]> Pileus Git - ~andy/linux/blob - drivers/net/ethernet/intel/igb/e1000_82575.c
Merge branches 'hidraw', 'magicmouse', 'multitouch', 'roccat', 'suspend-fixes' and...
[~andy/linux] / drivers / net / ethernet / intel / igb / e1000_82575.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* e1000_82575
29  * e1000_82576
30  */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/types.h>
35 #include <linux/if_ether.h>
36
37 #include "e1000_mac.h"
38 #include "e1000_82575.h"
39 #include "e1000_i210.h"
40
41 static s32  igb_get_invariants_82575(struct e1000_hw *);
42 static s32  igb_acquire_phy_82575(struct e1000_hw *);
43 static void igb_release_phy_82575(struct e1000_hw *);
44 static s32  igb_acquire_nvm_82575(struct e1000_hw *);
45 static void igb_release_nvm_82575(struct e1000_hw *);
46 static s32  igb_check_for_link_82575(struct e1000_hw *);
47 static s32  igb_get_cfg_done_82575(struct e1000_hw *);
48 static s32  igb_init_hw_82575(struct e1000_hw *);
49 static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
50 static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
51 static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
52 static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
53 static s32  igb_reset_hw_82575(struct e1000_hw *);
54 static s32  igb_reset_hw_82580(struct e1000_hw *);
55 static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
56 static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
57 static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
58 static s32  igb_setup_copper_link_82575(struct e1000_hw *);
59 static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
60 static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
61 static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
62 static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
63 static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
64                                                  u16 *);
65 static s32  igb_get_phy_id_82575(struct e1000_hw *);
66 static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
67 static bool igb_sgmii_active_82575(struct e1000_hw *);
68 static s32  igb_reset_init_script_82575(struct e1000_hw *);
69 static s32  igb_read_mac_addr_82575(struct e1000_hw *);
70 static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
71 static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
72 static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
73 static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
74 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
75 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
76 static const u16 e1000_82580_rxpbs_table[] =
77         { 36, 72, 144, 1, 2, 4, 8, 16,
78           35, 70, 140 };
79 #define E1000_82580_RXPBS_TABLE_SIZE \
80         (sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
81
82 /**
83  *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
84  *  @hw: pointer to the HW structure
85  *
86  *  Called to determine if the I2C pins are being used for I2C or as an
87  *  external MDIO interface since the two options are mutually exclusive.
88  **/
89 static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
90 {
91         u32 reg = 0;
92         bool ext_mdio = false;
93
94         switch (hw->mac.type) {
95         case e1000_82575:
96         case e1000_82576:
97                 reg = rd32(E1000_MDIC);
98                 ext_mdio = !!(reg & E1000_MDIC_DEST);
99                 break;
100         case e1000_82580:
101         case e1000_i350:
102         case e1000_i210:
103         case e1000_i211:
104                 reg = rd32(E1000_MDICNFG);
105                 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
106                 break;
107         default:
108                 break;
109         }
110         return ext_mdio;
111 }
112
113 static s32 igb_get_invariants_82575(struct e1000_hw *hw)
114 {
115         struct e1000_phy_info *phy = &hw->phy;
116         struct e1000_nvm_info *nvm = &hw->nvm;
117         struct e1000_mac_info *mac = &hw->mac;
118         struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
119         u32 eecd;
120         s32 ret_val;
121         u16 size;
122         u32 ctrl_ext = 0;
123
124         switch (hw->device_id) {
125         case E1000_DEV_ID_82575EB_COPPER:
126         case E1000_DEV_ID_82575EB_FIBER_SERDES:
127         case E1000_DEV_ID_82575GB_QUAD_COPPER:
128                 mac->type = e1000_82575;
129                 break;
130         case E1000_DEV_ID_82576:
131         case E1000_DEV_ID_82576_NS:
132         case E1000_DEV_ID_82576_NS_SERDES:
133         case E1000_DEV_ID_82576_FIBER:
134         case E1000_DEV_ID_82576_SERDES:
135         case E1000_DEV_ID_82576_QUAD_COPPER:
136         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
137         case E1000_DEV_ID_82576_SERDES_QUAD:
138                 mac->type = e1000_82576;
139                 break;
140         case E1000_DEV_ID_82580_COPPER:
141         case E1000_DEV_ID_82580_FIBER:
142         case E1000_DEV_ID_82580_QUAD_FIBER:
143         case E1000_DEV_ID_82580_SERDES:
144         case E1000_DEV_ID_82580_SGMII:
145         case E1000_DEV_ID_82580_COPPER_DUAL:
146         case E1000_DEV_ID_DH89XXCC_SGMII:
147         case E1000_DEV_ID_DH89XXCC_SERDES:
148         case E1000_DEV_ID_DH89XXCC_BACKPLANE:
149         case E1000_DEV_ID_DH89XXCC_SFP:
150                 mac->type = e1000_82580;
151                 break;
152         case E1000_DEV_ID_I350_COPPER:
153         case E1000_DEV_ID_I350_FIBER:
154         case E1000_DEV_ID_I350_SERDES:
155         case E1000_DEV_ID_I350_SGMII:
156                 mac->type = e1000_i350;
157                 break;
158         case E1000_DEV_ID_I210_COPPER:
159         case E1000_DEV_ID_I210_COPPER_OEM1:
160         case E1000_DEV_ID_I210_COPPER_IT:
161         case E1000_DEV_ID_I210_FIBER:
162         case E1000_DEV_ID_I210_SERDES:
163         case E1000_DEV_ID_I210_SGMII:
164                 mac->type = e1000_i210;
165                 break;
166         case E1000_DEV_ID_I211_COPPER:
167                 mac->type = e1000_i211;
168                 break;
169         default:
170                 return -E1000_ERR_MAC_INIT;
171                 break;
172         }
173
174         /* Set media type */
175         /*
176          * The 82575 uses bits 22:23 for link mode. The mode can be changed
177          * based on the EEPROM. We cannot rely upon device ID. There
178          * is no distinguishable difference between fiber and internal
179          * SerDes mode on the 82575. There can be an external PHY attached
180          * on the SGMII interface. For this, we'll set sgmii_active to true.
181          */
182         phy->media_type = e1000_media_type_copper;
183         dev_spec->sgmii_active = false;
184
185         ctrl_ext = rd32(E1000_CTRL_EXT);
186         switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
187         case E1000_CTRL_EXT_LINK_MODE_SGMII:
188                 dev_spec->sgmii_active = true;
189                 break;
190         case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
191         case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
192                 hw->phy.media_type = e1000_media_type_internal_serdes;
193                 break;
194         default:
195                 break;
196         }
197
198         /* Set mta register count */
199         mac->mta_reg_count = 128;
200         /* Set rar entry count */
201         switch (mac->type) {
202         case e1000_82576:
203                 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
204                 break;
205         case e1000_82580:
206                 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
207                 break;
208         case e1000_i350:
209                 mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
210                 break;
211         default:
212                 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
213                 break;
214         }
215         /* reset */
216         if (mac->type >= e1000_82580)
217                 mac->ops.reset_hw = igb_reset_hw_82580;
218         else
219                 mac->ops.reset_hw = igb_reset_hw_82575;
220
221         if (mac->type >= e1000_i210) {
222                 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
223                 mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
224         } else {
225                 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
226                 mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
227         }
228
229         /* Set if part includes ASF firmware */
230         mac->asf_firmware_present = true;
231         /* Set if manageability features are enabled. */
232         mac->arc_subsystem_valid =
233                 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
234                         ? true : false;
235         /* enable EEE on i350 parts and later parts */
236         if (mac->type >= e1000_i350)
237                 dev_spec->eee_disable = false;
238         else
239                 dev_spec->eee_disable = true;
240         /* physical interface link setup */
241         mac->ops.setup_physical_interface =
242                 (hw->phy.media_type == e1000_media_type_copper)
243                         ? igb_setup_copper_link_82575
244                         : igb_setup_serdes_link_82575;
245
246         /* NVM initialization */
247         eecd = rd32(E1000_EECD);
248         size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
249                      E1000_EECD_SIZE_EX_SHIFT);
250
251         /*
252          * Added to a constant, "size" becomes the left-shift value
253          * for setting word_size.
