]> Pileus Git - ~andy/linux/blob - drivers/net/ethernet/intel/e1000e/ethtool.c
x86-64, reboot: Be more paranoid in 64-bit reboot=bios
[~andy/linux] / drivers / net / ethernet / intel / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/slab.h>
36 #include <linux/delay.h>
37 #include <linux/vmalloc.h>
38
39 #include "e1000.h"
40
41 enum {NETDEV_STATS, E1000_STATS};
42
43 struct e1000_stats {
44         char stat_string[ETH_GSTRING_LEN];
45         int type;
46         int sizeof_stat;
47         int stat_offset;
48 };
49
50 #define E1000_STAT(str, m) { \
51                 .stat_string = str, \
52                 .type = E1000_STATS, \
53                 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
54                 .stat_offset = offsetof(struct e1000_adapter, m) }
55 #define E1000_NETDEV_STAT(str, m) { \
56                 .stat_string = str, \
57                 .type = NETDEV_STATS, \
58                 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
59                 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
60
61 static const struct e1000_stats e1000_gstrings_stats[] = {
62         E1000_STAT("rx_packets", stats.gprc),
63         E1000_STAT("tx_packets", stats.gptc),
64         E1000_STAT("rx_bytes", stats.gorc),
65         E1000_STAT("tx_bytes", stats.gotc),
66         E1000_STAT("rx_broadcast", stats.bprc),
67         E1000_STAT("tx_broadcast", stats.bptc),
68         E1000_STAT("rx_multicast", stats.mprc),
69         E1000_STAT("tx_multicast", stats.mptc),
70         E1000_NETDEV_STAT("rx_errors", rx_errors),
71         E1000_NETDEV_STAT("tx_errors", tx_errors),
72         E1000_NETDEV_STAT("tx_dropped", tx_dropped),
73         E1000_STAT("multicast", stats.mprc),
74         E1000_STAT("collisions", stats.colc),
75         E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
76         E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
77         E1000_STAT("rx_crc_errors", stats.crcerrs),
78         E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
79         E1000_STAT("rx_no_buffer_count", stats.rnbc),
80         E1000_STAT("rx_missed_errors", stats.mpc),
81         E1000_STAT("tx_aborted_errors", stats.ecol),
82         E1000_STAT("tx_carrier_errors", stats.tncrs),
83         E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
84         E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
85         E1000_STAT("tx_window_errors", stats.latecol),
86         E1000_STAT("tx_abort_late_coll", stats.latecol),
87         E1000_STAT("tx_deferred_ok", stats.dc),
88         E1000_STAT("tx_single_coll_ok", stats.scc),
89         E1000_STAT("tx_multi_coll_ok", stats.mcc),
90         E1000_STAT("tx_timeout_count", tx_timeout_count),
91         E1000_STAT("tx_restart_queue", restart_queue),
92         E1000_STAT("rx_long_length_errors", stats.roc),
93         E1000_STAT("rx_short_length_errors", stats.ruc),
94         E1000_STAT("rx_align_errors", stats.algnerrc),
95         E1000_STAT("tx_tcp_seg_good", stats.tsctc),
96         E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
97         E1000_STAT("rx_flow_control_xon", stats.xonrxc),
98         E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
99         E1000_STAT("tx_flow_control_xon", stats.xontxc),
100         E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
101         E1000_STAT("rx_long_byte_count", stats.gorc),
102         E1000_STAT("rx_csum_offload_good", hw_csum_good),
103         E1000_STAT("rx_csum_offload_errors", hw_csum_err),
104         E1000_STAT("rx_header_split", rx_hdr_split),
105         E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
106         E1000_STAT("tx_smbus", stats.mgptc),
107         E1000_STAT("rx_smbus", stats.mgprc),
108         E1000_STAT("dropped_smbus", stats.mgpdc),
109         E1000_STAT("rx_dma_failed", rx_dma_failed),
110         E1000_STAT("tx_dma_failed", tx_dma_failed),
111 };
112
113 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
114 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
115 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
116         "Register test  (offline)", "Eeprom test    (offline)",
117         "Interrupt test (offline)", "Loopback test  (offline)",
118         "Link test   (on/offline)"
119 };
120 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
121
122 static int e1000_get_settings(struct net_device *netdev,
123                               struct ethtool_cmd *ecmd)
124 {
125         struct e1000_adapter *adapter = netdev_priv(netdev);
126         struct e1000_hw *hw = &adapter->hw;
127         u32 speed;
128
129         if (hw->phy.media_type == e1000_media_type_copper) {
130
131                 ecmd->supported = (SUPPORTED_10baseT_Half |
132                                    SUPPORTED_10baseT_Full |
133                                    SUPPORTED_100baseT_Half |
134                                    SUPPORTED_100baseT_Full |
135                                    SUPPORTED_1000baseT_Full |
136                                    SUPPORTED_Autoneg |
137                                    SUPPORTED_TP);
138                 if (hw->phy.type == e1000_phy_ife)
139                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
140                 ecmd->advertising = ADVERTISED_TP;
141
142                 if (hw->mac.autoneg == 1) {
143                         ecmd->advertising |= ADVERTISED_Autoneg;
144                         /* the e1000 autoneg seems to match ethtool nicely */
145                         ecmd->advertising |= hw->phy.autoneg_advertised;
146                 }
147
148                 ecmd->port = PORT_TP;
149                 ecmd->phy_address = hw->phy.addr;
150                 ecmd->transceiver = XCVR_INTERNAL;
151
152         } else {
153                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
154                                      SUPPORTED_FIBRE |
155                                      SUPPORTED_Autoneg);
156
157                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
158                                      ADVERTISED_FIBRE |
159                                      ADVERTISED_Autoneg);
160
161                 ecmd->port = PORT_FIBRE;
162                 ecmd->transceiver = XCVR_EXTERNAL;
163         }
164
165         speed = -1;
166         ecmd->duplex = -1;
167
168         if (netif_running(netdev)) {
169                 if (netif_carrier_ok(netdev)) {
170                         speed = adapter->link_speed;
171                         ecmd->duplex = adapter->link_duplex - 1;
172                 }
173         } else {
174                 u32 status = er32(STATUS);
175                 if (status & E1000_STATUS_LU) {
176                         if (status & E1000_STATUS_SPEED_1000)
177                                 speed = SPEED_1000;
178                         else if (status & E1000_STATUS_SPEED_100)
179                                 speed = SPEED_100;
180                         else
181                                 speed = SPEED_10;
182
183                         if (status & E1000_STATUS_FD)
184                                 ecmd->duplex = DUPLEX_FULL;
185                         else
186                                 ecmd->duplex = DUPLEX_HALF;
187                 }
188         }
189
190         ethtool_cmd_speed_set(ecmd, speed);
191         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
192                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
193
194         /* MDI-X => 2; MDI =>1; Invalid =>0 */
195         if ((hw->phy.media_type == e1000_media_type_copper) &&
196             netif_carrier_ok(netdev))
197                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
198                                                       ETH_TP_MDI;
199         else
200                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
201
202         return 0;
203 }
204
205 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
206 {
207         struct e1000_mac_info *mac = &adapter->hw.mac;
208
209         mac->autoneg = 0;
210
211         /* Make sure dplx is at most 1 bit and lsb of speed is not set
212          * for the switch() below to work */
213         if ((spd & 1) || (dplx & ~1))
214                 goto err_inval;
215
216         /* Fiber NICs only allow 1000 gbps Full duplex */
217         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
218             spd != SPEED_1000 &&
219             dplx != DUPLEX_FULL) {
220                 goto err_inval;
221         }
222
223         switch (spd + dplx) {
224         case SPEED_10 + DUPLEX_HALF:
225                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
226                 break;
227         case SPEED_10 + DUPLEX_FULL:
228                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
229                 break;
230         case SPEED_100 + DUPLEX_HALF:
231                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
232                 break;
233         case SPEED_100 + DUPLEX_FULL:
234                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
235                 break;
236         case SPEED_1000 + DUPLEX_FULL:
237                 mac->autoneg = 1;
238                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
239                 break;
240         case SPEED_1000 + DUPLEX_HALF: /* not supported */
241         default:
242                 goto err_inval;
243         }
244         return 0;
245
246 err_inval:
247         e_err("Unsupported Speed/Duplex configuration\n");
248         return -EINVAL;
249 }
250
251 static int e1000_set_settings(struct net_device *netdev,
252                               struct ethtool_cmd *ecmd)
253 {
254         struct e1000_adapter *adapter = netdev_priv(netdev);
255         struct e1000_hw *hw = &adapter->hw;
256
257         /*
258          * When SoL/IDER sessions are active, autoneg/speed/duplex
259          * cannot be changed
260          */
261         if (hw->phy.ops.check_reset_block(hw)) {
262                 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
263                 return -EINVAL;
264         }
265
266         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
267                 usleep_range(1000, 2000);
268
269         if (ecmd->autoneg == AUTONEG_ENABLE) {
