]> Pileus Git - ~andy/linux/blob - drivers/net/ethernet/freescale/gianfar.c
ACPI: Set hotplug _OST support bit to _OSC
[~andy/linux] / drivers / net / ethernet / freescale / gianfar.c
1 /*
2  * drivers/net/ethernet/freescale/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12  *
13  * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
14  * Copyright 2007 MontaVista Software, Inc.
15  *
16  * This program is free software; you can redistribute  it and/or modify it
17  * under  the terms of  the GNU General  Public License as published by the
18  * Free Software Foundation;  either version 2 of the  License, or (at your
19  * option) any later version.
20  *
21  *  Gianfar:  AKA Lambda Draconis, "Dragon"
22  *  RA 11 31 24.2
23  *  Dec +69 19 52
24  *  V 3.84
25  *  B-V +1.62
26  *
27  *  Theory of operation
28  *
29  *  The driver is initialized through of_device. Configuration information
30  *  is therefore conveyed through an OF-style device tree.
31  *
32  *  The Gianfar Ethernet Controller uses a ring of buffer
33  *  descriptors.  The beginning is indicated by a register
34  *  pointing to the physical address of the start of the ring.
35  *  The end is determined by a "wrap" bit being set in the
36  *  last descriptor of the ring.
37  *
38  *  When a packet is received, the RXF bit in the
39  *  IEVENT register is set, triggering an interrupt when the
40  *  corresponding bit in the IMASK register is also set (if
41  *  interrupt coalescing is active, then the interrupt may not
42  *  happen immediately, but will wait until either a set number
43  *  of frames or amount of time have passed).  In NAPI, the
44  *  interrupt handler will signal there is work to be done, and
45  *  exit. This method will start at the last known empty
46  *  descriptor, and process every subsequent descriptor until there
47  *  are none left with data (NAPI will stop after a set number of
48  *  packets to give time to other tasks, but will eventually
49  *  process all the packets).  The data arrives inside a
50  *  pre-allocated skb, and so after the skb is passed up to the
51  *  stack, a new skb must be allocated, and the address field in
52  *  the buffer descriptor must be updated to indicate this new
53  *  skb.
54  *
55  *  When the kernel requests that a packet be transmitted, the
56  *  driver starts where it left off last time, and points the
57  *  descriptor at the buffer which was passed in.  The driver
58  *  then informs the DMA engine that there are packets ready to
59  *  be transmitted.  Once the controller is finished transmitting
60  *  the packet, an interrupt may be triggered (under the same
61  *  conditions as for reception, but depending on the TXF bit).
62  *  The driver then cleans up the buffer.
63  */
64
65 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66 #define DEBUG
67
68 #include <linux/kernel.h>
69 #include <linux/string.h>
70 #include <linux/errno.h>
71 #include <linux/unistd.h>
72 #include <linux/slab.h>
73 #include <linux/interrupt.h>
74 #include <linux/init.h>
75 #include <linux/delay.h>
76 #include <linux/netdevice.h>
77 #include <linux/etherdevice.h>
78 #include <linux/skbuff.h>
79 #include <linux/if_vlan.h>
80 #include <linux/spinlock.h>
81 #include <linux/mm.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89
90 #include <asm/io.h>
91 #include <asm/reg.h>
92 #include <asm/irq.h>
93 #include <asm/uaccess.h>
94 #include <linux/module.h>
95 #include <linux/dma-mapping.h>
96 #include <linux/crc32.h>
97 #include <linux/mii.h>
98 #include <linux/phy.h>
99 #include <linux/phy_fixed.h>
100 #include <linux/of.h>
101 #include <linux/of_net.h>
102
103 #include "gianfar.h"
104 #include "fsl_pq_mdio.h"
105
106 #define TX_TIMEOUT      (1*HZ)
107
108 const char gfar_driver_version[] = "1.3";
109
110 static int gfar_enet_open(struct net_device *dev);
111 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
112 static void gfar_reset_task(struct work_struct *work);
113 static void gfar_timeout(struct net_device *dev);
114 static int gfar_close(struct net_device *dev);
115 struct sk_buff *gfar_new_skb(struct net_device *dev);
116 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
117                 struct sk_buff *skb);
118 static int gfar_set_mac_address(struct net_device *dev);
119 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
120 static irqreturn_t gfar_error(int irq, void *dev_id);
121 static irqreturn_t gfar_transmit(int irq, void *dev_id);
122 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
123 static void adjust_link(struct net_device *dev);
124 static void init_registers(struct net_device *dev);
125 static int init_phy(struct net_device *dev);
126 static int gfar_probe(struct platform_device *ofdev);
127 static int gfar_remove(struct platform_device *ofdev);
128 static void free_skb_resources(struct gfar_private *priv);
129 static void gfar_set_multi(struct net_device *dev);
130 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
131 static void gfar_configure_serdes(struct net_device *dev);
132 static int gfar_poll(struct napi_struct *napi, int budget);
133 #ifdef CONFIG_NET_POLL_CONTROLLER
134 static void gfar_netpoll(struct net_device *dev);
135 #endif
136 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
137 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
138 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
139                               int amount_pull, struct napi_struct *napi);
140 void gfar_halt(struct net_device *dev);
141 static void gfar_halt_nodisable(struct net_device *dev);
142 void gfar_start(struct net_device *dev);
143 static void gfar_clear_exact_match(struct net_device *dev);
144 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
145                                   const u8 *addr);
146 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
147
148 MODULE_AUTHOR("Freescale Semiconductor, Inc");
149 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
150 MODULE_LICENSE("GPL");
151
152 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
153                             dma_addr_t buf)
154 {
155         u32 lstatus;
156
157         bdp->bufPtr = buf;
158
159         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
160         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
161                 lstatus |= BD_LFLAG(RXBD_WRAP);
162
163         eieio();
164
165         bdp->lstatus = lstatus;
166 }
167
168 static int gfar_init_bds(struct net_device *ndev)
169 {
170         struct gfar_private *priv = netdev_priv(ndev);
171         struct gfar_priv_tx_q *tx_queue = NULL;
172         struct gfar_priv_rx_q *rx_queue = NULL;
173         struct txbd8 *txbdp;
174         struct rxbd8 *rxbdp;
175         int i, j;
176
177         for (i = 0; i < priv->num_tx_queues; i++) {
178                 tx_queue = priv->tx_queue[i];
179                 /* Initialize some variables in our dev structure */
180                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
181                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
182                 tx_queue->cur_tx = tx_queue->tx_bd_base;
183                 tx_queue->skb_curtx = 0;
184                 tx_queue->skb_dirtytx = 0;
185
186                 /* Initialize Transmit Descriptor Ring */
187                 txbdp = tx_queue->tx_bd_base;
188                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
189                         txbdp->lstatus = 0;
190                         txbdp->bufPtr = 0;
191                         txbdp++;
192                 }
193
194                 /* Set the last descriptor in the ring to indicate wrap */
195                 txbdp--;
196                 txbdp->status |= TXBD_WRAP;
197         }
198
199         for (i = 0; i < priv->num_rx_queues; i++) {
200                 rx_queue = priv->rx_queue[i];
201                 rx_queue->cur_rx = rx_queue->rx_bd_base;
202                 rx_queue->skb_currx = 0;
203                 rxbdp = rx_queue->rx_bd_base;
204
205                 for (j = 0; j < rx_queue->rx_ring_size; j++) {
206                         struct sk_buff *skb = rx_queue->rx_skbuff[j];
207
208                         if (skb) {
209                                 gfar_init_rxbdp(rx_queue, rxbdp,
210                                                 rxbdp->bufPtr);
211                         } else {
212                                 skb = gfar_new_skb(ndev);
213                                 if (!skb) {
214                                         netdev_err(ndev, "Can't allocate RX buffers\n");
215                                         goto err_rxalloc_fail;
216                                 }
217                                 rx_queue->rx_skbuff[j] = skb;
218
219                                 gfar_new_rxbdp(rx_queue, rxbdp, skb);
220                         }
221
222                         rxbdp++;
223                 }
224
225         }
226
227         return 0;
228
229 err_rxalloc_fail:
230         free_skb_resources(priv);
231         return -ENOMEM;
232 }
233
234 static int gfar_alloc_skb_resources(struct net_device *ndev)
235 {
236         void *vaddr;
237         dma_addr_t addr;
238         int i, j, k;
239         struct gfar_private *priv = netdev_priv(ndev);
240         struct device *dev = &priv->ofdev->dev;
241         struct gfar_priv_tx_q *tx_queue = NULL;
242         struct gfar_priv_rx_q *rx_queue = NULL;
243
244         priv->total_tx_ring_size = 0;
245         for (i = 0; i < priv->num_tx_queues; i++)
246                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
247
248         priv->total_rx_ring_size = 0;
249         for (i = 0; i < priv->num_rx_queues; i++)
250                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
251
252         /* Allocate memory for the buffer descriptors */
253         vaddr = dma_alloc_coherent(dev,
254                         sizeof(struct txbd8) * priv->total_tx_ring_size +
255                         sizeof(struct rxbd8) * priv->total_rx_ring_size,
256                         &addr, GFP_KERNEL);
257         if (!vaddr) {
258                 netif_err(priv, ifup, ndev,
259                           "Could not allocate buffer descriptors!\n");
260                 return -ENOMEM;
261         }
262
263         for (i = 0; i < priv->num_tx_queues; i++) {
264                 tx_queue = priv->tx_queue[i];
265                 tx_queue->tx_bd_base = vaddr;
266                 tx_queue->tx_bd_dma_base = addr;
267                 tx_queue->dev = ndev;
268                 /* enet DMA only understands physical addresses */
269                 addr    += sizeof(struct txbd8) *tx_queue->tx_ring_size;
270                 vaddr   += sizeof(struct txbd8) *tx_queue->tx_ring_size;
271         }
272
273         /* Start the rx descriptor ring where the tx ring leaves off */
274         for (i = 0; i < priv->num_rx_queues; i++) {
275                 rx_queue = priv->rx_queue[i];
276                 rx_queue->rx_bd_base = vaddr;
277                 rx_queue->rx_bd_dma_base = addr;
278                 rx_queue->dev = ndev;
279                 addr    += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
280                 vaddr   += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
281         }
282
283         /* Setup the skbuff rings */
284         for (i = 0; i < priv->num_tx_queues; i++) {
285                 tx_queue = priv->tx_queue[i];
286                 tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
287                                   tx_queue->tx_ring_size, GFP_KERNEL);
288                 if (!tx_queue->tx_skbuff) {
289                         netif_err(priv, ifup, ndev,
290                                   "Could not allocate tx_skbuff\n");
291                         goto cleanup;
292                 }
293
294                 for (k = 0; k < tx_queue->tx_ring_size; k++)
295                         tx_queue->tx_skbuff[k] = NULL;
296         }
297
298         for (i = 0; i < priv->num_rx_queues; i++) {
299                 rx_queue = priv->rx_queue[i];
300                 rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
301                                   rx_queue->rx_ring_size, GFP_KERNEL);
302
303                 if (!rx_queue->rx_skbuff) {
304                         netif_err(priv, ifup, ndev,
305                                   "Could not allocate rx_skbuff\n");
306                         goto cleanup;
307                 }
308
309                 for (j = 0; j < rx_queue->rx_ring_size; j++)
310                         rx_queue->rx_skbuff[j] = NULL;
311         }
312
313         if (gfar_init_bds(ndev))
314                 goto cleanup;
315
316         return 0;
317
318 cleanup:
319         free_skb_resources(priv);
320         return -ENOMEM;
321 }
322
323 static void gfar_init_tx_rx_base(struct gfar_private *priv)
324 {
325         struct gfar __iomem *regs = priv->gfargrp[0].regs;
326         u32 __iomem *baddr;
327         int i;
328
329         baddr = &regs->tbase0;
330         for(i = 0; i < priv->num_tx_queues; i++) {
331                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
332                 baddr   += 2;
333         }
334
335         baddr = &regs->rbase0;
336         for(i = 0; i < priv->num_rx_queues; i++) {
337                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
338                 baddr   += 2;
339         }
340 }
341
342 static void gfar_init_mac(struct net_device *ndev)
343 {
344         struct gfar_private *priv = netdev_priv(ndev);
345         struct gfar __iomem *regs = priv->gfargrp[0].regs;
346         u32 rctrl = 0;
347         u32 tctrl = 0;
348         u32 attrs = 0;
349
350         /* write the tx/rx base registers */
351         gfar_init_tx_rx_base(priv);
352
353         /* Configure the coalescing support */
354         gfar_configure_coalescing(priv, 0xFF, 0xFF);
355
356         if (priv->rx_filer_enable) {
357                 rctrl |= RCTRL_FILREN;
358                 /* Program the RIR0 reg with the required distribution */
359                 gfar_write(&regs->rir0, DEFAULT_RIR0);
360         }
361
362         if (ndev->features & NETIF_F_RXCSUM)
363                 rctrl |= RCTRL_CHECKSUMMING;
364
365         if (priv->extended_hash) {
366                 rctrl |= RCTRL_EXTHASH;
367
368                 gfar_clear_exact_match(ndev);
369                 rctrl |= RCTRL_EMEN;
370         }
371
372         if (priv->padding) {
373                 rctrl &= ~RCTRL_PAL_MASK;
374                 rctrl |= RCTRL_PADDING(priv->padding);
375         }
376
377         /* Insert receive time stamps into padding alignment bytes */
378         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
379                 rctrl &= ~RCTRL_PAL_MASK;
380                 rctrl |= RCTRL_PADDING(8);
381                 priv->padding = 8;
382         }
383
384         /* Enable HW time stamping if requested from user space */
385         if (priv->hwts_rx_en)
386                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
387
388         if (ndev->features & NETIF_F_HW_VLAN_RX)
389                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
390
391         /* Init rctrl based on our settings */
392         gfar_write(&regs->rctrl, rctrl);
393
394         if (ndev->features & NETIF_F_IP_CSUM)
395                 tctrl |= TCTRL_INIT_CSUM;
396
397         tctrl |= TCTRL_TXSCHED_PRIO;
398
399         gfar_write(&regs->tctrl, tctrl);
400
401         /* Set the extraction length and index */
402         attrs = ATTRELI_EL(priv->rx_stash_size) |
403                 ATTRELI_EI(priv->rx_stash_index);
404
405         gfar_write(&regs->attreli, attrs);
406
407         /* Start with defaults, and add stashing or locking
408          * depending on the approprate variables */
409         attrs = ATTR_INIT_SETTINGS;
410
411         if (priv->bd_stash_en)
412                 attrs |= ATTR_BDSTASH;
413
414         if (priv->rx_stash_size != 0)
415                 attrs |= ATTR_BUFSTASH;
416
417         gfar_write(&regs->attr, attrs);
418
419         gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
420         gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
421         gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
422 }
423
424 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
425 {
426         struct gfar_private *priv = netdev_priv(dev);
427         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
428         unsigned long tx_packets = 0, tx_bytes = 0;
429         int i = 0;
430
431         for (i = 0; i < priv->num_rx_queues; i++) {
432                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
433                 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
434                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
435         }
436
437         dev->stats.rx_packets = rx_packets;
438         dev->stats.rx_bytes = rx_bytes;
