]> Pileus Git - ~andy/linux/blob - drivers/net/ethernet/intel/e1000e/netdev.c
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[~andy/linux] / drivers / net / ethernet / intel / e1000e / netdev.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/interrupt.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/mii.h>
46 #include <linux/ethtool.h>
47 #include <linux/if_vlan.h>
48 #include <linux/cpu.h>
49 #include <linux/smp.h>
50 #include <linux/pm_qos.h>
51 #include <linux/pm_runtime.h>
52 #include <linux/aer.h>
53 #include <linux/prefetch.h>
54
55 #include "e1000.h"
56
57 #define DRV_EXTRAVERSION "-k"
58
59 #define DRV_VERSION "2.0.0" DRV_EXTRAVERSION
60 char e1000e_driver_name[] = "e1000e";
61 const char e1000e_driver_version[] = DRV_VERSION;
62
63 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
64 static int debug = -1;
65 module_param(debug, int, 0);
66 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
67
68 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
69
70 static const struct e1000_info *e1000_info_tbl[] = {
71         [board_82571]           = &e1000_82571_info,
72         [board_82572]           = &e1000_82572_info,
73         [board_82573]           = &e1000_82573_info,
74         [board_82574]           = &e1000_82574_info,
75         [board_82583]           = &e1000_82583_info,
76         [board_80003es2lan]     = &e1000_es2_info,
77         [board_ich8lan]         = &e1000_ich8_info,
78         [board_ich9lan]         = &e1000_ich9_info,
79         [board_ich10lan]        = &e1000_ich10_info,
80         [board_pchlan]          = &e1000_pch_info,
81         [board_pch2lan]         = &e1000_pch2_info,
82         [board_pch_lpt]         = &e1000_pch_lpt_info,
83 };
84
85 struct e1000_reg_info {
86         u32 ofs;
87         char *name;
88 };
89
90 #define E1000_RDFH      0x02410 /* Rx Data FIFO Head - RW */
91 #define E1000_RDFT      0x02418 /* Rx Data FIFO Tail - RW */
92 #define E1000_RDFHS     0x02420 /* Rx Data FIFO Head Saved - RW */
93 #define E1000_RDFTS     0x02428 /* Rx Data FIFO Tail Saved - RW */
94 #define E1000_RDFPC     0x02430 /* Rx Data FIFO Packet Count - RW */
95
96 #define E1000_TDFH      0x03410 /* Tx Data FIFO Head - RW */
97 #define E1000_TDFT      0x03418 /* Tx Data FIFO Tail - RW */
98 #define E1000_TDFHS     0x03420 /* Tx Data FIFO Head Saved - RW */
99 #define E1000_TDFTS     0x03428 /* Tx Data FIFO Tail Saved - RW */
100 #define E1000_TDFPC     0x03430 /* Tx Data FIFO Packet Count - RW */
101
102 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
103
104         /* General Registers */
105         {E1000_CTRL, "CTRL"},
106         {E1000_STATUS, "STATUS"},
107         {E1000_CTRL_EXT, "CTRL_EXT"},
108
109         /* Interrupt Registers */
110         {E1000_ICR, "ICR"},
111
112         /* Rx Registers */
113         {E1000_RCTL, "RCTL"},
114         {E1000_RDLEN(0), "RDLEN"},
115         {E1000_RDH(0), "RDH"},
116         {E1000_RDT(0), "RDT"},
117         {E1000_RDTR, "RDTR"},
118         {E1000_RXDCTL(0), "RXDCTL"},
119         {E1000_ERT, "ERT"},
120         {E1000_RDBAL(0), "RDBAL"},
121         {E1000_RDBAH(0), "RDBAH"},
122         {E1000_RDFH, "RDFH"},
123         {E1000_RDFT, "RDFT"},
124         {E1000_RDFHS, "RDFHS"},
125         {E1000_RDFTS, "RDFTS"},
126         {E1000_RDFPC, "RDFPC"},
127
128         /* Tx Registers */
129         {E1000_TCTL, "TCTL"},
130         {E1000_TDBAL(0), "TDBAL"},
131         {E1000_TDBAH(0), "TDBAH"},
132         {E1000_TDLEN(0), "TDLEN"},
133         {E1000_TDH(0), "TDH"},
134         {E1000_TDT(0), "TDT"},
135         {E1000_TIDV, "TIDV"},
136         {E1000_TXDCTL(0), "TXDCTL"},
137         {E1000_TADV, "TADV"},
138         {E1000_TARC(0), "TARC"},
139         {E1000_TDFH, "TDFH"},
140         {E1000_TDFT, "TDFT"},
141         {E1000_TDFHS, "TDFHS"},
142         {E1000_TDFTS, "TDFTS"},
143         {E1000_TDFPC, "TDFPC"},
144
145         /* List Terminator */
146         {0, NULL}
147 };
148
149 /*
150  * e1000_regdump - register printout routine
151  */
152 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
153 {
154         int n = 0;
155         char rname[16];
156         u32 regs[8];
157
158         switch (reginfo->ofs) {
159         case E1000_RXDCTL(0):
160                 for (n = 0; n < 2; n++)
161                         regs[n] = __er32(hw, E1000_RXDCTL(n));
162                 break;
163         case E1000_TXDCTL(0):
164                 for (n = 0; n < 2; n++)
165                         regs[n] = __er32(hw, E1000_TXDCTL(n));
166                 break;
167         case E1000_TARC(0):
168                 for (n = 0; n < 2; n++)
169                         regs[n] = __er32(hw, E1000_TARC(n));
170                 break;
171         default:
172                 pr_info("%-15s %08x\n",
173                         reginfo->name, __er32(hw, reginfo->ofs));
174                 return;
175         }
176
177         snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
178         pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
179 }
180
181 /*
182  * e1000e_dump - Print registers, Tx-ring and Rx-ring
183  */
184 static void e1000e_dump(struct e1000_adapter *adapter)
185 {
186         struct net_device *netdev = adapter->netdev;
187         struct e1000_hw *hw = &adapter->hw;
188         struct e1000_reg_info *reginfo;
189         struct e1000_ring *tx_ring = adapter->tx_ring;
190         struct e1000_tx_desc *tx_desc;
191         struct my_u0 {
192                 __le64 a;
193                 __le64 b;
194         } *u0;
195         struct e1000_buffer *buffer_info;
196         struct e1000_ring *rx_ring = adapter->rx_ring;
197         union e1000_rx_desc_packet_split *rx_desc_ps;
198         union e1000_rx_desc_extended *rx_desc;
199         struct my_u1 {
200                 __le64 a;
201                 __le64 b;
202                 __le64 c;
203                 __le64 d;
204         } *u1;
205         u32 staterr;
206         int i = 0;
207
208         if (!netif_msg_hw(adapter))
209                 return;
210
211         /* Print netdevice Info */
212         if (netdev) {
213                 dev_info(&adapter->pdev->dev, "Net device Info\n");
214                 pr_info("Device Name     state            trans_start      last_rx\n");
215                 pr_info("%-15s %016lX %016lX %016lX\n",
216                         netdev->name, netdev->state, netdev->trans_start,
217                         netdev->last_rx);
218         }
219
220         /* Print Registers */
221         dev_info(&adapter->pdev->dev, "Register Dump\n");
222         pr_info(" Register Name   Value\n");
223         for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
224              reginfo->name; reginfo++) {
225                 e1000_regdump(hw, reginfo);
226         }
227
228         /* Print Tx Ring Summary */
229         if (!netdev || !netif_running(netdev))
230                 return;
231
232         dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
233         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
234         buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
235         pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
236                 0, tx_ring->next_to_use, tx_ring->next_to_clean,
237                 (unsigned long long)buffer_info->dma,
238                 buffer_info->length,
239                 buffer_info->next_to_watch,
240                 (unsigned long long)buffer_info->time_stamp);
241
242         /* Print Tx Ring */
243         if (!netif_msg_tx_done(adapter))
244                 goto rx_ring_summary;
245
246         dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
247
248         /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
249          *
250          * Legacy Transmit Descriptor
251          *   +--------------------------------------------------------------+
252          * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
253          *   +--------------------------------------------------------------+
254          * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
255          *   +--------------------------------------------------------------+
256          *   63       48 47        36 35    32 31     24 23    16 15        0
257          *
258          * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
259          *   63      48 47    40 39       32 31             16 15    8 7      0
260          *   +----------------------------------------------------------------+
261          * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
262          *   +----------------------------------------------------------------+
263          * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
264          *   +----------------------------------------------------------------+
265          *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
266          *
267          * Extended Data Descriptor (DTYP=0x1)
268          *   +----------------------------------------------------------------+
269          * 0 |                     Buffer Address [63:0]                      |
270          *   +----------------------------------------------------------------+
271          * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
272          *   +----------------------------------------------------------------+
273          *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
274          */
275         pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
276         pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
277         pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
278         for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
279                 const char *next_desc;
280                 tx_desc = E1000_TX_DESC(*tx_ring, i);
281                 buffer_info = &tx_ring->buffer_info[i];
282                 u0 = (struct my_u0 *)tx_desc;
283                 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
284                         next_desc = " NTC/U";
285                 else if (i == tx_ring->next_to_use)
286                         next_desc = " NTU";
287                 else if (i == tx_ring->next_to_clean)
288                         next_desc = " NTC";
289                 else
290                         next_desc = "";
291                 pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
292                         (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
293                          ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
294                         i,
295                         (unsigned long long)le64_to_cpu(u0->a),
296                         (unsigned long long)le64_to_cpu(u0->b),
297                         (unsigned long long)buffer_info->dma,
298                         buffer_info->length, buffer_info->next_to_watch,
299                         (unsigned long long)buffer_info->time_stamp,
300                         buffer_info->skb, next_desc);
301
302                 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
303                         print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
304                                        16, 1, phys_to_virt(buffer_info->dma),
305                                        buffer_info->length, true);
306         }
307
308         /* Print Rx Ring Summary */
309 rx_ring_summary:
310         dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
311         pr_info("Queue [NTU] [NTC]\n");
312         pr_info(" %5d %5X %5X\n",
313                 0, rx_ring->next_to_use, rx_ring->next_to_clean);
314
315         /* Print Rx Ring */
316         if (!netif_msg_rx_status(adapter))
317                 return;
318
319         dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
320         switch (adapter->rx_ps_pages) {
321         case 1:
322         case 2:
323         case 3:
324                 /* [Extended] Packet Split Receive Descriptor Format
325                  *
326                  *    +-----------------------------------------------------+
327                  *  0 |                Buffer Address 0 [63:0]              |
328                  *    +-----------------------------------------------------+
329                  *  8 |                Buffer Address 1 [63:0]              |
330                  *    +-----------------------------------------------------+
331                  * 16 |                Buffer Address 2 [63:0]              |
332                  *    +-----------------------------------------------------+
333                  * 24 |                Buffer Address 3 [63:0]              |
334                  *    +-----------------------------------------------------+
335                  */
336                 pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
337                 /* [Extended] Receive Descriptor (Write-Back) Format
338                  *
339                  *   63       48 47    32 31     13 12    8 7    4 3        0
340                  *   +------------------------------------------------------+
341                  * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
342                  *   | Checksum | Ident  |         | Queue |      |  Type   |
343                  *   +------------------------------------------------------+
344                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
345                  *   +------------------------------------------------------+
346                  *   63       48 47    32 31            20 19               0
347                  */
348                 pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
349                 for (i = 0; i < rx_ring->count; i++) {
350                         const char *next_desc;
351                         buffer_info = &rx_ring->buffer_info[i];
352                         rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
353                         u1 = (struct my_u1 *)rx_desc_ps;
354                         staterr =
355                             le32_to_cpu(rx_desc_ps->wb.middle.status_error);
356
357                         if (i == rx_ring->next_to_use)
358                                 next_desc = " NTU";
359                         else if (i == rx_ring->next_to_clean)
360                                 next_desc = " NTC";
361                         else
362                                 next_desc = "";
363
364                         if (staterr & E1000_RXD_STAT_DD) {
365                                 /* Descriptor Done */
366                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
367                                         "RWB", i,
368                                         (unsigned long long)le64_to_cpu(u1->a),
369                                         (unsigned long long)le64_to_cpu(u1->b),
370                                         (unsigned long long)le64_to_cpu(u1->c),
371                                         (unsigned long long)le64_to_cpu(u1->d),
372                                         buffer_info->skb, next_desc);
373                         } else {
374                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
375                                         "R  ", i,
376                                         (unsigned long long)le64_to_cpu(u1->a),
377                                         (unsigned long long)le64_to_cpu(u1->b),
378                                         (unsigned long long)le64_to_cpu(u1->c),
379                                         (unsigned long long)le64_to_cpu(u1->d),
380                                         (unsigned long long)buffer_info->dma,
381                                         buffer_info->skb, next_desc);
382
383                                 if (netif_msg_pktdata(adapter))
384                                         print_hex_dump(KERN_INFO, "",
385                                                 DUMP_PREFIX_ADDRESS, 16, 1,
386                                                 phys_to_virt(buffer_info->dma),
387                                                 adapter->rx_ps_bsize0, true);
388                         }
389                 }
390                 break;
391         default:
392         case 0:
393                 /* Extended Receive Descriptor (Read) Format
394                  *
395                  *   +-----------------------------------------------------+
396                  * 0 |                Buffer Address [63:0]                |
397                  *   +-----------------------------------------------------+
398                  * 8 |                      Reserved                       |
399                  *   +-----------------------------------------------------+
400                  */
401                 pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
402                 /* Extended Receive Descriptor (Write-Back) Format
403                  *
404                  *   63       48 47    32 31    24 23            4 3        0
405                  *   +------------------------------------------------------+
406                  *   |     RSS Hash      |        |               |         |
407                  * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
408                  *   | Packet   | IP     |        |               |  Type   |
409                  *   | Checksum | Ident  |        |               |         |
410                  *   +------------------------------------------------------+
411                  * 8 | VLAN Tag | Length | Extended Error | Extended Status |
412                  *   +------------------------------------------------------+
413                  *   63       48 47    32 31            20 19               0
414                  */
415                 pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
416
417                 for (i = 0; i < rx_ring->count; i++) {
418                         const char *next_desc;
419
420                         buffer_info = &rx_ring->buffer_info[i];
421                         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
422                         u1 = (struct my_u1 *)rx_desc;
423                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
424
425                         if (i == rx_ring->next_to_use)
426                                 next_desc = " NTU";
427                         else if (i == rx_ring->next_to_clean)
428                                 next_desc = " NTC";
429                         else
430                                 next_desc = "";
431
432                         if (staterr & E1000_RXD_STAT_DD) {
433                                 /* Descriptor Done */
434                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
435                                         "RWB", i,
436                                         (unsigned long long)le64_to_cpu(u1->a),
437                                         (unsigned long long)le64_to_cpu(u1->b),
438                                         buffer_info->skb, next_desc);
439                         } else {
440                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
441                                         "R  ", i,
442                                         (unsigned long long)le64_to_cpu(u1->a),
443                                         (unsigned long long)le64_to_cpu(u1->b),
444                                         (unsigned long long)buffer_info->dma,
445                                         buffer_info->skb, next_desc);
446
447                                 if (netif_msg_pktdata(adapter))
448                                         print_hex_dump(KERN_INFO, "",
449                                                        DUMP_PREFIX_ADDRESS, 16,
450                                                        1,
451                                                        phys_to_virt
452                                                        (buffer_info->dma),
453                                                        adapter->rx_buffer_len,
454                                                        true);
455                         }
456                 }
457         }
458 }
459
460 /**
461  * e1000_desc_unused - calculate if we have unused descriptors
462  **/
463 static int e1000_desc_unused(struct e1000_ring *ring)
464 {
465         if (ring->next_to_clean > ring->next_to_use)
466                 return ring->next_to_clean - ring->next_to_use - 1;
467
468         return ring->count + ring->next_to_clean - ring->next_to_use - 1;
469 }
470
471 /**
472  * e1000_receive_skb - helper function to handle Rx indications
473  * @adapter: board private structure
474  * @status: descriptor status field as written by hardware
475  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
476  * @skb: pointer to sk_buff to be indicated to stack
477  **/
478 static void e1000_receive_skb(struct e1000_adapter *adapter,
479                               struct net_device *netdev, struct sk_buff *skb,
480                               u8 status, __le16 vlan)
481 {
482         u16 tag = le16_to_cpu(vlan);
483         skb->protocol = eth_type_trans(skb, netdev);
484
485         if (status & E1000_RXD_STAT_VP)
486                 __vlan_hwaccel_put_tag(skb, tag);
487
488         napi_gro_receive(&adapter->napi, skb);
489 }
490
491 /**
492  * e1000_rx_checksum - Receive Checksum Offload
493  * @adapter: board private structure
494  * @status_err: receive descriptor status and error fields
495  * @csum: receive descriptor csum field
496  * @sk_buff: socket buffer with received data
497  **/
498 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
499                               struct sk_buff *skb)
500 {
501         u16 status = (u16)status_err;
502         u8 errors = (u8)(status_err >> 24);
503
504         skb_checksum_none_assert(skb);
505
506         /* Rx checksum disabled */
507         if (!(adapter->netdev->features & NETIF_F_RXCSUM))
508                 return;
509
510         /* Ignore Checksum bit is set */
511         if (status & E1000_RXD_STAT_IXSM)
512                 return;
513
514         /* TCP/UDP checksum error bit or IP checksum error bit is set */
515         if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
516                 /* let the stack verify checksum errors */
517                 adapter->hw_csum_err++;
518                 return;
519         }
520
521         /* TCP/UDP Checksum has not been calculated */
522         if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
523                 return;
524
525         /* It must be a TCP or UDP packet with a valid checksum */
526         skb->ip_summed = CHECKSUM_UNNECESSARY;
527         adapter->hw_csum_good++;
528 }
529
530 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
531 {
532         struct e1000_adapter *adapter = rx_ring->adapter;
533         struct e1000_hw *hw = &adapter->hw;
534         s32 ret_val = __ew32_prepare(hw);
535
536         writel(i, rx_ring->tail);
537
538         if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
539                 u32 rctl = er32(RCTL);
540                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
541                 e_err("ME firmware caused invalid RDT - resetting\n");
542                 schedule_work(&adapter->reset_task);
543         }
544 }
545
546 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
547 {
548         struct e1000_adapter *adapter = tx_ring->adapter;
549         struct e1000_hw *hw = &adapter->hw;
550         s32 ret_val = __ew32_prepare(hw);
551
552         writel(i, tx_ring->tail);
553
554         if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
555                 u32 tctl = er32(TCTL);
556                 ew32(TCTL, tctl & ~E1000_TCTL_EN);
557                 e_err("ME firmware caused invalid TDT - resetting\n");
558                 schedule_work(&adapter->reset_task);
559         }
560 }
561
562 /**
563  * e1000_alloc_rx_buffers - Replace used receive buffers
564  * @rx_ring: Rx descriptor ring
565  **/
566 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
567                                    int cleaned_count, gfp_t gfp)
568 {
569         struct e1000_adapter *adapter = rx_ring->adapter;
570         struct net_device *netdev = adapter->netdev;
571         struct pci_dev *pdev = adapter->pdev;
572         union e1000_rx_desc_extended *rx_desc;
573         struct e1000_buffer *buffer_info;
574         struct sk_buff *skb;
575         unsigned int i;
576         unsigned int bufsz = adapter->rx_buffer_len;
577
578         i = rx_ring->next_to_use;
579         buffer_info = &rx_ring->buffer_info[i];
580
581         while (cleaned_count--) {
582                 skb = buffer_info->skb;
583                 if (skb) {
584                         skb_trim(skb, 0);
585                         goto map_skb;
586                 }
587
588                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
589                 if (!skb) {
590                         /* Better luck next round */
591                         adapter->alloc_rx_buff_failed++;
592                         break;
593                 }
594
595                 buffer_info->skb = skb;
596 map_skb:
597                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
598                                                   adapter->rx_buffer_len,
599                                                   DMA_FROM_DEVICE);
600                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
601                         dev_err(&pdev->dev, "Rx DMA map failed\n");
602                         adapter->rx_dma_failed++;
603                         break;
604                 }
605
606                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
607                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
608
609                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
610                         /*
611                          * Force memory writes to complete before letting h/w
612                          * know there are new descriptors to fetch.  (Only
613                          * applicable for weak-ordered memory model archs,
614                          * such as IA-64).
615                          */
616                         wmb();
617                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
618                                 e1000e_update_rdt_wa(rx_ring, i);
619                         else
620                                 writel(i, rx_ring->tail);
621                 }
622                 i++;
623                 if (i == rx_ring->count)
624                         i = 0;
625                 buffer_info = &rx_ring->buffer_info[i];
626         }
627
628         rx_ring->next_to_use = i;
629 }
630
631 /**
632  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
633  * @rx_ring: Rx descriptor ring
634  **/
635 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
636                                       int cleaned_count, gfp_t gfp)
637 {
638         struct e1000_adapter *adapter = rx_ring->adapter;
639         struct net_device *netdev = adapter->netdev;
640         struct pci_dev *pdev = adapter->pdev;
641         union e1000_rx_desc_packet_split *rx_desc;
642         struct e1000_buffer *buffer_info;
643         struct e1000_ps_page *ps_page;
644         struct sk_buff *skb;
645         unsigned int i, j;
646
647         i = rx_ring->next_to_use;
648         buffer_info = &rx_ring->buffer_info[i];
649
650         while (cleaned_count--) {
651                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
652
653                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
654                         ps_page = &buffer_info->ps_pages[j];
655                         if (j >= adapter->rx_ps_pages) {
656                                 /* all unused desc entries get hw null ptr */
657                                 rx_desc->read.buffer_addr[j + 1] =
658                                     ~cpu_to_le64(0);
659                                 continue;
660                         }
661                         if (!ps_page->page) {
662                                 ps_page->page = alloc_page(gfp);
663                                 if (!ps_page->page) {
664                                         adapter->alloc_rx_buff_failed++;
665                                         goto no_buffers;
666                                 }
667                                 ps_page->dma = dma_map_page(&pdev->dev,
668                                                             ps_page->page,
669                                                             0, PAGE_SIZE,
670                                                             DMA_FROM_DEVICE);
671                                 if (dma_mapping_error(&pdev->dev,
672                                                       ps_page->dma)) {
673                                         dev_err(&adapter->pdev->dev,
674                                                 "Rx DMA page map failed\n");
675                                         adapter->rx_dma_failed++;
676                                         goto no_buffers;
677                                 }
678                         }
679                         /*
680                          * Refresh the desc even if buffer_addrs
681                          * didn't change because each write-back
682                          * erases this info.
683                          */
684                         rx_desc->read.buffer_addr[j + 1] =
685                             cpu_to_le64(ps_page->dma);
686                 }
687
688                 skb = __netdev_alloc_skb_ip_align(netdev,
689                                                   adapter->rx_ps_bsize0,
690                                                   gfp);
691
692                 if (!skb) {
693                         adapter->alloc_rx_buff_failed++;
694                         break;
695                 }
696
697                 buffer_info->skb = skb;
698                 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
699                                                   adapter->rx_ps_bsize0,
700                                                   DMA_FROM_DEVICE);
701                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
702                         dev_err(&pdev->dev, "Rx DMA map failed\n");
703                         adapter->rx_dma_failed++;
704                         /* cleanup skb */
705                         dev_kfree_skb_any(skb);
706                         buffer_info->skb = NULL;
707                         break;
708                 }
709
710                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
711
712                 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
713                         /*
714                          * Force memory writes to complete before letting h/w
715                          * know there are new descriptors to fetch.  (Only
716                          * applicable for weak-ordered memory model archs,
717                          * such as IA-64).
