]> Pileus Git - ~andy/linux/blob - drivers/net/ethernet/intel/e1000e/ethtool.c
Merge branch 'x86-reboot-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[~andy/linux] / drivers / net / ethernet / intel / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/ethtool.h>
34 #include <linux/pci.h>
35 #include <linux/slab.h>
36 #include <linux/delay.h>
37 #include <linux/vmalloc.h>
38
39 #include "e1000.h"
40
41 enum {NETDEV_STATS, E1000_STATS};
42
43 struct e1000_stats {
44         char stat_string[ETH_GSTRING_LEN];
45         int type;
46         int sizeof_stat;
47         int stat_offset;
48 };
49
50 #define E1000_STAT(str, m) { \
51                 .stat_string = str, \
52                 .type = E1000_STATS, \
53                 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
54                 .stat_offset = offsetof(struct e1000_adapter, m) }
55 #define E1000_NETDEV_STAT(str, m) { \
56                 .stat_string = str, \
57                 .type = NETDEV_STATS, \
58                 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
59                 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
60
61 static const struct e1000_stats e1000_gstrings_stats[] = {
62         E1000_STAT("rx_packets", stats.gprc),
63         E1000_STAT("tx_packets", stats.gptc),
64         E1000_STAT("rx_bytes", stats.gorc),
65         E1000_STAT("tx_bytes", stats.gotc),
66         E1000_STAT("rx_broadcast", stats.bprc),
67         E1000_STAT("tx_broadcast", stats.bptc),
68         E1000_STAT("rx_multicast", stats.mprc),
69         E1000_STAT("tx_multicast", stats.mptc),
70         E1000_NETDEV_STAT("rx_errors", rx_errors),
71         E1000_NETDEV_STAT("tx_errors", tx_errors),
72         E1000_NETDEV_STAT("tx_dropped", tx_dropped),
73         E1000_STAT("multicast", stats.mprc),
74         E1000_STAT("collisions", stats.colc),
75         E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
76         E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
77         E1000_STAT("rx_crc_errors", stats.crcerrs),
78         E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
79         E1000_STAT("rx_no_buffer_count", stats.rnbc),
80         E1000_STAT("rx_missed_errors", stats.mpc),
81         E1000_STAT("tx_aborted_errors", stats.ecol),
82         E1000_STAT("tx_carrier_errors", stats.tncrs),
83         E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
84         E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
85         E1000_STAT("tx_window_errors", stats.latecol),
86         E1000_STAT("tx_abort_late_coll", stats.latecol),
87         E1000_STAT("tx_deferred_ok", stats.dc),
88         E1000_STAT("tx_single_coll_ok", stats.scc),
89         E1000_STAT("tx_multi_coll_ok", stats.mcc),
90         E1000_STAT("tx_timeout_count", tx_timeout_count),
91         E1000_STAT("tx_restart_queue", restart_queue),
92         E1000_STAT("rx_long_length_errors", stats.roc),
93         E1000_STAT("rx_short_length_errors", stats.ruc),
94         E1000_STAT("rx_align_errors", stats.algnerrc),
95         E1000_STAT("tx_tcp_seg_good", stats.tsctc),
96         E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
97         E1000_STAT("rx_flow_control_xon", stats.xonrxc),
98         E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
99         E1000_STAT("tx_flow_control_xon", stats.xontxc),
100         E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
101         E1000_STAT("rx_long_byte_count", stats.gorc),
102         E1000_STAT("rx_csum_offload_good", hw_csum_good),
103         E1000_STAT("rx_csum_offload_errors", hw_csum_err),
104         E1000_STAT("rx_header_split", rx_hdr_split),
105         E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
106         E1000_STAT("tx_smbus", stats.mgptc),
107         E1000_STAT("rx_smbus", stats.mgprc),
108         E1000_STAT("dropped_smbus", stats.mgpdc),
109         E1000_STAT("rx_dma_failed", rx_dma_failed),
110         E1000_STAT("tx_dma_failed", tx_dma_failed),
111 };
112
113 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
114 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
115 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
116         "Register test  (offline)", "Eeprom test    (offline)",
117         "Interrupt test (offline)", "Loopback test  (offline)",
118         "Link test   (on/offline)"
119 };
120 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
121
122 static int e1000_get_settings(struct net_device *netdev,
123                               struct ethtool_cmd *ecmd)
124 {
125         struct e1000_adapter *adapter = netdev_priv(netdev);
126         struct e1000_hw *hw = &adapter->hw;
127         u32 speed;
128
129         if (hw->phy.media_type == e1000_media_type_copper) {
130
131                 ecmd->supported = (SUPPORTED_10baseT_Half |
132                                    SUPPORTED_10baseT_Full |
133                                    SUPPORTED_100baseT_Half |
134                                    SUPPORTED_100baseT_Full |
135                                    SUPPORTED_1000baseT_Full |
136                                    SUPPORTED_Autoneg |
137                                    SUPPORTED_TP);
138                 if (hw->phy.type == e1000_phy_ife)
139                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
140                 ecmd->advertising = ADVERTISED_TP;
141
142                 if (hw->mac.autoneg == 1) {
143                         ecmd->advertising |= ADVERTISED_Autoneg;
144                         /* the e1000 autoneg seems to match ethtool nicely */
145                         ecmd->advertising |= hw->phy.autoneg_advertised;
146                 }
147
148                 ecmd->port = PORT_TP;
149                 ecmd->phy_address = hw->phy.addr;
150                 ecmd->transceiver = XCVR_INTERNAL;
151
152         } else {
153                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
154                                      SUPPORTED_FIBRE |
155                                      SUPPORTED_Autoneg);
156
157                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
158                                      ADVERTISED_FIBRE |
159                                      ADVERTISED_Autoneg);
160
161                 ecmd->port = PORT_FIBRE;
162                 ecmd->transceiver = XCVR_EXTERNAL;
163         }
164
165         speed = -1;
166         ecmd->duplex = -1;
167
168         if (netif_running(netdev)) {
169                 if (netif_carrier_ok(netdev)) {
170                         speed = adapter->link_speed;
171                         ecmd->duplex = adapter->link_duplex - 1;
172                 }
173         } else {
174                 u32 status = er32(STATUS);
175                 if (status & E1000_STATUS_LU) {
176                         if (status & E1000_STATUS_SPEED_1000)
177                                 speed = SPEED_1000;
178                         else if (status & E1000_STATUS_SPEED_100)
179                                 speed = SPEED_100;
180                         else
181                                 speed = SPEED_10;
182
183                         if (status & E1000_STATUS_FD)
184                                 ecmd->duplex = DUPLEX_FULL;
185                         else
186                                 ecmd->duplex = DUPLEX_HALF;
187                 }
188         }
189
190         ethtool_cmd_speed_set(ecmd, speed);
191         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
192                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
193
194         /* MDI-X => 2; MDI =>1; Invalid =>0 */
195         if ((hw->phy.media_type == e1000_media_type_copper) &&
196             netif_carrier_ok(netdev))
197                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
198                                                       ETH_TP_MDI;
199         else
200                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
201
202         return 0;
203 }
204
205 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
206 {
207         struct e1000_mac_info *mac = &adapter->hw.mac;
208
209         mac->autoneg = 0;
210
211         /* Make sure dplx is at most 1 bit and lsb of speed is not set
212          * for the switch() below to work */
213         if ((spd & 1) || (dplx & ~1))
214                 goto err_inval;
215
216         /* Fiber NICs only allow 1000 gbps Full duplex */
217         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
218             spd != SPEED_1000 &&
219             dplx != DUPLEX_FULL) {
220                 goto err_inval;
221         }
222
223         switch (spd + dplx) {
224         case SPEED_10 + DUPLEX_HALF:
225                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
226                 break;
227         case SPEED_10 + DUPLEX_FULL:
228                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
229                 break;
230         case SPEED_100 + DUPLEX_HALF:
231                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
232                 break;
233         case SPEED_100 + DUPLEX_FULL:
234                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
235                 break;
236         case SPEED_1000 + DUPLEX_FULL:
237                 mac->autoneg = 1;
238                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
239                 break;
240         case SPEED_1000 + DUPLEX_HALF: /* not supported */
241         default:
242                 goto err_inval;
243         }
244         return 0;
245
246 err_inval:
247         e_err("Unsupported Speed/Duplex configuration\n");
248         return -EINVAL;
249 }
250
251 static int e1000_set_settings(struct net_device *netdev,
252                               struct ethtool_cmd *ecmd)
253 {
254         struct e1000_adapter *adapter = netdev_priv(netdev);
255         struct e1000_hw *hw = &adapter->hw;
256
257         /*
258          * When SoL/IDER sessions are active, autoneg/speed/duplex
259          * cannot be changed
260          */
261         if (hw->phy.ops.check_reset_block &&
262             hw->phy.ops.check_reset_block(hw)) {
263                 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
264                 return -EINVAL;
265         }
266
267         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
