_test_generate = efx_farch_ev_test_generate,
2708
2709         /* We don't expose the filter table on Falcon A1 as it is not
2710          * mapped into function 0, but these implementations still
2711          * work with a degenerate case of all tables set to size 0.
2712          */
2713         .filter_table_probe = efx_farch_filter_table_probe,
2714         .filter_table_restore = efx_farch_filter_table_restore,
2715         .filter_table_remove = efx_farch_filter_table_remove,
2716         .filter_insert = efx_farch_filter_insert,
2717         .filter_remove_safe = efx_farch_filter_remove_safe,
2718         .filter_get_safe = efx_farch_filter_get_safe,
2719         .filter_clear_rx = efx_farch_filter_clear_rx,
2720         .filter_count_rx_used = efx_farch_filter_count_rx_used,
2721         .filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
2722         .filter_get_rx_ids = efx_farch_filter_get_rx_ids,
2723
2724 #ifdef CONFIG_SFC_MTD
2725         .mtd_probe = falcon_mtd_probe,
2726         .mtd_rename = falcon_mtd_rename,
2727         .mtd_read = falcon_mtd_read,
2728         .mtd_erase = falcon_mtd_erase,
2729         .mtd_write = falcon_mtd_write,
2730         .mtd_sync = falcon_mtd_sync,
2731 #endif
2732
2733         .revision = EFX_REV_FALCON_A1,
2734         .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
2735         .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
2736         .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
2737         .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
2738         .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
2739         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2740         .rx_buffer_padding = 0x24,
2741         .can_rx_scatter = false,
2742         .max_interrupt_mode = EFX_INT_MODE_MSI,
2743         .timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2744         .offload_features = NETIF_F_IP_CSUM,
2745         .mcdi_max_ver = -1,
2746 };
2747
2748 const struct efx_nic_type falcon_b0_nic_type = {
2749         .mem_map_size = falcon_b0_mem_map_size,
2750         .probe = falcon_probe_nic,
2751         .remove = falcon_remove_nic,
2752         .init = falcon_init_nic,
2753         .dimension_resources = falcon_dimension_resources,
2754         .fini = efx_port_dummy_op_void,
2755         .monitor = falcon_monitor,
2756         .map_reset_reason = falcon_map_reset_reason,
2757         .map_reset_flags = falcon_map_reset_flags,
2758         .reset = falcon_reset_hw,
2759         .probe_port = falcon_probe_port,
2760         .remove_port = falcon_remove_port,
2761         .handle_global_event = falcon_handle_global_event,
2762         .fini_dmaq = efx_farch_fini_dmaq,
2763         .prepare_flush = falcon_prepare_flush,
2764         .finish_flush = efx_port_dummy_op_void,
2765         .describe_stats = falcon_describe_nic_stats,
2766         .update_stats = falcon_update_nic_stats,
2767         .start_stats = falcon_start_nic_stats,
2768         .stop_stats = falcon_stop_nic_stats,
2769         .set_id_led = falcon_set_id_led,
2770         .push_irq_moderation = falcon_push_irq_moderation,
2771         .reconfigure_port = falcon_reconfigure_port,
2772         .prepare_enable_fc_tx = falcon_b0_prepare_enable_fc_tx,
2773         .reconfigure_mac = falcon_reconfigure_xmac,
2774         .check_mac_fault = falcon_xmac_check_fault,
2775         .get_wol = falcon_get_wol,
2776         .set_wol = falcon_set_wol,
2777         .resume_wol = efx_port_dummy_op_void,
2778         .test_chip = falcon_b0_test_chip,
2779         .test_nvram = falcon_test_nvram,
2780         .irq_enable_master = efx_farch_irq_enable_master,
2781         .irq_test_generate = efx_farch_irq_test_generate,
2782         .irq_disable_non_ev = efx_farch_irq_disable_master,
2783         .irq_handle_msi = efx_farch_msi_interrupt,
2784         .irq_handle_legacy = efx_farch_legacy_interrupt,
2785         .tx_probe = efx_farch_tx_probe,
2786         .tx_init = efx_farch_tx_init,
2787         .tx_remove = efx_farch_tx_remove,
2788         .tx_write = efx_farch_tx_write,
2789         .rx_push_indir_table = efx_farch_rx_push_indir_table,
2790         .rx_probe = efx_farch_rx_probe,
2791         .rx_init = efx_farch_rx_init,
2792         .rx_remove = efx_farch_rx_remove,
2793         .rx_write = efx_farch_rx_write,
2794         .rx_defer_refill = efx_farch_rx_defer_refill,
2795         .ev_probe = efx_farch_ev_probe,
2796         .ev_init = efx_farch_ev_init,
2797         .ev_fini = efx_farch_ev_fini,
2798         .ev_remove = efx_farch_ev_remove,
2799         .ev_process = efx_farch_ev_process,
2800         .ev_read_ack = efx_farch_ev_read_ack,
2801         .ev_test_generate = efx_farch_ev_test_generate,
2802         .filter_table_probe = efx_farch_filter_table_probe,
2803         .filter_table_restore = efx_farch_filter_table_restore,
2804         .filter_table_remove = efx_farch_filter_table_remove,
2805         .filter_update_rx_scatter = efx_farch_filter_update_rx_scatter,
2806         .filter_insert = efx_farch_filter_insert,
2807         .filter_remove_safe = efx_farch_filter_remove_safe,
2808         .filter_get_safe = efx_farch_filter_get_safe,
2809         .filter_clear_rx = efx_farch_filter_clear_rx,
2810         .filter_count_rx_used = efx_farch_filter_count_rx_used,
2811         .filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
2812         .filter_get_rx_ids = efx_farch_filter_get_rx_ids,
2813 #ifdef CONFIG_RFS_ACCEL
2814         .filter_rfs_insert = efx_farch_filter_rfs_insert,
2815         .filter_rfs_expire_one = efx_farch_filter_rfs_expire_one,
2816 #endif
2817 #ifdef CONFIG_SFC_MTD
2818         .mtd_probe = falcon_mtd_probe,
2819         .mtd_rename = falcon_mtd_rename,
2820         .mtd_read = falcon_mtd_read,
2821         .mtd_erase = falcon_mtd_erase,
2822         .mtd_write = falcon_mtd_write,
2823         .mtd_sync = falcon_mtd_sync,
2824 #endif
2825
2826         .revision = EFX_REV_FALCON_B0,
2827         .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
2828         .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
2829         .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
2830         .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
2831         .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
2832         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2833         .rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
2834         .rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
2835         .rx_buffer_padding = 0,
2836         .can_rx_scatter = true,
2837         .max_interrupt_mode = EFX_INT_MODE_MSIX,
2838         .timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2839         .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
2840         .mcdi_max_ver = -1,
2841         .max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
2842 };
2843