270                 hw->mac.autoneg = 1;
271                 if (hw->phy.media_type == e1000_media_type_fiber)
272                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
273                                                      ADVERTISED_FIBRE |
274                                                      ADVERTISED_Autoneg;
275                 else
276                         hw->phy.autoneg_advertised = ecmd->advertising |
277                                                      ADVERTISED_TP |
278                                                      ADVERTISED_Autoneg;
279                 ecmd->advertising = hw->phy.autoneg_advertised;
280                 if (adapter->fc_autoneg)
281                         hw->fc.requested_mode = e1000_fc_default;
282         } else {
283                 u32 speed = ethtool_cmd_speed(ecmd);
284                 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
285                         clear_bit(__E1000_RESETTING, &adapter->state);
286                         return -EINVAL;
287                 }
288         }
289
290         /* reset the link */
291
292         if (netif_running(adapter->netdev)) {
293                 e1000e_down(adapter);
294                 e1000e_up(adapter);
295         } else {
296                 e1000e_reset(adapter);
297         }
298
299         clear_bit(__E1000_RESETTING, &adapter->state);
300         return 0;
301 }
302
303 static void e1000_get_pauseparam(struct net_device *netdev,
304                                  struct ethtool_pauseparam *pause)
305 {
306         struct e1000_adapter *adapter = netdev_priv(netdev);
307         struct e1000_hw *hw = &adapter->hw;
308
309         pause->autoneg =
310                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
311
312         if (hw->fc.current_mode == e1000_fc_rx_pause) {
313                 pause->rx_pause = 1;
314         } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
315                 pause->tx_pause = 1;
316         } else if (hw->fc.current_mode == e1000_fc_full) {
317                 pause->rx_pause = 1;
318                 pause->tx_pause = 1;
319         }
320 }
321
322 static int e1000_set_pauseparam(struct net_device *netdev,
323                                 struct ethtool_pauseparam *pause)
324 {
325         struct e1000_adapter *adapter = netdev_priv(netdev);
326         struct e1000_hw *hw = &adapter->hw;
327         int retval = 0;
328
329         adapter->fc_autoneg = pause->autoneg;
330
331         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
332                 usleep_range(1000, 2000);
333
334         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
335                 hw->fc.requested_mode = e1000_fc_default;
336                 if (netif_running(adapter->netdev)) {
337                         e1000e_down(adapter);
338                         e1000e_up(adapter);
339                 } else {
340                         e1000e_reset(adapter);
341                 }
342         } else {
343                 if (pause->rx_pause && pause->tx_pause)
344                         hw->fc.requested_mode = e1000_fc_full;
345                 else if (pause->rx_pause && !pause->tx_pause)
346                         hw->fc.requested_mode = e1000_fc_rx_pause;
347                 else if (!pause->rx_pause && pause->tx_pause)
348                         hw->fc.requested_mode = e1000_fc_tx_pause;
349                 else if (!pause->rx_pause && !pause->tx_pause)
350                         hw->fc.requested_mode = e1000_fc_none;
351
352                 hw->fc.current_mode = hw->fc.requested_mode;
353
354                 if (hw->phy.media_type == e1000_media_type_fiber) {
355                         retval = hw->mac.ops.setup_link(hw);
356                         /* implicit goto out */
357                 } else {
358                         retval = e1000e_force_mac_fc(hw);
359                         if (retval)
360                                 goto out;
361                         e1000e_set_fc_watermarks(hw);
362                 }
363         }
364
365 out:
366         clear_bit(__E1000_RESETTING, &adapter->state);
367         return retval;
368 }
369
370 static u32 e1000_get_msglevel(struct net_device *netdev)
371 {
372         struct e1000_adapter *adapter = netdev_priv(netdev);
373         return adapter->msg_enable;
374 }
375
376 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
377 {
378         struct e1000_adapter *adapter = netdev_priv(netdev);
379         adapter->msg_enable = data;
380 }
381
382 static int e1000_get_regs_len(struct net_device *netdev)
383 {
384 #define E1000_REGS_LEN 32 /* overestimate */
385         return E1000_REGS_LEN * sizeof(u32);
386 }
387
388 static void e1000_get_regs(struct net_device *netdev,
389                            struct ethtool_regs *regs, void *p)
390 {
391         struct e1000_adapter *adapter = netdev_priv(netdev);
392         struct e1000_hw *hw = &adapter->hw;
393         u32 *regs_buff = p;
394         u16 phy_data;
395
396         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
397
398         regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
399                         adapter->pdev->device;
400
401         regs_buff[0]  = er32(CTRL);
402         regs_buff[1]  = er32(STATUS);
403
404         regs_buff[2]  = er32(RCTL);
405         regs_buff[3]  = er32(RDLEN(0));
406         regs_buff[4]  = er32(RDH(0));
407         regs_buff[5]  = er32(RDT(0));
408         regs_buff[6]  = er32(RDTR);
409
410         regs_buff[7]  = er32(TCTL);
411         regs_buff[8]  = er32(TDLEN(0));
412         regs_buff[9]  = er32(TDH(0));
413         regs_buff[10] = er32(TDT(0));
414         regs_buff[11] = er32(TIDV);
415
416         regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
417
418         /* ethtool doesn't use anything past this point, so all this
419          * code is likely legacy junk for apps that may or may not
420          * exist */
421         if (hw->phy.type == e1000_phy_m88) {
422                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
423                 regs_buff[13] = (u32)phy_data; /* cable length */
424                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
425                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
426                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
427                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
428                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
429                 regs_buff[18] = regs_buff[13]; /* cable polarity */
430                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
431                 regs_buff[20] = regs_buff[17]; /* polarity correction */
432                 /* phy receive errors */
433                 regs_buff[22] = adapter->phy_stats.receive_errors;
434                 regs_buff[23] = regs_buff[13]; /* mdix mode */
435         }
436         regs_buff[21] = 0; /* was idle_errors */
437         e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
438         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
439         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
440 }
441
442 static int e1000_get_eeprom_len(struct net_device *netdev)
443 {
444         struct e1000_adapter *adapter = netdev_priv(netdev);
445         return adapter->hw.nvm.word_size * 2;
446 }
447
448 static int e1000_get_eeprom(struct net_device *netdev,
449                             struct ethtool_eeprom *eeprom, u8 *bytes)
450 {
451         struct e1000_adapter *adapter = netdev_priv(netdev);
452         struct e1000_hw *hw = &adapter->hw;
453         u16 *eeprom_buff;
454         int first_word;
455         int last_word;
456         int ret_val = 0;
457         u16 i;
458
459         if (eeprom->len == 0)
460                 return -EINVAL;
461
462         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
463
464         first_word = eeprom->offset >> 1;
465         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
466
467         eeprom_buff = kmalloc(sizeof(u16) *
468                         (last_word - first_word + 1), GFP_KERNEL);
469         if (!eeprom_buff)
470                 return -ENOMEM;
471
472         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
473                 ret_val = e1000_read_nvm(hw, first_word,
474                                          last_word - first_word + 1,
475                                          eeprom_buff);
476         } else {
477                 for (i = 0; i < last_word - first_word + 1; i++) {
478                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
479                                                       &eeprom_buff[i]);
480                         if (ret_val)
481                                 break;
482                 }
483         }
484
485         if (ret_val) {
486                 /* a read error occurred, throw away the result */
487                 memset(eeprom_buff, 0xff, sizeof(u16) *
488                        (last_word - first_word + 1));
489         } else {
490                 /* Device's eeprom is always little-endian, word addressable */
491                 for (i = 0; i < last_word - first_word + 1; i++)
492                         le16_to_cpus(&eeprom_buff[i]);
493         }
494
495         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
496         kfree(eeprom_buff);
497
498         return ret_val;
499 }
500
501 static int e1000_set_eeprom(struct net_device *netdev,
502                             struct ethtool_eeprom *eeprom, u8 *bytes)
503 {
504         struct e1000_adapter *adapter = netdev_priv(netdev);
505         struct e1000_hw *hw = &adapter->hw;
506         u16 *eeprom_buff;
507         void *ptr;
508         int max_len;
509         int first_word;
510         int last_word;
511         int ret_val = 0;
512         u16 i;
513
514         if (eeprom->len == 0)
515                 return -EOPNOTSUPP;
516
517         if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
518                 return -EFAULT;
519
520         if (adapter->flags & FLAG_READ_ONLY_NVM)
521                 return -EINVAL;
522
523         max_len = hw->nvm.word_size * 2;
524
525         first_word = eeprom->offset >> 1;