268                 usleep_range(1000, 2000);
269
270         if (ecmd->autoneg == AUTONEG_ENABLE) {
271                 hw->mac.autoneg = 1;
272                 if (hw->phy.media_type == e1000_media_type_fiber)
273                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
274                                                      ADVERTISED_FIBRE |
275                                                      ADVERTISED_Autoneg;
276                 else
277                         hw->phy.autoneg_advertised = ecmd->advertising |
278                                                      ADVERTISED_TP |
279                                                      ADVERTISED_Autoneg;
280                 ecmd->advertising = hw->phy.autoneg_advertised;
281                 if (adapter->fc_autoneg)
282                         hw->fc.requested_mode = e1000_fc_default;
283         } else {
284                 u32 speed = ethtool_cmd_speed(ecmd);
285                 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
286                         clear_bit(__E1000_RESETTING, &adapter->state);
287                         return -EINVAL;
288                 }
289         }
290
291         /* reset the link */
292
293         if (netif_running(adapter->netdev)) {
294                 e1000e_down(adapter);
295                 e1000e_up(adapter);
296         } else {
297                 e1000e_reset(adapter);
298         }
299
300         clear_bit(__E1000_RESETTING, &adapter->state);
301         return 0;
302 }
303
304 static void e1000_get_pauseparam(struct net_device *netdev,
305                                  struct ethtool_pauseparam *pause)
306 {
307         struct e1000_adapter *adapter = netdev_priv(netdev);
308         struct e1000_hw *hw = &adapter->hw;
309
310         pause->autoneg =
311                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
312
313         if (hw->fc.current_mode == e1000_fc_rx_pause) {
314                 pause->rx_pause = 1;
315         } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
316                 pause->tx_pause = 1;
317         } else if (hw->fc.current_mode == e1000_fc_full) {
318                 pause->rx_pause = 1;
319                 pause->tx_pause = 1;
320         }
321 }
322
323 static int e1000_set_pauseparam(struct net_device *netdev,
324                                 struct ethtool_pauseparam *pause)
325 {
326         struct e1000_adapter *adapter = netdev_priv(netdev);
327         struct e1000_hw *hw = &adapter->hw;
328         int retval = 0;
329
330         adapter->fc_autoneg = pause->autoneg;
331
332         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
333                 usleep_range(1000, 2000);
334
335         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
336                 hw->fc.requested_mode = e1000_fc_default;
337                 if (netif_running(adapter->netdev)) {
338                         e1000e_down(adapter);
339                         e1000e_up(adapter);
340                 } else {
341                         e1000e_reset(adapter);
342                 }
343         } else {
344                 if (pause->rx_pause && pause->tx_pause)
345                         hw->fc.requested_mode = e1000_fc_full;
346                 else if (pause->rx_pause && !pause->tx_pause)
347                         hw->fc.requested_mode = e1000_fc_rx_pause;
348                 else if (!pause->rx_pause && pause->tx_pause)
349                         hw->fc.requested_mode = e1000_fc_tx_pause;
350                 else if (!pause->rx_pause && !pause->tx_pause)
351                         hw->fc.requested_mode = e1000_fc_none;
352
353                 hw->fc.current_mode = hw->fc.requested_mode;
354
355                 if (hw->phy.media_type == e1000_media_type_fiber) {
356                         retval = hw->mac.ops.setup_link(hw);
357                         /* implicit goto out */
358                 } else {
359                         retval = e1000e_force_mac_fc(hw);
360                         if (retval)
361                                 goto out;
362                         e1000e_set_fc_watermarks(hw);
363                 }
364         }
365
366 out:
367         clear_bit(__E1000_RESETTING, &adapter->state);
368         return retval;
369 }
370
371 static u32 e1000_get_msglevel(struct net_device *netdev)
372 {
373         struct e1000_adapter *adapter = netdev_priv(netdev);
374         return adapter->msg_enable;
375 }
376
377 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
378 {
379         struct e1000_adapter *adapter = netdev_priv(netdev);
380         adapter->msg_enable = data;
381 }
382
383 static int e1000_get_regs_len(struct net_device *netdev)
384 {
385 #define E1000_REGS_LEN 32 /* overestimate */
386         return E1000_REGS_LEN * sizeof(u32);
387 }
388
389 static void e1000_get_regs(struct net_device *netdev,
390                            struct ethtool_regs *regs, void *p)
391 {
392         struct e1000_adapter *adapter = netdev_priv(netdev);
393         struct e1000_hw *hw = &adapter->hw;
394         u32 *regs_buff = p;
395         u16 phy_data;
396
397         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
398
399         regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
400                         adapter->pdev->device;
401
402         regs_buff[0]  = er32(CTRL);
403         regs_buff[1]  = er32(STATUS);
404
405         regs_buff[2]  = er32(RCTL);
406         regs_buff[3]  = er32(RDLEN(0));
407         regs_buff[4]  = er32(RDH(0));
408         regs_buff[5]  = er32(RDT(0));
409         regs_buff[6]  = er32(RDTR);
410
411         regs_buff[7]  = er32(TCTL);
412         regs_buff[8]  = er32(TDLEN(0));
413         regs_buff[9]  = er32(TDH(0));
414         regs_buff[10] = er32(TDT(0));
415         regs_buff[11] = er32(TIDV);
416
417         regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
418
419         /* ethtool doesn't use anything past this point, so all this
420          * code is likely legacy junk for apps that may or may not
421          * exist */
422         if (hw->phy.type == e1000_phy_m88) {
423                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
424                 regs_buff[13] = (u32)phy_data; /* cable length */
425                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
426                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
427                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
428                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
429                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
430                 regs_buff[18] = regs_buff[13]; /* cable polarity */
431                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
432                 regs_buff[20] = regs_buff[17]; /* polarity correction */
433                 /* phy receive errors */
434                 regs_buff[22] = adapter->phy_stats.receive_errors;
435                 regs_buff[23] = regs_buff[13]; /* mdix mode */
436         }
437         regs_buff[21] = 0; /* was idle_errors */
438         e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
439         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
440         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
441 }
442
443 static int e1000_get_eeprom_len(struct net_device *netdev)
444 {
445         struct e1000_adapter *adapter = netdev_priv(netdev);
446         return adapter->hw.nvm.word_size * 2;
447 }
448
449 static int e1000_get_eeprom(struct net_device *netdev,
450                             struct ethtool_eeprom *eeprom, u8 *bytes)
451 {
452         struct e1000_adapter *adapter = netdev_priv(netdev);
453         struct e1000_hw *hw = &adapter->hw;
454         u16 *eeprom_buff;
455         int first_word;
456         int last_word;
457         int ret_val = 0;
458         u16 i;
459
460         if (eeprom->len == 0)
461                 return -EINVAL;
462
463         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
464
465         first_word = eeprom->offset >> 1;
466         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
467
468         eeprom_buff = kmalloc(sizeof(u16) *
469                         (last_word - first_word + 1), GFP_KERNEL);
470         if (!eeprom_buff)
471                 return -ENOMEM;
472
473         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
474                 ret_val = e1000_read_nvm(hw, first_word,
475                                          last_word - first_word + 1,
476                                          eeprom_buff);
477         } else {
478                 for (i = 0; i < last_word - first_word + 1; i++) {
479                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
480                                                       &eeprom_buff[i]);
481                         if (ret_val)
482                                 break;
483                 }
484         }
485
486         if (ret_val) {
487                 /* a read error occurred, throw away the result */
488                 memset(eeprom_buff, 0xff, sizeof(u16) *
489                        (last_word - first_word + 1));
490         } else {
491                 /* Device's eeprom is always little-endian, word addressable */
492                 for (i = 0; i < last_word - first_word + 1; i++)
493                         le16_to_cpus(&eeprom_buff[i]);
494         }
495
496         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
497         kfree(eeprom_buff);
498
499         return ret_val;
500 }
501
502 static int e1000_set_eeprom(struct net_device *netdev,
503                             struct ethtool_eeprom *eeprom, u8 *bytes)
504 {
505         struct e1000_adapter *adapter = netdev_priv(netdev);
506         struct e1000_hw *hw = &adapter->hw;
507         u16 *eeprom_buff;
508         void *ptr;
509         int max_len;
510         int first_word;
511         int last_word;
512         int ret_val = 0;
513         u16 i;
514
515         if (eeprom->len == 0)
516                 return -EOPNOTSUPP;
517
518         if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
519                 return -EFAULT;
520
521         if (adapter->flags & FLAG_READ_ONLY_NVM)
522                 return -EINVAL;
523
524         max_len = hw->nvm.word_size * 2;
