]> Pileus Git - ~andy/linux/blob - drivers/net/ethernet/broadcom/bnx2x/bnx2x_main.c
bnx2x: revised and corrected SPIO access
[~andy/linux] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2012 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <net/ip.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #include <net/checksum.h>
47 #include <net/ip6_checksum.h>
48 #include <linux/workqueue.h>
49 #include <linux/crc32.h>
50 #include <linux/crc32c.h>
51 #include <linux/prefetch.h>
52 #include <linux/zlib.h>
53 #include <linux/io.h>
54 #include <linux/semaphore.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_dcb.h"
63 #include "bnx2x_sp.h"
64
65 #include <linux/firmware.h>
66 #include "bnx2x_fw_file_hdr.h"
67 /* FW files */
68 #define FW_FILE_VERSION                                 \
69         __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
70         __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
71         __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
72         __stringify(BCM_5710_FW_ENGINEERING_VERSION)
73 #define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
74 #define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
76
77 #define MAC_LEADING_ZERO_CNT (ALIGN(ETH_ALEN, sizeof(u32)) - ETH_ALEN)
78
79 /* Time in jiffies before concluding the transmitter is hung */
80 #define TX_TIMEOUT              (5*HZ)
81
82 static char version[] __devinitdata =
83         "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
84         DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
85
86 MODULE_AUTHOR("Eliezer Tamir");
87 MODULE_DESCRIPTION("Broadcom NetXtreme II "
88                    "BCM57710/57711/57711E/"
89                    "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
90                    "57840/57840_MF Driver");
91 MODULE_LICENSE("GPL");
92 MODULE_VERSION(DRV_MODULE_VERSION);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1);
94 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
95 MODULE_FIRMWARE(FW_FILE_NAME_E2);
96
97
98 int num_queues;
99 module_param(num_queues, int, 0);
100 MODULE_PARM_DESC(num_queues,
101                  " Set number of queues (default is as a number of CPUs)");
102
103 static int disable_tpa;
104 module_param(disable_tpa, int, 0);
105 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
106
107 #define INT_MODE_INTx                   1
108 #define INT_MODE_MSI                    2
109 int int_mode;
110 module_param(int_mode, int, 0);
111 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
112                                 "(1 INT#x; 2 MSI)");
113
114 static int dropless_fc;
115 module_param(dropless_fc, int, 0);
116 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
117
118 static int mrrs = -1;
119 module_param(mrrs, int, 0);
120 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
121
122 static int debug;
123 module_param(debug, int, 0);
124 MODULE_PARM_DESC(debug, " Default debug msglevel");
125
126
127
128 struct workqueue_struct *bnx2x_wq;
129
130 enum bnx2x_board_type {
131         BCM57710 = 0,
132         BCM57711,
133         BCM57711E,
134         BCM57712,
135         BCM57712_MF,
136         BCM57800,
137         BCM57800_MF,
138         BCM57810,
139         BCM57810_MF,
140         BCM57840_O,
141         BCM57840_4_10,
142         BCM57840_2_20,
143         BCM57840_MFO,
144         BCM57840_MF,
145         BCM57811,
146         BCM57811_MF
147 };
148
149 /* indexed by board_type, above */
150 static struct {
151         char *name;
152 } board_info[] __devinitdata = {
153         { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
154         { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
155         { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
156         { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
157         { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
158         { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
159         { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
160         { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
161         { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
162         { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
163         { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
164         { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
165         { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function"},
166         { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function"},
167         { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet"},
168         { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function"},
169 };
170
171 #ifndef PCI_DEVICE_ID_NX2_57710
172 #define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
173 #endif
174 #ifndef PCI_DEVICE_ID_NX2_57711
175 #define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
176 #endif
177 #ifndef PCI_DEVICE_ID_NX2_57711E
178 #define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
179 #endif
180 #ifndef PCI_DEVICE_ID_NX2_57712
181 #define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
182 #endif
183 #ifndef PCI_DEVICE_ID_NX2_57712_MF
184 #define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
185 #endif
186 #ifndef PCI_DEVICE_ID_NX2_57800
187 #define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57800_MF
190 #define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57810
193 #define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57810_MF
196 #define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57840_O
199 #define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
200 #endif
201 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
202 #define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
203 #endif
204 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
205 #define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
206 #endif
207 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
208 #define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
209 #endif
210 #ifndef PCI_DEVICE_ID_NX2_57840_MF
211 #define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
212 #endif
213 #ifndef PCI_DEVICE_ID_NX2_57811
214 #define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
215 #endif
216 #ifndef PCI_DEVICE_ID_NX2_57811_MF
217 #define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
218 #endif
219 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
220         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
221         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
222         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
223         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
224         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
225         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
226         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
227         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
228         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
229         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
230         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
231         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
232         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
233         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
234         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
235         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
236         { 0 }
237 };
238
239 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
240
241 /* Global resources for unloading a previously loaded device */
242 #define BNX2X_PREV_WAIT_NEEDED 1
243 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
244 static LIST_HEAD(bnx2x_prev_list);
245 /****************************************************************************
246 * General service functions
247 ****************************************************************************/
248
249 static void __storm_memset_dma_mapping(struct bnx2x *bp,
250                                        u32 addr, dma_addr_t mapping)
251 {
252         REG_WR(bp,  addr, U64_LO(mapping));
253         REG_WR(bp,  addr + 4, U64_HI(mapping));
254 }
255
256 static void storm_memset_spq_addr(struct bnx2x *bp,
257                                   dma_addr_t mapping, u16 abs_fid)
258 {
259         u32 addr = XSEM_REG_FAST_MEMORY +
260                         XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
261
262         __storm_memset_dma_mapping(bp, addr, mapping);
263 }
264
265 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
266                                   u16 pf_id)
267 {
268         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
269                 pf_id);
270         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
271                 pf_id);
272         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
273                 pf_id);
274         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
275                 pf_id);
276 }
277
278 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
279                                  u8 enable)
280 {
281         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
282                 enable);
283         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
284                 enable);
285         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
286                 enable);
287         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
288                 enable);
289 }
290
291 static void storm_memset_eq_data(struct bnx2x *bp,
292                                  struct event_ring_data *eq_data,
293                                 u16 pfid)
294 {
295         size_t size = sizeof(struct event_ring_data);
296
297         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
298
299         __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
300 }
301
302 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
303                                  u16 pfid)
304 {
305         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
306         REG_WR16(bp, addr, eq_prod);
307 }
308
309 /* used only at init
310  * locking is done by mcp
311  */
312 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
313 {
314         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
315         pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
316         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
317                                PCICFG_VENDOR_ID_OFFSET);
318 }
319
320 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
321 {
322         u32 val;
323
324         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
325         pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
326         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
327                                PCICFG_VENDOR_ID_OFFSET);
328
329         return val;
330 }
331
332 #define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
333 #define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
334 #define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
335 #define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
336 #define DMAE_DP_DST_NONE        "dst_addr [none]"
337
338
339 /* copy command into DMAE command memory and set DMAE command go */
340 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
341 {
342         u32 cmd_offset;
343         int i;
344
345         cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
346         for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
347                 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
348         }
349         REG_WR(bp, dmae_reg_go_c[idx], 1);
350 }
351
352 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
353 {
354         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
355                            DMAE_CMD_C_ENABLE);
356 }
357
358 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
359 {
360         return opcode & ~DMAE_CMD_SRC_RESET;
361 }
362
363 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
364                              bool with_comp, u8 comp_type)
365 {
366         u32 opcode = 0;
367
368         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
369                    (dst_type << DMAE_COMMAND_DST_SHIFT));
370
371         opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
372
373         opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
374         opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
375                    (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
376         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
377
378 #ifdef __BIG_ENDIAN
379         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
380 #else
381         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
382 #endif
383         if (with_comp)
384                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
385         return opcode;
386 }
387
388 static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
389                                       struct dmae_command *dmae,
390                                       u8 src_type, u8 dst_type)
391 {
392         memset(dmae, 0, sizeof(struct dmae_command));
393
394         /* set the opcode */
395         dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
396                                          true, DMAE_COMP_PCI);
397
398         /* fill in the completion parameters */
399         dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
400         dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
401         dmae->comp_val = DMAE_COMP_VAL;
402 }
403
404 /* issue a dmae command over the init-channel and wailt for completion */
405 static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
406                                       struct dmae_command *dmae)
407 {
408         u32 *wb_comp = bnx2x_sp(bp, wb_comp);
409         int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
410         int rc = 0;
411
412         /*
413          * Lock the dmae channel. Disable BHs to prevent a dead-lock
414          * as long as this code is called both from syscall context and
415          * from ndo_set_rx_mode() flow that may be called from BH.