718                          */
719                         wmb();
720                         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
721                                 e1000e_update_rdt_wa(rx_ring, i << 1);
722                         else
723                                 writel(i << 1, rx_ring->tail);
724                 }
725
726                 i++;
727                 if (i == rx_ring->count)
728                         i = 0;
729                 buffer_info = &rx_ring->buffer_info[i];
730         }
731
732 no_buffers:
733         rx_ring->next_to_use = i;
734 }
735
736 /**
737  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
738  * @rx_ring: Rx descriptor ring
739  * @cleaned_count: number of buffers to allocate this pass
740  **/
741
742 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
743                                          int cleaned_count, gfp_t gfp)
744 {
745         struct e1000_adapter *adapter = rx_ring->adapter;
746         struct net_device *netdev = adapter->netdev;
747         struct pci_dev *pdev = adapter->pdev;
748         union e1000_rx_desc_extended *rx_desc;
749         struct e1000_buffer *buffer_info;
750         struct sk_buff *skb;
751         unsigned int i;
752         unsigned int bufsz = 256 - 16 /* for skb_reserve */;
753
754         i = rx_ring->next_to_use;
755         buffer_info = &rx_ring->buffer_info[i];
756
757         while (cleaned_count--) {
758                 skb = buffer_info->skb;
759                 if (skb) {
760                         skb_trim(skb, 0);
761                         goto check_page;
762                 }
763
764                 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
765                 if (unlikely(!skb)) {
766                         /* Better luck next round */
767                         adapter->alloc_rx_buff_failed++;
768                         break;
769                 }
770
771                 buffer_info->skb = skb;
772 check_page:
773                 /* allocate a new page if necessary */
774                 if (!buffer_info->page) {
775                         buffer_info->page = alloc_page(gfp);
776                         if (unlikely(!buffer_info->page)) {
777                                 adapter->alloc_rx_buff_failed++;
778                                 break;
779                         }
780                 }
781
782                 if (!buffer_info->dma)
783                         buffer_info->dma = dma_map_page(&pdev->dev,
784                                                         buffer_info->page, 0,
785                                                         PAGE_SIZE,
786                                                         DMA_FROM_DEVICE);
787
788                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
789                 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
790
791                 if (unlikely(++i == rx_ring->count))
792                         i = 0;
793                 buffer_info = &rx_ring->buffer_info[i];
794         }
795
796         if (likely(rx_ring->next_to_use != i)) {
797                 rx_ring->next_to_use = i;
798                 if (unlikely(i-- == 0))
799                         i = (rx_ring->count - 1);
800
801                 /* Force memory writes to complete before letting h/w
802                  * know there are new descriptors to fetch.  (Only
803                  * applicable for weak-ordered memory model archs,
804                  * such as IA-64). */
805                 wmb();
806                 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
807                         e1000e_update_rdt_wa(rx_ring, i);
808                 else
809                         writel(i, rx_ring->tail);
810         }
811 }
812
813 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
814                                  struct sk_buff *skb)
815 {
816         if (netdev->features & NETIF_F_RXHASH)
817                 skb->rxhash = le32_to_cpu(rss);
818 }
819
820 /**
821  * e1000_clean_rx_irq - Send received data up the network stack
822  * @rx_ring: Rx descriptor ring
823  *
824  * the return value indicates whether actual cleaning was done, there
825  * is no guarantee that everything was cleaned
826  **/
827 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
828                                int work_to_do)
829 {
830         struct e1000_adapter *adapter = rx_ring->adapter;
831         struct net_device *netdev = adapter->netdev;
832         struct pci_dev *pdev = adapter->pdev;
833         struct e1000_hw *hw = &adapter->hw;
834         union e1000_rx_desc_extended *rx_desc, *next_rxd;
835         struct e1000_buffer *buffer_info, *next_buffer;
836         u32 length, staterr;
837         unsigned int i;
838         int cleaned_count = 0;
839         bool cleaned = false;
840         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
841
842         i = rx_ring->next_to_clean;
843         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
844         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
845         buffer_info = &rx_ring->buffer_info[i];
846
847         while (staterr & E1000_RXD_STAT_DD) {
848                 struct sk_buff *skb;
849
850                 if (*work_done >= work_to_do)
851                         break;
852                 (*work_done)++;
853                 rmb();  /* read descriptor and rx_buffer_info after status DD */
854
855                 skb = buffer_info->skb;
856                 buffer_info->skb = NULL;
857
858                 prefetch(skb->data - NET_IP_ALIGN);
859
860                 i++;
861                 if (i == rx_ring->count)
862                         i = 0;
863                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
864                 prefetch(next_rxd);
865
866                 next_buffer = &rx_ring->buffer_info[i];
867
868                 cleaned = true;
869                 cleaned_count++;
870                 dma_unmap_single(&pdev->dev,
871                                  buffer_info->dma,
872                                  adapter->rx_buffer_len,
873                                  DMA_FROM_DEVICE);
874                 buffer_info->dma = 0;
875
876                 length = le16_to_cpu(rx_desc->wb.upper.length);
877
878                 /*
879                  * !EOP means multiple descriptors were used to store a single
880                  * packet, if that's the case we need to toss it.  In fact, we
881                  * need to toss every packet with the EOP bit clear and the
882                  * next frame that _does_ have the EOP bit set, as it is by
883                  * definition only a frame fragment
884                  */
885                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
886                         adapter->flags2 |= FLAG2_IS_DISCARDING;
887
888                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
889                         /* All receives must fit into a single buffer */
890                         e_dbg("Receive packet consumed multiple buffers\n");
891                         /* recycle */
892                         buffer_info->skb = skb;
893                         if (staterr & E1000_RXD_STAT_EOP)
894                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
895                         goto next_desc;
896                 }
897
898                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
899                              !(netdev->features & NETIF_F_RXALL))) {
900                         /* recycle */
901                         buffer_info->skb = skb;
902                         goto next_desc;
903                 }
904
905                 /* adjust length to remove Ethernet CRC */
906                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
907                         /* If configured to store CRC, don't subtract FCS,
908                          * but keep the FCS bytes out of the total_rx_bytes
909                          * counter
910                          */
911                         if (netdev->features & NETIF_F_RXFCS)
912                                 total_rx_bytes -= 4;
913                         else
914                                 length -= 4;
915                 }
916
917                 total_rx_bytes += length;
918                 total_rx_packets++;
919
920                 /*
921                  * code added for copybreak, this should improve
922                  * performance for small packets with large amounts
923                  * of reassembly being done in the stack
924                  */
925                 if (length < copybreak) {
926                         struct sk_buff *new_skb =
927                             netdev_alloc_skb_ip_align(netdev, length);
928                         if (new_skb) {
929                                 skb_copy_to_linear_data_offset(new_skb,
930                                                                -NET_IP_ALIGN,
931                                                                (skb->data -
932                                                                 NET_IP_ALIGN),
933                                                                (length +
934                                                                 NET_IP_ALIGN));
935                                 /* save the skb in buffer_info as good */
936                                 buffer_info->skb = skb;
937                                 skb = new_skb;
938                         }
939                         /* else just continue with the old one */
940                 }
941                 /* end copybreak code */
942                 skb_put(skb, length);
943
944                 /* Receive Checksum Offload */
945                 e1000_rx_checksum(adapter, staterr, skb);
946
947                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
948
949                 e1000_receive_skb(adapter, netdev, skb, staterr,
950                                   rx_desc->wb.upper.vlan);
951
952 next_desc:
953                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
954
955                 /* return some buffers to hardware, one at a time is too slow */
956                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
957                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
958                                               GFP_ATOMIC);
959                         cleaned_count = 0;
960                 }
961
962                 /* use prefetched values */
963                 rx_desc = next_rxd;
964                 buffer_info = next_buffer;
965
966                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
967         }
968         rx_ring->next_to_clean = i;
969
970         cleaned_count = e1000_desc_unused(rx_ring);
971         if (cleaned_count)
972                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
973
974         adapter->total_rx_bytes += total_rx_bytes;
975         adapter->total_rx_packets += total_rx_packets;
976         return cleaned;
977 }
978
979 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
980                             struct e1000_buffer *buffer_info)
981 {
982         struct e1000_adapter *adapter = tx_ring->adapter;
983
984         if (buffer_info->dma) {
985                 if (buffer_info->mapped_as_page)
986                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
987                                        buffer_info->length, DMA_TO_DEVICE);
988                 else
989                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
990                                          buffer_info->length, DMA_TO_DEVICE);
991                 buffer_info->dma = 0;
992         }
993         if (buffer_info->skb) {
994                 dev_kfree_skb_any(buffer_info->skb);
995                 buffer_info->skb = NULL;
996         }
997         buffer_info->time_stamp = 0;
998 }
999
1000 static void e1000_print_hw_hang(struct work_struct *work)
1001 {
1002         struct e1000_adapter *adapter = container_of(work,
1003                                                      struct e1000_adapter,
1004                                                      print_hang_task);
1005         struct net_device *netdev = adapter->netdev;
1006         struct e1000_ring *tx_ring = adapter->tx_ring;
1007         unsigned int i = tx_ring->next_to_clean;
1008         unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1009         struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1010         struct e1000_hw *hw = &adapter->hw;
1011         u16 phy_status, phy_1000t_status, phy_ext_status;
1012         u16 pci_status;
1013
1014         if (test_bit(__E1000_DOWN, &adapter->state))
1015                 return;
1016
1017         if (!adapter->tx_hang_recheck &&
1018             (adapter->flags2 & FLAG2_DMA_BURST)) {
1019                 /*
1020                  * May be block on write-back, flush and detect again
1021                  * flush pending descriptor writebacks to memory
1022                  */
1023                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1024                 /* execute the writes immediately */
1025                 e1e_flush();
1026                 /*
1027                  * Due to rare timing issues, write to TIDV again to ensure
1028                  * the write is successful
1029                  */
1030                 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1031                 /* execute the writes immediately */
1032                 e1e_flush();
1033                 adapter->tx_hang_recheck = true;
1034                 return;
1035         }
1036         /* Real hang detected */
1037         adapter->tx_hang_recheck = false;
1038         netif_stop_queue(netdev);
1039
1040         e1e_rphy(hw, PHY_STATUS, &phy_status);
1041         e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
1042         e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
1043
1044         pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1045
1046         /* detected Hardware unit hang */
1047         e_err("Detected Hardware Unit Hang:\n"
1048               "  TDH                  <%x>\n"
1049               "  TDT                  <%x>\n"
1050               "  next_to_use          <%x>\n"
1051               "  next_to_clean        <%x>\n"
1052               "buffer_info[next_to_clean]:\n"
1053               "  time_stamp           <%lx>\n"
1054               "  next_to_watch        <%x>\n"
1055               "  jiffies              <%lx>\n"
1056               "  next_to_watch.status <%x>\n"
1057               "MAC Status             <%x>\n"
1058               "PHY Status             <%x>\n"
1059               "PHY 1000BASE-T Status  <%x>\n"
1060               "PHY Extended Status    <%x>\n"
1061               "PCI Status             <%x>\n",
1062               readl(tx_ring->head),
1063               readl(tx_ring->tail),
1064               tx_ring->next_to_use,
1065               tx_ring->next_to_clean,
1066               tx_ring->buffer_info[eop].time_stamp,
1067               eop,
1068               jiffies,
1069               eop_desc->upper.fields.status,
1070               er32(STATUS),
1071               phy_status,
1072               phy_1000t_status,
1073               phy_ext_status,
1074               pci_status);
1075
1076         /* Suggest workaround for known h/w issue */
1077         if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1078                 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1079 }
1080
1081 /**
1082  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1083  * @tx_ring: Tx descriptor ring
1084  *
1085  * the return value indicates whether actual cleaning was done, there
1086  * is no guarantee that everything was cleaned
1087  **/
1088 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1089 {
1090         struct e1000_adapter *adapter = tx_ring->adapter;
1091         struct net_device *netdev = adapter->netdev;
1092         struct e1000_hw *hw = &adapter->hw;
1093         struct e1000_tx_desc *tx_desc, *eop_desc;
1094         struct e1000_buffer *buffer_info;
1095         unsigned int i, eop;
1096         unsigned int count = 0;
1097         unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1098         unsigned int bytes_compl = 0, pkts_compl = 0;
1099
1100         i = tx_ring->next_to_clean;
1101         eop = tx_ring->buffer_info[i].next_to_watch;
1102         eop_desc = E1000_TX_DESC(*tx_ring, eop);
1103
1104         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1105                (count < tx_ring->count)) {
1106                 bool cleaned = false;
1107                 rmb(); /* read buffer_info after eop_desc */
1108                 for (; !cleaned; count++) {
1109                         tx_desc = E1000_TX_DESC(*tx_ring, i);
1110                         buffer_info = &tx_ring->buffer_info[i];
1111                         cleaned = (i == eop);
1112
1113                         if (cleaned) {
1114                                 total_tx_packets += buffer_info->segs;
1115                                 total_tx_bytes += buffer_info->bytecount;
1116                                 if (buffer_info->skb) {
1117                                         bytes_compl += buffer_info->skb->len;
1118                                         pkts_compl++;
1119                                 }
1120                         }
1121
1122                         e1000_put_txbuf(tx_ring, buffer_info);
1123                         tx_desc->upper.data = 0;
1124
1125                         i++;
1126                         if (i == tx_ring->count)
1127                                 i = 0;
1128                 }
1129
1130                 if (i == tx_ring->next_to_use)
1131                         break;
1132                 eop = tx_ring->buffer_info[i].next_to_watch;
1133                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1134         }
1135
1136         tx_ring->next_to_clean = i;
1137
1138         netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1139
1140 #define TX_WAKE_THRESHOLD 32
1141         if (count && netif_carrier_ok(netdev) &&
1142             e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1143                 /* Make sure that anybody stopping the queue after this
1144                  * sees the new next_to_clean.
1145                  */
1146                 smp_mb();
1147
1148                 if (netif_queue_stopped(netdev) &&
1149                     !(test_bit(__E1000_DOWN, &adapter->state))) {
1150                         netif_wake_queue(netdev);
1151                         ++adapter->restart_queue;
1152                 }
1153         }
1154
1155         if (adapter->detect_tx_hung) {
1156                 /*
1157                  * Detect a transmit hang in hardware, this serializes the
1158                  * check with the clearing of time_stamp and movement of i
1159                  */
1160                 adapter->detect_tx_hung = false;
1161                 if (tx_ring->buffer_info[i].time_stamp &&
1162                     time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1163                                + (adapter->tx_timeout_factor * HZ)) &&
1164                     !(er32(STATUS) & E1000_STATUS_TXOFF))
1165                         schedule_work(&adapter->print_hang_task);
1166                 else
1167                         adapter->tx_hang_recheck = false;
1168         }
1169         adapter->total_tx_bytes += total_tx_bytes;
1170         adapter->total_tx_packets += total_tx_packets;
1171         return count < tx_ring->count;
1172 }
1173
1174 /**
1175  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1176  * @rx_ring: Rx descriptor ring
1177  *
1178  * the return value indicates whether actual cleaning was done, there
1179  * is no guarantee that everything was cleaned
1180  **/
1181 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1182                                   int work_to_do)
1183 {
1184         struct e1000_adapter *adapter = rx_ring->adapter;
1185         struct e1000_hw *hw = &adapter->hw;
1186         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1187         struct net_device *netdev = adapter->netdev;
1188         struct pci_dev *pdev = adapter->pdev;
1189         struct e1000_buffer *buffer_info, *next_buffer;
1190         struct e1000_ps_page *ps_page;
1191         struct sk_buff *skb;
1192         unsigned int i, j;
1193         u32 length, staterr;
1194         int cleaned_count = 0;
1195         bool cleaned = false;
1196         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1197
1198         i = rx_ring->next_to_clean;
1199         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1200         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1201         buffer_info = &rx_ring->buffer_info[i];
1202
1203         while (staterr & E1000_RXD_STAT_DD) {
1204                 if (*work_done >= work_to_do)
1205                         break;
1206                 (*work_done)++;
1207                 skb = buffer_info->skb;
1208                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1209
1210                 /* in the packet split case this is header only */
1211                 prefetch(skb->data - NET_IP_ALIGN);
1212
1213                 i++;
1214                 if (i == rx_ring->count)
1215                         i = 0;
1216                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1217                 prefetch(next_rxd);
1218
1219                 next_buffer = &rx_ring->buffer_info[i];
1220
1221                 cleaned = true;
1222                 cleaned_count++;
1223                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1224                                  adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1225                 buffer_info->dma = 0;
1226
1227                 /* see !EOP comment in other Rx routine */
1228                 if (!(staterr & E1000_RXD_STAT_EOP))
1229                         adapter->flags2 |= FLAG2_IS_DISCARDING;
1230
1231                 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1232                         e_dbg("Packet Split buffers didn't pick up the full packet\n");
1233                         dev_kfree_skb_irq(skb);
1234                         if (staterr & E1000_RXD_STAT_EOP)
1235                                 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1236                         goto next_desc;
1237                 }
1238
1239                 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1240                              !(netdev->features & NETIF_F_RXALL))) {
1241                         dev_kfree_skb_irq(skb);
1242                         goto next_desc;
1243                 }
1244
1245                 length = le16_to_cpu(rx_desc->wb.middle.length0);
1246
1247                 if (!length) {
1248                         e_dbg("Last part of the packet spanning multiple descriptors\n");
1249                         dev_kfree_skb_irq(skb);
1250                         goto next_desc;
1251                 }
1252
1253                 /* Good Receive */
1254                 skb_put(skb, length);
1255
1256                 {
1257                         /*
1258                          * this looks ugly, but it seems compiler issues make
1259                          * it more efficient than reusing j
1260                          */
1261                         int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1262
1263                         /*
1264                          * page alloc/put takes too long and effects small
1265                          * packet throughput, so unsplit small packets and
1266                          * save the alloc/put only valid in softirq (napi)
1267                          * context to call kmap_*
1268                          */
1269                         if (l1 && (l1 <= copybreak) &&
1270                             ((length + l1) <= adapter->rx_ps_bsize0)) {
1271                                 u8 *vaddr;
1272
1273                                 ps_page = &buffer_info->ps_pages[0];
1274
1275                                 /*
1276                                  * there is no documentation about how to call
1277                                  * kmap_atomic, so we can't hold the mapping
1278                                  * very long
1279                                  */
1280                                 dma_sync_single_for_cpu(&pdev->dev,
1281                                                         ps_page->dma,
1282                                                         PAGE_SIZE,
1283                                                         DMA_FROM_DEVICE);
1284                                 vaddr = kmap_atomic(ps_page->page);
1285                                 memcpy(skb_tail_pointer(skb), vaddr, l1);
1286                                 kunmap_atomic(vaddr);
1287                                 dma_sync_single_for_device(&pdev->dev,
1288                                                            ps_page->dma,
1289                                                            PAGE_SIZE,
1290                                                            DMA_FROM_DEVICE);
1291
1292                                 /* remove the CRC */
1293                                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1294                                         if (!(netdev->features & NETIF_F_RXFCS))
1295                                                 l1 -= 4;
1296                                 }
1297
1298                                 skb_put(skb, l1);
1299                                 goto copydone;
1300                         } /* if */
1301                 }
1302
1303                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1304                         length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1305                         if (!length)
1306                                 break;
1307
1308                         ps_page = &buffer_info->ps_pages[j];
1309                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1310                                        DMA_FROM_DEVICE);
1311                         ps_page->dma = 0;
1312                         skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1313                         ps_page->page = NULL;
1314                         skb->len += length;
1315                         skb->data_len += length;
1316                         skb->truesize += PAGE_SIZE;
1317                 }
1318
1319                 /* strip the ethernet crc, problem is we're using pages now so
1320                  * this whole operation can get a little cpu intensive
1321                  */
1322                 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1323                         if (!(netdev->features & NETIF_F_RXFCS))
1324                                 pskb_trim(skb, skb->len - 4);
1325                 }
1326
1327 copydone:
1328                 total_rx_bytes += skb->len;
1329                 total_rx_packets++;
1330
1331                 e1000_rx_checksum(adapter, staterr, skb);
1332
1333                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1334
1335                 if (rx_desc->wb.upper.header_status &
1336                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1337                         adapter->rx_hdr_split++;
1338
1339                 e1000_receive_skb(adapter, netdev, skb,
1340                                   staterr, rx_desc->wb.middle.vlan);
1341
1342 next_desc:
1343                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1344                 buffer_info->skb = NULL;
1345
1346                 /* return some buffers to hardware, one at a time is too slow */
1347                 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1348                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1349                                               GFP_ATOMIC);
1350                         cleaned_count = 0;
1351                 }
1352
1353                 /* use prefetched values */
1354                 rx_desc = next_rxd;
1355                 buffer_info = next_buffer;
1356
1357                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1358         }
1359         rx_ring->next_to_clean = i;
1360
1361         cleaned_count = e1000_desc_unused(rx_ring);
1362         if (cleaned_count)
1363                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1364
1365         adapter->total_rx_bytes += total_rx_bytes;
1366         adapter->total_rx_packets += total_rx_packets;
1367         return cleaned;
1368 }
1369
1370 /**
1371  * e1000_consume_page - helper function
1372  **/
1373 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1374                                u16 length)
1375 {
1376         bi->page = NULL;
1377         skb->len += length;
1378         skb->data_len += length;
1379         skb->truesize += PAGE_SIZE;
1380 }
1381
1382 /**
1383  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1384  * @adapter: board private structure
1385  *
1386  * the return value indicates whether actual cleaning was done, there
1387  * is no guarantee that everything was cleaned
1388  **/
1389 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1390                                      int work_to_do)
1391 {
1392         struct e1000_adapter *adapter = rx_ring->adapter;
1393         struct net_device *netdev = adapter->netdev;
1394         struct pci_dev *pdev = adapter->pdev;
1395         union e1000_rx_desc_extended *rx_desc, *next_rxd;
1396         struct e1000_buffer *buffer_info, *next_buffer;
1397         u32 length, staterr;
1398         unsigned int i;
1399         int cleaned_count = 0;
1400         bool cleaned = false;
1401         unsigned int total_rx_bytes=0, total_rx_packets=0;
1402
1403         i = rx_ring->next_to_clean;
1404         rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1405         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1406         buffer_info = &rx_ring->buffer_info[i];
1407
1408         while (staterr & E1000_RXD_STAT_DD) {
1409                 struct sk_buff *skb;
1410
1411                 if (*work_done >= work_to_do)
1412                         break;
1413                 (*work_done)++;
1414                 rmb();  /* read descriptor and rx_buffer_info after status DD */
1415
1416                 skb = buffer_info->skb;
1417                 buffer_info->skb = NULL;
1418
1419                 ++i;
1420                 if (i == rx_ring->count)
1421                         i = 0;
1422                 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1423                 prefetch(next_rxd);
1424
1425                 next_buffer = &rx_ring->buffer_info[i];
1426
1427                 cleaned = true;
1428                 cleaned_count++;
1429                 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1430                                DMA_FROM_DEVICE);
1431                 buffer_info->dma = 0;
1432
1433                 length = le16_to_cpu(rx_desc->wb.upper.length);
1434
1435                 /* errors is only valid for DD + EOP descriptors */
1436                 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1437                              ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1438                               !(netdev->features & NETIF_F_RXALL)))) {
1439                         /* recycle both page and skb */
1440                         buffer_info->skb = skb;
1441                         /* an error means any chain goes out the window too */
1442                         if (rx_ring->rx_skb_top)
1443                                 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1444                         rx_ring->rx_skb_top = NULL;
1445                         goto next_desc;
1446                 }
1447
1448 #define rxtop (rx_ring->rx_skb_top)
1449                 if (!(staterr & E1000_RXD_STAT_EOP)) {
1450                         /* this descriptor is only the beginning (or middle) */
1451                         if (!rxtop) {
1452                                 /* this is the beginning of a chain */
1453                                 rxtop = skb;
1454                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1455                                                    0, length);
1456                         } else {
1457                                 /* this is the middle of a chain */
1458                                 skb_fill_page_desc(rxtop,
1459                                     skb_shinfo(rxtop)->nr_frags,
1460                                     buffer_info->page, 0, length);
1461                                 /* re-use the skb, only consumed the page */
1462                                 buffer_info->skb = skb;
1463                         }
1464                         e1000_consume_page(buffer_info, rxtop, length);
1465                         goto next_desc;
1466                 } else {
1467                         if (rxtop) {
1468                                 /* end of the chain */
1469                                 skb_fill_page_desc(rxtop,
1470                                     skb_shinfo(rxtop)->nr_frags,
1471                                     buffer_info->page, 0, length);
1472                                 /* re-use the current skb, we only consumed the
1473                                  * page */
1474                                 buffer_info->skb = skb;
1475                                 skb = rxtop;
1476                                 rxtop = NULL;
1477                                 e1000_consume_page(buffer_info, skb, length);
1478                         } else {
1479                                 /* no chain, got EOP, this buf is the packet
1480                                  * copybreak to save the put_page/alloc_page */
1481                                 if (length <= copybreak &&
1482                                     skb_tailroom(skb) >= length) {
1483                                         u8 *vaddr;
1484                                         vaddr = kmap_atomic(buffer_info->page);
1485                                         memcpy(skb_tail_pointer(skb), vaddr,
1486                                                length);
1487                                         kunmap_atomic(vaddr);
1488                                         /* re-use the page, so don't erase
1489                                          * buffer_info->page */
1490                                         skb_put(skb, length);
1491                                 } else {
1492                                         skb_fill_page_desc(skb, 0,
1493                                                            buffer_info->page, 0,
1494                                                            length);
1495                                         e1000_consume_page(buffer_info, skb,
1496                                                            length);
1497                                 }
1498                         }
1499                 }
1500
1501                 /* Receive Checksum Offload */
1502                 e1000_rx_checksum(adapter, staterr, skb);
1503
1504                 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1505
1506                 /* probably a little skewed due to removing CRC */
1507                 total_rx_bytes += skb->len;
1508                 total_rx_packets++;
1509
1510                 /* eth type trans needs skb->data to point to something */
1511                 if (!pskb_may_pull(skb, ETH_HLEN)) {
1512                         e_err("pskb_may_pull failed.\n");
1513                         dev_kfree_skb_irq(skb);
1514                         goto next_desc;
1515                 }
1516
1517                 e1000_receive_skb(adapter, netdev, skb, staterr,
1518                                   rx_desc->wb.upper.vlan);
1519
1520 next_desc:
1521                 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1522
1523                 /* return some buffers to hardware, one at a time is too slow */
1524                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1525                         adapter->alloc_rx_buf(rx_ring, cleaned_count,
1526                                               GFP_ATOMIC);
1527                         cleaned_count = 0;
1528                 }
1529
1530                 /* use prefetched values */
1531                 rx_desc = next_rxd;
1532                 buffer_info = next_buffer;
1533
1534                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1535         }
1536         rx_ring->next_to_clean = i;
1537
1538         cleaned_count = e1000_desc_unused(rx_ring);
1539         if (cleaned_count)
1540                 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1541
1542         adapter->total_rx_bytes += total_rx_bytes;
1543         adapter->total_rx_packets += total_rx_packets;
1544         return cleaned;
1545 }
1546
1547 /**
1548  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1549  * @rx_ring: Rx descriptor ring
1550  **/
1551 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1552 {
1553         struct e1000_adapter *adapter = rx_ring->adapter;
1554         struct e1000_buffer *buffer_info;
1555         struct e1000_ps_page *ps_page;
1556         struct pci_dev *pdev = adapter->pdev;
1557         unsigned int i, j;
1558
1559         /* Free all the Rx ring sk_buffs */
1560         for (i = 0; i < rx_ring->count; i++) {
1561                 buffer_info = &rx_ring->buffer_info[i];
1562                 if (buffer_info->dma) {
1563                         if (adapter->clean_rx == e1000_clean_rx_irq)
1564                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1565                                                  adapter->rx_buffer_len,
1566                                                  DMA_FROM_DEVICE);
1567                         else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1568                                 dma_unmap_page(&pdev->dev, buffer_info->dma,
1569                                                PAGE_SIZE,
1570                                                DMA_FROM_DEVICE);
1571                         else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1572                                 dma_unmap_single(&pdev->dev, buffer_info->dma,
1573                                                  adapter->rx_ps_bsize0,
1574                                                  DMA_FROM_DEVICE);
1575                         buffer_info->dma = 0;
1576                 }
1577
1578                 if (buffer_info->page) {
1579                         put_page(buffer_info->page);
1580                         buffer_info->page = NULL;
1581                 }
1582
1583                 if (buffer_info->skb) {
1584                         dev_kfree_skb(buffer_info->skb);
1585                         buffer_info->skb = NULL;
1586                 }
1587
1588                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1589                         ps_page = &buffer_info->ps_pages[j];
1590                         if (!ps_page->page)
1591                                 break;
1592                         dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1593                                        DMA_FROM_DEVICE);
1594                         ps_page->dma = 0;
1595                         put_page(ps_page->page);
1596                         ps_page->page = NULL;
1597                 }
1598         }
1599
1600         /* there also may be some cached data from a chained receive */
1601         if (rx_ring->rx_skb_top) {
1602                 dev_kfree_skb(rx_ring->rx_skb_top);
1603                 rx_ring->rx_skb_top = NULL;
1604         }
1605
1606         /* Zero out the descriptor ring */
1607         memset(rx_ring->desc, 0, rx_ring->size);
1608
1609         rx_ring->next_to_clean = 0;
1610         rx_ring->next_to_use = 0;
1611         adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1612
1613         writel(0, rx_ring->head);
1614         if (rx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1615                 e1000e_update_rdt_wa(rx_ring, 0);
1616         else
1617                 writel(0, rx_ring->tail);
1618 }
1619
1620 static void e1000e_downshift_workaround(struct work_struct *work)
1621 {
1622         struct e1000_adapter *adapter = container_of(work,
1623                                         struct e1000_adapter, downshift_task);
1624
1625         if (test_bit(__E1000_DOWN, &adapter->state))
1626                 return;
1627
1628         e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1629 }
1630
1631 /**
1632  * e1000_intr_msi - Interrupt Handler
1633  * @irq: interrupt number
1634  * @data: pointer to a network interface device structure
1635  **/
1636 static irqreturn_t e1000_intr_msi(int irq, void *data)
1637 {
1638         struct net_device *netdev = data;
1639         struct e1000_adapter *adapter = netdev_priv(netdev);
1640         struct e1000_hw *hw = &adapter->hw;
1641         u32 icr = er32(ICR);
1642
1643         /*
1644          * read ICR disables interrupts using IAM
1645          */
1646
1647         if (icr & E1000_ICR_LSC) {
1648                 hw->mac.get_link_status = true;
1649                 /*
1650                  * ICH8 workaround-- Call gig speed drop workaround on cable
1651                  * disconnect (LSC) before accessing any PHY registers
1652                  */
1653                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1654                     (!(er32(STATUS) & E1000_STATUS_LU)))
1655                         schedule_work(&adapter->downshift_task);
1656
1657                 /*
1658                  * 80003ES2LAN workaround-- For packet buffer work-around on
1659                  * link down event; disable receives here in the ISR and reset
1660                  * adapter in watchdog
1661                  */
1662                 if (netif_carrier_ok(netdev) &&
1663                     adapter->flags & FLAG_RX_NEEDS_RESTART) {
1664                         /* disable receives */
1665                         u32 rctl = er32(RCTL);
1666                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1667                         adapter->flags |= FLAG_RX_RESTART_NOW;
1668                 }
1669                 /* guard against interrupt when we're going down */
1670                 if (!test_bit(__E1000_DOWN, &adapter->state))
1671                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1672         }
1673
1674         if (napi_schedule_prep(&adapter->napi)) {
1675                 adapter->total_tx_bytes = 0;
1676                 adapter->total_tx_packets = 0;
1677                 adapter->total_rx_bytes = 0;
1678                 adapter->total_rx_packets = 0;
1679                 __napi_schedule(&adapter->napi);
1680         }
1681
1682         return IRQ_HANDLED;
1683 }
1684
1685 /**
1686  * e1000_intr - Interrupt Handler
1687  * @irq: interrupt number
1688  * @data: pointer to a network interface device structure
1689  **/
1690 static irqreturn_t e1000_intr(int irq, void *data)
1691 {
1692         struct net_device *netdev = data;
1693         struct e1000_adapter *adapter = netdev_priv(netdev);
1694         struct e1000_hw *hw = &adapter->hw;
1695         u32 rctl, icr = er32(ICR);
1696
1697         if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1698                 return IRQ_NONE;  /* Not our interrupt */
1699
1700         /*
1701          * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1702          * not set, then the adapter didn't send an interrupt
1703          */
1704         if (!(icr & E1000_ICR_INT_ASSERTED))
1705                 return IRQ_NONE;
1706
1707         /*
1708          * Interrupt Auto-Mask...upon reading ICR,
1709          * interrupts are masked.  No need for the
1710          * IMC write
1711          */
1712
1713         if (icr & E1000_ICR_LSC) {
1714                 hw->mac.get_link_status = true;
1715                 /*
1716                  * ICH8 workaround-- Call gig speed drop workaround on cable
1717                  * disconnect (LSC) before accessing any PHY registers
1718                  */
1719                 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1720                     (!(er32(STATUS) & E1000_STATUS_LU)))
1721                         schedule_work(&adapter->downshift_task);
1722
1723                 /*
1724                  * 80003ES2LAN workaround--
1725                  * For packet buffer work-around on link down event;
1726                  * disable receives here in the ISR and
1727                  * reset adapter in watchdog
1728                  */
1729                 if (netif_carrier_ok(netdev) &&
1730                     (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1731                         /* disable receives */
1732                         rctl = er32(RCTL);
1733                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1734                         adapter->flags |= FLAG_RX_RESTART_NOW;
1735                 }
1736                 /* guard against interrupt when we're going down */
1737                 if (!test_bit(__E1000_DOWN, &adapter->state))
1738                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1739         }
1740
1741         if (napi_schedule_prep(&adapter->napi)) {
1742                 adapter->total_tx_bytes = 0;
1743                 adapter->total_tx_packets = 0;
1744                 adapter->total_rx_bytes = 0;
1745                 adapter->total_rx_packets = 0;
1746                 __napi_schedule(&adapter->napi);
1747         }
1748
1749         return IRQ_HANDLED;
1750 }
1751
1752 static irqreturn_t e1000_msix_other(int irq, void *data)
1753 {
1754         struct net_device *netdev = data;
1755         struct e1000_adapter *adapter = netdev_priv(netdev);
1756         struct e1000_hw *hw = &adapter->hw;
1757         u32 icr = er32(ICR);
1758
1759         if (!(icr & E1000_ICR_INT_ASSERTED)) {
1760                 if (!test_bit(__E1000_DOWN, &adapter->state))
1761                         ew32(IMS, E1000_IMS_OTHER);
1762                 return IRQ_NONE;
1763         }
1764
1765         if (icr & adapter->eiac_mask)
1766                 ew32(ICS, (icr & adapter->eiac_mask));
1767
1768         if (icr & E1000_ICR_OTHER) {
1769                 if (!(icr & E1000_ICR_LSC))
1770                         goto no_link_interrupt;
1771                 hw->mac.get_link_status = true;
1772                 /* guard against interrupt when we're going down */
1773                 if (!test_bit(__E1000_DOWN, &adapter->state))
1774                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
1775         }
1776
1777 no_link_interrupt:
1778         if (!test_bit(__E1000_DOWN, &adapter->state))
1779                 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1780
1781         return IRQ_HANDLED;
1782 }
1783
1784
1785 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1786 {
1787         struct net_device *netdev = data;
1788         struct e1000_adapter *adapter = netdev_priv(netdev);
1789         struct e1000_hw *hw = &adapter->hw;
1790         struct e1000_ring *tx_ring = adapter->tx_ring;
1791
1792
1793         adapter->total_tx_bytes = 0;
1794         adapter->total_tx_packets = 0;
1795
1796         if (!e1000_clean_tx_irq(tx_ring))
1797                 /* Ring was not completely cleaned, so fire another interrupt */
1798                 ew32(ICS, tx_ring->ims_val);
1799
1800         return IRQ_HANDLED;
1801 }
1802
1803 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1804 {
1805         struct net_device *netdev = data;
1806         struct e1000_adapter *adapter = netdev_priv(netdev);
1807         struct e1000_ring *rx_ring = adapter->rx_ring;
1808
1809         /* Write the ITR value calculated at the end of the
1810          * previous interrupt.