525
526         first_word = eeprom->offset >> 1;
527         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
528         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
529         if (!eeprom_buff)
530                 return -ENOMEM;
531
532         ptr = (void *)eeprom_buff;
533
534         if (eeprom->offset & 1) {
535                 /* need read/modify/write of first changed EEPROM word */
536                 /* only the second byte of the word is being modified */
537                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
538                 ptr++;
539         }
540         if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
541                 /* need read/modify/write of last changed EEPROM word */
542                 /* only the first byte of the word is being modified */
543                 ret_val = e1000_read_nvm(hw, last_word, 1,
544                                   &eeprom_buff[last_word - first_word]);
545
546         if (ret_val)
547                 goto out;
548
549         /* Device's eeprom is always little-endian, word addressable */
550         for (i = 0; i < last_word - first_word + 1; i++)
551                 le16_to_cpus(&eeprom_buff[i]);
552
553         memcpy(ptr, bytes, eeprom->len);
554
555         for (i = 0; i < last_word - first_word + 1; i++)
556                 cpu_to_le16s(&eeprom_buff[i]);
557
558         ret_val = e1000_write_nvm(hw, first_word,
559                                   last_word - first_word + 1, eeprom_buff);
560
561         if (ret_val)
562                 goto out;
563
564         /*
565          * Update the checksum over the first part of the EEPROM if needed
566          * and flush shadow RAM for applicable controllers
567          */
568         if ((first_word <= NVM_CHECKSUM_REG) ||
569             (hw->mac.type == e1000_82583) ||
570             (hw->mac.type == e1000_82574) ||
571             (hw->mac.type == e1000_82573))
572                 ret_val = e1000e_update_nvm_checksum(hw);
573
574 out:
575         kfree(eeprom_buff);
576         return ret_val;
577 }
578
579 static void e1000_get_drvinfo(struct net_device *netdev,
580                               struct ethtool_drvinfo *drvinfo)
581 {
582         struct e1000_adapter *adapter = netdev_priv(netdev);
583
584         strlcpy(drvinfo->driver,  e1000e_driver_name,
585                 sizeof(drvinfo->driver));
586         strlcpy(drvinfo->version, e1000e_driver_version,
587                 sizeof(drvinfo->version));
588
589         /*
590          * EEPROM image version # is reported as firmware version # for
591          * PCI-E controllers
592          */
593         snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
594                 "%d.%d-%d",
595                 (adapter->eeprom_vers & 0xF000) >> 12,
596                 (adapter->eeprom_vers & 0x0FF0) >> 4,
597                 (adapter->eeprom_vers & 0x000F));
598
599         strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
600                 sizeof(drvinfo->bus_info));
601         drvinfo->regdump_len = e1000_get_regs_len(netdev);
602         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
603 }
604
605 static void e1000_get_ringparam(struct net_device *netdev,
606                                 struct ethtool_ringparam *ring)
607 {
608         struct e1000_adapter *adapter = netdev_priv(netdev);
609
610         ring->rx_max_pending = E1000_MAX_RXD;
611         ring->tx_max_pending = E1000_MAX_TXD;
612         ring->rx_pending = adapter->rx_ring_count;
613         ring->tx_pending = adapter->tx_ring_count;
614 }
615
616 static int e1000_set_ringparam(struct net_device *netdev,
617                                struct ethtool_ringparam *ring)
618 {
619         struct e1000_adapter *adapter = netdev_priv(netdev);
620         struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
621         int err = 0, size = sizeof(struct e1000_ring);
622         bool set_tx = false, set_rx = false;
623         u16 new_rx_count, new_tx_count;
624
625         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
626                 return -EINVAL;
627
628         new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
629                                E1000_MAX_RXD);
630         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
631
632         new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
633                                E1000_MAX_TXD);
634         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
635
636         if ((new_tx_count == adapter->tx_ring_count) &&
637             (new_rx_count == adapter->rx_ring_count))
638                 /* nothing to do */
639                 return 0;
640
641         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
642                 usleep_range(1000, 2000);
643
644         if (!netif_running(adapter->netdev)) {
645                 /* Set counts now and allocate resources during open() */
646                 adapter->tx_ring->count = new_tx_count;
647                 adapter->rx_ring->count = new_rx_count;
648                 adapter->tx_ring_count = new_tx_count;
649                 adapter->rx_ring_count = new_rx_count;
650                 goto clear_reset;
651         }
652
653         set_tx = (new_tx_count != adapter->tx_ring_count);
654         set_rx = (new_rx_count != adapter->rx_ring_count);
655
656         /* Allocate temporary storage for ring updates */
657         if (set_tx) {
658                 temp_tx = vmalloc(size);
659                 if (!temp_tx) {
660                         err = -ENOMEM;
661                         goto free_temp;
662                 }
663         }
664         if (set_rx) {
665                 temp_rx = vmalloc(size);
666                 if (!temp_rx) {
667                         err = -ENOMEM;
668                         goto free_temp;
669                 }
670         }
671
672         e1000e_down(adapter);
673
674         /*
675          * We can't just free everything and then setup again, because the
676          * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
677          * structs.  First, attempt to allocate new resources...
678          */
679         if (set_tx) {
680                 memcpy(temp_tx, adapter->tx_ring, size);
681                 temp_tx->count = new_tx_count;
682                 err = e1000e_setup_tx_resources(temp_tx);
683                 if (err)
684                         goto err_setup;
685         }
686         if (set_rx) {
687                 memcpy(temp_rx, adapter->rx_ring, size);
688                 temp_rx->count = new_rx_count;
689                 err = e1000e_setup_rx_resources(temp_rx);
690                 if (err)
691                         goto err_setup_rx;
692         }
693
694         /* ...then free the old resources and copy back any new ring data */
695         if (set_tx) {
696                 e1000e_free_tx_resources(adapter->tx_ring);
697                 memcpy(adapter->tx_ring, temp_tx, size);
698                 adapter->tx_ring_count = new_tx_count;
699         }
700         if (set_rx) {
701                 e1000e_free_rx_resources(adapter->rx_ring);
702                 memcpy(adapter->rx_ring, temp_rx, size);
703                 adapter->rx_ring_count = new_rx_count;
704         }
705
706 err_setup_rx:
707         if (err && set_tx)
708                 e1000e_free_tx_resources(temp_tx);
709 err_setup:
710         e1000e_up(adapter);
711 free_temp:
712         vfree(temp_tx);
713         vfree(temp_rx);
714 clear_reset:
715         clear_bit(__E1000_RESETTING, &adapter->state);
716         return err;
717 }
718
719 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
720                              int reg, int offset, u32 mask, u32 write)
721 {
722         u32 pat, val;
723         static const u32 test[] = {
724                 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
725         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
726                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
727                                       (test[pat] & write));
728                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
729                 if (val != (test[pat] & write & mask)) {
730                         e_err("pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
731                               reg + offset, val, (test[pat] & write & mask));
732                         *data = reg;
733                         return 1;
734                 }
735         }
736         return 0;
737 }
738
739 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
740                               int reg, u32 mask, u32 write)
741 {
742         u32 val;
743         __ew32(&adapter->hw, reg, write & mask);
744         val = __er32(&adapter->hw, reg);
745         if ((write & mask) != (val & mask)) {
746                 e_err("set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
747                       reg, (val & mask), (write & mask));
748                 *data = reg;
749                 return 1;
750         }
751         return 0;
752 }
753 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
754         do {                                                                   \
755                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
756                         return 1;                                              \
757         } while (0)
758 #define REG_PATTERN_TEST(reg, mask, write)                                     \
759         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
760
761 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
762         do {                                                                   \
763                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
764                         return 1;                                              \
765         } while (0)
766
767 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
768 {
769         struct e1000_hw *hw = &adapter->hw;
770         struct e1000_mac_info *mac = &adapter->hw.mac;
771         u32 value;
772         u32 before;
773         u32 after;
774         u32 i;
775         u32 toggle;
776         u32 mask;
777         u32 wlock_mac = 0;
778
779         /*
780          * The status register is Read Only, so a write should fail.
