]> Pileus Git - ~andy/linux/blob - drivers/net/ethernet/sfc/falcon.c
Partly revert "sfc: Handle serious errors in exactly one interrupt handler"
[~andy/linux] / drivers / net / ethernet / sfc / falcon.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2010 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "spi.h"
23 #include "nic.h"
24 #include "regs.h"
25 #include "io.h"
26 #include "phy.h"
27 #include "workarounds.h"
28
29 /* Hardware control for SFC4000 (aka Falcon). */
30
31 static const unsigned int
32 /* "Large" EEPROM device: Atmel AT25640 or similar
33  * 8 KB, 16-bit address, 32 B write block */
34 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
35                      | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
36                      | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
37 /* Default flash device: Atmel AT25F1024
38  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
39 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
40                       | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
41                       | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
42                       | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
43                       | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
44
45 /**************************************************************************
46  *
47  * I2C bus - this is a bit-bashing interface using GPIO pins
48  * Note that it uses the output enables to tristate the outputs
49  * SDA is the data pin and SCL is the clock
50  *
51  **************************************************************************
52  */
53 static void falcon_setsda(void *data, int state)
54 {
55         struct efx_nic *efx = (struct efx_nic *)data;
56         efx_oword_t reg;
57
58         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
59         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
60         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
61 }
62
63 static void falcon_setscl(void *data, int state)
64 {
65         struct efx_nic *efx = (struct efx_nic *)data;
66         efx_oword_t reg;
67
68         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
69         EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
70         efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
71 }
72
73 static int falcon_getsda(void *data)
74 {
75         struct efx_nic *efx = (struct efx_nic *)data;
76         efx_oword_t reg;
77
78         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
79         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
80 }
81
82 static int falcon_getscl(void *data)
83 {
84         struct efx_nic *efx = (struct efx_nic *)data;
85         efx_oword_t reg;
86
87         efx_reado(efx, &reg, FR_AB_GPIO_CTL);
88         return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
89 }
90
91 static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
92         .setsda         = falcon_setsda,
93         .setscl         = falcon_setscl,
94         .getsda         = falcon_getsda,
95         .getscl         = falcon_getscl,
96         .udelay         = 5,
97         /* Wait up to 50 ms for slave to let us pull SCL high */
98         .timeout        = DIV_ROUND_UP(HZ, 20),
99 };
100
101 static void falcon_push_irq_moderation(struct efx_channel *channel)
102 {
103         efx_dword_t timer_cmd;
104         struct efx_nic *efx = channel->efx;
105
106         /* Set timer register */
107         if (channel->irq_moderation) {
108                 EFX_POPULATE_DWORD_2(timer_cmd,
109                                      FRF_AB_TC_TIMER_MODE,
110                                      FFE_BB_TIMER_MODE_INT_HLDOFF,
111                                      FRF_AB_TC_TIMER_VAL,
112                                      channel->irq_moderation - 1);
113         } else {
114                 EFX_POPULATE_DWORD_2(timer_cmd,
115                                      FRF_AB_TC_TIMER_MODE,
116                                      FFE_BB_TIMER_MODE_DIS,
117                                      FRF_AB_TC_TIMER_VAL, 0);
118         }
119         BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
120         efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
121                                channel->channel);
122 }
123
124 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
125
126 static void falcon_prepare_flush(struct efx_nic *efx)
127 {
128         falcon_deconfigure_mac_wrapper(efx);
129
130         /* Wait for the tx and rx fifo's to get to the next packet boundary
131          * (~1ms without back-pressure), then to drain the remainder of the
132          * fifo's at data path speeds (negligible), with a healthy margin. */
133         msleep(10);
134 }
135
136 /* Acknowledge a legacy interrupt from Falcon
137  *
138  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
139  *
140  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
141  * BIU. Interrupt acknowledge is read sensitive so must write instead
142  * (then read to ensure the BIU collector is flushed)
143  *
144  * NB most hardware supports MSI interrupts
145  */
146 inline void falcon_irq_ack_a1(struct efx_nic *efx)
147 {
148         efx_dword_t reg;
149
150         EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
151         efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
152         efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
153 }
154
155
156 irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
157 {
158         struct efx_nic *efx = dev_id;
159         efx_oword_t *int_ker = efx->irq_status.addr;
160         int syserr;
161         int queues;
162
163         /* Check to see if this is our interrupt.  If it isn't, we
164          * exit without having touched the hardware.
165          */
166         if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
167                 netif_vdbg(efx, intr, efx->net_dev,
168                            "IRQ %d on CPU %d not for me\n", irq,
169                            raw_smp_processor_id());
170                 return IRQ_NONE;
171         }
172         efx->last_irq_cpu = raw_smp_processor_id();
173         netif_vdbg(efx, intr, efx->net_dev,
174                    "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
175                    irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
176
177         /* Check to see if we have a serious error condition */
178         syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
179         if (unlikely(syserr))
180                 return efx_nic_fatal_interrupt(efx);
181
182         /* Determine interrupting queues, clear interrupt status
183          * register and acknowledge the device interrupt.
184          */
185         BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
186         queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
187         EFX_ZERO_OWORD(*int_ker);
188         wmb(); /* Ensure the vector is cleared before interrupt ack */
189         falcon_irq_ack_a1(efx);
190
191         if (queues & 1)
192                 efx_schedule_channel(efx_get_channel(efx, 0));
193         if (queues & 2)
194                 efx_schedule_channel(efx_get_channel(efx, 1));
195         return IRQ_HANDLED;
196 }
197 /**************************************************************************
198  *
199  * EEPROM/flash
200  *
201  **************************************************************************
202  */
203
204 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
205
206 static int falcon_spi_poll(struct efx_nic *efx)
207 {
208         efx_oword_t reg;
209         efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
210         return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
211 }
212
213 /* Wait for SPI command completion */
214 static int falcon_spi_wait(struct efx_nic *efx)
215 {
216         /* Most commands will finish quickly, so we start polling at
217          * very short intervals.  Sometimes the command may have to
218          * wait for VPD or expansion ROM access outside of our
219          * control, so we allow up to 100 ms. */
220         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
221         int i;
222
223         for (i = 0; i < 10; i++) {
224                 if (!falcon_spi_poll(efx))
225                         return 0;
226                 udelay(10);
227         }
228
229         for (;;) {
230                 if (!falcon_spi_poll(efx))
231                         return 0;
232                 if (time_after_eq(jiffies, timeout)) {
233                         netif_err(efx, hw, efx->net_dev,
234                                   "timed out waiting for SPI\n");
235                         return -ETIMEDOUT;
236                 }
237                 schedule_timeout_uninterruptible(1);
238         }
239 }
240
241 int falcon_spi_cmd(struct efx_nic *efx, const struct efx_spi_device *spi,
242                    unsigned int command, int address,