439         dev->stats.rx_dropped = rx_dropped;
440
441         for (i = 0; i < priv->num_tx_queues; i++) {
442                 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
443                 tx_packets += priv->tx_queue[i]->stats.tx_packets;
444         }
445
446         dev->stats.tx_bytes = tx_bytes;
447         dev->stats.tx_packets = tx_packets;
448
449         return &dev->stats;
450 }
451
452 static const struct net_device_ops gfar_netdev_ops = {
453         .ndo_open = gfar_enet_open,
454         .ndo_start_xmit = gfar_start_xmit,
455         .ndo_stop = gfar_close,
456         .ndo_change_mtu = gfar_change_mtu,
457         .ndo_set_features = gfar_set_features,
458         .ndo_set_rx_mode = gfar_set_multi,
459         .ndo_tx_timeout = gfar_timeout,
460         .ndo_do_ioctl = gfar_ioctl,
461         .ndo_get_stats = gfar_get_stats,
462         .ndo_set_mac_address = eth_mac_addr,
463         .ndo_validate_addr = eth_validate_addr,
464 #ifdef CONFIG_NET_POLL_CONTROLLER
465         .ndo_poll_controller = gfar_netpoll,
466 #endif
467 };
468
469 void lock_rx_qs(struct gfar_private *priv)
470 {
471         int i = 0x0;
472
473         for (i = 0; i < priv->num_rx_queues; i++)
474                 spin_lock(&priv->rx_queue[i]->rxlock);
475 }
476
477 void lock_tx_qs(struct gfar_private *priv)
478 {
479         int i = 0x0;
480
481         for (i = 0; i < priv->num_tx_queues; i++)
482                 spin_lock(&priv->tx_queue[i]->txlock);
483 }
484
485 void unlock_rx_qs(struct gfar_private *priv)
486 {
487         int i = 0x0;
488
489         for (i = 0; i < priv->num_rx_queues; i++)
490                 spin_unlock(&priv->rx_queue[i]->rxlock);
491 }
492
493 void unlock_tx_qs(struct gfar_private *priv)
494 {
495         int i = 0x0;
496
497         for (i = 0; i < priv->num_tx_queues; i++)
498                 spin_unlock(&priv->tx_queue[i]->txlock);
499 }
500
501 static bool gfar_is_vlan_on(struct gfar_private *priv)
502 {
503         return (priv->ndev->features & NETIF_F_HW_VLAN_RX) ||
504                (priv->ndev->features & NETIF_F_HW_VLAN_TX);
505 }
506
507 /* Returns 1 if incoming frames use an FCB */
508 static inline int gfar_uses_fcb(struct gfar_private *priv)
509 {
510         return gfar_is_vlan_on(priv) ||
511                 (priv->ndev->features & NETIF_F_RXCSUM) ||
512                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
513 }
514
515 static void free_tx_pointers(struct gfar_private *priv)
516 {
517         int i = 0;
518
519         for (i = 0; i < priv->num_tx_queues; i++)
520                 kfree(priv->tx_queue[i]);
521 }
522
523 static void free_rx_pointers(struct gfar_private *priv)
524 {
525         int i = 0;
526
527         for (i = 0; i < priv->num_rx_queues; i++)
528                 kfree(priv->rx_queue[i]);
529 }
530
531 static void unmap_group_regs(struct gfar_private *priv)
532 {
533         int i = 0;
534
535         for (i = 0; i < MAXGROUPS; i++)
536                 if (priv->gfargrp[i].regs)
537                         iounmap(priv->gfargrp[i].regs);
538 }
539
540 static void disable_napi(struct gfar_private *priv)
541 {
542         int i = 0;
543
544         for (i = 0; i < priv->num_grps; i++)
545                 napi_disable(&priv->gfargrp[i].napi);
546 }
547
548 static void enable_napi(struct gfar_private *priv)
549 {
550         int i = 0;
551
552         for (i = 0; i < priv->num_grps; i++)
553                 napi_enable(&priv->gfargrp[i].napi);
554 }
555
556 static int gfar_parse_group(struct device_node *np,
557                 struct gfar_private *priv, const char *model)
558 {
559         u32 *queue_mask;
560
561         priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
562         if (!priv->gfargrp[priv->num_grps].regs)
563                 return -ENOMEM;
564
565         priv->gfargrp[priv->num_grps].interruptTransmit =
566                         irq_of_parse_and_map(np, 0);
567
568         /* If we aren't the FEC we have multiple interrupts */
569         if (model && strcasecmp(model, "FEC")) {
570                 priv->gfargrp[priv->num_grps].interruptReceive =
571                         irq_of_parse_and_map(np, 1);
572                 priv->gfargrp[priv->num_grps].interruptError =
573                         irq_of_parse_and_map(np,2);
574                 if (priv->gfargrp[priv->num_grps].interruptTransmit == NO_IRQ ||
575                     priv->gfargrp[priv->num_grps].interruptReceive  == NO_IRQ ||
576                     priv->gfargrp[priv->num_grps].interruptError    == NO_IRQ)
577                         return -EINVAL;
578         }
579
580         priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
581         priv->gfargrp[priv->num_grps].priv = priv;
582         spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
583         if(priv->mode == MQ_MG_MODE) {
584                 queue_mask = (u32 *)of_get_property(np,
585                                         "fsl,rx-bit-map", NULL);
586                 priv->gfargrp[priv->num_grps].rx_bit_map =
587                         queue_mask ?  *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
588                 queue_mask = (u32 *)of_get_property(np,
589                                         "fsl,tx-bit-map", NULL);
590                 priv->gfargrp[priv->num_grps].tx_bit_map =
591                         queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
592         } else {
593                 priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
594                 priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
595         }
596         priv->num_grps++;
597
598         return 0;
599 }
600
601 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
602 {
603         const char *model;
604         const char *ctype;
605         const void *mac_addr;
606         int err = 0, i;
607         struct net_device *dev = NULL;
608         struct gfar_private *priv = NULL;
609         struct device_node *np = ofdev->dev.of_node;
610         struct device_node *child = NULL;
611         const u32 *stash;
612         const u32 *stash_len;
613         const u32 *stash_idx;
614         unsigned int num_tx_qs, num_rx_qs;
615         u32 *tx_queues, *rx_queues;
616
617         if (!np || !of_device_is_available(np))
618                 return -ENODEV;
619
620         /* parse the num of tx and rx queues */
621         tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
622         num_tx_qs = tx_queues ? *tx_queues : 1;
623
624         if (num_tx_qs > MAX_TX_QS) {
625                 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
626                        num_tx_qs, MAX_TX_QS);
627                 pr_err("Cannot do alloc_etherdev, aborting\n");
628                 return -EINVAL;
629         }
630
631         rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
632         num_rx_qs = rx_queues ? *rx_queues : 1;
633
634         if (num_rx_qs > MAX_RX_QS) {
635                 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
636                        num_rx_qs, MAX_RX_QS);
637                 pr_err("Cannot do alloc_etherdev, aborting\n");
638                 return -EINVAL;
639         }
640
641         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
642         dev = *pdev;
643         if (NULL == dev)
644                 return -ENOMEM;
645
646         priv = netdev_priv(dev);
647         priv->node = ofdev->dev.of_node;
648         priv->ndev = dev;
649
650         priv->num_tx_queues = num_tx_qs;
651         netif_set_real_num_rx_queues(dev, num_rx_qs);
652         priv->num_rx_queues = num_rx_qs;
653         priv->num_grps = 0x0;
654
655         /* Init Rx queue filer rule set linked list*/
656         INIT_LIST_HEAD(&priv->rx_list.list);
657         priv->rx_list.count = 0;
658         mutex_init(&priv->rx_queue_access);
659
660         model = of_get_property(np, "model", NULL);
661
662         for (i = 0; i < MAXGROUPS; i++)
663                 priv->gfargrp[i].regs = NULL;
664
665         /* Parse and initialize group specific information */
666         if (of_device_is_compatible(np, "fsl,etsec2")) {
667                 priv->mode = MQ_MG_MODE;
668                 for_each_child_of_node(np, child) {
669                         err = gfar_parse_group(child, priv, model);
670                         if (err)
671                                 goto err_grp_init;
672                 }
673         } else {
674                 priv->mode = SQ_SG_MODE;
675                 err = gfar_parse_group(np, priv, model);
676                 if(err)
677                         goto err_grp_init;
678         }
679
680         for (i = 0; i < priv->num_tx_queues; i++)
681                priv->tx_queue[i] = NULL;
682         for (i = 0; i < priv->num_rx_queues; i++)
683                 priv->rx_queue[i] = NULL;
684
685         for (i = 0; i < priv->num_tx_queues; i++) {
686                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
687                                             GFP_KERNEL);
688                 if (!priv->tx_queue[i]) {
689                         err = -ENOMEM;
690                         goto tx_alloc_failed;
691                 }
692                 priv->tx_queue[i]->tx_skbuff = NULL;
693                 priv->tx_queue[i]->qindex = i;
694                 priv->tx_queue[i]->dev = dev;
695                 spin_lock_init(&(priv->tx_queue[i]->txlock));
696         }
697
698         for (i = 0; i < priv->num_rx_queues; i++) {
699                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
700                                             GFP_KERNEL);
701                 if (!priv->rx_queue[i]) {
702                         err = -ENOMEM;
703                         goto rx_alloc_failed;
704                 }
705                 priv->rx_queue[i]->rx_skbuff = NULL;
706                 priv->rx_queue[i]->qindex = i;
707                 priv->rx_queue[i]->dev = dev;
708                 spin_lock_init(&(priv->rx_queue[i]->rxlock));
709         }
710
711
712         stash = of_get_property(np, "bd-stash", NULL);
713
714         if (stash) {
715                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
716                 priv->bd_stash_en = 1;
717         }
718
719         stash_len = of_get_property(np, "rx-stash-len", NULL);
720
721         if (stash_len)
722                 priv->rx_stash_size = *stash_len;
723
724         stash_idx = of_get_property(np, "rx-stash-idx", NULL);
725
726         if (stash_idx)
727                 priv->rx_stash_index = *stash_idx;
728
729         if (stash_len || stash_idx)
730                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
731
732         mac_addr = of_get_mac_address(np);
733         if (mac_addr)
734                 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
735
736         if (model && !strcasecmp(model, "TSEC"))
737                 priv->device_flags =
738                         FSL_GIANFAR_DEV_HAS_GIGABIT |
739                         FSL_GIANFAR_DEV_HAS_COALESCE |
740                         FSL_GIANFAR_DEV_HAS_RMON |
741                         FSL_GIANFAR_DEV_HAS_MULTI_INTR;
742         if (model && !strcasecmp(model, "eTSEC"))
743                 priv->device_flags =
744                         FSL_GIANFAR_DEV_HAS_GIGABIT |
745                         FSL_GIANFAR_DEV_HAS_COALESCE |
746                         FSL_GIANFAR_DEV_HAS_RMON |
747                         FSL_GIANFAR_DEV_HAS_MULTI_INTR |
748                         FSL_GIANFAR_DEV_HAS_PADDING |
749                         FSL_GIANFAR_DEV_HAS_CSUM |
750                         FSL_GIANFAR_DEV_HAS_VLAN |
751                         FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
752                         FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
753                         FSL_GIANFAR_DEV_HAS_TIMER;
754
755         ctype = of_get_property(np, "phy-connection-type", NULL);
756
757         /* We only care about rgmii-id.  The rest are autodetected */
758         if (ctype && !strcmp(ctype, "rgmii-id"))
759                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
760         else
761                 priv->interface = PHY_INTERFACE_MODE_MII;
762
763         if (of_get_property(np, "fsl,magic-packet", NULL))
764                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
765
766         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
767
768         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
769         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
770
771         return 0;
772
773 rx_alloc_failed:
774         free_rx_pointers(priv);
775 tx_alloc_failed:
776         free_tx_pointers(priv);
777 err_grp_init:
778         unmap_group_regs(priv);
779         free_netdev(dev);
780         return err;
781 }
782
783 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
784                         struct ifreq *ifr, int cmd)
785 {
786         struct hwtstamp_config config;
787         struct gfar_private *priv = netdev_priv(netdev);
788
789         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
790                 return -EFAULT;
791
792         /* reserved for future extensions */
793         if (config.flags)
794                 return -EINVAL;
795
796         switch (config.tx_type) {
797         case HWTSTAMP_TX_OFF:
798                 priv->hwts_tx_en = 0;
799                 break;
800         case HWTSTAMP_TX_ON:
801                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
802                         return -ERANGE;
803                 priv->hwts_tx_en = 1;
804                 break;
805         default:
806                 return -ERANGE;
807         }
808
809         switch (config.rx_filter) {
810         case HWTSTAMP_FILTER_NONE:
811                 if (priv->hwts_rx_en) {
812                         stop_gfar(netdev);
813                         priv->hwts_rx_en = 0;
814                         startup_gfar(netdev);
815                 }
816                 break;
817         default:
818                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
819                         return -ERANGE;
820                 if (!priv->hwts_rx_en) {
821                         stop_gfar(netdev);
822                         priv->hwts_rx_en = 1;
823                         startup_gfar(netdev);
824                 }
825                 config.rx_filter = HWTSTAMP_FILTER_ALL;
826                 break;
827         }
828
829         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
830                 -EFAULT : 0;
831 }
832
833 /* Ioctl MII Interface */
834 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
835 {
836         struct gfar_private *priv = netdev_priv(dev);
837
838         if (!netif_running(dev))
839                 return -EINVAL;
840
841         if (cmd == SIOCSHWTSTAMP)
842                 return gfar_hwtstamp_ioctl(dev, rq, cmd);
843
844         if (!priv->phydev)
845                 return -ENODEV;
846
847         return phy_mii_ioctl(priv->phydev, rq, cmd);
848 }
849
850 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
851 {
852         unsigned int new_bit_map = 0x0;
853         int mask = 0x1 << (max_qs - 1), i;
854         for (i = 0; i < max_qs; i++) {
855                 if (bit_map & mask)
856                         new_bit_map = new_bit_map + (1 << i);
857                 mask = mask >> 0x1;
858         }
859         return new_bit_map;
860 }
861
862 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
863                                    u32 class)
864 {
865         u32 rqfpr = FPR_FILER_MASK;
866         u32 rqfcr = 0x0;
867
868         rqfar--;
869         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
870         priv->ftp_rqfpr[rqfar] = rqfpr;
871         priv->ftp_rqfcr[rqfar] = rqfcr;
872         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
873
874         rqfar--;
875         rqfcr = RQFCR_CMP_NOMATCH;
876         priv->ftp_rqfpr[rqfar] = rqfpr;
877         priv->ftp_rqfcr[rqfar] = rqfcr;
878         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
879
880         rqfar--;
881         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
882         rqfpr = class;
883         priv->ftp_rqfcr[rqfar] = rqfcr;
884         priv->ftp_rqfpr[rqfar] = rqfpr;
885         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
886
887         rqfar--;
888         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
889         rqfpr = class;
890         priv->ftp_rqfcr[rqfar] = rqfcr;
891         priv->ftp_rqfpr[rqfar] = rqfpr;
892         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
893
894         return rqfar;
895 }
896
897 static void gfar_init_filer_table(struct gfar_private *priv)
898 {
899         int i = 0x0;
900         u32 rqfar = MAX_FILER_IDX;
901         u32 rqfcr = 0x0;
902         u32 rqfpr = FPR_FILER_MASK;
903
904         /* Default rule */
