]> Pileus Git - ~andy/linux/blob - drivers/net/ethernet/freescale/gianfar.c
net: Fix some __vlan_hwaccel_put_tag() callers.
[~andy/linux] / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
80 #include <linux/mm.h>
81 #include <linux/of_mdio.h>
82 #include <linux/of_platform.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
87 #include <linux/net_tstamp.h>
88
89 #include <asm/io.h>
90 #include <asm/reg.h>
91 #include <asm/irq.h>
92 #include <asm/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
96 #include <linux/mii.h>
97 #include <linux/phy.h>
98 #include <linux/phy_fixed.h>
99 #include <linux/of.h>
100 #include <linux/of_net.h>
101
102 #include "gianfar.h"
103
104 #define TX_TIMEOUT      (1*HZ)
105
106 const char gfar_driver_version[] = "1.3";
107
108 static int gfar_enet_open(struct net_device *dev);
109 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
110 static void gfar_reset_task(struct work_struct *work);
111 static void gfar_timeout(struct net_device *dev);
112 static int gfar_close(struct net_device *dev);
113 struct sk_buff *gfar_new_skb(struct net_device *dev);
114 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
115                            struct sk_buff *skb);
116 static int gfar_set_mac_address(struct net_device *dev);
117 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
118 static irqreturn_t gfar_error(int irq, void *dev_id);
119 static irqreturn_t gfar_transmit(int irq, void *dev_id);
120 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
121 static void adjust_link(struct net_device *dev);
122 static void init_registers(struct net_device *dev);
123 static int init_phy(struct net_device *dev);
124 static int gfar_probe(struct platform_device *ofdev);
125 static int gfar_remove(struct platform_device *ofdev);
126 static void free_skb_resources(struct gfar_private *priv);
127 static void gfar_set_multi(struct net_device *dev);
128 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
129 static void gfar_configure_serdes(struct net_device *dev);
130 static int gfar_poll(struct napi_struct *napi, int budget);
131 #ifdef CONFIG_NET_POLL_CONTROLLER
132 static void gfar_netpoll(struct net_device *dev);
133 #endif
134 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
135 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
136 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
137                                int amount_pull, struct napi_struct *napi);
138 void gfar_halt(struct net_device *dev);
139 static void gfar_halt_nodisable(struct net_device *dev);
140 void gfar_start(struct net_device *dev);
141 static void gfar_clear_exact_match(struct net_device *dev);
142 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
143                                   const u8 *addr);
144 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
145
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
149
150 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
151                             dma_addr_t buf)
152 {
153         u32 lstatus;
154
155         bdp->bufPtr = buf;
156
157         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
158         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
159                 lstatus |= BD_LFLAG(RXBD_WRAP);
160
161         eieio();
162
163         bdp->lstatus = lstatus;
164 }
165
166 static int gfar_init_bds(struct net_device *ndev)
167 {
168         struct gfar_private *priv = netdev_priv(ndev);
169         struct gfar_priv_tx_q *tx_queue = NULL;
170         struct gfar_priv_rx_q *rx_queue = NULL;
171         struct txbd8 *txbdp;
172         struct rxbd8 *rxbdp;
173         int i, j;
174
175         for (i = 0; i < priv->num_tx_queues; i++) {
176                 tx_queue = priv->tx_queue[i];
177                 /* Initialize some variables in our dev structure */
178                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
179                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
180                 tx_queue->cur_tx = tx_queue->tx_bd_base;
181                 tx_queue->skb_curtx = 0;
182                 tx_queue->skb_dirtytx = 0;
183
184                 /* Initialize Transmit Descriptor Ring */
185                 txbdp = tx_queue->tx_bd_base;
186                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
187                         txbdp->lstatus = 0;
188                         txbdp->bufPtr = 0;
189                         txbdp++;
190                 }
191
192                 /* Set the last descriptor in the ring to indicate wrap */
193                 txbdp--;
194                 txbdp->status |= TXBD_WRAP;
195         }
196
197         for (i = 0; i < priv->num_rx_queues; i++) {
198                 rx_queue = priv->rx_queue[i];
199                 rx_queue->cur_rx = rx_queue->rx_bd_base;
200                 rx_queue->skb_currx = 0;
201                 rxbdp = rx_queue->rx_bd_base;
202
203                 for (j = 0; j < rx_queue->rx_ring_size; j++) {
204                         struct sk_buff *skb = rx_queue->rx_skbuff[j];
205
206                         if (skb) {
207                                 gfar_init_rxbdp(rx_queue, rxbdp,
208                                                 rxbdp->bufPtr);
209                         } else {
210                                 skb = gfar_new_skb(ndev);
211                                 if (!skb) {
212                                         netdev_err(ndev, "Can't allocate RX buffers\n");
213                                         return -ENOMEM;
214                                 }
215                                 rx_queue->rx_skbuff[j] = skb;
216
217                                 gfar_new_rxbdp(rx_queue, rxbdp, skb);
218                         }
219
220                         rxbdp++;
221                 }
222
223         }
224
225         return 0;
226 }
227
228 static int gfar_alloc_skb_resources(struct net_device *ndev)
229 {
230         void *vaddr;
231         dma_addr_t addr;
232         int i, j, k;
233         struct gfar_private *priv = netdev_priv(ndev);
234         struct device *dev = priv->dev;
235         struct gfar_priv_tx_q *tx_queue = NULL;
236         struct gfar_priv_rx_q *rx_queue = NULL;
237
238         priv->total_tx_ring_size = 0;
239         for (i = 0; i < priv->num_tx_queues; i++)
240                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
241
242         priv->total_rx_ring_size = 0;
243         for (i = 0; i < priv->num_rx_queues; i++)
244                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
245
246         /* Allocate memory for the buffer descriptors */
247         vaddr = dma_alloc_coherent(dev,
248                                    (priv->total_tx_ring_size *
249                                     sizeof(struct txbd8)) +
250                                    (priv->total_rx_ring_size *
251                                     sizeof(struct rxbd8)),
252                                    &addr, GFP_KERNEL);
253         if (!vaddr)
254                 return -ENOMEM;
255
256         for (i = 0; i < priv->num_tx_queues; i++) {
257                 tx_queue = priv->tx_queue[i];
258                 tx_queue->tx_bd_base = vaddr;
259                 tx_queue->tx_bd_dma_base = addr;
260                 tx_queue->dev = ndev;
261                 /* enet DMA only understands physical addresses */
262                 addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
263                 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
264         }
265
266         /* Start the rx descriptor ring where the tx ring leaves off */
267         for (i = 0; i < priv->num_rx_queues; i++) {
268                 rx_queue = priv->rx_queue[i];
269                 rx_queue->rx_bd_base = vaddr;
270                 rx_queue->rx_bd_dma_base = addr;
271                 rx_queue->dev = ndev;
272                 addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
273                 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
274         }
275
276         /* Setup the skbuff rings */
277         for (i = 0; i < priv->num_tx_queues; i++) {
278                 tx_queue = priv->tx_queue[i];
279                 tx_queue->tx_skbuff =
280                         kmalloc_array(tx_queue->tx_ring_size,
281                                       sizeof(*tx_queue->tx_skbuff),
282                                       GFP_KERNEL);
283                 if (!tx_queue->tx_skbuff)
284                         goto cleanup;
285
286                 for (k = 0; k < tx_queue->tx_ring_size; k++)
287                         tx_queue->tx_skbuff[k] = NULL;
288         }
289
290         for (i = 0; i < priv->num_rx_queues; i++) {
291                 rx_queue = priv->rx_queue[i];
292                 rx_queue->rx_skbuff =
293                         kmalloc_array(rx_queue->rx_ring_size,
294                                       sizeof(*rx_queue->rx_skbuff),
295                                       GFP_KERNEL);
296                 if (!rx_queue->rx_skbuff)
297                         goto cleanup;
298
299                 for (j = 0; j < rx_queue->rx_ring_size; j++)
300                         rx_queue->rx_skbuff[j] = NULL;
301         }
302
303         if (gfar_init_bds(ndev))
304                 goto cleanup;
305
306         return 0;
307
308 cleanup:
309         free_skb_resources(priv);
310         return -ENOMEM;
311 }
312
313 static void gfar_init_tx_rx_base(struct gfar_private *priv)
314 {
315         struct gfar __iomem *regs = priv->gfargrp[0].regs;
316         u32 __iomem *baddr;
317         int i;
318
319         baddr = &regs->tbase0;
320         for (i = 0; i < priv->num_tx_queues; i++) {
321                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
322                 baddr += 2;
323         }
324
325         baddr = &regs->rbase0;
326         for (i = 0; i < priv->num_rx_queues; i++) {
327                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
328                 baddr += 2;
329         }
330 }
331
332 static void gfar_init_mac(struct net_device *ndev)
333 {
334         struct gfar_private *priv = netdev_priv(ndev);
335         struct gfar __iomem *regs = priv->gfargrp[0].regs;
336         u32 rctrl = 0;
337         u32 tctrl = 0;
338         u32 attrs = 0;
339
340         /* write the tx/rx base registers */
341         gfar_init_tx_rx_base(priv);
342
343         /* Configure the coalescing support */
344         gfar_configure_coalescing_all(priv);
345
346         /* set this when rx hw offload (TOE) functions are being used */
347         priv->uses_rxfcb = 0;
348
349         if (priv->rx_filer_enable) {
350                 rctrl |= RCTRL_FILREN;
351                 /* Program the RIR0 reg with the required distribution */
352                 gfar_write(&regs->rir0, DEFAULT_RIR0);
353         }
354
355         /* Restore PROMISC mode */
356         if (ndev->flags & IFF_PROMISC)
357                 rctrl |= RCTRL_PROM;
358
359         if (ndev->features & NETIF_F_RXCSUM) {
360                 rctrl |= RCTRL_CHECKSUMMING;
361                 priv->uses_rxfcb = 1;
362         }
363
364         if (priv->extended_hash) {
365                 rctrl |= RCTRL_EXTHASH;
366
367                 gfar_clear_exact_match(ndev);
368                 rctrl |= RCTRL_EMEN;
369         }
370
371         if (priv->padding) {
372                 rctrl &= ~RCTRL_PAL_MASK;
373                 rctrl |= RCTRL_PADDING(priv->padding);
374         }
375
376         /* Insert receive time stamps into padding alignment bytes */
377         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
378                 rctrl &= ~RCTRL_PAL_MASK;
379                 rctrl |= RCTRL_PADDING(8);
380                 priv->padding = 8;
381         }
382
383         /* Enable HW time stamping if requested from user space */
384         if (priv->hwts_rx_en) {
385                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
386                 priv->uses_rxfcb = 1;
387         }
388
389         if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
390                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
391                 priv->uses_rxfcb = 1;
392         }
393
394         /* Init rctrl based on our settings */
395         gfar_write(&regs->rctrl, rctrl);
396
397         if (ndev->features & NETIF_F_IP_CSUM)
398                 tctrl |= TCTRL_INIT_CSUM;
399
400         if (priv->prio_sched_en)
401                 tctrl |= TCTRL_TXSCHED_PRIO;
402         else {
403                 tctrl |= TCTRL_TXSCHED_WRRS;
404                 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
405                 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
406         }
407
408         gfar_write(&regs->tctrl, tctrl);
409
410         /* Set the extraction length and index */
411         attrs = ATTRELI_EL(priv->rx_stash_size) |
412                 ATTRELI_EI(priv->rx_stash_index);
413
414         gfar_write(&regs->attreli, attrs);
415
416         /* Start with defaults, and add stashing or locking
417          * depending on the approprate variables
418          */
419         attrs = ATTR_INIT_SETTINGS;
420
421         if (priv->bd_stash_en)
422                 attrs |= ATTR_BDSTASH;
423
424         if (priv->rx_stash_size != 0)
425                 attrs |= ATTR_BUFSTASH;
426
427         gfar_write(&regs->attr, attrs);
428
429         gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
430         gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
431         gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
432 }
433
434 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
435 {
436         struct gfar_private *priv = netdev_priv(dev);
437         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
438         unsigned long tx_packets = 0, tx_bytes = 0;
439         int i;
440
441         for (i = 0; i < priv->num_rx_queues; i++) {
442                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
443                 rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
444                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
445         }
446
447         dev->stats.rx_packets = rx_packets;
448         dev->stats.rx_bytes   = rx_bytes;
449         dev->stats.rx_dropped = rx_dropped;
450
451         for (i = 0; i < priv->num_tx_queues; i++) {
452                 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
453                 tx_packets += priv->tx_queue[i]->stats.tx_packets;
454         }
455
456         dev->stats.tx_bytes   = tx_bytes;
457         dev->stats.tx_packets = tx_packets;
458
459         return &dev->stats;
460 }
461
462 static const struct net_device_ops gfar_netdev_ops = {
463         .ndo_open = gfar_enet_open,
464         .ndo_start_xmit = gfar_start_xmit,
465         .ndo_stop = gfar_close,
466         .ndo_change_mtu = gfar_change_mtu,
467         .ndo_set_features = gfar_set_features,
468         .ndo_set_rx_mode = gfar_set_multi,
469         .ndo_tx_timeout = gfar_timeout,
470         .ndo_do_ioctl = gfar_ioctl,
471         .ndo_get_stats = gfar_get_stats,
472         .ndo_set_mac_address = eth_mac_addr,
473         .ndo_validate_addr = eth_validate_addr,
474 #ifdef CONFIG_NET_POLL_CONTROLLER
475         .ndo_poll_controller = gfar_netpoll,
476 #endif
477 };
478
479 void lock_rx_qs(struct gfar_private *priv)
480 {
481         int i;
482
483         for (i = 0; i < priv->num_rx_queues; i++)
484                 spin_lock(&priv->rx_queue[i]->rxlock);
485 }
486
487 void lock_tx_qs(struct gfar_private *priv)
488 {
489         int i;
490
491         for (i = 0; i < priv->num_tx_queues; i++)
492                 spin_lock(&priv->tx_queue[i]->txlock);
493 }
494
495 void unlock_rx_qs(struct gfar_private *priv)
496 {
497         int i;
498
499         for (i = 0; i < priv->num_rx_queues; i++)
500                 spin_unlock(&priv->rx_queue[i]->rxlock);
501 }
502
503 void unlock_tx_qs(struct gfar_private *priv)
504 {
505         int i;
506
507         for (i = 0; i < priv->num_tx_queues; i++)
508                 spin_unlock(&priv->tx_queue[i]->txlock);
509 }
510
511 static void free_tx_pointers(struct gfar_private *priv)
512 {
513         int i;
514
515         for (i = 0; i < priv->num_tx_queues; i++)
516                 kfree(priv->tx_queue[i]);
517 }
518
519 static void free_rx_pointers(struct gfar_private *priv)
520 {
521         int i;
522
523         for (i = 0; i < priv->num_rx_queues; i++)
524                 kfree(priv->rx_queue[i]);
525 }
526
527 static void unmap_group_regs(struct gfar_private *priv)
528 {
529         int i;
530
531         for (i = 0; i < MAXGROUPS; i++)
532                 if (priv->gfargrp[i].regs)
533                         iounmap(priv->gfargrp[i].regs);
534 }
535
536 static void free_gfar_dev(struct gfar_private *priv)
537 {
538         int i, j;
539
540         for (i = 0; i < priv->num_grps; i++)
541                 for (j = 0; j < GFAR_NUM_IRQS; j++) {
542                         kfree(priv->gfargrp[i].irqinfo[j]);
543                         priv->gfargrp[i].irqinfo[j] = NULL;
544                 }
545
546         free_netdev(priv->ndev);
547 }
548
549 static void disable_napi(struct gfar_private *priv)
550 {
551         int i;
552
553         for (i = 0; i < priv->num_grps; i++)
554                 napi_disable(&priv->gfargrp[i].napi);
555 }
556
557 static void enable_napi(struct gfar_private *priv)
558 {
559         int i;
560
561         for (i = 0; i < priv->num_grps; i++)
562                 napi_enable(&priv->gfargrp[i].napi);
563 }
564
565 static int gfar_parse_group(struct device_node *np,
566                             struct gfar_private *priv, const char *model)
567 {
568         struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
569         u32 *queue_mask;
570         int i;
571
572         for (i = 0; i < GFAR_NUM_IRQS; i++) {
573                 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
574                                           GFP_KERNEL);
575                 if (!grp->irqinfo[i])
576                         return -ENOMEM;
577         }
578
579         grp->regs = of_iomap(np, 0);
580         if (!grp->regs)
581                 return -ENOMEM;
582
583         gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
584
585         /* If we aren't the FEC we have multiple interrupts */
586         if (model && strcasecmp(model, "FEC")) {
587                 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
588                 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
589                 if (gfar_irq(grp, TX)->irq == NO_IRQ ||
590                     gfar_irq(grp, RX)->irq == NO_IRQ ||
591                     gfar_irq(grp, ER)->irq == NO_IRQ)
592                         return -EINVAL;
593         }
594
595         grp->grp_id = priv->num_grps;
596         grp->priv = priv;
597         spin_lock_init(&grp->grplock);
598         if (priv->mode == MQ_MG_MODE) {
599                 queue_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
600                 grp->rx_bit_map = queue_mask ?