1811          */
1812         if (rx_ring->set_itr) {
1813                 writel(1000000000 / (rx_ring->itr_val * 256),
1814                        rx_ring->itr_register);
1815                 rx_ring->set_itr = 0;
1816         }
1817
1818         if (napi_schedule_prep(&adapter->napi)) {
1819                 adapter->total_rx_bytes = 0;
1820                 adapter->total_rx_packets = 0;
1821                 __napi_schedule(&adapter->napi);
1822         }
1823         return IRQ_HANDLED;
1824 }
1825
1826 /**
1827  * e1000_configure_msix - Configure MSI-X hardware
1828  *
1829  * e1000_configure_msix sets up the hardware to properly
1830  * generate MSI-X interrupts.
1831  **/
1832 static void e1000_configure_msix(struct e1000_adapter *adapter)
1833 {
1834         struct e1000_hw *hw = &adapter->hw;
1835         struct e1000_ring *rx_ring = adapter->rx_ring;
1836         struct e1000_ring *tx_ring = adapter->tx_ring;
1837         int vector = 0;
1838         u32 ctrl_ext, ivar = 0;
1839
1840         adapter->eiac_mask = 0;
1841
1842         /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1843         if (hw->mac.type == e1000_82574) {
1844                 u32 rfctl = er32(RFCTL);
1845                 rfctl |= E1000_RFCTL_ACK_DIS;
1846                 ew32(RFCTL, rfctl);
1847         }
1848
1849 #define E1000_IVAR_INT_ALLOC_VALID      0x8
1850         /* Configure Rx vector */
1851         rx_ring->ims_val = E1000_IMS_RXQ0;
1852         adapter->eiac_mask |= rx_ring->ims_val;
1853         if (rx_ring->itr_val)
1854                 writel(1000000000 / (rx_ring->itr_val * 256),
1855                        rx_ring->itr_register);
1856         else
1857                 writel(1, rx_ring->itr_register);
1858         ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1859
1860         /* Configure Tx vector */
1861         tx_ring->ims_val = E1000_IMS_TXQ0;
1862         vector++;
1863         if (tx_ring->itr_val)
1864                 writel(1000000000 / (tx_ring->itr_val * 256),
1865                        tx_ring->itr_register);
1866         else
1867                 writel(1, tx_ring->itr_register);
1868         adapter->eiac_mask |= tx_ring->ims_val;
1869         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1870
1871         /* set vector for Other Causes, e.g. link changes */
1872         vector++;
1873         ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1874         if (rx_ring->itr_val)
1875                 writel(1000000000 / (rx_ring->itr_val * 256),
1876                        hw->hw_addr + E1000_EITR_82574(vector));
1877         else
1878                 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1879
1880         /* Cause Tx interrupts on every write back */
1881         ivar |= (1 << 31);
1882
1883         ew32(IVAR, ivar);
1884
1885         /* enable MSI-X PBA support */
1886         ctrl_ext = er32(CTRL_EXT);
1887         ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1888
1889         /* Auto-Mask Other interrupts upon ICR read */
1890 #define E1000_EIAC_MASK_82574   0x01F00000
1891         ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1892         ctrl_ext |= E1000_CTRL_EXT_EIAME;
1893         ew32(CTRL_EXT, ctrl_ext);
1894         e1e_flush();
1895 }
1896
1897 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1898 {
1899         if (adapter->msix_entries) {
1900                 pci_disable_msix(adapter->pdev);
1901                 kfree(adapter->msix_entries);
1902                 adapter->msix_entries = NULL;
1903         } else if (adapter->flags & FLAG_MSI_ENABLED) {
1904                 pci_disable_msi(adapter->pdev);
1905                 adapter->flags &= ~FLAG_MSI_ENABLED;
1906         }
1907 }
1908
1909 /**
1910  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1911  *
1912  * Attempt to configure interrupts using the best available
1913  * capabilities of the hardware and kernel.
1914  **/
1915 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1916 {
1917         int err;
1918         int i;
1919
1920         switch (adapter->int_mode) {
1921         case E1000E_INT_MODE_MSIX:
1922                 if (adapter->flags & FLAG_HAS_MSIX) {
1923                         adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1924                         adapter->msix_entries = kcalloc(adapter->num_vectors,
1925                                                       sizeof(struct msix_entry),
1926                                                       GFP_KERNEL);
1927                         if (adapter->msix_entries) {
1928                                 for (i = 0; i < adapter->num_vectors; i++)
1929                                         adapter->msix_entries[i].entry = i;
1930
1931                                 err = pci_enable_msix(adapter->pdev,
1932                                                       adapter->msix_entries,
1933                                                       adapter->num_vectors);
1934                                 if (err == 0)
1935                                         return;
1936                         }
1937                         /* MSI-X failed, so fall through and try MSI */
1938                         e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
1939                         e1000e_reset_interrupt_capability(adapter);
1940                 }
1941                 adapter->int_mode = E1000E_INT_MODE_MSI;
1942                 /* Fall through */
1943         case E1000E_INT_MODE_MSI:
1944                 if (!pci_enable_msi(adapter->pdev)) {
1945                         adapter->flags |= FLAG_MSI_ENABLED;
1946                 } else {
1947                         adapter->int_mode = E1000E_INT_MODE_LEGACY;
1948                         e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
1949                 }
1950                 /* Fall through */
1951         case E1000E_INT_MODE_LEGACY:
1952                 /* Don't do anything; this is the system default */
1953                 break;
1954         }
1955
1956         /* store the number of vectors being used */
1957         adapter->num_vectors = 1;
1958 }
1959
1960 /**
1961  * e1000_request_msix - Initialize MSI-X interrupts
1962  *
1963  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1964  * kernel.
1965  **/
1966 static int e1000_request_msix(struct e1000_adapter *adapter)
1967 {
1968         struct net_device *netdev = adapter->netdev;
1969         int err = 0, vector = 0;
1970
1971         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1972                 snprintf(adapter->rx_ring->name,
1973                          sizeof(adapter->rx_ring->name) - 1,
1974                          "%s-rx-0", netdev->name);
1975         else
1976                 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1977         err = request_irq(adapter->msix_entries[vector].vector,
1978                           e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1979                           netdev);
1980         if (err)
1981                 return err;
1982         adapter->rx_ring->itr_register = adapter->hw.hw_addr +
1983             E1000_EITR_82574(vector);
1984         adapter->rx_ring->itr_val = adapter->itr;
1985         vector++;
1986
1987         if (strlen(netdev->name) < (IFNAMSIZ - 5))
1988                 snprintf(adapter->tx_ring->name,
1989                          sizeof(adapter->tx_ring->name) - 1,
1990                          "%s-tx-0", netdev->name);
1991         else
1992                 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1993         err = request_irq(adapter->msix_entries[vector].vector,
1994                           e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1995                           netdev);
1996         if (err)
1997                 return err;
1998         adapter->tx_ring->itr_register = adapter->hw.hw_addr +
1999             E1000_EITR_82574(vector);
2000         adapter->tx_ring->itr_val = adapter->itr;
2001         vector++;
2002
2003         err = request_irq(adapter->msix_entries[vector].vector,
2004                           e1000_msix_other, 0, netdev->name, netdev);
2005         if (err)
2006                 return err;
2007
2008         e1000_configure_msix(adapter);
2009
2010         return 0;
2011 }
2012
2013 /**
2014  * e1000_request_irq - initialize interrupts
2015  *
2016  * Attempts to configure interrupts using the best available
2017  * capabilities of the hardware and kernel.
2018  **/
2019 static int e1000_request_irq(struct e1000_adapter *adapter)
2020 {
2021         struct net_device *netdev = adapter->netdev;
2022         int err;
2023
2024         if (adapter->msix_entries) {
2025                 err = e1000_request_msix(adapter);
2026                 if (!err)
2027                         return err;
2028                 /* fall back to MSI */
2029                 e1000e_reset_interrupt_capability(adapter);
2030                 adapter->int_mode = E1000E_INT_MODE_MSI;
2031                 e1000e_set_interrupt_capability(adapter);
2032         }
2033         if (adapter->flags & FLAG_MSI_ENABLED) {
2034                 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2035                                   netdev->name, netdev);
2036                 if (!err)
2037                         return err;
2038
2039                 /* fall back to legacy interrupt */
2040                 e1000e_reset_interrupt_capability(adapter);
2041                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2042         }
2043
2044         err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2045                           netdev->name, netdev);
2046         if (err)
2047                 e_err("Unable to allocate interrupt, Error: %d\n", err);
2048
2049         return err;
2050 }
2051
2052 static void e1000_free_irq(struct e1000_adapter *adapter)
2053 {
2054         struct net_device *netdev = adapter->netdev;
2055
2056         if (adapter->msix_entries) {
2057                 int vector = 0;
2058
2059                 free_irq(adapter->msix_entries[vector].vector, netdev);
2060                 vector++;
2061
2062                 free_irq(adapter->msix_entries[vector].vector, netdev);
2063                 vector++;
2064
2065                 /* Other Causes interrupt vector */
2066                 free_irq(adapter->msix_entries[vector].vector, netdev);
2067                 return;
2068         }
2069
2070         free_irq(adapter->pdev->irq, netdev);
2071 }
2072
2073 /**
2074  * e1000_irq_disable - Mask off interrupt generation on the NIC
2075  **/
2076 static void e1000_irq_disable(struct e1000_adapter *adapter)
2077 {
2078         struct e1000_hw *hw = &adapter->hw;
2079
2080         ew32(IMC, ~0);
2081         if (adapter->msix_entries)
2082                 ew32(EIAC_82574, 0);
2083         e1e_flush();
2084
2085         if (adapter->msix_entries) {
2086                 int i;
2087                 for (i = 0; i < adapter->num_vectors; i++)
2088                         synchronize_irq(adapter->msix_entries[i].vector);
2089         } else {
2090                 synchronize_irq(adapter->pdev->irq);
2091         }
2092 }
2093
2094 /**
2095  * e1000_irq_enable - Enable default interrupt generation settings
2096  **/
2097 static void e1000_irq_enable(struct e1000_adapter *adapter)
2098 {
2099         struct e1000_hw *hw = &adapter->hw;
2100
2101         if (adapter->msix_entries) {
2102                 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2103                 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2104         } else {
2105                 ew32(IMS, IMS_ENABLE_MASK);
2106         }
2107         e1e_flush();
2108 }
2109
2110 /**
2111  * e1000e_get_hw_control - get control of the h/w from f/w
2112  * @adapter: address of board private structure
2113  *
2114  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2115  * For ASF and Pass Through versions of f/w this means that
2116  * the driver is loaded. For AMT version (only with 82573)
2117  * of the f/w this means that the network i/f is open.
2118  **/
2119 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2120 {
2121         struct e1000_hw *hw = &adapter->hw;
2122         u32 ctrl_ext;
2123         u32 swsm;
2124
2125         /* Let firmware know the driver has taken over */
2126         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2127                 swsm = er32(SWSM);
2128                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2129         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2130                 ctrl_ext = er32(CTRL_EXT);
2131                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2132         }
2133 }
2134
2135 /**
2136  * e1000e_release_hw_control - release control of the h/w to f/w
2137  * @adapter: address of board private structure
2138  *
2139  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2140  * For ASF and Pass Through versions of f/w this means that the
2141  * driver is no longer loaded. For AMT version (only with 82573) i
2142  * of the f/w this means that the network i/f is closed.
2143  *
2144  **/
2145 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2146 {
2147         struct e1000_hw *hw = &adapter->hw;
2148         u32 ctrl_ext;
2149         u32 swsm;
2150
2151         /* Let firmware taken over control of h/w */
2152         if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2153                 swsm = er32(SWSM);
2154                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2155         } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2156                 ctrl_ext = er32(CTRL_EXT);
2157                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2158         }
2159 }
2160
2161 /**
2162  * e1000_alloc_ring_dma - allocate memory for a ring structure
2163  **/
2164 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2165                                 struct e1000_ring *ring)
2166 {
2167         struct pci_dev *pdev = adapter->pdev;
2168
2169         ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2170                                         GFP_KERNEL);
2171         if (!ring->desc)
2172                 return -ENOMEM;
2173
2174         return 0;
2175 }
2176
2177 /**
2178  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2179  * @tx_ring: Tx descriptor ring
2180  *
2181  * Return 0 on success, negative on failure
2182  **/
2183 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2184 {
2185         struct e1000_adapter *adapter = tx_ring->adapter;
2186         int err = -ENOMEM, size;
2187
2188         size = sizeof(struct e1000_buffer) * tx_ring->count;
2189         tx_ring->buffer_info = vzalloc(size);
2190         if (!tx_ring->buffer_info)
2191                 goto err;
2192
2193         /* round up to nearest 4K */
2194         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2195         tx_ring->size = ALIGN(tx_ring->size, 4096);
2196
2197         err = e1000_alloc_ring_dma(adapter, tx_ring);
2198         if (err)
2199                 goto err;
2200
2201         tx_ring->next_to_use = 0;
2202         tx_ring->next_to_clean = 0;
2203
2204         return 0;
2205 err:
2206         vfree(tx_ring->buffer_info);
2207         e_err("Unable to allocate memory for the transmit descriptor ring\n");
2208         return err;
2209 }
2210
2211 /**
2212  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2213  * @rx_ring: Rx descriptor ring
2214  *
2215  * Returns 0 on success, negative on failure
2216  **/
2217 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2218 {
2219         struct e1000_adapter *adapter = rx_ring->adapter;
2220         struct e1000_buffer *buffer_info;
2221         int i, size, desc_len, err = -ENOMEM;
2222
2223         size = sizeof(struct e1000_buffer) * rx_ring->count;
2224         rx_ring->buffer_info = vzalloc(size);
2225         if (!rx_ring->buffer_info)
2226                 goto err;
2227
2228         for (i = 0; i < rx_ring->count; i++) {
2229                 buffer_info = &rx_ring->buffer_info[i];
2230                 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2231                                                 sizeof(struct e1000_ps_page),
2232                                                 GFP_KERNEL);
2233                 if (!buffer_info->ps_pages)
2234                         goto err_pages;
2235         }
2236
2237         desc_len = sizeof(union e1000_rx_desc_packet_split);
2238
2239         /* Round up to nearest 4K */
2240         rx_ring->size = rx_ring->count * desc_len;
2241         rx_ring->size = ALIGN(rx_ring->size, 4096);
2242
2243         err = e1000_alloc_ring_dma(adapter, rx_ring);
2244         if (err)
2245                 goto err_pages;
2246
2247         rx_ring->next_to_clean = 0;
2248         rx_ring->next_to_use = 0;
2249         rx_ring->rx_skb_top = NULL;
2250
2251         return 0;
2252
2253 err_pages:
2254         for (i = 0; i < rx_ring->count; i++) {
2255                 buffer_info = &rx_ring->buffer_info[i];
2256                 kfree(buffer_info->ps_pages);
2257         }
2258 err:
2259         vfree(rx_ring->buffer_info);
2260         e_err("Unable to allocate memory for the receive descriptor ring\n");
2261         return err;
2262 }
2263
2264 /**
2265  * e1000_clean_tx_ring - Free Tx Buffers
2266  * @tx_ring: Tx descriptor ring
2267  **/
2268 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2269 {
2270         struct e1000_adapter *adapter = tx_ring->adapter;
2271         struct e1000_buffer *buffer_info;
2272         unsigned long size;
2273         unsigned int i;
2274
2275         for (i = 0; i < tx_ring->count; i++) {
2276                 buffer_info = &tx_ring->buffer_info[i];
2277                 e1000_put_txbuf(tx_ring, buffer_info);
2278         }
2279
2280         netdev_reset_queue(adapter->netdev);
2281         size = sizeof(struct e1000_buffer) * tx_ring->count;
2282         memset(tx_ring->buffer_info, 0, size);
2283
2284         memset(tx_ring->desc, 0, tx_ring->size);
2285
2286         tx_ring->next_to_use = 0;
2287         tx_ring->next_to_clean = 0;
2288
2289         writel(0, tx_ring->head);
2290         if (tx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2291                 e1000e_update_tdt_wa(tx_ring, 0);
2292         else
2293                 writel(0, tx_ring->tail);
2294 }
2295
2296 /**
2297  * e1000e_free_tx_resources - Free Tx Resources per Queue
2298  * @tx_ring: Tx descriptor ring
2299  *
2300  * Free all transmit software resources
2301  **/
2302 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2303 {
2304         struct e1000_adapter *adapter = tx_ring->adapter;
2305         struct pci_dev *pdev = adapter->pdev;
2306
2307         e1000_clean_tx_ring(tx_ring);
2308
2309         vfree(tx_ring->buffer_info);
2310         tx_ring->buffer_info = NULL;
2311
2312         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2313                           tx_ring->dma);
2314         tx_ring->desc = NULL;
2315 }
2316
2317 /**
2318  * e1000e_free_rx_resources - Free Rx Resources
2319  * @rx_ring: Rx descriptor ring
2320  *
2321  * Free all receive software resources
2322  **/
2323 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2324 {
2325         struct e1000_adapter *adapter = rx_ring->adapter;
2326         struct pci_dev *pdev = adapter->pdev;
2327         int i;
2328
2329         e1000_clean_rx_ring(rx_ring);
2330
2331         for (i = 0; i < rx_ring->count; i++)
2332                 kfree(rx_ring->buffer_info[i].ps_pages);
2333
2334         vfree(rx_ring->buffer_info);
2335         rx_ring->buffer_info = NULL;
2336
2337         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2338                           rx_ring->dma);
2339         rx_ring->desc = NULL;
2340 }
2341
2342 /**
2343  * e1000_update_itr - update the dynamic ITR value based on statistics
2344  * @adapter: pointer to adapter
2345  * @itr_setting: current adapter->itr
2346  * @packets: the number of packets during this measurement interval
2347  * @bytes: the number of bytes during this measurement interval
2348  *
2349  *      Stores a new ITR value based on packets and byte
2350  *      counts during the last interrupt.  The advantage of per interrupt
2351  *      computation is faster updates and more accurate ITR for the current
2352  *      traffic pattern.  Constants in this function were computed
2353  *      based on theoretical maximum wire speed and thresholds were set based
2354  *      on testing data as well as attempting to minimize response time
2355  *      while increasing bulk throughput.  This functionality is controlled
2356  *      by the InterruptThrottleRate module parameter.
2357  **/
2358 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2359                                      u16 itr_setting, int packets,
2360                                      int bytes)
2361 {
2362         unsigned int retval = itr_setting;
2363
2364         if (packets == 0)
2365                 return itr_setting;
2366
2367         switch (itr_setting) {
2368         case lowest_latency:
2369                 /* handle TSO and jumbo frames */
2370                 if (bytes/packets > 8000)
2371                         retval = bulk_latency;
2372                 else if ((packets < 5) && (bytes > 512))
2373                         retval = low_latency;
2374                 break;
2375         case low_latency:  /* 50 usec aka 20000 ints/s */
2376                 if (bytes > 10000) {
2377                         /* this if handles the TSO accounting */
2378                         if (bytes/packets > 8000)
2379                                 retval = bulk_latency;
2380                         else if ((packets < 10) || ((bytes/packets) > 1200))
2381                                 retval = bulk_latency;
2382                         else if ((packets > 35))
2383                                 retval = lowest_latency;
2384                 } else if (bytes/packets > 2000) {
2385                         retval = bulk_latency;
2386                 } else if (packets <= 2 && bytes < 512) {
2387                         retval = lowest_latency;
2388                 }
2389                 break;
2390         case bulk_latency: /* 250 usec aka 4000 ints/s */
2391                 if (bytes > 25000) {
2392                         if (packets > 35)
2393                                 retval = low_latency;
2394                 } else if (bytes < 6000) {
2395                         retval = low_latency;
2396                 }
2397                 break;
2398         }
2399
2400         return retval;
2401 }
2402
2403 static void e1000_set_itr(struct e1000_adapter *adapter)
2404 {
2405         struct e1000_hw *hw = &adapter->hw;
2406         u16 current_itr;
2407         u32 new_itr = adapter->itr;
2408
2409         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2410         if (adapter->link_speed != SPEED_1000) {
2411                 current_itr = 0;
2412                 new_itr = 4000;
2413                 goto set_itr_now;
2414         }
2415
2416         if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2417                 new_itr = 0;
2418                 goto set_itr_now;
2419         }
2420
2421         adapter->tx_itr = e1000_update_itr(adapter,
2422                                     adapter->tx_itr,
2423                                     adapter->total_tx_packets,
2424                                     adapter->total_tx_bytes);
2425         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2426         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2427                 adapter->tx_itr = low_latency;
2428
2429         adapter->rx_itr = e1000_update_itr(adapter,
2430                                     adapter->rx_itr,
2431                                     adapter->total_rx_packets,
2432                                     adapter->total_rx_bytes);
2433         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2434         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2435                 adapter->rx_itr = low_latency;
2436
2437         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2438
2439         switch (current_itr) {
2440         /* counts and packets in update_itr are dependent on these numbers */
2441         case lowest_latency:
2442                 new_itr = 70000;
2443                 break;
2444         case low_latency:
2445                 new_itr = 20000; /* aka hwitr = ~200 */
2446                 break;
2447         case bulk_latency:
2448                 new_itr = 4000;
2449                 break;
2450         default:
2451                 break;
2452         }
2453
2454 set_itr_now:
2455         if (new_itr != adapter->itr) {
2456                 /*
2457                  * this attempts to bias the interrupt rate towards Bulk
2458                  * by adding intermediate steps when interrupt rate is
2459                  * increasing
2460                  */
2461                 new_itr = new_itr > adapter->itr ?