905         rqfcr = RQFCR_CMP_MATCH;
906         priv->ftp_rqfcr[rqfar] = rqfcr;
907         priv->ftp_rqfpr[rqfar] = rqfpr;
908         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
909
910         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
911         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
912         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
913         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
914         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
915         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
916
917         /* cur_filer_idx indicated the first non-masked rule */
918         priv->cur_filer_idx = rqfar;
919
920         /* Rest are masked rules */
921         rqfcr = RQFCR_CMP_NOMATCH;
922         for (i = 0; i < rqfar; i++) {
923                 priv->ftp_rqfcr[i] = rqfcr;
924                 priv->ftp_rqfpr[i] = rqfpr;
925                 gfar_write_filer(priv, i, rqfcr, rqfpr);
926         }
927 }
928
929 static void gfar_detect_errata(struct gfar_private *priv)
930 {
931         struct device *dev = &priv->ofdev->dev;
932         unsigned int pvr = mfspr(SPRN_PVR);
933         unsigned int svr = mfspr(SPRN_SVR);
934         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
935         unsigned int rev = svr & 0xffff;
936
937         /* MPC8313 Rev 2.0 and higher; All MPC837x */
938         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
939                         (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
940                 priv->errata |= GFAR_ERRATA_74;
941
942         /* MPC8313 and MPC837x all rev */
943         if ((pvr == 0x80850010 && mod == 0x80b0) ||
944                         (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
945                 priv->errata |= GFAR_ERRATA_76;
946
947         /* MPC8313 and MPC837x all rev */
948         if ((pvr == 0x80850010 && mod == 0x80b0) ||
949                         (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
950                 priv->errata |= GFAR_ERRATA_A002;
951
952         /* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
953         if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
954                         (pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
955                 priv->errata |= GFAR_ERRATA_12;
956
957         if (priv->errata)
958                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
959                          priv->errata);
960 }
961
962 /* Set up the ethernet device structure, private data,
963  * and anything else we need before we start */
964 static int gfar_probe(struct platform_device *ofdev)
965 {
966         u32 tempval;
967         struct net_device *dev = NULL;
968         struct gfar_private *priv = NULL;
969         struct gfar __iomem *regs = NULL;
970         int err = 0, i, grp_idx = 0;
971         u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
972         u32 isrg = 0;
973         u32 __iomem *baddr;
974
975         err = gfar_of_init(ofdev, &dev);
976
977         if (err)
978                 return err;
979
980         priv = netdev_priv(dev);
981         priv->ndev = dev;
982         priv->ofdev = ofdev;
983         priv->node = ofdev->dev.of_node;
984         SET_NETDEV_DEV(dev, &ofdev->dev);
985
986         spin_lock_init(&priv->bflock);
987         INIT_WORK(&priv->reset_task, gfar_reset_task);
988
989         dev_set_drvdata(&ofdev->dev, priv);
990         regs = priv->gfargrp[0].regs;
991
992         gfar_detect_errata(priv);
993
994         /* Stop the DMA engine now, in case it was running before */
995         /* (The firmware could have used it, and left it running). */
996         gfar_halt(dev);
997
998         /* Reset MAC layer */
999         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1000
1001         /* We need to delay at least 3 TX clocks */
1002         udelay(2);
1003
1004         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1005         gfar_write(&regs->maccfg1, tempval);
1006
1007         /* Initialize MACCFG2. */
1008         tempval = MACCFG2_INIT_SETTINGS;
1009         if (gfar_has_errata(priv, GFAR_ERRATA_74))
1010                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1011         gfar_write(&regs->maccfg2, tempval);
1012
1013         /* Initialize ECNTRL */
1014         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1015
1016         /* Set the dev->base_addr to the gfar reg region */
1017         dev->base_addr = (unsigned long) regs;
1018
1019         SET_NETDEV_DEV(dev, &ofdev->dev);
1020
1021         /* Fill in the dev structure */
1022         dev->watchdog_timeo = TX_TIMEOUT;
1023         dev->mtu = 1500;
1024         dev->netdev_ops = &gfar_netdev_ops;
1025         dev->ethtool_ops = &gfar_ethtool_ops;
1026
1027         /* Register for napi ...We are registering NAPI for each grp */
1028         for (i = 0; i < priv->num_grps; i++)
1029                 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
1030
1031         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1032                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1033                         NETIF_F_RXCSUM;
1034                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1035                         NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1036         }
1037
1038         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1039                 dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1040                 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1041         }
1042
1043         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1044                 priv->extended_hash = 1;
1045                 priv->hash_width = 9;
1046
1047                 priv->hash_regs[0] = &regs->igaddr0;
1048                 priv->hash_regs[1] = &regs->igaddr1;
1049                 priv->hash_regs[2] = &regs->igaddr2;
1050                 priv->hash_regs[3] = &regs->igaddr3;
1051                 priv->hash_regs[4] = &regs->igaddr4;
1052                 priv->hash_regs[5] = &regs->igaddr5;
1053                 priv->hash_regs[6] = &regs->igaddr6;
1054                 priv->hash_regs[7] = &regs->igaddr7;
1055                 priv->hash_regs[8] = &regs->gaddr0;
1056                 priv->hash_regs[9] = &regs->gaddr1;
1057                 priv->hash_regs[10] = &regs->gaddr2;
1058                 priv->hash_regs[11] = &regs->gaddr3;
1059                 priv->hash_regs[12] = &regs->gaddr4;
1060                 priv->hash_regs[13] = &regs->gaddr5;
1061                 priv->hash_regs[14] = &regs->gaddr6;
1062                 priv->hash_regs[15] = &regs->gaddr7;
1063
1064         } else {
1065                 priv->extended_hash = 0;
1066                 priv->hash_width = 8;
1067
1068                 priv->hash_regs[0] = &regs->gaddr0;
1069                 priv->hash_regs[1] = &regs->gaddr1;
1070                 priv->hash_regs[2] = &regs->gaddr2;
1071                 priv->hash_regs[3] = &regs->gaddr3;
1072                 priv->hash_regs[4] = &regs->gaddr4;
1073                 priv->hash_regs[5] = &regs->gaddr5;
1074                 priv->hash_regs[6] = &regs->gaddr6;
1075                 priv->hash_regs[7] = &regs->gaddr7;
1076         }
1077
1078         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1079                 priv->padding = DEFAULT_PADDING;
1080         else
1081                 priv->padding = 0;
1082
1083         if (dev->features & NETIF_F_IP_CSUM ||
1084                         priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1085                 dev->needed_headroom = GMAC_FCB_LEN;
1086
1087         /* Program the isrg regs only if number of grps > 1 */
1088         if (priv->num_grps > 1) {
1089                 baddr = &regs->isrg0;
1090                 for (i = 0; i < priv->num_grps; i++) {
1091                         isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1092                         isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1093                         gfar_write(baddr, isrg);
1094                         baddr++;
1095                         isrg = 0x0;
1096                 }
1097         }
1098
1099         /* Need to reverse the bit maps as  bit_map's MSB is q0
1100          * but, for_each_set_bit parses from right to left, which
1101          * basically reverses the queue numbers */
1102         for (i = 0; i< priv->num_grps; i++) {
1103                 priv->gfargrp[i].tx_bit_map = reverse_bitmap(
1104                                 priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1105                 priv->gfargrp[i].rx_bit_map = reverse_bitmap(
1106                                 priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1107         }
1108
1109         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1110          * also assign queues to groups */
1111         for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1112                 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1113                 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1114                                 priv->num_rx_queues) {
1115                         priv->gfargrp[grp_idx].num_rx_queues++;
1116                         priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1117                         rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1118                         rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1119                 }
1120                 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1121                 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1122                                 priv->num_tx_queues) {
1123                         priv->gfargrp[grp_idx].num_tx_queues++;
1124                         priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1125                         tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1126                         tqueue = tqueue | (TQUEUE_EN0 >> i);
1127                 }
1128                 priv->gfargrp[grp_idx].rstat = rstat;
1129                 priv->gfargrp[grp_idx].tstat = tstat;
1130                 rstat = tstat =0;
1131         }
1132
1133         gfar_write(&regs->rqueue, rqueue);
1134         gfar_write(&regs->tqueue, tqueue);
1135
1136         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1137
1138         /* Initializing some of the rx/tx queue level parameters */
1139         for (i = 0; i < priv->num_tx_queues; i++) {
1140                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1141                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1142                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1143                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1144         }
1145
1146         for (i = 0; i < priv->num_rx_queues; i++) {
1147                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1148                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1149                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1150         }
1151
1152         /* always enable rx filer*/
1153         priv->rx_filer_enable = 1;
1154         /* Enable most messages by default */
1155         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1156
1157         /* Carrier starts down, phylib will bring it up */
1158         netif_carrier_off(dev);
1159
1160         err = register_netdev(dev);
1161
1162         if (err) {
1163                 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1164                 goto register_fail;
1165         }
1166
1167         device_init_wakeup(&dev->dev,
1168                 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1169
1170         /* fill out IRQ number and name fields */
1171         for (i = 0; i < priv->num_grps; i++) {
1172                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1173                         sprintf(priv->gfargrp[i].int_name_tx, "%s%s%c%s",
1174                                 dev->name, "_g", '0' + i, "_tx");
1175                         sprintf(priv->gfargrp[i].int_name_rx, "%s%s%c%s",
1176                                 dev->name, "_g", '0' + i, "_rx");
1177                         sprintf(priv->gfargrp[i].int_name_er, "%s%s%c%s",
1178                                 dev->name, "_g", '0' + i, "_er");
1179                 } else
1180                         strcpy(priv->gfargrp[i].int_name_tx, dev->name);
1181         }
1182
1183         /* Initialize the filer table */
1184         gfar_init_filer_table(priv);
1185
1186         /* Create all the sysfs files */
1187         gfar_init_sysfs(dev);
1188
1189         /* Print out the device info */
1190         netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1191
1192         /* Even more device info helps when determining which kernel */
1193         /* provided which set of benchmarks. */
1194         netdev_info(dev, "Running with NAPI enabled\n");
1195         for (i = 0; i < priv->num_rx_queues; i++)
1196                 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1197                             i, priv->rx_queue[i]->rx_ring_size);
1198         for(i = 0; i < priv->num_tx_queues; i++)
1199                 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1200                             i, priv->tx_queue[i]->tx_ring_size);
1201
1202         return 0;
1203
1204 register_fail:
1205         unmap_group_regs(priv);
1206         free_tx_pointers(priv);
1207         free_rx_pointers(priv);
1208         if (priv->phy_node)
1209                 of_node_put(priv->phy_node);
1210         if (priv->tbi_node)
1211                 of_node_put(priv->tbi_node);
1212         free_netdev(dev);
1213         return err;
1214 }
1215
1216 static int gfar_remove(struct platform_device *ofdev)
1217 {
1218         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1219
1220         if (priv->phy_node)
1221                 of_node_put(priv->phy_node);
1222         if (priv->tbi_node)
1223                 of_node_put(priv->tbi_node);
1224
1225         dev_set_drvdata(&ofdev->dev, NULL);
1226
1227         unregister_netdev(priv->ndev);
1228         unmap_group_regs(priv);
1229         free_netdev(priv->ndev);
1230
1231         return 0;
1232 }
1233
1234 #ifdef CONFIG_PM
1235
1236 static int gfar_suspend(struct device *dev)
1237 {
1238         struct gfar_private *priv = dev_get_drvdata(dev);
1239         struct net_device *ndev = priv->ndev;
1240         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1241         unsigned long flags;
1242         u32 tempval;
1243
1244         int magic_packet = priv->wol_en &&
1245                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1246
1247         netif_device_detach(ndev);
1248
1249         if (netif_running(ndev)) {
1250
1251                 local_irq_save(flags);
1252                 lock_tx_qs(priv);
1253                 lock_rx_qs(priv);
1254
1255                 gfar_halt_nodisable(ndev);
1256
1257                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1258                 tempval = gfar_read(&regs->maccfg1);
1259
1260                 tempval &= ~MACCFG1_TX_EN;
1261
1262                 if (!magic_packet)
1263                         tempval &= ~MACCFG1_RX_EN;
1264
1265                 gfar_write(&regs->maccfg1, tempval);
1266
1267                 unlock_rx_qs(priv);
1268                 unlock_tx_qs(priv);
1269                 local_irq_restore(flags);
1270
1271                 disable_napi(priv);
1272
1273                 if (magic_packet) {
1274                         /* Enable interrupt on Magic Packet */
1275                         gfar_write(&regs->imask, IMASK_MAG);
1276
1277                         /* Enable Magic Packet mode */
1278                         tempval = gfar_read(&regs->maccfg2);
1279                         tempval |= MACCFG2_MPEN;
1280                         gfar_write(&regs->maccfg2, tempval);
1281                 } else {
1282                         phy_stop(priv->phydev);
1283                 }
1284         }
1285
1286         return 0;
1287 }
1288
1289 static int gfar_resume(struct device *dev)
1290 {
1291         struct gfar_private *priv = dev_get_drvdata(dev);
1292         struct net_device *ndev = priv->ndev;
1293         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1294         unsigned long flags;
1295         u32 tempval;
1296         int magic_packet = priv->wol_en &&
1297                 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1298
1299         if (!netif_running(ndev)) {
1300                 netif_device_attach(ndev);
1301                 return 0;
1302         }
1303
1304         if (!magic_packet && priv->phydev)
1305                 phy_start(priv->phydev);
1306
1307         /* Disable Magic Packet mode, in case something
1308          * else woke us up.