601                         *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
602                 queue_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
603                 grp->tx_bit_map = queue_mask ?
604                         *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
605         } else {
606                 grp->rx_bit_map = 0xFF;
607                 grp->tx_bit_map = 0xFF;
608         }
609         priv->num_grps++;
610
611         return 0;
612 }
613
614 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
615 {
616         const char *model;
617         const char *ctype;
618         const void *mac_addr;
619         int err = 0, i;
620         struct net_device *dev = NULL;
621         struct gfar_private *priv = NULL;
622         struct device_node *np = ofdev->dev.of_node;
623         struct device_node *child = NULL;
624         const u32 *stash;
625         const u32 *stash_len;
626         const u32 *stash_idx;
627         unsigned int num_tx_qs, num_rx_qs;
628         u32 *tx_queues, *rx_queues;
629
630         if (!np || !of_device_is_available(np))
631                 return -ENODEV;
632
633         /* parse the num of tx and rx queues */
634         tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
635         num_tx_qs = tx_queues ? *tx_queues : 1;
636
637         if (num_tx_qs > MAX_TX_QS) {
638                 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
639                        num_tx_qs, MAX_TX_QS);
640                 pr_err("Cannot do alloc_etherdev, aborting\n");
641                 return -EINVAL;
642         }
643
644         rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
645         num_rx_qs = rx_queues ? *rx_queues : 1;
646
647         if (num_rx_qs > MAX_RX_QS) {
648                 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
649                        num_rx_qs, MAX_RX_QS);
650                 pr_err("Cannot do alloc_etherdev, aborting\n");
651                 return -EINVAL;
652         }
653
654         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
655         dev = *pdev;
656         if (NULL == dev)
657                 return -ENOMEM;
658
659         priv = netdev_priv(dev);
660         priv->ndev = dev;
661
662         priv->num_tx_queues = num_tx_qs;
663         netif_set_real_num_rx_queues(dev, num_rx_qs);
664         priv->num_rx_queues = num_rx_qs;
665         priv->num_grps = 0x0;
666
667         /* Init Rx queue filer rule set linked list */
668         INIT_LIST_HEAD(&priv->rx_list.list);
669         priv->rx_list.count = 0;
670         mutex_init(&priv->rx_queue_access);
671
672         model = of_get_property(np, "model", NULL);
673
674         for (i = 0; i < MAXGROUPS; i++)
675                 priv->gfargrp[i].regs = NULL;
676
677         /* Parse and initialize group specific information */
678         if (of_device_is_compatible(np, "fsl,etsec2")) {
679                 priv->mode = MQ_MG_MODE;
680                 for_each_child_of_node(np, child) {
681                         err = gfar_parse_group(child, priv, model);
682                         if (err)
683                                 goto err_grp_init;
684                 }
685         } else {
686                 priv->mode = SQ_SG_MODE;
687                 err = gfar_parse_group(np, priv, model);
688                 if (err)
689                         goto err_grp_init;
690         }
691
692         for (i = 0; i < priv->num_tx_queues; i++)
693                 priv->tx_queue[i] = NULL;
694         for (i = 0; i < priv->num_rx_queues; i++)
695                 priv->rx_queue[i] = NULL;
696
697         for (i = 0; i < priv->num_tx_queues; i++) {
698                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
699                                             GFP_KERNEL);
700                 if (!priv->tx_queue[i]) {
701                         err = -ENOMEM;
702                         goto tx_alloc_failed;
703                 }
704                 priv->tx_queue[i]->tx_skbuff = NULL;
705                 priv->tx_queue[i]->qindex = i;
706                 priv->tx_queue[i]->dev = dev;
707                 spin_lock_init(&(priv->tx_queue[i]->txlock));
708         }
709
710         for (i = 0; i < priv->num_rx_queues; i++) {
711                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
712                                             GFP_KERNEL);
713                 if (!priv->rx_queue[i]) {
714                         err = -ENOMEM;
715                         goto rx_alloc_failed;
716                 }
717                 priv->rx_queue[i]->rx_skbuff = NULL;
718                 priv->rx_queue[i]->qindex = i;
719                 priv->rx_queue[i]->dev = dev;
720                 spin_lock_init(&(priv->rx_queue[i]->rxlock));
721         }
722
723
724         stash = of_get_property(np, "bd-stash", NULL);
725
726         if (stash) {
727                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
728                 priv->bd_stash_en = 1;
729         }
730
731         stash_len = of_get_property(np, "rx-stash-len", NULL);
732
733         if (stash_len)
734                 priv->rx_stash_size = *stash_len;
735
736         stash_idx = of_get_property(np, "rx-stash-idx", NULL);
737
738         if (stash_idx)
739                 priv->rx_stash_index = *stash_idx;
740
741         if (stash_len || stash_idx)
742                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
743
744         mac_addr = of_get_mac_address(np);
745
746         if (mac_addr)
747                 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
748
749         if (model && !strcasecmp(model, "TSEC"))
750                 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
751                                      FSL_GIANFAR_DEV_HAS_COALESCE |
752                                      FSL_GIANFAR_DEV_HAS_RMON |
753                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR;
754
755         if (model && !strcasecmp(model, "eTSEC"))
756                 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
757                                      FSL_GIANFAR_DEV_HAS_COALESCE |
758                                      FSL_GIANFAR_DEV_HAS_RMON |
759                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR |
760                                      FSL_GIANFAR_DEV_HAS_PADDING |
761                                      FSL_GIANFAR_DEV_HAS_CSUM |
762                                      FSL_GIANFAR_DEV_HAS_VLAN |
763                                      FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
764                                      FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
765                                      FSL_GIANFAR_DEV_HAS_TIMER;
766
767         ctype = of_get_property(np, "phy-connection-type", NULL);
768
769         /* We only care about rgmii-id.  The rest are autodetected */
770         if (ctype && !strcmp(ctype, "rgmii-id"))
771                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
772         else
773                 priv->interface = PHY_INTERFACE_MODE_MII;
774
775         if (of_get_property(np, "fsl,magic-packet", NULL))
776                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
777
778         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
779
780         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
781         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
782
783         return 0;
784
785 rx_alloc_failed:
786         free_rx_pointers(priv);
787 tx_alloc_failed:
788         free_tx_pointers(priv);
789 err_grp_init:
790         unmap_group_regs(priv);
791         free_gfar_dev(priv);
792         return err;
793 }
794
795 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
796                                struct ifreq *ifr, int cmd)
797 {
798         struct hwtstamp_config config;
799         struct gfar_private *priv = netdev_priv(netdev);
800
801         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
802                 return -EFAULT;
803
804         /* reserved for future extensions */
805         if (config.flags)
806                 return -EINVAL;
807
808         switch (config.tx_type) {
809         case HWTSTAMP_TX_OFF:
810                 priv->hwts_tx_en = 0;
811                 break;
812         case HWTSTAMP_TX_ON:
813                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
814                         return -ERANGE;
815                 priv->hwts_tx_en = 1;
816                 break;
817         default:
818                 return -ERANGE;
819         }
820
821         switch (config.rx_filter) {
822         case HWTSTAMP_FILTER_NONE:
823                 if (priv->hwts_rx_en) {
824                         stop_gfar(netdev);
825                         priv->hwts_rx_en = 0;
826                         startup_gfar(netdev);
827                 }
828                 break;
829         default:
830                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
831                         return -ERANGE;
832                 if (!priv->hwts_rx_en) {
833                         stop_gfar(netdev);
834                         priv->hwts_rx_en = 1;
835                         startup_gfar(netdev);
836                 }
837                 config.rx_filter = HWTSTAMP_FILTER_ALL;
838                 break;
839         }
840
841         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
842                 -EFAULT : 0;
843 }
844
845 /* Ioctl MII Interface */
846 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
847 {
848         struct gfar_private *priv = netdev_priv(dev);
849
850         if (!netif_running(dev))
851                 return -EINVAL;
852
853         if (cmd == SIOCSHWTSTAMP)
854                 return gfar_hwtstamp_ioctl(dev, rq, cmd);
855
856         if (!priv->phydev)
857                 return -ENODEV;
858
859         return phy_mii_ioctl(priv->phydev, rq, cmd);
860 }
861
862 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
863 {
864         unsigned int new_bit_map = 0x0;
865         int mask = 0x1 << (max_qs - 1), i;
866
867         for (i = 0; i < max_qs; i++) {
868                 if (bit_map & mask)
869                         new_bit_map = new_bit_map + (1 << i);
870                 mask = mask >> 0x1;
871         }
872         return new_bit_map;
873 }
874
875 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
876                                    u32 class)
877 {
878         u32 rqfpr = FPR_FILER_MASK;
879         u32 rqfcr = 0x0;
880
881         rqfar--;
882         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
883         priv->ftp_rqfpr[rqfar] = rqfpr;
884         priv->ftp_rqfcr[rqfar] = rqfcr;
885         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
886
887         rqfar--;
888         rqfcr = RQFCR_CMP_NOMATCH;
889         priv->ftp_rqfpr[rqfar] = rqfpr;
890         priv->ftp_rqfcr[rqfar] = rqfcr;
891         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
892
893         rqfar--;
894         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
895         rqfpr = class;
896         priv->ftp_rqfcr[rqfar] = rqfcr;
897         priv->ftp_rqfpr[rqfar] = rqfpr;
898         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
899
900         rqfar--;
901         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
902         rqfpr = class;
903         priv->ftp_rqfcr[rqfar] = rqfcr;
904         priv->ftp_rqfpr[rqfar] = rqfpr;
905         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
906
907         return rqfar;
908 }
909
910 static void gfar_init_filer_table(struct gfar_private *priv)
911 {
912         int i = 0x0;
913         u32 rqfar = MAX_FILER_IDX;
914         u32 rqfcr = 0x0;
915         u32 rqfpr = FPR_FILER_MASK;
916
917         /* Default rule */
918         rqfcr = RQFCR_CMP_MATCH;
919         priv->ftp_rqfcr[rqfar] = rqfcr;
920         priv->ftp_rqfpr[rqfar] = rqfpr;
921         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
922
923         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
924         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
925         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
926         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
927         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
928         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
929
930         /* cur_filer_idx indicated the first non-masked rule */
931         priv->cur_filer_idx = rqfar;
932
933         /* Rest are masked rules */
934         rqfcr = RQFCR_CMP_NOMATCH;
935         for (i = 0; i < rqfar; i++) {
936                 priv->ftp_rqfcr[i] = rqfcr;
937                 priv->ftp_rqfpr[i] = rqfpr;
938                 gfar_write_filer(priv, i, rqfcr, rqfpr);
939         }
940 }
941
942 static void gfar_detect_errata(struct gfar_private *priv)
943 {
944         struct device *dev = &priv->ofdev->dev;
945         unsigned int pvr = mfspr(SPRN_PVR);
946         unsigned int svr = mfspr(SPRN_SVR);
947         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
948         unsigned int rev = svr & 0xffff;
949
950         /* MPC8313 Rev 2.0 and higher; All MPC837x */
951         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
952             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
953                 priv->errata |= GFAR_ERRATA_74;
954
955         /* MPC8313 and MPC837x all rev */
956         if ((pvr == 0x80850010 && mod == 0x80b0) ||
957             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
958                 priv->errata |= GFAR_ERRATA_76;
959
960         /* MPC8313 and MPC837x all rev */
961         if ((pvr == 0x80850010 && mod == 0x80b0) ||
962             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
963                 priv->errata |= GFAR_ERRATA_A002;
964
965         /* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
966         if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
967             (pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
968                 priv->errata |= GFAR_ERRATA_12;
969
970         if (priv->errata)
971                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
972                          priv->errata);
973 }
974
975 /* Set up the ethernet device structure, private data,
976  * and anything else we need before we start
977  */
978 static int gfar_probe(struct platform_device *ofdev)
979 {
980         u32 tempval;
981         struct net_device *dev = NULL;
982         struct gfar_private *priv = NULL;
983         struct gfar __iomem *regs = NULL;
984         int err = 0, i, grp_idx = 0;
985         u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
986         u32 isrg = 0;
987         u32 __iomem *baddr;
988
989         err = gfar_of_init(ofdev, &dev);
990
991         if (err)
992                 return err;
993
994         priv = netdev_priv(dev);
995         priv->ndev = dev;
996         priv->ofdev = ofdev;
997         priv->dev = &ofdev->dev;
998         SET_NETDEV_DEV(dev, &ofdev->dev);
999
1000         spin_lock_init(&priv->bflock);
1001         INIT_WORK(&priv->reset_task, gfar_reset_task);
1002
1003         dev_set_drvdata(&ofdev->dev, priv);
1004         regs = priv->gfargrp[0].regs;
1005
1006         gfar_detect_errata(priv);
1007
1008         /* Stop the DMA engine now, in case it was running before
1009          * (The firmware could have used it, and left it running).