781          * Some bits that get toggled are ignored.
782          */
783         switch (mac->type) {
784         /* there are several bits on newer hardware that are r/w */
785         case e1000_82571:
786         case e1000_82572:
787         case e1000_80003es2lan:
788                 toggle = 0x7FFFF3FF;
789                 break;
790         default:
791                 toggle = 0x7FFFF033;
792                 break;
793         }
794
795         before = er32(STATUS);
796         value = (er32(STATUS) & toggle);
797         ew32(STATUS, toggle);
798         after = er32(STATUS) & toggle;
799         if (value != after) {
800                 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
801                       after, value);
802                 *data = 1;
803                 return 1;
804         }
805         /* restore previous status */
806         ew32(STATUS, before);
807
808         if (!(adapter->flags & FLAG_IS_ICH)) {
809                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
810                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
811                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
812                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
813         }
814
815         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
816         REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
817         REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
818         REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
819         REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
820         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
821         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
822         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
823         REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
824         REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
825
826         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
827
828         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
829         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
830         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
831
832         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
833         REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
834         if (!(adapter->flags & FLAG_IS_ICH))
835                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
836         REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
837         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
838         mask = 0x8003FFFF;
839         switch (mac->type) {
840         case e1000_ich10lan:
841         case e1000_pchlan:
842         case e1000_pch2lan:
843         case e1000_pch_lpt:
844                 mask |= (1 << 18);
845                 break;
846         default:
847                 break;
848         }
849
850         if (mac->type == e1000_pch_lpt)
851                 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
852                     E1000_FWSM_WLOCK_MAC_SHIFT;
853
854         for (i = 0; i < mac->rar_entry_count; i++) {
855                 /* Cannot test write-protected SHRAL[n] registers */
856                 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
857                         continue;
858
859                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
860                                        mask, 0xFFFFFFFF);
861         }
862
863         for (i = 0; i < mac->mta_reg_count; i++)
864                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
865
866         *data = 0;
867
868         return 0;
869 }
870
871 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
872 {
873         u16 temp;
874         u16 checksum = 0;
875         u16 i;
876
877         *data = 0;
878         /* Read and add up the contents of the EEPROM */
879         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
880                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
881                         *data = 1;
882                         return *data;
883                 }
884                 checksum += temp;
885         }
886
887         /* If Checksum is not Correct return error else test passed */
888         if ((checksum != (u16) NVM_SUM) && !(*data))
889                 *data = 2;
890
891         return *data;
892 }
893
894 static irqreturn_t e1000_test_intr(int irq, void *data)
895 {
896         struct net_device *netdev = (struct net_device *) data;
897         struct e1000_adapter *adapter = netdev_priv(netdev);
898         struct e1000_hw *hw = &adapter->hw;
899
900         adapter->test_icr |= er32(ICR);
901
902         return IRQ_HANDLED;
903 }
904
905 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
906 {
907         struct net_device *netdev = adapter->netdev;
908         struct e1000_hw *hw = &adapter->hw;
909         u32 mask;
910         u32 shared_int = 1;
911         u32 irq = adapter->pdev->irq;
912         int i;
913         int ret_val = 0;
914         int int_mode = E1000E_INT_MODE_LEGACY;
915
916         *data = 0;
917
918         /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
919         if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
920                 int_mode = adapter->int_mode;
921                 e1000e_reset_interrupt_capability(adapter);
922                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
923                 e1000e_set_interrupt_capability(adapter);
924         }
925         /* Hook up test interrupt handler just for this test */
926         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
927                          netdev)) {
928                 shared_int = 0;
929         } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
930                  netdev->name, netdev)) {
931                 *data = 1;
932                 ret_val = -1;
933                 goto out;
934         }
935         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
936
937         /* Disable all the interrupts */
938         ew32(IMC, 0xFFFFFFFF);
939         e1e_flush();
940         usleep_range(10000, 20000);
941
942         /* Test each interrupt */
943         for (i = 0; i < 10; i++) {
944                 /* Interrupt to test */
945                 mask = 1 << i;
946
947                 if (adapter->flags & FLAG_IS_ICH) {
948                         switch (mask) {
949                         case E1000_ICR_RXSEQ:
950                                 continue;
951                         case 0x00000100:
952                                 if (adapter->hw.mac.type == e1000_ich8lan ||
953                                     adapter->hw.mac.type == e1000_ich9lan)
954                                         continue;
955                                 break;
956                         default:
957                                 break;
958                         }
959                 }
960
961                 if (!shared_int) {
962                         /*
963                          * Disable the interrupt to be reported in
964                          * the cause register and then force the same
965                          * interrupt and see if one gets posted.  If
966                          * an interrupt was posted to the bus, the
967                          * test failed.
968                          */
969                         adapter->test_icr = 0;
970                         ew32(IMC, mask);
971                         ew32(ICS, mask);
972                         e1e_flush();
973                         usleep_range(10000, 20000);
974
975                         if (adapter->test_icr & mask) {
976                                 *data = 3;
977                                 break;
978                         }
979                 }
980
981                 /*
982                  * Enable the interrupt to be reported in
983                  * the cause register and then force the same
984                  * interrupt and see if one gets posted.  If
985                  * an interrupt was not posted to the bus, the
986                  * test failed.
987                  */
988                 adapter->test_icr = 0;
989                 ew32(IMS, mask);
990                 ew32(ICS, mask);
991                 e1e_flush();
992                 usleep_range(10000, 20000);
993
994                 if (!(adapter->test_icr & mask)) {
995                         *data = 4;
996                         break;
997                 }
998
999                 if (!shared_int) {
1000                         /*
1001                          * Disable the other interrupts to be reported in
1002                          * the cause register and then force the other
1003                          * interrupts and see if any get posted.  If
1004                          * an interrupt was posted to the bus, the
1005                          * test failed.