1309          */
1310         local_irq_save(flags);
1311         lock_tx_qs(priv);
1312         lock_rx_qs(priv);
1313
1314         tempval = gfar_read(&regs->maccfg2);
1315         tempval &= ~MACCFG2_MPEN;
1316         gfar_write(&regs->maccfg2, tempval);
1317
1318         gfar_start(ndev);
1319
1320         unlock_rx_qs(priv);
1321         unlock_tx_qs(priv);
1322         local_irq_restore(flags);
1323
1324         netif_device_attach(ndev);
1325
1326         enable_napi(priv);
1327
1328         return 0;
1329 }
1330
1331 static int gfar_restore(struct device *dev)
1332 {
1333         struct gfar_private *priv = dev_get_drvdata(dev);
1334         struct net_device *ndev = priv->ndev;
1335
1336         if (!netif_running(ndev))
1337                 return 0;
1338
1339         gfar_init_bds(ndev);
1340         init_registers(ndev);
1341         gfar_set_mac_address(ndev);
1342         gfar_init_mac(ndev);
1343         gfar_start(ndev);
1344
1345         priv->oldlink = 0;
1346         priv->oldspeed = 0;
1347         priv->oldduplex = -1;
1348
1349         if (priv->phydev)
1350                 phy_start(priv->phydev);
1351
1352         netif_device_attach(ndev);
1353         enable_napi(priv);
1354
1355         return 0;
1356 }
1357
1358 static struct dev_pm_ops gfar_pm_ops = {
1359         .suspend = gfar_suspend,
1360         .resume = gfar_resume,
1361         .freeze = gfar_suspend,
1362         .thaw = gfar_resume,
1363         .restore = gfar_restore,
1364 };
1365
1366 #define GFAR_PM_OPS (&gfar_pm_ops)
1367
1368 #else
1369
1370 #define GFAR_PM_OPS NULL
1371
1372 #endif
1373
1374 /* Reads the controller's registers to determine what interface
1375  * connects it to the PHY.
1376  */
1377 static phy_interface_t gfar_get_interface(struct net_device *dev)
1378 {
1379         struct gfar_private *priv = netdev_priv(dev);
1380         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1381         u32 ecntrl;
1382
1383         ecntrl = gfar_read(&regs->ecntrl);
1384
1385         if (ecntrl & ECNTRL_SGMII_MODE)
1386                 return PHY_INTERFACE_MODE_SGMII;
1387
1388         if (ecntrl & ECNTRL_TBI_MODE) {
1389                 if (ecntrl & ECNTRL_REDUCED_MODE)
1390                         return PHY_INTERFACE_MODE_RTBI;
1391                 else
1392                         return PHY_INTERFACE_MODE_TBI;
1393         }
1394
1395         if (ecntrl & ECNTRL_REDUCED_MODE) {
1396                 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1397                         return PHY_INTERFACE_MODE_RMII;
1398                 else {
1399                         phy_interface_t interface = priv->interface;
1400
1401                         /*
1402                          * This isn't autodetected right now, so it must
1403                          * be set by the device tree or platform code.
1404                          */
1405                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1406                                 return PHY_INTERFACE_MODE_RGMII_ID;
1407
1408                         return PHY_INTERFACE_MODE_RGMII;
1409                 }
1410         }
1411
1412         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1413                 return PHY_INTERFACE_MODE_GMII;
1414
1415         return PHY_INTERFACE_MODE_MII;
1416 }
1417
1418
1419 /* Initializes driver's PHY state, and attaches to the PHY.
1420  * Returns 0 on success.
1421  */
1422 static int init_phy(struct net_device *dev)
1423 {
1424         struct gfar_private *priv = netdev_priv(dev);
1425         uint gigabit_support =
1426                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1427                 SUPPORTED_1000baseT_Full : 0;
1428         phy_interface_t interface;
1429
1430         priv->oldlink = 0;
1431         priv->oldspeed = 0;
1432         priv->oldduplex = -1;
1433
1434         interface = gfar_get_interface(dev);
1435
1436         priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1437                                       interface);
1438         if (!priv->phydev)
1439                 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1440                                                          interface);
1441         if (!priv->phydev) {
1442                 dev_err(&dev->dev, "could not attach to PHY\n");
1443                 return -ENODEV;
1444         }
1445
1446         if (interface == PHY_INTERFACE_MODE_SGMII)
1447                 gfar_configure_serdes(dev);
1448
1449         /* Remove any features not supported by the controller */
1450         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1451         priv->phydev->advertising = priv->phydev->supported;
1452
1453         return 0;
1454 }
1455
1456 /*
1457  * Initialize TBI PHY interface for communicating with the
1458  * SERDES lynx PHY on the chip.  We communicate with this PHY
1459  * through the MDIO bus on each controller, treating it as a
1460  * "normal" PHY at the address found in the TBIPA register.  We assume
1461  * that the TBIPA register is valid.  Either the MDIO bus code will set
1462  * it to a value that doesn't conflict with other PHYs on the bus, or the
1463  * value doesn't matter, as there are no other PHYs on the bus.
1464  */
1465 static void gfar_configure_serdes(struct net_device *dev)
1466 {
1467         struct gfar_private *priv = netdev_priv(dev);
1468         struct phy_device *tbiphy;
1469
1470         if (!priv->tbi_node) {
1471                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1472                                     "device tree specify a tbi-handle\n");
1473                 return;
1474         }
1475
1476         tbiphy = of_phy_find_device(priv->tbi_node);
1477         if (!tbiphy) {
1478                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1479                 return;
1480         }
1481
1482         /*
1483          * If the link is already up, we must already be ok, and don't need to
1484          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1485          * everything for us?  Resetting it takes the link down and requires
1486          * several seconds for it to come back.
1487          */
1488         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1489                 return;
1490
1491         /* Single clk mode, mii mode off(for serdes communication) */
1492         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1493
1494         phy_write(tbiphy, MII_ADVERTISE,
1495                         ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1496                         ADVERTISE_1000XPSE_ASYM);
1497
1498         phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1499                         BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1500 }
1501
1502 static void init_registers(struct net_device *dev)
1503 {
1504         struct gfar_private *priv = netdev_priv(dev);
1505         struct gfar __iomem *regs = NULL;
1506         int i = 0;
1507
1508         for (i = 0; i < priv->num_grps; i++) {
1509                 regs = priv->gfargrp[i].regs;
1510                 /* Clear IEVENT */
1511                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1512
1513                 /* Initialize IMASK */
1514                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1515         }
1516
1517         regs = priv->gfargrp[0].regs;
1518         /* Init hash registers to zero */
1519         gfar_write(&regs->igaddr0, 0);
1520         gfar_write(&regs->igaddr1, 0);
1521         gfar_write(&regs->igaddr2, 0);
1522         gfar_write(&regs->igaddr3, 0);
1523         gfar_write(&regs->igaddr4, 0);
1524         gfar_write(&regs->igaddr5, 0);
1525         gfar_write(&regs->igaddr6, 0);
1526         gfar_write(&regs->igaddr7, 0);
1527
1528         gfar_write(&regs->gaddr0, 0);
1529         gfar_write(&regs->gaddr1, 0);
1530         gfar_write(&regs->gaddr2, 0);
1531         gfar_write(&regs->gaddr3, 0);
1532         gfar_write(&regs->gaddr4, 0);
1533         gfar_write(&regs->gaddr5, 0);
1534         gfar_write(&regs->gaddr6, 0);
1535         gfar_write(&regs->gaddr7, 0);
1536
1537         /* Zero out the rmon mib registers if it has them */
1538         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1539                 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1540
1541                 /* Mask off the CAM interrupts */
1542                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1543                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1544         }
1545
1546         /* Initialize the max receive buffer length */
1547         gfar_write(&regs->mrblr, priv->rx_buffer_size);
1548
1549         /* Initialize the Minimum Frame Length Register */
1550         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1551 }
1552
1553 static int __gfar_is_rx_idle(struct gfar_private *priv)
1554 {
1555         u32 res;
1556
1557         /*
1558          * Normaly TSEC should not hang on GRS commands, so we should
1559          * actually wait for IEVENT_GRSC flag.
1560          */
1561         if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1562                 return 0;
1563
1564         /*
1565          * Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1566          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1567          * and the Rx can be safely reset.
1568          */
1569         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1570         res &= 0x7f807f80;
1571         if ((res & 0xffff) == (res >> 16))
1572                 return 1;
1573
1574         return 0;
1575 }
1576
1577 /* Halt the receive and transmit queues */
1578 static void gfar_halt_nodisable(struct net_device *dev)
1579 {
1580         struct gfar_private *priv = netdev_priv(dev);
1581         struct gfar __iomem *regs = NULL;
1582         u32 tempval;
1583         int i = 0;
1584
1585         for (i = 0; i < priv->num_grps; i++) {
1586                 regs = priv->gfargrp[i].regs;
1587                 /* Mask all interrupts */
1588                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1589
1590                 /* Clear all interrupts */
1591                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1592         }
1593
1594         regs = priv->gfargrp[0].regs;
1595         /* Stop the DMA, and wait for it to stop */
1596         tempval = gfar_read(&regs->dmactrl);
1597         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1598             != (DMACTRL_GRS | DMACTRL_GTS)) {
1599                 int ret;
1600
1601                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1602                 gfar_write(&regs->dmactrl, tempval);
1603
1604                 do {
1605                         ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1606                                  (IEVENT_GRSC | IEVENT_GTSC)) ==
1607                                  (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1608                         if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1609                                 ret = __gfar_is_rx_idle(priv);
1610                 } while (!ret);
1611         }
1612 }
1613
1614 /* Halt the receive and transmit queues */
1615 void gfar_halt(struct net_device *dev)
1616 {
1617         struct gfar_private *priv = netdev_priv(dev);
1618         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1619         u32 tempval;
1620
1621         gfar_halt_nodisable(dev);
1622
1623         /* Disable Rx and Tx */
1624         tempval = gfar_read(&regs->maccfg1);
1625         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1626         gfar_write(&regs->maccfg1, tempval);
1627 }
1628
1629 static void free_grp_irqs(struct gfar_priv_grp *grp)
1630 {
1631         free_irq(grp->interruptError, grp);
1632         free_irq(grp->interruptTransmit, grp);
1633         free_irq(grp->interruptReceive, grp);
1634 }
1635
1636 void stop_gfar(struct net_device *dev)
1637 {
1638         struct gfar_private *priv = netdev_priv(dev);
1639         unsigned long flags;
1640         int i;
1641
1642         phy_stop(priv->phydev);
1643
1644
1645         /* Lock it down */
1646         local_irq_save(flags);
1647         lock_tx_qs(priv);
1648         lock_rx_qs(priv);
1649
1650         gfar_halt(dev);
1651
1652         unlock_rx_qs(priv);
1653         unlock_tx_qs(priv);
1654         local_irq_restore(flags);
1655
1656         /* Free the IRQs */
1657         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1658                 for (i = 0; i < priv->num_grps; i++)
1659                         free_grp_irqs(&priv->gfargrp[i]);
1660         } else {
1661                 for (i = 0; i < priv->num_grps; i++)
1662                         free_irq(priv->gfargrp[i].interruptTransmit,
1663                                         &priv->gfargrp[i]);
1664         }
1665
1666         free_skb_resources(priv);
1667 }
1668
1669 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1670 {
1671         struct txbd8 *txbdp;
1672         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1673         int i, j;
1674
1675         txbdp = tx_queue->tx_bd_base;
1676
1677         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1678                 if (!tx_queue->tx_skbuff[i])
1679                         continue;
1680
1681                 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1682                                 txbdp->length, DMA_TO_DEVICE);
1683                 txbdp->lstatus = 0;
1684                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1685                                 j++) {
1686                         txbdp++;
1687                         dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1688                                         txbdp->length, DMA_TO_DEVICE);
1689                 }
1690                 txbdp++;
1691                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1692                 tx_queue->tx_skbuff[i] = NULL;
1693         }
1694         kfree(tx_queue->tx_skbuff);
1695 }
1696
1697 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1698 {
1699         struct rxbd8 *rxbdp;
1700         struct gfar_private *priv = netdev_priv(rx_queue->dev);
1701         int i;
1702
1703         rxbdp = rx_queue->rx_bd_base;
1704
1705         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1706                 if (rx_queue->rx_skbuff[i]) {
1707                         dma_unmap_single(&priv->ofdev->dev,
1708                                         rxbdp->bufPtr, priv->rx_buffer_size,
1709                                         DMA_FROM_DEVICE);
1710                         dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1711                         rx_queue->rx_skbuff[i] = NULL;
1712                 }
1713                 rxbdp->lstatus = 0;
1714                 rxbdp->bufPtr = 0;
1715                 rxbdp++;
1716         }
1717         kfree(rx_queue->rx_skbuff);
1718 }
1719
1720 /* If there are any tx skbs or rx skbs still around, free them.