526         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
527         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
528         if (!eeprom_buff)
529                 return -ENOMEM;
530
531         ptr = (void *)eeprom_buff;
532
533         if (eeprom->offset & 1) {
534                 /* need read/modify/write of first changed EEPROM word */
535                 /* only the second byte of the word is being modified */
536                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
537                 ptr++;
538         }
539         if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
540                 /* need read/modify/write of last changed EEPROM word */
541                 /* only the first byte of the word is being modified */
542                 ret_val = e1000_read_nvm(hw, last_word, 1,
543                                   &eeprom_buff[last_word - first_word]);
544
545         if (ret_val)
546                 goto out;
547
548         /* Device's eeprom is always little-endian, word addressable */
549         for (i = 0; i < last_word - first_word + 1; i++)
550                 le16_to_cpus(&eeprom_buff[i]);
551
552         memcpy(ptr, bytes, eeprom->len);
553
554         for (i = 0; i < last_word - first_word + 1; i++)
555                 cpu_to_le16s(&eeprom_buff[i]);
556
557         ret_val = e1000_write_nvm(hw, first_word,
558                                   last_word - first_word + 1, eeprom_buff);
559
560         if (ret_val)
561                 goto out;
562
563         /*
564          * Update the checksum over the first part of the EEPROM if needed
565          * and flush shadow RAM for applicable controllers
566          */
567         if ((first_word <= NVM_CHECKSUM_REG) ||
568             (hw->mac.type == e1000_82583) ||
569             (hw->mac.type == e1000_82574) ||
570             (hw->mac.type == e1000_82573))
571                 ret_val = e1000e_update_nvm_checksum(hw);
572
573 out:
574         kfree(eeprom_buff);
575         return ret_val;
576 }
577
578 static void e1000_get_drvinfo(struct net_device *netdev,
579                               struct ethtool_drvinfo *drvinfo)
580 {
581         struct e1000_adapter *adapter = netdev_priv(netdev);
582
583         strlcpy(drvinfo->driver,  e1000e_driver_name,
584                 sizeof(drvinfo->driver));
585         strlcpy(drvinfo->version, e1000e_driver_version,
586                 sizeof(drvinfo->version));
587
588         /*
589          * EEPROM image version # is reported as firmware version # for
590          * PCI-E controllers
591          */
592         snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
593                 "%d.%d-%d",
594                 (adapter->eeprom_vers & 0xF000) >> 12,
595                 (adapter->eeprom_vers & 0x0FF0) >> 4,
596                 (adapter->eeprom_vers & 0x000F));
597
598         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
599                 sizeof(drvinfo->bus_info));
600         drvinfo->regdump_len = e1000_get_regs_len(netdev);
601         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
602 }
603
604 static void e1000_get_ringparam(struct net_device *netdev,
605                                 struct ethtool_ringparam *ring)
606 {
607         struct e1000_adapter *adapter = netdev_priv(netdev);
608
609         ring->rx_max_pending = E1000_MAX_RXD;
610         ring->tx_max_pending = E1000_MAX_TXD;
611         ring->rx_pending = adapter->rx_ring_count;
612         ring->tx_pending = adapter->tx_ring_count;
613 }
614
615 static int e1000_set_ringparam(struct net_device *netdev,
616                                struct ethtool_ringparam *ring)
617 {
618         struct e1000_adapter *adapter = netdev_priv(netdev);
619         struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
620         int err = 0, size = sizeof(struct e1000_ring);
621         bool set_tx = false, set_rx = false;
622         u16 new_rx_count, new_tx_count;
623
624         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
625                 return -EINVAL;
626
627         new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
628                                E1000_MAX_RXD);
629         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
630
631         new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
632                                E1000_MAX_TXD);
633         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
634
635         if ((new_tx_count == adapter->tx_ring_count) &&
636             (new_rx_count == adapter->rx_ring_count))
637                 /* nothing to do */
638                 return 0;
639
640         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
641                 usleep_range(1000, 2000);
642
643         if (!netif_running(adapter->netdev)) {
644                 /* Set counts now and allocate resources during open() */
645                 adapter->tx_ring->count = new_tx_count;
646                 adapter->rx_ring->count = new_rx_count;
647                 adapter->tx_ring_count = new_tx_count;
648                 adapter->rx_ring_count = new_rx_count;
649                 goto clear_reset;
650         }
651
652         set_tx = (new_tx_count != adapter->tx_ring_count);
653         set_rx = (new_rx_count != adapter->rx_ring_count);
654
655         /* Allocate temporary storage for ring updates */
656         if (set_tx) {
657                 temp_tx = vmalloc(size);
658                 if (!temp_tx) {
659                         err = -ENOMEM;
660                         goto free_temp;
661                 }
662         }
663         if (set_rx) {
664                 temp_rx = vmalloc(size);
665                 if (!temp_rx) {
666                         err = -ENOMEM;
667                         goto free_temp;
668                 }
669         }
670
671         e1000e_down(adapter);
672
673         /*
674          * We can't just free everything and then setup again, because the
675          * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
676          * structs.  First, attempt to allocate new resources...
677          */
678         if (set_tx) {
679                 memcpy(temp_tx, adapter->tx_ring, size);
680                 temp_tx->count = new_tx_count;
681                 err = e1000e_setup_tx_resources(temp_tx);
682                 if (err)
683                         goto err_setup;
684         }
685         if (set_rx) {
686                 memcpy(temp_rx, adapter->rx_ring, size);
687                 temp_rx->count = new_rx_count;
688                 err = e1000e_setup_rx_resources(temp_rx);
689                 if (err)
690                         goto err_setup_rx;
691         }
692
693         /* ...then free the old resources and copy back any new ring data */
694         if (set_tx) {
695                 e1000e_free_tx_resources(adapter->tx_ring);
696                 memcpy(adapter->tx_ring, temp_tx, size);
697                 adapter->tx_ring_count = new_tx_count;
698         }
699         if (set_rx) {
700                 e1000e_free_rx_resources(adapter->rx_ring);
701                 memcpy(adapter->rx_ring, temp_rx, size);
702                 adapter->rx_ring_count = new_rx_count;
703         }
704
705 err_setup_rx:
706         if (err && set_tx)
707                 e1000e_free_tx_resources(temp_tx);
708 err_setup:
709         e1000e_up(adapter);
710 free_temp:
711         vfree(temp_tx);
712         vfree(temp_rx);
713 clear_reset:
714         clear_bit(__E1000_RESETTING, &adapter->state);
715         return err;
716 }
717
718 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
719                              int reg, int offset, u32 mask, u32 write)
720 {
721         u32 pat, val;
722         static const u32 test[] = {
723                 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
724         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
725                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
726                                       (test[pat] & write));
727                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
728                 if (val != (test[pat] & write & mask)) {
729                         e_err("pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
730                               reg + offset, val, (test[pat] & write & mask));
731                         *data = reg;
732                         return 1;
733                 }
734         }
735         return 0;
736 }
737
738 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
739                               int reg, u32 mask, u32 write)
740 {
741         u32 val;
742         __ew32(&adapter->hw, reg, write & mask);
743         val = __er32(&adapter->hw, reg);
744         if ((write & mask) != (val & mask)) {
745                 e_err("set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
746                       reg, (val & mask), (write & mask));
747                 *data = reg;
748                 return 1;
749         }
750         return 0;
751 }
752 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
753         do {                                                                   \
754                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
755                         return 1;                                              \
756         } while (0)
757 #define REG_PATTERN_TEST(reg, mask, write)                                     \
758         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
759
760 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
761         do {                                                                   \
762                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
763                         return 1;                                              \
764         } while (0)
765
766 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
767 {
768         struct e1000_hw *hw = &adapter->hw;
769         struct e1000_mac_info *mac = &adapter->hw.mac;
770         u32 value;
771         u32 before;
772         u32 after;
773         u32 i;
774         u32 toggle;
775         u32 mask;
776         u32 wlock_mac = 0;
777
778         /*
779          * The status register is Read Only, so a write should fail.