1006                          */
1007                         adapter->test_icr = 0;
1008                         ew32(IMC, ~mask & 0x00007FFF);
1009                         ew32(ICS, ~mask & 0x00007FFF);
1010                         e1e_flush();
1011                         usleep_range(10000, 20000);
1012
1013                         if (adapter->test_icr) {
1014                                 *data = 5;
1015                                 break;
1016                         }
1017                 }
1018         }
1019
1020         /* Disable all the interrupts */
1021         ew32(IMC, 0xFFFFFFFF);
1022         e1e_flush();
1023         usleep_range(10000, 20000);
1024
1025         /* Unhook test interrupt handler */
1026         free_irq(irq, netdev);
1027
1028 out:
1029         if (int_mode == E1000E_INT_MODE_MSIX) {
1030                 e1000e_reset_interrupt_capability(adapter);
1031                 adapter->int_mode = int_mode;
1032                 e1000e_set_interrupt_capability(adapter);
1033         }
1034
1035         return ret_val;
1036 }
1037
1038 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1039 {
1040         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1041         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1042         struct pci_dev *pdev = adapter->pdev;
1043         int i;
1044
1045         if (tx_ring->desc && tx_ring->buffer_info) {
1046                 for (i = 0; i < tx_ring->count; i++) {
1047                         if (tx_ring->buffer_info[i].dma)
1048                                 dma_unmap_single(&pdev->dev,
1049                                         tx_ring->buffer_info[i].dma,
1050                                         tx_ring->buffer_info[i].length,
1051                                         DMA_TO_DEVICE);
1052                         if (tx_ring->buffer_info[i].skb)
1053                                 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1054                 }
1055         }
1056
1057         if (rx_ring->desc && rx_ring->buffer_info) {
1058                 for (i = 0; i < rx_ring->count; i++) {
1059                         if (rx_ring->buffer_info[i].dma)
1060                                 dma_unmap_single(&pdev->dev,
1061                                         rx_ring->buffer_info[i].dma,
1062                                         2048, DMA_FROM_DEVICE);
1063                         if (rx_ring->buffer_info[i].skb)
1064                                 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1065                 }
1066         }
1067
1068         if (tx_ring->desc) {
1069                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1070                                   tx_ring->dma);
1071                 tx_ring->desc = NULL;
1072         }
1073         if (rx_ring->desc) {
1074                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1075                                   rx_ring->dma);
1076                 rx_ring->desc = NULL;
1077         }
1078
1079         kfree(tx_ring->buffer_info);
1080         tx_ring->buffer_info = NULL;
1081         kfree(rx_ring->buffer_info);
1082         rx_ring->buffer_info = NULL;
1083 }
1084
1085 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1086 {
1087         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1088         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1089         struct pci_dev *pdev = adapter->pdev;
1090         struct e1000_hw *hw = &adapter->hw;
1091         u32 rctl;
1092         int i;
1093         int ret_val;
1094
1095         /* Setup Tx descriptor ring and Tx buffers */
1096
1097         if (!tx_ring->count)
1098                 tx_ring->count = E1000_DEFAULT_TXD;
1099
1100         tx_ring->buffer_info = kcalloc(tx_ring->count,
1101                                        sizeof(struct e1000_buffer),
1102                                        GFP_KERNEL);
1103         if (!tx_ring->buffer_info) {
1104                 ret_val = 1;
1105                 goto err_nomem;
1106         }
1107
1108         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1109         tx_ring->size = ALIGN(tx_ring->size, 4096);
1110         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1111                                            &tx_ring->dma, GFP_KERNEL);
1112         if (!tx_ring->desc) {
1113                 ret_val = 2;
1114                 goto err_nomem;
1115         }
1116         tx_ring->next_to_use = 0;
1117         tx_ring->next_to_clean = 0;
1118
1119         ew32(TDBAL(0), ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1120         ew32(TDBAH(0), ((u64) tx_ring->dma >> 32));
1121         ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1122         ew32(TDH(0), 0);
1123         ew32(TDT(0), 0);
1124         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1125              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1126              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1127
1128         for (i = 0; i < tx_ring->count; i++) {
1129                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1130                 struct sk_buff *skb;
1131                 unsigned int skb_size = 1024;
1132
1133                 skb = alloc_skb(skb_size, GFP_KERNEL);
1134                 if (!skb) {
1135                         ret_val = 3;
1136                         goto err_nomem;
1137                 }
1138                 skb_put(skb, skb_size);
1139                 tx_ring->buffer_info[i].skb = skb;
1140                 tx_ring->buffer_info[i].length = skb->len;
1141                 tx_ring->buffer_info[i].dma =
1142                         dma_map_single(&pdev->dev, skb->data, skb->len,
1143                                        DMA_TO_DEVICE);
1144                 if (dma_mapping_error(&pdev->dev,
1145                                       tx_ring->buffer_info[i].dma)) {
1146                         ret_val = 4;
1147                         goto err_nomem;
1148                 }
1149                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1150                 tx_desc->lower.data = cpu_to_le32(skb->len);
1151                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1152                                                    E1000_TXD_CMD_IFCS |
1153                                                    E1000_TXD_CMD_RS);
1154                 tx_desc->upper.data = 0;
1155         }
1156
1157         /* Setup Rx descriptor ring and Rx buffers */
1158
1159         if (!rx_ring->count)
1160                 rx_ring->count = E1000_DEFAULT_RXD;
1161
1162         rx_ring->buffer_info = kcalloc(rx_ring->count,
1163                                        sizeof(struct e1000_buffer),
1164                                        GFP_KERNEL);
1165         if (!rx_ring->buffer_info) {
1166                 ret_val = 5;
1167                 goto err_nomem;
1168         }
1169
1170         rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1171         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1172                                            &rx_ring->dma, GFP_KERNEL);
1173         if (!rx_ring->desc) {
1174                 ret_val = 6;
1175                 goto err_nomem;
1176         }
1177         rx_ring->next_to_use = 0;
1178         rx_ring->next_to_clean = 0;
1179
1180         rctl = er32(RCTL);
1181         if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1182                 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1183         ew32(RDBAL(0), ((u64) rx_ring->dma & 0xFFFFFFFF));
1184         ew32(RDBAH(0), ((u64) rx_ring->dma >> 32));
1185         ew32(RDLEN(0), rx_ring->size);
1186         ew32(RDH(0), 0);
1187         ew32(RDT(0), 0);
1188         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1189                 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1190                 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1191                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1192                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1193         ew32(RCTL, rctl);
1194
1195         for (i = 0; i < rx_ring->count; i++) {
1196                 union e1000_rx_desc_extended *rx_desc;
1197                 struct sk_buff *skb;
1198
1199                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1200                 if (!skb) {
1201                         ret_val = 7;
1202                         goto err_nomem;
1203                 }
1204                 skb_reserve(skb, NET_IP_ALIGN);
1205                 rx_ring->buffer_info[i].skb = skb;
1206                 rx_ring->buffer_info[i].dma =
1207                         dma_map_single(&pdev->dev, skb->data, 2048,
1208                                        DMA_FROM_DEVICE);
1209                 if (dma_mapping_error(&pdev->dev,
1210                                       rx_ring->buffer_info[i].dma)) {
1211                         ret_val = 8;
1212                         goto err_nomem;
1213                 }
1214                 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1215                 rx_desc->read.buffer_addr =
1216                     cpu_to_le64(rx_ring->buffer_info[i].dma);
1217                 memset(skb->data, 0x00, skb->len);
1218         }
1219
1220         return 0;
1221
1222 err_nomem:
1223         e1000_free_desc_rings(adapter);
1224         return ret_val;
1225 }
1226
1227 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1228 {
1229         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1230         e1e_wphy(&adapter->hw, 29, 0x001F);
1231         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1232         e1e_wphy(&adapter->hw, 29, 0x001A);
1233         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1234 }
1235
1236 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1237 {
1238         struct e1000_hw *hw = &adapter->hw;
1239         u32 ctrl_reg = 0;
1240         u16 phy_reg = 0;
1241         s32 ret_val = 0;
1242
1243         hw->mac.autoneg = 0;
1244
1245         if (hw->phy.type == e1000_phy_ife) {
1246                 /* force 100, set loopback */
1247                 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1248
1249                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1250                 ctrl_reg = er32(CTRL);
1251                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1252                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1253                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1254                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1255                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1256
1257                 ew32(CTRL, ctrl_reg);
1258                 e1e_flush();
1259                 udelay(500);
1260
1261                 return 0;
1262         }
1263
1264         /* Specific PHY configuration for loopback */
1265         switch (hw->phy.type) {
1266         case e1000_phy_m88:
1267                 /* Auto-MDI/MDIX Off */
1268                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1269                 /* reset to update Auto-MDI/MDIX */
1270                 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1271                 /* autoneg off */
1272                 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1273                 break;
1274         case e1000_phy_gg82563:
1275                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1276                 break;
1277         case e1000_phy_bm:
1278                 /* Set Default MAC Interface speed to 1GB */
1279                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1280                 phy_reg &= ~0x0007;
1281                 phy_reg |= 0x006;
1282                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1283                 /* Assert SW reset for above settings to take effect */
1284                 e1000e_commit_phy(hw);
1285                 mdelay(1);
1286                 /* Force Full Duplex */
1287                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1288                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1289                 /* Set Link Up (in force link) */
1290                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1291                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1292                 /* Force Link */
1293                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1294                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1295                 /* Set Early Link Enable */
1296                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1297                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1298                 break;
1299         case e1000_phy_82577:
1300         case e1000_phy_82578:
1301                 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1302                 ret_val = hw->phy.ops.acquire(hw);
1303                 if (ret_val) {
1304                         e_err("Cannot setup 1Gbps loopback.\n");
1305                         return ret_val;
1306                 }
1307                 e1000_configure_k1_ich8lan(hw, false);
1308                 hw->phy.ops.release(hw);
1309                 break;
1310         case e1000_phy_82579:
1311                 /* Disable PHY energy detect power down */
1312                 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1313                 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1314                 /* Disable full chip energy detect */
1315                 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1316                 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1317                 /* Enable loopback on the PHY */
1318 #define I82577_PHY_LBK_CTRL          19
1319                 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1320                 break;
1321         default:
1322                 break;
1323         }
1324
1325         /* force 1000, set loopback */
1326         e1e_wphy(hw, PHY_CONTROL, 0x4140);
1327         mdelay(250);
1328
1329         /* Now set up the MAC to the same speed/duplex as the PHY. */
1330         ctrl_reg = er32(CTRL);
1331         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1332         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1333                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1334                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1335                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1336
1337         if (adapter->flags & FLAG_IS_ICH)
1338                 ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1339
1340         if (hw->phy.media_type == e1000_media_type_copper &&
1341             hw->phy.type == e1000_phy_m88) {
1342                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1343         } else {
1344                 /*
1345                  * Set the ILOS bit on the fiber Nic if half duplex link is
1346                  * detected.