1721  * Then free tx_skbuff and rx_skbuff */
1722 static void free_skb_resources(struct gfar_private *priv)
1723 {
1724         struct gfar_priv_tx_q *tx_queue = NULL;
1725         struct gfar_priv_rx_q *rx_queue = NULL;
1726         int i;
1727
1728         /* Go through all the buffer descriptors and free their data buffers */
1729         for (i = 0; i < priv->num_tx_queues; i++) {
1730                 struct netdev_queue *txq;
1731                 tx_queue = priv->tx_queue[i];
1732                 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1733                 if(tx_queue->tx_skbuff)
1734                         free_skb_tx_queue(tx_queue);
1735                 netdev_tx_reset_queue(txq);
1736         }
1737
1738         for (i = 0; i < priv->num_rx_queues; i++) {
1739                 rx_queue = priv->rx_queue[i];
1740                 if(rx_queue->rx_skbuff)
1741                         free_skb_rx_queue(rx_queue);
1742         }
1743
1744         dma_free_coherent(&priv->ofdev->dev,
1745                         sizeof(struct txbd8) * priv->total_tx_ring_size +
1746                         sizeof(struct rxbd8) * priv->total_rx_ring_size,
1747                         priv->tx_queue[0]->tx_bd_base,
1748                         priv->tx_queue[0]->tx_bd_dma_base);
1749         skb_queue_purge(&priv->rx_recycle);
1750 }
1751
1752 void gfar_start(struct net_device *dev)
1753 {
1754         struct gfar_private *priv = netdev_priv(dev);
1755         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1756         u32 tempval;
1757         int i = 0;
1758
1759         /* Enable Rx and Tx in MACCFG1 */
1760         tempval = gfar_read(&regs->maccfg1);
1761         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1762         gfar_write(&regs->maccfg1, tempval);
1763
1764         /* Initialize DMACTRL to have WWR and WOP */
1765         tempval = gfar_read(&regs->dmactrl);
1766         tempval |= DMACTRL_INIT_SETTINGS;
1767         gfar_write(&regs->dmactrl, tempval);
1768
1769         /* Make sure we aren't stopped */
1770         tempval = gfar_read(&regs->dmactrl);
1771         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1772         gfar_write(&regs->dmactrl, tempval);
1773
1774         for (i = 0; i < priv->num_grps; i++) {
1775                 regs = priv->gfargrp[i].regs;
1776                 /* Clear THLT/RHLT, so that the DMA starts polling now */
1777                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1778                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1779                 /* Unmask the interrupts we look for */
1780                 gfar_write(&regs->imask, IMASK_DEFAULT);
1781         }
1782
1783         dev->trans_start = jiffies; /* prevent tx timeout */
1784 }
1785
1786 void gfar_configure_coalescing(struct gfar_private *priv,
1787         unsigned long tx_mask, unsigned long rx_mask)
1788 {
1789         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1790         u32 __iomem *baddr;
1791         int i = 0;
1792
1793         /* Backward compatible case ---- even if we enable
1794          * multiple queues, there's only single reg to program
1795          */
1796         gfar_write(&regs->txic, 0);
1797         if(likely(priv->tx_queue[0]->txcoalescing))
1798                 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1799
1800         gfar_write(&regs->rxic, 0);
1801         if(unlikely(priv->rx_queue[0]->rxcoalescing))
1802                 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1803
1804         if (priv->mode == MQ_MG_MODE) {
1805                 baddr = &regs->txic0;
1806                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1807                         if (likely(priv->tx_queue[i]->txcoalescing)) {
1808                                 gfar_write(baddr + i, 0);
1809                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1810                         }
1811                 }
1812
1813                 baddr = &regs->rxic0;
1814                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1815                         if (likely(priv->rx_queue[i]->rxcoalescing)) {
1816                                 gfar_write(baddr + i, 0);
1817                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1818                         }
1819                 }
1820         }
1821 }
1822
1823 static int register_grp_irqs(struct gfar_priv_grp *grp)
1824 {
1825         struct gfar_private *priv = grp->priv;
1826         struct net_device *dev = priv->ndev;
1827         int err;
1828
1829         /* If the device has multiple interrupts, register for
1830          * them.  Otherwise, only register for the one */
1831         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1832                 /* Install our interrupt handlers for Error,
1833                  * Transmit, and Receive */
1834                 if ((err = request_irq(grp->interruptError, gfar_error, 0,
1835                                 grp->int_name_er,grp)) < 0) {
1836                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1837                                   grp->interruptError);
1838
1839                         goto err_irq_fail;
1840                 }
1841
1842                 if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1843                                 0, grp->int_name_tx, grp)) < 0) {
1844                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1845                                   grp->interruptTransmit);
1846                         goto tx_irq_fail;
1847                 }
1848
1849                 if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1850                                 grp->int_name_rx, grp)) < 0) {
1851                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1852                                   grp->interruptReceive);
1853                         goto rx_irq_fail;
1854                 }
1855         } else {
1856                 if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1857                                 grp->int_name_tx, grp)) < 0) {
1858                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1859                                   grp->interruptTransmit);
1860                         goto err_irq_fail;
1861                 }
1862         }
1863
1864         return 0;
1865
1866 rx_irq_fail:
1867         free_irq(grp->interruptTransmit, grp);
1868 tx_irq_fail:
1869         free_irq(grp->interruptError, grp);
1870 err_irq_fail:
1871         return err;
1872
1873 }
1874
1875 /* Bring the controller up and running */
1876 int startup_gfar(struct net_device *ndev)
1877 {
1878         struct gfar_private *priv = netdev_priv(ndev);
1879         struct gfar __iomem *regs = NULL;
1880         int err, i, j;
1881
1882         for (i = 0; i < priv->num_grps; i++) {
1883                 regs= priv->gfargrp[i].regs;
1884                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1885         }
1886
1887         regs= priv->gfargrp[0].regs;
1888         err = gfar_alloc_skb_resources(ndev);
1889         if (err)
1890                 return err;
1891
1892         gfar_init_mac(ndev);
1893
1894         for (i = 0; i < priv->num_grps; i++) {
1895                 err = register_grp_irqs(&priv->gfargrp[i]);
1896                 if (err) {
1897                         for (j = 0; j < i; j++)
1898                                 free_grp_irqs(&priv->gfargrp[j]);
1899                         goto irq_fail;
1900                 }
1901         }
1902
1903         /* Start the controller */
1904         gfar_start(ndev);
1905
1906         phy_start(priv->phydev);
1907
1908         gfar_configure_coalescing(priv, 0xFF, 0xFF);
1909
1910         return 0;
1911
1912 irq_fail:
1913         free_skb_resources(priv);
1914         return err;
1915 }
1916
1917 /* Called when something needs to use the ethernet device */
1918 /* Returns 0 for success. */
1919 static int gfar_enet_open(struct net_device *dev)
1920 {
1921         struct gfar_private *priv = netdev_priv(dev);
1922         int err;
1923
1924         enable_napi(priv);
1925
1926         skb_queue_head_init(&priv->rx_recycle);
1927
1928         /* Initialize a bunch of registers */
1929         init_registers(dev);
1930
1931         gfar_set_mac_address(dev);
1932
1933         err = init_phy(dev);
1934
1935         if (err) {
1936                 disable_napi(priv);
1937                 return err;
1938         }
1939
1940         err = startup_gfar(dev);
1941         if (err) {
1942                 disable_napi(priv);
1943                 return err;
1944         }
1945
1946         netif_tx_start_all_queues(dev);
1947
1948         device_set_wakeup_enable(&dev->dev, priv->wol_en);
1949
1950         return err;
1951 }
1952
1953 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1954 {
1955         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1956
1957         memset(fcb, 0, GMAC_FCB_LEN);
1958
1959         return fcb;
1960 }
1961
1962 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1963                 int fcb_length)
1964 {
1965         u8 flags = 0;
1966
1967         /* If we're here, it's a IP packet with a TCP or UDP
1968          * payload.  We set it to checksum, using a pseudo-header
1969          * we provide
1970          */
1971         flags = TXFCB_DEFAULT;
1972
1973         /* Tell the controller what the protocol is */
1974         /* And provide the already calculated phcs */
1975         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1976                 flags |= TXFCB_UDP;
1977                 fcb->phcs = udp_hdr(skb)->check;
1978         } else
1979                 fcb->phcs = tcp_hdr(skb)->check;
1980
1981         /* l3os is the distance between the start of the
1982          * frame (skb->data) and the start of the IP hdr.
1983          * l4os is the distance between the start of the
1984          * l3 hdr and the l4 hdr */
1985         fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
1986         fcb->l4os = skb_network_header_len(skb);
1987
1988         fcb->flags = flags;
1989 }
1990
1991 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1992 {
1993         fcb->flags |= TXFCB_VLN;
1994         fcb->vlctl = vlan_tx_tag_get(skb);
1995 }
1996
1997 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1998                                struct txbd8 *base, int ring_size)
1999 {
2000         struct txbd8 *new_bd = bdp + stride;
2001
2002         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2003 }
2004
2005 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2006                 int ring_size)
2007 {
2008         return skip_txbd(bdp, 1, base, ring_size);
2009 }
2010
2011 /* This is called by the kernel when a frame is ready for transmission. */
2012 /* It is pointed to by the dev->hard_start_xmit function pointer */
2013 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2014 {
2015         struct gfar_private *priv = netdev_priv(dev);
2016         struct gfar_priv_tx_q *tx_queue = NULL;
2017         struct netdev_queue *txq;
2018         struct gfar __iomem *regs = NULL;
2019         struct txfcb *fcb = NULL;
2020         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2021         u32 lstatus;
2022         int i, rq = 0, do_tstamp = 0;
2023         u32 bufaddr;
2024         unsigned long flags;
2025         unsigned int nr_frags, nr_txbds, length, fcb_length = GMAC_FCB_LEN;
2026
2027         /*
2028          * TOE=1 frames larger than 2500 bytes may see excess delays
2029          * before start of transmission.