243                    const void *in, void *out, size_t len)
244 {
245         bool addressed = (address >= 0);
246         bool reading = (out != NULL);
247         efx_oword_t reg;
248         int rc;
249
250         /* Input validation */
251         if (len > FALCON_SPI_MAX_LEN)
252                 return -EINVAL;
253
254         /* Check that previous command is not still running */
255         rc = falcon_spi_poll(efx);
256         if (rc)
257                 return rc;
258
259         /* Program address register, if we have an address */
260         if (addressed) {
261                 EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
262                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
263         }
264
265         /* Program data register, if we have data */
266         if (in != NULL) {
267                 memcpy(&reg, in, len);
268                 efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
269         }
270
271         /* Issue read/write command */
272         EFX_POPULATE_OWORD_7(reg,
273                              FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
274                              FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
275                              FRF_AB_EE_SPI_HCMD_DABCNT, len,
276                              FRF_AB_EE_SPI_HCMD_READ, reading,
277                              FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
278                              FRF_AB_EE_SPI_HCMD_ADBCNT,
279                              (addressed ? spi->addr_len : 0),
280                              FRF_AB_EE_SPI_HCMD_ENC, command);
281         efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
282
283         /* Wait for read/write to complete */
284         rc = falcon_spi_wait(efx);
285         if (rc)
286                 return rc;
287
288         /* Read data */
289         if (out != NULL) {
290                 efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
291                 memcpy(out, &reg, len);
292         }
293
294         return 0;
295 }
296
297 static size_t
298 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
299 {
300         return min(FALCON_SPI_MAX_LEN,
301                    (spi->block_size - (start & (spi->block_size - 1))));
302 }
303
304 static inline u8
305 efx_spi_munge_command(const struct efx_spi_device *spi,
306                       const u8 command, const unsigned int address)
307 {
308         return command | (((address >> 8) & spi->munge_address) << 3);
309 }
310
311 /* Wait up to 10 ms for buffered write completion */
312 int
313 falcon_spi_wait_write(struct efx_nic *efx, const struct efx_spi_device *spi)
314 {
315         unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
316         u8 status;
317         int rc;
318
319         for (;;) {
320                 rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
321                                     &status, sizeof(status));
322                 if (rc)
323                         return rc;
324                 if (!(status & SPI_STATUS_NRDY))
325                         return 0;
326                 if (time_after_eq(jiffies, timeout)) {
327                         netif_err(efx, hw, efx->net_dev,
328                                   "SPI write timeout on device %d"
329                                   " last status=0x%02x\n",
330                                   spi->device_id, status);
331                         return -ETIMEDOUT;
332                 }
333                 schedule_timeout_uninterruptible(1);
334         }
335 }
336
337 int falcon_spi_read(struct efx_nic *efx, const struct efx_spi_device *spi,
338                     loff_t start, size_t len, size_t *retlen, u8 *buffer)
339 {
340         size_t block_len, pos = 0;
341         unsigned int command;
342         int rc = 0;
343
344         while (pos < len) {
345                 block_len = min(len - pos, FALCON_SPI_MAX_LEN);
346
347                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
348                 rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
349                                     buffer + pos, block_len);
350                 if (rc)
351                         break;
352                 pos += block_len;
353
354                 /* Avoid locking up the system */
355                 cond_resched();
356                 if (signal_pending(current)) {
357                         rc = -EINTR;
358                         break;
359                 }
360         }
361
362         if (retlen)
363                 *retlen = pos;
364         return rc;
365 }
366
367 int
368 falcon_spi_write(struct efx_nic *efx, const struct efx_spi_device *spi,
369                  loff_t start, size_t len, size_t *retlen, const u8 *buffer)
370 {
371         u8 verify_buffer[FALCON_SPI_MAX_LEN];
372         size_t block_len, pos = 0;
373         unsigned int command;
374         int rc = 0;
375
376         while (pos < len) {
377                 rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
378                 if (rc)
379                         break;
380
381                 block_len = min(len - pos,
382                                 falcon_spi_write_limit(spi, start + pos));
383                 command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
384                 rc = falcon_spi_cmd(efx, spi, command, start + pos,
385                                     buffer + pos, NULL, block_len);
386                 if (rc)
387                         break;
388
389                 rc = falcon_spi_wait_write(efx, spi);
390                 if (rc)
391                         break;
392
393                 command = efx_spi_munge_command(spi, SPI_READ, start + pos);
394                 rc = falcon_spi_cmd(efx, spi, command, start + pos,
395                                     NULL, verify_buffer, block_len);
396                 if (memcmp(verify_buffer, buffer + pos, block_len)) {
397                         rc = -EIO;
398                         break;
399                 }
400
401                 pos += block_len;
402
403                 /* Avoid locking up the system */
404                 cond_resched();
405                 if (signal_pending(current)) {
406                         rc = -EINTR;
407                         break;
408                 }
409         }
410
411         if (retlen)
412                 *retlen = pos;
413         return rc;
414 }
415
416 /**************************************************************************
417  *
418  * MAC wrapper
419  *
420  **************************************************************************
421  */
422
423 static void falcon_push_multicast_hash(struct efx_nic *efx)
424 {
425         union efx_multicast_hash *mc_hash = &efx->multicast_hash;
426
427         WARN_ON(!mutex_is_locked(&efx->mac_lock));
428
429         efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
430         efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
431 }
432
433 static void falcon_reset_macs(struct efx_nic *efx)
434 {
435         struct falcon_nic_data *nic_data = efx->nic_data;
436         efx_oword_t reg, mac_ctrl;
437         int count;
438
439         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
440                 /* It's not safe to use GLB_CTL_REG to reset the
441                  * macs, so instead use the internal MAC resets
442                  */
443                 EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
444                 efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
445
446                 for (count = 0; count < 10000; count++) {
447                         efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
448                         if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
449                             0)
450                                 return;
451                         udelay(10);
452                 }
453
454                 netif_err(efx, hw, efx->net_dev,
455                           "timed out waiting for XMAC core reset\n");
456         }
457
458         /* Mac stats will fail whist the TX fifo is draining */
459         WARN_ON(nic_data->stats_disable_count == 0);
460
461         efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
462         EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
463         efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
464
465         efx_reado(efx, &reg, FR_AB_GLB_CTL);
466         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
467         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
468         EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
469         efx_writeo(efx, &reg, FR_AB_GLB_CTL);
470
471         count = 0;
472         while (1) {
473                 efx_reado(efx, &reg, FR_AB_GLB_CTL);
474                 if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
475                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
476                     !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