254          */
255         size += NVM_WORD_SIZE_BASE_SHIFT;
256
257         nvm->word_size = 1 << size;
258         if (hw->mac.type < e1000_i210) {
259                 nvm->opcode_bits        = 8;
260                 nvm->delay_usec         = 1;
261                 switch (nvm->override) {
262                 case e1000_nvm_override_spi_large:
263                         nvm->page_size    = 32;
264                         nvm->address_bits = 16;
265                         break;
266                 case e1000_nvm_override_spi_small:
267                         nvm->page_size    = 8;
268                         nvm->address_bits = 8;
269                         break;
270                 default:
271                         nvm->page_size    = eecd
272                                 & E1000_EECD_ADDR_BITS ? 32 : 8;
273                         nvm->address_bits = eecd
274                                 & E1000_EECD_ADDR_BITS ? 16 : 8;
275                         break;
276                 }
277                 if (nvm->word_size == (1 << 15))
278                         nvm->page_size = 128;
279
280                 nvm->type = e1000_nvm_eeprom_spi;
281         } else
282                 nvm->type = e1000_nvm_flash_hw;
283
284         /*
285          * Check for invalid size
286          */
287         if ((hw->mac.type == e1000_82576) && (size > 15)) {
288                 pr_notice("The NVM size is not valid, defaulting to 32K\n");
289                 size = 15;
290         }
291
292         /* NVM Function Pointers */
293         switch (hw->mac.type) {
294         case e1000_82580:
295                 nvm->ops.validate = igb_validate_nvm_checksum_82580;
296                 nvm->ops.update = igb_update_nvm_checksum_82580;
297                 nvm->ops.acquire = igb_acquire_nvm_82575;
298                 nvm->ops.release = igb_release_nvm_82575;
299                 if (nvm->word_size < (1 << 15))
300                         nvm->ops.read = igb_read_nvm_eerd;
301                 else
302                         nvm->ops.read = igb_read_nvm_spi;
303                 nvm->ops.write = igb_write_nvm_spi;
304                 break;
305         case e1000_i350:
306                 nvm->ops.validate = igb_validate_nvm_checksum_i350;
307                 nvm->ops.update = igb_update_nvm_checksum_i350;
308                 nvm->ops.acquire = igb_acquire_nvm_82575;
309                 nvm->ops.release = igb_release_nvm_82575;
310                 if (nvm->word_size < (1 << 15))
311                         nvm->ops.read = igb_read_nvm_eerd;
312                 else
313                         nvm->ops.read = igb_read_nvm_spi;
314                 nvm->ops.write = igb_write_nvm_spi;
315                 break;
316         case e1000_i210:
317                 nvm->ops.validate = igb_validate_nvm_checksum_i210;
318                 nvm->ops.update   = igb_update_nvm_checksum_i210;
319                 nvm->ops.acquire = igb_acquire_nvm_i210;
320                 nvm->ops.release = igb_release_nvm_i210;
321                 nvm->ops.read    = igb_read_nvm_srrd_i210;
322                 nvm->ops.valid_led_default = igb_valid_led_default_i210;
323                 break;
324         case e1000_i211:
325                 nvm->ops.acquire  = igb_acquire_nvm_i210;
326                 nvm->ops.release  = igb_release_nvm_i210;
327                 nvm->ops.read     = igb_read_nvm_i211;
328                 nvm->ops.valid_led_default = igb_valid_led_default_i210;
329                 nvm->ops.validate = NULL;
330                 nvm->ops.update   = NULL;
331                 nvm->ops.write    = NULL;
332                 break;
333         default:
334                 nvm->ops.validate = igb_validate_nvm_checksum;
335                 nvm->ops.update = igb_update_nvm_checksum;
336                 nvm->ops.acquire = igb_acquire_nvm_82575;
337                 nvm->ops.release = igb_release_nvm_82575;
338                 if (nvm->word_size < (1 << 15))
339                         nvm->ops.read = igb_read_nvm_eerd;
340                 else
341                         nvm->ops.read = igb_read_nvm_spi;
342                 nvm->ops.write = igb_write_nvm_spi;
343                 break;
344         }
345
346         /* if part supports SR-IOV then initialize mailbox parameters */
347         switch (mac->type) {
348         case e1000_82576:
349         case e1000_i350:
350                 igb_init_mbx_params_pf(hw);
351                 break;
352         default:
353                 break;
354         }
355
356         /* setup PHY parameters */
357         if (phy->media_type != e1000_media_type_copper) {
358                 phy->type = e1000_phy_none;
359                 return 0;
360         }
361
362         phy->autoneg_mask        = AUTONEG_ADVERTISE_SPEED_DEFAULT;
363         phy->reset_delay_us      = 100;
364
365         ctrl_ext = rd32(E1000_CTRL_EXT);
366
367         /* PHY function pointers */
368         if (igb_sgmii_active_82575(hw)) {
369                 phy->ops.reset      = igb_phy_hw_reset_sgmii_82575;
370                 ctrl_ext |= E1000_CTRL_I2C_ENA;
371         } else {
372                 phy->ops.reset      = igb_phy_hw_reset;
373                 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
374         }
375
376         wr32(E1000_CTRL_EXT, ctrl_ext);
377         igb_reset_mdicnfg_82580(hw);
378
379         if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
380                 phy->ops.read_reg   = igb_read_phy_reg_sgmii_82575;
381                 phy->ops.write_reg  = igb_write_phy_reg_sgmii_82575;
382         } else if ((hw->mac.type == e1000_82580)
383                 || (hw->mac.type == e1000_i350)) {
384                 phy->ops.read_reg   = igb_read_phy_reg_82580;
385                 phy->ops.write_reg  = igb_write_phy_reg_82580;
386         } else if (hw->phy.type >= e1000_phy_i210) {
387                 phy->ops.read_reg   = igb_read_phy_reg_gs40g;
388                 phy->ops.write_reg  = igb_write_phy_reg_gs40g;
389         } else {
390                 phy->ops.read_reg   = igb_read_phy_reg_igp;
391                 phy->ops.write_reg  = igb_write_phy_reg_igp;
392         }
393
394         /* set lan id */
395         hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
396                        E1000_STATUS_FUNC_SHIFT;
397
398         /* Set phy->phy_addr and phy->id. */
399         ret_val = igb_get_phy_id_82575(hw);
400         if (ret_val)
401                 return ret_val;
402
403         /* Verify phy id and set remaining function pointers */
404         switch (phy->id) {
405         case I347AT4_E_PHY_ID:
406         case M88E1112_E_PHY_ID:
407         case M88E1111_I_PHY_ID:
408                 phy->type                   = e1000_phy_m88;
409                 phy->ops.get_phy_info       = igb_get_phy_info_m88;
410
411                 if (phy->id == I347AT4_E_PHY_ID ||
412                     phy->id == M88E1112_E_PHY_ID)
413                         phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
414                 else
415                         phy->ops.get_cable_length = igb_get_cable_length_m88;
416
417                 if (phy->id == I210_I_PHY_ID) {
418                         phy->ops.get_cable_length =
419                                          igb_get_cable_length_m88_gen2;
420                         phy->ops.set_d0_lplu_state =
421                                         igb_set_d0_lplu_state_82580;
422                         phy->ops.set_d3_lplu_state =
423                                         igb_set_d3_lplu_state_82580;
424                 }
425                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
426                 break;
427         case IGP03E1000_E_PHY_ID:
428                 phy->type                   = e1000_phy_igp_3;
429                 phy->ops.get_phy_info       = igb_get_phy_info_igp;
430                 phy->ops.get_cable_length   = igb_get_cable_length_igp_2;
431                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
432                 phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82575;
433                 phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state;
434                 break;
435         case I82580_I_PHY_ID:
436         case I350_I_PHY_ID:
437                 phy->type                   = e1000_phy_82580;
438                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580;
439                 phy->ops.get_cable_length   = igb_get_cable_length_82580;
440                 phy->ops.get_phy_info       = igb_get_phy_info_82580;
441                 phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82580;
442                 phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state_82580;
443                 break;
444         case I210_I_PHY_ID:
445                 phy->type                   = e1000_phy_i210;
446                 phy->ops.get_phy_info       = igb_get_phy_info_m88;
447                 phy->ops.check_polarity     = igb_check_polarity_m88;
448                 phy->ops.get_cable_length   = igb_get_cable_length_m88_gen2;
449                 phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82580;
450                 phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state_82580;
451                 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
452                 break;
453         default:
454                 return -E1000_ERR_PHY;
455         }
456
457         return 0;
458 }
459
460 /**
461  *  igb_acquire_phy_82575 - Acquire rights to access PHY
462  *  @hw: pointer to the HW structure
463  *
464  *  Acquire access rights to the correct PHY.  This is a
465  *  function pointer entry point called by the api module.
466  **/
467 static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
468 {
469         u16 mask = E1000_SWFW_PHY0_SM;
470
471         if (hw->bus.func == E1000_FUNC_1)
472                 mask = E1000_SWFW_PHY1_SM;
473         else if (hw->bus.func == E1000_FUNC_2)
474                 mask = E1000_SWFW_PHY2_SM;
475         else if (hw->bus.func == E1000_FUNC_3)
476                 mask = E1000_SWFW_PHY3_SM;
477
478         return hw->mac.ops.acquire_swfw_sync(hw, mask);
479 }
480
481 /**
482  *  igb_release_phy_82575 - Release rights to access PHY
483  *  @hw: pointer to the HW structure
484  *
485  *  A wrapper to release access rights to the correct PHY.  This is a
486  *  function pointer entry point called by the api module.