1010          */
1011         gfar_halt(dev);
1012
1013         /* Reset MAC layer */
1014         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1015
1016         /* We need to delay at least 3 TX clocks */
1017         udelay(2);
1018
1019         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1020         gfar_write(&regs->maccfg1, tempval);
1021
1022         /* Initialize MACCFG2. */
1023         tempval = MACCFG2_INIT_SETTINGS;
1024         if (gfar_has_errata(priv, GFAR_ERRATA_74))
1025                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1026         gfar_write(&regs->maccfg2, tempval);
1027
1028         /* Initialize ECNTRL */
1029         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1030
1031         /* Set the dev->base_addr to the gfar reg region */
1032         dev->base_addr = (unsigned long) regs;
1033
1034         /* Fill in the dev structure */
1035         dev->watchdog_timeo = TX_TIMEOUT;
1036         dev->mtu = 1500;
1037         dev->netdev_ops = &gfar_netdev_ops;
1038         dev->ethtool_ops = &gfar_ethtool_ops;
1039
1040         /* Register for napi ...We are registering NAPI for each grp */
1041         for (i = 0; i < priv->num_grps; i++)
1042                 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll,
1043                                GFAR_DEV_WEIGHT);
1044
1045         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1046                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1047                                    NETIF_F_RXCSUM;
1048                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1049                                  NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1050         }
1051
1052         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1053                 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1054                                     NETIF_F_HW_VLAN_CTAG_RX;
1055                 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1056         }
1057
1058         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1059                 priv->extended_hash = 1;
1060                 priv->hash_width = 9;
1061
1062                 priv->hash_regs[0] = &regs->igaddr0;
1063                 priv->hash_regs[1] = &regs->igaddr1;
1064                 priv->hash_regs[2] = &regs->igaddr2;
1065                 priv->hash_regs[3] = &regs->igaddr3;
1066                 priv->hash_regs[4] = &regs->igaddr4;
1067                 priv->hash_regs[5] = &regs->igaddr5;
1068                 priv->hash_regs[6] = &regs->igaddr6;
1069                 priv->hash_regs[7] = &regs->igaddr7;
1070                 priv->hash_regs[8] = &regs->gaddr0;
1071                 priv->hash_regs[9] = &regs->gaddr1;
1072                 priv->hash_regs[10] = &regs->gaddr2;
1073                 priv->hash_regs[11] = &regs->gaddr3;
1074                 priv->hash_regs[12] = &regs->gaddr4;
1075                 priv->hash_regs[13] = &regs->gaddr5;
1076                 priv->hash_regs[14] = &regs->gaddr6;
1077                 priv->hash_regs[15] = &regs->gaddr7;
1078
1079         } else {
1080                 priv->extended_hash = 0;
1081                 priv->hash_width = 8;
1082
1083                 priv->hash_regs[0] = &regs->gaddr0;
1084                 priv->hash_regs[1] = &regs->gaddr1;
1085                 priv->hash_regs[2] = &regs->gaddr2;
1086                 priv->hash_regs[3] = &regs->gaddr3;
1087                 priv->hash_regs[4] = &regs->gaddr4;
1088                 priv->hash_regs[5] = &regs->gaddr5;
1089                 priv->hash_regs[6] = &regs->gaddr6;
1090                 priv->hash_regs[7] = &regs->gaddr7;
1091         }
1092
1093         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1094                 priv->padding = DEFAULT_PADDING;
1095         else
1096                 priv->padding = 0;
1097
1098         if (dev->features & NETIF_F_IP_CSUM ||
1099             priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1100                 dev->needed_headroom = GMAC_FCB_LEN;
1101
1102         /* Program the isrg regs only if number of grps > 1 */
1103         if (priv->num_grps > 1) {
1104                 baddr = &regs->isrg0;
1105                 for (i = 0; i < priv->num_grps; i++) {
1106                         isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1107                         isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1108                         gfar_write(baddr, isrg);
1109                         baddr++;
1110                         isrg = 0x0;
1111                 }
1112         }
1113
1114         /* Need to reverse the bit maps as  bit_map's MSB is q0
1115          * but, for_each_set_bit parses from right to left, which
1116          * basically reverses the queue numbers
1117          */
1118         for (i = 0; i< priv->num_grps; i++) {
1119                 priv->gfargrp[i].tx_bit_map =
1120                         reverse_bitmap(priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1121                 priv->gfargrp[i].rx_bit_map =
1122                         reverse_bitmap(priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1123         }
1124
1125         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1126          * also assign queues to groups
1127          */
1128         for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1129                 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1130
1131                 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1132                                  priv->num_rx_queues) {
1133                         priv->gfargrp[grp_idx].num_rx_queues++;
1134                         priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1135                         rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1136                         rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1137                 }
1138                 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1139
1140                 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1141                                  priv->num_tx_queues) {
1142                         priv->gfargrp[grp_idx].num_tx_queues++;
1143                         priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1144                         tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1145                         tqueue = tqueue | (TQUEUE_EN0 >> i);
1146                 }
1147                 priv->gfargrp[grp_idx].rstat = rstat;
1148                 priv->gfargrp[grp_idx].tstat = tstat;
1149                 rstat = tstat =0;
1150         }
1151
1152         gfar_write(&regs->rqueue, rqueue);
1153         gfar_write(&regs->tqueue, tqueue);
1154
1155         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1156
1157         /* Initializing some of the rx/tx queue level parameters */
1158         for (i = 0; i < priv->num_tx_queues; i++) {
1159                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1160                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1161                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1162                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1163         }
1164
1165         for (i = 0; i < priv->num_rx_queues; i++) {
1166                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1167                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1168                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1169         }
1170
1171         /* always enable rx filer */
1172         priv->rx_filer_enable = 1;
1173         /* Enable most messages by default */
1174         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1175         /* use pritority h/w tx queue scheduling for single queue devices */
1176         if (priv->num_tx_queues == 1)
1177                 priv->prio_sched_en = 1;
1178
1179         /* Carrier starts down, phylib will bring it up */
1180         netif_carrier_off(dev);
1181
1182         err = register_netdev(dev);
1183
1184         if (err) {
1185                 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1186                 goto register_fail;
1187         }
1188
1189         device_init_wakeup(&dev->dev,
1190                            priv->device_flags &
1191                            FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1192
1193         /* fill out IRQ number and name fields */
1194         for (i = 0; i < priv->num_grps; i++) {
1195                 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1196                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1197                         sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1198                                 dev->name, "_g", '0' + i, "_tx");
1199                         sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1200                                 dev->name, "_g", '0' + i, "_rx");
1201                         sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1202                                 dev->name, "_g", '0' + i, "_er");
1203                 } else
1204                         strcpy(gfar_irq(grp, TX)->name, dev->name);
1205         }
1206
1207         /* Initialize the filer table */
1208         gfar_init_filer_table(priv);
1209
1210         /* Create all the sysfs files */
1211         gfar_init_sysfs(dev);
1212
1213         /* Print out the device info */
1214         netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1215
1216         /* Even more device info helps when determining which kernel
1217          * provided which set of benchmarks.
1218          */
1219         netdev_info(dev, "Running with NAPI enabled\n");
1220         for (i = 0; i < priv->num_rx_queues; i++)
1221                 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1222                             i, priv->rx_queue[i]->rx_ring_size);
1223         for (i = 0; i < priv->num_tx_queues; i++)
1224                 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1225                             i, priv->tx_queue[i]->tx_ring_size);
1226
1227         return 0;
1228
1229 register_fail:
1230         unmap_group_regs(priv);
1231         free_tx_pointers(priv);
1232         free_rx_pointers(priv);
1233         if (priv->phy_node)
1234                 of_node_put(priv->phy_node);
1235         if (priv->tbi_node)
1236                 of_node_put(priv->tbi_node);
1237         free_gfar_dev(priv);
1238         return err;
1239 }
1240
1241 static int gfar_remove(struct platform_device *ofdev)
1242 {
1243         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1244
1245         if (priv->phy_node)
1246                 of_node_put(priv->phy_node);
1247         if (priv->tbi_node)
1248                 of_node_put(priv->tbi_node);
1249
1250         dev_set_drvdata(&ofdev->dev, NULL);
1251
1252         unregister_netdev(priv->ndev);
1253         unmap_group_regs(priv);
1254         free_gfar_dev(priv);
1255
1256         return 0;
1257 }
1258
1259 #ifdef CONFIG_PM
1260
1261 static int gfar_suspend(struct device *dev)
1262 {
1263         struct gfar_private *priv = dev_get_drvdata(dev);
1264         struct net_device *ndev = priv->ndev;
1265         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1266         unsigned long flags;
1267         u32 tempval;
1268
1269         int magic_packet = priv->wol_en &&
1270                            (priv->device_flags &
1271                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1272
1273         netif_device_detach(ndev);
1274
1275         if (netif_running(ndev)) {
1276
1277                 local_irq_save(flags);
1278                 lock_tx_qs(priv);
1279                 lock_rx_qs(priv);
1280
1281                 gfar_halt_nodisable(ndev);
1282
1283                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1284                 tempval = gfar_read(&regs->maccfg1);
1285
1286                 tempval &= ~MACCFG1_TX_EN;
1287
1288                 if (!magic_packet)
1289                         tempval &= ~MACCFG1_RX_EN;
1290
1291                 gfar_write(&regs->maccfg1, tempval);
1292
1293                 unlock_rx_qs(priv);
1294                 unlock_tx_qs(priv);
1295                 local_irq_restore(flags);
1296
1297                 disable_napi(priv);
1298
1299                 if (magic_packet) {
1300                         /* Enable interrupt on Magic Packet */
1301                         gfar_write(&regs->imask, IMASK_MAG);
1302
1303                         /* Enable Magic Packet mode */
1304                         tempval = gfar_read(&regs->maccfg2);
1305                         tempval |= MACCFG2_MPEN;
1306                         gfar_write(&regs->maccfg2, tempval);
1307                 } else {
1308                         phy_stop(priv->phydev);
1309                 }
1310         }
1311
1312         return 0;
1313 }
1314
1315 static int gfar_resume(struct device *dev)
1316 {
1317         struct gfar_private *priv = dev_get_drvdata(dev);
1318         struct net_device *ndev = priv->ndev;
1319         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1320         unsigned long flags;
1321         u32 tempval;
1322         int magic_packet = priv->wol_en &&
1323                            (priv->device_flags &
1324                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1325
1326         if (!netif_running(ndev)) {
1327                 netif_device_attach(ndev);
1328                 return 0;
1329         }
1330
1331         if (!magic_packet && priv->phydev)
1332                 phy_start(priv->phydev);
1333
1334         /* Disable Magic Packet mode, in case something
1335          * else woke us up.