477                         netif_dbg(efx, hw, efx->net_dev,
478                                   "Completed MAC reset after %d loops\n",
479                                   count);
480                         break;
481                 }
482                 if (count > 20) {
483                         netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
484                         break;
485                 }
486                 count++;
487                 udelay(10);
488         }
489
490         /* Ensure the correct MAC is selected before statistics
491          * are re-enabled by the caller */
492         efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
493
494         falcon_setup_xaui(efx);
495 }
496
497 void falcon_drain_tx_fifo(struct efx_nic *efx)
498 {
499         efx_oword_t reg;
500
501         if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
502             (efx->loopback_mode != LOOPBACK_NONE))
503                 return;
504
505         efx_reado(efx, &reg, FR_AB_MAC_CTRL);
506         /* There is no point in draining more than once */
507         if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
508                 return;
509
510         falcon_reset_macs(efx);
511 }
512
513 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
514 {
515         efx_oword_t reg;
516
517         if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
518                 return;
519
520         /* Isolate the MAC -> RX */
521         efx_reado(efx, &reg, FR_AZ_RX_CFG);
522         EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
523         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
524
525         /* Isolate TX -> MAC */
526         falcon_drain_tx_fifo(efx);
527 }
528
529 void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
530 {
531         struct efx_link_state *link_state = &efx->link_state;
532         efx_oword_t reg;
533         int link_speed, isolate;
534
535         isolate = !!ACCESS_ONCE(efx->reset_pending);
536
537         switch (link_state->speed) {
538         case 10000: link_speed = 3; break;
539         case 1000:  link_speed = 2; break;
540         case 100:   link_speed = 1; break;
541         default:    link_speed = 0; break;
542         }
543         /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
544          * as advertised.  Disable to ensure packets are not
545          * indefinitely held and TX queue can be flushed at any point
546          * while the link is down. */
547         EFX_POPULATE_OWORD_5(reg,
548                              FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
549                              FRF_AB_MAC_BCAD_ACPT, 1,
550                              FRF_AB_MAC_UC_PROM, efx->promiscuous,
551                              FRF_AB_MAC_LINK_STATUS, 1, /* always set */
552                              FRF_AB_MAC_SPEED, link_speed);
553         /* On B0, MAC backpressure can be disabled and packets get
554          * discarded. */
555         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
556                 EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
557                                     !link_state->up || isolate);
558         }
559
560         efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
561
562         /* Restore the multicast hash registers. */
563         falcon_push_multicast_hash(efx);
564
565         efx_reado(efx, &reg, FR_AZ_RX_CFG);
566         /* Enable XOFF signal from RX FIFO (we enabled it during NIC
567          * initialisation but it may read back as 0) */
568         EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
569         /* Unisolate the MAC -> RX */
570         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
571                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
572         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
573 }
574
575 static void falcon_stats_request(struct efx_nic *efx)
576 {
577         struct falcon_nic_data *nic_data = efx->nic_data;
578         efx_oword_t reg;
579
580         WARN_ON(nic_data->stats_pending);
581         WARN_ON(nic_data->stats_disable_count);
582
583         if (nic_data->stats_dma_done == NULL)
584                 return; /* no mac selected */
585
586         *nic_data->stats_dma_done = FALCON_STATS_NOT_DONE;
587         nic_data->stats_pending = true;
588         wmb(); /* ensure done flag is clear */
589
590         /* Initiate DMA transfer of stats */
591         EFX_POPULATE_OWORD_2(reg,
592                              FRF_AB_MAC_STAT_DMA_CMD, 1,
593                              FRF_AB_MAC_STAT_DMA_ADR,
594                              efx->stats_buffer.dma_addr);
595         efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
596
597         mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
598 }
599
600 static void falcon_stats_complete(struct efx_nic *efx)
601 {
602         struct falcon_nic_data *nic_data = efx->nic_data;
603
604         if (!nic_data->stats_pending)
605                 return;
606
607         nic_data->stats_pending = false;
608         if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
609                 rmb(); /* read the done flag before the stats */
610                 falcon_update_stats_xmac(efx);
611         } else {
612                 netif_err(efx, hw, efx->net_dev,
613                           "timed out waiting for statistics\n");
614         }
615 }
616
617 static void falcon_stats_timer_func(unsigned long context)
618 {
619         struct efx_nic *efx = (struct efx_nic *)context;
620         struct falcon_nic_data *nic_data = efx->nic_data;
621
622         spin_lock(&efx->stats_lock);
623
624         falcon_stats_complete(efx);
625         if (nic_data->stats_disable_count == 0)
626                 falcon_stats_request(efx);
627
628         spin_unlock(&efx->stats_lock);
629 }
630
631 static bool falcon_loopback_link_poll(struct efx_nic *efx)
632 {
633         struct efx_link_state old_state = efx->link_state;
634
635         WARN_ON(!mutex_is_locked(&efx->mac_lock));
636         WARN_ON(!LOOPBACK_INTERNAL(efx));
637
638         efx->link_state.fd = true;
639         efx->link_state.fc = efx->wanted_fc;
640         efx->link_state.up = true;
641         efx->link_state.speed = 10000;
642
643         return !efx_link_state_equal(&efx->link_state, &old_state);
644 }
645
646 static int falcon_reconfigure_port(struct efx_nic *efx)
647 {
648         int rc;
649
650         WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
651
652         /* Poll the PHY link state *before* reconfiguring it. This means we
653          * will pick up the correct speed (in loopback) to select the correct
654          * MAC.
655          */
656         if (LOOPBACK_INTERNAL(efx))
657                 falcon_loopback_link_poll(efx);
658         else
659                 efx->phy_op->poll(efx);
660
661         falcon_stop_nic_stats(efx);
662         falcon_deconfigure_mac_wrapper(efx);
663
664         falcon_reset_macs(efx);
665
666         efx->phy_op->reconfigure(efx);
667         rc = falcon_reconfigure_xmac(efx);
668         BUG_ON(rc);
669
670         falcon_start_nic_stats(efx);
671
672         /* Synchronise efx->link_state with the kernel */
673         efx_link_status_changed(efx);
674
675         return 0;
676 }
677
678 /**************************************************************************
679  *
680  * PHY access via GMII
681  *
682  **************************************************************************
683  */
684
685 /* Wait for GMII access to complete */
686 static int falcon_gmii_wait(struct efx_nic *efx)
687 {
688         efx_oword_t md_stat;
689         int count;
690
691         /* wait up to 50ms - taken max from datasheet */
692         for (count = 0; count < 5000; count++) {
693                 efx_reado(efx, &md_stat, FR_AB_MD_STAT);
694                 if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
695                         if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
696                             EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
697                                 netif_err(efx, hw, efx->net_dev,
698                                           "error from GMII access "
699                                           EFX_OWORD_FMT"\n",
700                                           EFX_OWORD_VAL(md_stat));
701                                 return -EIO;
702                         }
703                         return 0;
704                 }
705                 udelay(10);
706         }
707         netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
708         return -ETIMEDOUT;
709 }
710
711 /* Write an MDIO register of a PHY connected to Falcon. */
712 static int falcon_mdio_write(struct net_device *net_dev,
713                              int prtad, int devad, u16 addr, u16 value)
714 {
715         struct efx_nic *efx = netdev_priv(net_dev);
716         struct falcon_nic_data *nic_data = efx->nic_data;