487  **/
488 static void igb_release_phy_82575(struct e1000_hw *hw)
489 {
490         u16 mask = E1000_SWFW_PHY0_SM;
491
492         if (hw->bus.func == E1000_FUNC_1)
493                 mask = E1000_SWFW_PHY1_SM;
494         else if (hw->bus.func == E1000_FUNC_2)
495                 mask = E1000_SWFW_PHY2_SM;
496         else if (hw->bus.func == E1000_FUNC_3)
497                 mask = E1000_SWFW_PHY3_SM;
498
499         hw->mac.ops.release_swfw_sync(hw, mask);
500 }
501
502 /**
503  *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
504  *  @hw: pointer to the HW structure
505  *  @offset: register offset to be read
506  *  @data: pointer to the read data
507  *
508  *  Reads the PHY register at offset using the serial gigabit media independent
509  *  interface and stores the retrieved information in data.
510  **/
511 static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
512                                           u16 *data)
513 {
514         s32 ret_val = -E1000_ERR_PARAM;
515
516         if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
517                 hw_dbg("PHY Address %u is out of range\n", offset);
518                 goto out;
519         }
520
521         ret_val = hw->phy.ops.acquire(hw);
522         if (ret_val)
523                 goto out;
524
525         ret_val = igb_read_phy_reg_i2c(hw, offset, data);
526
527         hw->phy.ops.release(hw);
528
529 out:
530         return ret_val;
531 }
532
533 /**
534  *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
535  *  @hw: pointer to the HW structure
536  *  @offset: register offset to write to
537  *  @data: data to write at register offset
538  *
539  *  Writes the data to PHY register at the offset using the serial gigabit
540  *  media independent interface.
541  **/
542 static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
543                                            u16 data)
544 {
545         s32 ret_val = -E1000_ERR_PARAM;
546
547
548         if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
549                 hw_dbg("PHY Address %d is out of range\n", offset);
550                 goto out;
551         }
552
553         ret_val = hw->phy.ops.acquire(hw);
554         if (ret_val)
555                 goto out;
556
557         ret_val = igb_write_phy_reg_i2c(hw, offset, data);
558
559         hw->phy.ops.release(hw);
560
561 out:
562         return ret_val;
563 }
564
565 /**
566  *  igb_get_phy_id_82575 - Retrieve PHY addr and id
567  *  @hw: pointer to the HW structure
568  *
569  *  Retrieves the PHY address and ID for both PHY's which do and do not use
570  *  sgmi interface.
571  **/
572 static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
573 {
574         struct e1000_phy_info *phy = &hw->phy;
575         s32  ret_val = 0;
576         u16 phy_id;
577         u32 ctrl_ext;
578         u32 mdic;
579
580         /*
581          * For SGMII PHYs, we try the list of possible addresses until
582          * we find one that works.  For non-SGMII PHYs
583          * (e.g. integrated copper PHYs), an address of 1 should
584          * work.  The result of this function should mean phy->phy_addr
585          * and phy->id are set correctly.
586          */
587         if (!(igb_sgmii_active_82575(hw))) {
588                 phy->addr = 1;
589                 ret_val = igb_get_phy_id(hw);
590                 goto out;
591         }
592
593         if (igb_sgmii_uses_mdio_82575(hw)) {
594                 switch (hw->mac.type) {
595                 case e1000_82575:
596                 case e1000_82576:
597                         mdic = rd32(E1000_MDIC);
598                         mdic &= E1000_MDIC_PHY_MASK;
599                         phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
600                         break;
601                 case e1000_82580:
602                 case e1000_i350:
603                 case e1000_i210:
604                 case e1000_i211:
605                         mdic = rd32(E1000_MDICNFG);
606                         mdic &= E1000_MDICNFG_PHY_MASK;
607                         phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
608                         break;
609                 default:
610                         ret_val = -E1000_ERR_PHY;
611                         goto out;
612                         break;
613                 }
614                 ret_val = igb_get_phy_id(hw);
615                 goto out;
616         }
617
618         /* Power on sgmii phy if it is disabled */
619         ctrl_ext = rd32(E1000_CTRL_EXT);
620         wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
621         wrfl();
622         msleep(300);
623
624         /*
625          * The address field in the I2CCMD register is 3 bits and 0 is invalid.
626          * Therefore, we need to test 1-7
627          */
628         for (phy->addr = 1; phy->addr < 8; phy->addr++) {
629                 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
630                 if (ret_val == 0) {
631                         hw_dbg("Vendor ID 0x%08X read at address %u\n",
632                                phy_id, phy->addr);
633                         /*
634                          * At the time of this writing, The M88 part is
635                          * the only supported SGMII PHY product.
636                          */
637                         if (phy_id == M88_VENDOR)
638                                 break;
639                 } else {
640                         hw_dbg("PHY address %u was unreadable\n", phy->addr);
641                 }
642         }
643
644         /* A valid PHY type couldn't be found. */
645         if (phy->addr == 8) {
646                 phy->addr = 0;
647                 ret_val = -E1000_ERR_PHY;
648                 goto out;
649         } else {
650                 ret_val = igb_get_phy_id(hw);
651         }
652
653         /* restore previous sfp cage power state */
654         wr32(E1000_CTRL_EXT, ctrl_ext);
655
656 out:
657         return ret_val;
658 }
659
660 /**
661  *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
662  *  @hw: pointer to the HW structure
663  *
664  *  Resets the PHY using the serial gigabit media independent interface.
665  **/
666 static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
667 {
668         s32 ret_val;
669
670         /*
671          * This isn't a true "hard" reset, but is the only reset
672          * available to us at this time.
673          */
674
675         hw_dbg("Soft resetting SGMII attached PHY...\n");
676
677         /*
678          * SFP documentation requires the following to configure the SPF module
679          * to work on SGMII.  No further documentation is given.
680          */
681         ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
682         if (ret_val)
683                 goto out;
684
685         ret_val = igb_phy_sw_reset(hw);
686
687 out:
688         return ret_val;
689 }
690
691 /**
692  *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
693  *  @hw: pointer to the HW structure
694  *  @active: true to enable LPLU, false to disable
695  *
696  *  Sets the LPLU D0 state according to the active flag.  When
697  *  activating LPLU this function also disables smart speed
698  *  and vice versa.  LPLU will not be activated unless the
699  *  device autonegotiation advertisement meets standards of
700  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
701  *  This is a function pointer entry point only called by
702  *  PHY setup routines.
703  **/
704 static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
705 {
706         struct e1000_phy_info *phy = &hw->phy;
707         s32 ret_val;
708         u16 data;
709
710         ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
711         if (ret_val)
712                 goto out;
713
714         if (active) {
715                 data |= IGP02E1000_PM_D0_LPLU;
716                 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
717                                                  data);
718                 if (ret_val)
719                         goto out;
720
721                 /* When LPLU is enabled, we should disable SmartSpeed */
722                 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
723                                                 &data);
724                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
725                 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
726                                                  data);
727                 if (ret_val)
728                         goto out;
729         } else {
730                 data &= ~IGP02E1000_PM_D0_LPLU;
731                 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
732                                                  data);
733                 /*
734                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
735                  * during Dx states where the power conservation is most
736                  * important.  During driver activity we should enable
737                  * SmartSpeed, so performance is maintained.
738                  */
739                 if (phy->smart_speed == e1000_smart_speed_on) {
740                         ret_val = phy->ops.read_reg(hw,
741                                         IGP01E1000_PHY_PORT_CONFIG, &data);
742                         if (ret_val)
743                                 goto out;
744
745                         data |= IGP01E1000_PSCFR_SMART_SPEED;
746                         ret_val = phy->ops.write_reg(hw,
747                                         IGP01E1000_PHY_PORT_CONFIG, data);
748                         if (ret_val)
749                                 goto out;
750                 } else if (phy->smart_speed == e1000_smart_speed_off) {
751                         ret_val = phy->ops.read_reg(hw,
752                                         IGP01E1000_PHY_PORT_CONFIG, &data);
753                         if (ret_val)
754                                 goto out;
755
756                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
757                         ret_val = phy->ops.write_reg(hw,
758                                         IGP01E1000_PHY_PORT_CONFIG, data);
759                         if (ret_val)
760                                 goto out;
761                 }
762         }
763
764 out:
765         return ret_val;
766 }
767
768 /**
769  *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
770  *  @hw: pointer to the HW structure
771  *  @active: true to enable LPLU, false to disable
772  *
773  *  Sets the LPLU D0 state according to the active flag.  When
774  *  activating LPLU this function also disables smart speed
775  *  and vice versa.  LPLU will not be activated unless the
776  *  device autonegotiation advertisement meets standards of
777  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
778  *  This is a function pointer entry point only called by
779  *  PHY setup routines.
780  **/
781 static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
782 {
783         struct e1000_phy_info *phy = &hw->phy;
784         s32 ret_val = 0;
785         u16 data;
786
787         data = rd32(E1000_82580_PHY_POWER_MGMT);
788
789         if (active) {
790                 data |= E1000_82580_PM_D0_LPLU;
791
792                 /* When LPLU is enabled, we should disable SmartSpeed */
793                 data &= ~E1000_82580_PM_SPD;
794         } else {
795                 data &= ~E1000_82580_PM_D0_LPLU;
796
797                 /*
798                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
799                  * during Dx states where the power conservation is most
800                  * important.  During driver activity we should enable
801                  * SmartSpeed, so performance is maintained.
