]> Pileus Git - ~andy/linux/blob - drivers/net/ethernet/intel/igb/igb_ethtool.c
Merge tag 'pm-for-3.5' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[~andy/linux] / drivers / net / ethernet / intel / igb / igb_ethtool.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* ethtool support for igb */
29
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/pm_runtime.h>
40
41 #include "igb.h"
42
43 struct igb_stats {
44         char stat_string[ETH_GSTRING_LEN];
45         int sizeof_stat;
46         int stat_offset;
47 };
48
49 #define IGB_STAT(_name, _stat) { \
50         .stat_string = _name, \
51         .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
52         .stat_offset = offsetof(struct igb_adapter, _stat) \
53 }
54 static const struct igb_stats igb_gstrings_stats[] = {
55         IGB_STAT("rx_packets", stats.gprc),
56         IGB_STAT("tx_packets", stats.gptc),
57         IGB_STAT("rx_bytes", stats.gorc),
58         IGB_STAT("tx_bytes", stats.gotc),
59         IGB_STAT("rx_broadcast", stats.bprc),
60         IGB_STAT("tx_broadcast", stats.bptc),
61         IGB_STAT("rx_multicast", stats.mprc),
62         IGB_STAT("tx_multicast", stats.mptc),
63         IGB_STAT("multicast", stats.mprc),
64         IGB_STAT("collisions", stats.colc),
65         IGB_STAT("rx_crc_errors", stats.crcerrs),
66         IGB_STAT("rx_no_buffer_count", stats.rnbc),
67         IGB_STAT("rx_missed_errors", stats.mpc),
68         IGB_STAT("tx_aborted_errors", stats.ecol),
69         IGB_STAT("tx_carrier_errors", stats.tncrs),
70         IGB_STAT("tx_window_errors", stats.latecol),
71         IGB_STAT("tx_abort_late_coll", stats.latecol),
72         IGB_STAT("tx_deferred_ok", stats.dc),
73         IGB_STAT("tx_single_coll_ok", stats.scc),
74         IGB_STAT("tx_multi_coll_ok", stats.mcc),
75         IGB_STAT("tx_timeout_count", tx_timeout_count),
76         IGB_STAT("rx_long_length_errors", stats.roc),
77         IGB_STAT("rx_short_length_errors", stats.ruc),
78         IGB_STAT("rx_align_errors", stats.algnerrc),
79         IGB_STAT("tx_tcp_seg_good", stats.tsctc),
80         IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
81         IGB_STAT("rx_flow_control_xon", stats.xonrxc),
82         IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
83         IGB_STAT("tx_flow_control_xon", stats.xontxc),
84         IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
85         IGB_STAT("rx_long_byte_count", stats.gorc),
86         IGB_STAT("tx_dma_out_of_sync", stats.doosync),
87         IGB_STAT("tx_smbus", stats.mgptc),
88         IGB_STAT("rx_smbus", stats.mgprc),
89         IGB_STAT("dropped_smbus", stats.mgpdc),
90         IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
91         IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
92         IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
93         IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
94 };
95
96 #define IGB_NETDEV_STAT(_net_stat) { \
97         .stat_string = __stringify(_net_stat), \
98         .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
99         .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
100 }
101 static const struct igb_stats igb_gstrings_net_stats[] = {
102         IGB_NETDEV_STAT(rx_errors),
103         IGB_NETDEV_STAT(tx_errors),
104         IGB_NETDEV_STAT(tx_dropped),
105         IGB_NETDEV_STAT(rx_length_errors),
106         IGB_NETDEV_STAT(rx_over_errors),
107         IGB_NETDEV_STAT(rx_frame_errors),
108         IGB_NETDEV_STAT(rx_fifo_errors),
109         IGB_NETDEV_STAT(tx_fifo_errors),
110         IGB_NETDEV_STAT(tx_heartbeat_errors)
111 };
112
113 #define IGB_GLOBAL_STATS_LEN    \
114         (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
115 #define IGB_NETDEV_STATS_LEN    \
116         (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
117 #define IGB_RX_QUEUE_STATS_LEN \
118         (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
119
120 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
121
122 #define IGB_QUEUE_STATS_LEN \
123         ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
124           IGB_RX_QUEUE_STATS_LEN) + \
125          (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
126           IGB_TX_QUEUE_STATS_LEN))
127 #define IGB_STATS_LEN \
128         (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
129
130 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
131         "Register test  (offline)", "Eeprom test    (offline)",
132         "Interrupt test (offline)", "Loopback test  (offline)",
133         "Link test   (on/offline)"
134 };
135 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
136
137 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
138 {
139         struct igb_adapter *adapter = netdev_priv(netdev);
140         struct e1000_hw *hw = &adapter->hw;
141         u32 status;
142
143         if (hw->phy.media_type == e1000_media_type_copper) {
144
145                 ecmd->supported = (SUPPORTED_10baseT_Half |
146                                    SUPPORTED_10baseT_Full |
147                                    SUPPORTED_100baseT_Half |
148                                    SUPPORTED_100baseT_Full |
149                                    SUPPORTED_1000baseT_Full|
150                                    SUPPORTED_Autoneg |
151                                    SUPPORTED_TP);
152                 ecmd->advertising = (ADVERTISED_TP |
153                                      ADVERTISED_Pause);
154
155                 if (hw->mac.autoneg == 1) {
156                         ecmd->advertising |= ADVERTISED_Autoneg;
157                         /* the e1000 autoneg seems to match ethtool nicely */
158                         ecmd->advertising |= hw->phy.autoneg_advertised;
159                 }
160
161                 ecmd->port = PORT_TP;
162                 ecmd->phy_address = hw->phy.addr;
163         } else {
164                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
165                                      SUPPORTED_FIBRE |
166                                      SUPPORTED_Autoneg);
167
168                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
169                                      ADVERTISED_FIBRE |
170                                      ADVERTISED_Autoneg |
171                                      ADVERTISED_Pause);
172
173                 ecmd->port = PORT_FIBRE;
174         }
175
176         ecmd->transceiver = XCVR_INTERNAL;
177
178         status = rd32(E1000_STATUS);
179
180         if (status & E1000_STATUS_LU) {
181
182                 if ((status & E1000_STATUS_SPEED_1000) ||
183                     hw->phy.media_type != e1000_media_type_copper)
184                         ethtool_cmd_speed_set(ecmd, SPEED_1000);
185                 else if (status & E1000_STATUS_SPEED_100)
186                         ethtool_cmd_speed_set(ecmd, SPEED_100);
187                 else
188                         ethtool_cmd_speed_set(ecmd, SPEED_10);
189
190                 if ((status & E1000_STATUS_FD) ||
191                     hw->phy.media_type != e1000_media_type_copper)
192                         ecmd->duplex = DUPLEX_FULL;
193                 else
194                         ecmd->duplex = DUPLEX_HALF;
195         } else {
196                 ethtool_cmd_speed_set(ecmd, -1);
197                 ecmd->duplex = -1;
198         }
199
200         ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
201         return 0;
202 }
203
204 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
205 {
206         struct igb_adapter *adapter = netdev_priv(netdev);
207         struct e1000_hw *hw = &adapter->hw;
208
209         /* When SoL/IDER sessions are active, autoneg/speed/duplex
210          * cannot be changed */
211         if (igb_check_reset_block(hw)) {
212                 dev_err(&adapter->pdev->dev, "Cannot change link "
213                         "characteristics when SoL/IDER is active.\n");
214                 return -EINVAL;
215         }
216
217         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
218                 msleep(1);
219
220         if (ecmd->autoneg == AUTONEG_ENABLE) {
221                 hw->mac.autoneg = 1;
222                 hw->phy.autoneg_advertised = ecmd->advertising |
223                                              ADVERTISED_TP |
224                                              ADVERTISED_Autoneg;
225                 ecmd->advertising = hw->phy.autoneg_advertised;
226                 if (adapter->fc_autoneg)
227                         hw->fc.requested_mode = e1000_fc_default;
228         } else {
229                 u32 speed = ethtool_cmd_speed(ecmd);
230                 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
231                         clear_bit(__IGB_RESETTING, &adapter->state);
232                         return -EINVAL;
233                 }
234         }
235
236         /* reset the link */
237         if (netif_running(adapter->netdev)) {
238                 igb_down(adapter);
239                 igb_up(adapter);
240         } else
241                 igb_reset(adapter);
242
243         clear_bit(__IGB_RESETTING, &adapter->state);
244         return 0;
245 }
246
247 static u32 igb_get_link(struct net_device *netdev)
248 {
249         struct igb_adapter *adapter = netdev_priv(netdev);
250         struct e1000_mac_info *mac = &adapter->hw.mac;
251
252         /*
253          * If the link is not reported up to netdev, interrupts are disabled,
254          * and so the physical link state may have changed since we last
255          * looked. Set get_link_status to make sure that the true link
256          * state is interrogated, rather than pulling a cached and possibly
257          * stale link state from the driver.