717         efx_oword_t reg;
718         int rc;
719
720         netif_vdbg(efx, hw, efx->net_dev,
721                    "writing MDIO %d register %d.%d with 0x%04x\n",
722                     prtad, devad, addr, value);
723
724         mutex_lock(&nic_data->mdio_lock);
725
726         /* Check MDIO not currently being accessed */
727         rc = falcon_gmii_wait(efx);
728         if (rc)
729                 goto out;
730
731         /* Write the address/ID register */
732         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
733         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
734
735         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
736                              FRF_AB_MD_DEV_ADR, devad);
737         efx_writeo(efx, &reg, FR_AB_MD_ID);
738
739         /* Write data */
740         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
741         efx_writeo(efx, &reg, FR_AB_MD_TXD);
742
743         EFX_POPULATE_OWORD_2(reg,
744                              FRF_AB_MD_WRC, 1,
745                              FRF_AB_MD_GC, 0);
746         efx_writeo(efx, &reg, FR_AB_MD_CS);
747
748         /* Wait for data to be written */
749         rc = falcon_gmii_wait(efx);
750         if (rc) {
751                 /* Abort the write operation */
752                 EFX_POPULATE_OWORD_2(reg,
753                                      FRF_AB_MD_WRC, 0,
754                                      FRF_AB_MD_GC, 1);
755                 efx_writeo(efx, &reg, FR_AB_MD_CS);
756                 udelay(10);
757         }
758
759 out:
760         mutex_unlock(&nic_data->mdio_lock);
761         return rc;
762 }
763
764 /* Read an MDIO register of a PHY connected to Falcon. */
765 static int falcon_mdio_read(struct net_device *net_dev,
766                             int prtad, int devad, u16 addr)
767 {
768         struct efx_nic *efx = netdev_priv(net_dev);
769         struct falcon_nic_data *nic_data = efx->nic_data;
770         efx_oword_t reg;
771         int rc;
772
773         mutex_lock(&nic_data->mdio_lock);
774
775         /* Check MDIO not currently being accessed */
776         rc = falcon_gmii_wait(efx);
777         if (rc)
778                 goto out;
779
780         EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
781         efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
782
783         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
784                              FRF_AB_MD_DEV_ADR, devad);
785         efx_writeo(efx, &reg, FR_AB_MD_ID);
786
787         /* Request data to be read */
788         EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
789         efx_writeo(efx, &reg, FR_AB_MD_CS);
790
791         /* Wait for data to become available */
792         rc = falcon_gmii_wait(efx);
793         if (rc == 0) {
794                 efx_reado(efx, &reg, FR_AB_MD_RXD);
795                 rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
796                 netif_vdbg(efx, hw, efx->net_dev,
797                            "read from MDIO %d register %d.%d, got %04x\n",
798                            prtad, devad, addr, rc);
799         } else {
800                 /* Abort the read operation */
801                 EFX_POPULATE_OWORD_2(reg,
802                                      FRF_AB_MD_RIC, 0,
803                                      FRF_AB_MD_GC, 1);
804                 efx_writeo(efx, &reg, FR_AB_MD_CS);
805
806                 netif_dbg(efx, hw, efx->net_dev,
807                           "read from MDIO %d register %d.%d, got error %d\n",
808                           prtad, devad, addr, rc);
809         }
810
811 out:
812         mutex_unlock(&nic_data->mdio_lock);
813         return rc;
814 }
815
816 /* This call is responsible for hooking in the MAC and PHY operations */
817 static int falcon_probe_port(struct efx_nic *efx)
818 {
819         struct falcon_nic_data *nic_data = efx->nic_data;
820         int rc;
821
822         switch (efx->phy_type) {
823         case PHY_TYPE_SFX7101:
824                 efx->phy_op = &falcon_sfx7101_phy_ops;
825                 break;
826         case PHY_TYPE_QT2022C2:
827         case PHY_TYPE_QT2025C:
828                 efx->phy_op = &falcon_qt202x_phy_ops;
829                 break;
830         case PHY_TYPE_TXC43128:
831                 efx->phy_op = &falcon_txc_phy_ops;
832                 break;
833         default:
834                 netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
835                           efx->phy_type);
836                 return -ENODEV;
837         }
838
839         /* Fill out MDIO structure and loopback modes */
840         mutex_init(&nic_data->mdio_lock);
841         efx->mdio.mdio_read = falcon_mdio_read;
842         efx->mdio.mdio_write = falcon_mdio_write;
843         rc = efx->phy_op->probe(efx);
844         if (rc != 0)
845                 return rc;
846
847         /* Initial assumption */
848         efx->link_state.speed = 10000;
849         efx->link_state.fd = true;
850
851         /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
852         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
853                 efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
854         else
855                 efx->wanted_fc = EFX_FC_RX;
856         if (efx->mdio.mmds & MDIO_DEVS_AN)
857                 efx->wanted_fc |= EFX_FC_AUTO;
858
859         /* Allocate buffer for stats */
860         rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
861                                   FALCON_MAC_STATS_SIZE);
862         if (rc)
863                 return rc;
864         netif_dbg(efx, probe, efx->net_dev,
865                   "stats buffer at %llx (virt %p phys %llx)\n",
866                   (u64)efx->stats_buffer.dma_addr,
867                   efx->stats_buffer.addr,
868                   (u64)virt_to_phys(efx->stats_buffer.addr));
869         nic_data->stats_dma_done = efx->stats_buffer.addr + XgDmaDone_offset;
870
871         return 0;
872 }
873
874 static void falcon_remove_port(struct efx_nic *efx)
875 {
876         efx->phy_op->remove(efx);
877         efx_nic_free_buffer(efx, &efx->stats_buffer);
878 }
879
880 /* Global events are basically PHY events */
881 static bool
882 falcon_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
883 {
884         struct efx_nic *efx = channel->efx;
885         struct falcon_nic_data *nic_data = efx->nic_data;
886
887         if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
888             EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
889             EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
890                 /* Ignored */
891                 return true;
892
893         if ((efx_nic_rev(efx) == EFX_REV_FALCON_B0) &&
894             EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
895                 nic_data->xmac_poll_required = true;
896                 return true;
897         }
898
899         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
900             EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
901             EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
902                 netif_err(efx, rx_err, efx->net_dev,
903                           "channel %d seen global RX_RESET event. Resetting.\n",
904                           channel->channel);
905
906                 atomic_inc(&efx->rx_reset);
907                 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
908                                    RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
909                 return true;
910         }
911
912         return false;
913 }
914
915 /**************************************************************************
916  *
917  * Falcon test code
918  *
919  **************************************************************************/
920
921 static int
922 falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
923 {
924         struct falcon_nic_data *nic_data = efx->nic_data;
925         struct falcon_nvconfig *nvconfig;
926         struct efx_spi_device *spi;
927         void *region;
928         int rc, magic_num, struct_ver;
929         __le16 *word, *limit;
930         u32 csum;
931
932         if (efx_spi_present(&nic_data->spi_flash))
933                 spi = &nic_data->spi_flash;
934         else if (efx_spi_present(&nic_data->spi_eeprom))
935                 spi = &nic_data->spi_eeprom;
936         else
937                 return -EINVAL;
938
939         region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
940         if (!region)
941                 return -ENOMEM;
942         nvconfig = region + FALCON_NVCONFIG_OFFSET;
943
944         mutex_lock(&nic_data->spi_lock);
945         rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
946         mutex_unlock(&nic_data->spi_lock);
947         if (rc) {
948                 netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
949                           efx_spi_present(&nic_data->spi_flash) ?