780          * Some bits that get toggled are ignored.
781          */
782         switch (mac->type) {
783         /* there are several bits on newer hardware that are r/w */
784         case e1000_82571:
785         case e1000_82572:
786         case e1000_80003es2lan:
787                 toggle = 0x7FFFF3FF;
788                 break;
789         default:
790                 toggle = 0x7FFFF033;
791                 break;
792         }
793
794         before = er32(STATUS);
795         value = (er32(STATUS) & toggle);
796         ew32(STATUS, toggle);
797         after = er32(STATUS) & toggle;
798         if (value != after) {
799                 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
800                       after, value);
801                 *data = 1;
802                 return 1;
803         }
804         /* restore previous status */
805         ew32(STATUS, before);
806
807         if (!(adapter->flags & FLAG_IS_ICH)) {
808                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
809                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
810                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
811                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
812         }
813
814         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
815         REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
816         REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
817         REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
818         REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
819         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
820         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
821         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
822         REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
823         REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
824
825         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
826
827         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
828         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
829         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
830
831         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
832         REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
833         if (!(adapter->flags & FLAG_IS_ICH))
834                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
835         REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
836         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
837         mask = 0x8003FFFF;
838         switch (mac->type) {
839         case e1000_ich10lan:
840         case e1000_pchlan:
841         case e1000_pch2lan:
842         case e1000_pch_lpt:
843                 mask |= (1 << 18);
844                 break;
845         default:
846                 break;
847         }
848
849         if (mac->type == e1000_pch_lpt)
850                 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
851                     E1000_FWSM_WLOCK_MAC_SHIFT;
852
853         for (i = 0; i < mac->rar_entry_count; i++) {
854                 /* Cannot test write-protected SHRAL[n] registers */
855                 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
856                         continue;
857
858                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
859                                        mask, 0xFFFFFFFF);
860         }
861
862         for (i = 0; i < mac->mta_reg_count; i++)
863                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
864
865         *data = 0;
866
867         return 0;
868 }
869
870 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
871 {
872         u16 temp;
873         u16 checksum = 0;
874         u16 i;
875
876         *data = 0;
877         /* Read and add up the contents of the EEPROM */
878         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
879                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
880                         *data = 1;
881                         return *data;
882                 }
883                 checksum += temp;
884         }
885
886         /* If Checksum is not Correct return error else test passed */
887         if ((checksum != (u16) NVM_SUM) && !(*data))
888                 *data = 2;
889
890         return *data;
891 }
892
893 static irqreturn_t e1000_test_intr(int irq, void *data)
894 {
895         struct net_device *netdev = (struct net_device *) data;
896         struct e1000_adapter *adapter = netdev_priv(netdev);
897         struct e1000_hw *hw = &adapter->hw;
898
899         adapter->test_icr |= er32(ICR);
900
901         return IRQ_HANDLED;
902 }
903
904 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
905 {
906         struct net_device *netdev = adapter->netdev;
907         struct e1000_hw *hw = &adapter->hw;
908         u32 mask;
909         u32 shared_int = 1;
910         u32 irq = adapter->pdev->irq;
911         int i;
912         int ret_val = 0;
913         int int_mode = E1000E_INT_MODE_LEGACY;
914
915         *data = 0;
916
917         /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
918         if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
919                 int_mode = adapter->int_mode;
920                 e1000e_reset_interrupt_capability(adapter);
921                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
922                 e1000e_set_interrupt_capability(adapter);
923         }
924         /* Hook up test interrupt handler just for this test */
925         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
926                          netdev)) {
927                 shared_int = 0;
928         } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
929                  netdev->name, netdev)) {
930                 *data = 1;
931                 ret_val = -1;
932                 goto out;
933         }
934         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
935
936         /* Disable all the interrupts */
937         ew32(IMC, 0xFFFFFFFF);
938         e1e_flush();
939         usleep_range(10000, 20000);
940
941         /* Test each interrupt */
942         for (i = 0; i < 10; i++) {
943                 /* Interrupt to test */
944                 mask = 1 << i;
945
946                 if (adapter->flags & FLAG_IS_ICH) {
947                         switch (mask) {
948                         case E1000_ICR_RXSEQ:
949                                 continue;
950                         case 0x00000100:
951                                 if (adapter->hw.mac.type == e1000_ich8lan ||
952                                     adapter->hw.mac.type == e1000_ich9lan)
953                                         continue;
954                                 break;
955                         default:
956                                 break;
957                         }
958                 }
959
960                 if (!shared_int) {
961                         /*
962                          * Disable the interrupt to be reported in
963                          * the cause register and then force the same
964                          * interrupt and see if one gets posted.  If
965                          * an interrupt was posted to the bus, the
966                          * test failed.
967                          */
968                         adapter->test_icr = 0;
969                         ew32(IMC, mask);
970                         ew32(ICS, mask);
971                         e1e_flush();
972                         usleep_range(10000, 20000);
973
974                         if (adapter->test_icr & mask) {
975                                 *data = 3;
976                                 break;
977                         }
978                 }
979
980                 /*
981                  * Enable the interrupt to be reported in
982                  * the cause register and then force the same
983                  * interrupt and see if one gets posted.  If
984                  * an interrupt was not posted to the bus, the
985                  * test failed.
986                  */
987                 adapter->test_icr = 0;
988                 ew32(IMS, mask);
989                 ew32(ICS, mask);
990                 e1e_flush();
991                 usleep_range(10000, 20000);
992
993                 if (!(adapter->test_icr & mask)) {
994                         *data = 4;
995                         break;
996                 }
997
998                 if (!shared_int) {
999                         /*
1000                          * Disable the other interrupts to be reported in
1001                          * the cause register and then force the other
1002                          * interrupts and see if any get posted.  If
1003                          * an interrupt was posted to the bus, the
1004                          * test failed.