258          */
259         if (!netif_carrier_ok(netdev))
260                 mac->get_link_status = 1;
261
262         return igb_has_link(adapter);
263 }
264
265 static void igb_get_pauseparam(struct net_device *netdev,
266                                struct ethtool_pauseparam *pause)
267 {
268         struct igb_adapter *adapter = netdev_priv(netdev);
269         struct e1000_hw *hw = &adapter->hw;
270
271         pause->autoneg =
272                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
273
274         if (hw->fc.current_mode == e1000_fc_rx_pause)
275                 pause->rx_pause = 1;
276         else if (hw->fc.current_mode == e1000_fc_tx_pause)
277                 pause->tx_pause = 1;
278         else if (hw->fc.current_mode == e1000_fc_full) {
279                 pause->rx_pause = 1;
280                 pause->tx_pause = 1;
281         }
282 }
283
284 static int igb_set_pauseparam(struct net_device *netdev,
285                               struct ethtool_pauseparam *pause)
286 {
287         struct igb_adapter *adapter = netdev_priv(netdev);
288         struct e1000_hw *hw = &adapter->hw;
289         int retval = 0;
290
291         adapter->fc_autoneg = pause->autoneg;
292
293         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
294                 msleep(1);
295
296         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
297                 hw->fc.requested_mode = e1000_fc_default;
298                 if (netif_running(adapter->netdev)) {
299                         igb_down(adapter);
300                         igb_up(adapter);
301                 } else {
302                         igb_reset(adapter);
303                 }
304         } else {
305                 if (pause->rx_pause && pause->tx_pause)
306                         hw->fc.requested_mode = e1000_fc_full;
307                 else if (pause->rx_pause && !pause->tx_pause)
308                         hw->fc.requested_mode = e1000_fc_rx_pause;
309                 else if (!pause->rx_pause && pause->tx_pause)
310                         hw->fc.requested_mode = e1000_fc_tx_pause;
311                 else if (!pause->rx_pause && !pause->tx_pause)
312                         hw->fc.requested_mode = e1000_fc_none;
313
314                 hw->fc.current_mode = hw->fc.requested_mode;
315
316                 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
317                           igb_force_mac_fc(hw) : igb_setup_link(hw));
318         }
319
320         clear_bit(__IGB_RESETTING, &adapter->state);
321         return retval;
322 }
323
324 static u32 igb_get_msglevel(struct net_device *netdev)
325 {
326         struct igb_adapter *adapter = netdev_priv(netdev);
327         return adapter->msg_enable;
328 }
329
330 static void igb_set_msglevel(struct net_device *netdev, u32 data)
331 {
332         struct igb_adapter *adapter = netdev_priv(netdev);
333         adapter->msg_enable = data;
334 }
335
336 static int igb_get_regs_len(struct net_device *netdev)
337 {
338 #define IGB_REGS_LEN 739
339         return IGB_REGS_LEN * sizeof(u32);
340 }
341
342 static void igb_get_regs(struct net_device *netdev,
343                          struct ethtool_regs *regs, void *p)
344 {
345         struct igb_adapter *adapter = netdev_priv(netdev);
346         struct e1000_hw *hw = &adapter->hw;
347         u32 *regs_buff = p;
348         u8 i;
349
350         memset(p, 0, IGB_REGS_LEN * sizeof(u32));
351
352         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
353
354         /* General Registers */
355         regs_buff[0] = rd32(E1000_CTRL);
356         regs_buff[1] = rd32(E1000_STATUS);
357         regs_buff[2] = rd32(E1000_CTRL_EXT);
358         regs_buff[3] = rd32(E1000_MDIC);
359         regs_buff[4] = rd32(E1000_SCTL);
360         regs_buff[5] = rd32(E1000_CONNSW);
361         regs_buff[6] = rd32(E1000_VET);
362         regs_buff[7] = rd32(E1000_LEDCTL);
363         regs_buff[8] = rd32(E1000_PBA);
364         regs_buff[9] = rd32(E1000_PBS);
365         regs_buff[10] = rd32(E1000_FRTIMER);
366         regs_buff[11] = rd32(E1000_TCPTIMER);
367
368         /* NVM Register */
369         regs_buff[12] = rd32(E1000_EECD);
370
371         /* Interrupt */
372         /* Reading EICS for EICR because they read the
373          * same but EICS does not clear on read */
374         regs_buff[13] = rd32(E1000_EICS);
375         regs_buff[14] = rd32(E1000_EICS);
376         regs_buff[15] = rd32(E1000_EIMS);
377         regs_buff[16] = rd32(E1000_EIMC);
378         regs_buff[17] = rd32(E1000_EIAC);
379         regs_buff[18] = rd32(E1000_EIAM);
380         /* Reading ICS for ICR because they read the
381          * same but ICS does not clear on read */
382         regs_buff[19] = rd32(E1000_ICS);
383         regs_buff[20] = rd32(E1000_ICS);
384         regs_buff[21] = rd32(E1000_IMS);
385         regs_buff[22] = rd32(E1000_IMC);
386         regs_buff[23] = rd32(E1000_IAC);
387         regs_buff[24] = rd32(E1000_IAM);
388         regs_buff[25] = rd32(E1000_IMIRVP);
389
390         /* Flow Control */
391         regs_buff[26] = rd32(E1000_FCAL);
392         regs_buff[27] = rd32(E1000_FCAH);
393         regs_buff[28] = rd32(E1000_FCTTV);
394         regs_buff[29] = rd32(E1000_FCRTL);
395         regs_buff[30] = rd32(E1000_FCRTH);
396         regs_buff[31] = rd32(E1000_FCRTV);
397
398         /* Receive */
399         regs_buff[32] = rd32(E1000_RCTL);
400         regs_buff[33] = rd32(E1000_RXCSUM);
401         regs_buff[34] = rd32(E1000_RLPML);
402         regs_buff[35] = rd32(E1000_RFCTL);
403         regs_buff[36] = rd32(E1000_MRQC);
404         regs_buff[37] = rd32(E1000_VT_CTL);
405
406         /* Transmit */
407         regs_buff[38] = rd32(E1000_TCTL);
408         regs_buff[39] = rd32(E1000_TCTL_EXT);
409         regs_buff[40] = rd32(E1000_TIPG);
410         regs_buff[41] = rd32(E1000_DTXCTL);
411
412         /* Wake Up */
413         regs_buff[42] = rd32(E1000_WUC);
414         regs_buff[43] = rd32(E1000_WUFC);
415         regs_buff[44] = rd32(E1000_WUS);
416         regs_buff[45] = rd32(E1000_IPAV);
417         regs_buff[46] = rd32(E1000_WUPL);
418
419         /* MAC */
420         regs_buff[47] = rd32(E1000_PCS_CFG0);
421         regs_buff[48] = rd32(E1000_PCS_LCTL);
422         regs_buff[49] = rd32(E1000_PCS_LSTAT);
423         regs_buff[50] = rd32(E1000_PCS_ANADV);
424         regs_buff[51] = rd32(E1000_PCS_LPAB);
425         regs_buff[52] = rd32(E1000_PCS_NPTX);
426         regs_buff[53] = rd32(E1000_PCS_LPABNP);
427
428         /* Statistics */
429         regs_buff[54] = adapter->stats.crcerrs;
430         regs_buff[55] = adapter->stats.algnerrc;
431         regs_buff[56] = adapter->stats.symerrs;
432         regs_buff[57] = adapter->stats.rxerrc;
433         regs_buff[58] = adapter->stats.mpc;
434         regs_buff[59] = adapter->stats.scc;
435         regs_buff[60] = adapter->stats.ecol;
436         regs_buff[61] = adapter->stats.mcc;
437         regs_buff[62] = adapter->stats.latecol;
438         regs_buff[63] = adapter->stats.colc;
439         regs_buff[64] = adapter->stats.dc;
440         regs_buff[65] = adapter->stats.tncrs;
441         regs_buff[66] = adapter->stats.sec;
442         regs_buff[67] = adapter->stats.htdpmc;
443         regs_buff[68] = adapter->stats.rlec;
444         regs_buff[69] = adapter->stats.xonrxc;
445         regs_buff[70] = adapter->stats.xontxc;
446         regs_buff[71] = adapter->stats.xoffrxc;
447         regs_buff[72] = adapter->stats.xofftxc;
448         regs_buff[73] = adapter->stats.fcruc;
449         regs_buff[74] = adapter->stats.prc64;
450         regs_buff[75] = adapter->stats.prc127;
451         regs_buff[76] = adapter->stats.prc255;
452         regs_buff[77] = adapter->stats.prc511;
453         regs_buff[78] = adapter->stats.prc1023;
454         regs_buff[79] = adapter->stats.prc1522;
455         regs_buff[80] = adapter->stats.gprc;
456         regs_buff[81] = adapter->stats.bprc;
457         regs_buff[82] = adapter->stats.mprc;
458         regs_buff[83] = adapter->stats.gptc;
459         regs_buff[84] = adapter->stats.gorc;
460         regs_buff[86] = adapter->stats.gotc;
461         regs_buff[88] = adapter->stats.rnbc;
462         regs_buff[89] = adapter->stats.ruc;
463         regs_buff[90] = adapter->stats.rfc;
464         regs_buff[91] = adapter->stats.roc;
465         regs_buff[92] = adapter->stats.rjc;
466         regs_buff[93] = adapter->stats.mgprc;
467         regs_buff[94] = adapter->stats.mgpdc;
468         regs_buff[95] = adapter->stats.mgptc;
469         regs_buff[96] = adapter->stats.tor;
470         regs_buff[98] = adapter->stats.tot;
471         regs_buff[100] = adapter->stats.tpr;
472         regs_buff[101] = adapter->stats.tpt;
473         regs_buff[102] = adapter->stats.ptc64;
474         regs_buff[103] = adapter->stats.ptc127;
475         regs_buff[104] = adapter->stats.ptc255;
476         regs_buff[105] = adapter->stats.ptc511;
477         regs_buff[106] = adapter->stats.ptc1023;
478         regs_buff[107] = adapter->stats.ptc1522;
479         regs_buff[108] = adapter->stats.mptc;
480         regs_buff[109] = adapter->stats.bptc;
481         regs_buff[110] = adapter->stats.tsctc;
482         regs_buff[111] = adapter->stats.iac;
483         regs_buff[112] = adapter->stats.rpthc;
484         regs_buff[113] = adapter->stats.hgptc;
485         regs_buff[114] = adapter->stats.hgorc;
486         regs_buff[116] = adapter->stats.hgotc;
487         regs_buff[118] = adapter->stats.lenerrs;
488         regs_buff[119] = adapter->stats.scvpc;
489         regs_buff[120] = adapter->stats.hrmpc;
490
491         for (i = 0; i < 4; i++)
492                 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
493         for (i = 0; i < 4; i++)
494                 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
495         for (i = 0; i < 4; i++)
496                 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
497         for (i = 0; i < 4; i++)
498                 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
499         for (i = 0; i < 4; i++)
500                 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
501         for (i = 0; i < 4; i++)
502                 regs_buff[141 + i] = rd32(E1000_RDH(i));
503         for (i = 0; i < 4; i++)
504                 regs_buff[145 + i] = rd32(E1000_RDT(i));
505         for (i = 0; i < 4; i++)
506                 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
507
508         for (i = 0; i < 10; i++)
509                 regs_buff[153 + i] = rd32(E1000_EITR(i));
510         for (i = 0; i < 8; i++)
511                 regs_buff[163 + i] = rd32(E1000_IMIR(i));
512         for (i = 0; i < 8; i++)
513                 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
514         for (i = 0; i < 16; i++)
515                 regs_buff[179 + i] = rd32(E1000_RAL(i));
516         for (i = 0; i < 16; i++)
517                 regs_buff[195 + i] = rd32(E1000_RAH(i));
518
519         for (i = 0; i < 4; i++)
520                 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
521         for (i = 0; i < 4; i++)
522                 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
523         for (i = 0; i < 4; i++)
524                 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
525         for (i = 0; i < 4; i++)
526                 regs_buff[223 + i] = rd32(E1000_TDH(i));
527         for (i = 0; i < 4; i++)
528                 regs_buff[227 + i] = rd32(E1000_TDT(i));
529         for (i = 0; i < 4; i++)
530                 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
531         for (i = 0; i < 4; i++)