950                           "flash" : "EEPROM");
951                 rc = -EIO;
952                 goto out;
953         }
954
955         magic_num = le16_to_cpu(nvconfig->board_magic_num);
956         struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
957
958         rc = -EINVAL;
959         if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
960                 netif_err(efx, hw, efx->net_dev,
961                           "NVRAM bad magic 0x%x\n", magic_num);
962                 goto out;
963         }
964         if (struct_ver < 2) {
965                 netif_err(efx, hw, efx->net_dev,
966                           "NVRAM has ancient version 0x%x\n", struct_ver);
967                 goto out;
968         } else if (struct_ver < 4) {
969                 word = &nvconfig->board_magic_num;
970                 limit = (__le16 *) (nvconfig + 1);
971         } else {
972                 word = region;
973                 limit = region + FALCON_NVCONFIG_END;
974         }
975         for (csum = 0; word < limit; ++word)
976                 csum += le16_to_cpu(*word);
977
978         if (~csum & 0xffff) {
979                 netif_err(efx, hw, efx->net_dev,
980                           "NVRAM has incorrect checksum\n");
981                 goto out;
982         }
983
984         rc = 0;
985         if (nvconfig_out)
986                 memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
987
988  out:
989         kfree(region);
990         return rc;
991 }
992
993 static int falcon_test_nvram(struct efx_nic *efx)
994 {
995         return falcon_read_nvram(efx, NULL);
996 }
997
998 static const struct efx_nic_register_test falcon_b0_register_tests[] = {
999         { FR_AZ_ADR_REGION,
1000           EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1001         { FR_AZ_RX_CFG,
1002           EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1003         { FR_AZ_TX_CFG,
1004           EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1005         { FR_AZ_TX_RESERVED,
1006           EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1007         { FR_AB_MAC_CTRL,
1008           EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1009         { FR_AZ_SRM_TX_DC_CFG,
1010           EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1011         { FR_AZ_RX_DC_CFG,
1012           EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1013         { FR_AZ_RX_DC_PF_WM,
1014           EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1015         { FR_BZ_DP_CTRL,
1016           EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1017         { FR_AB_GM_CFG2,
1018           EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1019         { FR_AB_GMF_CFG0,
1020           EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1021         { FR_AB_XM_GLB_CFG,
1022           EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1023         { FR_AB_XM_TX_CFG,
1024           EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1025         { FR_AB_XM_RX_CFG,
1026           EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1027         { FR_AB_XM_RX_PARAM,
1028           EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1029         { FR_AB_XM_FC,
1030           EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1031         { FR_AB_XM_ADR_LO,
1032           EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1033         { FR_AB_XX_SD_CTL,
1034           EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1035 };
1036
1037 static int falcon_b0_test_registers(struct efx_nic *efx)
1038 {
1039         return efx_nic_test_registers(efx, falcon_b0_register_tests,
1040                                       ARRAY_SIZE(falcon_b0_register_tests));
1041 }
1042
1043 /**************************************************************************
1044  *
1045  * Device reset
1046  *
1047  **************************************************************************
1048  */
1049
1050 static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1051 {
1052         switch (reason) {
1053         case RESET_TYPE_RX_RECOVERY:
1054         case RESET_TYPE_RX_DESC_FETCH:
1055         case RESET_TYPE_TX_DESC_FETCH:
1056         case RESET_TYPE_TX_SKIP:
1057                 /* These can occasionally occur due to hardware bugs.
1058                  * We try to reset without disrupting the link.
1059                  */
1060                 return RESET_TYPE_INVISIBLE;
1061         default:
1062                 return RESET_TYPE_ALL;
1063         }
1064 }
1065
1066 static int falcon_map_reset_flags(u32 *flags)
1067 {
1068         enum {
1069                 FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1070                                           ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1071                 FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1072                 FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1073         };
1074
1075         if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1076                 *flags &= ~FALCON_RESET_WORLD;
1077                 return RESET_TYPE_WORLD;
1078         }
1079
1080         if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1081                 *flags &= ~FALCON_RESET_ALL;
1082                 return RESET_TYPE_ALL;
1083         }
1084
1085         if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1086                 *flags &= ~FALCON_RESET_INVISIBLE;
1087                 return RESET_TYPE_INVISIBLE;
1088         }
1089
1090         return -EINVAL;
1091 }
1092
1093 /* Resets NIC to known state.  This routine must be called in process
1094  * context and is allowed to sleep. */
1095 static int __falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1096 {
1097         struct falcon_nic_data *nic_data = efx->nic_data;
1098         efx_oword_t glb_ctl_reg_ker;
1099         int rc;
1100
1101         netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1102                   RESET_TYPE(method));
1103
1104         /* Initiate device reset */
1105         if (method == RESET_TYPE_WORLD) {
1106                 rc = pci_save_state(efx->pci_dev);
1107                 if (rc) {
1108                         netif_err(efx, drv, efx->net_dev,
1109                                   "failed to backup PCI state of primary "
1110                                   "function prior to hardware reset\n");
1111                         goto fail1;
1112                 }
1113                 if (efx_nic_is_dual_func(efx)) {
1114                         rc = pci_save_state(nic_data->pci_dev2);
1115                         if (rc) {
1116                                 netif_err(efx, drv, efx->net_dev,
1117                                           "failed to backup PCI state of "
1118                                           "secondary function prior to "
1119                                           "hardware reset\n");
1120                                 goto fail2;
1121                         }
1122                 }
1123
1124                 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
1125                                      FRF_AB_EXT_PHY_RST_DUR,
1126                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
1127                                      FRF_AB_SWRST, 1);
1128         } else {
1129                 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
1130                                      /* exclude PHY from "invisible" reset */
1131                                      FRF_AB_EXT_PHY_RST_CTL,
1132                                      method == RESET_TYPE_INVISIBLE,
1133                                      /* exclude EEPROM/flash and PCIe */
1134                                      FRF_AB_PCIE_CORE_RST_CTL, 1,
1135                                      FRF_AB_PCIE_NSTKY_RST_CTL, 1,
1136                                      FRF_AB_PCIE_SD_RST_CTL, 1,
1137                                      FRF_AB_EE_RST_CTL, 1,
1138                                      FRF_AB_EXT_PHY_RST_DUR,
1139                                      FFE_AB_EXT_PHY_RST_DUR_10240US,
1140                                      FRF_AB_SWRST, 1);
1141         }
1142         efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1143
1144         netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
1145         schedule_timeout_uninterruptible(HZ / 20);
1146
1147         /* Restore PCI configuration if needed */
1148         if (method == RESET_TYPE_WORLD) {
1149                 if (efx_nic_is_dual_func(efx))
1150                         pci_restore_state(nic_data->pci_dev2);
1151                 pci_restore_state(efx->pci_dev);
1152                 netif_dbg(efx, drv, efx->net_dev,
1153                           "successfully restored PCI config\n");
1154         }
1155
1156         /* Assert that reset complete */
1157         efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1158         if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
1159                 rc = -ETIMEDOUT;
1160                 netif_err(efx, hw, efx->net_dev,
1161                           "timed out waiting for hardware reset\n");
1162                 goto fail3;
1163         }
1164         netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
1165
1166         return 0;
1167
1168         /* pci_save_state() and pci_restore_state() MUST be called in pairs */
1169 fail2:
1170         pci_restore_state(efx->pci_dev);
1171 fail1:
1172 fail3:
1173         return rc;
1174 }
1175
1176 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1177 {
1178         struct falcon_nic_data *nic_data = efx->nic_data;
1179         int rc;
1180
1181         mutex_lock(&nic_data->spi_lock);
1182         rc = __falcon_reset_hw(efx, method);
1183         mutex_unlock(&nic_data->spi_lock);
1184
1185         return rc;
1186 }
1187
1188 static void falcon_monitor(struct efx_nic *efx)
1189 {
1190         bool link_changed;
1191         int rc;
1192
1193         BUG_ON(!mutex_is_locked(&efx->mac_lock));
1194
1195         rc = falcon_board(efx)->type->monitor(efx);
1196         if (rc) {
1197                 netif_err(efx, hw, efx->net_dev,
1198                           "Board sensor %s; shutting down PHY\n",
1199                           (rc == -ERANGE) ? "reported fault" : "failed");
1200                 efx->phy_mode |= PHY_MODE_LOW_POWER;
1201                 rc = __efx_reconfigure_port(efx);
1202                 WARN_ON(rc);
1203         }
1204
1205         if (LOOPBACK_INTERNAL(efx))
1206                 link_changed = falcon_loopback_link_poll(efx);
1207         else
1208                 link_changed = efx->phy_op->poll(efx);
1209
1210         if (link_changed) {
1211                 falcon_stop_nic_stats(efx);
1212                 falcon_deconfigure_mac_wrapper(efx);
1213
1214                 falcon_reset_macs(efx);
1215                 rc = falcon_reconfigure_xmac(efx);
1216                 BUG_ON(rc);
1217
1218                 falcon_start_nic_stats(efx);
1219
1220                 efx_link_status_changed(efx);
1221         }
1222
1223         falcon_poll_xmac(efx);
1224 }
1225
1226 /* Zeroes out the SRAM contents.  This routine must be called in
1227  * process context and is allowed to sleep.