2462                              min(adapter->itr + (new_itr >> 2), new_itr) :
2463                              new_itr;
2464                 adapter->itr = new_itr;
2465                 adapter->rx_ring->itr_val = new_itr;
2466                 if (adapter->msix_entries)
2467                         adapter->rx_ring->set_itr = 1;
2468                 else
2469                         if (new_itr)
2470                                 ew32(ITR, 1000000000 / (new_itr * 256));
2471                         else
2472                                 ew32(ITR, 0);
2473         }
2474 }
2475
2476 /**
2477  * e1000e_write_itr - write the ITR value to the appropriate registers
2478  * @adapter: address of board private structure
2479  * @itr: new ITR value to program
2480  *
2481  * e1000e_write_itr determines if the adapter is in MSI-X mode
2482  * and, if so, writes the EITR registers with the ITR value.
2483  * Otherwise, it writes the ITR value into the ITR register.
2484  **/
2485 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2486 {
2487         struct e1000_hw *hw = &adapter->hw;
2488         u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2489
2490         if (adapter->msix_entries) {
2491                 int vector;
2492
2493                 for (vector = 0; vector < adapter->num_vectors; vector++)
2494                         writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2495         } else {
2496                 ew32(ITR, new_itr);
2497         }
2498 }
2499
2500 /**
2501  * e1000_alloc_queues - Allocate memory for all rings
2502  * @adapter: board private structure to initialize
2503  **/
2504 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2505 {
2506         int size = sizeof(struct e1000_ring);
2507
2508         adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2509         if (!adapter->tx_ring)
2510                 goto err;
2511         adapter->tx_ring->count = adapter->tx_ring_count;
2512         adapter->tx_ring->adapter = adapter;
2513
2514         adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2515         if (!adapter->rx_ring)
2516                 goto err;
2517         adapter->rx_ring->count = adapter->rx_ring_count;
2518         adapter->rx_ring->adapter = adapter;
2519
2520         return 0;
2521 err:
2522         e_err("Unable to allocate memory for queues\n");
2523         kfree(adapter->rx_ring);
2524         kfree(adapter->tx_ring);
2525         return -ENOMEM;
2526 }
2527
2528 /**
2529  * e1000e_poll - NAPI Rx polling callback
2530  * @napi: struct associated with this polling callback
2531  * @weight: number of packets driver is allowed to process this poll
2532  **/
2533 static int e1000e_poll(struct napi_struct *napi, int weight)
2534 {
2535         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2536                                                      napi);
2537         struct e1000_hw *hw = &adapter->hw;
2538         struct net_device *poll_dev = adapter->netdev;
2539         int tx_cleaned = 1, work_done = 0;
2540
2541         adapter = netdev_priv(poll_dev);
2542
2543         if (!adapter->msix_entries ||
2544             (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2545                 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2546
2547         adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2548
2549         if (!tx_cleaned)
2550                 work_done = weight;
2551
2552         /* If weight not fully consumed, exit the polling mode */
2553         if (work_done < weight) {
2554                 if (adapter->itr_setting & 3)
2555                         e1000_set_itr(adapter);
2556                 napi_complete(napi);
2557                 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2558                         if (adapter->msix_entries)
2559                                 ew32(IMS, adapter->rx_ring->ims_val);
2560                         else
2561                                 e1000_irq_enable(adapter);
2562                 }
2563         }
2564
2565         return work_done;
2566 }
2567
2568 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2569 {
2570         struct e1000_adapter *adapter = netdev_priv(netdev);
2571         struct e1000_hw *hw = &adapter->hw;
2572         u32 vfta, index;
2573
2574         /* don't update vlan cookie if already programmed */
2575         if ((adapter->hw.mng_cookie.status &
2576              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2577             (vid == adapter->mng_vlan_id))
2578                 return 0;
2579
2580         /* add VID to filter table */
2581         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2582                 index = (vid >> 5) & 0x7F;
2583                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2584                 vfta |= (1 << (vid & 0x1F));
2585                 hw->mac.ops.write_vfta(hw, index, vfta);
2586         }
2587
2588         set_bit(vid, adapter->active_vlans);
2589
2590         return 0;
2591 }
2592
2593 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2594 {
2595         struct e1000_adapter *adapter = netdev_priv(netdev);
2596         struct e1000_hw *hw = &adapter->hw;
2597         u32 vfta, index;
2598
2599         if ((adapter->hw.mng_cookie.status &
2600              E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2601             (vid == adapter->mng_vlan_id)) {
2602                 /* release control to f/w */
2603                 e1000e_release_hw_control(adapter);
2604                 return 0;
2605         }
2606
2607         /* remove VID from filter table */
2608         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2609                 index = (vid >> 5) & 0x7F;
2610                 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2611                 vfta &= ~(1 << (vid & 0x1F));
2612                 hw->mac.ops.write_vfta(hw, index, vfta);
2613         }
2614
2615         clear_bit(vid, adapter->active_vlans);
2616
2617         return 0;
2618 }
2619
2620 /**
2621  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2622  * @adapter: board private structure to initialize
2623  **/
2624 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2625 {
2626         struct net_device *netdev = adapter->netdev;
2627         struct e1000_hw *hw = &adapter->hw;
2628         u32 rctl;
2629
2630         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2631                 /* disable VLAN receive filtering */
2632                 rctl = er32(RCTL);
2633                 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2634                 ew32(RCTL, rctl);
2635
2636                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2637                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2638                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2639                 }
2640         }
2641 }
2642
2643 /**
2644  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2645  * @adapter: board private structure to initialize
2646  **/
2647 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2648 {
2649         struct e1000_hw *hw = &adapter->hw;
2650         u32 rctl;
2651
2652         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2653                 /* enable VLAN receive filtering */
2654                 rctl = er32(RCTL);
2655                 rctl |= E1000_RCTL_VFE;
2656                 rctl &= ~E1000_RCTL_CFIEN;
2657                 ew32(RCTL, rctl);
2658         }
2659 }
2660
2661 /**
2662  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2663  * @adapter: board private structure to initialize
2664  **/
2665 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2666 {
2667         struct e1000_hw *hw = &adapter->hw;
2668         u32 ctrl;
2669
2670         /* disable VLAN tag insert/strip */
2671         ctrl = er32(CTRL);
2672         ctrl &= ~E1000_CTRL_VME;
2673         ew32(CTRL, ctrl);
2674 }
2675
2676 /**
2677  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2678  * @adapter: board private structure to initialize
2679  **/
2680 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2681 {
2682         struct e1000_hw *hw = &adapter->hw;
2683         u32 ctrl;
2684
2685         /* enable VLAN tag insert/strip */
2686         ctrl = er32(CTRL);
2687         ctrl |= E1000_CTRL_VME;
2688         ew32(CTRL, ctrl);
2689 }
2690
2691 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2692 {
2693         struct net_device *netdev = adapter->netdev;
2694         u16 vid = adapter->hw.mng_cookie.vlan_id;
2695         u16 old_vid = adapter->mng_vlan_id;
2696
2697         if (adapter->hw.mng_cookie.status &
2698             E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2699                 e1000_vlan_rx_add_vid(netdev, vid);
2700                 adapter->mng_vlan_id = vid;
2701         }
2702
2703         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2704                 e1000_vlan_rx_kill_vid(netdev, old_vid);
2705 }
2706
2707 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2708 {
2709         u16 vid;
2710
2711         e1000_vlan_rx_add_vid(adapter->netdev, 0);
2712
2713         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2714                 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2715 }
2716
2717 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2718 {
2719         struct e1000_hw *hw = &adapter->hw;
2720         u32 manc, manc2h, mdef, i, j;
2721
2722         if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2723                 return;
2724
2725         manc = er32(MANC);
2726
2727         /*
2728          * enable receiving management packets to the host. this will probably
2729          * generate destination unreachable messages from the host OS, but
2730          * the packets will be handled on SMBUS
2731          */
2732         manc |= E1000_MANC_EN_MNG2HOST;
2733         manc2h = er32(MANC2H);
2734
2735         switch (hw->mac.type) {
2736         default:
2737                 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2738                 break;
2739         case e1000_82574:
2740         case e1000_82583:
2741                 /*
2742                  * Check if IPMI pass-through decision filter already exists;
2743                  * if so, enable it.
2744                  */
2745                 for (i = 0, j = 0; i < 8; i++) {
2746                         mdef = er32(MDEF(i));
2747
2748                         /* Ignore filters with anything other than IPMI ports */
2749                         if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2750                                 continue;
2751
2752                         /* Enable this decision filter in MANC2H */
2753                         if (mdef)
2754                                 manc2h |= (1 << i);
2755
2756                         j |= mdef;
2757                 }
2758
2759                 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2760                         break;
2761
2762                 /* Create new decision filter in an empty filter */
2763                 for (i = 0, j = 0; i < 8; i++)
2764                         if (er32(MDEF(i)) == 0) {
2765                                 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2766                                                E1000_MDEF_PORT_664));
2767                                 manc2h |= (1 << 1);
2768                                 j++;
2769                                 break;
2770                         }
2771
2772                 if (!j)
2773                         e_warn("Unable to create IPMI pass-through filter\n");
2774                 break;
2775         }
2776
2777         ew32(MANC2H, manc2h);
2778         ew32(MANC, manc);
2779 }
2780
2781 /**
2782  * e1000_configure_tx - Configure Transmit Unit after Reset
2783  * @adapter: board private structure
2784  *
2785  * Configure the Tx unit of the MAC after a reset.
2786  **/
2787 static void e1000_configure_tx(struct e1000_adapter *adapter)
2788 {
2789         struct e1000_hw *hw = &adapter->hw;
2790         struct e1000_ring *tx_ring = adapter->tx_ring;
2791         u64 tdba;
2792         u32 tdlen, tarc;
2793
2794         /* Setup the HW Tx Head and Tail descriptor pointers */
2795         tdba = tx_ring->dma;
2796         tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2797         ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2798         ew32(TDBAH(0), (tdba >> 32));
2799         ew32(TDLEN(0), tdlen);
2800         ew32(TDH(0), 0);
2801         ew32(TDT(0), 0);
2802         tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2803         tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2804
2805         /* Set the Tx Interrupt Delay register */
2806         ew32(TIDV, adapter->tx_int_delay);
2807         /* Tx irq moderation */
2808         ew32(TADV, adapter->tx_abs_int_delay);
2809
2810         if (adapter->flags2 & FLAG2_DMA_BURST) {
2811                 u32 txdctl = er32(TXDCTL(0));
2812                 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2813                             E1000_TXDCTL_WTHRESH);
2814                 /*
2815                  * set up some performance related parameters to encourage the
2816                  * hardware to use the bus more efficiently in bursts, depends
2817                  * on the tx_int_delay to be enabled,
2818                  * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2819                  * hthresh = 1 ==> prefetch when one or more available
2820                  * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2821                  * BEWARE: this seems to work but should be considered first if
2822                  * there are Tx hangs or other Tx related bugs
2823                  */
2824                 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2825                 ew32(TXDCTL(0), txdctl);
2826         }
2827         /* erratum work around: set txdctl the same for both queues */
2828         ew32(TXDCTL(1), er32(TXDCTL(0)));
2829
2830         if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2831                 tarc = er32(TARC(0));
2832                 /*
2833                  * set the speed mode bit, we'll clear it if we're not at
2834                  * gigabit link later
2835                  */
2836 #define SPEED_MODE_BIT (1 << 21)
2837                 tarc |= SPEED_MODE_BIT;
2838                 ew32(TARC(0), tarc);
2839         }
2840
2841         /* errata: program both queues to unweighted RR */
2842         if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2843                 tarc = er32(TARC(0));
2844                 tarc |= 1;
2845                 ew32(TARC(0), tarc);
2846                 tarc = er32(TARC(1));
2847                 tarc |= 1;
2848                 ew32(TARC(1), tarc);
2849         }
2850
2851         /* Setup Transmit Descriptor Settings for eop descriptor */
2852         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2853
2854         /* only set IDE if we are delaying interrupts using the timers */
2855         if (adapter->tx_int_delay)
2856                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2857
2858         /* enable Report Status bit */
2859         adapter->txd_cmd |= E1000_TXD_CMD_RS;
2860
2861         hw->mac.ops.config_collision_dist(hw);
2862 }
2863
2864 /**
2865  * e1000_setup_rctl - configure the receive control registers
2866  * @adapter: Board private structure
2867  **/
2868 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2869                            (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2870 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2871 {
2872         struct e1000_hw *hw = &adapter->hw;
2873         u32 rctl, rfctl;
2874         u32 pages = 0;
2875
2876         /* Workaround Si errata on PCHx - configure jumbo frame flow */
2877         if (hw->mac.type >= e1000_pch2lan) {
2878                 s32 ret_val;
2879
2880                 if (adapter->netdev->mtu > ETH_DATA_LEN)
2881                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2882                 else
2883                         ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2884
2885                 if (ret_val)
2886                         e_dbg("failed to enable jumbo frame workaround mode\n");
2887         }
2888
2889         /* Program MC offset vector base */
2890         rctl = er32(RCTL);
2891         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2892         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2893                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2894                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2895
2896         /* Do not Store bad packets */
2897         rctl &= ~E1000_RCTL_SBP;
2898
2899         /* Enable Long Packet receive */
2900         if (adapter->netdev->mtu <= ETH_DATA_LEN)
2901                 rctl &= ~E1000_RCTL_LPE;
2902         else
2903                 rctl |= E1000_RCTL_LPE;
2904
2905         /* Some systems expect that the CRC is included in SMBUS traffic. The
2906          * hardware strips the CRC before sending to both SMBUS (BMC) and to
2907          * host memory when this is enabled
2908          */
2909         if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2910                 rctl |= E1000_RCTL_SECRC;
2911
2912         /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2913         if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2914                 u16 phy_data;
2915
2916                 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2917                 phy_data &= 0xfff8;
2918                 phy_data |= (1 << 2);
2919                 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2920
2921                 e1e_rphy(hw, 22, &phy_data);
2922                 phy_data &= 0x0fff;
2923                 phy_data |= (1 << 14);
2924                 e1e_wphy(hw, 0x10, 0x2823);
2925                 e1e_wphy(hw, 0x11, 0x0003);
2926                 e1e_wphy(hw, 22, phy_data);
2927         }
2928
2929         /* Setup buffer sizes */
2930         rctl &= ~E1000_RCTL_SZ_4096;
2931         rctl |= E1000_RCTL_BSEX;
2932         switch (adapter->rx_buffer_len) {
2933         case 2048:
2934         default:
2935                 rctl |= E1000_RCTL_SZ_2048;
2936                 rctl &= ~E1000_RCTL_BSEX;
2937                 break;
2938         case 4096:
2939                 rctl |= E1000_RCTL_SZ_4096;
2940                 break;
2941         case 8192:
2942                 rctl |= E1000_RCTL_SZ_8192;
2943                 break;
2944         case 16384:
2945                 rctl |= E1000_RCTL_SZ_16384;
2946                 break;
2947         }
2948
2949         /* Enable Extended Status in all Receive Descriptors */
2950         rfctl = er32(RFCTL);
2951         rfctl |= E1000_RFCTL_EXTEN;
2952         ew32(RFCTL, rfctl);
2953
2954         /*
2955          * 82571 and greater support packet-split where the protocol
2956          * header is placed in skb->data and the packet data is
2957          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2958          * In the case of a non-split, skb->data is linearly filled,
2959          * followed by the page buffers.  Therefore, skb->data is
2960          * sized to hold the largest protocol header.
2961          *
2962          * allocations using alloc_page take too long for regular MTU
2963          * so only enable packet split for jumbo frames
2964          *
2965          * Using pages when the page size is greater than 16k wastes
2966          * a lot of memory, since we allocate 3 pages at all times
2967          * per packet.
2968          */
2969         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2970         if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2971                 adapter->rx_ps_pages = pages;
2972         else
2973                 adapter->rx_ps_pages = 0;
2974
2975         if (adapter->rx_ps_pages) {
2976                 u32 psrctl = 0;
2977
2978                 /* Enable Packet split descriptors */
2979                 rctl |= E1000_RCTL_DTYP_PS;
2980
2981                 psrctl |= adapter->rx_ps_bsize0 >>
2982                         E1000_PSRCTL_BSIZE0_SHIFT;
2983
2984                 switch (adapter->rx_ps_pages) {
2985                 case 3:
2986                         psrctl |= PAGE_SIZE <<
2987                                 E1000_PSRCTL_BSIZE3_SHIFT;
2988                 case 2:
2989                         psrctl |= PAGE_SIZE <<
2990                                 E1000_PSRCTL_BSIZE2_SHIFT;
2991                 case 1:
2992                         psrctl |= PAGE_SIZE >>
2993                                 E1000_PSRCTL_BSIZE1_SHIFT;
2994                         break;
2995                 }
2996
2997                 ew32(PSRCTL, psrctl);
2998         }
2999
3000         /* This is useful for sniffing bad packets. */
3001         if (adapter->netdev->features & NETIF_F_RXALL) {
3002                 /* UPE and MPE will be handled by normal PROMISC logic
3003                  * in e1000e_set_rx_mode */
3004                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3005                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
3006                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3007
3008                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3009                           E1000_RCTL_DPF | /* Allow filtered pause */
3010                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3011                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3012                  * and that breaks VLANs.
3013                  */
3014         }
3015
3016         ew32(RCTL, rctl);
3017         /* just started the receive unit, no need to restart */
3018         adapter->flags &= ~FLAG_RX_RESTART_NOW;
3019 }
3020
3021 /**
3022  * e1000_configure_rx - Configure Receive Unit after Reset
3023  * @adapter: board private structure
3024  *
3025  * Configure the Rx unit of the MAC after a reset.
3026  **/
3027 static void e1000_configure_rx(struct e1000_adapter *adapter)
3028 {
3029         struct e1000_hw *hw = &adapter->hw;
3030         struct e1000_ring *rx_ring = adapter->rx_ring;
3031         u64 rdba;
3032         u32 rdlen, rctl, rxcsum, ctrl_ext;
3033
3034         if (adapter->rx_ps_pages) {
3035                 /* this is a 32 byte descriptor */
3036                 rdlen = rx_ring->count *
3037                     sizeof(union e1000_rx_desc_packet_split);
3038                 adapter->clean_rx = e1000_clean_rx_irq_ps;
3039                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3040         } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3041                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3042                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3043                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3044         } else {
3045                 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3046                 adapter->clean_rx = e1000_clean_rx_irq;
3047                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3048         }
3049
3050         /* disable receives while setting up the descriptors */
3051         rctl = er32(RCTL);
3052         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3053                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3054         e1e_flush();
3055         usleep_range(10000, 20000);
3056
3057         if (adapter->flags2 & FLAG2_DMA_BURST) {
3058                 /*
3059                  * set the writeback threshold (only takes effect if the RDTR
3060                  * is set). set GRAN=1 and write back up to 0x4 worth, and
3061                  * enable prefetching of 0x20 Rx descriptors
3062                  * granularity = 01
3063                  * wthresh = 04,
3064                  * hthresh = 04,
3065                  * pthresh = 0x20
3066                  */
3067                 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3068                 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3069
3070                 /*
3071                  * override the delay timers for enabling bursting, only if
3072                  * the value was not set by the user via module options
3073                  */
3074                 if (adapter->rx_int_delay == DEFAULT_RDTR)
3075                         adapter->rx_int_delay = BURST_RDTR;
3076                 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3077                         adapter->rx_abs_int_delay = BURST_RADV;
3078         }
3079
3080         /* set the Receive Delay Timer Register */
3081         ew32(RDTR, adapter->rx_int_delay);
3082
3083         /* irq moderation */
3084         ew32(RADV, adapter->rx_abs_int_delay);
3085         if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3086                 e1000e_write_itr(adapter, adapter->itr);
3087
3088         ctrl_ext = er32(CTRL_EXT);
3089         /* Auto-Mask interrupts upon ICR access */
3090         ctrl_ext |= E1000_CTRL_EXT_IAME;
3091         ew32(IAM, 0xffffffff);
3092         ew32(CTRL_EXT, ctrl_ext);
3093         e1e_flush();
3094
3095         /*
3096          * Setup the HW Rx Head and Tail Descriptor Pointers and
3097          * the Base and Length of the Rx Descriptor Ring
3098          */
3099         rdba = rx_ring->dma;
3100         ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3101         ew32(RDBAH(0), (rdba >> 32));
3102         ew32(RDLEN(0), rdlen);
3103         ew32(RDH(0), 0);
3104         ew32(RDT(0), 0);
3105         rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3106         rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3107
3108         /* Enable Receive Checksum Offload for TCP and UDP */
3109         rxcsum = er32(RXCSUM);
3110         if (adapter->netdev->features & NETIF_F_RXCSUM)
3111                 rxcsum |= E1000_RXCSUM_TUOFL;
3112         else
3113                 rxcsum &= ~E1000_RXCSUM_TUOFL;
3114         ew32(RXCSUM, rxcsum);
3115
3116         if (adapter->hw.mac.type == e1000_pch2lan) {
3117                 /*
3118                  * With jumbo frames, excessive C-state transition
3119                  * latencies result in dropped transactions.
3120                  */
3121                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3122                         u32 rxdctl = er32(RXDCTL(0));
3123                         ew32(RXDCTL(0), rxdctl | 0x3);
3124                         pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3125                 } else {
3126                         pm_qos_update_request(&adapter->netdev->pm_qos_req,
3127                                               PM_QOS_DEFAULT_VALUE);
3128                 }
3129         }
3130
3131         /* Enable Receives */
3132         ew32(RCTL, rctl);
3133 }
3134
3135 /**
3136  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3137  * @netdev: network interface device structure
3138  *
3139  * Writes multicast address list to the MTA hash table.
3140  * Returns: -ENOMEM on failure
3141  *                0 on no addresses written
3142  *                X on writing X addresses to MTA
3143  */
3144 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3145 {
3146         struct e1000_adapter *adapter = netdev_priv(netdev);
3147         struct e1000_hw *hw = &adapter->hw;
3148         struct netdev_hw_addr *ha;
3149         u8 *mta_list;
3150         int i;
3151
3152         if (netdev_mc_empty(netdev)) {
3153                 /* nothing to program, so clear mc list */
3154                 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3155                 return 0;
3156         }
3157
3158         mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3159         if (!mta_list)
3160                 return -ENOMEM;
3161
3162         /* update_mc_addr_list expects a packed array of only addresses. */
3163         i = 0;
3164         netdev_for_each_mc_addr(ha, netdev)
3165                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3166
3167         hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3168         kfree(mta_list);
3169
3170         return netdev_mc_count(netdev);
3171 }
3172
3173 /**
3174  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3175  * @netdev: network interface device structure
3176  *
3177  * Writes unicast address list to the RAR table.
3178  * Returns: -ENOMEM on failure/insufficient address space
3179  *                0 on no addresses written
3180  *                X on writing X addresses to the RAR table
3181  **/
3182 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3183 {
3184         struct e1000_adapter *adapter = netdev_priv(netdev);
3185         struct e1000_hw *hw = &adapter->hw;
3186         unsigned int rar_entries = hw->mac.rar_entry_count;
3187         int count = 0;
3188
3189         /* save a rar entry for our hardware address */
3190         rar_entries--;
3191
3192         /* save a rar entry for the LAA workaround */
3193         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3194                 rar_entries--;
3195
3196         /* return ENOMEM indicating insufficient memory for addresses */
3197         if (netdev_uc_count(netdev) > rar_entries)
3198                 return -ENOMEM;
3199
3200         if (!netdev_uc_empty(netdev) && rar_entries) {
3201                 struct netdev_hw_addr *ha;
3202
3203                 /*
3204                  * write the addresses in reverse order to avoid write
3205                  * combining
3206                  */
3207                 netdev_for_each_uc_addr(ha, netdev) {
3208                         if (!rar_entries)
3209                                 break;
3210                         hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3211                         count++;
3212                 }
3213         }
3214
3215         /* zero out the remaining RAR entries not used above */
3216         for (; rar_entries > 0; rar_entries--) {
3217                 ew32(RAH(rar_entries), 0);
3218                 ew32(RAL(rar_entries), 0);
3219         }
3220         e1e_flush();
3221
3222         return count;
3223 }
3224
3225 /**
3226  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3227  * @netdev: network interface device structure
3228  *
3229  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3230  * address list or the network interface flags are updated.  This routine is
3231  * responsible for configuring the hardware for proper unicast, multicast,
3232  * promiscuous mode, and all-multi behavior.
3233  **/
3234 static void e1000e_set_rx_mode(struct net_device *netdev)
3235 {
3236         struct e1000_adapter *adapter = netdev_priv(netdev);
3237         struct e1000_hw *hw = &adapter->hw;
3238         u32 rctl;
3239
3240         /* Check for Promiscuous and All Multicast modes */
3241         rctl = er32(RCTL);
3242
3243         /* clear the affected bits */
3244         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3245
3246         if (netdev->flags & IFF_PROMISC) {
3247                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3248                 /* Do not hardware filter VLANs in promisc mode */
3249                 e1000e_vlan_filter_disable(adapter);
3250         } else {
3251                 int count;
3252
3253                 if (netdev->flags & IFF_ALLMULTI) {
3254                         rctl |= E1000_RCTL_MPE;
3255                 } else {
3256                         /*
3257                          * Write addresses to the MTA, if the attempt fails
3258                          * then we should just turn on promiscuous mode so
3259                          * that we can at least receive multicast traffic
3260                          */
3261                         count = e1000e_write_mc_addr_list(netdev);
3262                         if (count < 0)
3263                                 rctl |= E1000_RCTL_MPE;
3264                 }
3265                 e1000e_vlan_filter_enable(adapter);
3266                 /*
3267                  * Write addresses to available RAR registers, if there is not
3268                  * sufficient space to store all the addresses then enable
3269                  * unicast promiscuous mode
3270                  */
3271                 count = e1000e_write_uc_addr_list(netdev);
3272                 if (count < 0)
3273                         rctl |= E1000_RCTL_UPE;
3274         }
3275
3276         ew32(RCTL, rctl);
3277
3278         if (netdev->features & NETIF_F_HW_VLAN_RX)
3279                 e1000e_vlan_strip_enable(adapter);
3280         else
3281                 e1000e_vlan_strip_disable(adapter);
3282 }
3283
3284 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3285 {
3286         struct e1000_hw *hw = &adapter->hw;
3287         u32 mrqc, rxcsum;
3288         int i;
3289         static const u32 rsskey[10] = {
3290                 0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3291                 0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3292         };
3293
3294         /* Fill out hash function seed */
3295         for (i = 0; i < 10; i++)
3296                 ew32(RSSRK(i), rsskey[i]);
3297
3298         /* Direct all traffic to queue 0 */
3299         for (i = 0; i < 32; i++)
3300                 ew32(RETA(i), 0);
3301
3302         /*
3303          * Disable raw packet checksumming so that RSS hash is placed in
3304          * descriptor on writeback.