416          */
417         spin_lock_bh(&bp->dmae_lock);
418
419         /* reset completion */
420         *wb_comp = 0;
421
422         /* post the command on the channel used for initializations */
423         bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
424
425         /* wait for completion */
426         udelay(5);
427         while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
428
429                 if (!cnt ||
430                     (bp->recovery_state != BNX2X_RECOVERY_DONE &&
431                      bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
432                         BNX2X_ERR("DMAE timeout!\n");
433                         rc = DMAE_TIMEOUT;
434                         goto unlock;
435                 }
436                 cnt--;
437                 udelay(50);
438         }
439         if (*wb_comp & DMAE_PCI_ERR_FLAG) {
440                 BNX2X_ERR("DMAE PCI error!\n");
441                 rc = DMAE_PCI_ERROR;
442         }
443
444 unlock:
445         spin_unlock_bh(&bp->dmae_lock);
446         return rc;
447 }
448
449 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
450                       u32 len32)
451 {
452         struct dmae_command dmae;
453
454         if (!bp->dmae_ready) {
455                 u32 *data = bnx2x_sp(bp, wb_data[0]);
456
457                 if (CHIP_IS_E1(bp))
458                         bnx2x_init_ind_wr(bp, dst_addr, data, len32);
459                 else
460                         bnx2x_init_str_wr(bp, dst_addr, data, len32);
461                 return;
462         }
463
464         /* set opcode and fixed command fields */
465         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
466
467         /* fill in addresses and len */
468         dmae.src_addr_lo = U64_LO(dma_addr);
469         dmae.src_addr_hi = U64_HI(dma_addr);
470         dmae.dst_addr_lo = dst_addr >> 2;
471         dmae.dst_addr_hi = 0;
472         dmae.len = len32;
473
474         /* issue the command and wait for completion */
475         bnx2x_issue_dmae_with_comp(bp, &dmae);
476 }
477
478 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
479 {
480         struct dmae_command dmae;
481
482         if (!bp->dmae_ready) {
483                 u32 *data = bnx2x_sp(bp, wb_data[0]);
484                 int i;
485
486                 if (CHIP_IS_E1(bp))
487                         for (i = 0; i < len32; i++)
488                                 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
489                 else
490                         for (i = 0; i < len32; i++)
491                                 data[i] = REG_RD(bp, src_addr + i*4);
492
493                 return;
494         }
495
496         /* set opcode and fixed command fields */
497         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
498
499         /* fill in addresses and len */
500         dmae.src_addr_lo = src_addr >> 2;
501         dmae.src_addr_hi = 0;
502         dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
503         dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
504         dmae.len = len32;
505
506         /* issue the command and wait for completion */
507         bnx2x_issue_dmae_with_comp(bp, &dmae);
508 }
509
510 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
511                                       u32 addr, u32 len)
512 {
513         int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
514         int offset = 0;
515
516         while (len > dmae_wr_max) {
517                 bnx2x_write_dmae(bp, phys_addr + offset,
518                                  addr + offset, dmae_wr_max);
519                 offset += dmae_wr_max * 4;
520                 len -= dmae_wr_max;
521         }
522
523         bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
524 }
525
526 static int bnx2x_mc_assert(struct bnx2x *bp)
527 {
528         char last_idx;
529         int i, rc = 0;
530         u32 row0, row1, row2, row3;
531
532         /* XSTORM */
533         last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
534                            XSTORM_ASSERT_LIST_INDEX_OFFSET);
535         if (last_idx)
536                 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
537
538         /* print the asserts */
539         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
540
541                 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
542                               XSTORM_ASSERT_LIST_OFFSET(i));
543                 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
544                               XSTORM_ASSERT_LIST_OFFSET(i) + 4);
545                 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
546                               XSTORM_ASSERT_LIST_OFFSET(i) + 8);
547                 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
548                               XSTORM_ASSERT_LIST_OFFSET(i) + 12);
549
550                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
551                         BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
552                                   i, row3, row2, row1, row0);
553                         rc++;
554                 } else {
555                         break;
556                 }
557         }
558
559         /* TSTORM */
560         last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
561                            TSTORM_ASSERT_LIST_INDEX_OFFSET);
562         if (last_idx)
563                 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
564
565         /* print the asserts */
566         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
567
568                 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
569                               TSTORM_ASSERT_LIST_OFFSET(i));
570                 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
571                               TSTORM_ASSERT_LIST_OFFSET(i) + 4);
572                 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
573                               TSTORM_ASSERT_LIST_OFFSET(i) + 8);
574                 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
575                               TSTORM_ASSERT_LIST_OFFSET(i) + 12);
576
577                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
578                         BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
579                                   i, row3, row2, row1, row0);
580                         rc++;
581                 } else {
582                         break;
583                 }
584         }
585
586         /* CSTORM */
587         last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
588                            CSTORM_ASSERT_LIST_INDEX_OFFSET);
589         if (last_idx)
590                 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
591
592         /* print the asserts */
593         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
594
595                 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
596                               CSTORM_ASSERT_LIST_OFFSET(i));
597                 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
598                               CSTORM_ASSERT_LIST_OFFSET(i) + 4);
599                 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
600                               CSTORM_ASSERT_LIST_OFFSET(i) + 8);
601                 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
602                               CSTORM_ASSERT_LIST_OFFSET(i) + 12);
603
604                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
605                         BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
606                                   i, row3, row2, row1, row0);
607                         rc++;
608                 } else {
609                         break;
610                 }
611         }
612
613         /* USTORM */
614         last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
615                            USTORM_ASSERT_LIST_INDEX_OFFSET);
616         if (last_idx)
617                 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
618
619         /* print the asserts */
620         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
621
622                 row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
623                               USTORM_ASSERT_LIST_OFFSET(i));
624                 row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
625                               USTORM_ASSERT_LIST_OFFSET(i) + 4);
626                 row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
627                               USTORM_ASSERT_LIST_OFFSET(i) + 8);
628                 row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
629                               USTORM_ASSERT_LIST_OFFSET(i) + 12);
630
631                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
632                         BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
633                                   i, row3, row2, row1, row0);
634                         rc++;
635                 } else {
636                         break;
637                 }
638         }
639
640         return rc;
641 }
642
643 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
644 {
645         u32 addr, val;
646         u32 mark, offset;
647         __be32 data[9];
648         int word;
649         u32 trace_shmem_base;
650         if (BP_NOMCP(bp)) {
651                 BNX2X_ERR("NO MCP - can not dump\n");
652                 return;
653         }
654         netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
655                 (bp->common.bc_ver & 0xff0000) >> 16,
656                 (bp->common.bc_ver & 0xff00) >> 8,
657                 (bp->common.bc_ver & 0xff));
658
659         val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
660         if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
661                 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
662
663         if (BP_PATH(bp) == 0)
664                 trace_shmem_base = bp->common.shmem_base;
665         else
666                 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
667         addr = trace_shmem_base - 0x800;
668
669         /* validate TRCB signature */
670         mark = REG_RD(bp, addr);
671         if (mark != MFW_TRACE_SIGNATURE) {
672                 BNX2X_ERR("Trace buffer signature is missing.");
673                 return ;
674         }
675
676         /* read cyclic buffer pointer */
677         addr += 4;
678         mark = REG_RD(bp, addr);
679         mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
680                         + ((mark + 0x3) & ~0x3) - 0x08000000;
681         printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
682
683         printk("%s", lvl);
684         for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
685                 for (word = 0; word < 8; word++)
686                         data[word] = htonl(REG_RD(bp, offset + 4*word));
687                 data[8] = 0x0;
688                 pr_cont("%s", (char *)data);
689         }
690         for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
691                 for (word = 0; word < 8; word++)
692                         data[word] = htonl(REG_RD(bp, offset + 4*word));
693                 data[8] = 0x0;
694                 pr_cont("%s", (char *)data);
695         }
696         printk("%s" "end of fw dump\n", lvl);
697 }
698
699 static void bnx2x_fw_dump(struct bnx2x *bp)
700 {
701         bnx2x_fw_dump_lvl(bp, KERN_ERR);
702 }
703
704 void bnx2x_panic_dump(struct bnx2x *bp)
705 {
706         int i;
707         u16 j;
708         struct hc_sp_status_block_data sp_sb_data;
709         int func = BP_FUNC(bp);
710 #ifdef BNX2X_STOP_ON_ERROR
711         u16 start = 0, end = 0;
712         u8 cos;
713 #endif
714
715         bp->stats_state = STATS_STATE_DISABLED;
716         bp->eth_stats.unrecoverable_error++;
717         DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
718
719         BNX2X_ERR("begin crash dump -----------------\n");
720
721         /* Indices */
722         /* Common */
723         BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
724                   bp->def_idx, bp->def_att_idx, bp->attn_state,
725                   bp->spq_prod_idx, bp->stats_counter);
726         BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
727                   bp->def_status_blk->atten_status_block.attn_bits,
728                   bp->def_status_blk->atten_status_block.attn_bits_ack,
729                   bp->def_status_blk->atten_status_block.status_block_id,
730                   bp->def_status_blk->atten_status_block.attn_bits_index);
731         BNX2X_ERR("     def (");
732         for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
733                 pr_cont("0x%x%s",
734                         bp->def_status_blk->sp_sb.index_values[i],
735                         (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
736
737         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
738                 *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
739                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
740                         i*sizeof(u32));
741
742         pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
743                sp_sb_data.igu_sb_id,
744                sp_sb_data.igu_seg_id,
745                sp_sb_data.p_func.pf_id,
746                sp_sb_data.p_func.vnic_id,
747                sp_sb_data.p_func.vf_id,
748                sp_sb_data.p_func.vf_valid,
749                sp_sb_data.state);
750
751
752         for_each_eth_queue(bp, i) {
753                 struct bnx2x_fastpath *fp = &bp->fp[i];
754                 int loop;
755                 struct hc_status_block_data_e2 sb_data_e2;
756                 struct hc_status_block_data_e1x sb_data_e1x;
757                 struct hc_status_block_sm  *hc_sm_p =
758                         CHIP_IS_E1x(bp) ?
759                         sb_data_e1x.common.state_machine :
760                         sb_data_e2.common.state_machine;
761                 struct hc_index_data *hc_index_p =
762                         CHIP_IS_E1x(bp) ?
763                         sb_data_e1x.index_data :
764                         sb_data_e2.index_data;
765                 u8 data_size, cos;
766                 u32 *sb_data_p;
767                 struct bnx2x_fp_txdata txdata;
768
769                 /* Rx */
770                 BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
771                           i, fp->rx_bd_prod, fp->rx_bd_cons,
772                           fp->rx_comp_prod,
773                           fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
774                 BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
775                           fp->rx_sge_prod, fp->last_max_sge,
776                           le16_to_cpu(fp->fp_hc_idx));
777
778                 /* Tx */
779                 for_each_cos_in_tx_queue(fp, cos)
780                 {
781                         txdata = *fp->txdata_ptr[cos];
782                         BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
783                                   i, txdata.tx_pkt_prod,
784                                   txdata.tx_pkt_cons, txdata.tx_bd_prod,
785                                   txdata.tx_bd_cons,
786                                   le16_to_cpu(*txdata.tx_cons_sb));
787                 }
788
789                 loop = CHIP_IS_E1x(bp) ?
790                         HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
791
792                 /* host sb data */
793
794                 if (IS_FCOE_FP(fp))
795                         continue;
796
797                 BNX2X_ERR("     run indexes (");
798                 for (j = 0; j < HC_SB_MAX_SM; j++)
799                         pr_cont("0x%x%s",
800                                fp->sb_running_index[j],
801                                (j == HC_SB_MAX_SM - 1) ? ")" : " ");
802
803                 BNX2X_ERR("     indexes (");
804                 for (j = 0; j < loop; j++)
805                         pr_cont("0x%x%s",
806                                fp->sb_index_values[j],
807                                (j == loop - 1) ? ")" : " ");
808                 /* fw sb data */
809                 data_size = CHIP_IS_E1x(bp) ?
810                         sizeof(struct hc_status_block_data_e1x) :
811                         sizeof(struct hc_status_block_data_e2);
812                 data_size /= sizeof(u32);
813                 sb_data_p = CHIP_IS_E1x(bp) ?
814                         (u32 *)&sb_data_e1x :
815                         (u32 *)&sb_data_e2;
816                 /* copy sb data in here */
817                 for (j = 0; j < data_size; j++)
818                         *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
819                                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
820                                 j * sizeof(u32));
821
822                 if (!CHIP_IS_E1x(bp)) {
823                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
824                                 sb_data_e2.common.p_func.pf_id,
825                                 sb_data_e2.common.p_func.vf_id,
826                                 sb_data_e2.common.p_func.vf_valid,
827                                 sb_data_e2.common.p_func.vnic_id,
828                                 sb_data_e2.common.same_igu_sb_1b,
829                                 sb_data_e2.common.state);
830                 } else {
831                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
832                                 sb_data_e1x.common.p_func.pf_id,
833                                 sb_data_e1x.common.p_func.vf_id,
834                                 sb_data_e1x.common.p_func.vf_valid,
835                                 sb_data_e1x.common.p_func.vnic_id,
836                                 sb_data_e1x.common.same_igu_sb_1b,
837                                 sb_data_e1x.common.state);
838                 }
839
840                 /* SB_SMs data */
841                 for (j = 0; j < HC_SB_MAX_SM; j++) {
842                         pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
843                                 j, hc_sm_p[j].__flags,
844                                 hc_sm_p[j].igu_sb_id,
845                                 hc_sm_p[j].igu_seg_id,
846                                 hc_sm_p[j].time_to_expire,
847                                 hc_sm_p[j].timer_value);
848                 }
849
850                 /* Indecies data */
851                 for (j = 0; j < loop; j++) {
852                         pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
853                                hc_index_p[j].flags,
854                                hc_index_p[j].timeout);
855                 }
856         }
857
858 #ifdef BNX2X_STOP_ON_ERROR
859         /* Rings */
860         /* Rx */
861         for_each_valid_rx_queue(bp, i) {
862                 struct bnx2x_fastpath *fp = &bp->fp[i];
863
864                 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
865                 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
866                 for (j = start; j != end; j = RX_BD(j + 1)) {
867                         u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
868                         struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
869
870                         BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
871                                   i, j, rx_bd[1], rx_bd[0], sw_bd->data);
872                 }
873
874                 start = RX_SGE(fp->rx_sge_prod);
875                 end = RX_SGE(fp->last_max_sge);
876                 for (j = start; j != end; j = RX_SGE(j + 1)) {
877                         u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
878                         struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
879
880                         BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
881                                   i, j, rx_sge[1], rx_sge[0], sw_page->page);
882                 }
883
884                 start = RCQ_BD(fp->rx_comp_cons - 10);
885                 end = RCQ_BD(fp->rx_comp_cons + 503);
886                 for (j = start; j != end; j = RCQ_BD(j + 1)) {
887                         u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
888
889                         BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
890                                   i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
891                 }
892         }
893
894         /* Tx */
895         for_each_valid_tx_queue(bp, i) {
896                 struct bnx2x_fastpath *fp = &bp->fp[i];
897                 for_each_cos_in_tx_queue(fp, cos) {
898                         struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
899
900                         start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
901                         end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
902                         for (j = start; j != end; j = TX_BD(j + 1)) {
903                                 struct sw_tx_bd *sw_bd =
904                                         &txdata->tx_buf_ring[j];
905
906                                 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
907                                           i, cos, j, sw_bd->skb,
908                                           sw_bd->first_bd);
909                         }
910
911                         start = TX_BD(txdata->tx_bd_cons - 10);
912                         end = TX_BD(txdata->tx_bd_cons + 254);
913                         for (j = start; j != end; j = TX_BD(j + 1)) {
914                                 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
915
916                                 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
917                                           i, cos, j, tx_bd[0], tx_bd[1],
918                                           tx_bd[2], tx_bd[3]);
919                         }
920                 }
921         }
922 #endif
923         bnx2x_fw_dump(bp);
924         bnx2x_mc_assert(bp);
925         BNX2X_ERR("end crash dump -----------------\n");
926 }
927
928 /*
929  * FLR Support for E2
930  *
931  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
932  * initialization.