802                  */
803                 if (phy->smart_speed == e1000_smart_speed_on)
804                         data |= E1000_82580_PM_SPD;
805                 else if (phy->smart_speed == e1000_smart_speed_off)
806                         data &= ~E1000_82580_PM_SPD; }
807
808         wr32(E1000_82580_PHY_POWER_MGMT, data);
809         return ret_val;
810 }
811
812 /**
813  *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
814  *  @hw: pointer to the HW structure
815  *  @active: boolean used to enable/disable lplu
816  *
817  *  Success returns 0, Failure returns 1
818  *
819  *  The low power link up (lplu) state is set to the power management level D3
820  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
821  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
822  *  is used during Dx states where the power conservation is most important.
823  *  During driver activity, SmartSpeed should be enabled so performance is
824  *  maintained.
825  **/
826 s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
827 {
828         struct e1000_phy_info *phy = &hw->phy;
829         s32 ret_val = 0;
830         u16 data;
831
832         data = rd32(E1000_82580_PHY_POWER_MGMT);
833
834         if (!active) {
835                 data &= ~E1000_82580_PM_D3_LPLU;
836                 /*
837                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
838                  * during Dx states where the power conservation is most
839                  * important.  During driver activity we should enable
840                  * SmartSpeed, so performance is maintained.
841                  */
842                 if (phy->smart_speed == e1000_smart_speed_on)
843                         data |= E1000_82580_PM_SPD;
844                 else if (phy->smart_speed == e1000_smart_speed_off)
845                         data &= ~E1000_82580_PM_SPD;
846         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
847                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
848                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
849                 data |= E1000_82580_PM_D3_LPLU;
850                 /* When LPLU is enabled, we should disable SmartSpeed */
851                 data &= ~E1000_82580_PM_SPD;
852         }
853
854         wr32(E1000_82580_PHY_POWER_MGMT, data);
855         return ret_val;
856 }
857
858 /**
859  *  igb_acquire_nvm_82575 - Request for access to EEPROM
860  *  @hw: pointer to the HW structure
861  *
862  *  Acquire the necessary semaphores for exclusive access to the EEPROM.
863  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
864  *  Return successful if access grant bit set, else clear the request for
865  *  EEPROM access and return -E1000_ERR_NVM (-1).
866  **/
867 static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
868 {
869         s32 ret_val;
870
871         ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
872         if (ret_val)
873                 goto out;
874
875         ret_val = igb_acquire_nvm(hw);
876
877         if (ret_val)
878                 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
879
880 out:
881         return ret_val;
882 }
883
884 /**
885  *  igb_release_nvm_82575 - Release exclusive access to EEPROM
886  *  @hw: pointer to the HW structure
887  *
888  *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
889  *  then release the semaphores acquired.
890  **/
891 static void igb_release_nvm_82575(struct e1000_hw *hw)
892 {
893         igb_release_nvm(hw);
894         hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
895 }
896
897 /**
898  *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
899  *  @hw: pointer to the HW structure
900  *  @mask: specifies which semaphore to acquire
901  *
902  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
903  *  will also specify which port we're acquiring the lock for.
904  **/
905 static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
906 {
907         u32 swfw_sync;
908         u32 swmask = mask;
909         u32 fwmask = mask << 16;
910         s32 ret_val = 0;
911         s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
912
913         while (i < timeout) {
914                 if (igb_get_hw_semaphore(hw)) {
915                         ret_val = -E1000_ERR_SWFW_SYNC;
916                         goto out;
917                 }
918
919                 swfw_sync = rd32(E1000_SW_FW_SYNC);
920                 if (!(swfw_sync & (fwmask | swmask)))
921                         break;
922
923                 /*
924                  * Firmware currently using resource (fwmask)
925                  * or other software thread using resource (swmask)
926                  */
927                 igb_put_hw_semaphore(hw);
928                 mdelay(5);
929                 i++;
930         }
931
932         if (i == timeout) {
933                 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
934                 ret_val = -E1000_ERR_SWFW_SYNC;
935                 goto out;
936         }
937
938         swfw_sync |= swmask;
939         wr32(E1000_SW_FW_SYNC, swfw_sync);
940
941         igb_put_hw_semaphore(hw);
942
943 out:
944         return ret_val;
945 }
946
947 /**
948  *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
949  *  @hw: pointer to the HW structure
950  *  @mask: specifies which semaphore to acquire
951  *
952  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
953  *  will also specify which port we're releasing the lock for.
954  **/
955 static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
956 {
957         u32 swfw_sync;
958
959         while (igb_get_hw_semaphore(hw) != 0);
960         /* Empty */
961
962         swfw_sync = rd32(E1000_SW_FW_SYNC);
963         swfw_sync &= ~mask;
964         wr32(E1000_SW_FW_SYNC, swfw_sync);
965
966         igb_put_hw_semaphore(hw);
967 }
968
969 /**
970  *  igb_get_cfg_done_82575 - Read config done bit
971  *  @hw: pointer to the HW structure
972  *
973  *  Read the management control register for the config done bit for
974  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
975  *  to read the config done bit, so an error is *ONLY* logged and returns
976  *  0.  If we were to return with error, EEPROM-less silicon
977  *  would not be able to be reset or change link.
978  **/
979 static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
980 {
981         s32 timeout = PHY_CFG_TIMEOUT;
982         s32 ret_val = 0;
983         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
984
985         if (hw->bus.func == 1)
986                 mask = E1000_NVM_CFG_DONE_PORT_1;
987         else if (hw->bus.func == E1000_FUNC_2)
988                 mask = E1000_NVM_CFG_DONE_PORT_2;
989         else if (hw->bus.func == E1000_FUNC_3)
990                 mask = E1000_NVM_CFG_DONE_PORT_3;
991
992         while (timeout) {
993                 if (rd32(E1000_EEMNGCTL) & mask)
994                         break;
995                 msleep(1);
996                 timeout--;
997         }
998         if (!timeout)
999                 hw_dbg("MNG configuration cycle has not completed.\n");
1000
1001         /* If EEPROM is not marked present, init the PHY manually */
1002         if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1003             (hw->phy.type == e1000_phy_igp_3))
1004                 igb_phy_init_script_igp3(hw);
1005
1006         return ret_val;
1007 }
1008
1009 /**
1010  *  igb_check_for_link_82575 - Check for link
1011  *  @hw: pointer to the HW structure
1012  *
1013  *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1014  *  use the generic interface for determining link.
1015  **/
1016 static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1017 {
1018         s32 ret_val;
1019         u16 speed, duplex;
1020
1021         if (hw->phy.media_type != e1000_media_type_copper) {
1022                 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1023                                                              &duplex);
1024                 /*
1025                  * Use this flag to determine if link needs to be checked or
1026                  * not.  If  we have link clear the flag so that we do not
1027                  * continue to check for link.
1028                  */
1029                 hw->mac.get_link_status = !hw->mac.serdes_has_link;
1030         } else {
1031                 ret_val = igb_check_for_copper_link(hw);
1032         }
1033
1034         return ret_val;
1035 }
1036
1037 /**
1038  *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1039  *  @hw: pointer to the HW structure
1040  **/
1041 void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1042 {
1043         u32 reg;
1044
1045
1046         if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1047             !igb_sgmii_active_82575(hw))
1048                 return;
1049
1050         /* Enable PCS to turn on link */
1051         reg = rd32(E1000_PCS_CFG0);
1052         reg |= E1000_PCS_CFG_PCS_EN;
1053         wr32(E1000_PCS_CFG0, reg);
1054
1055         /* Power up the laser */
1056         reg = rd32(E1000_CTRL_EXT);
1057         reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1058         wr32(E1000_CTRL_EXT, reg);
1059
1060         /* flush the write to verify completion */
1061         wrfl();
1062         msleep(1);
1063 }
1064
1065 /**
1066  *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1067  *  @hw: pointer to the HW structure
1068  *  @speed: stores the current speed
1069  *  @duplex: stores the current duplex
1070  *
1071  *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1072  *  duplex, then store the values in the pointers provided.
1073  **/
1074 static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1075                                                 u16 *duplex)
1076 {
1077         struct e1000_mac_info *mac = &hw->mac;
1078         u32 pcs;
1079
1080         /* Set up defaults for the return values of this function */
1081         mac->serdes_has_link = false;
1082         *speed = 0;
1083         *duplex = 0;
1084
1085         /*
1086          * Read the PCS Status register for link state. For non-copper mode,
1087          * the status register is not accurate. The PCS status register is
1088          * used instead.