3305          */
3306         rxcsum = er32(RXCSUM);
3307         rxcsum |= E1000_RXCSUM_PCSD;
3308
3309         ew32(RXCSUM, rxcsum);
3310
3311         mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3312                 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3313                 E1000_MRQC_RSS_FIELD_IPV6 |
3314                 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3315                 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3316
3317         ew32(MRQC, mrqc);
3318 }
3319
3320 /**
3321  * e1000_configure - configure the hardware for Rx and Tx
3322  * @adapter: private board structure
3323  **/
3324 static void e1000_configure(struct e1000_adapter *adapter)
3325 {
3326         struct e1000_ring *rx_ring = adapter->rx_ring;
3327
3328         e1000e_set_rx_mode(adapter->netdev);
3329
3330         e1000_restore_vlan(adapter);
3331         e1000_init_manageability_pt(adapter);
3332
3333         e1000_configure_tx(adapter);
3334
3335         if (adapter->netdev->features & NETIF_F_RXHASH)
3336                 e1000e_setup_rss_hash(adapter);
3337         e1000_setup_rctl(adapter);
3338         e1000_configure_rx(adapter);
3339         adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3340 }
3341
3342 /**
3343  * e1000e_power_up_phy - restore link in case the phy was powered down
3344  * @adapter: address of board private structure
3345  *
3346  * The phy may be powered down to save power and turn off link when the
3347  * driver is unloaded and wake on lan is not enabled (among others)
3348  * *** this routine MUST be followed by a call to e1000e_reset ***
3349  **/
3350 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3351 {
3352         if (adapter->hw.phy.ops.power_up)
3353                 adapter->hw.phy.ops.power_up(&adapter->hw);
3354
3355         adapter->hw.mac.ops.setup_link(&adapter->hw);
3356 }
3357
3358 /**
3359  * e1000_power_down_phy - Power down the PHY
3360  *
3361  * Power down the PHY so no link is implied when interface is down.
3362  * The PHY cannot be powered down if management or WoL is active.
3363  */
3364 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3365 {
3366         /* WoL is enabled */
3367         if (adapter->wol)
3368                 return;
3369
3370         if (adapter->hw.phy.ops.power_down)
3371                 adapter->hw.phy.ops.power_down(&adapter->hw);
3372 }
3373
3374 /**
3375  * e1000e_reset - bring the hardware into a known good state
3376  *
3377  * This function boots the hardware and enables some settings that
3378  * require a configuration cycle of the hardware - those cannot be
3379  * set/changed during runtime. After reset the device needs to be
3380  * properly configured for Rx, Tx etc.
3381  */
3382 void e1000e_reset(struct e1000_adapter *adapter)
3383 {
3384         struct e1000_mac_info *mac = &adapter->hw.mac;
3385         struct e1000_fc_info *fc = &adapter->hw.fc;
3386         struct e1000_hw *hw = &adapter->hw;
3387         u32 tx_space, min_tx_space, min_rx_space;
3388         u32 pba = adapter->pba;
3389         u16 hwm;
3390
3391         /* reset Packet Buffer Allocation to default */
3392         ew32(PBA, pba);
3393
3394         if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3395                 /*
3396                  * To maintain wire speed transmits, the Tx FIFO should be
3397                  * large enough to accommodate two full transmit packets,
3398                  * rounded up to the next 1KB and expressed in KB.  Likewise,
3399                  * the Rx FIFO should be large enough to accommodate at least
3400                  * one full receive packet and is similarly rounded up and
3401                  * expressed in KB.
3402                  */
3403                 pba = er32(PBA);
3404                 /* upper 16 bits has Tx packet buffer allocation size in KB */
3405                 tx_space = pba >> 16;
3406                 /* lower 16 bits has Rx packet buffer allocation size in KB */
3407                 pba &= 0xffff;
3408                 /*
3409                  * the Tx fifo also stores 16 bytes of information about the Tx
3410                  * but don't include ethernet FCS because hardware appends it
3411                  */
3412                 min_tx_space = (adapter->max_frame_size +
3413                                 sizeof(struct e1000_tx_desc) -
3414                                 ETH_FCS_LEN) * 2;
3415                 min_tx_space = ALIGN(min_tx_space, 1024);
3416                 min_tx_space >>= 10;
3417                 /* software strips receive CRC, so leave room for it */
3418                 min_rx_space = adapter->max_frame_size;
3419                 min_rx_space = ALIGN(min_rx_space, 1024);
3420                 min_rx_space >>= 10;
3421
3422                 /*
3423                  * If current Tx allocation is less than the min Tx FIFO size,
3424                  * and the min Tx FIFO size is less than the current Rx FIFO
3425                  * allocation, take space away from current Rx allocation
3426                  */
3427                 if ((tx_space < min_tx_space) &&
3428                     ((min_tx_space - tx_space) < pba)) {
3429                         pba -= min_tx_space - tx_space;
3430
3431                         /*
3432                          * if short on Rx space, Rx wins and must trump Tx
3433                          * adjustment or use Early Receive if available
3434                          */
3435                         if (pba < min_rx_space)
3436                                 pba = min_rx_space;
3437                 }
3438
3439                 ew32(PBA, pba);
3440         }
3441
3442         /*
3443          * flow control settings
3444          *
3445          * The high water mark must be low enough to fit one full frame
3446          * (or the size used for early receive) above it in the Rx FIFO.
3447          * Set it to the lower of:
3448          * - 90% of the Rx FIFO size, and
3449          * - the full Rx FIFO size minus one full frame
3450          */
3451         if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3452                 fc->pause_time = 0xFFFF;
3453         else
3454                 fc->pause_time = E1000_FC_PAUSE_TIME;
3455         fc->send_xon = true;
3456         fc->current_mode = fc->requested_mode;
3457
3458         switch (hw->mac.type) {
3459         case e1000_ich9lan:
3460         case e1000_ich10lan:
3461                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3462                         pba = 14;
3463                         ew32(PBA, pba);
3464                         fc->high_water = 0x2800;
3465                         fc->low_water = fc->high_water - 8;
3466                         break;
3467                 }
3468                 /* fall-through */
3469         default:
3470                 hwm = min(((pba << 10) * 9 / 10),
3471                           ((pba << 10) - adapter->max_frame_size));
3472
3473                 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3474                 fc->low_water = fc->high_water - 8;
3475                 break;
3476         case e1000_pchlan:
3477                 /*
3478                  * Workaround PCH LOM adapter hangs with certain network
3479                  * loads.  If hangs persist, try disabling Tx flow control.
3480                  */
3481                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3482                         fc->high_water = 0x3500;
3483                         fc->low_water  = 0x1500;
3484                 } else {
3485                         fc->high_water = 0x5000;
3486                         fc->low_water  = 0x3000;
3487                 }
3488                 fc->refresh_time = 0x1000;
3489                 break;
3490         case e1000_pch2lan:
3491         case e1000_pch_lpt:
3492                 fc->high_water = 0x05C20;
3493                 fc->low_water = 0x05048;
3494                 fc->pause_time = 0x0650;
3495                 fc->refresh_time = 0x0400;
3496                 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3497                         pba = 14;
3498                         ew32(PBA, pba);
3499                 }
3500                 break;
3501         }
3502
3503         /*
3504          * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3505          * fit in receive buffer.
3506          */
3507         if (adapter->itr_setting & 0x3) {
3508                 if ((adapter->max_frame_size * 2) > (pba << 10)) {
3509                         if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3510                                 dev_info(&adapter->pdev->dev,
3511                                         "Interrupt Throttle Rate turned off\n");
3512                                 adapter->flags2 |= FLAG2_DISABLE_AIM;
3513                                 e1000e_write_itr(adapter, 0);
3514                         }
3515                 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3516                         dev_info(&adapter->pdev->dev,
3517                                  "Interrupt Throttle Rate turned on\n");
3518                         adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3519                         adapter->itr = 20000;
3520                         e1000e_write_itr(adapter, adapter->itr);
3521                 }
3522         }
3523
3524         /* Allow time for pending master requests to run */
3525         mac->ops.reset_hw(hw);
3526
3527         /*
3528          * For parts with AMT enabled, let the firmware know
3529          * that the network interface is in control
3530          */
3531         if (adapter->flags & FLAG_HAS_AMT)
3532                 e1000e_get_hw_control(adapter);
3533
3534         ew32(WUC, 0);
3535
3536         if (mac->ops.init_hw(hw))
3537                 e_err("Hardware Error\n");
3538
3539         e1000_update_mng_vlan(adapter);
3540
3541         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3542         ew32(VET, ETH_P_8021Q);
3543
3544         e1000e_reset_adaptive(hw);
3545
3546         if (!netif_running(adapter->netdev) &&
3547             !test_bit(__E1000_TESTING, &adapter->state)) {
3548                 e1000_power_down_phy(adapter);
3549                 return;
3550         }
3551
3552         e1000_get_phy_info(hw);
3553
3554         if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3555             !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3556                 u16 phy_data = 0;
3557                 /*
3558                  * speed up time to link by disabling smart power down, ignore
3559                  * the return value of this function because there is nothing
3560                  * different we would do if it failed
3561                  */
3562                 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3563                 phy_data &= ~IGP02E1000_PM_SPD;
3564                 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3565         }
3566 }
3567
3568 int e1000e_up(struct e1000_adapter *adapter)
3569 {
3570         struct e1000_hw *hw = &adapter->hw;
3571
3572         /* hardware has been reset, we need to reload some things */
3573         e1000_configure(adapter);
3574
3575         clear_bit(__E1000_DOWN, &adapter->state);
3576
3577         if (adapter->msix_entries)
3578                 e1000_configure_msix(adapter);
3579         e1000_irq_enable(adapter);
3580
3581         netif_start_queue(adapter->netdev);
3582
3583         /* fire a link change interrupt to start the watchdog */
3584         if (adapter->msix_entries)
3585                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3586         else
3587                 ew32(ICS, E1000_ICS_LSC);
3588
3589         return 0;
3590 }
3591
3592 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3593 {
3594         struct e1000_hw *hw = &adapter->hw;
3595
3596         if (!(adapter->flags2 & FLAG2_DMA_BURST))
3597                 return;
3598
3599         /* flush pending descriptor writebacks to memory */
3600         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3601         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3602
3603         /* execute the writes immediately */
3604         e1e_flush();
3605
3606         /*
3607          * due to rare timing issues, write to TIDV/RDTR again to ensure the
3608          * write is successful
3609          */
3610         ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3611         ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3612
3613         /* execute the writes immediately */
3614         e1e_flush();
3615 }
3616
3617 static void e1000e_update_stats(struct e1000_adapter *adapter);
3618
3619 void e1000e_down(struct e1000_adapter *adapter)
3620 {
3621         struct net_device *netdev = adapter->netdev;
3622         struct e1000_hw *hw = &adapter->hw;
3623         u32 tctl, rctl;
3624
3625         /*
3626          * signal that we're down so the interrupt handler does not
3627          * reschedule our watchdog timer
3628          */
3629         set_bit(__E1000_DOWN, &adapter->state);
3630
3631         /* disable receives in the hardware */
3632         rctl = er32(RCTL);
3633         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3634                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3635         /* flush and sleep below */
3636
3637         netif_stop_queue(netdev);
3638
3639         /* disable transmits in the hardware */
3640         tctl = er32(TCTL);
3641         tctl &= ~E1000_TCTL_EN;
3642         ew32(TCTL, tctl);
3643
3644         /* flush both disables and wait for them to finish */
3645         e1e_flush();
3646         usleep_range(10000, 20000);
3647
3648         e1000_irq_disable(adapter);
3649
3650         del_timer_sync(&adapter->watchdog_timer);
3651         del_timer_sync(&adapter->phy_info_timer);
3652
3653         netif_carrier_off(netdev);
3654
3655         spin_lock(&adapter->stats64_lock);
3656         e1000e_update_stats(adapter);
3657         spin_unlock(&adapter->stats64_lock);
3658
3659         e1000e_flush_descriptors(adapter);
3660         e1000_clean_tx_ring(adapter->tx_ring);
3661         e1000_clean_rx_ring(adapter->rx_ring);
3662
3663         adapter->link_speed = 0;
3664         adapter->link_duplex = 0;
3665
3666         if (!pci_channel_offline(adapter->pdev))
3667                 e1000e_reset(adapter);
3668
3669         /*
3670          * TODO: for power management, we could drop the link and
3671          * pci_disable_device here.
3672          */
3673 }
3674
3675 void e1000e_reinit_locked(struct e1000_adapter *adapter)
3676 {
3677         might_sleep();
3678         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3679                 usleep_range(1000, 2000);
3680         e1000e_down(adapter);
3681         e1000e_up(adapter);
3682         clear_bit(__E1000_RESETTING, &adapter->state);
3683 }
3684
3685 /**
3686  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3687  * @adapter: board private structure to initialize
3688  *
3689  * e1000_sw_init initializes the Adapter private data structure.
3690  * Fields are initialized based on PCI device information and
3691  * OS network device settings (MTU size).
3692  **/
3693 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3694 {
3695         struct net_device *netdev = adapter->netdev;
3696
3697         adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3698         adapter->rx_ps_bsize0 = 128;
3699         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3700         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3701         adapter->tx_ring_count = E1000_DEFAULT_TXD;
3702         adapter->rx_ring_count = E1000_DEFAULT_RXD;
3703
3704         spin_lock_init(&adapter->stats64_lock);
3705
3706         e1000e_set_interrupt_capability(adapter);
3707
3708         if (e1000_alloc_queues(adapter))
3709                 return -ENOMEM;
3710
3711         /* Explicitly disable IRQ since the NIC can be in any state. */
3712         e1000_irq_disable(adapter);
3713
3714         set_bit(__E1000_DOWN, &adapter->state);
3715         return 0;
3716 }
3717
3718 /**
3719  * e1000_intr_msi_test - Interrupt Handler
3720  * @irq: interrupt number
3721  * @data: pointer to a network interface device structure
3722  **/
3723 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3724 {
3725         struct net_device *netdev = data;
3726         struct e1000_adapter *adapter = netdev_priv(netdev);
3727         struct e1000_hw *hw = &adapter->hw;
3728         u32 icr = er32(ICR);
3729
3730         e_dbg("icr is %08X\n", icr);
3731         if (icr & E1000_ICR_RXSEQ) {
3732                 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
3733                 wmb();
3734         }
3735
3736         return IRQ_HANDLED;
3737 }
3738
3739 /**
3740  * e1000_test_msi_interrupt - Returns 0 for successful test
3741  * @adapter: board private struct
3742  *
3743  * code flow taken from tg3.c
3744  **/
3745 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3746 {
3747         struct net_device *netdev = adapter->netdev;
3748         struct e1000_hw *hw = &adapter->hw;
3749         int err;
3750
3751         /* poll_enable hasn't been called yet, so don't need disable */
3752         /* clear any pending events */
3753         er32(ICR);
3754
3755         /* free the real vector and request a test handler */
3756         e1000_free_irq(adapter);
3757         e1000e_reset_interrupt_capability(adapter);
3758
3759         /* Assume that the test fails, if it succeeds then the test
3760          * MSI irq handler will unset this flag */
3761         adapter->flags |= FLAG_MSI_TEST_FAILED;
3762
3763         err = pci_enable_msi(adapter->pdev);
3764         if (err)
3765                 goto msi_test_failed;
3766
3767         err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3768                           netdev->name, netdev);
3769         if (err) {
3770                 pci_disable_msi(adapter->pdev);
3771                 goto msi_test_failed;
3772         }
3773
3774         wmb();
3775
3776         e1000_irq_enable(adapter);
3777
3778         /* fire an unusual interrupt on the test handler */
3779         ew32(ICS, E1000_ICS_RXSEQ);
3780         e1e_flush();
3781         msleep(100);
3782
3783         e1000_irq_disable(adapter);
3784
3785         rmb();
3786
3787         if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3788                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3789                 e_info("MSI interrupt test failed, using legacy interrupt.\n");
3790         } else {
3791                 e_dbg("MSI interrupt test succeeded!\n");
3792         }
3793
3794         free_irq(adapter->pdev->irq, netdev);
3795         pci_disable_msi(adapter->pdev);
3796
3797 msi_test_failed:
3798         e1000e_set_interrupt_capability(adapter);
3799         return e1000_request_irq(adapter);
3800 }
3801
3802 /**
3803  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3804  * @adapter: board private struct
3805  *
3806  * code flow taken from tg3.c, called with e1000 interrupts disabled.
3807  **/
3808 static int e1000_test_msi(struct e1000_adapter *adapter)
3809 {
3810         int err;
3811         u16 pci_cmd;
3812
3813         if (!(adapter->flags & FLAG_MSI_ENABLED))
3814                 return 0;
3815
3816         /* disable SERR in case the MSI write causes a master abort */
3817         pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3818         if (pci_cmd & PCI_COMMAND_SERR)
3819                 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3820                                       pci_cmd & ~PCI_COMMAND_SERR);
3821
3822         err = e1000_test_msi_interrupt(adapter);
3823
3824         /* re-enable SERR */
3825         if (pci_cmd & PCI_COMMAND_SERR) {
3826                 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3827                 pci_cmd |= PCI_COMMAND_SERR;
3828                 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3829         }
3830
3831         return err;
3832 }
3833
3834 /**
3835  * e1000_open - Called when a network interface is made active
3836  * @netdev: network interface device structure
3837  *
3838  * Returns 0 on success, negative value on failure
3839  *
3840  * The open entry point is called when a network interface is made
3841  * active by the system (IFF_UP).  At this point all resources needed
3842  * for transmit and receive operations are allocated, the interrupt
3843  * handler is registered with the OS, the watchdog timer is started,
3844  * and the stack is notified that the interface is ready.
3845  **/
3846 static int e1000_open(struct net_device *netdev)
3847 {
3848         struct e1000_adapter *adapter = netdev_priv(netdev);
3849         struct e1000_hw *hw = &adapter->hw;
3850         struct pci_dev *pdev = adapter->pdev;
3851         int err;
3852
3853         /* disallow open during test */
3854         if (test_bit(__E1000_TESTING, &adapter->state))
3855                 return -EBUSY;
3856
3857         pm_runtime_get_sync(&pdev->dev);
3858
3859         netif_carrier_off(netdev);
3860
3861         /* allocate transmit descriptors */
3862         err = e1000e_setup_tx_resources(adapter->tx_ring);
3863         if (err)
3864                 goto err_setup_tx;
3865
3866         /* allocate receive descriptors */
3867         err = e1000e_setup_rx_resources(adapter->rx_ring);
3868         if (err)
3869                 goto err_setup_rx;
3870
3871         /*
3872          * If AMT is enabled, let the firmware know that the network
3873          * interface is now open and reset the part to a known state.
3874          */
3875         if (adapter->flags & FLAG_HAS_AMT) {
3876                 e1000e_get_hw_control(adapter);
3877                 e1000e_reset(adapter);
3878         }
3879
3880         e1000e_power_up_phy(adapter);
3881
3882         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3883         if ((adapter->hw.mng_cookie.status &
3884              E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3885                 e1000_update_mng_vlan(adapter);
3886
3887         /* DMA latency requirement to workaround jumbo issue */
3888         if (adapter->hw.mac.type == e1000_pch2lan)
3889                 pm_qos_add_request(&adapter->netdev->pm_qos_req,
3890                                    PM_QOS_CPU_DMA_LATENCY,
3891                                    PM_QOS_DEFAULT_VALUE);
3892
3893         /*
3894          * before we allocate an interrupt, we must be ready to handle it.
3895          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3896          * as soon as we call pci_request_irq, so we have to setup our
3897          * clean_rx handler before we do so.
3898          */
3899         e1000_configure(adapter);
3900
3901         err = e1000_request_irq(adapter);
3902         if (err)
3903                 goto err_req_irq;
3904
3905         /*
3906          * Work around PCIe errata with MSI interrupts causing some chipsets to
3907          * ignore e1000e MSI messages, which means we need to test our MSI
3908          * interrupt now
3909          */
3910         if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3911                 err = e1000_test_msi(adapter);
3912                 if (err) {
3913                         e_err("Interrupt allocation failed\n");
3914                         goto err_req_irq;
3915                 }
3916         }
3917
3918         /* From here on the code is the same as e1000e_up() */
3919         clear_bit(__E1000_DOWN, &adapter->state);
3920
3921         napi_enable(&adapter->napi);
3922
3923         e1000_irq_enable(adapter);
3924
3925         adapter->tx_hang_recheck = false;
3926         netif_start_queue(netdev);
3927
3928         adapter->idle_check = true;
3929         pm_runtime_put(&pdev->dev);
3930
3931         /* fire a link status change interrupt to start the watchdog */
3932         if (adapter->msix_entries)
3933                 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3934         else
3935                 ew32(ICS, E1000_ICS_LSC);
3936
3937         return 0;
3938
3939 err_req_irq:
3940         e1000e_release_hw_control(adapter);
3941         e1000_power_down_phy(adapter);
3942         e1000e_free_rx_resources(adapter->rx_ring);
3943 err_setup_rx:
3944         e1000e_free_tx_resources(adapter->tx_ring);
3945 err_setup_tx:
3946         e1000e_reset(adapter);
3947         pm_runtime_put_sync(&pdev->dev);
3948
3949         return err;
3950 }
3951
3952 /**
3953  * e1000_close - Disables a network interface
3954  * @netdev: network interface device structure
3955  *
3956  * Returns 0, this is not allowed to fail
3957  *
3958  * The close entry point is called when an interface is de-activated
3959  * by the OS.  The hardware is still under the drivers control, but
3960  * needs to be disabled.  A global MAC reset is issued to stop the
3961  * hardware, and all transmit and receive resources are freed.
3962  **/
3963 static int e1000_close(struct net_device *netdev)
3964 {
3965         struct e1000_adapter *adapter = netdev_priv(netdev);
3966         struct pci_dev *pdev = adapter->pdev;
3967         int count = E1000_CHECK_RESET_COUNT;
3968
3969         while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
3970                 usleep_range(10000, 20000);
3971
3972         WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3973
3974         pm_runtime_get_sync(&pdev->dev);
3975
3976         napi_disable(&adapter->napi);
3977
3978         if (!test_bit(__E1000_DOWN, &adapter->state)) {
3979                 e1000e_down(adapter);
3980                 e1000_free_irq(adapter);
3981         }
3982         e1000_power_down_phy(adapter);
3983
3984         e1000e_free_tx_resources(adapter->tx_ring);
3985         e1000e_free_rx_resources(adapter->rx_ring);
3986
3987         /*
3988          * kill manageability vlan ID if supported, but not if a vlan with
3989          * the same ID is registered on the host OS (let 8021q kill it)
3990          */
3991         if (adapter->hw.mng_cookie.status &
3992             E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
3993                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3994
3995         /*
3996          * If AMT is enabled, let the firmware know that the network
3997          * interface is now closed
3998          */
3999         if ((adapter->flags & FLAG_HAS_AMT) &&
4000             !test_bit(__E1000_TESTING, &adapter->state))
4001                 e1000e_release_hw_control(adapter);
4002
4003         if (adapter->hw.mac.type == e1000_pch2lan)
4004                 pm_qos_remove_request(&adapter->netdev->pm_qos_req);
4005
4006         pm_runtime_put_sync(&pdev->dev);
4007
4008         return 0;
4009 }
4010 /**
4011  * e1000_set_mac - Change the Ethernet Address of the NIC
4012  * @netdev: network interface device structure
4013  * @p: pointer to an address structure
4014  *
4015  * Returns 0 on success, negative on failure
4016  **/
4017 static int e1000_set_mac(struct net_device *netdev, void *p)
4018 {
4019         struct e1000_adapter *adapter = netdev_priv(netdev);
4020         struct e1000_hw *hw = &adapter->hw;
4021         struct sockaddr *addr = p;
4022
4023         if (!is_valid_ether_addr(addr->sa_data))
4024                 return -EADDRNOTAVAIL;
4025
4026         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4027         memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4028
4029         hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4030
4031         if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4032                 /* activate the work around */
4033                 e1000e_set_laa_state_82571(&adapter->hw, 1);
4034
4035                 /*
4036                  * Hold a copy of the LAA in RAR[14] This is done so that
4037                  * between the time RAR[0] gets clobbered  and the time it
4038                  * gets fixed (in e1000_watchdog), the actual LAA is in one
4039                  * of the RARs and no incoming packets directed to this port
4040                  * are dropped. Eventually the LAA will be in RAR[0] and
4041                  * RAR[14]
4042                  */
4043                 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4044                                     adapter->hw.mac.rar_entry_count - 1);
4045         }
4046
4047         return 0;
4048 }
4049
4050 /**
4051  * e1000e_update_phy_task - work thread to update phy
4052  * @work: pointer to our work struct
4053  *
4054  * this worker thread exists because we must acquire a
4055  * semaphore to read the phy, which we could msleep while
4056  * waiting for it, and we can't msleep in a timer.
4057  **/
4058 static void e1000e_update_phy_task(struct work_struct *work)
4059 {
4060         struct e1000_adapter *adapter = container_of(work,
4061                                         struct e1000_adapter, update_phy_task);
4062
4063         if (test_bit(__E1000_DOWN, &adapter->state))
4064                 return;
4065
4066         e1000_get_phy_info(&adapter->hw);
4067 }
4068
4069 /*
4070  * Need to wait a few seconds after link up to get diagnostic information from
4071  * the phy
4072  */
4073 static void e1000_update_phy_info(unsigned long data)
4074 {
4075         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4076
4077         if (test_bit(__E1000_DOWN, &adapter->state))
4078                 return;
4079
4080         schedule_work(&adapter->update_phy_task);
4081 }
4082
4083 /**
4084  * e1000e_update_phy_stats - Update the PHY statistics counters
4085  * @adapter: board private structure
4086  *
4087  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4088  **/
4089 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4090 {
4091         struct e1000_hw *hw = &adapter->hw;
4092         s32 ret_val;
4093         u16 phy_data;
4094
4095         ret_val = hw->phy.ops.acquire(hw);
4096         if (ret_val)
4097                 return;
4098
4099         /*
4100          * A page set is expensive so check if already on desired page.
4101          * If not, set to the page with the PHY status registers.
4102          */
4103         hw->phy.addr = 1;
4104         ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4105                                            &phy_data);
4106         if (ret_val)
4107                 goto release;
4108         if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4109                 ret_val = hw->phy.ops.set_page(hw,
4110                                                HV_STATS_PAGE << IGP_PAGE_SHIFT);
4111                 if (ret_val)
4112                         goto release;
4113         }
4114
4115         /* Single Collision Count */
4116         hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4117         ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4118         if (!ret_val)
4119                 adapter->stats.scc += phy_data;
4120
4121         /* Excessive Collision Count */
4122         hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4123         ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4124         if (!ret_val)
4125                 adapter->stats.ecol += phy_data;
4126
4127         /* Multiple Collision Count */
4128         hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4129         ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4130         if (!ret_val)
4131                 adapter->stats.mcc += phy_data;
4132
4133         /* Late Collision Count */
4134         hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4135         ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4136         if (!ret_val)
4137                 adapter->stats.latecol += phy_data;
4138
4139         /* Collision Count - also used for adaptive IFS */
4140         hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4141         ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4142         if (!ret_val)
4143                 hw->mac.collision_delta = phy_data;
4144
4145         /* Defer Count */
4146         hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4147         ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4148         if (!ret_val)
4149                 adapter->stats.dc += phy_data;
4150
4151         /* Transmit with no CRS */
4152         hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4153         ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4154         if (!ret_val)
4155                 adapter->stats.tncrs += phy_data;
4156
4157 release:
4158         hw->phy.ops.release(hw);
4159 }
4160
4161 /**
4162  * e1000e_update_stats - Update the board statistics counters
4163  * @adapter: board private structure
4164  **/
4165 static void e1000e_update_stats(struct e1000_adapter *adapter)
4166 {
4167         struct net_device *netdev = adapter->netdev;
4168         struct e1000_hw *hw = &adapter->hw;
4169         struct pci_dev *pdev = adapter->pdev;
4170
4171         /*
4172          * Prevent stats update while adapter is being reset, or if the pci
4173          * connection is down.