1005                          */
1006                         adapter->test_icr = 0;
1007                         ew32(IMC, ~mask & 0x00007FFF);
1008                         ew32(ICS, ~mask & 0x00007FFF);
1009                         e1e_flush();
1010                         usleep_range(10000, 20000);
1011
1012                         if (adapter->test_icr) {
1013                                 *data = 5;
1014                                 break;
1015                         }
1016                 }
1017         }
1018
1019         /* Disable all the interrupts */
1020         ew32(IMC, 0xFFFFFFFF);
1021         e1e_flush();
1022         usleep_range(10000, 20000);
1023
1024         /* Unhook test interrupt handler */
1025         free_irq(irq, netdev);
1026
1027 out:
1028         if (int_mode == E1000E_INT_MODE_MSIX) {
1029                 e1000e_reset_interrupt_capability(adapter);
1030                 adapter->int_mode = int_mode;
1031                 e1000e_set_interrupt_capability(adapter);
1032         }
1033
1034         return ret_val;
1035 }
1036
1037 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1038 {
1039         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1040         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1041         struct pci_dev *pdev = adapter->pdev;
1042         int i;
1043
1044         if (tx_ring->desc && tx_ring->buffer_info) {
1045                 for (i = 0; i < tx_ring->count; i++) {
1046                         if (tx_ring->buffer_info[i].dma)
1047                                 dma_unmap_single(&pdev->dev,
1048                                         tx_ring->buffer_info[i].dma,
1049                                         tx_ring->buffer_info[i].length,
1050                                         DMA_TO_DEVICE);
1051                         if (tx_ring->buffer_info[i].skb)
1052                                 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1053                 }
1054         }
1055
1056         if (rx_ring->desc && rx_ring->buffer_info) {
1057                 for (i = 0; i < rx_ring->count; i++) {
1058                         if (rx_ring->buffer_info[i].dma)
1059                                 dma_unmap_single(&pdev->dev,
1060                                         rx_ring->buffer_info[i].dma,
1061                                         2048, DMA_FROM_DEVICE);
1062                         if (rx_ring->buffer_info[i].skb)
1063                                 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1064                 }
1065         }
1066
1067         if (tx_ring->desc) {
1068                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1069                                   tx_ring->dma);
1070                 tx_ring->desc = NULL;
1071         }
1072         if (rx_ring->desc) {
1073                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1074                                   rx_ring->dma);
1075                 rx_ring->desc = NULL;
1076         }
1077
1078         kfree(tx_ring->buffer_info);
1079         tx_ring->buffer_info = NULL;
1080         kfree(rx_ring->buffer_info);
1081         rx_ring->buffer_info = NULL;
1082 }
1083
1084 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1085 {
1086         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1087         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1088         struct pci_dev *pdev = adapter->pdev;
1089         struct e1000_hw *hw = &adapter->hw;
1090         u32 rctl;
1091         int i;
1092         int ret_val;
1093
1094         /* Setup Tx descriptor ring and Tx buffers */
1095
1096         if (!tx_ring->count)
1097                 tx_ring->count = E1000_DEFAULT_TXD;
1098
1099         tx_ring->buffer_info = kcalloc(tx_ring->count,
1100                                        sizeof(struct e1000_buffer),
1101                                        GFP_KERNEL);
1102         if (!tx_ring->buffer_info) {
1103                 ret_val = 1;
1104                 goto err_nomem;
1105         }
1106
1107         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1108         tx_ring->size = ALIGN(tx_ring->size, 4096);
1109         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1110                                            &tx_ring->dma, GFP_KERNEL);
1111         if (!tx_ring->desc) {
1112                 ret_val = 2;
1113                 goto err_nomem;
1114         }
1115         tx_ring->next_to_use = 0;
1116         tx_ring->next_to_clean = 0;
1117
1118         ew32(TDBAL(0), ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1119         ew32(TDBAH(0), ((u64) tx_ring->dma >> 32));
1120         ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1121         ew32(TDH(0), 0);
1122         ew32(TDT(0), 0);
1123         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1124              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1125              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1126
1127         for (i = 0; i < tx_ring->count; i++) {
1128                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1129                 struct sk_buff *skb;
1130                 unsigned int skb_size = 1024;
1131
1132                 skb = alloc_skb(skb_size, GFP_KERNEL);
1133                 if (!skb) {
1134                         ret_val = 3;
1135                         goto err_nomem;
1136                 }
1137                 skb_put(skb, skb_size);
1138                 tx_ring->buffer_info[i].skb = skb;
1139                 tx_ring->buffer_info[i].length = skb->len;
1140                 tx_ring->buffer_info[i].dma =
1141                         dma_map_single(&pdev->dev, skb->data, skb->len,
1142                                        DMA_TO_DEVICE);
1143                 if (dma_mapping_error(&pdev->dev,
1144                                       tx_ring->buffer_info[i].dma)) {
1145                         ret_val = 4;
1146                         goto err_nomem;
1147                 }
1148                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1149                 tx_desc->lower.data = cpu_to_le32(skb->len);
1150                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1151                                                    E1000_TXD_CMD_IFCS |
1152                                                    E1000_TXD_CMD_RS);
1153                 tx_desc->upper.data = 0;
1154         }
1155
1156         /* Setup Rx descriptor ring and Rx buffers */
1157
1158         if (!rx_ring->count)
1159                 rx_ring->count = E1000_DEFAULT_RXD;
1160
1161         rx_ring->buffer_info = kcalloc(rx_ring->count,
1162                                        sizeof(struct e1000_buffer),
1163                                        GFP_KERNEL);
1164         if (!rx_ring->buffer_info) {
1165                 ret_val = 5;
1166                 goto err_nomem;
1167         }
1168
1169         rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1170         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1171                                            &rx_ring->dma, GFP_KERNEL);
1172         if (!rx_ring->desc) {
1173                 ret_val = 6;
1174                 goto err_nomem;
1175         }
1176         rx_ring->next_to_use = 0;
1177         rx_ring->next_to_clean = 0;
1178
1179         rctl = er32(RCTL);
1180         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1181                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1182         ew32(RDBAL(0), ((u64) rx_ring->dma & 0xFFFFFFFF));
1183         ew32(RDBAH(0), ((u64) rx_ring->dma >> 32));
1184         ew32(RDLEN(0), rx_ring->size);
1185         ew32(RDH(0), 0);
1186         ew32(RDT(0), 0);
1187         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1188                 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1189                 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1190                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1191                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1192         ew32(RCTL, rctl);
1193
1194         for (i = 0; i < rx_ring->count; i++) {
1195                 union e1000_rx_desc_extended *rx_desc;
1196                 struct sk_buff *skb;
1197
1198                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1199                 if (!skb) {
1200                         ret_val = 7;
1201                         goto err_nomem;
1202                 }
1203                 skb_reserve(skb, NET_IP_ALIGN);
1204                 rx_ring->buffer_info[i].skb = skb;
1205                 rx_ring->buffer_info[i].dma =
1206                         dma_map_single(&pdev->dev, skb->data, 2048,
1207                                        DMA_FROM_DEVICE);
1208                 if (dma_mapping_error(&pdev->dev,
1209                                       rx_ring->buffer_info[i].dma)) {
1210                         ret_val = 8;
1211                         goto err_nomem;
1212                 }
1213                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1214                 rx_desc->read.buffer_addr =
1215                     cpu_to_le64(rx_ring->buffer_info[i].dma);
1216                 memset(skb->data, 0x00, skb->len);
1217         }
1218
1219         return 0;
1220
1221 err_nomem:
1222         e1000_free_desc_rings(adapter);
1223         return ret_val;
1224 }
1225
1226 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1227 {
1228         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1229         e1e_wphy(&adapter->hw, 29, 0x001F);
1230         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1231         e1e_wphy(&adapter->hw, 29, 0x001A);
1232         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1233 }
1234
1235 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1236 {
1237         struct e1000_hw *hw = &adapter->hw;
1238         u32 ctrl_reg = 0;
1239         u16 phy_reg = 0;
1240         s32 ret_val = 0;
1241
1242         hw->mac.autoneg = 0;
1243
1244         if (hw->phy.type == e1000_phy_ife) {
1245                 /* force 100, set loopback */
1246                 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1247
1248                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1249                 ctrl_reg = er32(CTRL);
1250                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1251                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1252                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1253                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1254                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1255
1256                 ew32(CTRL, ctrl_reg);
1257                 e1e_flush();
1258                 udelay(500);
1259
1260                 return 0;
1261         }
1262
1263         /* Specific PHY configuration for loopback */
1264         switch (hw->phy.type) {
1265         case e1000_phy_m88:
1266                 /* Auto-MDI/MDIX Off */
1267                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1268                 /* reset to update Auto-MDI/MDIX */
1269                 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1270                 /* autoneg off */
1271                 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1272                 break;
1273         case e1000_phy_gg82563:
1274                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1275                 break;
1276         case e1000_phy_bm:
1277                 /* Set Default MAC Interface speed to 1GB */
1278                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1279                 phy_reg &= ~0x0007;
1280                 phy_reg |= 0x006;
1281                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1282                 /* Assert SW reset for above settings to take effect */
1283                 e1000e_commit_phy(hw);
1284                 mdelay(1);
1285                 /* Force Full Duplex */
1286                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1287                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1288                 /* Set Link Up (in force link) */
1289                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1290                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1291                 /* Force Link */
1292                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1293                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1294                 /* Set Early Link Enable */
1295                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1296                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1297                 break;
1298         case e1000_phy_82577:
1299         case e1000_phy_82578:
1300                 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1301                 ret_val = hw->phy.ops.acquire(hw);
1302                 if (ret_val) {
1303                         e_err("Cannot setup 1Gbps loopback.\n");
1304                         return ret_val;
1305                 }
1306                 e1000_configure_k1_ich8lan(hw, false);
1307                 hw->phy.ops.release(hw);
1308                 break;
1309         case e1000_phy_82579:
1310                 /* Disable PHY energy detect power down */
1311                 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1312                 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1313                 /* Disable full chip energy detect */
1314                 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1315                 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1316                 /* Enable loopback on the PHY */
1317 #define I82577_PHY_LBK_CTRL          19
1318                 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1319                 break;
1320         default:
1321                 break;
1322         }
1323
1324         /* force 1000, set loopback */
1325         e1e_wphy(hw, PHY_CONTROL, 0x4140);
1326         mdelay(250);
1327
1328         /* Now set up the MAC to the same speed/duplex as the PHY. */
1329         ctrl_reg = er32(CTRL);
1330         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1331         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1332                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1333                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1334                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1335
1336         if (adapter->flags & FLAG_IS_ICH)
1337                 ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1338
1339         if (hw->phy.media_type == e1000_media_type_copper &&
1340             hw->phy.type == e1000_phy_m88) {
1341                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1342         } else {
1343                 /*
1344                  * Set the ILOS bit on the fiber Nic if half duplex link is
1345                  * detected.