1089          */
1090         pcs = rd32(E1000_PCS_LSTAT);
1091
1092         /*
1093          * The link up bit determines when link is up on autoneg. The sync ok
1094          * gets set once both sides sync up and agree upon link. Stable link
1095          * can be determined by checking for both link up and link sync ok
1096          */
1097         if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1098                 mac->serdes_has_link = true;
1099
1100                 /* Detect and store PCS speed */
1101                 if (pcs & E1000_PCS_LSTS_SPEED_1000) {
1102                         *speed = SPEED_1000;
1103                 } else if (pcs & E1000_PCS_LSTS_SPEED_100) {
1104                         *speed = SPEED_100;
1105                 } else {
1106                         *speed = SPEED_10;
1107                 }
1108
1109                 /* Detect and store PCS duplex */
1110                 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
1111                         *duplex = FULL_DUPLEX;
1112                 } else {
1113                         *duplex = HALF_DUPLEX;
1114                 }
1115         }
1116
1117         return 0;
1118 }
1119
1120 /**
1121  *  igb_shutdown_serdes_link_82575 - Remove link during power down
1122  *  @hw: pointer to the HW structure
1123  *
1124  *  In the case of fiber serdes, shut down optics and PCS on driver unload
1125  *  when management pass thru is not enabled.
1126  **/
1127 void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1128 {
1129         u32 reg;
1130
1131         if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1132             igb_sgmii_active_82575(hw))
1133                 return;
1134
1135         if (!igb_enable_mng_pass_thru(hw)) {
1136                 /* Disable PCS to turn off link */
1137                 reg = rd32(E1000_PCS_CFG0);
1138                 reg &= ~E1000_PCS_CFG_PCS_EN;
1139                 wr32(E1000_PCS_CFG0, reg);
1140
1141                 /* shutdown the laser */
1142                 reg = rd32(E1000_CTRL_EXT);
1143                 reg |= E1000_CTRL_EXT_SDP3_DATA;
1144                 wr32(E1000_CTRL_EXT, reg);
1145
1146                 /* flush the write to verify completion */
1147                 wrfl();
1148                 msleep(1);
1149         }
1150 }
1151
1152 /**
1153  *  igb_reset_hw_82575 - Reset hardware
1154  *  @hw: pointer to the HW structure
1155  *
1156  *  This resets the hardware into a known state.  This is a
1157  *  function pointer entry point called by the api module.
1158  **/
1159 static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1160 {
1161         u32 ctrl, icr;
1162         s32 ret_val;
1163
1164         /*
1165          * Prevent the PCI-E bus from sticking if there is no TLP connection
1166          * on the last TLP read/write transaction when MAC is reset.
1167          */
1168         ret_val = igb_disable_pcie_master(hw);
1169         if (ret_val)
1170                 hw_dbg("PCI-E Master disable polling has failed.\n");
1171
1172         /* set the completion timeout for interface */
1173         ret_val = igb_set_pcie_completion_timeout(hw);
1174         if (ret_val) {
1175                 hw_dbg("PCI-E Set completion timeout has failed.\n");
1176         }
1177
1178         hw_dbg("Masking off all interrupts\n");
1179         wr32(E1000_IMC, 0xffffffff);
1180
1181         wr32(E1000_RCTL, 0);
1182         wr32(E1000_TCTL, E1000_TCTL_PSP);
1183         wrfl();
1184
1185         msleep(10);
1186
1187         ctrl = rd32(E1000_CTRL);
1188
1189         hw_dbg("Issuing a global reset to MAC\n");
1190         wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1191
1192         ret_val = igb_get_auto_rd_done(hw);
1193         if (ret_val) {
1194                 /*
1195                  * When auto config read does not complete, do not
1196                  * return with an error. This can happen in situations
1197                  * where there is no eeprom and prevents getting link.
1198                  */
1199                 hw_dbg("Auto Read Done did not complete\n");
1200         }
1201
1202         /* If EEPROM is not present, run manual init scripts */
1203         if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1204                 igb_reset_init_script_82575(hw);
1205
1206         /* Clear any pending interrupt events. */
1207         wr32(E1000_IMC, 0xffffffff);
1208         icr = rd32(E1000_ICR);
1209
1210         /* Install any alternate MAC address into RAR0 */
1211         ret_val = igb_check_alt_mac_addr(hw);
1212
1213         return ret_val;
1214 }
1215
1216 /**
1217  *  igb_init_hw_82575 - Initialize hardware
1218  *  @hw: pointer to the HW structure
1219  *
1220  *  This inits the hardware readying it for operation.
1221  **/
1222 static s32 igb_init_hw_82575(struct e1000_hw *hw)
1223 {
1224         struct e1000_mac_info *mac = &hw->mac;
1225         s32 ret_val;
1226         u16 i, rar_count = mac->rar_entry_count;
1227
1228         /* Initialize identification LED */
1229         ret_val = igb_id_led_init(hw);
1230         if (ret_val) {
1231                 hw_dbg("Error initializing identification LED\n");
1232                 /* This is not fatal and we should not stop init due to this */
1233         }
1234
1235         /* Disabling VLAN filtering */
1236         hw_dbg("Initializing the IEEE VLAN\n");
1237         if (hw->mac.type == e1000_i350)
1238                 igb_clear_vfta_i350(hw);
1239         else
1240                 igb_clear_vfta(hw);
1241
1242         /* Setup the receive address */
1243         igb_init_rx_addrs(hw, rar_count);
1244
1245         /* Zero out the Multicast HASH table */
1246         hw_dbg("Zeroing the MTA\n");
1247         for (i = 0; i < mac->mta_reg_count; i++)
1248                 array_wr32(E1000_MTA, i, 0);
1249
1250         /* Zero out the Unicast HASH table */
1251         hw_dbg("Zeroing the UTA\n");
1252         for (i = 0; i < mac->uta_reg_count; i++)
1253                 array_wr32(E1000_UTA, i, 0);
1254
1255         /* Setup link and flow control */
1256         ret_val = igb_setup_link(hw);
1257
1258         /*
1259          * Clear all of the statistics registers (clear on read).  It is
1260          * important that we do this after we have tried to establish link
1261          * because the symbol error count will increment wildly if there
1262          * is no link.
1263          */
1264         igb_clear_hw_cntrs_82575(hw);
1265         return ret_val;
1266 }
1267
1268 /**
1269  *  igb_setup_copper_link_82575 - Configure copper link settings
1270  *  @hw: pointer to the HW structure
1271  *
1272  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1273  *  for link, once link is established calls to configure collision distance
1274  *  and flow control are called.
1275  **/
1276 static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1277 {
1278         u32 ctrl;
1279         s32  ret_val;
1280
1281         ctrl = rd32(E1000_CTRL);
1282         ctrl |= E1000_CTRL_SLU;
1283         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1284         wr32(E1000_CTRL, ctrl);
1285
1286         ret_val = igb_setup_serdes_link_82575(hw);
1287         if (ret_val)
1288                 goto out;
1289
1290         if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1291                 /* allow time for SFP cage time to power up phy */
1292                 msleep(300);
1293
1294                 ret_val = hw->phy.ops.reset(hw);
1295                 if (ret_val) {
1296                         hw_dbg("Error resetting the PHY.\n");
1297                         goto out;
1298                 }
1299         }
1300         switch (hw->phy.type) {
1301         case e1000_phy_i210:
1302         case e1000_phy_m88:
1303                 if (hw->phy.id == I347AT4_E_PHY_ID ||
1304                     hw->phy.id == M88E1112_E_PHY_ID)
1305                         ret_val = igb_copper_link_setup_m88_gen2(hw);
1306                 else
1307                         ret_val = igb_copper_link_setup_m88(hw);
1308                 break;
1309         case e1000_phy_igp_3:
1310                 ret_val = igb_copper_link_setup_igp(hw);
1311                 break;
1312         case e1000_phy_82580:
1313                 ret_val = igb_copper_link_setup_82580(hw);
1314                 break;
1315         default:
1316                 ret_val = -E1000_ERR_PHY;
1317                 break;
1318         }
1319
1320         if (ret_val)
1321                 goto out;
1322
1323         ret_val = igb_setup_copper_link(hw);
1324 out:
1325         return ret_val;
1326 }
1327
1328 /**
1329  *  igb_setup_serdes_link_82575 - Setup link for serdes
1330  *  @hw: pointer to the HW structure
1331  *
1332  *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1333  *  used on copper connections where the serialized gigabit media independent
1334  *  interface (sgmii), or serdes fiber is being used.  Configures the link
1335  *  for auto-negotiation or forces speed/duplex.
1336  **/
1337 static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1338 {
1339         u32 ctrl_ext, ctrl_reg, reg;
1340         bool pcs_autoneg;
1341         s32 ret_val = E1000_SUCCESS;
1342         u16 data;
1343
1344         if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1345             !igb_sgmii_active_82575(hw))
1346                 return ret_val;
1347
1348
1349         /*
1350          * On the 82575, SerDes loopback mode persists until it is
1351          * explicitly turned off or a power cycle is performed.  A read to
1352          * the register does not indicate its status.  Therefore, we ensure
1353          * loopback mode is disabled during initialization.