1336          */
1337         local_irq_save(flags);
1338         lock_tx_qs(priv);
1339         lock_rx_qs(priv);
1340
1341         tempval = gfar_read(&regs->maccfg2);
1342         tempval &= ~MACCFG2_MPEN;
1343         gfar_write(&regs->maccfg2, tempval);
1344
1345         gfar_start(ndev);
1346
1347         unlock_rx_qs(priv);
1348         unlock_tx_qs(priv);
1349         local_irq_restore(flags);
1350
1351         netif_device_attach(ndev);
1352
1353         enable_napi(priv);
1354
1355         return 0;
1356 }
1357
1358 static int gfar_restore(struct device *dev)
1359 {
1360         struct gfar_private *priv = dev_get_drvdata(dev);
1361         struct net_device *ndev = priv->ndev;
1362
1363         if (!netif_running(ndev)) {
1364                 netif_device_attach(ndev);
1365
1366                 return 0;
1367         }
1368
1369         if (gfar_init_bds(ndev)) {
1370                 free_skb_resources(priv);
1371                 return -ENOMEM;
1372         }
1373
1374         init_registers(ndev);
1375         gfar_set_mac_address(ndev);
1376         gfar_init_mac(ndev);
1377         gfar_start(ndev);
1378
1379         priv->oldlink = 0;
1380         priv->oldspeed = 0;
1381         priv->oldduplex = -1;
1382
1383         if (priv->phydev)
1384                 phy_start(priv->phydev);
1385
1386         netif_device_attach(ndev);
1387         enable_napi(priv);
1388
1389         return 0;
1390 }
1391
1392 static struct dev_pm_ops gfar_pm_ops = {
1393         .suspend = gfar_suspend,
1394         .resume = gfar_resume,
1395         .freeze = gfar_suspend,
1396         .thaw = gfar_resume,
1397         .restore = gfar_restore,
1398 };
1399
1400 #define GFAR_PM_OPS (&gfar_pm_ops)
1401
1402 #else
1403
1404 #define GFAR_PM_OPS NULL
1405
1406 #endif
1407
1408 /* Reads the controller's registers to determine what interface
1409  * connects it to the PHY.
1410  */
1411 static phy_interface_t gfar_get_interface(struct net_device *dev)
1412 {
1413         struct gfar_private *priv = netdev_priv(dev);
1414         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1415         u32 ecntrl;
1416
1417         ecntrl = gfar_read(&regs->ecntrl);
1418
1419         if (ecntrl & ECNTRL_SGMII_MODE)
1420                 return PHY_INTERFACE_MODE_SGMII;
1421
1422         if (ecntrl & ECNTRL_TBI_MODE) {
1423                 if (ecntrl & ECNTRL_REDUCED_MODE)
1424                         return PHY_INTERFACE_MODE_RTBI;
1425                 else
1426                         return PHY_INTERFACE_MODE_TBI;
1427         }
1428
1429         if (ecntrl & ECNTRL_REDUCED_MODE) {
1430                 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1431                         return PHY_INTERFACE_MODE_RMII;
1432                 }
1433                 else {
1434                         phy_interface_t interface = priv->interface;
1435
1436                         /* This isn't autodetected right now, so it must
1437                          * be set by the device tree or platform code.
1438                          */
1439                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1440                                 return PHY_INTERFACE_MODE_RGMII_ID;
1441
1442                         return PHY_INTERFACE_MODE_RGMII;
1443                 }
1444         }
1445
1446         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1447                 return PHY_INTERFACE_MODE_GMII;
1448
1449         return PHY_INTERFACE_MODE_MII;
1450 }
1451
1452
1453 /* Initializes driver's PHY state, and attaches to the PHY.
1454  * Returns 0 on success.
1455  */
1456 static int init_phy(struct net_device *dev)
1457 {
1458         struct gfar_private *priv = netdev_priv(dev);
1459         uint gigabit_support =
1460                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1461                 SUPPORTED_1000baseT_Full : 0;
1462         phy_interface_t interface;
1463
1464         priv->oldlink = 0;
1465         priv->oldspeed = 0;
1466         priv->oldduplex = -1;
1467
1468         interface = gfar_get_interface(dev);
1469
1470         priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1471                                       interface);
1472         if (!priv->phydev)
1473                 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1474                                                          interface);
1475         if (!priv->phydev) {
1476                 dev_err(&dev->dev, "could not attach to PHY\n");
1477                 return -ENODEV;
1478         }
1479
1480         if (interface == PHY_INTERFACE_MODE_SGMII)
1481                 gfar_configure_serdes(dev);
1482
1483         /* Remove any features not supported by the controller */
1484         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1485         priv->phydev->advertising = priv->phydev->supported;
1486
1487         return 0;
1488 }
1489
1490 /* Initialize TBI PHY interface for communicating with the
1491  * SERDES lynx PHY on the chip.  We communicate with this PHY
1492  * through the MDIO bus on each controller, treating it as a
1493  * "normal" PHY at the address found in the TBIPA register.  We assume
1494  * that the TBIPA register is valid.  Either the MDIO bus code will set
1495  * it to a value that doesn't conflict with other PHYs on the bus, or the
1496  * value doesn't matter, as there are no other PHYs on the bus.
1497  */
1498 static void gfar_configure_serdes(struct net_device *dev)
1499 {
1500         struct gfar_private *priv = netdev_priv(dev);
1501         struct phy_device *tbiphy;
1502
1503         if (!priv->tbi_node) {
1504                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1505                                     "device tree specify a tbi-handle\n");
1506                 return;
1507         }
1508
1509         tbiphy = of_phy_find_device(priv->tbi_node);
1510         if (!tbiphy) {
1511                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1512                 return;
1513         }
1514
1515         /* If the link is already up, we must already be ok, and don't need to
1516          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1517          * everything for us?  Resetting it takes the link down and requires
1518          * several seconds for it to come back.
1519          */
1520         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1521                 return;
1522
1523         /* Single clk mode, mii mode off(for serdes communication) */
1524         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1525
1526         phy_write(tbiphy, MII_ADVERTISE,
1527                   ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1528                   ADVERTISE_1000XPSE_ASYM);
1529
1530         phy_write(tbiphy, MII_BMCR,
1531                   BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1532                   BMCR_SPEED1000);
1533 }
1534
1535 static void init_registers(struct net_device *dev)
1536 {
1537         struct gfar_private *priv = netdev_priv(dev);
1538         struct gfar __iomem *regs = NULL;
1539         int i;
1540
1541         for (i = 0; i < priv->num_grps; i++) {
1542                 regs = priv->gfargrp[i].regs;
1543                 /* Clear IEVENT */
1544                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1545
1546                 /* Initialize IMASK */
1547                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1548         }
1549
1550         regs = priv->gfargrp[0].regs;
1551         /* Init hash registers to zero */
1552         gfar_write(&regs->igaddr0, 0);
1553         gfar_write(&regs->igaddr1, 0);
1554         gfar_write(&regs->igaddr2, 0);
1555         gfar_write(&regs->igaddr3, 0);
1556         gfar_write(&regs->igaddr4, 0);
1557         gfar_write(&regs->igaddr5, 0);
1558         gfar_write(&regs->igaddr6, 0);
1559         gfar_write(&regs->igaddr7, 0);
1560
1561         gfar_write(&regs->gaddr0, 0);
1562         gfar_write(&regs->gaddr1, 0);
1563         gfar_write(&regs->gaddr2, 0);
1564         gfar_write(&regs->gaddr3, 0);
1565         gfar_write(&regs->gaddr4, 0);
1566         gfar_write(&regs->gaddr5, 0);
1567         gfar_write(&regs->gaddr6, 0);
1568         gfar_write(&regs->gaddr7, 0);
1569
1570         /* Zero out the rmon mib registers if it has them */
1571         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1572                 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1573
1574                 /* Mask off the CAM interrupts */
1575                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1576                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1577         }
1578
1579         /* Initialize the max receive buffer length */
1580         gfar_write(&regs->mrblr, priv->rx_buffer_size);
1581
1582         /* Initialize the Minimum Frame Length Register */
1583         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1584 }
1585
1586 static int __gfar_is_rx_idle(struct gfar_private *priv)
1587 {
1588         u32 res;
1589
1590         /* Normaly TSEC should not hang on GRS commands, so we should
1591          * actually wait for IEVENT_GRSC flag.
1592          */
1593         if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1594                 return 0;
1595
1596         /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1597          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1598          * and the Rx can be safely reset.
1599          */
1600         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1601         res &= 0x7f807f80;
1602         if ((res & 0xffff) == (res >> 16))
1603                 return 1;
1604
1605         return 0;
1606 }
1607
1608 /* Halt the receive and transmit queues */
1609 static void gfar_halt_nodisable(struct net_device *dev)
1610 {
1611         struct gfar_private *priv = netdev_priv(dev);
1612         struct gfar __iomem *regs = NULL;
1613         u32 tempval;
1614         int i;
1615
1616         for (i = 0; i < priv->num_grps; i++) {
1617                 regs = priv->gfargrp[i].regs;
1618                 /* Mask all interrupts */
1619                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1620
1621                 /* Clear all interrupts */
1622                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1623         }
1624
1625         regs = priv->gfargrp[0].regs;
1626         /* Stop the DMA, and wait for it to stop */
1627         tempval = gfar_read(&regs->dmactrl);
1628         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) !=
1629             (DMACTRL_GRS | DMACTRL_GTS)) {
1630                 int ret;
1631
1632                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1633                 gfar_write(&regs->dmactrl, tempval);
1634
1635                 do {
1636                         ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1637                                  (IEVENT_GRSC | IEVENT_GTSC)) ==
1638                                  (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1639                         if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1640                                 ret = __gfar_is_rx_idle(priv);
1641                 } while (!ret);
1642         }
1643 }
1644
1645 /* Halt the receive and transmit queues */
1646 void gfar_halt(struct net_device *dev)
1647 {
1648         struct gfar_private *priv = netdev_priv(dev);
1649         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1650         u32 tempval;
1651
1652         gfar_halt_nodisable(dev);
1653
1654         /* Disable Rx and Tx */
1655         tempval = gfar_read(&regs->maccfg1);
1656         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1657         gfar_write(&regs->maccfg1, tempval);
1658 }
1659
1660 static void free_grp_irqs(struct gfar_priv_grp *grp)
1661 {
1662         free_irq(gfar_irq(grp, TX)->irq, grp);
1663         free_irq(gfar_irq(grp, RX)->irq, grp);
1664         free_irq(gfar_irq(grp, ER)->irq, grp);
1665 }
1666
1667 void stop_gfar(struct net_device *dev)
1668 {
1669         struct gfar_private *priv = netdev_priv(dev);
1670         unsigned long flags;
1671         int i;
1672
1673         phy_stop(priv->phydev);
1674
1675
1676         /* Lock it down */
1677         local_irq_save(flags);
1678         lock_tx_qs(priv);
1679         lock_rx_qs(priv);
1680
1681         gfar_halt(dev);
1682
1683         unlock_rx_qs(priv);
1684         unlock_tx_qs(priv);
1685         local_irq_restore(flags);
1686
1687         /* Free the IRQs */
1688         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1689                 for (i = 0; i < priv->num_grps; i++)
1690                         free_grp_irqs(&priv->gfargrp[i]);
1691         } else {
1692                 for (i = 0; i < priv->num_grps; i++)
1693                         free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
1694                                  &priv->gfargrp[i]);
1695         }
1696
1697         free_skb_resources(priv);
1698 }
1699
1700 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1701 {
1702         struct txbd8 *txbdp;
1703         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1704         int i, j;
1705
1706         txbdp = tx_queue->tx_bd_base;
1707
1708         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1709                 if (!tx_queue->tx_skbuff[i])
1710                         continue;
1711
1712                 dma_unmap_single(priv->dev, txbdp->bufPtr,
1713                                  txbdp->length, DMA_TO_DEVICE);
1714                 txbdp->lstatus = 0;
1715                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1716                      j++) {
1717                         txbdp++;
1718                         dma_unmap_page(priv->dev, txbdp->bufPtr,
1719                                        txbdp->length, DMA_TO_DEVICE);
1720                 }
1721                 txbdp++;
1722                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1723                 tx_queue->tx_skbuff[i] = NULL;
1724         }
1725         kfree(tx_queue->tx_skbuff);
1726         tx_queue->tx_skbuff = NULL;
1727 }
1728
1729 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1730 {
1731         struct rxbd8 *rxbdp;
1732         struct gfar_private *priv = netdev_priv(rx_queue->dev);
1733         int i;
1734
1735         rxbdp = rx_queue->rx_bd_base;
1736
1737         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1738                 if (rx_queue->rx_skbuff[i]) {
1739                         dma_unmap_single(priv->dev, rxbdp->bufPtr,
1740                                          priv->rx_buffer_size,
1741                                          DMA_FROM_DEVICE);
1742                         dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1743                         rx_queue->rx_skbuff[i] = NULL;
1744                 }
1745                 rxbdp->lstatus = 0;
1746                 rxbdp->bufPtr = 0;
1747                 rxbdp++;
1748         }
1749         kfree(rx_queue->rx_skbuff);
1750         rx_queue->rx_skbuff = NULL;
1751 }
1752
1753 /* If there are any tx skbs or rx skbs still around, free them.