933  */
934 #define FLR_WAIT_USEC           10000   /* 10 miliseconds */
935 #define FLR_WAIT_INTERVAL       50      /* usec */
936 #define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
937
938 struct pbf_pN_buf_regs {
939         int pN;
940         u32 init_crd;
941         u32 crd;
942         u32 crd_freed;
943 };
944
945 struct pbf_pN_cmd_regs {
946         int pN;
947         u32 lines_occup;
948         u32 lines_freed;
949 };
950
951 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
952                                      struct pbf_pN_buf_regs *regs,
953                                      u32 poll_count)
954 {
955         u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
956         u32 cur_cnt = poll_count;
957
958         crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
959         crd = crd_start = REG_RD(bp, regs->crd);
960         init_crd = REG_RD(bp, regs->init_crd);
961
962         DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
963         DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
964         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
965
966         while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
967                (init_crd - crd_start))) {
968                 if (cur_cnt--) {
969                         udelay(FLR_WAIT_INTERVAL);
970                         crd = REG_RD(bp, regs->crd);
971                         crd_freed = REG_RD(bp, regs->crd_freed);
972                 } else {
973                         DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
974                            regs->pN);
975                         DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
976                            regs->pN, crd);
977                         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
978                            regs->pN, crd_freed);
979                         break;
980                 }
981         }
982         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
983            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
984 }
985
986 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
987                                      struct pbf_pN_cmd_regs *regs,
988                                      u32 poll_count)
989 {
990         u32 occup, to_free, freed, freed_start;
991         u32 cur_cnt = poll_count;
992
993         occup = to_free = REG_RD(bp, regs->lines_occup);
994         freed = freed_start = REG_RD(bp, regs->lines_freed);
995
996         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
997         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
998
999         while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1000                 if (cur_cnt--) {
1001                         udelay(FLR_WAIT_INTERVAL);
1002                         occup = REG_RD(bp, regs->lines_occup);
1003                         freed = REG_RD(bp, regs->lines_freed);
1004                 } else {
1005                         DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1006                            regs->pN);
1007                         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1008                            regs->pN, occup);
1009                         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1010                            regs->pN, freed);
1011                         break;
1012                 }
1013         }
1014         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1015            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1016 }
1017
1018 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1019                                     u32 expected, u32 poll_count)
1020 {
1021         u32 cur_cnt = poll_count;
1022         u32 val;
1023
1024         while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1025                 udelay(FLR_WAIT_INTERVAL);
1026
1027         return val;
1028 }
1029
1030 static int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1031                                            char *msg, u32 poll_cnt)
1032 {
1033         u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1034         if (val != 0) {
1035                 BNX2X_ERR("%s usage count=%d\n", msg, val);
1036                 return 1;
1037         }
1038         return 0;
1039 }
1040
1041 static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1042 {
1043         /* adjust polling timeout */
1044         if (CHIP_REV_IS_EMUL(bp))
1045                 return FLR_POLL_CNT * 2000;
1046
1047         if (CHIP_REV_IS_FPGA(bp))
1048                 return FLR_POLL_CNT * 120;
1049
1050         return FLR_POLL_CNT;
1051 }
1052
1053 static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1054 {
1055         struct pbf_pN_cmd_regs cmd_regs[] = {
1056                 {0, (CHIP_IS_E3B0(bp)) ?
1057                         PBF_REG_TQ_OCCUPANCY_Q0 :
1058                         PBF_REG_P0_TQ_OCCUPANCY,
1059                     (CHIP_IS_E3B0(bp)) ?
1060                         PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1061                         PBF_REG_P0_TQ_LINES_FREED_CNT},
1062                 {1, (CHIP_IS_E3B0(bp)) ?
1063                         PBF_REG_TQ_OCCUPANCY_Q1 :
1064                         PBF_REG_P1_TQ_OCCUPANCY,
1065                     (CHIP_IS_E3B0(bp)) ?
1066                         PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1067                         PBF_REG_P1_TQ_LINES_FREED_CNT},
1068                 {4, (CHIP_IS_E3B0(bp)) ?
1069                         PBF_REG_TQ_OCCUPANCY_LB_Q :
1070                         PBF_REG_P4_TQ_OCCUPANCY,
1071                     (CHIP_IS_E3B0(bp)) ?
1072                         PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1073                         PBF_REG_P4_TQ_LINES_FREED_CNT}
1074         };
1075
1076         struct pbf_pN_buf_regs buf_regs[] = {
1077                 {0, (CHIP_IS_E3B0(bp)) ?
1078                         PBF_REG_INIT_CRD_Q0 :
1079                         PBF_REG_P0_INIT_CRD ,
1080                     (CHIP_IS_E3B0(bp)) ?
1081                         PBF_REG_CREDIT_Q0 :
1082                         PBF_REG_P0_CREDIT,
1083                     (CHIP_IS_E3B0(bp)) ?
1084                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1085                         PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1086                 {1, (CHIP_IS_E3B0(bp)) ?
1087                         PBF_REG_INIT_CRD_Q1 :
1088                         PBF_REG_P1_INIT_CRD,
1089                     (CHIP_IS_E3B0(bp)) ?
1090                         PBF_REG_CREDIT_Q1 :
1091                         PBF_REG_P1_CREDIT,
1092                     (CHIP_IS_E3B0(bp)) ?
1093                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1094                         PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1095                 {4, (CHIP_IS_E3B0(bp)) ?
1096                         PBF_REG_INIT_CRD_LB_Q :
1097                         PBF_REG_P4_INIT_CRD,
1098                     (CHIP_IS_E3B0(bp)) ?
1099                         PBF_REG_CREDIT_LB_Q :
1100                         PBF_REG_P4_CREDIT,
1101                     (CHIP_IS_E3B0(bp)) ?
1102                         PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1103                         PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1104         };
1105
1106         int i;
1107
1108         /* Verify the command queues are flushed P0, P1, P4 */
1109         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1110                 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1111
1112
1113         /* Verify the transmission buffers are flushed P0, P1, P4 */
1114         for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1115                 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1116 }
1117
1118 #define OP_GEN_PARAM(param) \
1119         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1120
1121 #define OP_GEN_TYPE(type) \
1122         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1123
1124 #define OP_GEN_AGG_VECT(index) \
1125         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1126
1127
1128 static int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1129                                          u32 poll_cnt)
1130 {
1131         struct sdm_op_gen op_gen = {0};
1132
1133         u32 comp_addr = BAR_CSTRORM_INTMEM +
1134                         CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1135         int ret = 0;
1136
1137         if (REG_RD(bp, comp_addr)) {
1138                 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1139                 return 1;
1140         }
1141
1142         op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1143         op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1144         op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1145         op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1146
1147         DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1148         REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1149
1150         if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1151                 BNX2X_ERR("FW final cleanup did not succeed\n");
1152                 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1153                    (REG_RD(bp, comp_addr)));
1154                 ret = 1;
1155         }
1156         /* Zero completion for nxt FLR */
1157         REG_WR(bp, comp_addr, 0);
1158
1159         return ret;
1160 }
1161
1162 static u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1163 {
1164         u16 status;
1165
1166         pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1167         return status & PCI_EXP_DEVSTA_TRPND;
1168 }
1169
1170 /* PF FLR specific routines
1171 */
1172 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1173 {
1174
1175         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1176         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1177                         CFC_REG_NUM_LCIDS_INSIDE_PF,
1178                         "CFC PF usage counter timed out",
1179                         poll_cnt))
1180                 return 1;
1181
1182
1183         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1184         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1185                         DORQ_REG_PF_USAGE_CNT,
1186                         "DQ PF usage counter timed out",
1187                         poll_cnt))
1188                 return 1;
1189
1190         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1191         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1192                         QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1193                         "QM PF usage counter timed out",
1194                         poll_cnt))
1195                 return 1;
1196
1197         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1198         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1199                         TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1200                         "Timers VNIC usage counter timed out",
1201                         poll_cnt))
1202                 return 1;
1203         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1204                         TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1205                         "Timers NUM_SCANS usage counter timed out",
1206                         poll_cnt))
1207                 return 1;
1208
1209         /* Wait DMAE PF usage counter to zero */
1210         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1211                         dmae_reg_go_c[INIT_DMAE_C(bp)],
1212                         "DMAE dommand register timed out",
1213                         poll_cnt))
1214                 return 1;
1215
1216         return 0;
1217 }
1218
1219 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1220 {
1221         u32 val;
1222
1223         val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1224         DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1225
1226         val = REG_RD(bp, PBF_REG_DISABLE_PF);
1227         DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1228
1229         val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1230         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1231
1232         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1233         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1234
1235         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1236         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1237
1238         val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1239         DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1240
1241         val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1242         DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1243
1244         val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1245         DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1246            val);
1247 }
1248
1249 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1250 {
1251         u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1252
1253         DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1254
1255         /* Re-enable PF target read access */
1256         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1257
1258         /* Poll HW usage counters */
1259         DP(BNX2X_MSG_SP, "Polling usage counters\n");
1260         if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1261                 return -EBUSY;
1262
1263         /* Zero the igu 'trailing edge' and 'leading edge' */
1264
1265         /* Send the FW cleanup command */
1266         if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1267                 return -EBUSY;
1268
1269         /* ATC cleanup */
1270
1271         /* Verify TX hw is flushed */
1272         bnx2x_tx_hw_flushed(bp, poll_cnt);
1273
1274         /* Wait 100ms (not adjusted according to platform) */
1275         msleep(100);
1276
1277         /* Verify no pending pci transactions */
1278         if (bnx2x_is_pcie_pending(bp->pdev))
1279                 BNX2X_ERR("PCIE Transactions still pending\n");
1280
1281         /* Debug */
1282         bnx2x_hw_enable_status(bp);
1283
1284         /*
1285          * Master enable - Due to WB DMAE writes performed before this
1286          * register is re-initialized as part of the regular function init
1287          */
1288         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1289
1290         return 0;
1291 }
1292
1293 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1294 {
1295         int port = BP_PORT(bp);
1296         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1297         u32 val = REG_RD(bp, addr);