1354          */
1355         wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1356
1357         /* power on the sfp cage if present */
1358         ctrl_ext = rd32(E1000_CTRL_EXT);
1359         ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1360         wr32(E1000_CTRL_EXT, ctrl_ext);
1361
1362         ctrl_reg = rd32(E1000_CTRL);
1363         ctrl_reg |= E1000_CTRL_SLU;
1364
1365         if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1366                 /* set both sw defined pins */
1367                 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1368
1369                 /* Set switch control to serdes energy detect */
1370                 reg = rd32(E1000_CONNSW);
1371                 reg |= E1000_CONNSW_ENRGSRC;
1372                 wr32(E1000_CONNSW, reg);
1373         }
1374
1375         reg = rd32(E1000_PCS_LCTL);
1376
1377         /* default pcs_autoneg to the same setting as mac autoneg */
1378         pcs_autoneg = hw->mac.autoneg;
1379
1380         switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1381         case E1000_CTRL_EXT_LINK_MODE_SGMII:
1382                 /* sgmii mode lets the phy handle forcing speed/duplex */
1383                 pcs_autoneg = true;
1384                 /* autoneg time out should be disabled for SGMII mode */
1385                 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1386                 break;
1387         case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1388                 /* disable PCS autoneg and support parallel detect only */
1389                 pcs_autoneg = false;
1390         default:
1391                 if (hw->mac.type == e1000_82575 ||
1392                     hw->mac.type == e1000_82576) {
1393                         ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1394                         if (ret_val) {
1395                                 printk(KERN_DEBUG "NVM Read Error\n\n");
1396                                 return ret_val;
1397                         }
1398
1399                         if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1400                                 pcs_autoneg = false;
1401                 }
1402
1403                 /*
1404                  * non-SGMII modes only supports a speed of 1000/Full for the
1405                  * link so it is best to just force the MAC and let the pcs
1406                  * link either autoneg or be forced to 1000/Full
1407                  */
1408                 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1409                             E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1410
1411                 /* set speed of 1000/Full if speed/duplex is forced */
1412                 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1413                 break;
1414         }
1415
1416         wr32(E1000_CTRL, ctrl_reg);
1417
1418         /*
1419          * New SerDes mode allows for forcing speed or autonegotiating speed
1420          * at 1gb. Autoneg should be default set by most drivers. This is the
1421          * mode that will be compatible with older link partners and switches.
1422          * However, both are supported by the hardware and some drivers/tools.
1423          */
1424         reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1425                 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1426
1427         /*
1428          * We force flow control to prevent the CTRL register values from being
1429          * overwritten by the autonegotiated flow control values
1430          */
1431         reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1432
1433         if (pcs_autoneg) {
1434                 /* Set PCS register for autoneg */
1435                 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1436                        E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1437                 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1438         } else {
1439                 /* Set PCS register for forced link */
1440                 reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1441
1442                 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1443         }
1444
1445         wr32(E1000_PCS_LCTL, reg);
1446
1447         if (!igb_sgmii_active_82575(hw))
1448                 igb_force_mac_fc(hw);
1449
1450         return ret_val;
1451 }
1452
1453 /**
1454  *  igb_sgmii_active_82575 - Return sgmii state
1455  *  @hw: pointer to the HW structure
1456  *
1457  *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1458  *  which can be enabled for use in the embedded applications.  Simply
1459  *  return the current state of the sgmii interface.
1460  **/
1461 static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1462 {
1463         struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1464         return dev_spec->sgmii_active;
1465 }
1466
1467 /**
1468  *  igb_reset_init_script_82575 - Inits HW defaults after reset
1469  *  @hw: pointer to the HW structure
1470  *
1471  *  Inits recommended HW defaults after a reset when there is no EEPROM
1472  *  detected. This is only for the 82575.
1473  **/
1474 static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1475 {
1476         if (hw->mac.type == e1000_82575) {
1477                 hw_dbg("Running reset init script for 82575\n");
1478                 /* SerDes configuration via SERDESCTRL */
1479                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1480                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1481                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1482                 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1483
1484                 /* CCM configuration via CCMCTL register */
1485                 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1486                 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1487
1488                 /* PCIe lanes configuration */
1489                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1490                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1491                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1492                 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1493
1494                 /* PCIe PLL Configuration */
1495                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1496                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1497                 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1498         }
1499
1500         return 0;
1501 }
1502
1503 /**
1504  *  igb_read_mac_addr_82575 - Read device MAC address
1505  *  @hw: pointer to the HW structure
1506  **/
1507 static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1508 {
1509         s32 ret_val = 0;
1510
1511         /*
1512          * If there's an alternate MAC address place it in RAR0
1513          * so that it will override the Si installed default perm
1514          * address.
1515          */
1516         ret_val = igb_check_alt_mac_addr(hw);
1517         if (ret_val)
1518                 goto out;
1519
1520         ret_val = igb_read_mac_addr(hw);
1521
1522 out:
1523         return ret_val;
1524 }
1525
1526 /**
1527  * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1528  * @hw: pointer to the HW structure
1529  *
1530  * In the case of a PHY power down to save power, or to turn off link during a
1531  * driver unload, or wake on lan is not enabled, remove the link.
1532  **/
1533 void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1534 {
1535         /* If the management interface is not enabled, then power down */
1536         if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1537                 igb_power_down_phy_copper(hw);
1538 }
1539
1540 /**
1541  *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1542  *  @hw: pointer to the HW structure
1543  *
1544  *  Clears the hardware counters by reading the counter registers.
1545  **/
1546 static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1547 {
1548         igb_clear_hw_cntrs_base(hw);
1549
1550         rd32(E1000_PRC64);
1551         rd32(E1000_PRC127);
1552         rd32(E1000_PRC255);
1553         rd32(E1000_PRC511);
1554         rd32(E1000_PRC1023);
1555         rd32(E1000_PRC1522);
1556         rd32(E1000_PTC64);
1557         rd32(E1000_PTC127);
1558         rd32(E1000_PTC255);
1559         rd32(E1000_PTC511);
1560         rd32(E1000_PTC1023);
1561         rd32(E1000_PTC1522);
1562
1563         rd32(E1000_ALGNERRC);
1564         rd32(E1000_RXERRC);
1565         rd32(E1000_TNCRS);
1566         rd32(E1000_CEXTERR);
1567         rd32(E1000_TSCTC);
1568         rd32(E1000_TSCTFC);
1569
1570         rd32(E1000_MGTPRC);
1571         rd32(E1000_MGTPDC);
1572         rd32(E1000_MGTPTC);
1573
1574         rd32(E1000_IAC);
1575         rd32(E1000_ICRXOC);
1576
1577         rd32(E1000_ICRXPTC);
1578         rd32(E1000_ICRXATC);
1579         rd32(E1000_ICTXPTC);
1580         rd32(E1000_ICTXATC);
1581         rd32(E1000_ICTXQEC);
1582         rd32(E1000_ICTXQMTC);
1583         rd32(E1000_ICRXDMTC);
1584
1585         rd32(E1000_CBTMPC);
1586         rd32(E1000_HTDPMC);
1587         rd32(E1000_CBRMPC);
1588         rd32(E1000_RPTHC);
1589         rd32(E1000_HGPTC);
1590         rd32(E1000_HTCBDPC);
1591         rd32(E1000_HGORCL);
1592         rd32(E1000_HGORCH);
1593         rd32(E1000_HGOTCL);
1594         rd32(E1000_HGOTCH);
1595         rd32(E1000_LENERRS);
1596
1597         /* This register should not be read in copper configurations */
1598         if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1599             igb_sgmii_active_82575(hw))
1600                 rd32(E1000_SCVPC);
1601 }
1602
1603 /**
1604  *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1605  *  @hw: pointer to the HW structure
1606  *
1607  *  After rx enable if managability is enabled then there is likely some
1608  *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1609  *  function clears the fifos and flushes any packets that came in as rx was
1610  *  being enabled.
1611  **/
1612 void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1613 {
1614         u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1615         int i, ms_wait;
1616
1617         if (hw->mac.type != e1000_82575 ||
1618             !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1619                 return;
1620
1621         /* Disable all RX queues */
1622         for (i = 0; i < 4; i++) {
1623                 rxdctl[i] = rd32(E1000_RXDCTL(i));
1624                 wr32(E1000_RXDCTL(i),
1625                      rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1626         }
1627         /* Poll all queues to verify they have shut down */
1628         for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1629                 msleep(1);
1630                 rx_enabled = 0;
1631                 for (i = 0; i < 4; i++)
1632                         rx_enabled |= rd32(E1000_RXDCTL(i));
1633                 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1634                         break;
1635         }
1636
1637         if (ms_wait == 10)
1638                 hw_dbg("Queue disable timed out after 10ms\n");
1639
1640         /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1641          * incoming packets are rejected.  Set enable and wait 2ms so that
1642          * any packet that was coming in as RCTL.EN was set is flushed
1643          */
1644         rfctl = rd32(E1000_RFCTL);
1645         wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1646
1647         rlpml = rd32(E1000_RLPML);
1648         wr32(E1000_RLPML, 0);
1649
1650         rctl = rd32(E1000_RCTL);
1651         temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1652         temp_rctl |= E1000_RCTL_LPE;
1653
1654         wr32(E1000_RCTL, temp_rctl);
1655         wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1656         wrfl();
1657         msleep(2);
1658
1659         /* Enable RX queues that were previously enabled and restore our
1660          * previous state
1661          */
1662         for (i = 0; i < 4; i++)
1663                 wr32(E1000_RXDCTL(i), rxdctl[i]);
1664         wr32(E1000_RCTL, rctl);
1665         wrfl();
1666
1667         wr32(E1000_RLPML, rlpml);
1668         wr32(E1000_RFCTL, rfctl);
1669
1670         /* Flush receive errors generated by workaround */
1671         rd32(E1000_ROC);
1672         rd32(E1000_RNBC);
1673         rd32(E1000_MPC);
1674 }
1675
1676 /**
1677  *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1678  *  @hw: pointer to the HW structure
1679  *
1680  *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1681  *  however the hardware default for these parts is 500us to 1ms which is less
1682  *  than the 10ms recommended by the pci-e spec.  To address this we need to
1683  *  increase the value to either 10ms to 200ms for capability version 1 config,
1684  *  or 16ms to 55ms for version 2.