1754  * Then free tx_skbuff and rx_skbuff
1755  */
1756 static void free_skb_resources(struct gfar_private *priv)
1757 {
1758         struct gfar_priv_tx_q *tx_queue = NULL;
1759         struct gfar_priv_rx_q *rx_queue = NULL;
1760         int i;
1761
1762         /* Go through all the buffer descriptors and free their data buffers */
1763         for (i = 0; i < priv->num_tx_queues; i++) {
1764                 struct netdev_queue *txq;
1765
1766                 tx_queue = priv->tx_queue[i];
1767                 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1768                 if (tx_queue->tx_skbuff)
1769                         free_skb_tx_queue(tx_queue);
1770                 netdev_tx_reset_queue(txq);
1771         }
1772
1773         for (i = 0; i < priv->num_rx_queues; i++) {
1774                 rx_queue = priv->rx_queue[i];
1775                 if (rx_queue->rx_skbuff)
1776                         free_skb_rx_queue(rx_queue);
1777         }
1778
1779         dma_free_coherent(priv->dev,
1780                           sizeof(struct txbd8) * priv->total_tx_ring_size +
1781                           sizeof(struct rxbd8) * priv->total_rx_ring_size,
1782                           priv->tx_queue[0]->tx_bd_base,
1783                           priv->tx_queue[0]->tx_bd_dma_base);
1784 }
1785
1786 void gfar_start(struct net_device *dev)
1787 {
1788         struct gfar_private *priv = netdev_priv(dev);
1789         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1790         u32 tempval;
1791         int i = 0;
1792
1793         /* Enable Rx and Tx in MACCFG1 */
1794         tempval = gfar_read(&regs->maccfg1);
1795         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1796         gfar_write(&regs->maccfg1, tempval);
1797
1798         /* Initialize DMACTRL to have WWR and WOP */
1799         tempval = gfar_read(&regs->dmactrl);
1800         tempval |= DMACTRL_INIT_SETTINGS;
1801         gfar_write(&regs->dmactrl, tempval);
1802
1803         /* Make sure we aren't stopped */
1804         tempval = gfar_read(&regs->dmactrl);
1805         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1806         gfar_write(&regs->dmactrl, tempval);
1807
1808         for (i = 0; i < priv->num_grps; i++) {
1809                 regs = priv->gfargrp[i].regs;
1810                 /* Clear THLT/RHLT, so that the DMA starts polling now */
1811                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1812                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1813                 /* Unmask the interrupts we look for */
1814                 gfar_write(&regs->imask, IMASK_DEFAULT);
1815         }
1816
1817         dev->trans_start = jiffies; /* prevent tx timeout */
1818 }
1819
1820 static void gfar_configure_coalescing(struct gfar_private *priv,
1821                                unsigned long tx_mask, unsigned long rx_mask)
1822 {
1823         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1824         u32 __iomem *baddr;
1825
1826         if (priv->mode == MQ_MG_MODE) {
1827                 int i = 0;
1828
1829                 baddr = &regs->txic0;
1830                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1831                         gfar_write(baddr + i, 0);
1832                         if (likely(priv->tx_queue[i]->txcoalescing))
1833                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1834                 }
1835
1836                 baddr = &regs->rxic0;
1837                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1838                         gfar_write(baddr + i, 0);
1839                         if (likely(priv->rx_queue[i]->rxcoalescing))
1840                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1841                 }
1842         } else {
1843                 /* Backward compatible case -- even if we enable
1844                  * multiple queues, there's only single reg to program
1845                  */
1846                 gfar_write(&regs->txic, 0);
1847                 if (likely(priv->tx_queue[0]->txcoalescing))
1848                         gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1849
1850                 gfar_write(&regs->rxic, 0);
1851                 if (unlikely(priv->rx_queue[0]->rxcoalescing))
1852                         gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1853         }
1854 }
1855
1856 void gfar_configure_coalescing_all(struct gfar_private *priv)
1857 {
1858         gfar_configure_coalescing(priv, 0xFF, 0xFF);
1859 }
1860
1861 static int register_grp_irqs(struct gfar_priv_grp *grp)
1862 {
1863         struct gfar_private *priv = grp->priv;
1864         struct net_device *dev = priv->ndev;
1865         int err;
1866
1867         /* If the device has multiple interrupts, register for
1868          * them.  Otherwise, only register for the one
1869          */
1870         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1871                 /* Install our interrupt handlers for Error,
1872                  * Transmit, and Receive
1873                  */
1874                 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
1875                                   gfar_irq(grp, ER)->name, grp);
1876                 if (err < 0) {
1877                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1878                                   gfar_irq(grp, ER)->irq);
1879
1880                         goto err_irq_fail;
1881                 }
1882                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
1883                                   gfar_irq(grp, TX)->name, grp);
1884                 if (err < 0) {
1885                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1886                                   gfar_irq(grp, TX)->irq);
1887                         goto tx_irq_fail;
1888                 }
1889                 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
1890                                   gfar_irq(grp, RX)->name, grp);
1891                 if (err < 0) {
1892                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1893                                   gfar_irq(grp, RX)->irq);
1894                         goto rx_irq_fail;
1895                 }
1896         } else {
1897                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
1898                                   gfar_irq(grp, TX)->name, grp);
1899                 if (err < 0) {
1900                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1901                                   gfar_irq(grp, TX)->irq);
1902                         goto err_irq_fail;
1903                 }
1904         }
1905
1906         return 0;
1907
1908 rx_irq_fail:
1909         free_irq(gfar_irq(grp, TX)->irq, grp);
1910 tx_irq_fail:
1911         free_irq(gfar_irq(grp, ER)->irq, grp);
1912 err_irq_fail:
1913         return err;
1914
1915 }
1916
1917 /* Bring the controller up and running */
1918 int startup_gfar(struct net_device *ndev)
1919 {
1920         struct gfar_private *priv = netdev_priv(ndev);
1921         struct gfar __iomem *regs = NULL;
1922         int err, i, j;
1923
1924         for (i = 0; i < priv->num_grps; i++) {
1925                 regs= priv->gfargrp[i].regs;
1926                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1927         }
1928
1929         regs= priv->gfargrp[0].regs;
1930         err = gfar_alloc_skb_resources(ndev);
1931         if (err)
1932                 return err;
1933
1934         gfar_init_mac(ndev);
1935
1936         for (i = 0; i < priv->num_grps; i++) {
1937                 err = register_grp_irqs(&priv->gfargrp[i]);
1938                 if (err) {
1939                         for (j = 0; j < i; j++)
1940                                 free_grp_irqs(&priv->gfargrp[j]);
1941                         goto irq_fail;
1942                 }
1943         }
1944
1945         /* Start the controller */
1946         gfar_start(ndev);
1947
1948         phy_start(priv->phydev);
1949
1950         gfar_configure_coalescing_all(priv);
1951
1952         return 0;
1953
1954 irq_fail:
1955         free_skb_resources(priv);
1956         return err;
1957 }
1958
1959 /* Called when something needs to use the ethernet device
1960  * Returns 0 for success.
1961  */
1962 static int gfar_enet_open(struct net_device *dev)
1963 {
1964         struct gfar_private *priv = netdev_priv(dev);
1965         int err;
1966
1967         enable_napi(priv);
1968
1969         /* Initialize a bunch of registers */
1970         init_registers(dev);
1971
1972         gfar_set_mac_address(dev);
1973
1974         err = init_phy(dev);
1975
1976         if (err) {
1977                 disable_napi(priv);
1978                 return err;
1979         }
1980
1981         err = startup_gfar(dev);
1982         if (err) {
1983                 disable_napi(priv);
1984                 return err;
1985         }
1986
1987         netif_tx_start_all_queues(dev);
1988
1989         device_set_wakeup_enable(&dev->dev, priv->wol_en);
1990
1991         return err;
1992 }
1993
1994 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1995 {
1996         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1997
1998         memset(fcb, 0, GMAC_FCB_LEN);
1999
2000         return fcb;
2001 }
2002
2003 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2004                                     int fcb_length)
2005 {
2006         /* If we're here, it's a IP packet with a TCP or UDP
2007          * payload.  We set it to checksum, using a pseudo-header
2008          * we provide
2009          */
2010         u8 flags = TXFCB_DEFAULT;
2011
2012         /* Tell the controller what the protocol is
2013          * And provide the already calculated phcs
2014          */
2015         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2016                 flags |= TXFCB_UDP;
2017                 fcb->phcs = udp_hdr(skb)->check;
2018         } else
2019                 fcb->phcs = tcp_hdr(skb)->check;
2020
2021         /* l3os is the distance between the start of the
2022          * frame (skb->data) and the start of the IP hdr.
2023          * l4os is the distance between the start of the
2024          * l3 hdr and the l4 hdr
2025          */
2026         fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2027         fcb->l4os = skb_network_header_len(skb);
2028
2029         fcb->flags = flags;
2030 }
2031
2032 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2033 {
2034         fcb->flags |= TXFCB_VLN;
2035         fcb->vlctl = vlan_tx_tag_get(skb);
2036 }
2037
2038 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2039                                       struct txbd8 *base, int ring_size)
2040 {
2041         struct txbd8 *new_bd = bdp + stride;
2042
2043         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2044 }
2045
2046 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2047                                       int ring_size)
2048 {
2049         return skip_txbd(bdp, 1, base, ring_size);
2050 }
2051
2052 /* This is called by the kernel when a frame is ready for transmission.
2053  * It is pointed to by the dev->hard_start_xmit function pointer
2054  */
2055 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2056 {
2057         struct gfar_private *priv = netdev_priv(dev);
2058         struct gfar_priv_tx_q *tx_queue = NULL;
2059         struct netdev_queue *txq;
2060         struct gfar __iomem *regs = NULL;
2061         struct txfcb *fcb = NULL;
2062         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2063         u32 lstatus;
2064         int i, rq = 0, do_tstamp = 0;
2065         u32 bufaddr;
2066         unsigned long flags;
2067         unsigned int nr_frags, nr_txbds, length, fcb_length = GMAC_FCB_LEN;
2068
2069         /* TOE=1 frames larger than 2500 bytes may see excess delays
2070          * before start of transmission.
2071          */
2072         if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2073                      skb->ip_summed == CHECKSUM_PARTIAL &&
2074                      skb->len > 2500)) {
2075                 int ret;
2076
2077                 ret = skb_checksum_help(skb);
2078                 if (ret)
2079                         return ret;
2080         }
2081
2082         rq = skb->queue_mapping;
2083         tx_queue = priv->tx_queue[rq];
2084         txq = netdev_get_tx_queue(dev, rq);
2085         base = tx_queue->tx_bd_base;
2086         regs = tx_queue->grp->regs;
2087
2088         /* check if time stamp should be generated */
2089         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2090                      priv->hwts_tx_en)) {
2091                 do_tstamp = 1;
2092                 fcb_length = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2093         }
2094
2095         /* make space for additional header when fcb is needed */
2096         if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2097              vlan_tx_tag_present(skb) ||
2098              unlikely(do_tstamp)) &&
2099             (skb_headroom(skb) < fcb_length)) {
2100                 struct sk_buff *skb_new;
2101
2102                 skb_new = skb_realloc_headroom(skb, fcb_length);
2103                 if (!skb_new) {
2104                         dev->stats.tx_errors++;
2105                         kfree_skb(skb);
2106                         return NETDEV_TX_OK;
2107                 }
2108
2109                 if (skb->sk)
2110                         skb_set_owner_w(skb_new, skb->sk);
2111                 consume_skb(skb);
2112                 skb = skb_new;
2113         }
2114
2115         /* total number of fragments in the SKB */
2116         nr_frags = skb_shinfo(skb)->nr_frags;
2117
2118         /* calculate the required number of TxBDs for this skb */
2119         if (unlikely(do_tstamp))
2120                 nr_txbds = nr_frags + 2;
2121         else
2122                 nr_txbds = nr_frags + 1;
2123
2124         /* check if there is space to queue this packet */
2125         if (nr_txbds > tx_queue->num_txbdfree) {
2126                 /* no space, stop the queue */
2127                 netif_tx_stop_queue(txq);
2128                 dev->stats.tx_fifo_errors++;
2129                 return NETDEV_TX_BUSY;
2130         }
2131
2132         /* Update transmit stats */
2133         tx_queue->stats.tx_bytes += skb->len;
2134         tx_queue->stats.tx_packets++;
2135
2136         txbdp = txbdp_start = tx_queue->cur_tx;
2137         lstatus = txbdp->lstatus;
2138
2139         /* Time stamp insertion requires one additional TxBD */
2140         if (unlikely(do_tstamp))
2141                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2142                                                  tx_queue->tx_ring_size);
2143
2144         if (nr_frags == 0) {
2145                 if (unlikely(do_tstamp))
2146                         txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2147                                                           TXBD_INTERRUPT);
2148                 else
2149                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2150         } else {
2151                 /* Place the fragment addresses and lengths into the TxBDs */
2152                 for (i = 0; i < nr_frags; i++) {
2153                         /* Point at the next BD, wrapping as needed */
2154                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2155
2156                         length = skb_shinfo(skb)->frags[i].size;
2157
2158                         lstatus = txbdp->lstatus | length |
2159                                   BD_LFLAG(TXBD_READY);
2160
2161                         /* Handle the last BD specially */
2162                         if (i == nr_frags - 1)
2163                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2164
2165                         bufaddr = skb_frag_dma_map(priv->dev,
2166                                                    &skb_shinfo(skb)->frags[i],
2167                                                    0,
2168                                                    length,
2169                                                    DMA_TO_DEVICE);
2170
2171                         /* set the TxBD length and buffer pointer */
2172                         txbdp->bufPtr = bufaddr;
2173                         txbdp->lstatus = lstatus;
2174                 }
2175
2176                 lstatus = txbdp_start->lstatus;
2177         }
2178
2179         /* Add TxPAL between FCB and frame if required */
2180         if (unlikely(do_tstamp)) {
2181                 skb_push(skb, GMAC_TXPAL_LEN);
2182                 memset(skb->data, 0, GMAC_TXPAL_LEN);
2183         }
2184
2185         /* Set up checksumming */
2186         if (CHECKSUM_PARTIAL == skb->ip_summed) {
2187                 fcb = gfar_add_fcb(skb);
2188                 /* as specified by errata */
2189                 if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12) &&
2190                              ((unsigned long)fcb % 0x20) > 0x18)) {
2191                         __skb_pull(skb, GMAC_FCB_LEN);
2192                         skb_checksum_help(skb);
2193                 } else {
2194                         lstatus |= BD_LFLAG(TXBD_TOE);
2195                         gfar_tx_checksum(skb, fcb, fcb_length);
2196                 }
2197         }
2198
2199         if (vlan_tx_tag_present(skb)) {
2200                 if (unlikely(NULL == fcb)) {
2201                         fcb = gfar_add_fcb(skb);
2202                         lstatus |= BD_LFLAG(TXBD_TOE);
2203                 }
2204
2205                 gfar_tx_vlan(skb, fcb);
2206         }
2207
2208         /* Setup tx hardware time stamping if requested */
2209         if (unlikely(do_tstamp)) {
2210                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2211                 if (fcb == NULL)
2212                         fcb = gfar_add_fcb(skb);
2213                 fcb->ptp = 1;
2214                 lstatus |= BD_LFLAG(TXBD_TOE);
2215         }
2216
2217         txbdp_start->bufPtr = dma_map_single(priv->dev, skb->data,
2218                                              skb_headlen(skb), DMA_TO_DEVICE);
2219
2220         /* If time stamping is requested one additional TxBD must be set up. The
2221          * first TxBD points to the FCB and must have a data length of
2222          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2223          * the full frame length.