4174          */
4175         if (adapter->link_speed == 0)
4176                 return;
4177         if (pci_channel_offline(pdev))
4178                 return;
4179
4180         adapter->stats.crcerrs += er32(CRCERRS);
4181         adapter->stats.gprc += er32(GPRC);
4182         adapter->stats.gorc += er32(GORCL);
4183         er32(GORCH); /* Clear gorc */
4184         adapter->stats.bprc += er32(BPRC);
4185         adapter->stats.mprc += er32(MPRC);
4186         adapter->stats.roc += er32(ROC);
4187
4188         adapter->stats.mpc += er32(MPC);
4189
4190         /* Half-duplex statistics */
4191         if (adapter->link_duplex == HALF_DUPLEX) {
4192                 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4193                         e1000e_update_phy_stats(adapter);
4194                 } else {
4195                         adapter->stats.scc += er32(SCC);
4196                         adapter->stats.ecol += er32(ECOL);
4197                         adapter->stats.mcc += er32(MCC);
4198                         adapter->stats.latecol += er32(LATECOL);
4199                         adapter->stats.dc += er32(DC);
4200
4201                         hw->mac.collision_delta = er32(COLC);
4202
4203                         if ((hw->mac.type != e1000_82574) &&
4204                             (hw->mac.type != e1000_82583))
4205                                 adapter->stats.tncrs += er32(TNCRS);
4206                 }
4207                 adapter->stats.colc += hw->mac.collision_delta;
4208         }
4209
4210         adapter->stats.xonrxc += er32(XONRXC);
4211         adapter->stats.xontxc += er32(XONTXC);
4212         adapter->stats.xoffrxc += er32(XOFFRXC);
4213         adapter->stats.xofftxc += er32(XOFFTXC);
4214         adapter->stats.gptc += er32(GPTC);
4215         adapter->stats.gotc += er32(GOTCL);
4216         er32(GOTCH); /* Clear gotc */
4217         adapter->stats.rnbc += er32(RNBC);
4218         adapter->stats.ruc += er32(RUC);
4219
4220         adapter->stats.mptc += er32(MPTC);
4221         adapter->stats.bptc += er32(BPTC);
4222
4223         /* used for adaptive IFS */
4224
4225         hw->mac.tx_packet_delta = er32(TPT);
4226         adapter->stats.tpt += hw->mac.tx_packet_delta;
4227
4228         adapter->stats.algnerrc += er32(ALGNERRC);
4229         adapter->stats.rxerrc += er32(RXERRC);
4230         adapter->stats.cexterr += er32(CEXTERR);
4231         adapter->stats.tsctc += er32(TSCTC);
4232         adapter->stats.tsctfc += er32(TSCTFC);
4233
4234         /* Fill out the OS statistics structure */
4235         netdev->stats.multicast = adapter->stats.mprc;
4236         netdev->stats.collisions = adapter->stats.colc;
4237
4238         /* Rx Errors */
4239
4240         /*
4241          * RLEC on some newer hardware can be incorrect so build
4242          * our own version based on RUC and ROC
4243          */
4244         netdev->stats.rx_errors = adapter->stats.rxerrc +
4245                 adapter->stats.crcerrs + adapter->stats.algnerrc +
4246                 adapter->stats.ruc + adapter->stats.roc +
4247                 adapter->stats.cexterr;
4248         netdev->stats.rx_length_errors = adapter->stats.ruc +
4249                                               adapter->stats.roc;
4250         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4251         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4252         netdev->stats.rx_missed_errors = adapter->stats.mpc;
4253
4254         /* Tx Errors */
4255         netdev->stats.tx_errors = adapter->stats.ecol +
4256                                        adapter->stats.latecol;
4257         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4258         netdev->stats.tx_window_errors = adapter->stats.latecol;
4259         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4260
4261         /* Tx Dropped needs to be maintained elsewhere */
4262
4263         /* Management Stats */
4264         adapter->stats.mgptc += er32(MGTPTC);
4265         adapter->stats.mgprc += er32(MGTPRC);
4266         adapter->stats.mgpdc += er32(MGTPDC);
4267 }
4268
4269 /**
4270  * e1000_phy_read_status - Update the PHY register status snapshot
4271  * @adapter: board private structure
4272  **/
4273 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4274 {
4275         struct e1000_hw *hw = &adapter->hw;
4276         struct e1000_phy_regs *phy = &adapter->phy_regs;
4277
4278         if ((er32(STATUS) & E1000_STATUS_LU) &&
4279             (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4280                 int ret_val;
4281
4282                 ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
4283                 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
4284                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
4285                 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
4286                 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
4287                 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
4288                 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
4289                 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
4290                 if (ret_val)
4291                         e_warn("Error reading PHY register\n");
4292         } else {
4293                 /*
4294                  * Do not read PHY registers if link is not up
4295                  * Set values to typical power-on defaults
4296                  */
4297                 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4298                 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4299                              BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4300                              BMSR_ERCAP);
4301                 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4302                                   ADVERTISE_ALL | ADVERTISE_CSMA);
4303                 phy->lpa = 0;
4304                 phy->expansion = EXPANSION_ENABLENPAGE;
4305                 phy->ctrl1000 = ADVERTISE_1000FULL;
4306                 phy->stat1000 = 0;
4307                 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4308         }
4309 }
4310
4311 static void e1000_print_link_info(struct e1000_adapter *adapter)
4312 {
4313         struct e1000_hw *hw = &adapter->hw;
4314         u32 ctrl = er32(CTRL);
4315
4316         /* Link status message must follow this format for user tools */
4317         printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4318                 adapter->netdev->name,
4319                 adapter->link_speed,
4320                 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4321                 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4322                 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
4323                 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4324 }
4325
4326 static bool e1000e_has_link(struct e1000_adapter *adapter)
4327 {
4328         struct e1000_hw *hw = &adapter->hw;
4329         bool link_active = false;
4330         s32 ret_val = 0;
4331
4332         /*
4333          * get_link_status is set on LSC (link status) interrupt or
4334          * Rx sequence error interrupt.  get_link_status will stay
4335          * false until the check_for_link establishes link
4336          * for copper adapters ONLY
4337          */
4338         switch (hw->phy.media_type) {
4339         case e1000_media_type_copper:
4340                 if (hw->mac.get_link_status) {
4341                         ret_val = hw->mac.ops.check_for_link(hw);
4342                         link_active = !hw->mac.get_link_status;
4343                 } else {
4344                         link_active = true;
4345                 }
4346                 break;
4347         case e1000_media_type_fiber:
4348                 ret_val = hw->mac.ops.check_for_link(hw);
4349                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4350                 break;
4351         case e1000_media_type_internal_serdes:
4352                 ret_val = hw->mac.ops.check_for_link(hw);
4353                 link_active = adapter->hw.mac.serdes_has_link;
4354                 break;
4355         default:
4356         case e1000_media_type_unknown:
4357                 break;
4358         }
4359
4360         if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4361             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4362                 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4363                 e_info("Gigabit has been disabled, downgrading speed\n");
4364         }
4365
4366         return link_active;
4367 }
4368
4369 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4370 {
4371         /* make sure the receive unit is started */
4372         if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4373             (adapter->flags & FLAG_RX_RESTART_NOW)) {
4374                 struct e1000_hw *hw = &adapter->hw;
4375                 u32 rctl = er32(RCTL);
4376                 ew32(RCTL, rctl | E1000_RCTL_EN);
4377                 adapter->flags &= ~FLAG_RX_RESTART_NOW;
4378         }
4379 }
4380
4381 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4382 {
4383         struct e1000_hw *hw = &adapter->hw;
4384
4385         /*
4386          * With 82574 controllers, PHY needs to be checked periodically
4387          * for hung state and reset, if two calls return true
4388          */
4389         if (e1000_check_phy_82574(hw))
4390                 adapter->phy_hang_count++;
4391         else
4392                 adapter->phy_hang_count = 0;
4393
4394         if (adapter->phy_hang_count > 1) {
4395                 adapter->phy_hang_count = 0;
4396                 schedule_work(&adapter->reset_task);
4397         }
4398 }
4399
4400 /**
4401  * e1000_watchdog - Timer Call-back
4402  * @data: pointer to adapter cast into an unsigned long
4403  **/
4404 static void e1000_watchdog(unsigned long data)
4405 {
4406         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4407
4408         /* Do the rest outside of interrupt context */
4409         schedule_work(&adapter->watchdog_task);
4410
4411         /* TODO: make this use queue_delayed_work() */
4412 }
4413
4414 static void e1000_watchdog_task(struct work_struct *work)
4415 {
4416         struct e1000_adapter *adapter = container_of(work,
4417                                         struct e1000_adapter, watchdog_task);
4418         struct net_device *netdev = adapter->netdev;
4419         struct e1000_mac_info *mac = &adapter->hw.mac;
4420         struct e1000_phy_info *phy = &adapter->hw.phy;
4421         struct e1000_ring *tx_ring = adapter->tx_ring;
4422         struct e1000_hw *hw = &adapter->hw;
4423         u32 link, tctl;
4424
4425         if (test_bit(__E1000_DOWN, &adapter->state))
4426                 return;
4427
4428         link = e1000e_has_link(adapter);
4429         if ((netif_carrier_ok(netdev)) && link) {
4430                 /* Cancel scheduled suspend requests. */
4431                 pm_runtime_resume(netdev->dev.parent);
4432
4433                 e1000e_enable_receives(adapter);
4434                 goto link_up;
4435         }
4436
4437         if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4438             (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4439                 e1000_update_mng_vlan(adapter);
4440
4441         if (link) {
4442                 if (!netif_carrier_ok(netdev)) {
4443                         bool txb2b = true;
4444
4445                         /* Cancel scheduled suspend requests. */
4446                         pm_runtime_resume(netdev->dev.parent);
4447
4448                         /* update snapshot of PHY registers on LSC */
4449                         e1000_phy_read_status(adapter);
4450                         mac->ops.get_link_up_info(&adapter->hw,
4451                                                    &adapter->link_speed,
4452                                                    &adapter->link_duplex);
4453                         e1000_print_link_info(adapter);
4454                         /*
4455                          * On supported PHYs, check for duplex mismatch only
4456                          * if link has autonegotiated at 10/100 half
4457                          */
4458                         if ((hw->phy.type == e1000_phy_igp_3 ||
4459                              hw->phy.type == e1000_phy_bm) &&
4460                             (hw->mac.autoneg == true) &&
4461                             (adapter->link_speed == SPEED_10 ||
4462                              adapter->link_speed == SPEED_100) &&
4463                             (adapter->link_duplex == HALF_DUPLEX)) {
4464                                 u16 autoneg_exp;
4465
4466                                 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
4467
4468                                 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4469                                         e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4470                         }
4471
4472                         /* adjust timeout factor according to speed/duplex */
4473                         adapter->tx_timeout_factor = 1;
4474                         switch (adapter->link_speed) {
4475                         case SPEED_10:
4476                                 txb2b = false;
4477                                 adapter->tx_timeout_factor = 16;
4478                                 break;
4479                         case SPEED_100:
4480                                 txb2b = false;
4481                                 adapter->tx_timeout_factor = 10;
4482                                 break;
4483                         }
4484
4485                         /*
4486                          * workaround: re-program speed mode bit after
4487                          * link-up event
4488                          */
4489                         if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4490                             !txb2b) {
4491                                 u32 tarc0;
4492                                 tarc0 = er32(TARC(0));
4493                                 tarc0 &= ~SPEED_MODE_BIT;
4494                                 ew32(TARC(0), tarc0);
4495                         }
4496
4497                         /*
4498                          * disable TSO for pcie and 10/100 speeds, to avoid
4499                          * some hardware issues
4500                          */
4501                         if (!(adapter->flags & FLAG_TSO_FORCE)) {
4502                                 switch (adapter->link_speed) {
4503                                 case SPEED_10:
4504                                 case SPEED_100:
4505                                         e_info("10/100 speed: disabling TSO\n");
4506                                         netdev->features &= ~NETIF_F_TSO;
4507                                         netdev->features &= ~NETIF_F_TSO6;
4508                                         break;
4509                                 case SPEED_1000:
4510                                         netdev->features |= NETIF_F_TSO;
4511                                         netdev->features |= NETIF_F_TSO6;
4512                                         break;
4513                                 default:
4514                                         /* oops */
4515                                         break;
4516                                 }
4517                         }
4518
4519                         /*
4520                          * enable transmits in the hardware, need to do this
4521                          * after setting TARC(0)
4522                          */
4523                         tctl = er32(TCTL);
4524                         tctl |= E1000_TCTL_EN;
4525                         ew32(TCTL, tctl);
4526
4527                         /*
4528                          * Perform any post-link-up configuration before
4529                          * reporting link up.
4530                          */
4531                         if (phy->ops.cfg_on_link_up)
4532                                 phy->ops.cfg_on_link_up(hw);
4533
4534                         netif_carrier_on(netdev);
4535
4536                         if (!test_bit(__E1000_DOWN, &adapter->state))
4537                                 mod_timer(&adapter->phy_info_timer,
4538                                           round_jiffies(jiffies + 2 * HZ));
4539                 }
4540         } else {
4541                 if (netif_carrier_ok(netdev)) {
4542                         adapter->link_speed = 0;
4543                         adapter->link_duplex = 0;
4544                         /* Link status message must follow this format */
4545                         printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4546                                adapter->netdev->name);
4547                         netif_carrier_off(netdev);
4548                         if (!test_bit(__E1000_DOWN, &adapter->state))
4549                                 mod_timer(&adapter->phy_info_timer,
4550                                           round_jiffies(jiffies + 2 * HZ));
4551
4552                         if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4553                                 schedule_work(&adapter->reset_task);
4554                         else
4555                                 pm_schedule_suspend(netdev->dev.parent,
4556                                                         LINK_TIMEOUT);
4557                 }
4558         }
4559
4560 link_up:
4561         spin_lock(&adapter->stats64_lock);
4562         e1000e_update_stats(adapter);
4563
4564         mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4565         adapter->tpt_old = adapter->stats.tpt;
4566         mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4567         adapter->colc_old = adapter->stats.colc;
4568
4569         adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4570         adapter->gorc_old = adapter->stats.gorc;
4571         adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4572         adapter->gotc_old = adapter->stats.gotc;
4573         spin_unlock(&adapter->stats64_lock);
4574
4575         e1000e_update_adaptive(&adapter->hw);
4576
4577         if (!netif_carrier_ok(netdev) &&
4578             (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
4579                 /*
4580                  * We've lost link, so the controller stops DMA,
4581                  * but we've got queued Tx work that's never going
4582                  * to get done, so reset controller to flush Tx.
4583                  * (Do the reset outside of interrupt context).
4584                  */
4585                 schedule_work(&adapter->reset_task);
4586                 /* return immediately since reset is imminent */
4587                 return;
4588         }
4589
4590         /* Simple mode for Interrupt Throttle Rate (ITR) */
4591         if (adapter->itr_setting == 4) {
4592                 /*
4593                  * Symmetric Tx/Rx gets a reduced ITR=2000;
4594                  * Total asymmetrical Tx or Rx gets ITR=8000;
4595                  * everyone else is between 2000-8000.
4596                  */
4597                 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4598                 u32 dif = (adapter->gotc > adapter->gorc ?
4599                             adapter->gotc - adapter->gorc :
4600                             adapter->gorc - adapter->gotc) / 10000;
4601                 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4602
4603                 e1000e_write_itr(adapter, itr);
4604         }
4605
4606         /* Cause software interrupt to ensure Rx ring is cleaned */
4607         if (adapter->msix_entries)
4608                 ew32(ICS, adapter->rx_ring->ims_val);
4609         else
4610                 ew32(ICS, E1000_ICS_RXDMT0);
4611
4612         /* flush pending descriptors to memory before detecting Tx hang */
4613         e1000e_flush_descriptors(adapter);
4614
4615         /* Force detection of hung controller every watchdog period */
4616         adapter->detect_tx_hung = true;
4617
4618         /*
4619          * With 82571 controllers, LAA may be overwritten due to controller
4620          * reset from the other port. Set the appropriate LAA in RAR[0]
4621          */
4622         if (e1000e_get_laa_state_82571(hw))
4623                 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
4624
4625         if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
4626                 e1000e_check_82574_phy_workaround(adapter);
4627
4628         /* Reset the timer */
4629         if (!test_bit(__E1000_DOWN, &adapter->state))
4630                 mod_timer(&adapter->watchdog_timer,
4631                           round_jiffies(jiffies + 2 * HZ));
4632 }
4633
4634 #define E1000_TX_FLAGS_CSUM             0x00000001
4635 #define E1000_TX_FLAGS_VLAN             0x00000002
4636 #define E1000_TX_FLAGS_TSO              0x00000004
4637 #define E1000_TX_FLAGS_IPV4             0x00000008
4638 #define E1000_TX_FLAGS_NO_FCS           0x00000010
4639 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
4640 #define E1000_TX_FLAGS_VLAN_SHIFT       16
4641
4642 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
4643 {
4644         struct e1000_context_desc *context_desc;
4645         struct e1000_buffer *buffer_info;
4646         unsigned int i;
4647         u32 cmd_length = 0;
4648         u16 ipcse = 0, tucse, mss;
4649         u8 ipcss, ipcso, tucss, tucso, hdr_len;
4650
4651         if (!skb_is_gso(skb))
4652                 return 0;
4653
4654         if (skb_header_cloned(skb)) {
4655                 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4656
4657                 if (err)
4658                         return err;
4659         }
4660
4661         hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4662         mss = skb_shinfo(skb)->gso_size;
4663         if (skb->protocol == htons(ETH_P_IP)) {
4664                 struct iphdr *iph = ip_hdr(skb);
4665                 iph->tot_len = 0;
4666                 iph->check = 0;
4667                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4668                                                          0, IPPROTO_TCP, 0);
4669                 cmd_length = E1000_TXD_CMD_IP;
4670                 ipcse = skb_transport_offset(skb) - 1;
4671         } else if (skb_is_gso_v6(skb)) {
4672                 ipv6_hdr(skb)->payload_len = 0;
4673                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4674                                                        &ipv6_hdr(skb)->daddr,
4675                                                        0, IPPROTO_TCP, 0);
4676                 ipcse = 0;
4677         }
4678         ipcss = skb_network_offset(skb);
4679         ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4680         tucss = skb_transport_offset(skb);
4681         tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4682         tucse = 0;
4683
4684         cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4685                        E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4686
4687         i = tx_ring->next_to_use;
4688         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4689         buffer_info = &tx_ring->buffer_info[i];
4690
4691         context_desc->lower_setup.ip_fields.ipcss  = ipcss;
4692         context_desc->lower_setup.ip_fields.ipcso  = ipcso;
4693         context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
4694         context_desc->upper_setup.tcp_fields.tucss = tucss;
4695         context_desc->upper_setup.tcp_fields.tucso = tucso;
4696         context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
4697         context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
4698         context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4699         context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4700
4701         buffer_info->time_stamp = jiffies;
4702         buffer_info->next_to_watch = i;
4703
4704         i++;
4705         if (i == tx_ring->count)
4706                 i = 0;
4707         tx_ring->next_to_use = i;
4708
4709         return 1;
4710 }
4711
4712 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
4713 {
4714         struct e1000_adapter *adapter = tx_ring->adapter;
4715         struct e1000_context_desc *context_desc;
4716         struct e1000_buffer *buffer_info;
4717         unsigned int i;
4718         u8 css;
4719         u32 cmd_len = E1000_TXD_CMD_DEXT;
4720         __be16 protocol;
4721
4722         if (skb->ip_summed != CHECKSUM_PARTIAL)
4723                 return 0;
4724
4725         if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4726                 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4727         else
4728                 protocol = skb->protocol;
4729
4730         switch (protocol) {
4731         case cpu_to_be16(ETH_P_IP):
4732                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4733                         cmd_len |= E1000_TXD_CMD_TCP;
4734                 break;
4735         case cpu_to_be16(ETH_P_IPV6):
4736                 /* XXX not handling all IPV6 headers */
4737                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4738                         cmd_len |= E1000_TXD_CMD_TCP;
4739                 break;
4740         default:
4741                 if (unlikely(net_ratelimit()))
4742                         e_warn("checksum_partial proto=%x!\n",
4743                                be16_to_cpu(protocol));
4744                 break;
4745         }
4746
4747         css = skb_checksum_start_offset(skb);
4748
4749         i = tx_ring->next_to_use;
4750         buffer_info = &tx_ring->buffer_info[i];
4751         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4752
4753         context_desc->lower_setup.ip_config = 0;
4754         context_desc->upper_setup.tcp_fields.tucss = css;
4755         context_desc->upper_setup.tcp_fields.tucso =
4756                                 css + skb->csum_offset;
4757         context_desc->upper_setup.tcp_fields.tucse = 0;
4758         context_desc->tcp_seg_setup.data = 0;
4759         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4760
4761         buffer_info->time_stamp = jiffies;
4762         buffer_info->next_to_watch = i;
4763
4764         i++;
4765         if (i == tx_ring->count)
4766                 i = 0;
4767         tx_ring->next_to_use = i;
4768
4769         return 1;
4770 }
4771
4772 #define E1000_MAX_PER_TXD       8192
4773 #define E1000_MAX_TXD_PWR       12
4774
4775 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
4776                         unsigned int first, unsigned int max_per_txd,
4777                         unsigned int nr_frags, unsigned int mss)
4778 {
4779         struct e1000_adapter *adapter = tx_ring->adapter;
4780         struct pci_dev *pdev = adapter->pdev;
4781         struct e1000_buffer *buffer_info;
4782         unsigned int len = skb_headlen(skb);
4783         unsigned int offset = 0, size, count = 0, i;
4784         unsigned int f, bytecount, segs;
4785
4786         i = tx_ring->next_to_use;
4787
4788         while (len) {
4789                 buffer_info = &tx_ring->buffer_info[i];
4790                 size = min(len, max_per_txd);
4791
4792                 buffer_info->length = size;
4793                 buffer_info->time_stamp = jiffies;
4794                 buffer_info->next_to_watch = i;
4795                 buffer_info->dma = dma_map_single(&pdev->dev,
4796                                                   skb->data + offset,
4797                                                   size, DMA_TO_DEVICE);
4798                 buffer_info->mapped_as_page = false;
4799                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4800                         goto dma_error;
4801
4802                 len -= size;
4803                 offset += size;
4804                 count++;
4805
4806                 if (len) {
4807                         i++;
4808                         if (i == tx_ring->count)
4809                                 i = 0;
4810                 }
4811         }
4812
4813         for (f = 0; f < nr_frags; f++) {
4814                 const struct skb_frag_struct *frag;
4815
4816                 frag = &skb_shinfo(skb)->frags[f];
4817                 len = skb_frag_size(frag);
4818                 offset = 0;
4819
4820                 while (len) {
4821                         i++;
4822                         if (i == tx_ring->count)
4823                                 i = 0;
4824
4825                         buffer_info = &tx_ring->buffer_info[i];
4826                         size = min(len, max_per_txd);
4827
4828                         buffer_info->length = size;
4829                         buffer_info->time_stamp = jiffies;
4830                         buffer_info->next_to_watch = i;
4831                         buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
4832                                                 offset, size, DMA_TO_DEVICE);
4833                         buffer_info->mapped_as_page = true;
4834                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4835                                 goto dma_error;
4836
4837                         len -= size;
4838                         offset += size;
4839                         count++;
4840                 }
4841         }
4842
4843         segs = skb_shinfo(skb)->gso_segs ? : 1;
4844         /* multiply data chunks by size of headers */
4845         bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4846
4847         tx_ring->buffer_info[i].skb = skb;
4848         tx_ring->buffer_info[i].segs = segs;
4849         tx_ring->buffer_info[i].bytecount = bytecount;
4850         tx_ring->buffer_info[first].next_to_watch = i;
4851
4852         return count;
4853
4854 dma_error:
4855         dev_err(&pdev->dev, "Tx DMA map failed\n");
4856         buffer_info->dma = 0;
4857         if (count)
4858                 count--;
4859
4860         while (count--) {
4861                 if (i == 0)
4862                         i += tx_ring->count;
4863                 i--;
4864                 buffer_info = &tx_ring->buffer_info[i];
4865                 e1000_put_txbuf(tx_ring, buffer_info);
4866         }
4867
4868         return 0;
4869 }
4870
4871 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
4872 {
4873         struct e1000_adapter *adapter = tx_ring->adapter;
4874         struct e1000_tx_desc *tx_desc = NULL;
4875         struct e1000_buffer *buffer_info;
4876         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4877         unsigned int i;
4878
4879         if (tx_flags & E1000_TX_FLAGS_TSO) {
4880                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4881                              E1000_TXD_CMD_TSE;
4882                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4883
4884                 if (tx_flags & E1000_TX_FLAGS_IPV4)
4885                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4886         }
4887
4888         if (tx_flags & E1000_TX_FLAGS_CSUM) {
4889                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4890                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4891         }
4892
4893         if (tx_flags & E1000_TX_FLAGS_VLAN) {
4894                 txd_lower |= E1000_TXD_CMD_VLE;
4895                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4896         }
4897
4898         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
4899                 txd_lower &= ~(E1000_TXD_CMD_IFCS);
4900
4901         i = tx_ring->next_to_use;
4902
4903         do {
4904                 buffer_info = &tx_ring->buffer_info[i];
4905                 tx_desc = E1000_TX_DESC(*tx_ring, i);
4906                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4907                 tx_desc->lower.data =
4908                         cpu_to_le32(txd_lower | buffer_info->length);
4909                 tx_desc->upper.data = cpu_to_le32(txd_upper);
4910
4911                 i++;
4912                 if (i == tx_ring->count)
4913                         i = 0;
4914         } while (--count > 0);
4915
4916         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4917
4918         /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
4919         if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
4920                 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
4921
4922         /*
4923          * Force memory writes to complete before letting h/w
4924          * know there are new descriptors to fetch.  (Only
4925          * applicable for weak-ordered memory model archs,
4926          * such as IA-64).
4927          */
4928         wmb();
4929
4930         tx_ring->next_to_use = i;
4931
4932         if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
4933                 e1000e_update_tdt_wa(tx_ring, i);
4934         else
4935                 writel(i, tx_ring->tail);
4936
4937         /*
4938          * we need this if more than one processor can write to our tail
4939          * at a time, it synchronizes IO on IA64/Altix systems
4940          */
4941         mmiowb();
4942 }
4943
4944 #define MINIMUM_DHCP_PACKET_SIZE 282
4945 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4946                                     struct sk_buff *skb)
4947 {
4948         struct e1000_hw *hw =  &adapter->hw;
4949         u16 length, offset;
4950
4951         if (vlan_tx_tag_present(skb)) {
4952                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4953                     (adapter->hw.mng_cookie.status &
4954                         E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4955                         return 0;
4956         }
4957
4958         if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4959                 return 0;
4960
4961         if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4962                 return 0;
4963
4964         {
4965                 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4966                 struct udphdr *udp;
4967
4968                 if (ip->protocol != IPPROTO_UDP)
4969                         return 0;
4970
4971                 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4972                 if (ntohs(udp->dest) != 67)
4973                         return 0;
4974
4975                 offset = (u8 *)udp + 8 - skb->data;
4976                 length = skb->len - offset;
4977                 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4978         }
4979
4980         return 0;
4981 }
4982
4983 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
4984 {
4985         struct e1000_adapter *adapter = tx_ring->adapter;
4986
4987         netif_stop_queue(adapter->netdev);
4988         /*
4989          * Herbert's original patch had:
4990          *  smp_mb__after_netif_stop_queue();
4991          * but since that doesn't exist yet, just open code it.