1685  **/
1686 static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1687 {
1688         u32 gcr = rd32(E1000_GCR);
1689         s32 ret_val = 0;
1690         u16 pcie_devctl2;
1691
1692         /* only take action if timeout value is defaulted to 0 */
1693         if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1694                 goto out;
1695
1696         /*
1697          * if capababilities version is type 1 we can write the
1698          * timeout of 10ms to 200ms through the GCR register
1699          */
1700         if (!(gcr & E1000_GCR_CAP_VER2)) {
1701                 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1702                 goto out;
1703         }
1704
1705         /*
1706          * for version 2 capabilities we need to write the config space
1707          * directly in order to set the completion timeout value for
1708          * 16ms to 55ms
1709          */
1710         ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1711                                         &pcie_devctl2);
1712         if (ret_val)
1713                 goto out;
1714
1715         pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1716
1717         ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1718                                          &pcie_devctl2);
1719 out:
1720         /* disable completion timeout resend */
1721         gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1722
1723         wr32(E1000_GCR, gcr);
1724         return ret_val;
1725 }
1726
1727 /**
1728  *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1729  *  @hw: pointer to the hardware struct
1730  *  @enable: state to enter, either enabled or disabled
1731  *  @pf: Physical Function pool - do not set anti-spoofing for the PF
1732  *
1733  *  enables/disables L2 switch anti-spoofing functionality.
1734  **/
1735 void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1736 {
1737         u32 dtxswc;
1738
1739         switch (hw->mac.type) {
1740         case e1000_82576:
1741         case e1000_i350:
1742                 dtxswc = rd32(E1000_DTXSWC);
1743                 if (enable) {
1744                         dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1745                                    E1000_DTXSWC_VLAN_SPOOF_MASK);
1746                         /* The PF can spoof - it has to in order to
1747                          * support emulation mode NICs */
1748                         dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1749                 } else {
1750                         dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1751                                     E1000_DTXSWC_VLAN_SPOOF_MASK);
1752                 }
1753                 wr32(E1000_DTXSWC, dtxswc);
1754                 break;
1755         default:
1756                 break;
1757         }
1758 }
1759
1760 /**
1761  *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1762  *  @hw: pointer to the hardware struct
1763  *  @enable: state to enter, either enabled or disabled
1764  *
1765  *  enables/disables L2 switch loopback functionality.
1766  **/
1767 void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1768 {
1769         u32 dtxswc;
1770
1771         switch (hw->mac.type) {
1772         case e1000_82576:
1773                 dtxswc = rd32(E1000_DTXSWC);
1774                 if (enable)
1775                         dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1776                 else
1777                         dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1778                 wr32(E1000_DTXSWC, dtxswc);
1779                 break;
1780         case e1000_i350:
1781                 dtxswc = rd32(E1000_TXSWC);
1782                 if (enable)
1783                         dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1784                 else
1785                         dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1786                 wr32(E1000_TXSWC, dtxswc);
1787                 break;
1788         default:
1789                 /* Currently no other hardware supports loopback */
1790                 break;
1791         }
1792
1793
1794 }
1795
1796 /**
1797  *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
1798  *  @hw: pointer to the hardware struct
1799  *  @enable: state to enter, either enabled or disabled
1800  *
1801  *  enables/disables replication of packets across multiple pools.
1802  **/
1803 void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1804 {
1805         u32 vt_ctl = rd32(E1000_VT_CTL);
1806
1807         if (enable)
1808                 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1809         else
1810                 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1811
1812         wr32(E1000_VT_CTL, vt_ctl);
1813 }
1814
1815 /**
1816  *  igb_read_phy_reg_82580 - Read 82580 MDI control register
1817  *  @hw: pointer to the HW structure
1818  *  @offset: register offset to be read
1819  *  @data: pointer to the read data
1820  *
1821  *  Reads the MDI control register in the PHY at offset and stores the
1822  *  information read to data.
1823  **/
1824 static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1825 {
1826         s32 ret_val;
1827
1828
1829         ret_val = hw->phy.ops.acquire(hw);
1830         if (ret_val)
1831                 goto out;
1832
1833         ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1834
1835         hw->phy.ops.release(hw);
1836
1837 out:
1838         return ret_val;
1839 }
1840
1841 /**
1842  *  igb_write_phy_reg_82580 - Write 82580 MDI control register
1843  *  @hw: pointer to the HW structure
1844  *  @offset: register offset to write to
1845  *  @data: data to write to register at offset
1846  *
1847  *  Writes data to MDI control register in the PHY at offset.
1848  **/
1849 static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1850 {
1851         s32 ret_val;
1852
1853
1854         ret_val = hw->phy.ops.acquire(hw);
1855         if (ret_val)
1856                 goto out;
1857
1858         ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1859
1860         hw->phy.ops.release(hw);
1861
1862 out:
1863         return ret_val;
1864 }
1865
1866 /**
1867  *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1868  *  @hw: pointer to the HW structure
1869  *
1870  *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1871  *  the values found in the EEPROM.  This addresses an issue in which these
1872  *  bits are not restored from EEPROM after reset.
1873  **/
1874 static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1875 {
1876         s32 ret_val = 0;
1877         u32 mdicnfg;
1878         u16 nvm_data = 0;
1879
1880         if (hw->mac.type != e1000_82580)
1881                 goto out;
1882         if (!igb_sgmii_active_82575(hw))
1883                 goto out;
1884
1885         ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1886                                    NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1887                                    &nvm_data);
1888         if (ret_val) {
1889                 hw_dbg("NVM Read Error\n");
1890                 goto out;
1891         }
1892
1893         mdicnfg = rd32(E1000_MDICNFG);
1894         if (nvm_data & NVM_WORD24_EXT_MDIO)
1895                 mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1896         if (nvm_data & NVM_WORD24_COM_MDIO)
1897                 mdicnfg |= E1000_MDICNFG_COM_MDIO;
1898         wr32(E1000_MDICNFG, mdicnfg);
1899 out:
1900         return ret_val;
1901 }
1902
1903 /**
1904  *  igb_reset_hw_82580 - Reset hardware
1905  *  @hw: pointer to the HW structure
1906  *
1907  *  This resets function or entire device (all ports, etc.)
1908  *  to a known state.
1909  **/
1910 static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1911 {
1912         s32 ret_val = 0;
1913         /* BH SW mailbox bit in SW_FW_SYNC */
1914         u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1915         u32 ctrl, icr;
1916         bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1917
1918
1919         hw->dev_spec._82575.global_device_reset = false;
1920
1921         /* Get current control state. */
1922         ctrl = rd32(E1000_CTRL);
1923
1924         /*
1925          * Prevent the PCI-E bus from sticking if there is no TLP connection
1926          * on the last TLP read/write transaction when MAC is reset.
1927          */
1928         ret_val = igb_disable_pcie_master(hw);
1929         if (ret_val)
1930                 hw_dbg("PCI-E Master disable polling has failed.\n");
1931
1932         hw_dbg("Masking off all interrupts\n");
1933         wr32(E1000_IMC, 0xffffffff);
1934         wr32(E1000_RCTL, 0);
1935         wr32(E1000_TCTL, E1000_TCTL_PSP);
1936         wrfl();
1937
1938         msleep(10);
1939
1940         /* Determine whether or not a global dev reset is requested */
1941         if (global_device_reset &&
1942                 hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
1943                         global_device_reset = false;
1944
1945         if (global_device_reset &&
1946                 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
1947                 ctrl |= E1000_CTRL_DEV_RST;
1948         else
1949                 ctrl |= E1000_CTRL_RST;
1950
1951         wr32(E1000_CTRL, ctrl);
1952         wrfl();
1953
1954         /* Add delay to insure DEV_RST has time to complete */
1955         if (global_device_reset)
1956                 msleep(5);
1957
1958         ret_val = igb_get_auto_rd_done(hw);
1959         if (ret_val) {
1960                 /*
1961                  * When auto config read does not complete, do not
1962                  * return with an error. This can happen in situations
1963                  * where there is no eeprom and prevents getting link.