532                 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
533         for (i = 0; i < 4; i++)
534                 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
535         for (i = 0; i < 4; i++)
536                 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
537
538         for (i = 0; i < 4; i++)
539                 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
540         for (i = 0; i < 4; i++)
541                 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
542         for (i = 0; i < 32; i++)
543                 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
544         for (i = 0; i < 128; i++)
545                 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
546         for (i = 0; i < 128; i++)
547                 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
548         for (i = 0; i < 4; i++)
549                 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
550
551         regs_buff[547] = rd32(E1000_TDFH);
552         regs_buff[548] = rd32(E1000_TDFT);
553         regs_buff[549] = rd32(E1000_TDFHS);
554         regs_buff[550] = rd32(E1000_TDFPC);
555
556         if (hw->mac.type > e1000_82580) {
557                 regs_buff[551] = adapter->stats.o2bgptc;
558                 regs_buff[552] = adapter->stats.b2ospc;
559                 regs_buff[553] = adapter->stats.o2bspc;
560                 regs_buff[554] = adapter->stats.b2ogprc;
561         }
562
563         if (hw->mac.type != e1000_82576)
564                 return;
565         for (i = 0; i < 12; i++)
566                 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
567         for (i = 0; i < 4; i++)
568                 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
569         for (i = 0; i < 12; i++)
570                 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
571         for (i = 0; i < 12; i++)
572                 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
573         for (i = 0; i < 12; i++)
574                 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
575         for (i = 0; i < 12; i++)
576                 regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
577         for (i = 0; i < 12; i++)
578                 regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
579         for (i = 0; i < 12; i++)
580                 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
581
582         for (i = 0; i < 12; i++)
583                 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
584         for (i = 0; i < 12; i++)
585                 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
586         for (i = 0; i < 12; i++)
587                 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
588         for (i = 0; i < 12; i++)
589                 regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
590         for (i = 0; i < 12; i++)
591                 regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
592         for (i = 0; i < 12; i++)
593                 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
594         for (i = 0; i < 12; i++)
595                 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
596         for (i = 0; i < 12; i++)
597                 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
598 }
599
600 static int igb_get_eeprom_len(struct net_device *netdev)
601 {
602         struct igb_adapter *adapter = netdev_priv(netdev);
603         return adapter->hw.nvm.word_size * 2;
604 }
605
606 static int igb_get_eeprom(struct net_device *netdev,
607                           struct ethtool_eeprom *eeprom, u8 *bytes)
608 {
609         struct igb_adapter *adapter = netdev_priv(netdev);
610         struct e1000_hw *hw = &adapter->hw;
611         u16 *eeprom_buff;
612         int first_word, last_word;
613         int ret_val = 0;
614         u16 i;
615
616         if (eeprom->len == 0)
617                 return -EINVAL;
618
619         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
620
621         first_word = eeprom->offset >> 1;
622         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
623
624         eeprom_buff = kmalloc(sizeof(u16) *
625                         (last_word - first_word + 1), GFP_KERNEL);
626         if (!eeprom_buff)
627                 return -ENOMEM;
628
629         if (hw->nvm.type == e1000_nvm_eeprom_spi)
630                 ret_val = hw->nvm.ops.read(hw, first_word,
631                                             last_word - first_word + 1,
632                                             eeprom_buff);
633         else {
634                 for (i = 0; i < last_word - first_word + 1; i++) {
635                         ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
636                                                     &eeprom_buff[i]);
637                         if (ret_val)
638                                 break;
639                 }
640         }
641
642         /* Device's eeprom is always little-endian, word addressable */
643         for (i = 0; i < last_word - first_word + 1; i++)
644                 le16_to_cpus(&eeprom_buff[i]);
645
646         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
647                         eeprom->len);
648         kfree(eeprom_buff);
649
650         return ret_val;
651 }
652
653 static int igb_set_eeprom(struct net_device *netdev,
654                           struct ethtool_eeprom *eeprom, u8 *bytes)
655 {
656         struct igb_adapter *adapter = netdev_priv(netdev);
657         struct e1000_hw *hw = &adapter->hw;
658         u16 *eeprom_buff;
659         void *ptr;
660         int max_len, first_word, last_word, ret_val = 0;
661         u16 i;
662
663         if (eeprom->len == 0)
664                 return -EOPNOTSUPP;
665
666         if (hw->mac.type == e1000_i211)
667                 return -EOPNOTSUPP;
668
669         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
670                 return -EFAULT;
671
672         max_len = hw->nvm.word_size * 2;
673
674         first_word = eeprom->offset >> 1;
675         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
676         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
677         if (!eeprom_buff)
678                 return -ENOMEM;
679
680         ptr = (void *)eeprom_buff;
681
682         if (eeprom->offset & 1) {
683                 /* need read/modify/write of first changed EEPROM word */
684                 /* only the second byte of the word is being modified */
685                 ret_val = hw->nvm.ops.read(hw, first_word, 1,
686                                             &eeprom_buff[0]);
687                 ptr++;
688         }
689         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
690                 /* need read/modify/write of last changed EEPROM word */
691                 /* only the first byte of the word is being modified */
692                 ret_val = hw->nvm.ops.read(hw, last_word, 1,
693                                    &eeprom_buff[last_word - first_word]);
694         }
695
696         /* Device's eeprom is always little-endian, word addressable */
697         for (i = 0; i < last_word - first_word + 1; i++)
698                 le16_to_cpus(&eeprom_buff[i]);
699
700         memcpy(ptr, bytes, eeprom->len);
701
702         for (i = 0; i < last_word - first_word + 1; i++)
703                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
704
705         ret_val = hw->nvm.ops.write(hw, first_word,
706                                      last_word - first_word + 1, eeprom_buff);
707
708         /* Update the checksum over the first part of the EEPROM if needed
709          * and flush shadow RAM for 82573 controllers */
710         if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
711                 hw->nvm.ops.update(hw);
712
713         kfree(eeprom_buff);
714         return ret_val;
715 }
716
717 static void igb_get_drvinfo(struct net_device *netdev,
718                             struct ethtool_drvinfo *drvinfo)
719 {
720         struct igb_adapter *adapter = netdev_priv(netdev);
721         u16 eeprom_data;
722
723         strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
724         strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
725
726         /* EEPROM image version # is reported as firmware version # for
727          * 82575 controllers */
728         adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
729         snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
730                 "%d.%d-%d",
731                 (eeprom_data & 0xF000) >> 12,
732                 (eeprom_data & 0x0FF0) >> 4,
733                 eeprom_data & 0x000F);
734
735         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
736                 sizeof(drvinfo->bus_info));
737         drvinfo->n_stats = IGB_STATS_LEN;
738         drvinfo->testinfo_len = IGB_TEST_LEN;
739         drvinfo->regdump_len = igb_get_regs_len(netdev);
740         drvinfo->eedump_len = igb_get_eeprom_len(netdev);
741 }
742
743 static void igb_get_ringparam(struct net_device *netdev,
744                               struct ethtool_ringparam *ring)
745 {
746         struct igb_adapter *adapter = netdev_priv(netdev);
747
748         ring->rx_max_pending = IGB_MAX_RXD;
749         ring->tx_max_pending = IGB_MAX_TXD;
750         ring->rx_pending = adapter->rx_ring_count;
751         ring->tx_pending = adapter->tx_ring_count;
752 }
753
754 static int igb_set_ringparam(struct net_device *netdev,
755                              struct ethtool_ringparam *ring)
756 {
757         struct igb_adapter *adapter = netdev_priv(netdev);
758         struct igb_ring *temp_ring;
759         int i, err = 0;
760         u16 new_rx_count, new_tx_count;
761
762         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
763                 return -EINVAL;
764
765         new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
766         new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
767         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
768
769         new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
770         new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
771         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
772
773         if ((new_tx_count == adapter->tx_ring_count) &&
774             (new_rx_count == adapter->rx_ring_count)) {
775                 /* nothing to do */
776                 return 0;
777         }
778
779         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
780                 msleep(1);
781
782         if (!netif_running(adapter->netdev)) {
783                 for (i = 0; i < adapter->num_tx_queues; i++)
784                         adapter->tx_ring[i]->count = new_tx_count;
785                 for (i = 0; i < adapter->num_rx_queues; i++)
786                         adapter->rx_ring[i]->count = new_rx_count;
787                 adapter->tx_ring_count = new_tx_count;
788                 adapter->rx_ring_count = new_rx_count;
789                 goto clear_reset;
790         }
791
792         if (adapter->num_tx_queues > adapter->num_rx_queues)
793                 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
794         else
795                 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
796
797         if (!temp_ring) {
798                 err = -ENOMEM;
799                 goto clear_reset;
800         }
801
802         igb_down(adapter);
803
804         /*
805          * We can't just free everything and then setup again,
806          * because the ISRs in MSI-X mode get passed pointers
807          * to the tx and rx ring structs.