1346                  */
1347                 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1348                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1349         }
1350
1351         ew32(CTRL, ctrl_reg);
1352
1353         /*
1354          * Disable the receiver on the PHY so when a cable is plugged in, the
1355          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1356          */
1357         if (hw->phy.type == e1000_phy_m88)
1358                 e1000_phy_disable_receiver(adapter);
1359
1360         udelay(500);
1361
1362         return 0;
1363 }
1364
1365 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1366 {
1367         struct e1000_hw *hw = &adapter->hw;
1368         u32 ctrl = er32(CTRL);
1369         int link = 0;
1370
1371         /* special requirements for 82571/82572 fiber adapters */
1372
1373         /*
1374          * jump through hoops to make sure link is up because serdes
1375          * link is hardwired up
1376          */
1377         ctrl |= E1000_CTRL_SLU;
1378         ew32(CTRL, ctrl);
1379
1380         /* disable autoneg */
1381         ctrl = er32(TXCW);
1382         ctrl &= ~(1 << 31);
1383         ew32(TXCW, ctrl);
1384
1385         link = (er32(STATUS) & E1000_STATUS_LU);
1386
1387         if (!link) {
1388                 /* set invert loss of signal */
1389                 ctrl = er32(CTRL);
1390                 ctrl |= E1000_CTRL_ILOS;
1391                 ew32(CTRL, ctrl);
1392         }
1393
1394         /*
1395          * special write to serdes control register to enable SerDes analog
1396          * loopback
1397          */
1398 #define E1000_SERDES_LB_ON 0x410
1399         ew32(SCTL, E1000_SERDES_LB_ON);
1400         e1e_flush();
1401         usleep_range(10000, 20000);
1402
1403         return 0;
1404 }
1405
1406 /* only call this for fiber/serdes connections to es2lan */
1407 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1408 {
1409         struct e1000_hw *hw = &adapter->hw;
1410         u32 ctrlext = er32(CTRL_EXT);
1411         u32 ctrl = er32(CTRL);
1412
1413         /*
1414          * save CTRL_EXT to restore later, reuse an empty variable (unused
1415          * on mac_type 80003es2lan)
1416          */
1417         adapter->tx_fifo_head = ctrlext;
1418
1419         /* clear the serdes mode bits, putting the device into mac loopback */
1420         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1421         ew32(CTRL_EXT, ctrlext);
1422
1423         /* force speed to 1000/FD, link up */
1424         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1425         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1426                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1427         ew32(CTRL, ctrl);
1428
1429         /* set mac loopback */
1430         ctrl = er32(RCTL);
1431         ctrl |= E1000_RCTL_LBM_MAC;
1432         ew32(RCTL, ctrl);
1433
1434         /* set testing mode parameters (no need to reset later) */
1435 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1436 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1437         ew32(KMRNCTRLSTA,
1438              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1439
1440         return 0;
1441 }
1442
1443 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1444 {
1445         struct e1000_hw *hw = &adapter->hw;
1446         u32 rctl;
1447
1448         if (hw->phy.media_type == e1000_media_type_fiber ||
1449             hw->phy.media_type == e1000_media_type_internal_serdes) {
1450                 switch (hw->mac.type) {
1451                 case e1000_80003es2lan:
1452                         return e1000_set_es2lan_mac_loopback(adapter);
1453                         break;
1454                 case e1000_82571:
1455                 case e1000_82572:
1456                         return e1000_set_82571_fiber_loopback(adapter);
1457                         break;
1458                 default:
1459                         rctl = er32(RCTL);
1460                         rctl |= E1000_RCTL_LBM_TCVR;
1461                         ew32(RCTL, rctl);
1462                         return 0;
1463                 }
1464         } else if (hw->phy.media_type == e1000_media_type_copper) {
1465                 return e1000_integrated_phy_loopback(adapter);
1466         }
1467
1468         return 7;
1469 }
1470
1471 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1472 {
1473         struct e1000_hw *hw = &adapter->hw;
1474         u32 rctl;
1475         u16 phy_reg;
1476
1477         rctl = er32(RCTL);
1478         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1479         ew32(RCTL, rctl);
1480
1481         switch (hw->mac.type) {
1482         case e1000_80003es2lan:
1483                 if (hw->phy.media_type == e1000_media_type_fiber ||
1484                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1485                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1486                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1487                         adapter->tx_fifo_head = 0;
1488                 }
1489                 /* fall through */
1490         case e1000_82571:
1491         case e1000_82572:
1492                 if (hw->phy.media_type == e1000_media_type_fiber ||
1493                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1494 #define E1000_SERDES_LB_OFF 0x400
1495                         ew32(SCTL, E1000_SERDES_LB_OFF);
1496                         e1e_flush();
1497                         usleep_range(10000, 20000);
1498                         break;
1499                 }
1500                 /* Fall Through */
1501         default:
1502                 hw->mac.autoneg = 1;
1503                 if (hw->phy.type == e1000_phy_gg82563)
1504                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1505                 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1506                 if (phy_reg & MII_CR_LOOPBACK) {
1507                         phy_reg &= ~MII_CR_LOOPBACK;
1508                         e1e_wphy(hw, PHY_CONTROL, phy_reg);
1509                         e1000e_commit_phy(hw);
1510                 }
1511                 break;
1512         }
1513 }
1514
1515 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1516                                       unsigned int frame_size)
1517 {
1518         memset(skb->data, 0xFF, frame_size);
1519         frame_size &= ~1;
1520         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1521         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1522         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1523 }
1524
1525 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1526                                     unsigned int frame_size)
1527 {
1528         frame_size &= ~1;
1529         if (*(skb->data + 3) == 0xFF)
1530                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1531                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1532                         return 0;
1533         return 13;
1534 }
1535
1536 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1537 {
1538         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1539         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1540         struct pci_dev *pdev = adapter->pdev;
1541         struct e1000_hw *hw = &adapter->hw;
1542         int i, j, k, l;
1543         int lc;
1544         int good_cnt;
1545         int ret_val = 0;
1546         unsigned long time;
1547
1548         ew32(RDT(0), rx_ring->count - 1);
1549
1550         /*
1551          * Calculate the loop count based on the largest descriptor ring
1552          * The idea is to wrap the largest ring a number of times using 64
1553          * send/receive pairs during each loop
1554          */
1555
1556         if (rx_ring->count <= tx_ring->count)
1557                 lc = ((tx_ring->count / 64) * 2) + 1;
1558         else
1559                 lc = ((rx_ring->count / 64) * 2) + 1;
1560
1561         k = 0;
1562         l = 0;
1563         for (j = 0; j <= lc; j++) { /* loop count loop */
1564                 for (i = 0; i < 64; i++) { /* send the packets */
1565                         e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1566                                                   1024);
1567                         dma_sync_single_for_device(&pdev->dev,
1568                                         tx_ring->buffer_info[k].dma,
1569                                         tx_ring->buffer_info[k].length,
1570                                         DMA_TO_DEVICE);
1571                         k++;
1572                         if (k == tx_ring->count)
1573                                 k = 0;
1574                 }
1575                 ew32(TDT(0), k);
1576                 e1e_flush();
1577                 msleep(200);
1578                 time = jiffies; /* set the start time for the receive */
1579                 good_cnt = 0;
1580                 do { /* receive the sent packets */
1581                         dma_sync_single_for_cpu(&pdev->dev,
1582                                         rx_ring->buffer_info[l].dma, 2048,
1583                                         DMA_FROM_DEVICE);
1584
1585                         ret_val = e1000_check_lbtest_frame(
1586                                         rx_ring->buffer_info[l].skb, 1024);
1587                         if (!ret_val)