1228  */
1229 static int falcon_reset_sram(struct efx_nic *efx)
1230 {
1231         efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
1232         int count;
1233
1234         /* Set the SRAM wake/sleep GPIO appropriately. */
1235         efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1236         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
1237         EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
1238         efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1239
1240         /* Initiate SRAM reset */
1241         EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
1242                              FRF_AZ_SRM_INIT_EN, 1,
1243                              FRF_AZ_SRM_NB_SZ, 0);
1244         efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1245
1246         /* Wait for SRAM reset to complete */
1247         count = 0;
1248         do {
1249                 netif_dbg(efx, hw, efx->net_dev,
1250                           "waiting for SRAM reset (attempt %d)...\n", count);
1251
1252                 /* SRAM reset is slow; expect around 16ms */
1253                 schedule_timeout_uninterruptible(HZ / 50);
1254
1255                 /* Check for reset complete */
1256                 efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1257                 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
1258                         netif_dbg(efx, hw, efx->net_dev,
1259                                   "SRAM reset complete\n");
1260
1261                         return 0;
1262                 }
1263         } while (++count < 20); /* wait up to 0.4 sec */
1264
1265         netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
1266         return -ETIMEDOUT;
1267 }
1268
1269 static void falcon_spi_device_init(struct efx_nic *efx,
1270                                   struct efx_spi_device *spi_device,
1271                                   unsigned int device_id, u32 device_type)
1272 {
1273         if (device_type != 0) {
1274                 spi_device->device_id = device_id;
1275                 spi_device->size =
1276                         1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
1277                 spi_device->addr_len =
1278                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
1279                 spi_device->munge_address = (spi_device->size == 1 << 9 &&
1280                                              spi_device->addr_len == 1);
1281                 spi_device->erase_command =
1282                         SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
1283                 spi_device->erase_size =
1284                         1 << SPI_DEV_TYPE_FIELD(device_type,
1285                                                 SPI_DEV_TYPE_ERASE_SIZE);
1286                 spi_device->block_size =
1287                         1 << SPI_DEV_TYPE_FIELD(device_type,
1288                                                 SPI_DEV_TYPE_BLOCK_SIZE);
1289         } else {
1290                 spi_device->size = 0;
1291         }
1292 }
1293
1294 /* Extract non-volatile configuration */
1295 static int falcon_probe_nvconfig(struct efx_nic *efx)
1296 {
1297         struct falcon_nic_data *nic_data = efx->nic_data;
1298         struct falcon_nvconfig *nvconfig;
1299         int rc;
1300
1301         nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
1302         if (!nvconfig)
1303                 return -ENOMEM;
1304
1305         rc = falcon_read_nvram(efx, nvconfig);
1306         if (rc)
1307                 goto out;
1308
1309         efx->phy_type = nvconfig->board_v2.port0_phy_type;
1310         efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
1311
1312         if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
1313                 falcon_spi_device_init(
1314                         efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
1315                         le32_to_cpu(nvconfig->board_v3
1316                                     .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
1317                 falcon_spi_device_init(
1318                         efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
1319                         le32_to_cpu(nvconfig->board_v3
1320                                     .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
1321         }
1322
1323         /* Read the MAC addresses */
1324         memcpy(efx->net_dev->perm_addr, nvconfig->mac_address[0], ETH_ALEN);
1325
1326         netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
1327                   efx->phy_type, efx->mdio.prtad);
1328
1329         rc = falcon_probe_board(efx,
1330                                 le16_to_cpu(nvconfig->board_v2.board_revision));
1331 out:
1332         kfree(nvconfig);
1333         return rc;
1334 }
1335
1336 /* Probe all SPI devices on the NIC */
1337 static void falcon_probe_spi_devices(struct efx_nic *efx)
1338 {
1339         struct falcon_nic_data *nic_data = efx->nic_data;
1340         efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
1341         int boot_dev;
1342
1343         efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
1344         efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1345         efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1346
1347         if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
1348                 boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
1349                             FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
1350                 netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
1351                           boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
1352                           "flash" : "EEPROM");
1353         } else {
1354                 /* Disable VPD and set clock dividers to safe
1355                  * values for initial programming. */
1356                 boot_dev = -1;
1357                 netif_dbg(efx, probe, efx->net_dev,
1358                           "Booted from internal ASIC settings;"
1359                           " setting SPI config\n");
1360                 EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
1361                                      /* 125 MHz / 7 ~= 20 MHz */
1362                                      FRF_AB_EE_SF_CLOCK_DIV, 7,
1363                                      /* 125 MHz / 63 ~= 2 MHz */
1364                                      FRF_AB_EE_EE_CLOCK_DIV, 63);
1365                 efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1366         }
1367
1368         mutex_init(&nic_data->spi_lock);
1369
1370         if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
1371                 falcon_spi_device_init(efx, &nic_data->spi_flash,
1372                                        FFE_AB_SPI_DEVICE_FLASH,
1373                                        default_flash_type);
1374         if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
1375                 falcon_spi_device_init(efx, &nic_data->spi_eeprom,
1376                                        FFE_AB_SPI_DEVICE_EEPROM,
1377                                        large_eeprom_type);
1378 }
1379
1380 static int falcon_probe_nic(struct efx_nic *efx)
1381 {
1382         struct falcon_nic_data *nic_data;
1383         struct falcon_board *board;
1384         int rc;
1385
1386         /* Allocate storage for hardware specific data */
1387         nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
1388         if (!nic_data)
1389                 return -ENOMEM;
1390         efx->nic_data = nic_data;
1391
1392         rc = -ENODEV;
1393
1394         if (efx_nic_fpga_ver(efx) != 0) {
1395                 netif_err(efx, probe, efx->net_dev,
1396                           "Falcon FPGA not supported\n");
1397                 goto fail1;
1398         }
1399
1400         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1401                 efx_oword_t nic_stat;
1402                 struct pci_dev *dev;
1403                 u8 pci_rev = efx->pci_dev->revision;
1404
1405                 if ((pci_rev == 0xff) || (pci_rev == 0)) {
1406                         netif_err(efx, probe, efx->net_dev,
1407                                   "Falcon rev A0 not supported\n");
1408                         goto fail1;
1409                 }
1410                 efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1411                 if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
1412                         netif_err(efx, probe, efx->net_dev,
1413                                   "Falcon rev A1 1G not supported\n");
1414                         goto fail1;
1415                 }
1416                 if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
1417                         netif_err(efx, probe, efx->net_dev,