1298         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1299         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1300         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1301
1302         if (msix) {
1303                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1304                          HC_CONFIG_0_REG_INT_LINE_EN_0);
1305                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1306                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1307                 if (single_msix)
1308                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1309         } else if (msi) {
1310                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1311                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1312                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1313                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1314         } else {
1315                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1316                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1317                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
1318                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1319
1320                 if (!CHIP_IS_E1(bp)) {
1321                         DP(NETIF_MSG_IFUP,
1322                            "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1323
1324                         REG_WR(bp, addr, val);
1325
1326                         val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1327                 }
1328         }
1329
1330         if (CHIP_IS_E1(bp))
1331                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1332
1333         DP(NETIF_MSG_IFUP,
1334            "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1335            (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1336
1337         REG_WR(bp, addr, val);
1338         /*
1339          * Ensure that HC_CONFIG is written before leading/trailing edge config
1340          */
1341         mmiowb();
1342         barrier();
1343
1344         if (!CHIP_IS_E1(bp)) {
1345                 /* init leading/trailing edge */
1346                 if (IS_MF(bp)) {
1347                         val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1348                         if (bp->port.pmf)
1349                                 /* enable nig and gpio3 attention */
1350                                 val |= 0x1100;
1351                 } else
1352                         val = 0xffff;
1353
1354                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1355                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1356         }
1357
1358         /* Make sure that interrupts are indeed enabled from here on */
1359         mmiowb();
1360 }
1361
1362 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1363 {
1364         u32 val;
1365         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1366         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1367         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1368
1369         val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1370
1371         if (msix) {
1372                 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1373                          IGU_PF_CONF_SINGLE_ISR_EN);
1374                 val |= (IGU_PF_CONF_FUNC_EN |
1375                         IGU_PF_CONF_MSI_MSIX_EN |
1376                         IGU_PF_CONF_ATTN_BIT_EN);
1377
1378                 if (single_msix)
1379                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
1380         } else if (msi) {
1381                 val &= ~IGU_PF_CONF_INT_LINE_EN;
1382                 val |= (IGU_PF_CONF_FUNC_EN |
1383                         IGU_PF_CONF_MSI_MSIX_EN |
1384                         IGU_PF_CONF_ATTN_BIT_EN |
1385                         IGU_PF_CONF_SINGLE_ISR_EN);
1386         } else {
1387                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1388                 val |= (IGU_PF_CONF_FUNC_EN |
1389                         IGU_PF_CONF_INT_LINE_EN |
1390                         IGU_PF_CONF_ATTN_BIT_EN |
1391                         IGU_PF_CONF_SINGLE_ISR_EN);
1392         }
1393
1394         DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1395            val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1396
1397         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1398
1399         if (val & IGU_PF_CONF_INT_LINE_EN)
1400                 pci_intx(bp->pdev, true);
1401
1402         barrier();
1403
1404         /* init leading/trailing edge */
1405         if (IS_MF(bp)) {
1406                 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1407                 if (bp->port.pmf)
1408                         /* enable nig and gpio3 attention */
1409                         val |= 0x1100;
1410         } else
1411                 val = 0xffff;
1412
1413         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1414         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1415
1416         /* Make sure that interrupts are indeed enabled from here on */
1417         mmiowb();
1418 }
1419
1420 void bnx2x_int_enable(struct bnx2x *bp)
1421 {
1422         if (bp->common.int_block == INT_BLOCK_HC)
1423                 bnx2x_hc_int_enable(bp);
1424         else
1425                 bnx2x_igu_int_enable(bp);
1426 }
1427
1428 static void bnx2x_hc_int_disable(struct bnx2x *bp)
1429 {
1430         int port = BP_PORT(bp);
1431         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1432         u32 val = REG_RD(bp, addr);
1433
1434         /*
1435          * in E1 we must use only PCI configuration space to disable
1436          * MSI/MSIX capablility
1437          * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1438          */
1439         if (CHIP_IS_E1(bp)) {
1440                 /*  Since IGU_PF_CONF_MSI_MSIX_EN still always on
1441                  *  Use mask register to prevent from HC sending interrupts
1442                  *  after we exit the function
1443                  */
1444                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1445
1446                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1447                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
1448                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1449         } else
1450                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1451                          HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1452                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
1453                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1454
1455         DP(NETIF_MSG_IFDOWN,
1456            "write %x to HC %d (addr 0x%x)\n",
1457            val, port, addr);
1458
1459         /* flush all outstanding writes */
1460         mmiowb();
1461
1462         REG_WR(bp, addr, val);
1463         if (REG_RD(bp, addr) != val)
1464                 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1465 }
1466
1467 static void bnx2x_igu_int_disable(struct bnx2x *bp)
1468 {
1469         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1470
1471         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1472                  IGU_PF_CONF_INT_LINE_EN |
1473                  IGU_PF_CONF_ATTN_BIT_EN);
1474
1475         DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
1476
1477         /* flush all outstanding writes */
1478         mmiowb();
1479
1480         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1481         if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1482                 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1483 }
1484
1485 static void bnx2x_int_disable(struct bnx2x *bp)
1486 {
1487         if (bp->common.int_block == INT_BLOCK_HC)
1488                 bnx2x_hc_int_disable(bp);
1489         else
1490                 bnx2x_igu_int_disable(bp);
1491 }
1492
1493 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1494 {
1495         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1496         int i, offset;
1497
1498         if (disable_hw)
1499                 /* prevent the HW from sending interrupts */
1500                 bnx2x_int_disable(bp);
1501
1502         /* make sure all ISRs are done */
1503         if (msix) {
1504                 synchronize_irq(bp->msix_table[0].vector);
1505                 offset = 1;
1506                 if (CNIC_SUPPORT(bp))
1507                         offset++;
1508                 for_each_eth_queue(bp, i)
1509                         synchronize_irq(bp->msix_table[offset++].vector);
1510         } else
1511                 synchronize_irq(bp->pdev->irq);
1512
1513         /* make sure sp_task is not running */
1514         cancel_delayed_work(&bp->sp_task);
1515         cancel_delayed_work(&bp->period_task);
1516         flush_workqueue(bnx2x_wq);
1517 }
1518
1519 /* fast path */
1520
1521 /*
1522  * General service functions
1523  */
1524
1525 /* Return true if succeeded to acquire the lock */
1526 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1527 {
1528         u32 lock_status;
1529         u32 resource_bit = (1 << resource);
1530         int func = BP_FUNC(bp);
1531         u32 hw_lock_control_reg;
1532
1533         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1534            "Trying to take a lock on resource %d\n", resource);
1535
1536         /* Validating that the resource is within range */
1537         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1538                 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1539                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1540                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1541                 return false;
1542         }
1543
1544         if (func <= 5)
1545                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1546         else
1547                 hw_lock_control_reg =
1548                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1549
1550         /* Try to acquire the lock */
1551         REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1552         lock_status = REG_RD(bp, hw_lock_control_reg);
1553         if (lock_status & resource_bit)
1554                 return true;
1555
1556         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1557            "Failed to get a lock on resource %d\n", resource);
1558         return false;
1559 }
1560
1561 /**
1562  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1563  *
1564  * @bp: driver handle
1565  *
1566  * Returns the recovery leader resource id according to the engine this function
1567  * belongs to. Currently only only 2 engines is supported.
1568  */
1569 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1570 {
1571         if (BP_PATH(bp))
1572                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1573         else
1574                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1575 }
1576
1577 /**
1578  * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1579  *
1580  * @bp: driver handle
1581  *
1582  * Tries to aquire a leader lock for current engine.
1583  */
1584 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1585 {
1586         return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1587 }
1588
1589 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1590
1591
1592 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1593 {
1594         struct bnx2x *bp = fp->bp;
1595         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1596         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1597         enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1598         struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1599
1600         DP(BNX2X_MSG_SP,
1601            "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1602            fp->index, cid, command, bp->state,
1603            rr_cqe->ramrod_cqe.ramrod_type);
1604
1605         switch (command) {
1606         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1607                 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1608                 drv_cmd = BNX2X_Q_CMD_UPDATE;
1609                 break;
1610
1611         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1612                 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1613                 drv_cmd = BNX2X_Q_CMD_SETUP;
1614                 break;
1615
1616         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1617                 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1618                 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1619                 break;
1620
1621         case (RAMROD_CMD_ID_ETH_HALT):
1622                 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1623                 drv_cmd = BNX2X_Q_CMD_HALT;
1624                 break;
1625
1626         case (RAMROD_CMD_ID_ETH_TERMINATE):
1627                 DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1628                 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1629                 break;
1630
1631         case (RAMROD_CMD_ID_ETH_EMPTY):
1632                 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1633                 drv_cmd = BNX2X_Q_CMD_EMPTY;
1634                 break;
1635
1636         default:
1637                 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1638                           command, fp->index);
1639                 return;
1640         }
1641
1642         if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1643             q_obj->complete_cmd(bp, q_obj, drv_cmd))
1644                 /* q_obj->complete_cmd() failure means that this was
1645                  * an unexpected completion.
1646                  *
1647                  * In this case we don't want to increase the bp->spq_left
1648                  * because apparently we haven't sent this command the first
1649                  * place.
1650                  */
1651 #ifdef BNX2X_STOP_ON_ERROR
1652                 bnx2x_panic();
1653 #else
1654                 return;
1655 #endif
1656
1657         smp_mb__before_atomic_inc();
1658         atomic_inc(&bp->cq_spq_left);
1659         /* push the change in bp->spq_left and towards the memory */
1660         smp_mb__after_atomic_inc();
1661
1662         DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1663
1664         if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1665             (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1666                 /* if Q update ramrod is completed for last Q in AFEX vif set
1667                  * flow, then ACK MCP at the end
1668                  *
1669                  * mark pending ACK to MCP bit.
1670                  * prevent case that both bits are cleared.