1964                  */
1965                 hw_dbg("Auto Read Done did not complete\n");
1966         }
1967
1968         /* If EEPROM is not present, run manual init scripts */
1969         if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1970                 igb_reset_init_script_82575(hw);
1971
1972         /* clear global device reset status bit */
1973         wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
1974
1975         /* Clear any pending interrupt events. */
1976         wr32(E1000_IMC, 0xffffffff);
1977         icr = rd32(E1000_ICR);
1978
1979         ret_val = igb_reset_mdicnfg_82580(hw);
1980         if (ret_val)
1981                 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
1982
1983         /* Install any alternate MAC address into RAR0 */
1984         ret_val = igb_check_alt_mac_addr(hw);
1985
1986         /* Release semaphore */
1987         if (global_device_reset)
1988                 hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
1989
1990         return ret_val;
1991 }
1992
1993 /**
1994  *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1995  *  @data: data received by reading RXPBS register
1996  *
1997  *  The 82580 uses a table based approach for packet buffer allocation sizes.
1998  *  This function converts the retrieved value into the correct table value
1999  *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2000  *  0x0 36  72 144   1   2   4   8  16
2001  *  0x8 35  70 140 rsv rsv rsv rsv rsv
2002  */
2003 u16 igb_rxpbs_adjust_82580(u32 data)
2004 {
2005         u16 ret_val = 0;
2006
2007         if (data < E1000_82580_RXPBS_TABLE_SIZE)
2008                 ret_val = e1000_82580_rxpbs_table[data];
2009
2010         return ret_val;
2011 }
2012
2013 /**
2014  *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2015  *  checksum
2016  *  @hw: pointer to the HW structure
2017  *  @offset: offset in words of the checksum protected region
2018  *
2019  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2020  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2021  **/
2022 static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2023                                                  u16 offset)
2024 {
2025         s32 ret_val = 0;
2026         u16 checksum = 0;
2027         u16 i, nvm_data;
2028
2029         for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2030                 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2031                 if (ret_val) {
2032                         hw_dbg("NVM Read Error\n");
2033                         goto out;
2034                 }
2035                 checksum += nvm_data;
2036         }
2037
2038         if (checksum != (u16) NVM_SUM) {
2039                 hw_dbg("NVM Checksum Invalid\n");
2040                 ret_val = -E1000_ERR_NVM;
2041                 goto out;
2042         }
2043
2044 out:
2045         return ret_val;
2046 }
2047
2048 /**
2049  *  igb_update_nvm_checksum_with_offset - Update EEPROM
2050  *  checksum
2051  *  @hw: pointer to the HW structure
2052  *  @offset: offset in words of the checksum protected region
2053  *
2054  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2055  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2056  *  value to the EEPROM.
2057  **/
2058 static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2059 {
2060         s32 ret_val;
2061         u16 checksum = 0;
2062         u16 i, nvm_data;
2063
2064         for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2065                 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2066                 if (ret_val) {
2067                         hw_dbg("NVM Read Error while updating checksum.\n");
2068                         goto out;
2069                 }
2070                 checksum += nvm_data;
2071         }
2072         checksum = (u16) NVM_SUM - checksum;
2073         ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2074                                 &checksum);
2075         if (ret_val)
2076                 hw_dbg("NVM Write Error while updating checksum.\n");
2077
2078 out:
2079         return ret_val;
2080 }
2081
2082 /**
2083  *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2084  *  @hw: pointer to the HW structure
2085  *
2086  *  Calculates the EEPROM section checksum by reading/adding each word of
2087  *  the EEPROM and then verifies that the sum of the EEPROM is
2088  *  equal to 0xBABA.
2089  **/
2090 static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2091 {
2092         s32 ret_val = 0;
2093         u16 eeprom_regions_count = 1;
2094         u16 j, nvm_data;
2095         u16 nvm_offset;
2096
2097         ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2098         if (ret_val) {
2099                 hw_dbg("NVM Read Error\n");
2100                 goto out;
2101         }
2102
2103         if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2104                 /* if checksums compatibility bit is set validate checksums
2105                  * for all 4 ports. */
2106                 eeprom_regions_count = 4;
2107         }
2108
2109         for (j = 0; j < eeprom_regions_count; j++) {
2110                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2111                 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2112                                                                 nvm_offset);
2113                 if (ret_val != 0)
2114                         goto out;
2115         }
2116
2117 out:
2118         return ret_val;
2119 }
2120
2121 /**
2122  *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2123  *  @hw: pointer to the HW structure
2124  *
2125  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2126  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2127  *  checksum and writes the value to the EEPROM.
2128  **/
2129 static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2130 {
2131         s32 ret_val;
2132         u16 j, nvm_data;
2133         u16 nvm_offset;
2134
2135         ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2136         if (ret_val) {
2137                 hw_dbg("NVM Read Error while updating checksum"
2138                         " compatibility bit.\n");
2139                 goto out;
2140         }
2141
2142         if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2143                 /* set compatibility bit to validate checksums appropriately */
2144                 nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2145                 ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2146                                         &nvm_data);
2147                 if (ret_val) {
2148                         hw_dbg("NVM Write Error while updating checksum"
2149                                 " compatibility bit.\n");
2150                         goto out;
2151                 }
2152         }
2153
2154         for (j = 0; j < 4; j++) {
2155                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2156                 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2157                 if (ret_val)
2158                         goto out;
2159         }
2160
2161 out:
2162         return ret_val;
2163 }
2164
2165 /**
2166  *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2167  *  @hw: pointer to the HW structure
2168  *
2169  *  Calculates the EEPROM section checksum by reading/adding each word of
2170  *  the EEPROM and then verifies that the sum of the EEPROM is
2171  *  equal to 0xBABA.
2172  **/
2173 static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2174 {
2175         s32 ret_val = 0;
2176         u16 j;
2177         u16 nvm_offset;
2178
2179         for (j = 0; j < 4; j++) {
2180                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2181                 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2182                                                                 nvm_offset);
2183                 if (ret_val != 0)
2184                         goto out;
2185         }
2186
2187 out:
2188         return ret_val;
2189 }
2190
2191 /**
2192  *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2193  *  @hw: pointer to the HW structure
2194  *
2195  *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2196  *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2197  *  checksum and writes the value to the EEPROM.
2198  **/
2199 static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2200 {
2201         s32 ret_val = 0;
2202         u16 j;
2203         u16 nvm_offset;
2204
2205         for (j = 0; j < 4; j++) {
2206                 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2207                 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2208                 if (ret_val != 0)
2209                         goto out;
2210         }
2211
2212 out:
2213         return ret_val;
2214 }
2215
2216 /**
2217  *  igb_set_eee_i350 - Enable/disable EEE support
2218  *  @hw: pointer to the HW structure
2219  *
2220  *  Enable/disable EEE based on setting in dev_spec structure.
2221  *
2222  **/
2223 s32 igb_set_eee_i350(struct e1000_hw *hw)
2224 {
2225         s32 ret_val = 0;
2226         u32 ipcnfg, eeer, ctrl_ext;
2227
2228         ctrl_ext = rd32(E1000_CTRL_EXT);
2229         if ((hw->mac.type != e1000_i350) ||
2230             (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK))
2231                 goto out;
2232         ipcnfg = rd32(E1000_IPCNFG);
2233         eeer = rd32(E1000_EEER);
2234
2235         /* enable or disable per user setting */
2236         if (!(hw->dev_spec._82575.eee_disable)) {
2237                 ipcnfg |= (E1000_IPCNFG_EEE_1G_AN |
2238                         E1000_IPCNFG_EEE_100M_AN);
2239                 eeer |= (E1000_EEER_TX_LPI_EN |
2240                         E1000_EEER_RX_LPI_EN |
2241                         E1000_EEER_LPI_FC);
2242
2243         } else {
2244                 ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2245                         E1000_IPCNFG_EEE_100M_AN);
2246                 eeer &= ~(E1000_EEER_TX_LPI_EN |
2247                         E1000_EEER_RX_LPI_EN |
2248                         E1000_EEER_LPI_FC);
2249         }
2250         wr32(E1000_IPCNFG, ipcnfg);
2251         wr32(E1000_EEER, eeer);
2252 out:
2253
2254         return ret_val;
2255 }
2256
2257 static struct e1000_mac_operations e1000_mac_ops_82575 = {
2258         .init_hw              = igb_init_hw_82575,
2259         .check_for_link       = igb_check_for_link_82575,
2260         .rar_set              = igb_rar_set,
2261         .read_mac_addr        = igb_read_mac_addr_82575,
2262         .get_speed_and_duplex = igb_get_speed_and_duplex_copper,
2263 };
2264
2265 static struct e1000_phy_operations e1000_phy_ops_82575 = {
2266         .acquire              = igb_acquire_phy_82575,
2267         .get_cfg_done         = igb_get_cfg_done_82575,
2268         .release              = igb_release_phy_82575,
2269 };
2270
2271 static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2272         .acquire              = igb_acquire_nvm_82575,
2273         .read                 = igb_read_nvm_eerd,
2274         .release              = igb_release_nvm_82575,
2275         .write                = igb_write_nvm_spi,
2276 };
2277
2278 const struct e1000_info e1000_82575_info = {
2279         .get_invariants = igb_get_invariants_82575,
2280         .mac_ops = &e1000_mac_ops_82575,
2281         .phy_ops = &e1000_phy_ops_82575,
2282         .nvm_ops = &e1000_nvm_ops_82575,
2283 };
2284