2030          */
2031         if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2032                         skb->ip_summed == CHECKSUM_PARTIAL &&
2033                         skb->len > 2500)) {
2034                 int ret;
2035
2036                 ret = skb_checksum_help(skb);
2037                 if (ret)
2038                         return ret;
2039         }
2040
2041         rq = skb->queue_mapping;
2042         tx_queue = priv->tx_queue[rq];
2043         txq = netdev_get_tx_queue(dev, rq);
2044         base = tx_queue->tx_bd_base;
2045         regs = tx_queue->grp->regs;
2046
2047         /* check if time stamp should be generated */
2048         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2049                         priv->hwts_tx_en)) {
2050                 do_tstamp = 1;
2051                 fcb_length = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2052         }
2053
2054         /* make space for additional header when fcb is needed */
2055         if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2056                         vlan_tx_tag_present(skb) ||
2057                         unlikely(do_tstamp)) &&
2058                         (skb_headroom(skb) < fcb_length)) {
2059                 struct sk_buff *skb_new;
2060
2061                 skb_new = skb_realloc_headroom(skb, fcb_length);
2062                 if (!skb_new) {
2063                         dev->stats.tx_errors++;
2064                         kfree_skb(skb);
2065                         return NETDEV_TX_OK;
2066                 }
2067
2068                 /* Steal sock reference for processing TX time stamps */
2069                 swap(skb_new->sk, skb->sk);
2070                 swap(skb_new->destructor, skb->destructor);
2071                 kfree_skb(skb);
2072                 skb = skb_new;
2073         }
2074
2075         /* total number of fragments in the SKB */
2076         nr_frags = skb_shinfo(skb)->nr_frags;
2077
2078         /* calculate the required number of TxBDs for this skb */
2079         if (unlikely(do_tstamp))
2080                 nr_txbds = nr_frags + 2;
2081         else
2082                 nr_txbds = nr_frags + 1;
2083
2084         /* check if there is space to queue this packet */
2085         if (nr_txbds > tx_queue->num_txbdfree) {
2086                 /* no space, stop the queue */
2087                 netif_tx_stop_queue(txq);
2088                 dev->stats.tx_fifo_errors++;
2089                 return NETDEV_TX_BUSY;
2090         }
2091
2092         /* Update transmit stats */
2093         tx_queue->stats.tx_bytes += skb->len;
2094         tx_queue->stats.tx_packets++;
2095
2096         txbdp = txbdp_start = tx_queue->cur_tx;
2097         lstatus = txbdp->lstatus;
2098
2099         /* Time stamp insertion requires one additional TxBD */
2100         if (unlikely(do_tstamp))
2101                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2102                                 tx_queue->tx_ring_size);
2103
2104         if (nr_frags == 0) {
2105                 if (unlikely(do_tstamp))
2106                         txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2107                                         TXBD_INTERRUPT);
2108                 else
2109                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2110         } else {
2111                 /* Place the fragment addresses and lengths into the TxBDs */
2112                 for (i = 0; i < nr_frags; i++) {
2113                         /* Point at the next BD, wrapping as needed */
2114                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2115
2116                         length = skb_shinfo(skb)->frags[i].size;
2117
2118                         lstatus = txbdp->lstatus | length |
2119                                 BD_LFLAG(TXBD_READY);
2120
2121                         /* Handle the last BD specially */
2122                         if (i == nr_frags - 1)
2123                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2124
2125                         bufaddr = skb_frag_dma_map(&priv->ofdev->dev,
2126                                                    &skb_shinfo(skb)->frags[i],
2127                                                    0,
2128                                                    length,
2129                                                    DMA_TO_DEVICE);
2130
2131                         /* set the TxBD length and buffer pointer */
2132                         txbdp->bufPtr = bufaddr;
2133                         txbdp->lstatus = lstatus;
2134                 }
2135
2136                 lstatus = txbdp_start->lstatus;
2137         }
2138
2139         /* Add TxPAL between FCB and frame if required */
2140         if (unlikely(do_tstamp)) {
2141                 skb_push(skb, GMAC_TXPAL_LEN);
2142                 memset(skb->data, 0, GMAC_TXPAL_LEN);
2143         }
2144
2145         /* Set up checksumming */
2146         if (CHECKSUM_PARTIAL == skb->ip_summed) {
2147                 fcb = gfar_add_fcb(skb);
2148                 /* as specified by errata */
2149                 if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12)
2150                              && ((unsigned long)fcb % 0x20) > 0x18)) {
2151                         __skb_pull(skb, GMAC_FCB_LEN);
2152                         skb_checksum_help(skb);
2153                 } else {
2154                         lstatus |= BD_LFLAG(TXBD_TOE);
2155                         gfar_tx_checksum(skb, fcb, fcb_length);
2156                 }
2157         }
2158
2159         if (vlan_tx_tag_present(skb)) {
2160                 if (unlikely(NULL == fcb)) {
2161                         fcb = gfar_add_fcb(skb);
2162                         lstatus |= BD_LFLAG(TXBD_TOE);
2163                 }
2164
2165                 gfar_tx_vlan(skb, fcb);
2166         }
2167
2168         /* Setup tx hardware time stamping if requested */
2169         if (unlikely(do_tstamp)) {
2170                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2171                 if (fcb == NULL)
2172                         fcb = gfar_add_fcb(skb);
2173                 fcb->ptp = 1;
2174                 lstatus |= BD_LFLAG(TXBD_TOE);
2175         }
2176
2177         txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2178                         skb_headlen(skb), DMA_TO_DEVICE);
2179
2180         /*
2181          * If time stamping is requested one additional TxBD must be set up. The
2182          * first TxBD points to the FCB and must have a data length of
2183          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2184          * the full frame length.
2185          */
2186         if (unlikely(do_tstamp)) {
2187                 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_length;
2188                 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2189                                 (skb_headlen(skb) - fcb_length);
2190                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2191         } else {
2192                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2193         }
2194
2195         netdev_tx_sent_queue(txq, skb->len);
2196
2197         /*
2198          * We can work in parallel with gfar_clean_tx_ring(), except
2199          * when modifying num_txbdfree. Note that we didn't grab the lock
2200          * when we were reading the num_txbdfree and checking for available
2201          * space, that's because outside of this function it can only grow,
2202          * and once we've got needed space, it cannot suddenly disappear.
2203          *
2204          * The lock also protects us from gfar_error(), which can modify
2205          * regs->tstat and thus retrigger the transfers, which is why we
2206          * also must grab the lock before setting ready bit for the first
2207          * to be transmitted BD.
2208          */
2209         spin_lock_irqsave(&tx_queue->txlock, flags);
2210
2211         /*
2212          * The powerpc-specific eieio() is used, as wmb() has too strong
2213          * semantics (it requires synchronization between cacheable and
2214          * uncacheable mappings, which eieio doesn't provide and which we
2215          * don't need), thus requiring a more expensive sync instruction.  At
2216          * some point, the set of architecture-independent barrier functions
2217          * should be expanded to include weaker barriers.
2218          */
2219         eieio();
2220
2221         txbdp_start->lstatus = lstatus;
2222
2223         eieio(); /* force lstatus write before tx_skbuff */
2224
2225         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2226
2227         /* Update the current skb pointer to the next entry we will use
2228          * (wrapping if necessary) */
2229         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2230                 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2231
2232         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2233
2234         /* reduce TxBD free count */
2235         tx_queue->num_txbdfree -= (nr_txbds);
2236
2237         /* If the next BD still needs to be cleaned up, then the bds
2238            are full.  We need to tell the kernel to stop sending us stuff. */
2239         if (!tx_queue->num_txbdfree) {
2240                 netif_tx_stop_queue(txq);
2241
2242                 dev->stats.tx_fifo_errors++;
2243         }
2244
2245         /* Tell the DMA to go go go */
2246         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2247
2248         /* Unlock priv */
2249         spin_unlock_irqrestore(&tx_queue->txlock, flags);
2250
2251         return NETDEV_TX_OK;
2252 }
2253
2254 /* Stops the kernel queue, and halts the controller */
2255 static int gfar_close(struct net_device *dev)
2256 {
2257         struct gfar_private *priv = netdev_priv(dev);
2258
2259         disable_napi(priv);
2260
2261         cancel_work_sync(&priv->reset_task);
2262         stop_gfar(dev);
2263
2264         /* Disconnect from the PHY */
2265         phy_disconnect(priv->phydev);
2266         priv->phydev = NULL;
2267
2268         netif_tx_stop_all_queues(dev);
2269
2270         return 0;
2271 }
2272
2273 /* Changes the mac address if the controller is not running. */
2274 static int gfar_set_mac_address(struct net_device *dev)
2275 {
2276         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2277
2278         return 0;
2279 }
2280
2281 /* Check if rx parser should be activated */
2282 void gfar_check_rx_parser_mode(struct gfar_private *priv)
2283 {
2284         struct gfar __iomem *regs;
2285         u32 tempval;
2286
2287         regs = priv->gfargrp[0].regs;
2288
2289         tempval = gfar_read(&regs->rctrl);
2290         /* If parse is no longer required, then disable parser */
2291         if (tempval & RCTRL_REQ_PARSER)
2292                 tempval |= RCTRL_PRSDEP_INIT;
2293         else
2294                 tempval &= ~RCTRL_PRSDEP_INIT;
2295         gfar_write(&regs->rctrl, tempval);
2296 }
2297
2298 /* Enables and disables VLAN insertion/extraction */
2299 void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2300 {
2301         struct gfar_private *priv = netdev_priv(dev);
2302         struct gfar __iomem *regs = NULL;
2303         unsigned long flags;
2304         u32 tempval;
2305
2306         regs = priv->gfargrp[0].regs;
2307         local_irq_save(flags);
2308         lock_rx_qs(priv);
2309
2310         if (features & NETIF_F_HW_VLAN_TX) {
2311                 /* Enable VLAN tag insertion */
2312                 tempval = gfar_read(&regs->tctrl);
2313                 tempval |= TCTRL_VLINS;
2314                 gfar_write(&regs->tctrl, tempval);
2315         } else {
2316                 /* Disable VLAN tag insertion */
2317                 tempval = gfar_read(&regs->tctrl);
2318                 tempval &= ~TCTRL_VLINS;
2319                 gfar_write(&regs->tctrl, tempval);
2320         }
2321
2322         if (features & NETIF_F_HW_VLAN_RX) {
2323                 /* Enable VLAN tag extraction */
2324                 tempval = gfar_read(&regs->rctrl);
2325                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2326                 gfar_write(&regs->rctrl, tempval);
2327         } else {
2328                 /* Disable VLAN tag extraction */
2329                 tempval = gfar_read(&regs->rctrl);
2330                 tempval &= ~RCTRL_VLEX;
2331                 gfar_write(&regs->rctrl, tempval);
2332
2333                 gfar_check_rx_parser_mode(priv);
2334         }
2335
2336         gfar_change_mtu(dev, dev->mtu);
2337
2338         unlock_rx_qs(priv);
2339         local_irq_restore(flags);
2340 }
2341
2342 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2343 {
2344         int tempsize, tempval;
2345         struct gfar_private *priv = netdev_priv(dev);
2346         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2347         int oldsize = priv->rx_buffer_size;
2348         int frame_size = new_mtu + ETH_HLEN;
2349
2350         if (gfar_is_vlan_on(priv))
2351                 frame_size += VLAN_HLEN;
2352
2353         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2354                 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2355                 return -EINVAL;
2356         }
2357
2358         if (gfar_uses_fcb(priv))
2359                 frame_size += GMAC_FCB_LEN;
2360
2361         frame_size += priv->padding;
2362
2363         tempsize =
2364             (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2365             INCREMENTAL_BUFFER_SIZE;
2366
2367         /* Only stop and start the controller if it isn't already
2368          * stopped, and we changed something */
2369         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2370                 stop_gfar(dev);
2371
2372         priv->rx_buffer_size = tempsize;
2373
2374         dev->mtu = new_mtu;
2375
2376         gfar_write(&regs->mrblr, priv->rx_buffer_size);
2377         gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2378
2379         /* If the mtu is larger than the max size for standard
2380          * ethernet frames (ie, a jumbo frame), then set maccfg2
2381          * to allow huge frames, and to check the length */
2382         tempval = gfar_read(&regs->maccfg2);
2383
2384         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2385                         gfar_has_errata(priv, GFAR_ERRATA_74))
2386                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2387         else
2388                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2389
2390         gfar_write(&regs->maccfg2, tempval);
2391
2392         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2393                 startup_gfar(dev);
2394
2395         return 0;
2396 }
2397
2398 /* gfar_reset_task gets scheduled when a packet has not been
2399  * transmitted after a set amount of time.
2400  * For now, assume that clearing out all the structures, and
2401  * starting over will fix the problem.
2402  */
2403 static void gfar_reset_task(struct work_struct *work)
2404 {
2405         struct gfar_private *priv = container_of(work, struct gfar_private,
2406                         reset_task);
2407         struct net_device *dev = priv->ndev;
2408
2409         if (dev->flags & IFF_UP) {
2410                 netif_tx_stop_all_queues(dev);
2411                 stop_gfar(dev);
2412                 startup_gfar(dev);
2413                 netif_tx_start_all_queues(dev);
2414         }
2415
2416         netif_tx_schedule_all(dev);
2417 }
2418
2419 static void gfar_timeout(struct net_device *dev)
2420 {
2421         struct gfar_private *priv = netdev_priv(dev);
2422
2423         dev->stats.tx_errors++;
2424         schedule_work(&priv->reset_task);
2425 }
2426
2427 static void gfar_align_skb(struct sk_buff *skb)
2428 {
2429         /* We need the data buffer to be aligned properly.  We will reserve
2430          * as many bytes as needed to align the data properly
2431          */
2432         skb_reserve(skb, RXBUF_ALIGNMENT -
2433                 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2434 }
2435
2436 /* Interrupt Handler for Transmit complete */
2437 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2438 {
2439         struct net_device *dev = tx_queue->dev;
2440         struct netdev_queue *txq;
2441         struct gfar_private *priv = netdev_priv(dev);
2442         struct gfar_priv_rx_q *rx_queue = NULL;
2443         struct txbd8 *bdp, *next = NULL;
2444         struct txbd8 *lbdp = NULL;
2445         struct txbd8 *base = tx_queue->tx_bd_base;
2446         struct sk_buff *skb;
2447         int skb_dirtytx;
2448         int tx_ring_size = tx_queue->tx_ring_size;
2449         int frags = 0, nr_txbds = 0;
2450         int i;
2451         int howmany = 0;
2452         int tqi = tx_queue->qindex;
2453         unsigned int bytes_sent = 0;
2454         u32 lstatus;
2455         size_t buflen;
2456
2457         rx_queue = priv->rx_queue[tqi];
2458         txq = netdev_get_tx_queue(dev, tqi);
2459         bdp = tx_queue->dirty_tx;
2460         skb_dirtytx = tx_queue->skb_dirtytx;
2461
2462         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2463                 unsigned long flags;
2464
2465                 frags = skb_shinfo(skb)->nr_frags;
2466
2467                 /*
2468                  * When time stamping, one additional TxBD must be freed.
2469                  * Also, we need to dma_unmap_single() the TxPAL.