2224          */
2225         if (unlikely(do_tstamp)) {
2226                 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_length;
2227                 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2228                                          (skb_headlen(skb) - fcb_length);
2229                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2230         } else {
2231                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2232         }
2233
2234         netdev_tx_sent_queue(txq, skb->len);
2235
2236         /* We can work in parallel with gfar_clean_tx_ring(), except
2237          * when modifying num_txbdfree. Note that we didn't grab the lock
2238          * when we were reading the num_txbdfree and checking for available
2239          * space, that's because outside of this function it can only grow,
2240          * and once we've got needed space, it cannot suddenly disappear.
2241          *
2242          * The lock also protects us from gfar_error(), which can modify
2243          * regs->tstat and thus retrigger the transfers, which is why we
2244          * also must grab the lock before setting ready bit for the first
2245          * to be transmitted BD.
2246          */
2247         spin_lock_irqsave(&tx_queue->txlock, flags);
2248
2249         /* The powerpc-specific eieio() is used, as wmb() has too strong
2250          * semantics (it requires synchronization between cacheable and
2251          * uncacheable mappings, which eieio doesn't provide and which we
2252          * don't need), thus requiring a more expensive sync instruction.  At
2253          * some point, the set of architecture-independent barrier functions
2254          * should be expanded to include weaker barriers.
2255          */
2256         eieio();
2257
2258         txbdp_start->lstatus = lstatus;
2259
2260         eieio(); /* force lstatus write before tx_skbuff */
2261
2262         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2263
2264         /* Update the current skb pointer to the next entry we will use
2265          * (wrapping if necessary)
2266          */
2267         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2268                               TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2269
2270         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2271
2272         /* reduce TxBD free count */
2273         tx_queue->num_txbdfree -= (nr_txbds);
2274
2275         /* If the next BD still needs to be cleaned up, then the bds
2276          * are full.  We need to tell the kernel to stop sending us stuff.
2277          */
2278         if (!tx_queue->num_txbdfree) {
2279                 netif_tx_stop_queue(txq);
2280
2281                 dev->stats.tx_fifo_errors++;
2282         }
2283
2284         /* Tell the DMA to go go go */
2285         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2286
2287         /* Unlock priv */
2288         spin_unlock_irqrestore(&tx_queue->txlock, flags);
2289
2290         return NETDEV_TX_OK;
2291 }
2292
2293 /* Stops the kernel queue, and halts the controller */
2294 static int gfar_close(struct net_device *dev)
2295 {
2296         struct gfar_private *priv = netdev_priv(dev);
2297
2298         disable_napi(priv);
2299
2300         cancel_work_sync(&priv->reset_task);
2301         stop_gfar(dev);
2302
2303         /* Disconnect from the PHY */
2304         phy_disconnect(priv->phydev);
2305         priv->phydev = NULL;
2306
2307         netif_tx_stop_all_queues(dev);
2308
2309         return 0;
2310 }
2311
2312 /* Changes the mac address if the controller is not running. */
2313 static int gfar_set_mac_address(struct net_device *dev)
2314 {
2315         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2316
2317         return 0;
2318 }
2319
2320 /* Check if rx parser should be activated */
2321 void gfar_check_rx_parser_mode(struct gfar_private *priv)
2322 {
2323         struct gfar __iomem *regs;
2324         u32 tempval;
2325
2326         regs = priv->gfargrp[0].regs;
2327
2328         tempval = gfar_read(&regs->rctrl);
2329         /* If parse is no longer required, then disable parser */
2330         if (tempval & RCTRL_REQ_PARSER) {
2331                 tempval |= RCTRL_PRSDEP_INIT;
2332                 priv->uses_rxfcb = 1;
2333         } else {
2334                 tempval &= ~RCTRL_PRSDEP_INIT;
2335                 priv->uses_rxfcb = 0;
2336         }
2337         gfar_write(&regs->rctrl, tempval);
2338 }
2339
2340 /* Enables and disables VLAN insertion/extraction */
2341 void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2342 {
2343         struct gfar_private *priv = netdev_priv(dev);
2344         struct gfar __iomem *regs = NULL;
2345         unsigned long flags;
2346         u32 tempval;
2347
2348         regs = priv->gfargrp[0].regs;
2349         local_irq_save(flags);
2350         lock_rx_qs(priv);
2351
2352         if (features & NETIF_F_HW_VLAN_CTAG_TX) {
2353                 /* Enable VLAN tag insertion */
2354                 tempval = gfar_read(&regs->tctrl);
2355                 tempval |= TCTRL_VLINS;
2356                 gfar_write(&regs->tctrl, tempval);
2357         } else {
2358                 /* Disable VLAN tag insertion */
2359                 tempval = gfar_read(&regs->tctrl);
2360                 tempval &= ~TCTRL_VLINS;
2361                 gfar_write(&regs->tctrl, tempval);
2362         }
2363
2364         if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2365                 /* Enable VLAN tag extraction */
2366                 tempval = gfar_read(&regs->rctrl);
2367                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2368                 gfar_write(&regs->rctrl, tempval);
2369                 priv->uses_rxfcb = 1;
2370         } else {
2371                 /* Disable VLAN tag extraction */
2372                 tempval = gfar_read(&regs->rctrl);
2373                 tempval &= ~RCTRL_VLEX;
2374                 gfar_write(&regs->rctrl, tempval);
2375
2376                 gfar_check_rx_parser_mode(priv);
2377         }
2378
2379         gfar_change_mtu(dev, dev->mtu);
2380
2381         unlock_rx_qs(priv);
2382         local_irq_restore(flags);
2383 }
2384
2385 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2386 {
2387         int tempsize, tempval;
2388         struct gfar_private *priv = netdev_priv(dev);
2389         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2390         int oldsize = priv->rx_buffer_size;
2391         int frame_size = new_mtu + ETH_HLEN;
2392
2393         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2394                 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2395                 return -EINVAL;
2396         }
2397
2398         if (priv->uses_rxfcb)
2399                 frame_size += GMAC_FCB_LEN;
2400
2401         frame_size += priv->padding;
2402
2403         tempsize = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2404                    INCREMENTAL_BUFFER_SIZE;
2405
2406         /* Only stop and start the controller if it isn't already
2407          * stopped, and we changed something
2408          */
2409         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2410                 stop_gfar(dev);
2411
2412         priv->rx_buffer_size = tempsize;
2413
2414         dev->mtu = new_mtu;
2415
2416         gfar_write(&regs->mrblr, priv->rx_buffer_size);
2417         gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2418
2419         /* If the mtu is larger than the max size for standard
2420          * ethernet frames (ie, a jumbo frame), then set maccfg2
2421          * to allow huge frames, and to check the length
2422          */
2423         tempval = gfar_read(&regs->maccfg2);
2424
2425         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2426             gfar_has_errata(priv, GFAR_ERRATA_74))
2427                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2428         else
2429                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2430
2431         gfar_write(&regs->maccfg2, tempval);
2432
2433         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2434                 startup_gfar(dev);
2435
2436         return 0;
2437 }
2438
2439 /* gfar_reset_task gets scheduled when a packet has not been
2440  * transmitted after a set amount of time.
2441  * For now, assume that clearing out all the structures, and
2442  * starting over will fix the problem.
2443  */
2444 static void gfar_reset_task(struct work_struct *work)
2445 {
2446         struct gfar_private *priv = container_of(work, struct gfar_private,
2447                                                  reset_task);
2448         struct net_device *dev = priv->ndev;
2449
2450         if (dev->flags & IFF_UP) {
2451                 netif_tx_stop_all_queues(dev);
2452                 stop_gfar(dev);
2453                 startup_gfar(dev);
2454                 netif_tx_start_all_queues(dev);
2455         }
2456
2457         netif_tx_schedule_all(dev);
2458 }
2459
2460 static void gfar_timeout(struct net_device *dev)
2461 {
2462         struct gfar_private *priv = netdev_priv(dev);
2463
2464         dev->stats.tx_errors++;
2465         schedule_work(&priv->reset_task);
2466 }
2467
2468 static void gfar_align_skb(struct sk_buff *skb)
2469 {
2470         /* We need the data buffer to be aligned properly.  We will reserve
2471          * as many bytes as needed to align the data properly
2472          */
2473         skb_reserve(skb, RXBUF_ALIGNMENT -
2474                     (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2475 }
2476
2477 /* Interrupt Handler for Transmit complete */
2478 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2479 {
2480         struct net_device *dev = tx_queue->dev;
2481         struct netdev_queue *txq;
2482         struct gfar_private *priv = netdev_priv(dev);
2483         struct txbd8 *bdp, *next = NULL;
2484         struct txbd8 *lbdp = NULL;
2485         struct txbd8 *base = tx_queue->tx_bd_base;
2486         struct sk_buff *skb;
2487         int skb_dirtytx;
2488         int tx_ring_size = tx_queue->tx_ring_size;
2489         int frags = 0, nr_txbds = 0;
2490         int i;
2491         int howmany = 0;
2492         int tqi = tx_queue->qindex;
2493         unsigned int bytes_sent = 0;
2494         u32 lstatus;
2495         size_t buflen;
2496
2497         txq = netdev_get_tx_queue(dev, tqi);
2498         bdp = tx_queue->dirty_tx;
2499         skb_dirtytx = tx_queue->skb_dirtytx;
2500
2501         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2502                 unsigned long flags;
2503
2504                 frags = skb_shinfo(skb)->nr_frags;
2505
2506                 /* When time stamping, one additional TxBD must be freed.
2507                  * Also, we need to dma_unmap_single() the TxPAL.