1347                  */
1348                 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1349                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1350         }
1351
1352         ew32(CTRL, ctrl_reg);
1353
1354         /*
1355          * Disable the receiver on the PHY so when a cable is plugged in, the
1356          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1357          */
1358         if (hw->phy.type == e1000_phy_m88)
1359                 e1000_phy_disable_receiver(adapter);
1360
1361         udelay(500);
1362
1363         return 0;
1364 }
1365
1366 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1367 {
1368         struct e1000_hw *hw = &adapter->hw;
1369         u32 ctrl = er32(CTRL);
1370         int link = 0;
1371
1372         /* special requirements for 82571/82572 fiber adapters */
1373
1374         /*
1375          * jump through hoops to make sure link is up because serdes
1376          * link is hardwired up
1377          */
1378         ctrl |= E1000_CTRL_SLU;
1379         ew32(CTRL, ctrl);
1380
1381         /* disable autoneg */
1382         ctrl = er32(TXCW);
1383         ctrl &= ~(1 << 31);
1384         ew32(TXCW, ctrl);
1385
1386         link = (er32(STATUS) & E1000_STATUS_LU);
1387
1388         if (!link) {
1389                 /* set invert loss of signal */
1390                 ctrl = er32(CTRL);
1391                 ctrl |= E1000_CTRL_ILOS;
1392                 ew32(CTRL, ctrl);
1393         }
1394
1395         /*
1396          * special write to serdes control register to enable SerDes analog
1397          * loopback
1398          */
1399 #define E1000_SERDES_LB_ON 0x410
1400         ew32(SCTL, E1000_SERDES_LB_ON);
1401         e1e_flush();
1402         usleep_range(10000, 20000);
1403
1404         return 0;
1405 }
1406
1407 /* only call this for fiber/serdes connections to es2lan */
1408 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1409 {
1410         struct e1000_hw *hw = &adapter->hw;
1411         u32 ctrlext = er32(CTRL_EXT);
1412         u32 ctrl = er32(CTRL);
1413
1414         /*
1415          * save CTRL_EXT to restore later, reuse an empty variable (unused
1416          * on mac_type 80003es2lan)
1417          */
1418         adapter->tx_fifo_head = ctrlext;
1419
1420         /* clear the serdes mode bits, putting the device into mac loopback */
1421         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1422         ew32(CTRL_EXT, ctrlext);
1423
1424         /* force speed to 1000/FD, link up */
1425         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1426         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1427                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1428         ew32(CTRL, ctrl);
1429
1430         /* set mac loopback */
1431         ctrl = er32(RCTL);
1432         ctrl |= E1000_RCTL_LBM_MAC;
1433         ew32(RCTL, ctrl);
1434
1435         /* set testing mode parameters (no need to reset later) */
1436 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1437 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1438         ew32(KMRNCTRLSTA,
1439              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1440
1441         return 0;
1442 }
1443
1444 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1445 {
1446         struct e1000_hw *hw = &adapter->hw;
1447         u32 rctl;
1448
1449         if (hw->phy.media_type == e1000_media_type_fiber ||
1450             hw->phy.media_type == e1000_media_type_internal_serdes) {
1451                 switch (hw->mac.type) {
1452                 case e1000_80003es2lan:
1453                         return e1000_set_es2lan_mac_loopback(adapter);
1454                         break;
1455                 case e1000_82571:
1456                 case e1000_82572:
1457                         return e1000_set_82571_fiber_loopback(adapter);
1458                         break;
1459                 default:
1460                         rctl = er32(RCTL);
1461                         rctl |= E1000_RCTL_LBM_TCVR;
1462                         ew32(RCTL, rctl);
1463                         return 0;
1464                 }
1465         } else if (hw->phy.media_type == e1000_media_type_copper) {
1466                 return e1000_integrated_phy_loopback(adapter);
1467         }
1468
1469         return 7;
1470 }
1471
1472 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1473 {
1474         struct e1000_hw *hw = &adapter->hw;
1475         u32 rctl;
1476         u16 phy_reg;
1477
1478         rctl = er32(RCTL);
1479         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1480         ew32(RCTL, rctl);
1481
1482         switch (hw->mac.type) {
1483         case e1000_80003es2lan:
1484                 if (hw->phy.media_type == e1000_media_type_fiber ||
1485                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1486                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1487                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1488                         adapter->tx_fifo_head = 0;
1489                 }
1490                 /* fall through */
1491         case e1000_82571:
1492         case e1000_82572:
1493                 if (hw->phy.media_type == e1000_media_type_fiber ||
1494                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1495 #define E1000_SERDES_LB_OFF 0x400
1496                         ew32(SCTL, E1000_SERDES_LB_OFF);
1497                         e1e_flush();
1498                         usleep_range(10000, 20000);
1499                         break;
1500                 }
1501                 /* Fall Through */
1502         default:
1503                 hw->mac.autoneg = 1;
1504                 if (hw->phy.type == e1000_phy_gg82563)
1505                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1506                 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1507                 if (phy_reg & MII_CR_LOOPBACK) {
1508                         phy_reg &= ~MII_CR_LOOPBACK;
1509                         e1e_wphy(hw, PHY_CONTROL, phy_reg);
1510                         e1000e_commit_phy(hw);
1511                 }
1512                 break;
1513         }
1514 }
1515
1516 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1517                                       unsigned int frame_size)
1518 {
1519         memset(skb->data, 0xFF, frame_size);
1520         frame_size &= ~1;
1521         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1522         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1523         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1524 }
1525
1526 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1527                                     unsigned int frame_size)
1528 {
1529         frame_size &= ~1;
1530         if (*(skb->data + 3) == 0xFF)
1531                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1532                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1533                         return 0;
1534         return 13;
1535 }
1536
1537 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1538 {
1539         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1540         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1541         struct pci_dev *pdev = adapter->pdev;
1542         struct e1000_hw *hw = &adapter->hw;
1543         int i, j, k, l;
1544         int lc;
1545         int good_cnt;
1546         int ret_val = 0;
1547         unsigned long time;
1548
1549         ew32(RDT(0), rx_ring->count - 1);
1550
1551         /*
1552          * Calculate the loop count based on the largest descriptor ring
1553          * The idea is to wrap the largest ring a number of times using 64
1554          * send/receive pairs during each loop
1555          */
1556
1557         if (rx_ring->count <= tx_ring->count)
1558                 lc = ((tx_ring->count / 64) * 2) + 1;
1559         else
1560                 lc = ((rx_ring->count / 64) * 2) + 1;
1561
1562         k = 0;
1563         l = 0;
1564         for (j = 0; j <= lc; j++) { /* loop count loop */
1565                 for (i = 0; i < 64; i++) { /* send the packets */
1566                         e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1567                                                   1024);
1568                         dma_sync_single_for_device(&pdev->dev,
1569                                         tx_ring->buffer_info[k].dma,
1570                                         tx_ring->buffer_info[k].length,
1571                                         DMA_TO_DEVICE);
1572                         k++;
1573                         if (k == tx_ring->count)
1574                                 k = 0;
1575                 }
1576                 ew32(TDT(0), k);
1577                 e1e_flush();
1578                 msleep(200);
1579                 time = jiffies; /* set the start time for the receive */
1580                 good_cnt = 0;
1581                 do { /* receive the sent packets */
1582                         dma_sync_single_for_cpu(&pdev->dev,
1583                                         rx_ring->buffer_info[l].dma, 2048,
1584                                         DMA_FROM_DEVICE);
1585
1586                         ret_val = e1000_check_lbtest_frame(
1587                                         rx_ring->buffer_info[l].skb, 1024);
1588                         if (!ret_val)