808          */
809         if (new_tx_count != adapter->tx_ring_count) {
810                 for (i = 0; i < adapter->num_tx_queues; i++) {
811                         memcpy(&temp_ring[i], adapter->tx_ring[i],
812                                sizeof(struct igb_ring));
813
814                         temp_ring[i].count = new_tx_count;
815                         err = igb_setup_tx_resources(&temp_ring[i]);
816                         if (err) {
817                                 while (i) {
818                                         i--;
819                                         igb_free_tx_resources(&temp_ring[i]);
820                                 }
821                                 goto err_setup;
822                         }
823                 }
824
825                 for (i = 0; i < adapter->num_tx_queues; i++) {
826                         igb_free_tx_resources(adapter->tx_ring[i]);
827
828                         memcpy(adapter->tx_ring[i], &temp_ring[i],
829                                sizeof(struct igb_ring));
830                 }
831
832                 adapter->tx_ring_count = new_tx_count;
833         }
834
835         if (new_rx_count != adapter->rx_ring_count) {
836                 for (i = 0; i < adapter->num_rx_queues; i++) {
837                         memcpy(&temp_ring[i], adapter->rx_ring[i],
838                                sizeof(struct igb_ring));
839
840                         temp_ring[i].count = new_rx_count;
841                         err = igb_setup_rx_resources(&temp_ring[i]);
842                         if (err) {
843                                 while (i) {
844                                         i--;
845                                         igb_free_rx_resources(&temp_ring[i]);
846                                 }
847                                 goto err_setup;
848                         }
849
850                 }
851
852                 for (i = 0; i < adapter->num_rx_queues; i++) {
853                         igb_free_rx_resources(adapter->rx_ring[i]);
854
855                         memcpy(adapter->rx_ring[i], &temp_ring[i],
856                                sizeof(struct igb_ring));
857                 }
858
859                 adapter->rx_ring_count = new_rx_count;
860         }
861 err_setup:
862         igb_up(adapter);
863         vfree(temp_ring);
864 clear_reset:
865         clear_bit(__IGB_RESETTING, &adapter->state);
866         return err;
867 }
868
869 /* ethtool register test data */
870 struct igb_reg_test {
871         u16 reg;
872         u16 reg_offset;
873         u16 array_len;
874         u16 test_type;
875         u32 mask;
876         u32 write;
877 };
878
879 /* In the hardware, registers are laid out either singly, in arrays
880  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
881  * most tests take place on arrays or single registers (handled
882  * as a single-element array) and special-case the tables.
883  * Table tests are always pattern tests.
884  *
885  * We also make provision for some required setup steps by specifying
886  * registers to be written without any read-back testing.
887  */
888
889 #define PATTERN_TEST    1
890 #define SET_READ_TEST   2
891 #define WRITE_NO_TEST   3
892 #define TABLE32_TEST    4
893 #define TABLE64_TEST_LO 5
894 #define TABLE64_TEST_HI 6
895
896 /* i210 reg test */
897 static struct igb_reg_test reg_test_i210[] = {
898         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
899         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
900         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
901         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
902         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
903         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
904         /* RDH is read-only for i210, only test RDT. */
905         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
906         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
907         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
908         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
909         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
910         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
911         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
912         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
913         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
914         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
915         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
916         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
917         { E1000_RA,        0, 16, TABLE64_TEST_LO,
918                                                 0xFFFFFFFF, 0xFFFFFFFF },
919         { E1000_RA,        0, 16, TABLE64_TEST_HI,
920                                                 0x900FFFFF, 0xFFFFFFFF },
921         { E1000_MTA,       0, 128, TABLE32_TEST,
922                                                 0xFFFFFFFF, 0xFFFFFFFF },
923         { 0, 0, 0, 0, 0 }
924 };
925
926 /* i350 reg test */
927 static struct igb_reg_test reg_test_i350[] = {
928         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
929         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
930         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
931         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
932         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
933         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
934         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
935         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
936         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
937         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
938         /* RDH is read-only for i350, only test RDT. */
939         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
940         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
941         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
942         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
943         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
944         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
945         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
946         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
947         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
948         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
949         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
950         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
951         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
952         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
953         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
954         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
955         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
956         { E1000_RA,        0, 16, TABLE64_TEST_LO,
957                                                 0xFFFFFFFF, 0xFFFFFFFF },
958         { E1000_RA,        0, 16, TABLE64_TEST_HI,
959                                                 0xC3FFFFFF, 0xFFFFFFFF },
960         { E1000_RA2,       0, 16, TABLE64_TEST_LO,
961                                                 0xFFFFFFFF, 0xFFFFFFFF },
962         { E1000_RA2,       0, 16, TABLE64_TEST_HI,
963                                                 0xC3FFFFFF, 0xFFFFFFFF },
964         { E1000_MTA,       0, 128, TABLE32_TEST,
965                                                 0xFFFFFFFF, 0xFFFFFFFF },
966         { 0, 0, 0, 0 }
967 };
968
969 /* 82580 reg test */
970 static struct igb_reg_test reg_test_82580[] = {
971         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
972         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
973         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
974         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
975         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
976         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
977         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
978         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
979         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
980         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
981         /* RDH is read-only for 82580, only test RDT. */
982         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
983         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
984         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
985         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
986         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
987         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
988         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
989         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
990         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
991         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
992         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
993         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
994         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
995         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
996         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
997         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
998         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
999         { E1000_RA,        0, 16, TABLE64_TEST_LO,
1000                                                 0xFFFFFFFF, 0xFFFFFFFF },
1001         { E1000_RA,        0, 16, TABLE64_TEST_HI,
1002                                                 0x83FFFFFF, 0xFFFFFFFF },
1003         { E1000_RA2,       0, 8, TABLE64_TEST_LO,
1004                                                 0xFFFFFFFF, 0xFFFFFFFF },
1005         { E1000_RA2,       0, 8, TABLE64_TEST_HI,
1006                                                 0x83FFFFFF, 0xFFFFFFFF },
1007         { E1000_MTA,       0, 128, TABLE32_TEST,
1008                                                 0xFFFFFFFF, 0xFFFFFFFF },
1009         { 0, 0, 0, 0 }
1010 };
1011
1012 /* 82576 reg test */
1013 static struct igb_reg_test reg_test_82576[] = {
1014         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1015         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1016         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1017         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1018         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1019         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1020         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1021         { E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1022         { E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1023         { E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1024         /* Enable all RX queues before testing. */
1025         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1026         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1027         /* RDH is read-only for 82576, only test RDT. */
1028         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1029         { E1000_RDT(4),    0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1030         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1031         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1032         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1033         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1034         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1035         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1036         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1037         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1038         { E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1039         { E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1040         { E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1041         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1042         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1043         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1044         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1045         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1046         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1047         { E1000_RA2,       0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1048         { E1000_RA2,       0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1049         { E1000_MTA,       0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1050         { 0, 0, 0, 0 }
1051 };
1052
1053 /* 82575 register test */
1054 static struct igb_reg_test reg_test_82575[] = {
1055         { E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1056         { E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1057         { E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1058         { E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1059         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1060         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1061         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1062         /* Enable all four RX queues before testing. */
1063         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1064         /* RDH is read-only for 82575, only test RDT. */
1065         { E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1066         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1067         { E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1068         { E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1069         { E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1070         { E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1071         { E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1072         { E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1073         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1074         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1075         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1076         { E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1077         { E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1078         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1079         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1080         { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1081         { 0, 0, 0, 0 }
1082 };
1083
1084 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1085                              int reg, u32 mask, u32 write)
1086 {
1087         struct e1000_hw *hw = &adapter->hw;
1088         u32 pat, val;
1089         static const u32 _test[] =
1090                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1091         for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1092                 wr32(reg, (_test[pat] & write));
1093                 val = rd32(reg) & mask;
1094                 if (val != (_test[pat] & write & mask)) {
1095                         dev_err(&adapter->pdev->dev, "pattern test reg %04X "
1096                                 "failed: got 0x%08X expected 0x%08X\n",
1097                                 reg, val, (_test[pat] & write & mask));
1098                         *data = reg;
1099                         return 1;
1100                 }
1101         }
1102
1103         return 0;
1104 }
1105
1106 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1107                               int reg, u32 mask, u32 write)
1108 {
1109         struct e1000_hw *hw = &adapter->hw;
1110         u32 val;
1111         wr32(reg, write & mask);
1112         val = rd32(reg);
1113         if ((write & mask) != (val & mask)) {
1114                 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
1115                         " got 0x%08X expected 0x%08X\n", reg,
1116                         (val & mask), (write & mask));
1117                 *data = reg;
1118                 return 1;
1119         }
1120
1121         return 0;
1122 }
1123
1124 #define REG_PATTERN_TEST(reg, mask, write) \
1125         do { \
1126                 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1127                         return 1; \
1128         } while (0)
1129
1130 #define REG_SET_AND_CHECK(reg, mask, write) \
1131         do { \
1132                 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1133                         return 1; \
1134         } while (0)
1135
1136 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1137 {
1138         struct e1000_hw *hw = &adapter->hw;
1139         struct igb_reg_test *test;
1140         u32 value, before, after;
1141         u32 i, toggle;
1142
1143         switch (adapter->hw.mac.type) {
1144         case e1000_i350:
1145                 test = reg_test_i350;
1146                 toggle = 0x7FEFF3FF;
1147                 break;
1148         case e1000_i210:
1149         case e1000_i211:
1150                 test = reg_test_i210;
1151                 toggle = 0x7FEFF3FF;
1152                 break;
1153         case e1000_82580:
1154                 test = reg_test_82580;
1155                 toggle = 0x7FEFF3FF;
1156                 break;
1157         case e1000_82576:
1158                 test = reg_test_82576;
1159                 toggle = 0x7FFFF3FF;
1160                 break;
1161         default:
1162                 test = reg_test_82575;
1163                 toggle = 0x7FFFF3FF;
1164                 break;
1165         }
1166
1167         /* Because the status register is such a special case,
1168          * we handle it separately from the rest of the register
1169          * tests.  Some bits are read-only, some toggle, and some
1170          * are writable on newer MACs.