1671                  * At the end of load/unload driver checks that
1672                  * sp_state is cleaerd, and this order prevents
1673                  * races
1674                  */
1675                 smp_mb__before_clear_bit();
1676                 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1677                 wmb();
1678                 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1679                 smp_mb__after_clear_bit();
1680
1681                 /* schedule workqueue to send ack to MCP */
1682                 queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1683         }
1684
1685         return;
1686 }
1687
1688 void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1689                         u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1690 {
1691         u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1692
1693         bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1694                                  start);
1695 }
1696
1697 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1698 {
1699         struct bnx2x *bp = netdev_priv(dev_instance);
1700         u16 status = bnx2x_ack_int(bp);
1701         u16 mask;
1702         int i;
1703         u8 cos;
1704
1705         /* Return here if interrupt is shared and it's not for us */
1706         if (unlikely(status == 0)) {
1707                 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1708                 return IRQ_NONE;
1709         }
1710         DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1711
1712 #ifdef BNX2X_STOP_ON_ERROR
1713         if (unlikely(bp->panic))
1714                 return IRQ_HANDLED;
1715 #endif
1716
1717         for_each_eth_queue(bp, i) {
1718                 struct bnx2x_fastpath *fp = &bp->fp[i];
1719
1720                 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1721                 if (status & mask) {
1722                         /* Handle Rx or Tx according to SB id */
1723                         prefetch(fp->rx_cons_sb);
1724                         for_each_cos_in_tx_queue(fp, cos)
1725                                 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1726                         prefetch(&fp->sb_running_index[SM_RX_ID]);
1727                         napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1728                         status &= ~mask;
1729                 }
1730         }
1731
1732         if (CNIC_SUPPORT(bp)) {
1733                 mask = 0x2;
1734                 if (status & (mask | 0x1)) {
1735                         struct cnic_ops *c_ops = NULL;
1736
1737                         if (likely(bp->state == BNX2X_STATE_OPEN)) {
1738                                 rcu_read_lock();
1739                                 c_ops = rcu_dereference(bp->cnic_ops);
1740                                 if (c_ops)
1741                                         c_ops->cnic_handler(bp->cnic_data,
1742                                                             NULL);
1743                                 rcu_read_unlock();
1744                         }
1745
1746                         status &= ~mask;
1747                 }
1748         }
1749
1750         if (unlikely(status & 0x1)) {
1751                 queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1752
1753                 status &= ~0x1;
1754                 if (!status)
1755                         return IRQ_HANDLED;
1756         }
1757
1758         if (unlikely(status))
1759                 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1760                    status);
1761
1762         return IRQ_HANDLED;
1763 }
1764
1765 /* Link */
1766
1767 /*
1768  * General service functions
1769  */
1770
1771 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1772 {
1773         u32 lock_status;
1774         u32 resource_bit = (1 << resource);
1775         int func = BP_FUNC(bp);
1776         u32 hw_lock_control_reg;
1777         int cnt;
1778
1779         /* Validating that the resource is within range */
1780         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1781                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1782                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1783                 return -EINVAL;
1784         }
1785
1786         if (func <= 5) {
1787                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1788         } else {
1789                 hw_lock_control_reg =
1790                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1791         }
1792
1793         /* Validating that the resource is not already taken */
1794         lock_status = REG_RD(bp, hw_lock_control_reg);
1795         if (lock_status & resource_bit) {
1796                 BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1797                    lock_status, resource_bit);
1798                 return -EEXIST;
1799         }
1800
1801         /* Try for 5 second every 5ms */
1802         for (cnt = 0; cnt < 1000; cnt++) {
1803                 /* Try to acquire the lock */
1804                 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1805                 lock_status = REG_RD(bp, hw_lock_control_reg);
1806                 if (lock_status & resource_bit)
1807                         return 0;
1808
1809                 msleep(5);
1810         }
1811         BNX2X_ERR("Timeout\n");
1812         return -EAGAIN;
1813 }
1814
1815 int bnx2x_release_leader_lock(struct bnx2x *bp)
1816 {
1817         return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1818 }
1819
1820 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1821 {
1822         u32 lock_status;
1823         u32 resource_bit = (1 << resource);
1824         int func = BP_FUNC(bp);
1825         u32 hw_lock_control_reg;
1826
1827         /* Validating that the resource is within range */
1828         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1829                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1830                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1831                 return -EINVAL;
1832         }
1833
1834         if (func <= 5) {
1835                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1836         } else {
1837                 hw_lock_control_reg =
1838                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1839         }
1840
1841         /* Validating that the resource is currently taken */
1842         lock_status = REG_RD(bp, hw_lock_control_reg);
1843         if (!(lock_status & resource_bit)) {
1844                 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. unlock was called but lock wasn't taken!\n",
1845                    lock_status, resource_bit);
1846                 return -EFAULT;
1847         }
1848
1849         REG_WR(bp, hw_lock_control_reg, resource_bit);
1850         return 0;
1851 }
1852
1853
1854 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1855 {
1856         /* The GPIO should be swapped if swap register is set and active */
1857         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1858                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1859         int gpio_shift = gpio_num +
1860                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1861         u32 gpio_mask = (1 << gpio_shift);
1862         u32 gpio_reg;
1863         int value;
1864
1865         if (gpio_num > MISC_REGISTERS_GPIO_3) {
1866                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1867                 return -EINVAL;
1868         }
1869
1870         /* read GPIO value */
1871         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1872
1873         /* get the requested pin value */
1874         if ((gpio_reg & gpio_mask) == gpio_mask)
1875                 value = 1;
1876         else
1877                 value = 0;
1878
1879         DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
1880
1881         return value;
1882 }
1883
1884 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1885 {
1886         /* The GPIO should be swapped if swap register is set and active */
1887         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1888                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1889         int gpio_shift = gpio_num +
1890                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1891         u32 gpio_mask = (1 << gpio_shift);
1892         u32 gpio_reg;
1893
1894         if (gpio_num > MISC_REGISTERS_GPIO_3) {
1895                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1896                 return -EINVAL;
1897         }
1898
1899         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1900         /* read GPIO and mask except the float bits */
1901         gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1902
1903         switch (mode) {
1904         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1905                 DP(NETIF_MSG_LINK,
1906                    "Set GPIO %d (shift %d) -> output low\n",
1907                    gpio_num, gpio_shift);
1908                 /* clear FLOAT and set CLR */
1909                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1910                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1911                 break;
1912
1913         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1914                 DP(NETIF_MSG_LINK,
1915                    "Set GPIO %d (shift %d) -> output high\n",
1916                    gpio_num, gpio_shift);
1917                 /* clear FLOAT and set SET */
1918                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1919                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1920                 break;
1921
1922         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1923                 DP(NETIF_MSG_LINK,
1924                    "Set GPIO %d (shift %d) -> input\n",
1925                    gpio_num, gpio_shift);
1926                 /* set FLOAT */
1927                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1928                 break;
1929
1930         default:
1931                 break;
1932         }
1933
1934         REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1935         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1936
1937         return 0;
1938 }
1939
1940 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1941 {
1942         u32 gpio_reg = 0;
1943         int rc = 0;
1944
1945         /* Any port swapping should be handled by caller. */
1946
1947         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1948         /* read GPIO and mask except the float bits */
1949         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1950         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1951         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
1952         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
1953
1954         switch (mode) {
1955         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1956                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
1957                 /* set CLR */
1958                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
1959                 break;
1960
1961         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1962                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
1963                 /* set SET */
1964                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
1965                 break;
1966
1967         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1968                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
1969                 /* set FLOAT */
1970                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
1971                 break;
1972
1973         default:
1974                 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
1975                 rc = -EINVAL;
1976                 break;
1977         }
1978
1979         if (rc == 0)
1980                 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1981
1982         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1983
1984         return rc;
1985 }
1986
1987 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1988 {
1989         /* The GPIO should be swapped if swap register is set and active */
1990         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1991                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1992         int gpio_shift = gpio_num +
1993                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1994         u32 gpio_mask = (1 << gpio_shift);
1995         u32 gpio_reg;
1996
1997         if (gpio_num > MISC_REGISTERS_GPIO_3) {
1998                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1999                 return -EINVAL;
2000         }
2001
2002         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2003         /* read GPIO int */
2004         gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2005
2006         switch (mode) {
2007         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2008                 DP(NETIF_MSG_LINK,
2009                    "Clear GPIO INT %d (shift %d) -> output low\n",
2010                    gpio_num, gpio_shift);
2011                 /* clear SET and set CLR */
2012                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2013                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2014                 break;
2015
2016         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2017                 DP(NETIF_MSG_LINK,
2018                    "Set GPIO INT %d (shift %d) -> output high\n",
2019                    gpio_num, gpio_shift);
2020                 /* clear CLR and set SET */
2021                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2022                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2023                 break;
2024
2025         default:
2026                 break;
2027         }
2028
2029         REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2030         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2031
2032         return 0;
2033 }
2034
2035 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2036 {
2037         u32 spio_reg;
2038
2039         /* Only 2 SPIOs are configurable */
2040         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2041                 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2042                 return -EINVAL;
2043         }
2044
2045         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2046         /* read SPIO and mask except the float bits */
2047         spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2048
2049         switch (mode) {
2050         case MISC_SPIO_OUTPUT_LOW:
2051                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2052                 /* clear FLOAT and set CLR */
2053                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2054                 spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2055                 break;
2056
2057         case MISC_SPIO_OUTPUT_HIGH:
2058                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2059                 /* clear FLOAT and set SET */
2060                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2061                 spio_reg |=  (spio << MISC_SPIO_SET_POS);
2062                 break;
2063
2064         case MISC_SPIO_INPUT_HI_Z:
2065                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2066                 /* set FLOAT */
2067                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2068                 break;
2069
2070         default:
2071                 break;
2072         }
2073
2074         REG_WR(bp, MISC_REG_SPIO, spio_reg);
2075         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2076
2077         return 0;
2078 }
2079
2080 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2081 {
2082         u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2083         switch (bp->link_vars.ieee_fc &
2084                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2085         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2086                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2087                                                    ADVERTISED_Pause);
2088                 break;
2089
2090         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2091                 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2092                                                   ADVERTISED_Pause);
2093                 break;
2094
2095         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2096                 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2097                 break;
2098
2099         default:
2100                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2101                                                    ADVERTISED_Pause);
2102                 break;
2103         }
2104 }
2105
2106 u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2107 {
2108         if (!BP_NOMCP(bp)) {
2109                 u8 rc;
2110                 int cfx_idx = bnx2x_get_link_cfg_idx(bp);
2111                 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2112                 /*
2113                  * Initialize link parameters structure variables
2114                  * It is recommended to turn off RX FC for jumbo frames
2115                  * for better performance
2116                  */
2117                 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2118                         bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2119                 else
2120                         bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2121
2122                 bnx2x_acquire_phy_lock(bp);
2123
2124                 if (load_mode == LOAD_DIAG) {
2125                         struct link_params *lp = &bp->link_params;
2126                         lp->loopback_mode = LOOPBACK_XGXS;
2127                         /* do PHY loopback at 10G speed, if possible */
2128                         if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2129                                 if (lp->speed_cap_mask[cfx_idx] &
2130                                     PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2131                                         lp->req_line_speed[cfx_idx] =
2132                                         SPEED_10000;
2133                                 else
2134                                         lp->req_line_speed[cfx_idx] =
2135                                         SPEED_1000;
2136                         }
2137                 }
2138
2139                 if (load_mode == LOAD_LOOPBACK_EXT) {
2140                         struct link_params *lp = &bp->link_params;
2141                         lp->loopback_mode = LOOPBACK_EXT;
2142                 }
2143
2144                 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2145
2146                 bnx2x_release_phy_lock(bp);
2147
2148                 bnx2x_calc_fc_adv(bp);
2149
2150                 if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
2151                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2152                         bnx2x_link_report(bp);
2153                 } else
2154                         queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2155                 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2156                 return rc;
2157         }
2158         BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2159         return -EINVAL;
2160 }
2161
2162 void bnx2x_link_set(struct bnx2x *bp)
2163 {
2164         if (!BP_NOMCP(bp)) {
2165                 bnx2x_acquire_phy_lock(bp);
2166                 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2167                 bnx2x_release_phy_lock(bp);
2168
2169                 bnx2x_calc_fc_adv(bp);
2170         } else
2171                 BNX2X_ERR("Bootcode is missing - can not set link\n");
2172 }
2173
2174 static void bnx2x__link_reset(struct bnx2x *bp)
2175 {
2176         if (!BP_NOMCP(bp)) {
2177                 bnx2x_acquire_phy_lock(bp);
2178                 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2179                 bnx2x_release_phy_lock(bp);
2180         } else
2181                 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2182 }
2183
2184 void bnx2x_force_link_reset(struct bnx2x *bp)
2185 {
2186         bnx2x_acquire_phy_lock(bp);
2187         bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2188         bnx2x_release_phy_lock(bp);
2189 }
2190
2191 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2192 {
2193         u8 rc = 0;
2194
2195         if (!BP_NOMCP(bp)) {
2196                 bnx2x_acquire_phy_lock(bp);
2197                 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2198                                      is_serdes);
2199                 bnx2x_release_phy_lock(bp);
2200         } else
2201                 BNX2X_ERR("Bootcode is missing - can not test link\n");
2202
2203         return rc;
2204 }
2205
2206
2207 /* Calculates the sum of vn_min_rates.