4992          */
4993         smp_mb();
4994
4995         /*
4996          * We need to check again in a case another CPU has just
4997          * made room available.
4998          */
4999         if (e1000_desc_unused(tx_ring) < size)
5000                 return -EBUSY;
5001
5002         /* A reprieve! */
5003         netif_start_queue(adapter->netdev);
5004         ++adapter->restart_queue;
5005         return 0;
5006 }
5007
5008 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5009 {
5010         if (e1000_desc_unused(tx_ring) >= size)
5011                 return 0;
5012         return __e1000_maybe_stop_tx(tx_ring, size);
5013 }
5014
5015 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1)
5016 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5017                                     struct net_device *netdev)
5018 {
5019         struct e1000_adapter *adapter = netdev_priv(netdev);
5020         struct e1000_ring *tx_ring = adapter->tx_ring;
5021         unsigned int first;
5022         unsigned int max_per_txd = E1000_MAX_PER_TXD;
5023         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
5024         unsigned int tx_flags = 0;
5025         unsigned int len = skb_headlen(skb);
5026         unsigned int nr_frags;
5027         unsigned int mss;
5028         int count = 0;
5029         int tso;
5030         unsigned int f;
5031
5032         if (test_bit(__E1000_DOWN, &adapter->state)) {
5033                 dev_kfree_skb_any(skb);
5034                 return NETDEV_TX_OK;
5035         }
5036
5037         if (skb->len <= 0) {
5038                 dev_kfree_skb_any(skb);
5039                 return NETDEV_TX_OK;
5040         }
5041
5042         mss = skb_shinfo(skb)->gso_size;
5043         /*
5044          * The controller does a simple calculation to
5045          * make sure there is enough room in the FIFO before
5046          * initiating the DMA for each buffer.  The calc is:
5047          * 4 = ceil(buffer len/mss).  To make sure we don't
5048          * overrun the FIFO, adjust the max buffer len if mss
5049          * drops.
5050          */
5051         if (mss) {
5052                 u8 hdr_len;
5053                 max_per_txd = min(mss << 2, max_per_txd);
5054                 max_txd_pwr = fls(max_per_txd) - 1;
5055
5056                 /*
5057                  * TSO Workaround for 82571/2/3 Controllers -- if skb->data
5058                  * points to just header, pull a few bytes of payload from
5059                  * frags into skb->data
5060                  */
5061                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5062                 /*
5063                  * we do this workaround for ES2LAN, but it is un-necessary,
5064                  * avoiding it could save a lot of cycles
5065                  */
5066                 if (skb->data_len && (hdr_len == len)) {
5067                         unsigned int pull_size;
5068
5069                         pull_size = min_t(unsigned int, 4, skb->data_len);
5070                         if (!__pskb_pull_tail(skb, pull_size)) {
5071                                 e_err("__pskb_pull_tail failed.\n");
5072                                 dev_kfree_skb_any(skb);
5073                                 return NETDEV_TX_OK;
5074                         }
5075                         len = skb_headlen(skb);
5076                 }
5077         }
5078
5079         /* reserve a descriptor for the offload context */
5080         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5081                 count++;
5082         count++;
5083
5084         count += TXD_USE_COUNT(len, max_txd_pwr);
5085
5086         nr_frags = skb_shinfo(skb)->nr_frags;
5087         for (f = 0; f < nr_frags; f++)
5088                 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5089                                        max_txd_pwr);
5090
5091         if (adapter->hw.mac.tx_pkt_filtering)
5092                 e1000_transfer_dhcp_info(adapter, skb);
5093
5094         /*
5095          * need: count + 2 desc gap to keep tail from touching
5096          * head, otherwise try next time
5097          */
5098         if (e1000_maybe_stop_tx(tx_ring, count + 2))
5099                 return NETDEV_TX_BUSY;
5100
5101         if (vlan_tx_tag_present(skb)) {
5102                 tx_flags |= E1000_TX_FLAGS_VLAN;
5103                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
5104         }
5105
5106         first = tx_ring->next_to_use;
5107
5108         tso = e1000_tso(tx_ring, skb);
5109         if (tso < 0) {
5110                 dev_kfree_skb_any(skb);
5111                 return NETDEV_TX_OK;
5112         }
5113
5114         if (tso)
5115                 tx_flags |= E1000_TX_FLAGS_TSO;
5116         else if (e1000_tx_csum(tx_ring, skb))
5117                 tx_flags |= E1000_TX_FLAGS_CSUM;
5118
5119         /*
5120          * Old method was to assume IPv4 packet by default if TSO was enabled.
5121          * 82571 hardware supports TSO capabilities for IPv6 as well...
5122          * no longer assume, we must.
5123          */
5124         if (skb->protocol == htons(ETH_P_IP))
5125                 tx_flags |= E1000_TX_FLAGS_IPV4;
5126
5127         if (unlikely(skb->no_fcs))
5128                 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5129
5130         /* if count is 0 then mapping error has occurred */
5131         count = e1000_tx_map(tx_ring, skb, first, max_per_txd, nr_frags, mss);
5132         if (count) {
5133                 skb_tx_timestamp(skb);
5134
5135                 netdev_sent_queue(netdev, skb->len);
5136                 e1000_tx_queue(tx_ring, tx_flags, count);
5137                 /* Make sure there is space in the ring for the next send. */
5138                 e1000_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 2);
5139
5140         } else {
5141                 dev_kfree_skb_any(skb);
5142                 tx_ring->buffer_info[first].time_stamp = 0;
5143                 tx_ring->next_to_use = first;
5144         }
5145
5146         return NETDEV_TX_OK;
5147 }
5148
5149 /**
5150  * e1000_tx_timeout - Respond to a Tx Hang
5151  * @netdev: network interface device structure
5152  **/
5153 static void e1000_tx_timeout(struct net_device *netdev)
5154 {
5155         struct e1000_adapter *adapter = netdev_priv(netdev);
5156
5157         /* Do the reset outside of interrupt context */
5158         adapter->tx_timeout_count++;
5159         schedule_work(&adapter->reset_task);
5160 }
5161
5162 static void e1000_reset_task(struct work_struct *work)
5163 {
5164         struct e1000_adapter *adapter;
5165         adapter = container_of(work, struct e1000_adapter, reset_task);
5166
5167         /* don't run the task if already down */
5168         if (test_bit(__E1000_DOWN, &adapter->state))
5169                 return;
5170
5171         if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5172               (adapter->flags & FLAG_RX_RESTART_NOW))) {
5173                 e1000e_dump(adapter);
5174                 e_err("Reset adapter\n");
5175         }
5176         e1000e_reinit_locked(adapter);
5177 }
5178
5179 /**
5180  * e1000_get_stats64 - Get System Network Statistics
5181  * @netdev: network interface device structure
5182  * @stats: rtnl_link_stats64 pointer
5183  *
5184  * Returns the address of the device statistics structure.
5185  **/
5186 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5187                                              struct rtnl_link_stats64 *stats)
5188 {
5189         struct e1000_adapter *adapter = netdev_priv(netdev);
5190
5191         memset(stats, 0, sizeof(struct rtnl_link_stats64));
5192         spin_lock(&adapter->stats64_lock);
5193         e1000e_update_stats(adapter);
5194         /* Fill out the OS statistics structure */
5195         stats->rx_bytes = adapter->stats.gorc;
5196         stats->rx_packets = adapter->stats.gprc;
5197         stats->tx_bytes = adapter->stats.gotc;
5198         stats->tx_packets = adapter->stats.gptc;
5199         stats->multicast = adapter->stats.mprc;
5200         stats->collisions = adapter->stats.colc;
5201
5202         /* Rx Errors */
5203
5204         /*
5205          * RLEC on some newer hardware can be incorrect so build
5206          * our own version based on RUC and ROC
5207          */
5208         stats->rx_errors = adapter->stats.rxerrc +
5209                 adapter->stats.crcerrs + adapter->stats.algnerrc +
5210                 adapter->stats.ruc + adapter->stats.roc +
5211                 adapter->stats.cexterr;
5212         stats->rx_length_errors = adapter->stats.ruc +
5213                                               adapter->stats.roc;
5214         stats->rx_crc_errors = adapter->stats.crcerrs;
5215         stats->rx_frame_errors = adapter->stats.algnerrc;
5216         stats->rx_missed_errors = adapter->stats.mpc;
5217
5218         /* Tx Errors */
5219         stats->tx_errors = adapter->stats.ecol +
5220                                        adapter->stats.latecol;
5221         stats->tx_aborted_errors = adapter->stats.ecol;
5222         stats->tx_window_errors = adapter->stats.latecol;
5223         stats->tx_carrier_errors = adapter->stats.tncrs;
5224
5225         /* Tx Dropped needs to be maintained elsewhere */
5226
5227         spin_unlock(&adapter->stats64_lock);
5228         return stats;
5229 }
5230
5231 /**
5232  * e1000_change_mtu - Change the Maximum Transfer Unit
5233  * @netdev: network interface device structure
5234  * @new_mtu: new value for maximum frame size
5235  *
5236  * Returns 0 on success, negative on failure
5237  **/
5238 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5239 {
5240         struct e1000_adapter *adapter = netdev_priv(netdev);
5241         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5242
5243         /* Jumbo frame support */
5244         if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5245             !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5246                 e_err("Jumbo Frames not supported.\n");
5247                 return -EINVAL;
5248         }
5249
5250         /* Supported frame sizes */
5251         if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5252             (max_frame > adapter->max_hw_frame_size)) {
5253                 e_err("Unsupported MTU setting\n");
5254                 return -EINVAL;
5255         }
5256
5257         /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5258         if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5259             !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5260             (new_mtu > ETH_DATA_LEN)) {
5261                 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5262                 return -EINVAL;
5263         }
5264
5265         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5266                 usleep_range(1000, 2000);
5267         /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5268         adapter->max_frame_size = max_frame;
5269         e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5270         netdev->mtu = new_mtu;
5271         if (netif_running(netdev))
5272                 e1000e_down(adapter);
5273
5274         /*
5275          * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5276          * means we reserve 2 more, this pushes us to allocate from the next
5277          * larger slab size.
5278          * i.e. RXBUFFER_2048 --> size-4096 slab
5279          * However with the new *_jumbo_rx* routines, jumbo receives will use
5280          * fragmented skbs
5281          */
5282
5283         if (max_frame <= 2048)
5284                 adapter->rx_buffer_len = 2048;
5285         else
5286                 adapter->rx_buffer_len = 4096;
5287
5288         /* adjust allocation if LPE protects us, and we aren't using SBP */
5289         if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5290              (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5291                 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5292                                          + ETH_FCS_LEN;
5293
5294         if (netif_running(netdev))
5295                 e1000e_up(adapter);
5296         else
5297                 e1000e_reset(adapter);
5298
5299         clear_bit(__E1000_RESETTING, &adapter->state);
5300
5301         return 0;
5302 }
5303
5304 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5305                            int cmd)
5306 {
5307         struct e1000_adapter *adapter = netdev_priv(netdev);
5308         struct mii_ioctl_data *data = if_mii(ifr);
5309
5310         if (adapter->hw.phy.media_type != e1000_media_type_copper)
5311                 return -EOPNOTSUPP;
5312
5313         switch (cmd) {
5314         case SIOCGMIIPHY:
5315                 data->phy_id = adapter->hw.phy.addr;
5316                 break;
5317         case SIOCGMIIREG:
5318                 e1000_phy_read_status(adapter);
5319
5320                 switch (data->reg_num & 0x1F) {
5321                 case MII_BMCR:
5322                         data->val_out = adapter->phy_regs.bmcr;
5323                         break;
5324                 case MII_BMSR:
5325                         data->val_out = adapter->phy_regs.bmsr;
5326                         break;
5327                 case MII_PHYSID1:
5328                         data->val_out = (adapter->hw.phy.id >> 16);
5329                         break;
5330                 case MII_PHYSID2:
5331                         data->val_out = (adapter->hw.phy.id & 0xFFFF);
5332                         break;
5333                 case MII_ADVERTISE:
5334                         data->val_out = adapter->phy_regs.advertise;
5335                         break;
5336                 case MII_LPA:
5337                         data->val_out = adapter->phy_regs.lpa;
5338                         break;
5339                 case MII_EXPANSION:
5340                         data->val_out = adapter->phy_regs.expansion;
5341                         break;
5342                 case MII_CTRL1000:
5343                         data->val_out = adapter->phy_regs.ctrl1000;
5344                         break;
5345                 case MII_STAT1000:
5346                         data->val_out = adapter->phy_regs.stat1000;
5347                         break;
5348                 case MII_ESTATUS:
5349                         data->val_out = adapter->phy_regs.estatus;
5350                         break;
5351                 default:
5352                         return -EIO;
5353                 }
5354                 break;
5355         case SIOCSMIIREG:
5356         default:
5357                 return -EOPNOTSUPP;
5358         }
5359         return 0;
5360 }
5361
5362 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5363 {
5364         switch (cmd) {
5365         case SIOCGMIIPHY:
5366         case SIOCGMIIREG:
5367         case SIOCSMIIREG:
5368                 return e1000_mii_ioctl(netdev, ifr, cmd);
5369         default:
5370                 return -EOPNOTSUPP;
5371         }
5372 }
5373
5374 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5375 {
5376         struct e1000_hw *hw = &adapter->hw;
5377         u32 i, mac_reg;
5378         u16 phy_reg, wuc_enable;
5379         int retval = 0;
5380
5381         /* copy MAC RARs to PHY RARs */
5382         e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5383
5384         retval = hw->phy.ops.acquire(hw);
5385         if (retval) {
5386                 e_err("Could not acquire PHY\n");
5387                 return retval;
5388         }
5389
5390         /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5391         retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5392         if (retval)
5393                 goto release;
5394
5395         /* copy MAC MTA to PHY MTA - only needed for pchlan */
5396         for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5397                 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5398                 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5399                                            (u16)(mac_reg & 0xFFFF));
5400                 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5401                                            (u16)((mac_reg >> 16) & 0xFFFF));
5402         }
5403
5404         /* configure PHY Rx Control register */
5405         hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5406         mac_reg = er32(RCTL);
5407         if (mac_reg & E1000_RCTL_UPE)
5408                 phy_reg |= BM_RCTL_UPE;
5409         if (mac_reg & E1000_RCTL_MPE)
5410                 phy_reg |= BM_RCTL_MPE;
5411         phy_reg &= ~(BM_RCTL_MO_MASK);
5412         if (mac_reg & E1000_RCTL_MO_3)
5413                 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5414                                 << BM_RCTL_MO_SHIFT);
5415         if (mac_reg & E1000_RCTL_BAM)
5416                 phy_reg |= BM_RCTL_BAM;
5417         if (mac_reg & E1000_RCTL_PMCF)
5418                 phy_reg |= BM_RCTL_PMCF;
5419         mac_reg = er32(CTRL);
5420         if (mac_reg & E1000_CTRL_RFCE)
5421                 phy_reg |= BM_RCTL_RFCE;
5422         hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5423
5424         /* enable PHY wakeup in MAC register */
5425         ew32(WUFC, wufc);
5426         ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5427
5428         /* configure and enable PHY wakeup in PHY registers */
5429         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5430         hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5431
5432         /* activate PHY wakeup */
5433         wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5434         retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5435         if (retval)
5436                 e_err("Could not set PHY Host Wakeup bit\n");
5437 release:
5438         hw->phy.ops.release(hw);
5439
5440         return retval;
5441 }
5442
5443 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5444                             bool runtime)
5445 {
5446         struct net_device *netdev = pci_get_drvdata(pdev);
5447         struct e1000_adapter *adapter = netdev_priv(netdev);
5448         struct e1000_hw *hw = &adapter->hw;
5449         u32 ctrl, ctrl_ext, rctl, status;
5450         /* Runtime suspend should only enable wakeup for link changes */
5451         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5452         int retval = 0;
5453
5454         netif_device_detach(netdev);
5455
5456         if (netif_running(netdev)) {
5457                 int count = E1000_CHECK_RESET_COUNT;
5458
5459                 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
5460                         usleep_range(10000, 20000);
5461
5462                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5463                 e1000e_down(adapter);
5464                 e1000_free_irq(adapter);
5465         }
5466         e1000e_reset_interrupt_capability(adapter);
5467
5468         retval = pci_save_state(pdev);
5469         if (retval)
5470                 return retval;
5471
5472         status = er32(STATUS);
5473         if (status & E1000_STATUS_LU)
5474                 wufc &= ~E1000_WUFC_LNKC;
5475
5476         if (wufc) {
5477                 e1000_setup_rctl(adapter);
5478                 e1000e_set_rx_mode(netdev);
5479
5480                 /* turn on all-multi mode if wake on multicast is enabled */
5481                 if (wufc & E1000_WUFC_MC) {
5482                         rctl = er32(RCTL);
5483                         rctl |= E1000_RCTL_MPE;
5484                         ew32(RCTL, rctl);
5485                 }
5486
5487                 ctrl = er32(CTRL);
5488                 /* advertise wake from D3Cold */
5489                 #define E1000_CTRL_ADVD3WUC 0x00100000
5490                 /* phy power management enable */
5491                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5492                 ctrl |= E1000_CTRL_ADVD3WUC;
5493                 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5494                         ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5495                 ew32(CTRL, ctrl);
5496
5497                 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5498                     adapter->hw.phy.media_type ==
5499                     e1000_media_type_internal_serdes) {
5500                         /* keep the laser running in D3 */
5501                         ctrl_ext = er32(CTRL_EXT);
5502                         ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5503                         ew32(CTRL_EXT, ctrl_ext);
5504                 }
5505
5506                 if (adapter->flags & FLAG_IS_ICH)
5507                         e1000_suspend_workarounds_ich8lan(&adapter->hw);
5508
5509                 /* Allow time for pending master requests to run */
5510                 e1000e_disable_pcie_master(&adapter->hw);
5511
5512                 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5513                         /* enable wakeup by the PHY */
5514                         retval = e1000_init_phy_wakeup(adapter, wufc);
5515                         if (retval)
5516                                 return retval;
5517                 } else {
5518                         /* enable wakeup by the MAC */
5519                         ew32(WUFC, wufc);
5520                         ew32(WUC, E1000_WUC_PME_EN);
5521                 }
5522         } else {
5523                 ew32(WUC, 0);
5524                 ew32(WUFC, 0);
5525         }
5526
5527         *enable_wake = !!wufc;
5528
5529         /* make sure adapter isn't asleep if manageability is enabled */
5530         if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5531             (hw->mac.ops.check_mng_mode(hw)))
5532                 *enable_wake = true;
5533
5534         if (adapter->hw.phy.type == e1000_phy_igp_3)
5535                 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5536
5537         /*
5538          * Release control of h/w to f/w.  If f/w is AMT enabled, this
5539          * would have already happened in close and is redundant.
5540          */
5541         e1000e_release_hw_control(adapter);
5542
5543         pci_disable_device(pdev);
5544
5545         return 0;
5546 }
5547
5548 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5549 {
5550         if (sleep && wake) {
5551                 pci_prepare_to_sleep(pdev);
5552                 return;
5553         }
5554
5555         pci_wake_from_d3(pdev, wake);
5556         pci_set_power_state(pdev, PCI_D3hot);
5557 }
5558
5559 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5560                                     bool wake)
5561 {
5562         struct net_device *netdev = pci_get_drvdata(pdev);
5563         struct e1000_adapter *adapter = netdev_priv(netdev);
5564
5565         /*
5566          * The pci-e switch on some quad port adapters will report a
5567          * correctable error when the MAC transitions from D0 to D3.  To
5568          * prevent this we need to mask off the correctable errors on the
5569          * downstream port of the pci-e switch.
5570          */
5571         if (adapter->flags & FLAG_IS_QUAD_PORT) {
5572                 struct pci_dev *us_dev = pdev->bus->self;
5573                 int pos = pci_pcie_cap(us_dev);
5574                 u16 devctl;
5575
5576                 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
5577                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
5578                                       (devctl & ~PCI_EXP_DEVCTL_CERE));
5579
5580                 e1000_power_off(pdev, sleep, wake);
5581
5582                 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
5583         } else {
5584                 e1000_power_off(pdev, sleep, wake);
5585         }
5586 }
5587
5588 #ifdef CONFIG_PCIEASPM
5589 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5590 {
5591         pci_disable_link_state_locked(pdev, state);
5592 }
5593 #else
5594 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5595 {
5596         int pos;
5597         u16 reg16;
5598
5599         /*
5600          * Both device and parent should have the same ASPM setting.
5601          * Disable ASPM in downstream component first and then upstream.
5602          */
5603         pos = pci_pcie_cap(pdev);
5604         pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
5605         reg16 &= ~state;
5606         pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5607
5608         if (!pdev->bus->self)
5609                 return;
5610
5611         pos = pci_pcie_cap(pdev->bus->self);
5612         pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
5613         reg16 &= ~state;
5614         pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
5615 }
5616 #endif
5617 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5618 {
5619         dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5620                  (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5621                  (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5622
5623         __e1000e_disable_aspm(pdev, state);
5624 }
5625
5626 #ifdef CONFIG_PM
5627 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5628 {
5629         return !!adapter->tx_ring->buffer_info;
5630 }
5631
5632 static int __e1000_resume(struct pci_dev *pdev)
5633 {
5634         struct net_device *netdev = pci_get_drvdata(pdev);
5635         struct e1000_adapter *adapter = netdev_priv(netdev);
5636         struct e1000_hw *hw = &adapter->hw;
5637         u16 aspm_disable_flag = 0;
5638         u32 err;
5639
5640         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5641                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
5642         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5643                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
5644         if (aspm_disable_flag)
5645                 e1000e_disable_aspm(pdev, aspm_disable_flag);
5646
5647         pci_set_power_state(pdev, PCI_D0);
5648         pci_restore_state(pdev);
5649         pci_save_state(pdev);
5650
5651         e1000e_set_interrupt_capability(adapter);
5652         if (netif_running(netdev)) {
5653                 err = e1000_request_irq(adapter);
5654                 if (err)
5655                         return err;
5656         }
5657
5658         if (hw->mac.type >= e1000_pch2lan)
5659                 e1000_resume_workarounds_pchlan(&adapter->hw);
5660
5661         e1000e_power_up_phy(adapter);
5662
5663         /* report the system wakeup cause from S3/S4 */
5664         if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5665                 u16 phy_data;
5666
5667                 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5668                 if (phy_data) {
5669                         e_info("PHY Wakeup cause - %s\n",
5670                                 phy_data & E1000_WUS_EX ? "Unicast Packet" :
5671                                 phy_data & E1000_WUS_MC ? "Multicast Packet" :
5672                                 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5673                                 phy_data & E1000_WUS_MAG ? "Magic Packet" :
5674                                 phy_data & E1000_WUS_LNKC ?
5675                                 "Link Status Change" : "other");
5676                 }
5677                 e1e_wphy(&adapter->hw, BM_WUS, ~0);
5678         } else {
5679                 u32 wus = er32(WUS);
5680                 if (wus) {
5681                         e_info("MAC Wakeup cause - %s\n",
5682                                 wus & E1000_WUS_EX ? "Unicast Packet" :
5683                                 wus & E1000_WUS_MC ? "Multicast Packet" :
5684                                 wus & E1000_WUS_BC ? "Broadcast Packet" :
5685                                 wus & E1000_WUS_MAG ? "Magic Packet" :
5686                                 wus & E1000_WUS_LNKC ? "Link Status Change" :
5687                                 "other");
5688                 }
5689                 ew32(WUS, ~0);
5690         }
5691
5692         e1000e_reset(adapter);
5693
5694         e1000_init_manageability_pt(adapter);
5695
5696         if (netif_running(netdev))
5697                 e1000e_up(adapter);
5698
5699         netif_device_attach(netdev);
5700
5701         /*
5702          * If the controller has AMT, do not set DRV_LOAD until the interface
5703          * is up.  For all other cases, let the f/w know that the h/w is now
5704          * under the control of the driver.
5705          */
5706         if (!(adapter->flags & FLAG_HAS_AMT))
5707                 e1000e_get_hw_control(adapter);
5708
5709         return 0;
5710 }
5711
5712 #ifdef CONFIG_PM_SLEEP
5713 static int e1000_suspend(struct device *dev)
5714 {
5715         struct pci_dev *pdev = to_pci_dev(dev);
5716         int retval;
5717         bool wake;
5718
5719         retval = __e1000_shutdown(pdev, &wake, false);
5720         if (!retval)
5721                 e1000_complete_shutdown(pdev, true, wake);
5722
5723         return retval;
5724 }
5725
5726 static int e1000_resume(struct device *dev)
5727 {
5728         struct pci_dev *pdev = to_pci_dev(dev);
5729         struct net_device *netdev = pci_get_drvdata(pdev);
5730         struct e1000_adapter *adapter = netdev_priv(netdev);
5731
5732         if (e1000e_pm_ready(adapter))
5733                 adapter->idle_check = true;
5734
5735         return __e1000_resume(pdev);
5736 }
5737 #endif /* CONFIG_PM_SLEEP */
5738
5739 #ifdef CONFIG_PM_RUNTIME
5740 static int e1000_runtime_suspend(struct device *dev)
5741 {
5742         struct pci_dev *pdev = to_pci_dev(dev);
5743         struct net_device *netdev = pci_get_drvdata(pdev);
5744         struct e1000_adapter *adapter = netdev_priv(netdev);
5745
5746         if (e1000e_pm_ready(adapter)) {
5747                 bool wake;
5748
5749                 __e1000_shutdown(pdev, &wake, true);
5750         }
5751
5752         return 0;
5753 }
5754
5755 static int e1000_idle(struct device *dev)
5756 {
5757         struct pci_dev *pdev = to_pci_dev(dev);
5758         struct net_device *netdev = pci_get_drvdata(pdev);
5759         struct e1000_adapter *adapter = netdev_priv(netdev);
5760
5761         if (!e1000e_pm_ready(adapter))
5762                 return 0;
5763
5764         if (adapter->idle_check) {
5765                 adapter->idle_check = false;
5766                 if (!e1000e_has_link(adapter))
5767                         pm_schedule_suspend(dev, MSEC_PER_SEC);
5768         }
5769
5770         return -EBUSY;
5771 }
5772
5773 static int e1000_runtime_resume(struct device *dev)
5774 {
5775         struct pci_dev *pdev = to_pci_dev(dev);
5776         struct net_device *netdev = pci_get_drvdata(pdev);
5777         struct e1000_adapter *adapter = netdev_priv(netdev);
5778
5779         if (!e1000e_pm_ready(adapter))
5780                 return 0;
5781
5782         adapter->idle_check = !dev->power.runtime_auto;
5783         return __e1000_resume(pdev);
5784 }
5785 #endif /* CONFIG_PM_RUNTIME */
5786 #endif /* CONFIG_PM */
5787
5788 static void e1000_shutdown(struct pci_dev *pdev)
5789 {
5790         bool wake = false;
5791
5792         __e1000_shutdown(pdev, &wake, false);
5793
5794         if (system_state == SYSTEM_POWER_OFF)
5795                 e1000_complete_shutdown(pdev, false, wake);
5796 }
5797
5798 #ifdef CONFIG_NET_POLL_CONTROLLER
5799
5800 static irqreturn_t e1000_intr_msix(int irq, void *data)
5801 {
5802         struct net_device *netdev = data;
5803         struct e1000_adapter *adapter = netdev_priv(netdev);
5804
5805         if (adapter->msix_entries) {
5806                 int vector, msix_irq;
5807
5808                 vector = 0;
5809                 msix_irq = adapter->msix_entries[vector].vector;
5810                 disable_irq(msix_irq);
5811                 e1000_intr_msix_rx(msix_irq, netdev);
5812                 enable_irq(msix_irq);
5813
5814                 vector++;
5815                 msix_irq = adapter->msix_entries[vector].vector;
5816                 disable_irq(msix_irq);
5817                 e1000_intr_msix_tx(msix_irq, netdev);
5818                 enable_irq(msix_irq);
5819
5820                 vector++;
5821                 msix_irq = adapter->msix_entries[vector].vector;
5822                 disable_irq(msix_irq);
5823                 e1000_msix_other(msix_irq, netdev);
5824                 enable_irq(msix_irq);
5825         }
5826
5827         return IRQ_HANDLED;
5828 }
5829
5830 /*
5831  * Polling 'interrupt' - used by things like netconsole to send skbs
5832  * without having to re-enable interrupts. It's not called while
5833  * the interrupt routine is executing.