1589                                 good_cnt++;
1590                         l++;
1591                         if (l == rx_ring->count)
1592                                 l = 0;
1593                         /*
1594                          * time + 20 msecs (200 msecs on 2.4) is more than
1595                          * enough time to complete the receives, if it's
1596                          * exceeded, break and error off
1597                          */
1598                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1599                 if (good_cnt != 64) {
1600                         ret_val = 13; /* ret_val is the same as mis-compare */
1601                         break;
1602                 }
1603                 if (jiffies >= (time + 20)) {
1604                         ret_val = 14; /* error code for time out error */
1605                         break;
1606                 }
1607         } /* end loop count loop */
1608         return ret_val;
1609 }
1610
1611 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1612 {
1613         struct e1000_hw *hw = &adapter->hw;
1614
1615         /*
1616          * PHY loopback cannot be performed if SoL/IDER
1617          * sessions are active
1618          */
1619         if (hw->phy.ops.check_reset_block &&
1620             hw->phy.ops.check_reset_block(hw)) {
1621                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1622                 *data = 0;
1623                 goto out;
1624         }
1625
1626         *data = e1000_setup_desc_rings(adapter);
1627         if (*data)
1628                 goto out;
1629
1630         *data = e1000_setup_loopback_test(adapter);
1631         if (*data)
1632                 goto err_loopback;
1633
1634         *data = e1000_run_loopback_test(adapter);
1635         e1000_loopback_cleanup(adapter);
1636
1637 err_loopback:
1638         e1000_free_desc_rings(adapter);
1639 out:
1640         return *data;
1641 }
1642
1643 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1644 {
1645         struct e1000_hw *hw = &adapter->hw;
1646
1647         *data = 0;
1648         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1649                 int i = 0;
1650                 hw->mac.serdes_has_link = false;
1651
1652                 /*
1653                  * On some blade server designs, link establishment
1654                  * could take as long as 2-3 minutes
1655                  */
1656                 do {
1657                         hw->mac.ops.check_for_link(hw);
1658                         if (hw->mac.serdes_has_link)
1659                                 return *data;
1660                         msleep(20);
1661                 } while (i++ < 3750);
1662
1663                 *data = 1;
1664         } else {
1665                 hw->mac.ops.check_for_link(hw);
1666                 if (hw->mac.autoneg)
1667                         /*
1668                          * On some Phy/switch combinations, link establishment
1669                          * can take a few seconds more than expected.
1670                          */
1671                         msleep(5000);
1672
1673                 if (!(er32(STATUS) & E1000_STATUS_LU))
1674                         *data = 1;
1675         }
1676         return *data;
1677 }
1678
1679 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1680 {
1681         switch (sset) {
1682         case ETH_SS_TEST:
1683                 return E1000_TEST_LEN;
1684         case ETH_SS_STATS:
1685                 return E1000_STATS_LEN;
1686         default:
1687                 return -EOPNOTSUPP;
1688         }
1689 }
1690
1691 static void e1000_diag_test(struct net_device *netdev,
1692                             struct ethtool_test *eth_test, u64 *data)
1693 {
1694         struct e1000_adapter *adapter = netdev_priv(netdev);
1695         u16 autoneg_advertised;
1696         u8 forced_speed_duplex;
1697         u8 autoneg;
1698         bool if_running = netif_running(netdev);
1699
1700         set_bit(__E1000_TESTING, &adapter->state);
1701
1702         if (!if_running) {
1703                 /* Get control of and reset hardware */
1704                 if (adapter->flags & FLAG_HAS_AMT)
1705                         e1000e_get_hw_control(adapter);
1706
1707                 e1000e_power_up_phy(adapter);
1708
1709                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1710                 e1000e_reset(adapter);
1711                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1712         }
1713
1714         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1715                 /* Offline tests */
1716
1717                 /* save speed, duplex, autoneg settings */
1718                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1719                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1720                 autoneg = adapter->hw.mac.autoneg;
1721
1722                 e_info("offline testing starting\n");
1723
1724                 if (if_running)
1725                         /* indicate we're in test mode */
1726                         dev_close(netdev);
1727
1728                 if (e1000_reg_test(adapter, &data[0]))
1729                         eth_test->flags |= ETH_TEST_FL_FAILED;
1730
1731                 e1000e_reset(adapter);
1732                 if (e1000_eeprom_test(adapter, &data[1]))
1733                         eth_test->flags |= ETH_TEST_FL_FAILED;
1734
1735                 e1000e_reset(adapter);
1736                 if (e1000_intr_test(adapter, &data[2]))
1737                         eth_test->flags |= ETH_TEST_FL_FAILED;
1738
1739                 e1000e_reset(adapter);
1740                 if (e1000_loopback_test(adapter, &data[3]))
1741                         eth_test->flags |= ETH_TEST_FL_FAILED;
1742
1743                 /* force this routine to wait until autoneg complete/timeout */
1744                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1745                 e1000e_reset(adapter);
1746                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1747
1748                 if (e1000_link_test(adapter, &data[4]))
1749                         eth_test->flags |= ETH_TEST_FL_FAILED;
1750
1751                 /* restore speed, duplex, autoneg settings */
1752                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1753                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1754                 adapter->hw.mac.autoneg = autoneg;
1755                 e1000e_reset(adapter);
1756
1757                 clear_bit(__E1000_TESTING, &adapter->state);
1758                 if (if_running)
1759                         dev_open(netdev);
1760         } else {
1761                 /* Online tests */
1762
1763                 e_info("online testing starting\n");
1764
1765                 /* register, eeprom, intr and loopback tests not run online */
1766                 data[0] = 0;
1767                 data[1] = 0;
1768                 data[2] = 0;
1769                 data[3] = 0;
1770
1771                 if (e1000_link_test(adapter, &data[4]))
1772                         eth_test->flags |= ETH_TEST_FL_FAILED;
1773
1774                 clear_bit(__E1000_TESTING, &adapter->state);
1775         }
1776
1777         if (!if_running) {
1778                 e1000e_reset(adapter);
1779
1780                 if (adapter->flags & FLAG_HAS_AMT)
1781                         e1000e_release_hw_control(adapter);
1782         }
1783
1784         msleep_interruptible(4 * 1000);
1785 }
1786
1787 static void e1000_get_wol(struct net_device *netdev,
1788                           struct ethtool_wolinfo *wol)
1789 {
1790         struct e1000_adapter *adapter = netdev_priv(netdev);
1791
1792         wol->supported = 0;
1793         wol->wolopts = 0;
1794
1795         if (!(adapter->flags & FLAG_HAS_WOL) ||
1796             !device_can_wakeup(&adapter->pdev->dev))
1797                 return;
1798
1799         wol->supported = WAKE_UCAST | WAKE_MCAST |
1800             WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1801
1802         /* apply any specific unsupported masks here */
1803         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1804                 wol->supported &= ~WAKE_UCAST;
1805
1806                 if (adapter->wol & E1000_WUFC_EX)
1807                         e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1808         }
1809
1810         if (adapter->wol & E1000_WUFC_EX)
1811                 wol->wolopts |= WAKE_UCAST;
1812         if (adapter->wol & E1000_WUFC_MC)
1813                 wol->wolopts |= WAKE_MCAST;
1814         if (adapter->wol & E1000_WUFC_BC)
1815                 wol->wolopts |= WAKE_BCAST;
1816         if (adapter->wol & E1000_WUFC_MAG)
1817                 wol->wolopts |= WAKE_MAGIC;
1818         if (adapter->wol & E1000_WUFC_LNKC)
1819                 wol->wolopts |= WAKE_PHY;
1820 }
1821
1822 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1823 {
1824         struct e1000_adapter *adapter = netdev_priv(netdev);
1825
1826         if (!(adapter->flags & FLAG_HAS_WOL) ||
1827             !device_can_wakeup(&adapter->pdev->dev) ||
1828             (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1829                               WAKE_MAGIC | WAKE_PHY)))
1830                 return -EOPNOTSUPP;
1831
1832         /* these settings will always override what we currently have */
1833         adapter->wol = 0;