2508                  */
2509                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2510                         nr_txbds = frags + 2;
2511                 else
2512                         nr_txbds = frags + 1;
2513
2514                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2515
2516                 lstatus = lbdp->lstatus;
2517
2518                 /* Only clean completed frames */
2519                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2520                     (lstatus & BD_LENGTH_MASK))
2521                         break;
2522
2523                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2524                         next = next_txbd(bdp, base, tx_ring_size);
2525                         buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2526                 } else
2527                         buflen = bdp->length;
2528
2529                 dma_unmap_single(priv->dev, bdp->bufPtr,
2530                                  buflen, DMA_TO_DEVICE);
2531
2532                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2533                         struct skb_shared_hwtstamps shhwtstamps;
2534                         u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2535
2536                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2537                         shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2538                         skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2539                         skb_tstamp_tx(skb, &shhwtstamps);
2540                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2541                         bdp = next;
2542                 }
2543
2544                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2545                 bdp = next_txbd(bdp, base, tx_ring_size);
2546
2547                 for (i = 0; i < frags; i++) {
2548                         dma_unmap_page(priv->dev, bdp->bufPtr,
2549                                        bdp->length, DMA_TO_DEVICE);
2550                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2551                         bdp = next_txbd(bdp, base, tx_ring_size);
2552                 }
2553
2554                 bytes_sent += skb->len;
2555
2556                 dev_kfree_skb_any(skb);
2557
2558                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2559
2560                 skb_dirtytx = (skb_dirtytx + 1) &
2561                               TX_RING_MOD_MASK(tx_ring_size);
2562
2563                 howmany++;
2564                 spin_lock_irqsave(&tx_queue->txlock, flags);
2565                 tx_queue->num_txbdfree += nr_txbds;
2566                 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2567         }
2568
2569         /* If we freed a buffer, we can restart transmission, if necessary */
2570         if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2571                 netif_wake_subqueue(dev, tqi);
2572
2573         /* Update dirty indicators */
2574         tx_queue->skb_dirtytx = skb_dirtytx;
2575         tx_queue->dirty_tx = bdp;
2576
2577         netdev_tx_completed_queue(txq, howmany, bytes_sent);
2578 }
2579
2580 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2581 {
2582         unsigned long flags;
2583
2584         spin_lock_irqsave(&gfargrp->grplock, flags);
2585         if (napi_schedule_prep(&gfargrp->napi)) {
2586                 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2587                 __napi_schedule(&gfargrp->napi);
2588         } else {
2589                 /* Clear IEVENT, so interrupts aren't called again
2590                  * because of the packets that have already arrived.
2591                  */
2592                 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2593         }
2594         spin_unlock_irqrestore(&gfargrp->grplock, flags);
2595
2596 }
2597
2598 /* Interrupt Handler for Transmit complete */
2599 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2600 {
2601         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2602         return IRQ_HANDLED;
2603 }
2604
2605 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2606                            struct sk_buff *skb)
2607 {
2608         struct net_device *dev = rx_queue->dev;
2609         struct gfar_private *priv = netdev_priv(dev);
2610         dma_addr_t buf;
2611
2612         buf = dma_map_single(priv->dev, skb->data,
2613                              priv->rx_buffer_size, DMA_FROM_DEVICE);
2614         gfar_init_rxbdp(rx_queue, bdp, buf);
2615 }
2616
2617 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2618 {
2619         struct gfar_private *priv = netdev_priv(dev);
2620         struct sk_buff *skb;
2621
2622         skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2623         if (!skb)
2624                 return NULL;
2625
2626         gfar_align_skb(skb);
2627
2628         return skb;
2629 }
2630
2631 struct sk_buff *gfar_new_skb(struct net_device *dev)
2632 {
2633         return gfar_alloc_skb(dev);
2634 }
2635
2636 static inline void count_errors(unsigned short status, struct net_device *dev)
2637 {
2638         struct gfar_private *priv = netdev_priv(dev);
2639         struct net_device_stats *stats = &dev->stats;
2640         struct gfar_extra_stats *estats = &priv->extra_stats;
2641
2642         /* If the packet was truncated, none of the other errors matter */
2643         if (status & RXBD_TRUNCATED) {
2644                 stats->rx_length_errors++;
2645
2646                 atomic64_inc(&estats->rx_trunc);
2647
2648                 return;
2649         }
2650         /* Count the errors, if there were any */
2651         if (status & (RXBD_LARGE | RXBD_SHORT)) {
2652                 stats->rx_length_errors++;
2653
2654                 if (status & RXBD_LARGE)
2655                         atomic64_inc(&estats->rx_large);
2656                 else
2657                         atomic64_inc(&estats->rx_short);
2658         }
2659         if (status & RXBD_NONOCTET) {
2660                 stats->rx_frame_errors++;
2661                 atomic64_inc(&estats->rx_nonoctet);
2662         }
2663         if (status & RXBD_CRCERR) {
2664                 atomic64_inc(&estats->rx_crcerr);
2665                 stats->rx_crc_errors++;
2666         }
2667         if (status & RXBD_OVERRUN) {
2668                 atomic64_inc(&estats->rx_overrun);
2669                 stats->rx_crc_errors++;
2670         }
2671 }
2672
2673 irqreturn_t gfar_receive(int irq, void *grp_id)
2674 {
2675         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2676         return IRQ_HANDLED;
2677 }
2678
2679 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2680 {
2681         /* If valid headers were found, and valid sums
2682          * were verified, then we tell the kernel that no
2683          * checksumming is necessary.  Otherwise, it is [FIXME]
2684          */
2685         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2686                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2687         else
2688                 skb_checksum_none_assert(skb);
2689 }
2690
2691
2692 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2693 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2694                                int amount_pull, struct napi_struct *napi)
2695 {
2696         struct gfar_private *priv = netdev_priv(dev);
2697         struct rxfcb *fcb = NULL;
2698
2699         /* fcb is at the beginning if exists */
2700         fcb = (struct rxfcb *)skb->data;
2701
2702         /* Remove the FCB from the skb
2703          * Remove the padded bytes, if there are any
2704          */
2705         if (amount_pull) {
2706                 skb_record_rx_queue(skb, fcb->rq);
2707                 skb_pull(skb, amount_pull);
2708         }
2709
2710         /* Get receive timestamp from the skb */
2711         if (priv->hwts_rx_en) {
2712                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2713                 u64 *ns = (u64 *) skb->data;
2714
2715                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2716                 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2717         }
2718
2719         if (priv->padding)
2720                 skb_pull(skb, priv->padding);
2721
2722         if (dev->features & NETIF_F_RXCSUM)
2723                 gfar_rx_checksum(skb, fcb);
2724
2725         /* Tell the skb what kind of packet this is */
2726         skb->protocol = eth_type_trans(skb, dev);
2727
2728         /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2729          * Even if vlan rx accel is disabled, on some chips
2730          * RXFCB_VLN is pseudo randomly set.
2731          */
2732         if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2733             fcb->flags & RXFCB_VLN)
2734                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), fcb->vlctl);
2735
2736         /* Send the packet up the stack */
2737         napi_gro_receive(napi, skb);
2738
2739 }
2740
2741 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2742  * until the budget/quota has been reached. Returns the number
2743  * of frames handled
2744  */
2745 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2746 {
2747         struct net_device *dev = rx_queue->dev;
2748         struct rxbd8 *bdp, *base;
2749         struct sk_buff *skb;
2750         int pkt_len;
2751         int amount_pull;
2752         int howmany = 0;
2753         struct gfar_private *priv = netdev_priv(dev);
2754
2755         /* Get the first full descriptor */
2756         bdp = rx_queue->cur_rx;
2757         base = rx_queue->rx_bd_base;
2758
2759         amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2760
2761         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2762                 struct sk_buff *newskb;
2763
2764                 rmb();
2765
2766                 /* Add another skb for the future */
2767                 newskb = gfar_new_skb(dev);
2768
2769                 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2770
2771                 dma_unmap_single(priv->dev, bdp->bufPtr,
2772                                  priv->rx_buffer_size, DMA_FROM_DEVICE);
2773
2774                 if (unlikely(!(bdp->status & RXBD_ERR) &&
2775                              bdp->length > priv->rx_buffer_size))
2776                         bdp->status = RXBD_LARGE;
2777
2778                 /* We drop the frame if we failed to allocate a new buffer */
2779                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2780                              bdp->status & RXBD_ERR)) {
2781                         count_errors(bdp->status, dev);
2782
2783                         if (unlikely(!newskb))
2784                                 newskb = skb;
2785                         else if (skb)
2786                                 dev_kfree_skb(skb);
2787                 } else {
2788                         /* Increment the number of packets */
2789                         rx_queue->stats.rx_packets++;
2790                         howmany++;
2791
2792                         if (likely(skb)) {
2793                                 pkt_len = bdp->length - ETH_FCS_LEN;
2794                                 /* Remove the FCS from the packet length */
2795                                 skb_put(skb, pkt_len);
2796                                 rx_queue->stats.rx_bytes += pkt_len;
2797                                 skb_record_rx_queue(skb, rx_queue->qindex);
2798                                 gfar_process_frame(dev, skb, amount_pull,
2799                                                    &rx_queue->grp->napi);
2800
2801                         } else {
2802                                 netif_warn(priv, rx_err, dev, "Missing skb!\n");
2803                                 rx_queue->stats.rx_dropped++;
2804                                 atomic64_inc(&priv->extra_stats.rx_skbmissing);
2805                         }
2806
2807                 }
2808
2809                 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2810
2811                 /* Setup the new bdp */
2812                 gfar_new_rxbdp(rx_queue, bdp, newskb);
2813
2814                 /* Update to the next pointer */
2815                 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2816
2817                 /* update to point at the next skb */
2818                 rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2819                                       RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2820         }
2821
2822         /* Update the current rxbd pointer to be the next one */
2823         rx_queue->cur_rx = bdp;
2824
2825         return howmany;
2826 }
2827
2828 static int gfar_poll(struct napi_struct *napi, int budget)
2829 {
2830         struct gfar_priv_grp *gfargrp =
2831                 container_of(napi, struct gfar_priv_grp, napi);
2832         struct gfar_private *priv = gfargrp->priv;
2833         struct gfar __iomem *regs = gfargrp->regs;
2834         struct gfar_priv_tx_q *tx_queue = NULL;
2835         struct gfar_priv_rx_q *rx_queue = NULL;
2836         int work_done = 0, work_done_per_q = 0;
2837         int i, budget_per_q = 0;
2838         int has_tx_work;
2839         unsigned long rstat_rxf;
2840         int num_act_queues;
2841
2842         /* Clear IEVENT, so interrupts aren't called again
2843          * because of the packets that have already arrived
2844          */
2845         gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2846
2847         rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2848
2849         num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2850         if (num_act_queues)
2851                 budget_per_q = budget/num_act_queues;
2852
2853         while (1) {
2854                 has_tx_work = 0;
2855                 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2856                         tx_queue = priv->tx_queue[i];
2857                         /* run Tx cleanup to completion */
2858                         if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2859                                 gfar_clean_tx_ring(tx_queue);
2860                                 has_tx_work = 1;
2861                         }
2862                 }
2863
2864                 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2865                         /* skip queue if not active */
2866                         if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2867                                 continue;
2868
2869                         rx_queue = priv->rx_queue[i];
2870                         work_done_per_q =
2871                                 gfar_clean_rx_ring(rx_queue, budget_per_q);
2872                         work_done += work_done_per_q;
2873
2874                         /* finished processing this queue */
2875                         if (work_done_per_q < budget_per_q) {
2876                                 /* clear active queue hw indication */
2877                                 gfar_write(&regs->rstat,
2878                                            RSTAT_CLEAR_RXF0 >> i);
2879                                 rstat_rxf &= ~(RSTAT_CLEAR_RXF0 >> i);
2880                                 num_act_queues--;
2881
2882                                 if (!num_act_queues)
2883                                         break;
2884                                 /* recompute budget per Rx queue */
2885                                 budget_per_q =
2886                                         (budget - work_done) / num_act_queues;
2887                         }
2888                 }
2889
2890                 if (work_done >= budget)
2891                         break;
2892
2893                 if (!num_act_queues && !has_tx_work) {
2894
2895                         napi_complete(napi);
2896
2897                         /* Clear the halt bit in RSTAT */
2898                         gfar_write(&regs->rstat, gfargrp->rstat);
2899
2900                         gfar_write(&regs->imask, IMASK_DEFAULT);
2901
2902                         /* If we are coalescing interrupts, update the timer
2903                          * Otherwise, clear it
2904                          */
2905                         gfar_configure_coalescing(priv, gfargrp->rx_bit_map,
2906                                                   gfargrp->tx_bit_map);
2907                         break;
2908                 }
2909         }
2910
2911         return work_done;
2912 }
2913
2914 #ifdef CONFIG_NET_POLL_CONTROLLER
2915 /* Polling 'interrupt' - used by things like netconsole to send skbs
2916  * without having to re-enable interrupts. It's not called while
2917  * the interrupt routine is executing.
2918  */
2919 static void gfar_netpoll(struct net_device *dev)
2920 {
2921         struct gfar_private *priv = netdev_priv(dev);
2922         int i;
2923
2924         /* If the device has multiple interrupts, run tx/rx */
2925         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2926                 for (i = 0; i < priv->num_grps; i++) {
2927                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
2928
2929                         disable_irq(gfar_irq(grp, TX)->irq);
2930                         disable_irq(gfar_irq(grp, RX)->irq);
2931                         disable_irq(gfar_irq(grp, ER)->irq);
2932                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2933                         enable_irq(gfar_irq(grp, ER)->irq);
2934                         enable_irq(gfar_irq(grp, RX)->irq);
2935                         enable_irq(gfar_irq(grp, TX)->irq);
2936                 }
2937         } else {
2938                 for (i = 0; i < priv->num_grps; i++) {
2939                         struct gfar_priv_grp *grp = &priv->gfargrp[i];
2940
2941                         disable_irq(gfar_irq(grp, TX)->irq);
2942                         gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2943                         enable_irq(gfar_irq(grp, TX)->irq);
2944                 }
2945         }
2946 }
2947 #endif
2948
2949 /* The interrupt handler for devices with one interrupt */
2950 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2951 {
2952         struct gfar_priv_grp *gfargrp = grp_id;
2953
2954         /* Save ievent for future reference */
2955         u32 events = gfar_read(&gfargrp->regs->ievent);
2956
2957         /* Check for reception */
2958         if (events & IEVENT_RX_MASK)
2959                 gfar_receive(irq, grp_id);
2960
2961         /* Check for transmit completion */
2962         if (events & IEVENT_TX_MASK)
2963                 gfar_transmit(irq, grp_id);
2964
2965         /* Check for errors */
2966         if (events & IEVENT_ERR_MASK)
2967                 gfar_error(irq, grp_id);
2968
2969         return IRQ_HANDLED;
2970 }
2971
2972 /* Called every time the controller might need to be made
2973  * aware of new link state.  The PHY code conveys this
2974  * information through variables in the phydev structure, and this
2975  * function converts those variables into the appropriate
2976  * register values, and can bring down the device if needed.