2470                  */
2471                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2472                         nr_txbds = frags + 2;
2473                 else
2474                         nr_txbds = frags + 1;
2475
2476                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2477
2478                 lstatus = lbdp->lstatus;
2479
2480                 /* Only clean completed frames */
2481                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2482                                 (lstatus & BD_LENGTH_MASK))
2483                         break;
2484
2485                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2486                         next = next_txbd(bdp, base, tx_ring_size);
2487                         buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2488                 } else
2489                         buflen = bdp->length;
2490
2491                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2492                                 buflen, DMA_TO_DEVICE);
2493
2494                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2495                         struct skb_shared_hwtstamps shhwtstamps;
2496                         u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2497                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2498                         shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2499                         skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2500                         skb_tstamp_tx(skb, &shhwtstamps);
2501                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2502                         bdp = next;
2503                 }
2504
2505                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2506                 bdp = next_txbd(bdp, base, tx_ring_size);
2507
2508                 for (i = 0; i < frags; i++) {
2509                         dma_unmap_page(&priv->ofdev->dev,
2510                                         bdp->bufPtr,
2511                                         bdp->length,
2512                                         DMA_TO_DEVICE);
2513                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2514                         bdp = next_txbd(bdp, base, tx_ring_size);
2515                 }
2516
2517                 bytes_sent += skb->len;
2518
2519                 /*
2520                  * If there's room in the queue (limit it to rx_buffer_size)
2521                  * we add this skb back into the pool, if it's the right size
2522                  */
2523                 if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2524                                 skb_recycle_check(skb, priv->rx_buffer_size +
2525                                         RXBUF_ALIGNMENT)) {
2526                         gfar_align_skb(skb);
2527                         skb_queue_head(&priv->rx_recycle, skb);
2528                 } else
2529                         dev_kfree_skb_any(skb);
2530
2531                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2532
2533                 skb_dirtytx = (skb_dirtytx + 1) &
2534                         TX_RING_MOD_MASK(tx_ring_size);
2535
2536                 howmany++;
2537                 spin_lock_irqsave(&tx_queue->txlock, flags);
2538                 tx_queue->num_txbdfree += nr_txbds;
2539                 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2540         }
2541
2542         /* If we freed a buffer, we can restart transmission, if necessary */
2543         if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2544                 netif_wake_subqueue(dev, tqi);
2545
2546         /* Update dirty indicators */
2547         tx_queue->skb_dirtytx = skb_dirtytx;
2548         tx_queue->dirty_tx = bdp;
2549
2550         netdev_tx_completed_queue(txq, howmany, bytes_sent);
2551
2552         return howmany;
2553 }
2554
2555 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2556 {
2557         unsigned long flags;
2558
2559         spin_lock_irqsave(&gfargrp->grplock, flags);
2560         if (napi_schedule_prep(&gfargrp->napi)) {
2561                 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2562                 __napi_schedule(&gfargrp->napi);
2563         } else {
2564                 /*
2565                  * Clear IEVENT, so interrupts aren't called again
2566                  * because of the packets that have already arrived.
2567                  */
2568                 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2569         }
2570         spin_unlock_irqrestore(&gfargrp->grplock, flags);
2571
2572 }
2573
2574 /* Interrupt Handler for Transmit complete */
2575 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2576 {
2577         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2578         return IRQ_HANDLED;
2579 }
2580
2581 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2582                 struct sk_buff *skb)
2583 {
2584         struct net_device *dev = rx_queue->dev;
2585         struct gfar_private *priv = netdev_priv(dev);
2586         dma_addr_t buf;
2587
2588         buf = dma_map_single(&priv->ofdev->dev, skb->data,
2589                              priv->rx_buffer_size, DMA_FROM_DEVICE);
2590         gfar_init_rxbdp(rx_queue, bdp, buf);
2591 }
2592
2593 static struct sk_buff * gfar_alloc_skb(struct net_device *dev)
2594 {
2595         struct gfar_private *priv = netdev_priv(dev);
2596         struct sk_buff *skb = NULL;
2597
2598         skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2599         if (!skb)
2600                 return NULL;
2601
2602         gfar_align_skb(skb);
2603
2604         return skb;
2605 }
2606
2607 struct sk_buff * gfar_new_skb(struct net_device *dev)
2608 {
2609         struct gfar_private *priv = netdev_priv(dev);
2610         struct sk_buff *skb = NULL;
2611
2612         skb = skb_dequeue(&priv->rx_recycle);
2613         if (!skb)
2614                 skb = gfar_alloc_skb(dev);
2615
2616         return skb;
2617 }
2618
2619 static inline void count_errors(unsigned short status, struct net_device *dev)
2620 {
2621         struct gfar_private *priv = netdev_priv(dev);
2622         struct net_device_stats *stats = &dev->stats;
2623         struct gfar_extra_stats *estats = &priv->extra_stats;
2624
2625         /* If the packet was truncated, none of the other errors
2626          * matter */
2627         if (status & RXBD_TRUNCATED) {
2628                 stats->rx_length_errors++;
2629
2630                 estats->rx_trunc++;
2631
2632                 return;
2633         }
2634         /* Count the errors, if there were any */
2635         if (status & (RXBD_LARGE | RXBD_SHORT)) {
2636                 stats->rx_length_errors++;
2637
2638                 if (status & RXBD_LARGE)
2639                         estats->rx_large++;
2640                 else
2641                         estats->rx_short++;
2642         }
2643         if (status & RXBD_NONOCTET) {
2644                 stats->rx_frame_errors++;
2645                 estats->rx_nonoctet++;
2646         }
2647         if (status & RXBD_CRCERR) {
2648                 estats->rx_crcerr++;
2649                 stats->rx_crc_errors++;
2650         }
2651         if (status & RXBD_OVERRUN) {
2652                 estats->rx_overrun++;
2653                 stats->rx_crc_errors++;
2654         }
2655 }
2656
2657 irqreturn_t gfar_receive(int irq, void *grp_id)
2658 {
2659         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2660         return IRQ_HANDLED;
2661 }
2662
2663 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2664 {
2665         /* If valid headers were found, and valid sums
2666          * were verified, then we tell the kernel that no
2667          * checksumming is necessary.  Otherwise, it is */
2668         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2669                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2670         else
2671                 skb_checksum_none_assert(skb);
2672 }
2673
2674
2675 /* gfar_process_frame() -- handle one incoming packet if skb
2676  * isn't NULL.  */
2677 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2678                               int amount_pull, struct napi_struct *napi)
2679 {
2680         struct gfar_private *priv = netdev_priv(dev);
2681         struct rxfcb *fcb = NULL;
2682
2683         gro_result_t ret;
2684
2685         /* fcb is at the beginning if exists */
2686         fcb = (struct rxfcb *)skb->data;
2687
2688         /* Remove the FCB from the skb */
2689         /* Remove the padded bytes, if there are any */
2690         if (amount_pull) {
2691                 skb_record_rx_queue(skb, fcb->rq);
2692                 skb_pull(skb, amount_pull);
2693         }
2694
2695         /* Get receive timestamp from the skb */
2696         if (priv->hwts_rx_en) {
2697                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2698                 u64 *ns = (u64 *) skb->data;
2699                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2700                 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2701         }
2702
2703         if (priv->padding)
2704                 skb_pull(skb, priv->padding);
2705
2706         if (dev->features & NETIF_F_RXCSUM)
2707                 gfar_rx_checksum(skb, fcb);
2708
2709         /* Tell the skb what kind of packet this is */
2710         skb->protocol = eth_type_trans(skb, dev);
2711
2712         /*
2713          * There's need to check for NETIF_F_HW_VLAN_RX here.
2714          * Even if vlan rx accel is disabled, on some chips
2715          * RXFCB_VLN is pseudo randomly set.
2716          */
2717         if (dev->features & NETIF_F_HW_VLAN_RX &&
2718             fcb->flags & RXFCB_VLN)
2719                 __vlan_hwaccel_put_tag(skb, fcb->vlctl);
2720
2721         /* Send the packet up the stack */
2722         ret = napi_gro_receive(napi, skb);
2723
2724         if (GRO_DROP == ret)
2725                 priv->extra_stats.kernel_dropped++;
2726
2727         return 0;
2728 }
2729
2730 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2731  *   until the budget/quota has been reached. Returns the number
2732  *   of frames handled
2733  */
2734 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2735 {
2736         struct net_device *dev = rx_queue->dev;
2737         struct rxbd8 *bdp, *base;
2738         struct sk_buff *skb;
2739         int pkt_len;
2740         int amount_pull;
2741         int howmany = 0;
2742         struct gfar_private *priv = netdev_priv(dev);
2743
2744         /* Get the first full descriptor */
2745         bdp = rx_queue->cur_rx;
2746         base = rx_queue->rx_bd_base;
2747
2748         amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2749
2750         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2751                 struct sk_buff *newskb;
2752                 rmb();
2753
2754                 /* Add another skb for the future */
2755                 newskb = gfar_new_skb(dev);
2756
2757                 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2758
2759                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2760                                 priv->rx_buffer_size, DMA_FROM_DEVICE);
2761
2762                 if (unlikely(!(bdp->status & RXBD_ERR) &&
2763                                 bdp->length > priv->rx_buffer_size))
2764                         bdp->status = RXBD_LARGE;
2765
2766                 /* We drop the frame if we failed to allocate a new buffer */
2767                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2768                                  bdp->status & RXBD_ERR)) {
2769                         count_errors(bdp->status, dev);
2770
2771                         if (unlikely(!newskb))
2772                                 newskb = skb;
2773                         else if (skb)
2774                                 skb_queue_head(&priv->rx_recycle, skb);
2775                 } else {
2776                         /* Increment the number of packets */
2777                         rx_queue->stats.rx_packets++;
2778                         howmany++;
2779
2780                         if (likely(skb)) {
2781                                 pkt_len = bdp->length - ETH_FCS_LEN;
2782                                 /* Remove the FCS from the packet length */
2783                                 skb_put(skb, pkt_len);
2784                                 rx_queue->stats.rx_bytes += pkt_len;
2785                                 skb_record_rx_queue(skb, rx_queue->qindex);
2786                                 gfar_process_frame(dev, skb, amount_pull,
2787                                                 &rx_queue->grp->napi);
2788
2789                         } else {
2790                                 netif_warn(priv, rx_err, dev, "Missing skb!\n");
2791                                 rx_queue->stats.rx_dropped++;
2792                                 priv->extra_stats.rx_skbmissing++;
2793                         }
2794
2795                 }
2796
2797                 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2798
2799                 /* Setup the new bdp */
2800                 gfar_new_rxbdp(rx_queue, bdp, newskb);
2801
2802                 /* Update to the next pointer */
2803                 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2804
2805                 /* update to point at the next skb */
2806                 rx_queue->skb_currx =
2807                     (rx_queue->skb_currx + 1) &
2808                     RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2809         }
2810
2811         /* Update the current rxbd pointer to be the next one */
2812         rx_queue->cur_rx = bdp;
2813
2814         return howmany;
2815 }
2816
2817 static int gfar_poll(struct napi_struct *napi, int budget)
2818 {
2819         struct gfar_priv_grp *gfargrp = container_of(napi,
2820                         struct gfar_priv_grp, napi);
2821         struct gfar_private *priv = gfargrp->priv;
2822         struct gfar __iomem *regs = gfargrp->regs;
2823         struct gfar_priv_tx_q *tx_queue = NULL;
2824         struct gfar_priv_rx_q *rx_queue = NULL;
2825         int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2826         int tx_cleaned = 0, i, left_over_budget = budget;
2827         unsigned long serviced_queues = 0;
2828         int num_queues = 0;
2829
2830         num_queues = gfargrp->num_rx_queues;
2831         budget_per_queue = budget/num_queues;
2832
2833         /* Clear IEVENT, so interrupts aren't called again
2834          * because of the packets that have already arrived */
2835         gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2836
2837         while (num_queues && left_over_budget) {
2838
2839                 budget_per_queue = left_over_budget/num_queues;
2840                 left_over_budget = 0;
2841
2842                 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2843                         if (test_bit(i, &serviced_queues))
2844                                 continue;
2845                         rx_queue = priv->rx_queue[i];
2846                         tx_queue = priv->tx_queue[rx_queue->qindex];
2847
2848                         tx_cleaned += gfar_clean_tx_ring(tx_queue);
2849                         rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2850                                                         budget_per_queue);
2851                         rx_cleaned += rx_cleaned_per_queue;
2852                         if(rx_cleaned_per_queue < budget_per_queue) {
2853                                 left_over_budget = left_over_budget +
2854                                         (budget_per_queue - rx_cleaned_per_queue);
2855                                 set_bit(i, &serviced_queues);
2856                                 num_queues--;
2857                         }
2858                 }
2859         }
2860
2861         if (tx_cleaned)
2862                 return budget;
2863
2864         if (rx_cleaned < budget) {
2865                 napi_complete(napi);
2866
2867                 /* Clear the halt bit in RSTAT */
2868                 gfar_write(&regs->rstat, gfargrp->rstat);
2869
2870                 gfar_write(&regs->imask, IMASK_DEFAULT);
2871
2872                 /* If we are coalescing interrupts, update the timer */
2873                 /* Otherwise, clear it */
2874                 gfar_configure_coalescing(priv,
2875                                 gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2876         }
2877
2878         return rx_cleaned;
2879 }
2880
2881 #ifdef CONFIG_NET_POLL_CONTROLLER
2882 /*
2883  * Polling 'interrupt' - used by things like netconsole to send skbs
2884  * without having to re-enable interrupts. It's not called while
2885  * the interrupt routine is executing.