1834
1835         if (wol->wolopts & WAKE_UCAST)
1836                 adapter->wol |= E1000_WUFC_EX;
1837         if (wol->wolopts & WAKE_MCAST)
1838                 adapter->wol |= E1000_WUFC_MC;
1839         if (wol->wolopts & WAKE_BCAST)
1840                 adapter->wol |= E1000_WUFC_BC;
1841         if (wol->wolopts & WAKE_MAGIC)
1842                 adapter->wol |= E1000_WUFC_MAG;
1843         if (wol->wolopts & WAKE_PHY)
1844                 adapter->wol |= E1000_WUFC_LNKC;
1845
1846         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1847
1848         return 0;
1849 }
1850
1851 static int e1000_set_phys_id(struct net_device *netdev,
1852                              enum ethtool_phys_id_state state)
1853 {
1854         struct e1000_adapter *adapter = netdev_priv(netdev);
1855         struct e1000_hw *hw = &adapter->hw;
1856
1857         switch (state) {
1858         case ETHTOOL_ID_ACTIVE:
1859                 if (!hw->mac.ops.blink_led)
1860                         return 2;       /* cycle on/off twice per second */
1861
1862                 hw->mac.ops.blink_led(hw);
1863                 break;
1864
1865         case ETHTOOL_ID_INACTIVE:
1866                 if (hw->phy.type == e1000_phy_ife)
1867                         e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1868                 hw->mac.ops.led_off(hw);
1869                 hw->mac.ops.cleanup_led(hw);
1870                 break;
1871
1872         case ETHTOOL_ID_ON:
1873                 hw->mac.ops.led_on(hw);
1874                 break;
1875
1876         case ETHTOOL_ID_OFF:
1877                 hw->mac.ops.led_off(hw);
1878                 break;
1879         }
1880         return 0;
1881 }
1882
1883 static int e1000_get_coalesce(struct net_device *netdev,
1884                               struct ethtool_coalesce *ec)
1885 {
1886         struct e1000_adapter *adapter = netdev_priv(netdev);
1887
1888         if (adapter->itr_setting <= 4)
1889                 ec->rx_coalesce_usecs = adapter->itr_setting;
1890         else
1891                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1892
1893         return 0;
1894 }
1895
1896 static int e1000_set_coalesce(struct net_device *netdev,
1897                               struct ethtool_coalesce *ec)
1898 {
1899         struct e1000_adapter *adapter = netdev_priv(netdev);
1900         struct e1000_hw *hw = &adapter->hw;
1901
1902         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1903             ((ec->rx_coalesce_usecs > 4) &&
1904              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1905             (ec->rx_coalesce_usecs == 2))
1906                 return -EINVAL;
1907
1908         if (ec->rx_coalesce_usecs == 4) {
1909                 adapter->itr = adapter->itr_setting = 4;
1910         } else if (ec->rx_coalesce_usecs <= 3) {
1911                 adapter->itr = 20000;
1912                 adapter->itr_setting = ec->rx_coalesce_usecs;
1913         } else {
1914                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1915                 adapter->itr_setting = adapter->itr & ~3;
1916         }
1917
1918         if (adapter->itr_setting != 0)
1919                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1920         else
1921                 ew32(ITR, 0);
1922
1923         return 0;
1924 }
1925
1926 static int e1000_nway_reset(struct net_device *netdev)
1927 {
1928         struct e1000_adapter *adapter = netdev_priv(netdev);
1929
1930         if (!netif_running(netdev))
1931                 return -EAGAIN;
1932
1933         if (!adapter->hw.mac.autoneg)
1934                 return -EINVAL;
1935
1936         e1000e_reinit_locked(adapter);
1937
1938         return 0;
1939 }
1940
1941 static void e1000_get_ethtool_stats(struct net_device *netdev,
1942                                     struct ethtool_stats *stats,
1943                                     u64 *data)
1944 {
1945         struct e1000_adapter *adapter = netdev_priv(netdev);
1946         struct rtnl_link_stats64 net_stats;
1947         int i;
1948         char *p = NULL;
1949
1950         e1000e_get_stats64(netdev, &net_stats);
1951         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1952                 switch (e1000_gstrings_stats[i].type) {
1953                 case NETDEV_STATS:
1954                         p = (char *) &net_stats +
1955                                         e1000_gstrings_stats[i].stat_offset;
1956                         break;
1957                 case E1000_STATS:
1958                         p = (char *) adapter +
1959                                         e1000_gstrings_stats[i].stat_offset;
1960                         break;
1961                 default:
1962                         data[i] = 0;
1963                         continue;
1964                 }
1965
1966                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1967                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1968         }
1969 }
1970
1971 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1972                               u8 *data)
1973 {
1974         u8 *p = data;
1975         int i;
1976
1977         switch (stringset) {
1978         case ETH_SS_TEST:
1979                 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1980                 break;
1981         case ETH_SS_STATS:
1982                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1983                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1984                                ETH_GSTRING_LEN);
1985                         p += ETH_GSTRING_LEN;
1986                 }
1987                 break;
1988         }
1989 }
1990
1991 static int e1000_get_rxnfc(struct net_device *netdev,
1992                            struct ethtool_rxnfc *info, u32 *rule_locs)
1993 {
1994         info->data = 0;
1995
1996         switch (info->cmd) {
1997         case ETHTOOL_GRXFH: {
1998                 struct e1000_adapter *adapter = netdev_priv(netdev);
1999                 struct e1000_hw *hw = &adapter->hw;
2000                 u32 mrqc = er32(MRQC);
2001
2002                 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2003                         return 0;
2004
2005                 switch (info->flow_type) {
2006                 case TCP_V4_FLOW:
2007                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2008                                 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2009                         /* fall through */
2010                 case UDP_V4_FLOW:
2011                 case SCTP_V4_FLOW:
2012                 case AH_ESP_V4_FLOW:
2013                 case IPV4_FLOW:
2014                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2015                                 info->data |= RXH_IP_SRC | RXH_IP_DST;
2016                         break;
2017                 case TCP_V6_FLOW:
2018                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2019                                 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2020                         /* fall through */
2021                 case UDP_V6_FLOW:
2022                 case SCTP_V6_FLOW:
2023                 case AH_ESP_V6_FLOW:
2024                 case IPV6_FLOW:
2025                         if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2026                                 info->data |= RXH_IP_SRC | RXH_IP_DST;
2027                         break;
2028                 default:
2029                         break;
2030                 }
2031                 return 0;
2032         }
2033         default:
2034                 return -EOPNOTSUPP;
2035         }
2036 }
2037
2038 static const struct ethtool_ops e1000_ethtool_ops = {
2039         .get_settings           = e1000_get_settings,
2040         .set_settings           = e1000_set_settings,
2041         .get_drvinfo            = e1000_get_drvinfo,
2042         .get_regs_len           = e1000_get_regs_len,
2043         .get_regs               = e1000_get_regs,
2044         .get_wol                = e1000_get_wol,
2045         .set_wol                = e1000_set_wol,
2046         .get_msglevel           = e1000_get_msglevel,
2047         .set_msglevel           = e1000_set_msglevel,
2048         .nway_reset             = e1000_nway_reset,
2049         .get_link               = ethtool_op_get_link,
2050         .get_eeprom_len         = e1000_get_eeprom_len,
2051         .get_eeprom             = e1000_get_eeprom,
2052         .set_eeprom             = e1000_set_eeprom,
2053         .get_ringparam          = e1000_get_ringparam,
2054         .set_ringparam          = e1000_set_ringparam,
2055         .get_pauseparam         = e1000_get_pauseparam,
2056         .set_pauseparam         = e1000_set_pauseparam,
2057         .self_test              = e1000_diag_test,
2058         .get_strings            = e1000_get_strings,
2059         .set_phys_id            = e1000_set_phys_id,
2060         .get_ethtool_stats      = e1000_get_ethtool_stats,
2061         .get_sset_count         = e1000e_get_sset_count,
2062         .get_coalesce           = e1000_get_coalesce,
2063         .set_coalesce           = e1000_set_coalesce,
2064         .get_rxnfc              = e1000_get_rxnfc,
2065 };
2066
2067 void e1000e_set_ethtool_ops(struct net_device *netdev)
2068 {
2069         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2070 }