2208    It's needed for further normalizing of the min_rates.
2209    Returns:
2210      sum of vn_min_rates.
2211        or
2212      0 - if all the min_rates are 0.
2213      In the later case fainess algorithm should be deactivated.
2214      If not all min_rates are zero then those that are zeroes will be set to 1.
2215  */
2216 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2217                                       struct cmng_init_input *input)
2218 {
2219         int all_zero = 1;
2220         int vn;
2221
2222         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2223                 u32 vn_cfg = bp->mf_config[vn];
2224                 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2225                                    FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2226
2227                 /* Skip hidden vns */
2228                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2229                         vn_min_rate = 0;
2230                 /* If min rate is zero - set it to 1 */
2231                 else if (!vn_min_rate)
2232                         vn_min_rate = DEF_MIN_RATE;
2233                 else
2234                         all_zero = 0;
2235
2236                 input->vnic_min_rate[vn] = vn_min_rate;
2237         }
2238
2239         /* if ETS or all min rates are zeros - disable fairness */
2240         if (BNX2X_IS_ETS_ENABLED(bp)) {
2241                 input->flags.cmng_enables &=
2242                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2243                 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2244         } else if (all_zero) {
2245                 input->flags.cmng_enables &=
2246                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2247                 DP(NETIF_MSG_IFUP,
2248                    "All MIN values are zeroes fairness will be disabled\n");
2249         } else
2250                 input->flags.cmng_enables |=
2251                                         CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2252 }
2253
2254 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2255                                     struct cmng_init_input *input)
2256 {
2257         u16 vn_max_rate;
2258         u32 vn_cfg = bp->mf_config[vn];
2259
2260         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2261                 vn_max_rate = 0;
2262         else {
2263                 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2264
2265                 if (IS_MF_SI(bp)) {
2266                         /* maxCfg in percents of linkspeed */
2267                         vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2268                 } else /* SD modes */
2269                         /* maxCfg is absolute in 100Mb units */
2270                         vn_max_rate = maxCfg * 100;
2271         }
2272
2273         DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2274
2275         input->vnic_max_rate[vn] = vn_max_rate;
2276 }
2277
2278
2279 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2280 {
2281         if (CHIP_REV_IS_SLOW(bp))
2282                 return CMNG_FNS_NONE;
2283         if (IS_MF(bp))
2284                 return CMNG_FNS_MINMAX;
2285
2286         return CMNG_FNS_NONE;
2287 }
2288
2289 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2290 {
2291         int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2292
2293         if (BP_NOMCP(bp))
2294                 return; /* what should be the default bvalue in this case */
2295
2296         /* For 2 port configuration the absolute function number formula
2297          * is:
2298          *      abs_func = 2 * vn + BP_PORT + BP_PATH
2299          *
2300          *      and there are 4 functions per port
2301          *
2302          * For 4 port configuration it is
2303          *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2304          *
2305          *      and there are 2 functions per port
2306          */
2307         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2308                 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2309
2310                 if (func >= E1H_FUNC_MAX)
2311                         break;
2312
2313                 bp->mf_config[vn] =
2314                         MF_CFG_RD(bp, func_mf_config[func].config);
2315         }
2316         if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2317                 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2318                 bp->flags |= MF_FUNC_DIS;
2319         } else {
2320                 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2321                 bp->flags &= ~MF_FUNC_DIS;
2322         }
2323 }
2324
2325 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2326 {
2327         struct cmng_init_input input;
2328         memset(&input, 0, sizeof(struct cmng_init_input));
2329
2330         input.port_rate = bp->link_vars.line_speed;
2331
2332         if (cmng_type == CMNG_FNS_MINMAX) {
2333                 int vn;
2334
2335                 /* read mf conf from shmem */
2336                 if (read_cfg)
2337                         bnx2x_read_mf_cfg(bp);
2338
2339                 /* vn_weight_sum and enable fairness if not 0 */
2340                 bnx2x_calc_vn_min(bp, &input);
2341
2342                 /* calculate and set min-max rate for each vn */
2343                 if (bp->port.pmf)
2344                         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2345                                 bnx2x_calc_vn_max(bp, vn, &input);
2346
2347                 /* always enable rate shaping and fairness */
2348                 input.flags.cmng_enables |=
2349                                         CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2350
2351                 bnx2x_init_cmng(&input, &bp->cmng);
2352                 return;
2353         }
2354
2355         /* rate shaping and fairness are disabled */
2356         DP(NETIF_MSG_IFUP,
2357            "rate shaping and fairness are disabled\n");
2358 }
2359
2360 static void storm_memset_cmng(struct bnx2x *bp,
2361                               struct cmng_init *cmng,
2362                               u8 port)
2363 {
2364         int vn;
2365         size_t size = sizeof(struct cmng_struct_per_port);
2366
2367         u32 addr = BAR_XSTRORM_INTMEM +
2368                         XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2369
2370         __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2371
2372         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2373                 int func = func_by_vn(bp, vn);
2374
2375                 addr = BAR_XSTRORM_INTMEM +
2376                        XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2377                 size = sizeof(struct rate_shaping_vars_per_vn);
2378                 __storm_memset_struct(bp, addr, size,
2379                                       (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2380
2381                 addr = BAR_XSTRORM_INTMEM +
2382                        XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2383                 size = sizeof(struct fairness_vars_per_vn);
2384                 __storm_memset_struct(bp, addr, size,
2385                                       (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2386         }
2387 }
2388
2389 /* This function is called upon link interrupt */
2390 static void bnx2x_link_attn(struct bnx2x *bp)
2391 {
2392         /* Make sure that we are synced with the current statistics */
2393         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2394
2395         bnx2x_link_update(&bp->link_params, &bp->link_vars);
2396
2397         if (bp->link_vars.link_up) {
2398
2399                 /* dropless flow control */
2400                 if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2401                         int port = BP_PORT(bp);
2402                         u32 pause_enabled = 0;
2403
2404                         if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2405                                 pause_enabled = 1;
2406
2407                         REG_WR(bp, BAR_USTRORM_INTMEM +
2408                                USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2409                                pause_enabled);
2410                 }
2411
2412                 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2413                         struct host_port_stats *pstats;
2414
2415                         pstats = bnx2x_sp(bp, port_stats);
2416                         /* reset old mac stats */
2417                         memset(&(pstats->mac_stx[0]), 0,
2418                                sizeof(struct mac_stx));
2419                 }
2420                 if (bp->state == BNX2X_STATE_OPEN)
2421                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2422         }
2423
2424         if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2425                 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2426
2427                 if (cmng_fns != CMNG_FNS_NONE) {
2428                         bnx2x_cmng_fns_init(bp, false, cmng_fns);
2429                         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2430                 } else
2431                         /* rate shaping and fairness are disabled */
2432                         DP(NETIF_MSG_IFUP,
2433                            "single function mode without fairness\n");
2434         }
2435
2436         __bnx2x_link_report(bp);
2437
2438         if (IS_MF(bp))
2439                 bnx2x_link_sync_notify(bp);
2440 }
2441
2442 void bnx2x__link_status_update(struct bnx2x *bp)
2443 {
2444         if (bp->state != BNX2X_STATE_OPEN)
2445                 return;
2446
2447         /* read updated dcb configuration */
2448         bnx2x_dcbx_pmf_update(bp);
2449
2450         bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2451
2452         if (bp->link_vars.link_up)
2453                 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2454         else
2455                 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2456
2457         /* indicate link status */
2458         bnx2x_link_report(bp);
2459 }
2460
2461 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2462                                   u16 vlan_val, u8 allowed_prio)
2463 {
2464         struct bnx2x_func_state_params func_params = {0};
2465         struct bnx2x_func_afex_update_params *f_update_params =
2466                 &func_params.params.afex_update;
2467
2468         func_params.f_obj = &bp->func_obj;
2469         func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2470
2471         /* no need to wait for RAMROD completion, so don't
2472          * set RAMROD_COMP_WAIT flag
2473          */
2474
2475         f_update_params->vif_id = vifid;
2476         f_update_params->afex_default_vlan = vlan_val;
2477         f_update_params->allowed_priorities = allowed_prio;
2478
2479         /* if ramrod can not be sent, response to MCP immediately */
2480         if (bnx2x_func_state_change(bp, &func_params) < 0)
2481                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2482
2483         return 0;
2484 }
2485
2486 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2487                                           u16 vif_index, u8 func_bit_map)
2488 {
2489         struct bnx2x_func_state_params func_params = {0};
2490         struct bnx2x_func_afex_viflists_params *update_params =
2491                 &func_params.params.afex_viflists;
2492         int rc;
2493         u32 drv_msg_code;
2494
2495         /* validate only LIST_SET and LIST_GET are received from switch */
2496         if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2497                 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2498                           cmd_type);
2499
2500         func_params.f_obj = &bp->func_obj;
2501         func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2502
2503         /* set parameters according to cmd_type */
2504         update_params->afex_vif_list_command = cmd_type;
2505         update_params->vif_list_index = cpu_to_le16(vif_index);
2506         update_params->func_bit_map =
2507                 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2508         update_params->func_to_clear = 0;
2509         drv_msg_code =
2510                 (cmd_type == VIF_LIST_RULE_GET) ?