2886  */
2887 static void gfar_netpoll(struct net_device *dev)
2888 {
2889         struct gfar_private *priv = netdev_priv(dev);
2890         int i = 0;
2891
2892         /* If the device has multiple interrupts, run tx/rx */
2893         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2894                 for (i = 0; i < priv->num_grps; i++) {
2895                         disable_irq(priv->gfargrp[i].interruptTransmit);
2896                         disable_irq(priv->gfargrp[i].interruptReceive);
2897                         disable_irq(priv->gfargrp[i].interruptError);
2898                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2899                                                 &priv->gfargrp[i]);
2900                         enable_irq(priv->gfargrp[i].interruptError);
2901                         enable_irq(priv->gfargrp[i].interruptReceive);
2902                         enable_irq(priv->gfargrp[i].interruptTransmit);
2903                 }
2904         } else {
2905                 for (i = 0; i < priv->num_grps; i++) {
2906                         disable_irq(priv->gfargrp[i].interruptTransmit);
2907                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2908                                                 &priv->gfargrp[i]);
2909                         enable_irq(priv->gfargrp[i].interruptTransmit);
2910                 }
2911         }
2912 }
2913 #endif
2914
2915 /* The interrupt handler for devices with one interrupt */
2916 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2917 {
2918         struct gfar_priv_grp *gfargrp = grp_id;
2919
2920         /* Save ievent for future reference */
2921         u32 events = gfar_read(&gfargrp->regs->ievent);
2922
2923         /* Check for reception */
2924         if (events & IEVENT_RX_MASK)
2925                 gfar_receive(irq, grp_id);
2926
2927         /* Check for transmit completion */
2928         if (events & IEVENT_TX_MASK)
2929                 gfar_transmit(irq, grp_id);
2930
2931         /* Check for errors */
2932         if (events & IEVENT_ERR_MASK)
2933                 gfar_error(irq, grp_id);
2934
2935         return IRQ_HANDLED;
2936 }
2937
2938 /* Called every time the controller might need to be made
2939  * aware of new link state.  The PHY code conveys this
2940  * information through variables in the phydev structure, and this
2941  * function converts those variables into the appropriate
2942  * register values, and can bring down the device if needed.
2943  */
2944 static void adjust_link(struct net_device *dev)
2945 {
2946         struct gfar_private *priv = netdev_priv(dev);
2947         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2948         unsigned long flags;
2949         struct phy_device *phydev = priv->phydev;
2950         int new_state = 0;
2951
2952         local_irq_save(flags);
2953         lock_tx_qs(priv);
2954
2955         if (phydev->link) {
2956                 u32 tempval = gfar_read(&regs->maccfg2);
2957                 u32 ecntrl = gfar_read(&regs->ecntrl);
2958
2959                 /* Now we make sure that we can be in full duplex mode.
2960                  * If not, we operate in half-duplex mode. */
2961                 if (phydev->duplex != priv->oldduplex) {
2962                         new_state = 1;
2963                         if (!(phydev->duplex))
2964                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
2965                         else
2966                                 tempval |= MACCFG2_FULL_DUPLEX;
2967
2968                         priv->oldduplex = phydev->duplex;
2969                 }
2970
2971                 if (phydev->speed != priv->oldspeed) {
2972                         new_state = 1;
2973                         switch (phydev->speed) {
2974                         case 1000:
2975                                 tempval =
2976                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2977
2978                                 ecntrl &= ~(ECNTRL_R100);
2979                                 break;
2980                         case 100:
2981                         case 10:
2982                                 tempval =
2983                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2984
2985                                 /* Reduced mode distinguishes
2986                                  * between 10 and 100 */
2987                                 if (phydev->speed == SPEED_100)
2988                                         ecntrl |= ECNTRL_R100;
2989                                 else
2990                                         ecntrl &= ~(ECNTRL_R100);
2991                                 break;
2992                         default:
2993                                 netif_warn(priv, link, dev,
2994                                            "Ack!  Speed (%d) is not 10/100/1000!\n",
2995                                            phydev->speed);
2996                                 break;
2997                         }
2998
2999                         priv->oldspeed = phydev->speed;
3000                 }
3001
3002                 gfar_write(&regs->maccfg2, tempval);
3003                 gfar_write(&regs->ecntrl, ecntrl);
3004
3005                 if (!priv->oldlink) {
3006                         new_state = 1;
3007                         priv->oldlink = 1;
3008                 }
3009         } else if (priv->oldlink) {
3010                 new_state = 1;
3011                 priv->oldlink = 0;
3012                 priv->oldspeed = 0;
3013                 priv->oldduplex = -1;
3014         }
3015
3016         if (new_state && netif_msg_link(priv))
3017                 phy_print_status(phydev);
3018         unlock_tx_qs(priv);
3019         local_irq_restore(flags);
3020 }
3021
3022 /* Update the hash table based on the current list of multicast
3023  * addresses we subscribe to.  Also, change the promiscuity of
3024  * the device based on the flags (this function is called
3025  * whenever dev->flags is changed */
3026 static void gfar_set_multi(struct net_device *dev)
3027 {
3028         struct netdev_hw_addr *ha;
3029         struct gfar_private *priv = netdev_priv(dev);
3030         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3031         u32 tempval;
3032
3033         if (dev->flags & IFF_PROMISC) {
3034                 /* Set RCTRL to PROM */
3035                 tempval = gfar_read(&regs->rctrl);
3036                 tempval |= RCTRL_PROM;
3037                 gfar_write(&regs->rctrl, tempval);
3038         } else {
3039                 /* Set RCTRL to not PROM */
3040                 tempval = gfar_read(&regs->rctrl);
3041                 tempval &= ~(RCTRL_PROM);
3042                 gfar_write(&regs->rctrl, tempval);
3043         }
3044
3045         if (dev->flags & IFF_ALLMULTI) {
3046                 /* Set the hash to rx all multicast frames */
3047                 gfar_write(&regs->igaddr0, 0xffffffff);
3048                 gfar_write(&regs->igaddr1, 0xffffffff);
3049                 gfar_write(&regs->igaddr2, 0xffffffff);
3050                 gfar_write(&regs->igaddr3, 0xffffffff);
3051                 gfar_write(&regs->igaddr4, 0xffffffff);
3052                 gfar_write(&regs->igaddr5, 0xffffffff);
3053                 gfar_write(&regs->igaddr6, 0xffffffff);
3054                 gfar_write(&regs->igaddr7, 0xffffffff);
3055                 gfar_write(&regs->gaddr0, 0xffffffff);
3056                 gfar_write(&regs->gaddr1, 0xffffffff);
3057                 gfar_write(&regs->gaddr2, 0xffffffff);
3058                 gfar_write(&regs->gaddr3, 0xffffffff);
3059                 gfar_write(&regs->gaddr4, 0xffffffff);
3060                 gfar_write(&regs->gaddr5, 0xffffffff);
3061                 gfar_write(&regs->gaddr6, 0xffffffff);
3062                 gfar_write(&regs->gaddr7, 0xffffffff);
3063         } else {
3064                 int em_num;
3065                 int idx;
3066
3067                 /* zero out the hash */
3068                 gfar_write(&regs->igaddr0, 0x0);
3069                 gfar_write(&regs->igaddr1, 0x0);
3070                 gfar_write(&regs->igaddr2, 0x0);
3071                 gfar_write(&regs->igaddr3, 0x0);
3072                 gfar_write(&regs->igaddr4, 0x0);
3073                 gfar_write(&regs->igaddr5, 0x0);
3074                 gfar_write(&regs->igaddr6, 0x0);
3075                 gfar_write(&regs->igaddr7, 0x0);
3076                 gfar_write(&regs->gaddr0, 0x0);
3077                 gfar_write(&regs->gaddr1, 0x0);
3078                 gfar_write(&regs->gaddr2, 0x0);
3079                 gfar_write(&regs->gaddr3, 0x0);
3080                 gfar_write(&regs->gaddr4, 0x0);
3081                 gfar_write(&regs->gaddr5, 0x0);
3082                 gfar_write(&regs->gaddr6, 0x0);
3083                 gfar_write(&regs->gaddr7, 0x0);
3084
3085                 /* If we have extended hash tables, we need to
3086                  * clear the exact match registers to prepare for
3087                  * setting them */
3088                 if (priv->extended_hash) {
3089                         em_num = GFAR_EM_NUM + 1;
3090                         gfar_clear_exact_match(dev);
3091                         idx = 1;
3092                 } else {
3093                         idx = 0;
3094                         em_num = 0;
3095                 }
3096
3097                 if (netdev_mc_empty(dev))
3098                         return;
3099
3100                 /* Parse the list, and set the appropriate bits */
3101                 netdev_for_each_mc_addr(ha, dev) {
3102                         if (idx < em_num) {
3103                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3104                                 idx++;
3105                         } else
3106                                 gfar_set_hash_for_addr(dev, ha->addr);
3107                 }
3108         }
3109 }
3110
3111
3112 /* Clears each of the exact match registers to zero, so they
3113  * don't interfere with normal reception */
3114 static void gfar_clear_exact_match(struct net_device *dev)
3115 {
3116         int idx;
3117         static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3118
3119         for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
3120                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3121 }
3122
3123 /* Set the appropriate hash bit for the given addr */
3124 /* The algorithm works like so:
3125  * 1) Take the Destination Address (ie the multicast address), and
3126  * do a CRC on it (little endian), and reverse the bits of the
3127  * result.
3128  * 2) Use the 8 most significant bits as a hash into a 256-entry
3129  * table.  The table is controlled through 8 32-bit registers:
3130  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3131  * gaddr7.  This means that the 3 most significant bits in the
3132  * hash index which gaddr register to use, and the 5 other bits
3133  * indicate which bit (assuming an IBM numbering scheme, which
3134  * for PowerPC (tm) is usually the case) in the register holds
3135  * the entry. */
3136 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3137 {
3138         u32 tempval;
3139         struct gfar_private *priv = netdev_priv(dev);
3140         u32 result = ether_crc(ETH_ALEN, addr);
3141         int width = priv->hash_width;
3142         u8 whichbit = (result >> (32 - width)) & 0x1f;
3143         u8 whichreg = result >> (32 - width + 5);
3144         u32 value = (1 << (31-whichbit));
3145
3146         tempval = gfar_read(priv->hash_regs[whichreg]);
3147         tempval |= value;
3148         gfar_write(priv->hash_regs[whichreg], tempval);
3149 }
3150
3151
3152 /* There are multiple MAC Address register pairs on some controllers
3153  * This function sets the numth pair to a given address
3154  */
3155 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3156                                   const u8 *addr)
3157 {
3158         struct gfar_private *priv = netdev_priv(dev);
3159         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3160         int idx;
3161         char tmpbuf[ETH_ALEN];
3162         u32 tempval;
3163         u32 __iomem *macptr = &regs->macstnaddr1;
3164
3165         macptr += num*2;
3166
3167         /* Now copy it into the mac registers backwards, cuz */
3168         /* little endian is silly */
3169         for (idx = 0; idx < ETH_ALEN; idx++)
3170                 tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3171
3172         gfar_write(macptr, *((u32 *) (tmpbuf)));
3173
3174         tempval = *((u32 *) (tmpbuf + 4));
3175
3176         gfar_write(macptr+1, tempval);
3177 }
3178
3179 /* GFAR error interrupt handler */
3180 static irqreturn_t gfar_error(int irq, void *grp_id)
3181 {
3182         struct gfar_priv_grp *gfargrp = grp_id;
3183         struct gfar __iomem *regs = gfargrp->regs;
3184         struct gfar_private *priv= gfargrp->priv;
3185         struct net_device *dev = priv->ndev;
3186
3187         /* Save ievent for future reference */
3188         u32 events = gfar_read(&regs->ievent);
3189
3190         /* Clear IEVENT */
3191         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3192
3193         /* Magic Packet is not an error. */
3194         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3195             (events & IEVENT_MAG))
3196                 events &= ~IEVENT_MAG;
3197
3198         /* Hmm... */
3199         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3200                 netdev_dbg(dev, "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3201                            events, gfar_read(&regs->imask));
3202
3203         /* Update the error counters */
3204         if (events & IEVENT_TXE) {
3205                 dev->stats.tx_errors++;
3206
3207                 if (events & IEVENT_LC)
3208                         dev->stats.tx_window_errors++;
3209                 if (events & IEVENT_CRL)
3210                         dev->stats.tx_aborted_errors++;
3211                 if (events & IEVENT_XFUN) {
3212                         unsigned long flags;
3213
3214                         netif_dbg(priv, tx_err, dev,
3215                                   "TX FIFO underrun, packet dropped\n");
3216                         dev->stats.tx_dropped++;
3217                         priv->extra_stats.tx_underrun++;
3218
3219                         local_irq_save(flags);
3220                         lock_tx_qs(priv);
3221
3222                         /* Reactivate the Tx Queues */
3223                         gfar_write(&regs->tstat, gfargrp->tstat);
3224
3225                         unlock_tx_qs(priv);
3226                         local_irq_restore(flags);
3227                 }
3228                 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3229         }
3230         if (events & IEVENT_BSY) {
3231                 dev->stats.rx_errors++;
3232                 priv->extra_stats.rx_bsy++;
3233
3234                 gfar_receive(irq, grp_id);
3235
3236                 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3237                           gfar_read(&regs->rstat));
3238         }
3239         if (events & IEVENT_BABR) {
3240                 dev->stats.rx_errors++;
3241                 priv->extra_stats.rx_babr++;
3242
3243                 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3244         }
3245         if (events & IEVENT_EBERR) {
3246                 priv->extra_stats.eberr++;
3247                 netif_dbg(priv, rx_err, dev, "bus error\n");
3248         }
3249         if (events & IEVENT_RXC)
3250                 netif_dbg(priv, rx_status, dev, "control frame\n");
3251
3252         if (events & IEVENT_BABT) {
3253                 priv->extra_stats.tx_babt++;
3254                 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3255         }
3256         return IRQ_HANDLED;
3257 }
3258
3259 static struct of_device_id gfar_match[] =
3260 {
3261         {
3262                 .type = "network",
3263                 .compatible = "gianfar",
3264         },
3265         {
3266                 .compatible = "fsl,etsec2",
3267         },
3268         {},
3269 };
3270 MODULE_DEVICE_TABLE(of, gfar_match);
3271
3272 /* Structure for a device driver */
3273 static struct platform_driver gfar_driver = {
3274         .driver = {
3275                 .name = "fsl-gianfar",
3276                 .owner = THIS_MODULE,
3277                 .pm = GFAR_PM_OPS,
3278                 .of_match_table = gfar_match,
3279         },
3280         .probe = gfar_probe,
3281         .remove = gfar_remove,
3282 };
3283
3284 module_platform_driver(gfar_driver);