1171          */
1172         before = rd32(E1000_STATUS);
1173         value = (rd32(E1000_STATUS) & toggle);
1174         wr32(E1000_STATUS, toggle);
1175         after = rd32(E1000_STATUS) & toggle;
1176         if (value != after) {
1177                 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1178                         "got: 0x%08X expected: 0x%08X\n", after, value);
1179                 *data = 1;
1180                 return 1;
1181         }
1182         /* restore previous status */
1183         wr32(E1000_STATUS, before);
1184
1185         /* Perform the remainder of the register test, looping through
1186          * the test table until we either fail or reach the null entry.
1187          */
1188         while (test->reg) {
1189                 for (i = 0; i < test->array_len; i++) {
1190                         switch (test->test_type) {
1191                         case PATTERN_TEST:
1192                                 REG_PATTERN_TEST(test->reg +
1193                                                 (i * test->reg_offset),
1194                                                 test->mask,
1195                                                 test->write);
1196                                 break;
1197                         case SET_READ_TEST:
1198                                 REG_SET_AND_CHECK(test->reg +
1199                                                 (i * test->reg_offset),
1200                                                 test->mask,
1201                                                 test->write);
1202                                 break;
1203                         case WRITE_NO_TEST:
1204                                 writel(test->write,
1205                                     (adapter->hw.hw_addr + test->reg)
1206                                         + (i * test->reg_offset));
1207                                 break;
1208                         case TABLE32_TEST:
1209                                 REG_PATTERN_TEST(test->reg + (i * 4),
1210                                                 test->mask,
1211                                                 test->write);
1212                                 break;
1213                         case TABLE64_TEST_LO:
1214                                 REG_PATTERN_TEST(test->reg + (i * 8),
1215                                                 test->mask,
1216                                                 test->write);
1217                                 break;
1218                         case TABLE64_TEST_HI:
1219                                 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1220                                                 test->mask,
1221                                                 test->write);
1222                                 break;
1223                         }
1224                 }
1225                 test++;
1226         }
1227
1228         *data = 0;
1229         return 0;
1230 }
1231
1232 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1233 {
1234         *data = 0;
1235
1236         /* Validate eeprom on all parts but i211 */
1237         if (adapter->hw.mac.type != e1000_i211) {
1238                 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1239                         *data = 2;
1240         }
1241
1242         return *data;
1243 }
1244
1245 static irqreturn_t igb_test_intr(int irq, void *data)
1246 {
1247         struct igb_adapter *adapter = (struct igb_adapter *) data;
1248         struct e1000_hw *hw = &adapter->hw;
1249
1250         adapter->test_icr |= rd32(E1000_ICR);
1251
1252         return IRQ_HANDLED;
1253 }
1254
1255 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1256 {
1257         struct e1000_hw *hw = &adapter->hw;
1258         struct net_device *netdev = adapter->netdev;
1259         u32 mask, ics_mask, i = 0, shared_int = true;
1260         u32 irq = adapter->pdev->irq;
1261
1262         *data = 0;
1263
1264         /* Hook up test interrupt handler just for this test */
1265         if (adapter->msix_entries) {
1266                 if (request_irq(adapter->msix_entries[0].vector,
1267                                 igb_test_intr, 0, netdev->name, adapter)) {
1268                         *data = 1;
1269                         return -1;
1270                 }
1271         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1272                 shared_int = false;
1273                 if (request_irq(irq,
1274                                 igb_test_intr, 0, netdev->name, adapter)) {
1275                         *data = 1;
1276                         return -1;
1277                 }
1278         } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1279                                 netdev->name, adapter)) {
1280                 shared_int = false;
1281         } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1282                  netdev->name, adapter)) {
1283                 *data = 1;
1284                 return -1;
1285         }
1286         dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1287                 (shared_int ? "shared" : "unshared"));
1288
1289         /* Disable all the interrupts */
1290         wr32(E1000_IMC, ~0);
1291         wrfl();
1292         msleep(10);
1293
1294         /* Define all writable bits for ICS */
1295         switch (hw->mac.type) {
1296         case e1000_82575:
1297                 ics_mask = 0x37F47EDD;
1298                 break;
1299         case e1000_82576:
1300                 ics_mask = 0x77D4FBFD;
1301                 break;
1302         case e1000_82580:
1303                 ics_mask = 0x77DCFED5;
1304                 break;
1305         case e1000_i350:
1306         case e1000_i210:
1307         case e1000_i211:
1308                 ics_mask = 0x77DCFED5;
1309                 break;
1310         default:
1311                 ics_mask = 0x7FFFFFFF;
1312                 break;
1313         }
1314
1315         /* Test each interrupt */
1316         for (; i < 31; i++) {
1317                 /* Interrupt to test */
1318                 mask = 1 << i;
1319
1320                 if (!(mask & ics_mask))
1321                         continue;
1322
1323                 if (!shared_int) {
1324                         /* Disable the interrupt to be reported in
1325                          * the cause register and then force the same
1326                          * interrupt and see if one gets posted.  If
1327                          * an interrupt was posted to the bus, the
1328                          * test failed.
1329                          */
1330                         adapter->test_icr = 0;
1331
1332                         /* Flush any pending interrupts */
1333                         wr32(E1000_ICR, ~0);
1334
1335                         wr32(E1000_IMC, mask);
1336                         wr32(E1000_ICS, mask);
1337                         wrfl();
1338                         msleep(10);
1339
1340                         if (adapter->test_icr & mask) {
1341                                 *data = 3;
1342                                 break;
1343                         }
1344                 }
1345
1346                 /* Enable the interrupt to be reported in
1347                  * the cause register and then force the same
1348                  * interrupt and see if one gets posted.  If
1349                  * an interrupt was not posted to the bus, the
1350                  * test failed.
1351                  */
1352                 adapter->test_icr = 0;
1353
1354                 /* Flush any pending interrupts */
1355                 wr32(E1000_ICR, ~0);
1356
1357                 wr32(E1000_IMS, mask);
1358                 wr32(E1000_ICS, mask);
1359                 wrfl();
1360                 msleep(10);
1361
1362                 if (!(adapter->test_icr & mask)) {
1363                         *data = 4;
1364                         break;
1365                 }
1366
1367                 if (!shared_int) {
1368                         /* Disable the other interrupts to be reported in
1369                          * the cause register and then force the other
1370                          * interrupts and see if any get posted.  If
1371                          * an interrupt was posted to the bus, the
1372                          * test failed.