1418                                   "Falcon rev A1 PCI-X not supported\n");
1419                         goto fail1;
1420                 }
1421
1422                 dev = pci_dev_get(efx->pci_dev);
1423                 while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
1424                                              PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
1425                                              dev))) {
1426                         if (dev->bus == efx->pci_dev->bus &&
1427                             dev->devfn == efx->pci_dev->devfn + 1) {
1428                                 nic_data->pci_dev2 = dev;
1429                                 break;
1430                         }
1431                 }
1432                 if (!nic_data->pci_dev2) {
1433                         netif_err(efx, probe, efx->net_dev,
1434                                   "failed to find secondary function\n");
1435                         rc = -ENODEV;
1436                         goto fail2;
1437                 }
1438         }
1439
1440         /* Now we can reset the NIC */
1441         rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
1442         if (rc) {
1443                 netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
1444                 goto fail3;
1445         }
1446
1447         /* Allocate memory for INT_KER */
1448         rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
1449         if (rc)
1450                 goto fail4;
1451         BUG_ON(efx->irq_status.dma_addr & 0x0f);
1452
1453         netif_dbg(efx, probe, efx->net_dev,
1454                   "INT_KER at %llx (virt %p phys %llx)\n",
1455                   (u64)efx->irq_status.dma_addr,
1456                   efx->irq_status.addr,
1457                   (u64)virt_to_phys(efx->irq_status.addr));
1458
1459         falcon_probe_spi_devices(efx);
1460
1461         /* Read in the non-volatile configuration */
1462         rc = falcon_probe_nvconfig(efx);
1463         if (rc) {
1464                 if (rc == -EINVAL)
1465                         netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
1466                 goto fail5;
1467         }
1468
1469         efx->timer_quantum_ns = 4968; /* 621 cycles */
1470
1471         /* Initialise I2C adapter */
1472         board = falcon_board(efx);
1473         board->i2c_adap.owner = THIS_MODULE;
1474         board->i2c_data = falcon_i2c_bit_operations;
1475         board->i2c_data.data = efx;
1476         board->i2c_adap.algo_data = &board->i2c_data;
1477         board->i2c_adap.dev.parent = &efx->pci_dev->dev;
1478         strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
1479                 sizeof(board->i2c_adap.name));
1480         rc = i2c_bit_add_bus(&board->i2c_adap);
1481         if (rc)
1482                 goto fail5;
1483
1484         rc = falcon_board(efx)->type->init(efx);
1485         if (rc) {
1486                 netif_err(efx, probe, efx->net_dev,
1487                           "failed to initialise board\n");
1488                 goto fail6;
1489         }
1490
1491         nic_data->stats_disable_count = 1;
1492         setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
1493                     (unsigned long)efx);
1494
1495         return 0;
1496
1497  fail6:
1498         BUG_ON(i2c_del_adapter(&board->i2c_adap));
1499         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1500  fail5:
1501         efx_nic_free_buffer(efx, &efx->irq_status);
1502  fail4:
1503  fail3:
1504         if (nic_data->pci_dev2) {
1505                 pci_dev_put(nic_data->pci_dev2);
1506                 nic_data->pci_dev2 = NULL;
1507         }
1508  fail2:
1509  fail1:
1510         kfree(efx->nic_data);
1511         return rc;
1512 }
1513
1514 static void falcon_init_rx_cfg(struct efx_nic *efx)
1515 {
1516         /* Prior to Siena the RX DMA engine will split each frame at
1517          * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
1518          * be so large that that never happens. */
1519         const unsigned huge_buf_size = (3 * 4096) >> 5;
1520         /* RX control FIFO thresholds (32 entries) */
1521         const unsigned ctrl_xon_thr = 20;
1522         const unsigned ctrl_xoff_thr = 25;
1523         efx_oword_t reg;
1524
1525         efx_reado(efx, &reg, FR_AZ_RX_CFG);
1526         if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1527                 /* Data FIFO size is 5.5K */
1528                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
1529                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
1530                                     huge_buf_size);
1531                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
1532                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
1533                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
1534                 EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
1535         } else {
1536                 /* Data FIFO size is 80K; register fields moved */
1537                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
1538                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
1539                                     huge_buf_size);
1540                 /* Send XON and XOFF at ~3 * max MTU away from empty/full */
1541                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
1542                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
1543                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
1544                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
1545                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
1546
1547                 /* Enable hash insertion. This is broken for the
1548                  * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
1549                  * IPv4 hashes. */
1550                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
1551                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
1552                 EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
1553         }
1554         /* Always enable XOFF signal from RX FIFO.  We enable
1555          * or disable transmission of pause frames at the MAC. */
1556         EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1557         efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1558 }
1559
1560 /* This call performs hardware-specific global initialisation, such as
1561  * defining the descriptor cache sizes and number of RSS channels.
1562  * It does not set up any buffers, descriptor rings or event queues.
1563  */
1564 static int falcon_init_nic(struct efx_nic *efx)
1565 {
1566         efx_oword_t temp;
1567         int rc;
1568
1569         /* Use on-chip SRAM */
1570         efx_reado(efx, &temp, FR_AB_NIC_STAT);
1571         EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
1572         efx_writeo(efx, &temp, FR_AB_NIC_STAT);
1573
1574         rc = falcon_reset_sram(efx);
1575         if (rc)
1576                 return rc;
1577
1578         /* Clear the parity enables on the TX data fifos as
1579          * they produce false parity errors because of timing issues
1580          */
1581         if (EFX_WORKAROUND_5129(efx)) {
1582                 efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
1583                 EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
1584                 efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
1585         }
1586
1587         if (EFX_WORKAROUND_7244(efx)) {
1588                 efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
1589                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
1590                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
1591                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
1592                 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
1593                 efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
1594         }
1595
1596         /* XXX This is documented only for Falcon A0/A1 */
1597         /* Setup RX.  Wait for descriptor is broken and must
1598          * be disabled.  RXDP recovery shouldn't be needed, but is.
1599          */
1600         efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
1601         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
1602         EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
1603         if (EFX_WORKAROUND_5583(efx))
1604                 EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
1605         efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
1606
1607         /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
1608          * descriptors (which is bad).