1588                                 good_cnt++;
1589                         l++;
1590                         if (l == rx_ring->count)
1591                                 l = 0;
1592                         /*
1593                          * time + 20 msecs (200 msecs on 2.4) is more than
1594                          * enough time to complete the receives, if it's
1595                          * exceeded, break and error off
1596                          */
1597                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1598                 if (good_cnt != 64) {
1599                         ret_val = 13; /* ret_val is the same as mis-compare */
1600                         break;
1601                 }
1602                 if (jiffies >= (time + 20)) {
1603                         ret_val = 14; /* error code for time out error */
1604                         break;
1605                 }
1606         } /* end loop count loop */
1607         return ret_val;
1608 }
1609
1610 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1611 {
1612         struct e1000_hw *hw = &adapter->hw;
1613
1614         /*
1615          * PHY loopback cannot be performed if SoL/IDER
1616          * sessions are active
1617          */
1618         if (hw->phy.ops.check_reset_block(hw)) {
1619                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1620                 *data = 0;
1621                 goto out;
1622         }
1623
1624         *data = e1000_setup_desc_rings(adapter);
1625         if (*data)
1626                 goto out;
1627
1628         *data = e1000_setup_loopback_test(adapter);
1629         if (*data)
1630                 goto err_loopback;
1631
1632         *data = e1000_run_loopback_test(adapter);
1633         e1000_loopback_cleanup(adapter);
1634
1635 err_loopback:
1636         e1000_free_desc_rings(adapter);
1637 out:
1638         return *data;
1639 }
1640
1641 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1642 {
1643         struct e1000_hw *hw = &adapter->hw;
1644
1645         *data = 0;
1646         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1647                 int i = 0;
1648                 hw->mac.serdes_has_link = false;
1649
1650                 /*
1651                  * On some blade server designs, link establishment
1652                  * could take as long as 2-3 minutes
1653                  */
1654                 do {
1655                         hw->mac.ops.check_for_link(hw);
1656                         if (hw->mac.serdes_has_link)
1657                                 return *data;
1658                         msleep(20);
1659                 } while (i++ < 3750);
1660
1661                 *data = 1;
1662         } else {
1663                 hw->mac.ops.check_for_link(hw);
1664                 if (hw->mac.autoneg)
1665                         /*
1666                          * On some Phy/switch combinations, link establishment
1667                          * can take a few seconds more than expected.
1668                          */
1669                         msleep(5000);
1670
1671                 if (!(er32(STATUS) & E1000_STATUS_LU))
1672                         *data = 1;
1673         }
1674         return *data;
1675 }
1676
1677 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1678 {
1679         switch (sset) {
1680         case ETH_SS_TEST:
1681                 return E1000_TEST_LEN;
1682         case ETH_SS_STATS:
1683                 return E1000_STATS_LEN;
1684         default:
1685                 return -EOPNOTSUPP;
1686         }
1687 }
1688
1689 static void e1000_diag_test(struct net_device *netdev,
1690                             struct ethtool_test *eth_test, u64 *data)
1691 {
1692         struct e1000_adapter *adapter = netdev_priv(netdev);
1693         u16 autoneg_advertised;
1694         u8 forced_speed_duplex;
1695         u8 autoneg;
1696         bool if_running = netif_running(netdev);
1697
1698         set_bit(__E1000_TESTING, &adapter->state);
1699
1700         if (!if_running) {
1701                 /* Get control of and reset hardware */
1702                 if (adapter->flags & FLAG_HAS_AMT)
1703                         e1000e_get_hw_control(adapter);
1704
1705                 e1000e_power_up_phy(adapter);
1706
1707                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1708                 e1000e_reset(adapter);
1709                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1710         }
1711
1712         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1713                 /* Offline tests */
1714
1715                 /* save speed, duplex, autoneg settings */
1716                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1717                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1718                 autoneg = adapter->hw.mac.autoneg;
1719
1720                 e_info("offline testing starting\n");
1721
1722                 if (if_running)
1723                         /* indicate we're in test mode */
1724                         dev_close(netdev);
1725
1726                 if (e1000_reg_test(adapter, &data[0]))
1727                         eth_test->flags |= ETH_TEST_FL_FAILED;
1728
1729                 e1000e_reset(adapter);
1730                 if (e1000_eeprom_test(adapter, &data[1]))
1731                         eth_test->flags |= ETH_TEST_FL_FAILED;
1732
1733                 e1000e_reset(adapter);
1734                 if (e1000_intr_test(adapter, &data[2]))
1735                         eth_test->flags |= ETH_TEST_FL_FAILED;
1736
1737                 e1000e_reset(adapter);
1738                 if (e1000_loopback_test(adapter, &data[3]))
1739                         eth_test->flags |= ETH_TEST_FL_FAILED;
1740
1741                 /* force this routine to wait until autoneg complete/timeout */
1742                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1743                 e1000e_reset(adapter);
1744                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1745
1746                 if (e1000_link_test(adapter, &data[4]))
1747                         eth_test->flags |= ETH_TEST_FL_FAILED;
1748
1749                 /* restore speed, duplex, autoneg settings */
1750                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1751                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1752                 adapter->hw.mac.autoneg = autoneg;
1753                 e1000e_reset(adapter);
1754
1755                 clear_bit(__E1000_TESTING, &adapter->state);
1756                 if (if_running)
1757                         dev_open(netdev);
1758         } else {
1759                 /* Online tests */
1760
1761                 e_info("online testing starting\n");
1762
1763                 /* register, eeprom, intr and loopback tests not run online */
1764                 data[0] = 0;
1765                 data[1] = 0;
1766                 data[2] = 0;
1767                 data[3] = 0;
1768
1769                 if (e1000_link_test(adapter, &data[4]))
1770                         eth_test->flags |= ETH_TEST_FL_FAILED;
1771
1772                 clear_bit(__E1000_TESTING, &adapter->state);
1773         }
1774
1775         if (!if_running) {
1776                 e1000e_reset(adapter);
1777
1778                 if (adapter->flags & FLAG_HAS_AMT)
1779                         e1000e_release_hw_control(adapter);
1780         }
1781
1782         msleep_interruptible(4 * 1000);
1783 }
1784
1785 static void e1000_get_wol(struct net_device *netdev,
1786                           struct ethtool_wolinfo *wol)
1787 {
1788         struct e1000_adapter *adapter = netdev_priv(netdev);
1789
1790         wol->supported = 0;
1791         wol->wolopts = 0;
1792
1793         if (!(adapter->flags & FLAG_HAS_WOL) ||
1794             !device_can_wakeup(&adapter->pdev->dev))
1795                 return;
1796
1797         wol->supported = WAKE_UCAST | WAKE_MCAST |
1798             WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1799
1800         /* apply any specific unsupported masks here */
1801         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1802                 wol->supported &= ~WAKE_UCAST;
1803
1804                 if (adapter->wol & E1000_WUFC_EX)
1805                         e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1806         }
1807
1808         if (adapter->wol & E1000_WUFC_EX)
1809                 wol->wolopts |= WAKE_UCAST;
1810         if (adapter->wol & E1000_WUFC_MC)
1811                 wol->wolopts |= WAKE_MCAST;
1812         if (adapter->wol & E1000_WUFC_BC)
1813                 wol->wolopts |= WAKE_BCAST;
1814         if (adapter->wol & E1000_WUFC_MAG)
1815                 wol->wolopts |= WAKE_MAGIC;
1816         if (adapter->wol & E1000_WUFC_LNKC)
1817                 wol->wolopts |= WAKE_PHY;
1818 }
1819
1820 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1821 {
1822         struct e1000_adapter *adapter = netdev_priv(netdev);
1823
1824         if (!(adapter->flags & FLAG_HAS_WOL) ||
1825             !device_can_wakeup(&adapter->pdev->dev) ||
1826             (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1827                               WAKE_MAGIC | WAKE_PHY)))
1828                 return -EOPNOTSUPP;
1829
1830         /* these settings will always override what we currently have */
1831         adapter->wol = 0;
1832