5834  */
5835 static void e1000_netpoll(struct net_device *netdev)
5836 {
5837         struct e1000_adapter *adapter = netdev_priv(netdev);
5838
5839         switch (adapter->int_mode) {
5840         case E1000E_INT_MODE_MSIX:
5841                 e1000_intr_msix(adapter->pdev->irq, netdev);
5842                 break;
5843         case E1000E_INT_MODE_MSI:
5844                 disable_irq(adapter->pdev->irq);
5845                 e1000_intr_msi(adapter->pdev->irq, netdev);
5846                 enable_irq(adapter->pdev->irq);
5847                 break;
5848         default: /* E1000E_INT_MODE_LEGACY */
5849                 disable_irq(adapter->pdev->irq);
5850                 e1000_intr(adapter->pdev->irq, netdev);
5851                 enable_irq(adapter->pdev->irq);
5852                 break;
5853         }
5854 }
5855 #endif
5856
5857 /**
5858  * e1000_io_error_detected - called when PCI error is detected
5859  * @pdev: Pointer to PCI device
5860  * @state: The current pci connection state
5861  *
5862  * This function is called after a PCI bus error affecting
5863  * this device has been detected.
5864  */
5865 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5866                                                 pci_channel_state_t state)
5867 {
5868         struct net_device *netdev = pci_get_drvdata(pdev);
5869         struct e1000_adapter *adapter = netdev_priv(netdev);
5870
5871         netif_device_detach(netdev);
5872
5873         if (state == pci_channel_io_perm_failure)
5874                 return PCI_ERS_RESULT_DISCONNECT;
5875
5876         if (netif_running(netdev))
5877                 e1000e_down(adapter);
5878         pci_disable_device(pdev);
5879
5880         /* Request a slot slot reset. */
5881         return PCI_ERS_RESULT_NEED_RESET;
5882 }
5883
5884 /**
5885  * e1000_io_slot_reset - called after the pci bus has been reset.
5886  * @pdev: Pointer to PCI device
5887  *
5888  * Restart the card from scratch, as if from a cold-boot. Implementation
5889  * resembles the first-half of the e1000_resume routine.
5890  */
5891 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5892 {
5893         struct net_device *netdev = pci_get_drvdata(pdev);
5894         struct e1000_adapter *adapter = netdev_priv(netdev);
5895         struct e1000_hw *hw = &adapter->hw;
5896         u16 aspm_disable_flag = 0;
5897         int err;
5898         pci_ers_result_t result;
5899
5900         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5901                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
5902         if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5903                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
5904         if (aspm_disable_flag)
5905                 e1000e_disable_aspm(pdev, aspm_disable_flag);
5906
5907         err = pci_enable_device_mem(pdev);
5908         if (err) {
5909                 dev_err(&pdev->dev,
5910                         "Cannot re-enable PCI device after reset.\n");
5911                 result = PCI_ERS_RESULT_DISCONNECT;
5912         } else {
5913                 pci_set_master(pdev);
5914                 pdev->state_saved = true;
5915                 pci_restore_state(pdev);
5916
5917                 pci_enable_wake(pdev, PCI_D3hot, 0);
5918                 pci_enable_wake(pdev, PCI_D3cold, 0);
5919
5920                 e1000e_reset(adapter);
5921                 ew32(WUS, ~0);
5922                 result = PCI_ERS_RESULT_RECOVERED;
5923         }
5924
5925         pci_cleanup_aer_uncorrect_error_status(pdev);
5926
5927         return result;
5928 }
5929
5930 /**
5931  * e1000_io_resume - called when traffic can start flowing again.
5932  * @pdev: Pointer to PCI device
5933  *
5934  * This callback is called when the error recovery driver tells us that
5935  * its OK to resume normal operation. Implementation resembles the
5936  * second-half of the e1000_resume routine.
5937  */
5938 static void e1000_io_resume(struct pci_dev *pdev)
5939 {
5940         struct net_device *netdev = pci_get_drvdata(pdev);
5941         struct e1000_adapter *adapter = netdev_priv(netdev);
5942
5943         e1000_init_manageability_pt(adapter);
5944
5945         if (netif_running(netdev)) {
5946                 if (e1000e_up(adapter)) {
5947                         dev_err(&pdev->dev,
5948                                 "can't bring device back up after reset\n");
5949                         return;
5950                 }
5951         }
5952
5953         netif_device_attach(netdev);
5954
5955         /*
5956          * If the controller has AMT, do not set DRV_LOAD until the interface
5957          * is up.  For all other cases, let the f/w know that the h/w is now
5958          * under the control of the driver.
5959          */
5960         if (!(adapter->flags & FLAG_HAS_AMT))
5961                 e1000e_get_hw_control(adapter);
5962
5963 }
5964
5965 static void e1000_print_device_info(struct e1000_adapter *adapter)
5966 {
5967         struct e1000_hw *hw = &adapter->hw;
5968         struct net_device *netdev = adapter->netdev;
5969         u32 ret_val;
5970         u8 pba_str[E1000_PBANUM_LENGTH];
5971
5972         /* print bus type/speed/width info */
5973         e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5974                /* bus width */
5975                ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
5976                 "Width x1"),
5977                /* MAC address */
5978                netdev->dev_addr);
5979         e_info("Intel(R) PRO/%s Network Connection\n",
5980                (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5981         ret_val = e1000_read_pba_string_generic(hw, pba_str,
5982                                                 E1000_PBANUM_LENGTH);
5983         if (ret_val)
5984                 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
5985         e_info("MAC: %d, PHY: %d, PBA No: %s\n",
5986                hw->mac.type, hw->phy.type, pba_str);
5987 }
5988
5989 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
5990 {
5991         struct e1000_hw *hw = &adapter->hw;
5992         int ret_val;
5993         u16 buf = 0;
5994
5995         if (hw->mac.type != e1000_82573)
5996                 return;
5997
5998         ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5999         le16_to_cpus(&buf);
6000         if (!ret_val && (!(buf & (1 << 0)))) {
6001                 /* Deep Smart Power Down (DSPD) */
6002                 dev_warn(&adapter->pdev->dev,
6003                          "Warning: detected DSPD enabled in EEPROM\n");
6004         }
6005 }
6006
6007 static int e1000_set_features(struct net_device *netdev,
6008                               netdev_features_t features)
6009 {
6010         struct e1000_adapter *adapter = netdev_priv(netdev);
6011         netdev_features_t changed = features ^ netdev->features;
6012
6013         if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6014                 adapter->flags |= FLAG_TSO_FORCE;
6015
6016         if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
6017                          NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6018                          NETIF_F_RXALL)))
6019                 return 0;
6020
6021         if (changed & NETIF_F_RXFCS) {
6022                 if (features & NETIF_F_RXFCS) {
6023                         adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6024                 } else {
6025                         /* We need to take it back to defaults, which might mean
6026                          * stripping is still disabled at the adapter level.
6027                          */
6028                         if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6029                                 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6030                         else
6031                                 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6032                 }
6033         }
6034
6035         netdev->features = features;
6036
6037         if (netif_running(netdev))
6038                 e1000e_reinit_locked(adapter);
6039         else
6040                 e1000e_reset(adapter);
6041
6042         return 0;
6043 }
6044
6045 static const struct net_device_ops e1000e_netdev_ops = {
6046         .ndo_open               = e1000_open,
6047         .ndo_stop               = e1000_close,
6048         .ndo_start_xmit         = e1000_xmit_frame,
6049         .ndo_get_stats64        = e1000e_get_stats64,
6050         .ndo_set_rx_mode        = e1000e_set_rx_mode,
6051         .ndo_set_mac_address    = e1000_set_mac,
6052         .ndo_change_mtu         = e1000_change_mtu,
6053         .ndo_do_ioctl           = e1000_ioctl,
6054         .ndo_tx_timeout         = e1000_tx_timeout,
6055         .ndo_validate_addr      = eth_validate_addr,
6056
6057         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
6058         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
6059 #ifdef CONFIG_NET_POLL_CONTROLLER
6060         .ndo_poll_controller    = e1000_netpoll,
6061 #endif
6062         .ndo_set_features = e1000_set_features,
6063 };
6064
6065 /**
6066  * e1000_probe - Device Initialization Routine
6067  * @pdev: PCI device information struct
6068  * @ent: entry in e1000_pci_tbl
6069  *
6070  * Returns 0 on success, negative on failure
6071  *
6072  * e1000_probe initializes an adapter identified by a pci_dev structure.
6073  * The OS initialization, configuring of the adapter private structure,
6074  * and a hardware reset occur.
6075  **/
6076 static int __devinit e1000_probe(struct pci_dev *pdev,
6077                                  const struct pci_device_id *ent)
6078 {
6079         struct net_device *netdev;
6080         struct e1000_adapter *adapter;
6081         struct e1000_hw *hw;
6082         const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6083         resource_size_t mmio_start, mmio_len;
6084         resource_size_t flash_start, flash_len;
6085         static int cards_found;
6086         u16 aspm_disable_flag = 0;
6087         int i, err, pci_using_dac;
6088         u16 eeprom_data = 0;
6089         u16 eeprom_apme_mask = E1000_EEPROM_APME;
6090
6091         if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6092                 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6093         if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6094                 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6095         if (aspm_disable_flag)
6096                 e1000e_disable_aspm(pdev, aspm_disable_flag);
6097
6098         err = pci_enable_device_mem(pdev);
6099         if (err)
6100                 return err;
6101
6102         pci_using_dac = 0;
6103         err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6104         if (!err) {
6105                 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6106                 if (!err)
6107                         pci_using_dac = 1;
6108         } else {
6109                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6110                 if (err) {
6111                         err = dma_set_coherent_mask(&pdev->dev,
6112                                                     DMA_BIT_MASK(32));
6113                         if (err) {
6114                                 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
6115                                 goto err_dma;
6116                         }
6117                 }
6118         }
6119
6120         err = pci_request_selected_regions_exclusive(pdev,
6121                                           pci_select_bars(pdev, IORESOURCE_MEM),
6122                                           e1000e_driver_name);
6123         if (err)
6124                 goto err_pci_reg;
6125
6126         /* AER (Advanced Error Reporting) hooks */
6127         pci_enable_pcie_error_reporting(pdev);
6128
6129         pci_set_master(pdev);
6130         /* PCI config space info */
6131         err = pci_save_state(pdev);
6132         if (err)
6133                 goto err_alloc_etherdev;
6134
6135         err = -ENOMEM;
6136         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6137         if (!netdev)
6138                 goto err_alloc_etherdev;
6139
6140         SET_NETDEV_DEV(netdev, &pdev->dev);
6141
6142         netdev->irq = pdev->irq;
6143
6144         pci_set_drvdata(pdev, netdev);
6145         adapter = netdev_priv(netdev);
6146         hw = &adapter->hw;
6147         adapter->netdev = netdev;
6148         adapter->pdev = pdev;
6149         adapter->ei = ei;
6150         adapter->pba = ei->pba;
6151         adapter->flags = ei->flags;
6152         adapter->flags2 = ei->flags2;
6153         adapter->hw.adapter = adapter;
6154         adapter->hw.mac.type = ei->mac;
6155         adapter->max_hw_frame_size = ei->max_hw_frame_size;
6156         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6157
6158         mmio_start = pci_resource_start(pdev, 0);
6159         mmio_len = pci_resource_len(pdev, 0);
6160
6161         err = -EIO;
6162         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6163         if (!adapter->hw.hw_addr)
6164                 goto err_ioremap;
6165
6166         if ((adapter->flags & FLAG_HAS_FLASH) &&
6167             (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
6168                 flash_start = pci_resource_start(pdev, 1);
6169                 flash_len = pci_resource_len(pdev, 1);
6170                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
6171                 if (!adapter->hw.flash_address)
6172                         goto err_flashmap;
6173         }
6174
6175         /* construct the net_device struct */
6176         netdev->netdev_ops              = &e1000e_netdev_ops;
6177         e1000e_set_ethtool_ops(netdev);
6178         netdev->watchdog_timeo          = 5 * HZ;
6179         netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6180         strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6181
6182         netdev->mem_start = mmio_start;
6183         netdev->mem_end = mmio_start + mmio_len;
6184
6185         adapter->bd_number = cards_found++;
6186
6187         e1000e_check_options(adapter);
6188
6189         /* setup adapter struct */
6190         err = e1000_sw_init(adapter);
6191         if (err)
6192                 goto err_sw_init;
6193
6194         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6195         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6196         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6197
6198         err = ei->get_variants(adapter);
6199         if (err)
6200                 goto err_hw_init;
6201
6202         if ((adapter->flags & FLAG_IS_ICH) &&
6203             (adapter->flags & FLAG_READ_ONLY_NVM))
6204                 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6205
6206         hw->mac.ops.get_bus_info(&adapter->hw);
6207
6208         adapter->hw.phy.autoneg_wait_to_complete = 0;
6209
6210         /* Copper options */
6211         if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6212                 adapter->hw.phy.mdix = AUTO_ALL_MODES;
6213                 adapter->hw.phy.disable_polarity_correction = 0;
6214                 adapter->hw.phy.ms_type = e1000_ms_hw_default;
6215         }
6216
6217         if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6218                 dev_info(&pdev->dev,
6219                          "PHY reset is blocked due to SOL/IDER session.\n");
6220
6221         /* Set initial default active device features */
6222         netdev->features = (NETIF_F_SG |
6223                             NETIF_F_HW_VLAN_RX |
6224                             NETIF_F_HW_VLAN_TX |
6225                             NETIF_F_TSO |
6226                             NETIF_F_TSO6 |
6227                             NETIF_F_RXHASH |
6228                             NETIF_F_RXCSUM |
6229                             NETIF_F_HW_CSUM);
6230
6231         /* Set user-changeable features (subset of all device features) */
6232         netdev->hw_features = netdev->features;
6233         netdev->hw_features |= NETIF_F_RXFCS;
6234         netdev->priv_flags |= IFF_SUPP_NOFCS;
6235         netdev->hw_features |= NETIF_F_RXALL;
6236
6237         if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6238                 netdev->features |= NETIF_F_HW_VLAN_FILTER;
6239
6240         netdev->vlan_features |= (NETIF_F_SG |
6241                                   NETIF_F_TSO |
6242                                   NETIF_F_TSO6 |
6243                                   NETIF_F_HW_CSUM);
6244
6245         netdev->priv_flags |= IFF_UNICAST_FLT;
6246
6247         if (pci_using_dac) {
6248                 netdev->features |= NETIF_F_HIGHDMA;
6249                 netdev->vlan_features |= NETIF_F_HIGHDMA;
6250         }
6251
6252         if (e1000e_enable_mng_pass_thru(&adapter->hw))
6253                 adapter->flags |= FLAG_MNG_PT_ENABLED;
6254
6255         /*
6256          * before reading the NVM, reset the controller to
6257          * put the device in a known good starting state
6258          */
6259         adapter->hw.mac.ops.reset_hw(&adapter->hw);
6260
6261         /*
6262          * systems with ASPM and others may see the checksum fail on the first
6263          * attempt. Let's give it a few tries
6264          */
6265         for (i = 0;; i++) {
6266                 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6267                         break;
6268                 if (i == 2) {
6269                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6270                         err = -EIO;
6271                         goto err_eeprom;
6272                 }
6273         }
6274
6275         e1000_eeprom_checks(adapter);
6276
6277         /* copy the MAC address */
6278         if (e1000e_read_mac_addr(&adapter->hw))
6279                 dev_err(&pdev->dev,
6280                         "NVM Read Error while reading MAC address\n");
6281
6282         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6283         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
6284
6285         if (!is_valid_ether_addr(netdev->perm_addr)) {
6286                 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
6287                         netdev->perm_addr);
6288                 err = -EIO;
6289                 goto err_eeprom;
6290         }
6291
6292         init_timer(&adapter->watchdog_timer);
6293         adapter->watchdog_timer.function = e1000_watchdog;
6294         adapter->watchdog_timer.data = (unsigned long) adapter;
6295
6296         init_timer(&adapter->phy_info_timer);
6297         adapter->phy_info_timer.function = e1000_update_phy_info;
6298         adapter->phy_info_timer.data = (unsigned long) adapter;
6299
6300         INIT_WORK(&adapter->reset_task, e1000_reset_task);
6301         INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6302         INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6303         INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6304         INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6305
6306         /* Initialize link parameters. User can change them with ethtool */
6307         adapter->hw.mac.autoneg = 1;
6308         adapter->fc_autoneg = true;
6309         adapter->hw.fc.requested_mode = e1000_fc_default;
6310         adapter->hw.fc.current_mode = e1000_fc_default;
6311         adapter->hw.phy.autoneg_advertised = 0x2f;
6312
6313         /* ring size defaults */
6314         adapter->rx_ring->count = 256;
6315         adapter->tx_ring->count = 256;
6316
6317         /*
6318          * Initial Wake on LAN setting - If APM wake is enabled in
6319          * the EEPROM, enable the ACPI Magic Packet filter
6320          */
6321         if (adapter->flags & FLAG_APME_IN_WUC) {
6322                 /* APME bit in EEPROM is mapped to WUC.APME */
6323                 eeprom_data = er32(WUC);
6324                 eeprom_apme_mask = E1000_WUC_APME;
6325                 if ((hw->mac.type > e1000_ich10lan) &&
6326                     (eeprom_data & E1000_WUC_PHY_WAKE))
6327                         adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6328         } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6329                 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6330                     (adapter->hw.bus.func == 1))
6331                         e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
6332                                        1, &eeprom_data);
6333                 else
6334                         e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
6335                                        1, &eeprom_data);
6336         }
6337
6338         /* fetch WoL from EEPROM */
6339         if (eeprom_data & eeprom_apme_mask)
6340                 adapter->eeprom_wol |= E1000_WUFC_MAG;
6341
6342         /*
6343          * now that we have the eeprom settings, apply the special cases
6344          * where the eeprom may be wrong or the board simply won't support
6345          * wake on lan on a particular port
6346          */
6347         if (!(adapter->flags & FLAG_HAS_WOL))
6348                 adapter->eeprom_wol = 0;
6349
6350         /* initialize the wol settings based on the eeprom settings */
6351         adapter->wol = adapter->eeprom_wol;
6352         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6353
6354         /* save off EEPROM version number */
6355         e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6356
6357         /* reset the hardware with the new settings */
6358         e1000e_reset(adapter);
6359
6360         /*
6361          * If the controller has AMT, do not set DRV_LOAD until the interface
6362          * is up.  For all other cases, let the f/w know that the h/w is now
6363          * under the control of the driver.
6364          */
6365         if (!(adapter->flags & FLAG_HAS_AMT))
6366                 e1000e_get_hw_control(adapter);
6367
6368         strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6369         err = register_netdev(netdev);
6370         if (err)
6371                 goto err_register;
6372
6373         /* carrier off reporting is important to ethtool even BEFORE open */
6374         netif_carrier_off(netdev);
6375
6376         e1000_print_device_info(adapter);
6377
6378         if (pci_dev_run_wake(pdev))
6379                 pm_runtime_put_noidle(&pdev->dev);
6380
6381         return 0;
6382
6383 err_register:
6384         if (!(adapter->flags & FLAG_HAS_AMT))
6385                 e1000e_release_hw_control(adapter);
6386 err_eeprom:
6387         if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
6388                 e1000_phy_hw_reset(&adapter->hw);
6389 err_hw_init:
6390         kfree(adapter->tx_ring);
6391         kfree(adapter->rx_ring);
6392 err_sw_init:
6393         if (adapter->hw.flash_address)
6394                 iounmap(adapter->hw.flash_address);
6395         e1000e_reset_interrupt_capability(adapter);
6396 err_flashmap:
6397         iounmap(adapter->hw.hw_addr);
6398 err_ioremap:
6399         free_netdev(netdev);
6400 err_alloc_etherdev:
6401         pci_release_selected_regions(pdev,
6402                                      pci_select_bars(pdev, IORESOURCE_MEM));
6403 err_pci_reg:
6404 err_dma:
6405         pci_disable_device(pdev);
6406         return err;
6407 }
6408
6409 /**
6410  * e1000_remove - Device Removal Routine
6411  * @pdev: PCI device information struct
6412  *
6413  * e1000_remove is called by the PCI subsystem to alert the driver
6414  * that it should release a PCI device.  The could be caused by a
6415  * Hot-Plug event, or because the driver is going to be removed from
6416  * memory.
6417  **/
6418 static void __devexit e1000_remove(struct pci_dev *pdev)
6419 {
6420         struct net_device *netdev = pci_get_drvdata(pdev);
6421         struct e1000_adapter *adapter = netdev_priv(netdev);
6422         bool down = test_bit(__E1000_DOWN, &adapter->state);
6423
6424         /*
6425          * The timers may be rescheduled, so explicitly disable them
6426          * from being rescheduled.
6427          */
6428         if (!down)
6429                 set_bit(__E1000_DOWN, &adapter->state);
6430         del_timer_sync(&adapter->watchdog_timer);
6431         del_timer_sync(&adapter->phy_info_timer);
6432
6433         cancel_work_sync(&adapter->reset_task);
6434         cancel_work_sync(&adapter->watchdog_task);
6435         cancel_work_sync(&adapter->downshift_task);
6436         cancel_work_sync(&adapter->update_phy_task);
6437         cancel_work_sync(&adapter->print_hang_task);
6438
6439         if (!(netdev->flags & IFF_UP))
6440                 e1000_power_down_phy(adapter);
6441
6442         /* Don't lie to e1000_close() down the road. */
6443         if (!down)
6444                 clear_bit(__E1000_DOWN, &adapter->state);
6445         unregister_netdev(netdev);
6446
6447         if (pci_dev_run_wake(pdev))
6448                 pm_runtime_get_noresume(&pdev->dev);
6449
6450         /*
6451          * Release control of h/w to f/w.  If f/w is AMT enabled, this
6452          * would have already happened in close and is redundant.
6453          */
6454         e1000e_release_hw_control(adapter);
6455
6456         e1000e_reset_interrupt_capability(adapter);
6457         kfree(adapter->tx_ring);
6458         kfree(adapter->rx_ring);
6459
6460         iounmap(adapter->hw.hw_addr);
6461         if (adapter->hw.flash_address)
6462                 iounmap(adapter->hw.flash_address);
6463         pci_release_selected_regions(pdev,
6464                                      pci_select_bars(pdev, IORESOURCE_MEM));
6465
6466         free_netdev(netdev);
6467
6468         /* AER disable */
6469         pci_disable_pcie_error_reporting(pdev);
6470
6471         pci_disable_device(pdev);
6472 }
6473
6474 /* PCI Error Recovery (ERS) */
6475 static struct pci_error_handlers e1000_err_handler = {
6476         .error_detected = e1000_io_error_detected,
6477         .slot_reset = e1000_io_slot_reset,
6478         .resume = e1000_io_resume,
6479 };
6480
6481 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6482         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6483         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6484         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6485         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
6486         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6487         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6488         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6489         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6490         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6491
6492         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6493         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6494         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6495         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6496
6497         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6498         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6499         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6500
6501         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6502         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6503         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6504
6505         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6506           board_80003es2lan },
6507         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6508           board_80003es2lan },
6509         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6510           board_80003es2lan },
6511         { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6512           board_80003es2lan },
6513
6514         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6515         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6516         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6517         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6518         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6519         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6520         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6521         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6522
6523         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6524         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6525         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6526         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6527         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6528         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6529         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6530         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6531         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6532
6533         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6534         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6535         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6536
6537         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6538         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6539         { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6540
6541         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6542         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6543         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6544         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6545
6546         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6547         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6548
6549         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
6550         { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
6551
6552         { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
6553 };
6554 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6555
6556 #ifdef CONFIG_PM
6557 static const struct dev_pm_ops e1000_pm_ops = {
6558         SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6559         SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6560                                 e1000_runtime_resume, e1000_idle)
6561 };
6562 #endif
6563
6564 /* PCI Device API Driver */
6565 static struct pci_driver e1000_driver = {
6566         .name     = e1000e_driver_name,
6567         .id_table = e1000_pci_tbl,
6568         .probe    = e1000_probe,
6569         .remove   = __devexit_p(e1000_remove),
6570 #ifdef CONFIG_PM
6571         .driver   = {
6572                 .pm = &e1000_pm_ops,
6573         },
6574 #endif
6575         .shutdown = e1000_shutdown,
6576         .err_handler = &e1000_err_handler
6577 };
6578
6579 /**
6580  * e1000_init_module - Driver Registration Routine
6581  *
6582  * e1000_init_module is the first routine called when the driver is
6583  * loaded. All it does is register with the PCI subsystem.
6584  **/
6585 static int __init e1000_init_module(void)
6586 {
6587         int ret;
6588         pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6589                 e1000e_driver_version);
6590         pr_info("Copyright(c) 1999 - 2012 Intel Corporation.\n");
6591         ret = pci_register_driver(&e1000_driver);
6592
6593         return ret;
6594 }
6595 module_init(e1000_init_module);
6596
6597 /**
6598  * e1000_exit_module - Driver Exit Cleanup Routine
6599  *
6600  * e1000_exit_module is called just before the driver is removed
6601  * from memory.
6602  **/
6603 static void __exit e1000_exit_module(void)
6604 {
6605         pci_unregister_driver(&e1000_driver);
6606 }
6607 module_exit(e1000_exit_module);
6608
6609
6610 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6611 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6612 MODULE_LICENSE("GPL");
6613 MODULE_VERSION(DRV_VERSION);
6614
6615 /* netdev.c */