1609          */
1610         efx_reado(efx, &temp, FR_AZ_TX_CFG);
1611         EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
1612         efx_writeo(efx, &temp, FR_AZ_TX_CFG);
1613
1614         falcon_init_rx_cfg(efx);
1615
1616         if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1617                 /* Set hash key for IPv4 */
1618                 memcpy(&temp, efx->rx_hash_key, sizeof(temp));
1619                 efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
1620
1621                 /* Set destination of both TX and RX Flush events */
1622                 EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
1623                 efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
1624         }
1625
1626         efx_nic_init_common(efx);
1627
1628         return 0;
1629 }
1630
1631 static void falcon_remove_nic(struct efx_nic *efx)
1632 {
1633         struct falcon_nic_data *nic_data = efx->nic_data;
1634         struct falcon_board *board = falcon_board(efx);
1635         int rc;
1636
1637         board->type->fini(efx);
1638
1639         /* Remove I2C adapter and clear it in preparation for a retry */
1640         rc = i2c_del_adapter(&board->i2c_adap);
1641         BUG_ON(rc);
1642         memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1643
1644         efx_nic_free_buffer(efx, &efx->irq_status);
1645
1646         __falcon_reset_hw(efx, RESET_TYPE_ALL);
1647
1648         /* Release the second function after the reset */
1649         if (nic_data->pci_dev2) {
1650                 pci_dev_put(nic_data->pci_dev2);
1651                 nic_data->pci_dev2 = NULL;
1652         }
1653
1654         /* Tear down the private nic state */
1655         kfree(efx->nic_data);
1656         efx->nic_data = NULL;
1657 }
1658
1659 static void falcon_update_nic_stats(struct efx_nic *efx)
1660 {
1661         struct falcon_nic_data *nic_data = efx->nic_data;
1662         efx_oword_t cnt;
1663
1664         if (nic_data->stats_disable_count)
1665                 return;
1666
1667         efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
1668         efx->n_rx_nodesc_drop_cnt +=
1669                 EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
1670
1671         if (nic_data->stats_pending &&
1672             *nic_data->stats_dma_done == FALCON_STATS_DONE) {
1673                 nic_data->stats_pending = false;
1674                 rmb(); /* read the done flag before the stats */
1675                 falcon_update_stats_xmac(efx);
1676         }
1677 }
1678
1679 void falcon_start_nic_stats(struct efx_nic *efx)
1680 {
1681         struct falcon_nic_data *nic_data = efx->nic_data;
1682
1683         spin_lock_bh(&efx->stats_lock);
1684         if (--nic_data->stats_disable_count == 0)
1685                 falcon_stats_request(efx);
1686         spin_unlock_bh(&efx->stats_lock);
1687 }
1688
1689 void falcon_stop_nic_stats(struct efx_nic *efx)
1690 {
1691         struct falcon_nic_data *nic_data = efx->nic_data;
1692         int i;
1693
1694         might_sleep();
1695
1696         spin_lock_bh(&efx->stats_lock);
1697         ++nic_data->stats_disable_count;
1698         spin_unlock_bh(&efx->stats_lock);
1699
1700         del_timer_sync(&nic_data->stats_timer);
1701
1702         /* Wait enough time for the most recent transfer to
1703          * complete. */
1704         for (i = 0; i < 4 && nic_data->stats_pending; i++) {
1705                 if (*nic_data->stats_dma_done == FALCON_STATS_DONE)
1706                         break;
1707                 msleep(1);
1708         }
1709
1710         spin_lock_bh(&efx->stats_lock);
1711         falcon_stats_complete(efx);
1712         spin_unlock_bh(&efx->stats_lock);
1713 }
1714
1715 static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1716 {
1717         falcon_board(efx)->type->set_id_led(efx, mode);
1718 }
1719
1720 /**************************************************************************
1721  *
1722  * Wake on LAN
1723  *
1724  **************************************************************************
1725  */
1726
1727 static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1728 {
1729         wol->supported = 0;
1730         wol->wolopts = 0;
1731         memset(&wol->sopass, 0, sizeof(wol->sopass));
1732 }
1733
1734 static int falcon_set_wol(struct efx_nic *efx, u32 type)
1735 {
1736         if (type != 0)
1737                 return -EINVAL;
1738         return 0;
1739 }
1740
1741 /**************************************************************************
1742  *
1743  * Revision-dependent attributes used by efx.c and nic.c
1744  *
1745  **************************************************************************
1746  */
1747
1748 const struct efx_nic_type falcon_a1_nic_type = {
1749         .probe = falcon_probe_nic,
1750         .remove = falcon_remove_nic,
1751         .init = falcon_init_nic,
1752         .fini = efx_port_dummy_op_void,
1753         .monitor = falcon_monitor,
1754         .map_reset_reason = falcon_map_reset_reason,
1755         .map_reset_flags = falcon_map_reset_flags,
1756         .reset = falcon_reset_hw,
1757         .probe_port = falcon_probe_port,
1758         .remove_port = falcon_remove_port,
1759         .handle_global_event = falcon_handle_global_event,
1760         .prepare_flush = falcon_prepare_flush,
1761         .update_stats = falcon_update_nic_stats,
1762         .start_stats = falcon_start_nic_stats,
1763         .stop_stats = falcon_stop_nic_stats,
1764         .set_id_led = falcon_set_id_led,
1765         .push_irq_moderation = falcon_push_irq_moderation,
1766         .reconfigure_port = falcon_reconfigure_port,
1767         .reconfigure_mac = falcon_reconfigure_xmac,
1768         .check_mac_fault = falcon_xmac_check_fault,
1769         .get_wol = falcon_get_wol,
1770         .set_wol = falcon_set_wol,
1771         .resume_wol = efx_port_dummy_op_void,
1772         .test_nvram = falcon_test_nvram,
1773
1774         .revision = EFX_REV_FALCON_A1,
1775         .mem_map_size = 0x20000,
1776         .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
1777         .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
1778         .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
1779         .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
1780         .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
1781         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1782         .rx_buffer_padding = 0x24,
1783         .max_interrupt_mode = EFX_INT_MODE_MSI,
1784         .phys_addr_channels = 4,
1785         .timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
1786         .tx_dc_base = 0x130000,
1787         .rx_dc_base = 0x100000,
1788         .offload_features = NETIF_F_IP_CSUM,
1789 };
1790
1791 const struct efx_nic_type falcon_b0_nic_type = {
1792         .probe = falcon_probe_nic,
1793         .remove = falcon_remove_nic,
1794         .init = falcon_init_nic,
1795         .fini = efx_port_dummy_op_void,
1796         .monitor = falcon_monitor,
1797         .map_reset_reason = falcon_map_reset_reason,
1798         .map_reset_flags = falcon_map_reset_flags,
1799         .reset = falcon_reset_hw,
1800         .probe_port = falcon_probe_port,
1801         .remove_port = falcon_remove_port,
1802         .handle_global_event = falcon_handle_global_event,
1803         .prepare_flush = falcon_prepare_flush,
1804         .update_stats = falcon_update_nic_stats,
1805         .start_stats = falcon_start_nic_stats,
1806         .stop_stats = falcon_stop_nic_stats,
1807         .set_id_led = falcon_set_id_led,
1808         .push_irq_moderation = falcon_push_irq_moderation,
1809         .reconfigure_port = falcon_reconfigure_port,
1810         .reconfigure_mac = falcon_reconfigure_xmac,
1811         .check_mac_fault = falcon_xmac_check_fault,
1812         .get_wol = falcon_get_wol,
1813         .set_wol = falcon_set_wol,
1814         .resume_wol = efx_port_dummy_op_void,
1815         .test_registers = falcon_b0_test_registers,
1816         .test_nvram = falcon_test_nvram,
1817
1818         .revision = EFX_REV_FALCON_B0,
1819         /* Map everything up to and including the RSS indirection
1820          * table.  Don't map MSI-X table, MSI-X PBA since Linux
1821          * requires that they not be mapped.  */
1822         .mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
1823                          FR_BZ_RX_INDIRECTION_TBL_STEP *
1824                          FR_BZ_RX_INDIRECTION_TBL_ROWS),
1825         .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
1826         .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
1827         .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
1828         .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
1829         .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
1830         .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1831         .rx_buffer_hash_size = 0x10,
1832         .rx_buffer_padding = 0,
1833         .max_interrupt_mode = EFX_INT_MODE_MSIX,
1834         .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
1835                                    * interrupt handler only supports 32
1836                                    * channels */
1837         .timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
1838         .tx_dc_base = 0x130000,
1839         .rx_dc_base = 0x100000,
1840         .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
1841 };
1842