1833         if (wol->wolopts & WAKE_UCAST)
1834                 adapter->wol |= E1000_WUFC_EX;
1835         if (wol->wolopts & WAKE_MCAST)
1836                 adapter->wol |= E1000_WUFC_MC;
1837         if (wol->wolopts & WAKE_BCAST)
1838                 adapter->wol |= E1000_WUFC_BC;
1839         if (wol->wolopts & WAKE_MAGIC)
1840                 adapter->wol |= E1000_WUFC_MAG;
1841         if (wol->wolopts & WAKE_PHY)
1842                 adapter->wol |= E1000_WUFC_LNKC;
1843
1844         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1845
1846         return 0;
1847 }
1848
1849 static int e1000_set_phys_id(struct net_device *netdev,
1850                              enum ethtool_phys_id_state state)
1851 {
1852         struct e1000_adapter *adapter = netdev_priv(netdev);
1853         struct e1000_hw *hw = &adapter->hw;
1854
1855         switch (state) {
1856         case ETHTOOL_ID_ACTIVE:
1857                 if (!hw->mac.ops.blink_led)
1858                         return 2;       /* cycle on/off twice per second */
1859
1860                 hw->mac.ops.blink_led(hw);
1861                 break;
1862
1863         case ETHTOOL_ID_INACTIVE:
1864                 if (hw->phy.type == e1000_phy_ife)
1865                         e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1866                 hw->mac.ops.led_off(hw);
1867                 hw->mac.ops.cleanup_led(hw);
1868                 break;
1869
1870         case ETHTOOL_ID_ON:
1871                 hw->mac.ops.led_on(hw);
1872                 break;
1873
1874         case ETHTOOL_ID_OFF:
1875                 hw->mac.ops.led_off(hw);
1876                 break;
1877         }
1878         return 0;
1879 }
1880
1881 static int e1000_get_coalesce(struct net_device *netdev,
1882                               struct ethtool_coalesce *ec)
1883 {
1884         struct e1000_adapter *adapter = netdev_priv(netdev);
1885
1886         if (adapter->itr_setting <= 4)
1887                 ec->rx_coalesce_usecs = adapter->itr_setting;
1888         else
1889                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1890
1891         return 0;
1892 }
1893
1894 static int e1000_set_coalesce(struct net_device *netdev,
1895                               struct ethtool_coalesce *ec)
1896 {
1897         struct e1000_adapter *adapter = netdev_priv(netdev);
1898         struct e1000_hw *hw = &adapter->hw;
1899
1900         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1901             ((ec->rx_coalesce_usecs > 4) &&
1902              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1903             (ec->rx_coalesce_usecs == 2))
1904                 return -EINVAL;
1905
1906         if (ec->rx_coalesce_usecs == 4) {
1907                 adapter->itr = adapter->itr_setting = 4;
1908         } else if (ec->rx_coalesce_usecs <= 3) {
1909                 adapter->itr = 20000;
1910                 adapter->itr_setting = ec->rx_coalesce_usecs;
1911         } else {
1912                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1913                 adapter->itr_setting = adapter->itr & ~3;
1914         }
1915
1916         if (adapter->itr_setting != 0)
1917                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1918         else
1919                 ew32(ITR, 0);
1920
1921         return 0;
1922 }
1923
1924 static int e1000_nway_reset(struct net_device *netdev)
1925 {
1926         struct e1000_adapter *adapter = netdev_priv(netdev);
1927
1928         if (!netif_running(netdev))
1929                 return -EAGAIN;
1930
1931         if (!adapter->hw.mac.autoneg)
1932                 return -EINVAL;
1933
1934         e1000e_reinit_locked(adapter);
1935
1936         return 0;
1937 }
1938
1939 static void e1000_get_ethtool_stats(struct net_device *netdev,
1940                                     struct ethtool_stats *stats,
1941                                     u64 *data)
1942 {
1943         struct e1000_adapter *adapter = netdev_priv(netdev);
1944         struct rtnl_link_stats64 net_stats;
1945         int i;
1946         char *p = NULL;
1947
1948         e1000e_get_stats64(netdev, &net_stats);
1949         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1950                 switch (e1000_gstrings_stats[i].type) {
1951                 case NETDEV_STATS:
1952                         p = (char *) &net_stats +
1953                                         e1000_gstrings_stats[i].stat_offset;
1954                         break;
1955                 case E1000_STATS:
1956                         p = (char *) adapter +
1957                                         e1000_gstrings_stats[i].stat_offset;
1958                         break;
1959                 default:
1960                         data[i] = 0;
1961                         continue;
1962                 }
1963
1964                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1965                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1966         }
1967 }
1968
1969 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1970                               u8 *data)
1971 {
1972         u8 *p = data;
1973         int i;
1974
1975         switch (stringset) {
1976         case ETH_SS_TEST:
1977                 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1978                 break;
1979         case ETH_SS_STATS:
1980                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1981                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1982                                ETH_GSTRING_LEN);
1983                         p += ETH_GSTRING_LEN;
1984                 }
1985                 break;
1986         }
1987 }
1988
1989 static int e1000_get_rxnfc(struct net_device *netdev,
1990                            struct ethtool_rxnfc *info, u32 *rule_locs)
1991 {
1992         info->data = 0;
1993
1994         switch (info->cmd) {
1995         case ETHTOOL_GRXFH: {
1996                 struct e1000_adapter *adapter = netdev_priv(netdev);
1997                 struct e1000_hw *hw = &adapter->hw;
1998                 u32 mrqc = er32(MRQC);
1999
2000                 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2001                         return 0;
2002
2003                 switch (info->flow_type) {
2004                 case TCP_V4_FLOW:
2005                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2006                                 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2007                         /* fall through */
2008                 case UDP_V4_FLOW:
2009                 case SCTP_V4_FLOW:
2010                 case AH_ESP_V4_FLOW:
2011                 case IPV4_FLOW:
2012                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2013                                 info->data |= RXH_IP_SRC | RXH_IP_DST;
2014                         break;
2015                 case TCP_V6_FLOW:
2016                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2017                                 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2018                         /* fall through */
2019                 case UDP_V6_FLOW:
2020                 case SCTP_V6_FLOW:
2021                 case AH_ESP_V6_FLOW:
2022                 case IPV6_FLOW:
2023                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2024                                 info->data |= RXH_IP_SRC | RXH_IP_DST;
2025                         break;
2026                 default:
2027                         break;
2028                 }
2029                 return 0;
2030         }
2031         default:
2032                 return -EOPNOTSUPP;
2033         }
2034 }
2035
2036 static const struct ethtool_ops e1000_ethtool_ops = {
2037         .get_settings           = e1000_get_settings,
2038         .set_settings           = e1000_set_settings,
2039         .get_drvinfo            = e1000_get_drvinfo,
2040         .get_regs_len           = e1000_get_regs_len,
2041         .get_regs               = e1000_get_regs,
2042         .get_wol                = e1000_get_wol,
2043         .set_wol                = e1000_set_wol,
2044         .get_msglevel           = e1000_get_msglevel,
2045         .set_msglevel           = e1000_set_msglevel,
2046         .nway_reset             = e1000_nway_reset,
2047         .get_link               = ethtool_op_get_link,
2048         .get_eeprom_len         = e1000_get_eeprom_len,
2049         .get_eeprom             = e1000_get_eeprom,
2050         .set_eeprom             = e1000_set_eeprom,
2051         .get_ringparam          = e1000_get_ringparam,
2052         .set_ringparam          = e1000_set_ringparam,
2053         .get_pauseparam         = e1000_get_pauseparam,
2054         .set_pauseparam         = e1000_set_pauseparam,
2055         .self_test              = e1000_diag_test,
2056         .get_strings            = e1000_get_strings,
2057         .set_phys_id            = e1000_set_phys_id,
2058         .get_ethtool_stats      = e1000_get_ethtool_stats,
2059         .get_sset_count         = e1000e_get_sset_count,
2060         .get_coalesce           = e1000_get_coalesce,
2061         .set_coalesce           = e1000_set_coalesce,
2062         .get_rxnfc              = e1000_get_rxnfc,
2063 };
2064
2065 void e1000e_set_ethtool_ops(struct net_device *netdev)
2066 {
2067         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2068 }