2977  */
2978 static void adjust_link(struct net_device *dev)
2979 {
2980         struct gfar_private *priv = netdev_priv(dev);
2981         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2982         unsigned long flags;
2983         struct phy_device *phydev = priv->phydev;
2984         int new_state = 0;
2985
2986         local_irq_save(flags);
2987         lock_tx_qs(priv);
2988
2989         if (phydev->link) {
2990                 u32 tempval = gfar_read(&regs->maccfg2);
2991                 u32 ecntrl = gfar_read(&regs->ecntrl);
2992
2993                 /* Now we make sure that we can be in full duplex mode.
2994                  * If not, we operate in half-duplex mode.
2995                  */
2996                 if (phydev->duplex != priv->oldduplex) {
2997                         new_state = 1;
2998                         if (!(phydev->duplex))
2999                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
3000                         else
3001                                 tempval |= MACCFG2_FULL_DUPLEX;
3002
3003                         priv->oldduplex = phydev->duplex;
3004                 }
3005
3006                 if (phydev->speed != priv->oldspeed) {
3007                         new_state = 1;
3008                         switch (phydev->speed) {
3009                         case 1000:
3010                                 tempval =
3011                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3012
3013                                 ecntrl &= ~(ECNTRL_R100);
3014                                 break;
3015                         case 100:
3016                         case 10:
3017                                 tempval =
3018                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3019
3020                                 /* Reduced mode distinguishes
3021                                  * between 10 and 100
3022                                  */
3023                                 if (phydev->speed == SPEED_100)
3024                                         ecntrl |= ECNTRL_R100;
3025                                 else
3026                                         ecntrl &= ~(ECNTRL_R100);
3027                                 break;
3028                         default:
3029                                 netif_warn(priv, link, dev,
3030                                            "Ack!  Speed (%d) is not 10/100/1000!\n",
3031                                            phydev->speed);
3032                                 break;
3033                         }
3034
3035                         priv->oldspeed = phydev->speed;
3036                 }
3037
3038                 gfar_write(&regs->maccfg2, tempval);
3039                 gfar_write(&regs->ecntrl, ecntrl);
3040
3041                 if (!priv->oldlink) {
3042                         new_state = 1;
3043                         priv->oldlink = 1;
3044                 }
3045         } else if (priv->oldlink) {
3046                 new_state = 1;
3047                 priv->oldlink = 0;
3048                 priv->oldspeed = 0;
3049                 priv->oldduplex = -1;
3050         }
3051
3052         if (new_state && netif_msg_link(priv))
3053                 phy_print_status(phydev);
3054         unlock_tx_qs(priv);
3055         local_irq_restore(flags);
3056 }
3057
3058 /* Update the hash table based on the current list of multicast
3059  * addresses we subscribe to.  Also, change the promiscuity of
3060  * the device based on the flags (this function is called
3061  * whenever dev->flags is changed
3062  */
3063 static void gfar_set_multi(struct net_device *dev)
3064 {
3065         struct netdev_hw_addr *ha;
3066         struct gfar_private *priv = netdev_priv(dev);
3067         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3068         u32 tempval;
3069
3070         if (dev->flags & IFF_PROMISC) {
3071                 /* Set RCTRL to PROM */
3072                 tempval = gfar_read(&regs->rctrl);
3073                 tempval |= RCTRL_PROM;
3074                 gfar_write(&regs->rctrl, tempval);
3075         } else {
3076                 /* Set RCTRL to not PROM */
3077                 tempval = gfar_read(&regs->rctrl);
3078                 tempval &= ~(RCTRL_PROM);
3079                 gfar_write(&regs->rctrl, tempval);
3080         }
3081
3082         if (dev->flags & IFF_ALLMULTI) {
3083                 /* Set the hash to rx all multicast frames */
3084                 gfar_write(&regs->igaddr0, 0xffffffff);
3085                 gfar_write(&regs->igaddr1, 0xffffffff);
3086                 gfar_write(&regs->igaddr2, 0xffffffff);
3087                 gfar_write(&regs->igaddr3, 0xffffffff);
3088                 gfar_write(&regs->igaddr4, 0xffffffff);
3089                 gfar_write(&regs->igaddr5, 0xffffffff);
3090                 gfar_write(&regs->igaddr6, 0xffffffff);
3091                 gfar_write(&regs->igaddr7, 0xffffffff);
3092                 gfar_write(&regs->gaddr0, 0xffffffff);
3093                 gfar_write(&regs->gaddr1, 0xffffffff);
3094                 gfar_write(&regs->gaddr2, 0xffffffff);
3095                 gfar_write(&regs->gaddr3, 0xffffffff);
3096                 gfar_write(&regs->gaddr4, 0xffffffff);
3097                 gfar_write(&regs->gaddr5, 0xffffffff);
3098                 gfar_write(&regs->gaddr6, 0xffffffff);
3099                 gfar_write(&regs->gaddr7, 0xffffffff);
3100         } else {
3101                 int em_num;
3102                 int idx;
3103
3104                 /* zero out the hash */
3105                 gfar_write(&regs->igaddr0, 0x0);
3106                 gfar_write(&regs->igaddr1, 0x0);
3107                 gfar_write(&regs->igaddr2, 0x0);
3108                 gfar_write(&regs->igaddr3, 0x0);
3109                 gfar_write(&regs->igaddr4, 0x0);
3110                 gfar_write(&regs->igaddr5, 0x0);
3111                 gfar_write(&regs->igaddr6, 0x0);
3112                 gfar_write(&regs->igaddr7, 0x0);
3113                 gfar_write(&regs->gaddr0, 0x0);
3114                 gfar_write(&regs->gaddr1, 0x0);
3115                 gfar_write(&regs->gaddr2, 0x0);
3116                 gfar_write(&regs->gaddr3, 0x0);
3117                 gfar_write(&regs->gaddr4, 0x0);
3118                 gfar_write(&regs->gaddr5, 0x0);
3119                 gfar_write(&regs->gaddr6, 0x0);
3120                 gfar_write(&regs->gaddr7, 0x0);
3121
3122                 /* If we have extended hash tables, we need to
3123                  * clear the exact match registers to prepare for
3124                  * setting them
3125                  */
3126                 if (priv->extended_hash) {
3127                         em_num = GFAR_EM_NUM + 1;
3128                         gfar_clear_exact_match(dev);
3129                         idx = 1;
3130                 } else {
3131                         idx = 0;
3132                         em_num = 0;
3133                 }
3134
3135                 if (netdev_mc_empty(dev))
3136                         return;
3137
3138                 /* Parse the list, and set the appropriate bits */
3139                 netdev_for_each_mc_addr(ha, dev) {
3140                         if (idx < em_num) {
3141                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3142                                 idx++;
3143                         } else
3144                                 gfar_set_hash_for_addr(dev, ha->addr);
3145                 }
3146         }
3147 }
3148
3149
3150 /* Clears each of the exact match registers to zero, so they
3151  * don't interfere with normal reception
3152  */
3153 static void gfar_clear_exact_match(struct net_device *dev)
3154 {
3155         int idx;
3156         static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3157
3158         for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3159                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3160 }
3161
3162 /* Set the appropriate hash bit for the given addr */
3163 /* The algorithm works like so:
3164  * 1) Take the Destination Address (ie the multicast address), and
3165  * do a CRC on it (little endian), and reverse the bits of the
3166  * result.
3167  * 2) Use the 8 most significant bits as a hash into a 256-entry
3168  * table.  The table is controlled through 8 32-bit registers:
3169  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3170  * gaddr7.  This means that the 3 most significant bits in the
3171  * hash index which gaddr register to use, and the 5 other bits
3172  * indicate which bit (assuming an IBM numbering scheme, which
3173  * for PowerPC (tm) is usually the case) in the register holds
3174  * the entry.
3175  */
3176 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3177 {
3178         u32 tempval;
3179         struct gfar_private *priv = netdev_priv(dev);
3180         u32 result = ether_crc(ETH_ALEN, addr);
3181         int width = priv->hash_width;
3182         u8 whichbit = (result >> (32 - width)) & 0x1f;
3183         u8 whichreg = result >> (32 - width + 5);
3184         u32 value = (1 << (31-whichbit));
3185
3186         tempval = gfar_read(priv->hash_regs[whichreg]);
3187         tempval |= value;
3188         gfar_write(priv->hash_regs[whichreg], tempval);
3189 }
3190
3191
3192 /* There are multiple MAC Address register pairs on some controllers
3193  * This function sets the numth pair to a given address
3194  */
3195 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3196                                   const u8 *addr)
3197 {
3198         struct gfar_private *priv = netdev_priv(dev);
3199         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3200         int idx;
3201         char tmpbuf[ETH_ALEN];
3202         u32 tempval;
3203         u32 __iomem *macptr = &regs->macstnaddr1;
3204
3205         macptr += num*2;
3206
3207         /* Now copy it into the mac registers backwards, cuz
3208          * little endian is silly
3209          */
3210         for (idx = 0; idx < ETH_ALEN; idx++)
3211                 tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3212
3213         gfar_write(macptr, *((u32 *) (tmpbuf)));
3214
3215         tempval = *((u32 *) (tmpbuf + 4));
3216
3217         gfar_write(macptr+1, tempval);
3218 }
3219
3220 /* GFAR error interrupt handler */
3221 static irqreturn_t gfar_error(int irq, void *grp_id)
3222 {
3223         struct gfar_priv_grp *gfargrp = grp_id;
3224         struct gfar __iomem *regs = gfargrp->regs;
3225         struct gfar_private *priv= gfargrp->priv;
3226         struct net_device *dev = priv->ndev;
3227
3228         /* Save ievent for future reference */
3229         u32 events = gfar_read(&regs->ievent);
3230
3231         /* Clear IEVENT */
3232         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3233
3234         /* Magic Packet is not an error. */
3235         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3236             (events & IEVENT_MAG))
3237                 events &= ~IEVENT_MAG;
3238
3239         /* Hmm... */
3240         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3241                 netdev_dbg(dev,
3242                            "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3243                            events, gfar_read(&regs->imask));
3244
3245         /* Update the error counters */
3246         if (events & IEVENT_TXE) {
3247                 dev->stats.tx_errors++;
3248
3249                 if (events & IEVENT_LC)
3250                         dev->stats.tx_window_errors++;
3251                 if (events & IEVENT_CRL)
3252                         dev->stats.tx_aborted_errors++;
3253                 if (events & IEVENT_XFUN) {
3254                         unsigned long flags;
3255
3256                         netif_dbg(priv, tx_err, dev,
3257                                   "TX FIFO underrun, packet dropped\n");
3258                         dev->stats.tx_dropped++;
3259                         atomic64_inc(&priv->extra_stats.tx_underrun);
3260
3261                         local_irq_save(flags);
3262                         lock_tx_qs(priv);
3263
3264                         /* Reactivate the Tx Queues */
3265                         gfar_write(&regs->tstat, gfargrp->tstat);
3266
3267                         unlock_tx_qs(priv);
3268                         local_irq_restore(flags);
3269                 }
3270                 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3271         }
3272         if (events & IEVENT_BSY) {
3273                 dev->stats.rx_errors++;
3274                 atomic64_inc(&priv->extra_stats.rx_bsy);
3275
3276                 gfar_receive(irq, grp_id);
3277
3278                 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3279                           gfar_read(&regs->rstat));
3280         }
3281         if (events & IEVENT_BABR) {
3282                 dev->stats.rx_errors++;
3283                 atomic64_inc(&priv->extra_stats.rx_babr);
3284
3285                 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3286         }
3287         if (events & IEVENT_EBERR) {
3288                 atomic64_inc(&priv->extra_stats.eberr);
3289                 netif_dbg(priv, rx_err, dev, "bus error\n");
3290         }
3291         if (events & IEVENT_RXC)
3292                 netif_dbg(priv, rx_status, dev, "control frame\n");
3293
3294         if (events & IEVENT_BABT) {
3295                 atomic64_inc(&priv->extra_stats.tx_babt);
3296                 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3297         }
3298         return IRQ_HANDLED;
3299 }
3300
3301 static struct of_device_id gfar_match[] =
3302 {
3303         {
3304                 .type = "network",
3305                 .compatible = "gianfar",
3306         },
3307         {
3308                 .compatible = "fsl,etsec2",
3309         },
3310         {},
3311 };
3312 MODULE_DEVICE_TABLE(of, gfar_match);
3313
3314 /* Structure for a device driver */
3315 static struct platform_driver gfar_driver = {
3316         .driver = {
3317                 .name = "fsl-gianfar",
3318                 .owner = THIS_MODULE,
3319                 .pm = GFAR_PM_OPS,
3320                 .of_match_table = gfar_match,
3321         },
3322         .probe = gfar_probe,
3323         .remove = gfar_remove,
3324 };
3325
3326 module_platform_driver(gfar_driver);