2511                 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2512                 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2513
2514         /* if ramrod can not be sent, respond to MCP immediately for
2515          * SET and GET requests (other are not triggered from MCP)
2516          */
2517         rc = bnx2x_func_state_change(bp, &func_params);
2518         if (rc < 0)
2519                 bnx2x_fw_command(bp, drv_msg_code, 0);
2520
2521         return 0;
2522 }
2523
2524 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2525 {
2526         struct afex_stats afex_stats;
2527         u32 func = BP_ABS_FUNC(bp);
2528         u32 mf_config;
2529         u16 vlan_val;
2530         u32 vlan_prio;
2531         u16 vif_id;
2532         u8 allowed_prio;
2533         u8 vlan_mode;
2534         u32 addr_to_write, vifid, addrs, stats_type, i;
2535
2536         if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2537                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2538                 DP(BNX2X_MSG_MCP,
2539                    "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2540                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2541         }
2542
2543         if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2544                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2545                 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2546                 DP(BNX2X_MSG_MCP,
2547                    "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2548                    vifid, addrs);
2549                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2550                                                addrs);
2551         }
2552
2553         if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2554                 addr_to_write = SHMEM2_RD(bp,
2555                         afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2556                 stats_type = SHMEM2_RD(bp,
2557                         afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2558
2559                 DP(BNX2X_MSG_MCP,
2560                    "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2561                    addr_to_write);
2562
2563                 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2564
2565                 /* write response to scratchpad, for MCP */
2566                 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2567                         REG_WR(bp, addr_to_write + i*sizeof(u32),
2568                                *(((u32 *)(&afex_stats))+i));
2569
2570                 /* send ack message to MCP */
2571                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2572         }
2573
2574         if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2575                 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2576                 bp->mf_config[BP_VN(bp)] = mf_config;
2577                 DP(BNX2X_MSG_MCP,
2578                    "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2579                    mf_config);
2580
2581                 /* if VIF_SET is "enabled" */
2582                 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2583                         /* set rate limit directly to internal RAM */
2584                         struct cmng_init_input cmng_input;
2585                         struct rate_shaping_vars_per_vn m_rs_vn;
2586                         size_t size = sizeof(struct rate_shaping_vars_per_vn);
2587                         u32 addr = BAR_XSTRORM_INTMEM +
2588                             XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2589
2590                         bp->mf_config[BP_VN(bp)] = mf_config;
2591
2592                         bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2593                         m_rs_vn.vn_counter.rate =
2594                                 cmng_input.vnic_max_rate[BP_VN(bp)];
2595                         m_rs_vn.vn_counter.quota =
2596                                 (m_rs_vn.vn_counter.rate *
2597                                  RS_PERIODIC_TIMEOUT_USEC) / 8;
2598
2599                         __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2600
2601                         /* read relevant values from mf_cfg struct in shmem */
2602                         vif_id =
2603                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2604                                  FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2605                                 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2606                         vlan_val =
2607                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2608                                  FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2609                                 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2610                         vlan_prio = (mf_config &
2611                                      FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2612                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2613                         vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2614                         vlan_mode =
2615                                 (MF_CFG_RD(bp,
2616                                            func_mf_config[func].afex_config) &
2617                                  FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2618                                 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2619                         allowed_prio =
2620                                 (MF_CFG_RD(bp,
2621                                            func_mf_config[func].afex_config) &
2622                                  FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2623                                 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2624
2625                         /* send ramrod to FW, return in case of failure */
2626                         if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2627                                                    allowed_prio))
2628                                 return;
2629
2630                         bp->afex_def_vlan_tag = vlan_val;
2631                         bp->afex_vlan_mode = vlan_mode;
2632                 } else {
2633                         /* notify link down because BP->flags is disabled */
2634                         bnx2x_link_report(bp);
2635
2636                         /* send INVALID VIF ramrod to FW */
2637                         bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2638
2639                         /* Reset the default afex VLAN */
2640                         bp->afex_def_vlan_tag = -1;
2641                 }
2642         }
2643 }
2644
2645 static void bnx2x_pmf_update(struct bnx2x *bp)
2646 {
2647         int port = BP_PORT(bp);
2648         u32 val;
2649
2650         bp->port.pmf = 1;
2651         DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2652
2653         /*
2654          * We need the mb() to ensure the ordering between the writing to
2655          * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2656          */
2657         smp_mb();
2658
2659         /* queue a periodic task */
2660         queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2661
2662         bnx2x_dcbx_pmf_update(bp);
2663
2664         /* enable nig attention */
2665         val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2666         if (bp->common.int_block == INT_BLOCK_HC) {
2667                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2668                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2669         } else if (!CHIP_IS_E1x(bp)) {
2670                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2671                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2672         }
2673
2674         bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2675 }
2676
2677 /* end of Link */
2678
2679 /* slow path */
2680
2681 /*
2682  * General service functions
2683  */
2684
2685 /* send the MCP a request, block until there is a reply */
2686 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2687 {
2688         int mb_idx = BP_FW_MB_IDX(bp);
2689         u32 seq;
2690         u32 rc = 0;
2691         u32 cnt = 1;
2692         u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2693
2694         mutex_lock(&bp->fw_mb_mutex);
2695         seq = ++bp->fw_seq;
2696         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2697         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2698
2699         DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2700                         (command | seq), param);
2701
2702         do {
2703                 /* let the FW do it's magic ... */
2704                 msleep(delay);
2705
2706                 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2707
2708                 /* Give the FW up to 5 second (500*10ms) */
2709         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2710
2711         DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2712            cnt*delay, rc, seq);
2713
2714         /* is this a reply to our command? */
2715         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2716                 rc &= FW_MSG_CODE_MASK;
2717         else {
2718                 /* FW BUG! */
2719                 BNX2X_ERR("FW failed to respond!\n");
2720                 bnx2x_fw_dump(bp);
2721                 rc = 0;
2722         }
2723         mutex_unlock(&bp->fw_mb_mutex);
2724
2725         return rc;
2726 }
2727
2728
2729 static void storm_memset_func_cfg(struct bnx2x *bp,
2730                                  struct tstorm_eth_function_common_config *tcfg,
2731                                  u16 abs_fid)
2732 {
2733         size_t size = sizeof(struct tstorm_eth_function_common_config);
2734
2735         u32 addr = BAR_TSTRORM_INTMEM +
2736                         TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2737
2738         __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2739 }
2740
2741 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2742 {
2743         if (CHIP_IS_E1x(bp)) {
2744                 struct tstorm_eth_function_common_config tcfg = {0};
2745
2746                 storm_memset_func_cfg(bp, &tcfg, p->func_id);
2747         }
2748
2749         /* Enable the function in the FW */
2750         storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2751         storm_memset_func_en(bp, p->func_id, 1);
2752
2753         /* spq */
2754         if (p->func_flgs & FUNC_FLG_SPQ) {
2755                 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2756                 REG_WR(bp, XSEM_REG_FAST_MEMORY +
2757                        XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2758         }
2759 }
2760
2761 /**
2762  * bnx2x_get_tx_only_flags - Return common flags
2763  *
2764  * @bp          device handle
2765  * @fp          queue handle
2766  * @zero_stats  TRUE if statistics zeroing is needed
2767  *
2768  * Return the flags that are common for the Tx-only and not normal connections.
2769  */
2770 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2771                                             struct bnx2x_fastpath *fp,
2772                                             bool zero_stats)
2773 {
2774         unsigned long flags = 0;
2775
2776         /* PF driver will always initialize the Queue to an ACTIVE state */
2777         __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2778
2779         /* tx only connections collect statistics (on the same index as the
2780          *  parent connection). The statistics are zeroed when the parent
2781          *  connection is initialized.
2782          */
2783
2784         __set_bit(BNX2X_Q_FLG_STATS, &flags);
2785         if (zero_stats)
2786                 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2787
2788
2789         return flags;
2790 }
2791
2792 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2793                                        struct bnx2x_fastpath *fp,
2794                                        bool leading)
2795 {
2796         unsigned long flags = 0;
2797
2798         /* calculate other queue flags */
2799         if (IS_MF_SD(bp))
2800                 __set_bit(BNX2X_Q_FLG_OV, &flags);
2801
2802         if (IS_FCOE_FP(fp)) {
2803                 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
2804                 /* For FCoE - force usage of default priority (for afex) */
2805                 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
2806         }
2807
2808         if (!fp->disable_tpa) {
2809                 __set_bit(BNX2X_Q_FLG_TPA, &flags);
2810                 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2811                 if (fp->mode == TPA_MODE_GRO)
2812                         __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
2813         }
2814
2815         if (leading) {
2816                 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2817                 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
2818         }
2819
2820         /* Always set HW VLAN stripping */
2821         __set_bit(BNX2X_Q_FLG_VLAN, &flags);
2822
2823         /* configure silent vlan removal */
2824         if (IS_MF_AFEX(bp))
2825                 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
2826
2827
2828         return flags | bnx2x_get_common_flags(bp, fp, true);
2829 }
2830
2831 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2832         struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2833         u8 cos)
2834 {
2835         gen_init->stat_id = bnx2x_stats_id(fp);
2836         gen_init->spcl_id = fp->cl_id;
2837
2838         /* Always use mini-jumbo MTU for FCoE L2 ring */
2839         if (IS_FCOE_FP(fp))
2840                 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2841         else
2842                 gen_init->mtu = bp->dev->mtu;
2843
2844         gen_init->cos = cos;
2845 }
2846
2847 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2848         struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2849         struct bnx2x_rxq_setup_params *rxq_init)
2850 {
2851         u8 max_sge = 0;
2852         u16 sge_sz = 0;
2853         u16 tpa_agg_size = 0;
2854
2855         if (!fp->disable_tpa) {
2856                 pause->sge_th_lo = SGE_TH_LO(bp);
2857                 pause->sge_th_hi = SGE_TH_HI(bp);
2858
2859                 /* validate SGE ring has enough to cross high threshold */
2860                 WARN_ON(bp->dropless_fc &&
2861                                 pause->sge_th_hi + FW_PREFETCH_CNT >
2862                                 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
2863
2864                 tpa_agg_size = min_t(u32,
2865                         (min_t(u32, 8, MAX_SKB_FRAGS) *
2866                         SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2867                 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2868                         SGE_PAGE_SHIFT;
2869                 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2870                           (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2871                 sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2872                                     0xffff);
2873         }
2874
2875         /* pause - not for e1 */
2876         if (!CHIP_IS_E1(bp)) {
2877                 pause->bd_th_lo = BD_TH_LO(bp);
2878                 pause->bd_th_hi = BD_TH_HI(bp);
2879
2880                 pause->rcq_th_lo = RCQ_TH_LO(bp);
2881                 pause->rcq_th_hi = RCQ_TH_HI(bp);
2882                 /*
2883                  * validate that rings have enough entries to cross
2884                  * high thresholds
2885                  */
2886                 WARN_ON(bp->dropless_fc &&
2887                                 pause->bd_th_hi + FW_PREFETCH_CNT >
2888                                 bp->rx_ring_size);
2889                 WARN_ON(bp->dropless_fc &&
2890                                 pause->rcq_th_hi + FW_PREFETCH_CNT >
2891                                 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
2892
2893                 pause->pri_map = 1;
2894         }
2895
2896         /* rxq setup */
2897         rxq_init->dscr_map = fp->rx_desc_mapping;
2898         rxq_init->sge_map = fp->rx_sge_mapping;
2899         rxq_init->rcq_map = fp->rx_comp_mapping;
2900         rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2901
2902         /* This should be a maximum number of data bytes that may be
2903          * placed on the BD (not including paddings).
2904          */
2905         rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
2906                 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
2907
2908         rxq_init->cl_qzone_id = fp->cl_qzone_id;
2909         rxq_init->tpa_agg_sz = tpa_agg_size;
2910         rxq_init->sge_buf_sz = sge_sz;
2911         rxq_init->max_sges_pkt = max_sge;
2912         rxq_init->rss_engine_id = BP_FUNC(bp);
2913         rxq_init->mcast_engine_id = BP_FUNC(bp);
2914
2915         /* Maximum number or simultaneous TPA aggregation for this Queue.
2916          *
2917          * For PF Clients it should be the maximum avaliable number.
2918          * VF driver(s) may want to define it to a smaller value.
2919          */
2920         rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
2921
2922         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2923         rxq_init->fw_sb_id = fp->fw_sb_id;
2924
2925         if (IS_FCOE_FP(fp))
2926                 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2927         else
2928                 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2929         /* configure silent vlan removal
2930          * if multi function mode is afex, then mask default vlan
2931          */
2932         if (IS_MF_AFEX(bp)) {
2933                 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
2934                 rxq_init->silent_removal_mask = VLAN_VID_MASK;
2935         }
2936 }
2937
2938 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2939         struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2940         u8 cos)
2941 {
2942         txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
2943         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2944         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2945         txq_init->fw_sb_id = fp->fw_sb_id;
2946
2947         /*
2948          * set the tss leading client id for TX classfication ==
2949          * leading RSS client id
2950          */
2951         txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2952
2953         if (IS_FCOE_FP(fp)) {
2954                 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2955                 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2956         }
2957 }
2958
2959 static void bnx2x_pf_init(struct bnx2x *bp)
2960 {
2961         struct bnx2x_func_init_params func_init = {0};
2962         struct event_ring_data eq_data = { {0} };
2963         u16 flags;
2964
2965         if (!CHIP_IS_E1x(bp)) {
2966                 /* reset IGU PF statistics: MSIX + ATTN */
2967                 /* PF */
2968                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2969                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2970                            (CHIP_MODE_IS_4_PORT(bp) ?
2971                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
2972                 /* ATTN */
2973                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2974                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2975                            BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2976                            (CHIP_MODE_IS_4_PORT(bp) ?
2977                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
2978         }
2979
2980         /* function setup flags */
2981         flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2982
2983         /* This flag is relevant for E1x only.