1373                          */
1374                         adapter->test_icr = 0;
1375
1376                         /* Flush any pending interrupts */
1377                         wr32(E1000_ICR, ~0);
1378
1379                         wr32(E1000_IMC, ~mask);
1380                         wr32(E1000_ICS, ~mask);
1381                         wrfl();
1382                         msleep(10);
1383
1384                         if (adapter->test_icr & mask) {
1385                                 *data = 5;
1386                                 break;
1387                         }
1388                 }
1389         }
1390
1391         /* Disable all the interrupts */
1392         wr32(E1000_IMC, ~0);
1393         wrfl();
1394         msleep(10);
1395
1396         /* Unhook test interrupt handler */
1397         if (adapter->msix_entries)
1398                 free_irq(adapter->msix_entries[0].vector, adapter);
1399         else
1400                 free_irq(irq, adapter);
1401
1402         return *data;
1403 }
1404
1405 static void igb_free_desc_rings(struct igb_adapter *adapter)
1406 {
1407         igb_free_tx_resources(&adapter->test_tx_ring);
1408         igb_free_rx_resources(&adapter->test_rx_ring);
1409 }
1410
1411 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1412 {
1413         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1414         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1415         struct e1000_hw *hw = &adapter->hw;
1416         int ret_val;
1417
1418         /* Setup Tx descriptor ring and Tx buffers */
1419         tx_ring->count = IGB_DEFAULT_TXD;
1420         tx_ring->dev = &adapter->pdev->dev;
1421         tx_ring->netdev = adapter->netdev;
1422         tx_ring->reg_idx = adapter->vfs_allocated_count;
1423
1424         if (igb_setup_tx_resources(tx_ring)) {
1425                 ret_val = 1;
1426                 goto err_nomem;
1427         }
1428
1429         igb_setup_tctl(adapter);
1430         igb_configure_tx_ring(adapter, tx_ring);
1431
1432         /* Setup Rx descriptor ring and Rx buffers */
1433         rx_ring->count = IGB_DEFAULT_RXD;
1434         rx_ring->dev = &adapter->pdev->dev;
1435         rx_ring->netdev = adapter->netdev;
1436         rx_ring->reg_idx = adapter->vfs_allocated_count;
1437
1438         if (igb_setup_rx_resources(rx_ring)) {
1439                 ret_val = 3;
1440                 goto err_nomem;
1441         }
1442
1443         /* set the default queue to queue 0 of PF */
1444         wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1445
1446         /* enable receive ring */
1447         igb_setup_rctl(adapter);
1448         igb_configure_rx_ring(adapter, rx_ring);
1449
1450         igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1451
1452         return 0;
1453
1454 err_nomem:
1455         igb_free_desc_rings(adapter);
1456         return ret_val;
1457 }
1458
1459 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1460 {
1461         struct e1000_hw *hw = &adapter->hw;
1462
1463         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1464         igb_write_phy_reg(hw, 29, 0x001F);
1465         igb_write_phy_reg(hw, 30, 0x8FFC);
1466         igb_write_phy_reg(hw, 29, 0x001A);
1467         igb_write_phy_reg(hw, 30, 0x8FF0);
1468 }
1469
1470 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1471 {
1472         struct e1000_hw *hw = &adapter->hw;
1473         u32 ctrl_reg = 0;
1474         u16 phy_reg = 0;
1475
1476         hw->mac.autoneg = false;
1477
1478         switch (hw->phy.type) {
1479         case e1000_phy_m88:
1480                 /* Auto-MDI/MDIX Off */
1481                 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1482                 /* reset to update Auto-MDI/MDIX */
1483                 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1484                 /* autoneg off */
1485                 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1486                 break;
1487         case e1000_phy_82580:
1488                 /* enable MII loopback */
1489                 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1490                 break;
1491         case e1000_phy_i210:
1492                 /* set loopback speed in PHY */
1493                 igb_read_phy_reg(hw, (GS40G_PAGE_SELECT & GS40G_PAGE_2),
1494                                         &phy_reg);
1495                 phy_reg |= GS40G_MAC_SPEED_1G;
1496                 igb_write_phy_reg(hw, (GS40G_PAGE_SELECT & GS40G_PAGE_2),
1497                                         phy_reg);
1498                 ctrl_reg = rd32(E1000_CTRL_EXT);
1499         default:
1500                 break;
1501         }
1502
1503         /* force 1000, set loopback */
1504         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1505
1506         /* Now set up the MAC to the same speed/duplex as the PHY. */
1507         ctrl_reg = rd32(E1000_CTRL);
1508         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1509         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1510                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1511                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1512                      E1000_CTRL_FD |     /* Force Duplex to FULL */
1513                      E1000_CTRL_SLU);    /* Set link up enable bit */
1514
1515         if ((hw->phy.type == e1000_phy_m88) || (hw->phy.type == e1000_phy_i210))
1516                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1517
1518         wr32(E1000_CTRL, ctrl_reg);
1519
1520         /* Disable the receiver on the PHY so when a cable is plugged in, the
1521          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1522          */
1523         if ((hw->phy.type == e1000_phy_m88) || (hw->phy.type == e1000_phy_i210))
1524                 igb_phy_disable_receiver(adapter);
1525
1526         udelay(500);
1527
1528         return 0;
1529 }
1530
1531 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1532 {
1533         return igb_integrated_phy_loopback(adapter);
1534 }
1535
1536 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1537 {
1538         struct e1000_hw *hw = &adapter->hw;
1539         u32 reg;
1540
1541         reg = rd32(E1000_CTRL_EXT);
1542
1543         /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1544         if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1545                 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1546                 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1547                 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1548                 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1549
1550                         /* Enable DH89xxCC MPHY for near end loopback */
1551                         reg = rd32(E1000_MPHY_ADDR_CTL);
1552                         reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1553                         E1000_MPHY_PCS_CLK_REG_OFFSET;
1554                         wr32(E1000_MPHY_ADDR_CTL, reg);
1555
1556                         reg = rd32(E1000_MPHY_DATA);
1557                         reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1558                         wr32(E1000_MPHY_DATA, reg);
1559                 }
1560
1561                 reg = rd32(E1000_RCTL);
1562                 reg |= E1000_RCTL_LBM_TCVR;
1563                 wr32(E1000_RCTL, reg);
1564
1565                 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1566
1567                 reg = rd32(E1000_CTRL);
1568                 reg &= ~(E1000_CTRL_RFCE |
1569                          E1000_CTRL_TFCE |
1570                          E1000_CTRL_LRST);
1571                 reg |= E1000_CTRL_SLU |
1572                        E1000_CTRL_FD;
1573                 wr32(E1000_CTRL, reg);
1574
1575                 /* Unset switch control to serdes energy detect */
1576                 reg = rd32(E1000_CONNSW);
1577                 reg &= ~E1000_CONNSW_ENRGSRC;
1578                 wr32(E1000_CONNSW, reg);
1579
1580                 /* Set PCS register for forced speed */
1581                 reg = rd32(E1000_PCS_LCTL);
1582                 reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1583                 reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1584                        E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1585                        E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1586                        E1000_PCS_LCTL_FSD |           /* Force Speed */
1587                        E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1588                 wr32(E1000_PCS_LCTL, reg);
1589
1590                 return 0;
1591         }
1592
1593         return igb_set_phy_loopback(adapter);
1594 }
1595
1596 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1597 {
1598         struct e1000_hw *hw = &adapter->hw;
1599         u32 rctl;
1600         u16 phy_reg;
1601
1602         if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1603         (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1604         (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1605         (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1606                 u32 reg;
1607
1608                 /* Disable near end loopback on DH89xxCC */
1609                 reg = rd32(E1000_MPHY_ADDR_CTL);
1610                 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1611                 E1000_MPHY_PCS_CLK_REG_OFFSET;
1612                 wr32(E1000_MPHY_ADDR_CTL, reg);
1613
1614                 reg = rd32(E1000_MPHY_DATA);
1615                 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1616                 wr32(E1000_MPHY_DATA, reg);
1617         }
1618
1619         rctl = rd32(E1000_RCTL);
1620         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1621         wr32(E1000_RCTL, rctl);
1622
1623         hw->mac.autoneg = true;
1624         igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1625         if (phy_reg & MII_CR_LOOPBACK) {
1626                 phy_reg &= ~MII_CR_LOOPBACK;
1627                 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1628                 igb_phy_sw_reset(hw);
1629         }
1630 }
1631
1632 static void igb_create_lbtest_frame(struct sk_buff *skb,
1633                                     unsigned int frame_size)
1634 {
1635         memset(skb->data, 0xFF, frame_size);
1636         frame_size /= 2;
1637         memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1638         memset(&skb->data[frame_size + 10], 0xBE, 1);
1639         memset(&skb->data[frame_size + 12], 0xAF, 1);
1640 }
1641
1642 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1643 {
1644         frame_size /= 2;
1645         if (*(skb->data + 3) == 0xFF) {
1646                 if ((*(skb->data + frame_size + 10) == 0xBE) &&
1647                    (*(skb->data + frame_size + 12) == 0xAF)) {
1648                         return 0;
1649                 }
1650         }
1651         return 13;
1652 }
1653
1654 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1655                                 struct igb_ring *tx_ring,
1656                                 unsigned int size)
1657 {
1658         union e1000_adv_rx_desc *rx_desc;
1659         struct igb_rx_buffer *rx_buffer_info;
1660         struct igb_tx_buffer *tx_buffer_info;
1661         struct netdev_queue *txq;
1662         u16 rx_ntc, tx_ntc, count = 0;
1663         unsigned int total_bytes = 0, total_packets = 0;
1664
1665         /* initialize next to clean and descriptor values */
1666         rx_ntc = rx_ring->next_to_clean;
1667         tx_ntc = tx_ring->next_to_clean;
1668         rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1669
1670         while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1671                 /* check rx buffer */
1672                 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1673
1674                 /* unmap rx buffer, will be remapped by alloc_rx_buffers */
1675                 dma_unmap_single(rx_ring->dev,
1676                                  rx_buffer_info->dma,
1677                                  IGB_RX_HDR_LEN,
1678                                  DMA_FROM_DEVICE);
1679                 rx_buffer_info->dma = 0;
1680
1681                 /* verify contents of skb */
1682                 if (!igb_check_lbtest_frame(rx_buffer_info->skb, size))
1683                         count++;
1684
1685                 /* unmap buffer on tx side */
1686                 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1687                 total_bytes += tx_buffer_info->bytecount;
1688                 total_packets += tx_buffer_info->gso_segs;
1689                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1690
1691                 /* increment rx/tx next to clean counters */
1692                 rx_ntc++;
1693                 if (rx_ntc == rx_ring->count)
1694                         rx_ntc = 0;
1695                 tx_ntc++;
1696                 if (tx_ntc == tx_ring->count)
1697                         tx_ntc = 0;
1698
1699                 /* fetch next descriptor */
1700                 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1701         }
1702
1703         txq = netdev_get_tx_queue(tx_ring->netdev, tx_ring->queue_index);
1704         netdev_tx_completed_queue(txq, total_packets, total_bytes);
1705
1706         /* re-map buffers to ring, store next to clean values */
1707         igb_alloc_rx_buffers(rx_ring, count);
1708         rx_ring->next_to_clean = rx_ntc;
1709         tx_ring->next_to_clean = tx_ntc;
1710
1711         return count;
1712 }
1713
1714 static int igb_run_loopback_test(struct igb_adapter *adapter)
1715 {
1716         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1717         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1718         u16 i, j, lc, good_cnt;
1719         int ret_val = 0;
1720         unsigned int size = IGB_RX_HDR_LEN;
1721         netdev_tx_t tx_ret_val;
1722         struct sk_buff *skb;
1723
1724         /* allocate test skb */
1725         skb = alloc_skb(size, GFP_KERNEL);
1726         if (!skb)
1727                 return 11;
1728
1729         /* place data into test skb */
1730         igb_create_lbtest_frame(skb, size);
1731         skb_put(skb, size);
1732
1733         /*
1734          * Calculate the loop count based on the largest descriptor ring
1735          * The idea is to wrap the largest ring a number of times using 64
1736          * send/receive pairs during each loop
1737          */
1738
1739         if (rx_ring->count <= tx_ring->count)
1740                 lc = ((tx_ring->count / 64) * 2) + 1;
1741         else
1742                 lc = ((rx_ring->count / 64) * 2) + 1;
1743
1744         for (j = 0; j <= lc; j++) { /* loop count loop */
1745                 /* reset count of good packets */
1746                 good_cnt = 0;
1747
1748                 /* place 64 packets on the transmit queue*/
1749                 for (i = 0; i < 64; i++) {
1750                         skb_get(skb);
1751                         tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1752                         if (tx_ret_val == NETDEV_TX_OK)
1753                                 good_cnt++;
1754                 }
1755
1756                 if (good_cnt != 64) {
1757                         ret_val = 12;
1758                         break;
1759                 }
1760
1761                 /* allow 200 milliseconds for packets to go from tx to rx */
1762                 msleep(200);
1763
1764                 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1765                 if (good_cnt != 64) {
1766                         ret_val = 13;
1767                         break;
1768                 }
1769         } /* end loop count loop */
1770
1771         /* free the original skb */
1772         kfree_skb(skb);
1773
1774         return ret_val;
1775 }
1776
1777 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1778 {
1779         /* PHY loopback cannot be performed if SoL/IDER
1780          * sessions are active */
1781         if (igb_check_reset_block(&adapter->hw)) {
1782                 dev_err(&adapter->pdev->dev,
1783                         "Cannot do PHY loopback test "
1784                         "when SoL/IDER is active.\n");
1785                 *data = 0;
1786                 goto out;
1787         }
1788         if ((adapter->hw.mac.type == e1000_i210)
1789                 || (adapter->hw.mac.type == e1000_i210)) {
1790                 dev_err(&adapter->pdev->dev,
1791                         "Loopback test not supported "
1792                         "on this part at this time.\n");
1793                 *data = 0;
1794                 goto out;
1795         }
1796         *data = igb_setup_desc_rings(adapter);
1797         if (*data)
1798                 goto out;
1799         *data = igb_setup_loopback_test(adapter);
1800         if (*data)
1801                 goto err_loopback;
1802         *data = igb_run_loopback_test(adapter);
1803         igb_loopback_cleanup(adapter);
1804
1805 err_loopback:
1806         igb_free_desc_rings(adapter);
1807 out:
1808         return *data;
1809 }
1810
1811 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1812 {
1813         struct e1000_hw *hw = &adapter->hw;
1814         *data = 0;
1815         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1816                 int i = 0;
1817                 hw->mac.serdes_has_link = false;
1818
1819                 /* On some blade server designs, link establishment
1820                  * could take as long as 2-3 minutes */
1821                 do {
1822                         hw->mac.ops.check_for_link(&adapter->hw);
1823                         if (hw->mac.serdes_has_link)
1824                                 return *data;
1825                         msleep(20);
1826                 } while (i++ < 3750);
1827
1828                 *data = 1;
1829         } else {
1830                 hw->mac.ops.check_for_link(&adapter->hw);
1831                 if (hw->mac.autoneg)
1832                         msleep(4000);
1833
1834                 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1835                         *data = 1;
1836         }
1837         return *data;
1838 }
1839
1840 static void igb_diag_test(struct net_device *netdev,
1841                           struct ethtool_test *eth_test, u64 *data)
1842 {
1843         struct igb_adapter *adapter = netdev_priv(netdev);
1844         u16 autoneg_advertised;
1845         u8 forced_speed_duplex, autoneg;
1846         bool if_running = netif_running(netdev);
1847
1848         set_bit(__IGB_TESTING, &adapter->state);
1849         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1850                 /* Offline tests */
1851
1852                 /* save speed, duplex, autoneg settings */
1853                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1854                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1855                 autoneg = adapter->hw.mac.autoneg;
1856
1857                 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1858
1859                 /* power up link for link test */
1860                 igb_power_up_link(adapter);
1861
1862                 /* Link test performed before hardware reset so autoneg doesn't
1863                  * interfere with test result */
1864                 if (igb_link_test(adapter, &data[4]))
1865                         eth_test->flags |= ETH_TEST_FL_FAILED;
1866
1867                 if (if_running)
1868                         /* indicate we're in test mode */
1869                         dev_close(netdev);
1870                 else
1871                         igb_reset(adapter);
1872
1873                 if (igb_reg_test(adapter, &data[0]))
1874                         eth_test->flags |= ETH_TEST_FL_FAILED;
1875
1876                 igb_reset(adapter);
1877                 if (igb_eeprom_test(adapter, &data[1]))
1878                         eth_test->flags |= ETH_TEST_FL_FAILED;
1879
1880                 igb_reset(adapter);
1881                 if (igb_intr_test(adapter, &data[2]))
1882                         eth_test->flags |= ETH_TEST_FL_FAILED;
1883
1884                 igb_reset(adapter);
1885                 /* power up link for loopback test */
1886                 igb_power_up_link(adapter);
1887                 if (igb_loopback_test(adapter, &data[3]))
1888                         eth_test->flags |= ETH_TEST_FL_FAILED;
1889
1890                 /* restore speed, duplex, autoneg settings */
1891                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1892                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1893                 adapter->hw.mac.autoneg = autoneg;
1894
1895                 /* force this routine to wait until autoneg complete/timeout */
1896                 adapter->hw.phy.autoneg_wait_to_complete = true;
1897                 igb_reset(adapter);
1898                 adapter->hw.phy.autoneg_wait_to_complete = false;
1899
1900                 clear_bit(__IGB_TESTING, &adapter->state);
1901                 if (if_running)
1902                         dev_open(netdev);
1903         } else {
1904                 dev_info(&adapter->pdev->dev, "online testing starting\n");
1905
1906                 /* PHY is powered down when interface is down */
1907                 if (if_running && igb_link_test(adapter, &data[4]))
1908                         eth_test->flags |= ETH_TEST_FL_FAILED;
1909                 else
1910                         data[4] = 0;
1911
1912                 /* Online tests aren't run; pass by default */
1913                 data[0] = 0;
1914                 data[1] = 0;
1915                 data[2] = 0;
1916                 data[3] = 0;
1917
1918                 clear_bit(__IGB_TESTING, &adapter->state);
1919         }
1920         msleep_interruptible(4 * 1000);
1921 }
1922
1923 static int igb_wol_exclusion(struct igb_adapter *adapter,
1924                              struct ethtool_wolinfo *wol)
1925 {
1926         struct e1000_hw *hw = &adapter->hw;
1927         int retval = 1; /* fail by default */
1928
1929         switch (hw->device_id) {
1930         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1931                 /* WoL not supported */
1932                 wol->supported = 0;
1933                 break;
1934         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1935         case E1000_DEV_ID_82576_FIBER:
1936         case E1000_DEV_ID_82576_SERDES:
1937                 /* Wake events not supported on port B */
1938                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1939                         wol->supported = 0;
1940                         break;
1941                 }
1942                 /* return success for non excluded adapter ports */
1943                 retval = 0;
1944                 break;
1945         case E1000_DEV_ID_82576_QUAD_COPPER:
1946         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1947                 /* quad port adapters only support WoL on port A */
1948                 if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1949                         wol->supported = 0;
1950                         break;
1951                 }
1952                 /* return success for non excluded adapter ports */
1953                 retval = 0;
1954                 break;
1955         default:
1956                 /* dual port cards only support WoL on port A from now on
1957                  * unless it was enabled in the eeprom for port B
1958                  * so exclude FUNC_1 ports from having WoL enabled */
1959                 if ((rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) &&
1960                     !adapter->eeprom_wol) {
1961                         wol->supported = 0;
1962                         break;
1963                 }
1964
1965                 retval = 0;
1966         }
1967
1968         return retval;
1969 }
1970
1971 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1972 {
1973         struct igb_adapter *adapter = netdev_priv(netdev);
1974
1975         wol->supported = WAKE_UCAST | WAKE_MCAST |
1976                          WAKE_BCAST | WAKE_MAGIC |
1977                          WAKE_PHY;
1978         wol->wolopts = 0;
1979
1980         /* this function will set ->supported = 0 and return 1 if wol is not
1981          * supported by this hardware */
1982         if (igb_wol_exclusion(adapter, wol) ||
1983             !device_can_wakeup(&adapter->pdev->dev))
1984                 return;
1985
1986         /* apply any specific unsupported masks here */
1987         switch (adapter->hw.device_id) {
1988         default:
1989                 break;
1990         }
1991
1992         if (adapter->wol & E1000_WUFC_EX)
1993                 wol->wolopts |= WAKE_UCAST;
1994         if (adapter->wol & E1000_WUFC_MC)
1995                 wol->wolopts |= WAKE_MCAST;
1996         if (adapter->wol & E1000_WUFC_BC)
1997                 wol->wolopts |= WAKE_BCAST;
1998         if (adapter->wol & E1000_WUFC_MAG)
1999                 wol->wolopts |= WAKE_MAGIC;
2000         if (adapter->wol & E1000_WUFC_LNKC)
2001                 wol->wolopts |= WAKE_PHY;
2002 }
2003
2004 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2005 {
2006         struct igb_adapter *adapter = netdev_priv(netdev);
2007
2008         if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2009                 return -EOPNOTSUPP;
2010
2011         if (igb_wol_exclusion(adapter, wol) ||
2012             !device_can_wakeup(&adapter->pdev->dev))
2013                 return wol->wolopts ? -EOPNOTSUPP : 0;
2014
2015         /* these settings will always override what we currently have */
2016         adapter->wol = 0;
2017
2018         if (wol->wolopts & WAKE_UCAST)
2019                 adapter->wol |= E1000_WUFC_EX;
2020         if (wol->wolopts & WAKE_MCAST)
2021                 adapter->wol |= E1000_WUFC_MC;
2022         if (wol->wolopts & WAKE_BCAST)
2023                 adapter->wol |= E1000_WUFC_BC;
2024         if (wol->wolopts & WAKE_MAGIC)
2025                 adapter->wol |= E1000_WUFC_MAG;
2026         if (wol->wolopts & WAKE_PHY)
2027                 adapter->wol |= E1000_WUFC_LNKC;
2028         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2029
2030         return 0;
2031 }
2032
2033 /* bit defines for adapter->led_status */
2034 #define IGB_LED_ON              0
2035
2036 static int igb_set_phys_id(struct net_device *netdev,
2037                            enum ethtool_phys_id_state state)
2038 {
2039         struct igb_adapter *adapter = netdev_priv(netdev);
2040         struct e1000_hw *hw = &adapter->hw;
2041
2042         switch (state) {
2043         case ETHTOOL_ID_ACTIVE:
2044                 igb_blink_led(hw);
2045                 return 2;
2046         case ETHTOOL_ID_ON:
2047                 igb_blink_led(hw);
2048                 break;
2049         case ETHTOOL_ID_OFF:
2050                 igb_led_off(hw);
2051                 break;
2052         case ETHTOOL_ID_INACTIVE:
2053                 igb_led_off(hw);
2054                 clear_bit(IGB_LED_ON, &adapter->led_status);
2055                 igb_cleanup_led(hw);
2056                 break;
2057         }
2058
2059         return 0;
2060 }
2061
2062 static int igb_set_coalesce(struct net_device *netdev,
2063                             struct ethtool_coalesce *ec)
2064 {
2065         struct igb_adapter *adapter = netdev_priv(netdev);
2066         int i;
2067
2068         if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2069             ((ec->rx_coalesce_usecs > 3) &&
2070              (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2071             (ec->rx_coalesce_usecs == 2))
2072                 return -EINVAL;
2073
2074         if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2075             ((ec->tx_coalesce_usecs > 3) &&
2076              (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2077             (ec->tx_coalesce_usecs == 2))
2078                 return -EINVAL;
2079
2080         if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2081                 return -EINVAL;
2082
2083         /* If ITR is disabled, disable DMAC */
2084         if (ec->rx_coalesce_usecs == 0) {
2085                 if (adapter->flags & IGB_FLAG_DMAC)
2086                         adapter->flags &= ~IGB_FLAG_DMAC;
2087         }
2088
2089         /* convert to rate of irq's per second */
2090         if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2091                 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2092         else
2093                 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2094
2095         /* convert to rate of irq's per second */
2096         if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2097                 adapter->tx_itr_setting = adapter->rx_itr_setting;
2098         else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2099                 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2100         else
2101                 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2102
2103         for (i = 0; i < adapter->num_q_vectors; i++) {
2104                 struct igb_q_vector *q_vector = adapter->q_vector[i];
2105                 q_vector->tx.work_limit = adapter->tx_work_limit;
2106                 if (q_vector->rx.ring)
2107                         q_vector->itr_val = adapter->rx_itr_setting;
2108                 else
2109                         q_vector->itr_val = adapter->tx_itr_setting;
2110                 if (q_vector->itr_val && q_vector->itr_val <= 3)
2111                         q_vector->itr_val = IGB_START_ITR;
2112                 q_vector->set_itr = 1;
2113         }
2114
2115         return 0;
2116 }
2117
2118 static int igb_get_coalesce(struct net_device *netdev,
2119                             struct ethtool_coalesce *ec)
2120 {
2121         struct igb_adapter *adapter = netdev_priv(netdev);
2122
2123         if (adapter->rx_itr_setting <= 3)
2124                 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2125         else
2126                 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2127
2128         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2129                 if (adapter->tx_itr_setting <= 3)
2130                         ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2131                 else
2132                         ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2133         }
2134
2135         return 0;
2136 }
2137
2138 static int igb_nway_reset(struct net_device *netdev)
2139 {
2140         struct igb_adapter *adapter = netdev_priv(netdev);
2141         if (netif_running(netdev))
2142                 igb_reinit_locked(adapter);
2143         return 0;
2144 }
2145
2146 static int igb_get_sset_count(struct net_device *netdev, int sset)
2147 {
2148         switch (sset) {
2149         case ETH_SS_STATS:
2150                 return IGB_STATS_LEN;
2151         case ETH_SS_TEST:
2152                 return IGB_TEST_LEN;
2153         default:
2154                 return -ENOTSUPP;
2155         }
2156 }
2157
2158 static void igb_get_ethtool_stats(struct net_device *netdev,
2159                                   struct ethtool_stats *stats, u64 *data)
2160 {
2161         struct igb_adapter *adapter = netdev_priv(netdev);
2162         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2163         unsigned int start;
2164         struct igb_ring *ring;
2165         int i, j;
2166         char *p;
2167
2168         spin_lock(&adapter->stats64_lock);
2169         igb_update_stats(adapter, net_stats);
2170
2171         for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2172                 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2173                 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2174                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2175         }
2176         for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2177                 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2178                 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2179                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2180         }
2181         for (j = 0; j < adapter->num_tx_queues; j++) {
2182                 u64     restart2;
2183
2184                 ring = adapter->tx_ring[j];
2185                 do {
2186                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2187                         data[i]   = ring->tx_stats.packets;
2188                         data[i+1] = ring->tx_stats.bytes;
2189                         data[i+2] = ring->tx_stats.restart_queue;
2190                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2191                 do {
2192                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2193                         restart2  = ring->tx_stats.restart_queue2;
2194                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2195                 data[i+2] += restart2;
2196
2197                 i += IGB_TX_QUEUE_STATS_LEN;
2198         }
2199         for (j = 0; j < adapter->num_rx_queues; j++) {
2200                 ring = adapter->rx_ring[j];
2201                 do {
2202                         start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2203                         data[i]   = ring->rx_stats.packets;
2204                         data[i+1] = ring->rx_stats.bytes;
2205                         data[i+2] = ring->rx_stats.drops;
2206                         data[i+3] = ring->rx_stats.csum_err;
2207                         data[i+4] = ring->rx_stats.alloc_failed;
2208                 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2209                 i += IGB_RX_QUEUE_STATS_LEN;
2210         }
2211         spin_unlock(&adapter->stats64_lock);
2212 }
2213
2214 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2215 {
2216         struct igb_adapter *adapter = netdev_priv(netdev);
2217         u8 *p = data;
2218         int i;
2219
2220         switch (stringset) {
2221         case ETH_SS_TEST:
2222                 memcpy(data, *igb_gstrings_test,
2223                         IGB_TEST_LEN*ETH_GSTRING_LEN);
2224                 break;
2225         case ETH_SS_STATS:
2226                 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2227                         memcpy(p, igb_gstrings_stats[i].stat_string,
2228                                ETH_GSTRING_LEN);
2229                         p += ETH_GSTRING_LEN;
2230                 }
2231                 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2232                         memcpy(p, igb_gstrings_net_stats[i].stat_string,
2233                                ETH_GSTRING_LEN);
2234                         p += ETH_GSTRING_LEN;
2235                 }
2236                 for (i = 0; i < adapter->num_tx_queues; i++) {
2237                         sprintf(p, "tx_queue_%u_packets", i);
2238                         p += ETH_GSTRING_LEN;
2239                         sprintf(p, "tx_queue_%u_bytes", i);
2240                         p += ETH_GSTRING_LEN;
2241                         sprintf(p, "tx_queue_%u_restart", i);
2242                         p += ETH_GSTRING_LEN;
2243                 }
2244                 for (i = 0; i < adapter->num_rx_queues; i++) {
2245                         sprintf(p, "rx_queue_%u_packets", i);
2246                         p += ETH_GSTRING_LEN;
2247                         sprintf(p, "rx_queue_%u_bytes", i);
2248                         p += ETH_GSTRING_LEN;
2249                         sprintf(p, "rx_queue_%u_drops", i);
2250                         p += ETH_GSTRING_LEN;
2251                         sprintf(p, "rx_queue_%u_csum_err", i);
2252                         p += ETH_GSTRING_LEN;
2253                         sprintf(p, "rx_queue_%u_alloc_failed", i);
2254                         p += ETH_GSTRING_LEN;
2255                 }
2256 /*              BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2257                 break;
2258         }
2259 }
2260
2261 static int igb_ethtool_begin(struct net_device *netdev)
2262 {
2263         struct igb_adapter *adapter = netdev_priv(netdev);
2264         pm_runtime_get_sync(&adapter->pdev->dev);
2265         return 0;
2266 }
2267
2268 static void igb_ethtool_complete(struct net_device *netdev)
2269 {
2270         struct igb_adapter *adapter = netdev_priv(netdev);
2271         pm_runtime_put(&adapter->pdev->dev);
2272 }
2273
2274 static const struct ethtool_ops igb_ethtool_ops = {
2275         .get_settings           = igb_get_settings,
2276         .set_settings           = igb_set_settings,
2277         .get_drvinfo            = igb_get_drvinfo,
2278         .get_regs_len           = igb_get_regs_len,
2279         .get_regs               = igb_get_regs,
2280         .get_wol                = igb_get_wol,
2281         .set_wol                = igb_set_wol,
2282         .get_msglevel           = igb_get_msglevel,
2283         .set_msglevel           = igb_set_msglevel,
2284         .nway_reset             = igb_nway_reset,
2285         .get_link               = igb_get_link,
2286         .get_eeprom_len         = igb_get_eeprom_len,
2287         .get_eeprom             = igb_get_eeprom,
2288         .set_eeprom             = igb_set_eeprom,
2289         .get_ringparam          = igb_get_ringparam,
2290         .set_ringparam          = igb_set_ringparam,
2291         .get_pauseparam         = igb_get_pauseparam,
2292         .set_pauseparam         = igb_set_pauseparam,
2293         .self_test              = igb_diag_test,
2294         .get_strings            = igb_get_strings,
2295         .set_phys_id            = igb_set_phys_id,
2296         .get_sset_count         = igb_get_sset_count,
2297         .get_ethtool_stats      = igb_get_ethtool_stats,
2298         .get_coalesce           = igb_get_coalesce,
2299         .set_coalesce           = igb_set_coalesce,
2300         .begin                  = igb_ethtool_begin,
2301         .complete               = igb_ethtool_complete,
2302 };
2303
2304 void igb_set_ethtool_ops(struct net_device *netdev)
2305 {
2306         SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2307 }