2984          * E2 doesn't have a TPA configuration in a function level.
2985          */
2986         flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
2987
2988         func_init.func_flgs = flags;
2989         func_init.pf_id = BP_FUNC(bp);
2990         func_init.func_id = BP_FUNC(bp);
2991         func_init.spq_map = bp->spq_mapping;
2992         func_init.spq_prod = bp->spq_prod_idx;
2993
2994         bnx2x_func_init(bp, &func_init);
2995
2996         memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
2997
2998         /*
2999          * Congestion management values depend on the link rate
3000          * There is no active link so initial link rate is set to 10 Gbps.
3001          * When the link comes up The congestion management values are
3002          * re-calculated according to the actual link rate.
3003          */
3004         bp->link_vars.line_speed = SPEED_10000;
3005         bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3006
3007         /* Only the PMF sets the HW */
3008         if (bp->port.pmf)
3009                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3010
3011         /* init Event Queue */
3012         eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3013         eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3014         eq_data.producer = bp->eq_prod;
3015         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3016         eq_data.sb_id = DEF_SB_ID;
3017         storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3018 }
3019
3020
3021 static void bnx2x_e1h_disable(struct bnx2x *bp)
3022 {
3023         int port = BP_PORT(bp);
3024
3025         bnx2x_tx_disable(bp);
3026
3027         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3028 }
3029
3030 static void bnx2x_e1h_enable(struct bnx2x *bp)
3031 {
3032         int port = BP_PORT(bp);
3033
3034         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3035
3036         /* Tx queue should be only reenabled */
3037         netif_tx_wake_all_queues(bp->dev);
3038
3039         /*
3040          * Should not call netif_carrier_on since it will be called if the link
3041          * is up when checking for link state
3042          */
3043 }
3044
3045 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3046
3047 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3048 {
3049         struct eth_stats_info *ether_stat =
3050                 &bp->slowpath->drv_info_to_mcp.ether_stat;
3051
3052         strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3053                 ETH_STAT_INFO_VERSION_LEN);
3054
3055         bp->sp_objs[0].mac_obj.get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3056                                         DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3057                                         ether_stat->mac_local);
3058
3059         ether_stat->mtu_size = bp->dev->mtu;
3060
3061         if (bp->dev->features & NETIF_F_RXCSUM)
3062                 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3063         if (bp->dev->features & NETIF_F_TSO)
3064                 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3065         ether_stat->feature_flags |= bp->common.boot_mode;
3066
3067         ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3068
3069         ether_stat->txq_size = bp->tx_ring_size;
3070         ether_stat->rxq_size = bp->rx_ring_size;
3071 }
3072
3073 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3074 {
3075         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3076         struct fcoe_stats_info *fcoe_stat =
3077                 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3078
3079         if (!CNIC_LOADED(bp))
3080                 return;
3081
3082         memcpy(fcoe_stat->mac_local + MAC_LEADING_ZERO_CNT,
3083                bp->fip_mac, ETH_ALEN);
3084
3085         fcoe_stat->qos_priority =
3086                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3087
3088         /* insert FCoE stats from ramrod response */
3089         if (!NO_FCOE(bp)) {
3090                 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3091                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3092                         tstorm_queue_statistics;
3093
3094                 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3095                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3096                         xstorm_queue_statistics;
3097
3098                 struct fcoe_statistics_params *fw_fcoe_stat =
3099                         &bp->fw_stats_data->fcoe;
3100
3101                 ADD_64(fcoe_stat->rx_bytes_hi, 0, fcoe_stat->rx_bytes_lo,
3102                        fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3103
3104                 ADD_64(fcoe_stat->rx_bytes_hi,
3105                        fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3106                        fcoe_stat->rx_bytes_lo,
3107                        fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3108
3109                 ADD_64(fcoe_stat->rx_bytes_hi,
3110                        fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3111                        fcoe_stat->rx_bytes_lo,
3112                        fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3113
3114                 ADD_64(fcoe_stat->rx_bytes_hi,
3115                        fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3116                        fcoe_stat->rx_bytes_lo,
3117                        fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3118
3119                 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3120                        fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3121
3122                 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3123                        fcoe_q_tstorm_stats->rcv_ucast_pkts);
3124
3125                 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3126                        fcoe_q_tstorm_stats->rcv_bcast_pkts);
3127
3128                 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3129                        fcoe_q_tstorm_stats->rcv_mcast_pkts);
3130
3131                 ADD_64(fcoe_stat->tx_bytes_hi, 0, fcoe_stat->tx_bytes_lo,
3132                        fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3133
3134                 ADD_64(fcoe_stat->tx_bytes_hi,
3135                        fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3136                        fcoe_stat->tx_bytes_lo,
3137                        fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3138
3139                 ADD_64(fcoe_stat->tx_bytes_hi,
3140                        fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3141                        fcoe_stat->tx_bytes_lo,
3142                        fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3143
3144                 ADD_64(fcoe_stat->tx_bytes_hi,
3145                        fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3146                        fcoe_stat->tx_bytes_lo,
3147                        fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3148
3149                 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3150                        fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3151
3152                 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3153                        fcoe_q_xstorm_stats->ucast_pkts_sent);
3154
3155                 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3156                        fcoe_q_xstorm_stats->bcast_pkts_sent);
3157
3158                 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3159                        fcoe_q_xstorm_stats->mcast_pkts_sent);
3160         }
3161
3162         /* ask L5 driver to add data to the struct */
3163         bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3164 }
3165
3166 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3167 {
3168         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3169         struct iscsi_stats_info *iscsi_stat =
3170                 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3171
3172         if (!CNIC_LOADED(bp))
3173                 return;
3174
3175         memcpy(iscsi_stat->mac_local + MAC_LEADING_ZERO_CNT,
3176                bp->cnic_eth_dev.iscsi_mac, ETH_ALEN);
3177
3178         iscsi_stat->qos_priority =
3179                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3180
3181         /* ask L5 driver to add data to the struct */
3182         bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3183 }
3184
3185 /* called due to MCP event (on pmf):
3186  *      reread new bandwidth configuration
3187  *      configure FW
3188  *      notify others function about the change
3189  */
3190 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3191 {
3192         if (bp->link_vars.link_up) {
3193                 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3194                 bnx2x_link_sync_notify(bp);
3195         }
3196         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3197 }
3198
3199 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3200 {
3201         bnx2x_config_mf_bw(bp);
3202         bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3203 }
3204
3205 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3206 {
3207         DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3208         bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3209 }
3210
3211 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3212 {
3213         enum drv_info_opcode op_code;
3214         u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3215
3216         /* if drv_info version supported by MFW doesn't match - send NACK */
3217         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3218                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3219                 return;
3220         }
3221
3222         op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3223                   DRV_INFO_CONTROL_OP_CODE_SHIFT;
3224
3225         memset(&bp->slowpath->drv_info_to_mcp, 0,
3226                sizeof(union drv_info_to_mcp));
3227
3228         switch (op_code) {
3229         case ETH_STATS_OPCODE:
3230                 bnx2x_drv_info_ether_stat(bp);
3231                 break;
3232         case FCOE_STATS_OPCODE:
3233                 bnx2x_drv_info_fcoe_stat(bp);
3234                 break;
3235         case ISCSI_STATS_OPCODE:
3236                 bnx2x_drv_info_iscsi_stat(bp);
3237                 break;
3238         default:
3239                 /* if op code isn't supported - send NACK */
3240                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3241                 return;
3242         }
3243
3244         /* if we got drv_info attn from MFW then these fields are defined in
3245          * shmem2 for sure
3246          */
3247         SHMEM2_WR(bp, drv_info_host_addr_lo,
3248                 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3249         SHMEM2_WR(bp, drv_info_host_addr_hi,
3250                 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3251
3252         bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3253 }
3254
3255 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3256 {
3257         DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3258
3259         if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3260
3261                 /*
3262                  * This is the only place besides the function initialization
3263                  * where the bp->flags can change so it is done without any
3264                  * locks
3265                  */
3266                 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3267                         DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3268                         bp->flags |= MF_FUNC_DIS;
3269
3270                         bnx2x_e1h_disable(bp);
3271                 } else {
3272                         DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3273                         bp->flags &= ~MF_FUNC_DIS;
3274
3275                         bnx2x_e1h_enable(bp);
3276                 }
3277                 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3278         }
3279         if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3280                 bnx2x_config_mf_bw(bp);
3281                 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3282         }
3283
3284         /* Report results to MCP */
3285         if (dcc_event)
3286                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3287         else
3288                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3289 }
3290
3291 /* must be called under the spq lock */
3292 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3293 {
3294         struct eth_spe *next_spe = bp->spq_prod_bd;
3295
3296         if (bp->spq_prod_bd == bp->spq_last_bd) {
3297                 bp->spq_prod_bd = bp->spq;
3298                 bp->spq_prod_idx = 0;
3299                 DP(BNX2X_MSG_SP, "end of spq\n");
3300         } else {
3301                 bp->spq_prod_bd++;
3302                 bp->spq_prod_idx++;
3303         }
3304         return next_spe;
3305 }
3306
3307 /* must be called under the spq lock */
3308 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3309 {
3310         int func = BP_FUNC(bp);
3311
3312         /*
3313          * Make sure that BD data is updated before writing the producer:
3314          * BD data is written to the memory, the producer is read from the
3315          * memory, thus we need a full memory barrier to ensure the ordering.
3316          */
3317         mb();
3318
3319         REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3320                  bp->spq_prod_idx);
3321         mmiowb();
3322 }
3323
3324 /**
3325  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3326  *
3327  * @cmd:        command to check
3328  * @cmd_type:   command type
3329  */
3330 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3331 {
3332         if ((cmd_type == NONE_CONNECTION_TYPE) ||
3333             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3334             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3335             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3336             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3337             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3338             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3339                 return true;
3340         else
3341                 return false;
3342
3343 }
3344
3345
3346 /**
3347  * bnx2x_sp_post - place a single command on an SP ring
3348  *
3349  * @bp:         driver handle
3350  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3351  * @cid:        SW CID the command is related to
3352  * @data_hi:    command private data address (high 32 bits)
3353  * @data_lo:    command private data address (low 32 bits)
3354  * @cmd_type:   command type (e.g. NONE, ETH)
3355  *
3356  * SP data is handled as if it's always an address pair, thus data fields are
3357  * not swapped to little endian in upper functions. Instead this function swaps
3358  * data as if it's two u32 fields.
3359  */
3360 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3361                   u32 data_hi, u32 data_lo, int cmd_type)
3362 {
3363         struct eth_spe *spe;
3364         u16 type;
3365         bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3366
3367 #ifdef BNX2X_STOP_ON_ERROR
3368         if (unlikely(bp->panic)) {
3369                 BNX2X_ERR("Can't post SP when there is panic\n");
3370                 return -EIO;
3371         }
3372 #endif
3373
3374         spin_lock_bh(&bp->spq_lock);
3375
3376         if (common) {
3377                 if (!atomic_read(&bp->eq_spq_left)) {
3378                         BNX2X_ERR("BUG! EQ ring full!\n");
3379                         spin_unlock_bh(&bp->spq_lock);
3380                         bnx2x_panic();
3381                         return -EBUSY;
3382                 }
3383         } else if (!atomic_read(&bp->cq_spq_left)) {
3384                         BNX2X_ERR("BUG! SPQ ring full!\n");
3385                         spin_unlock_bh(&bp->spq_lock);
3386                         bnx2x_panic();
3387                         return -EBUSY;
3388         }
3389
3390         spe = bnx2x_sp_get_next(bp);
3391
3392         /* CID needs port number to be encoded int it */
3393         spe->hdr.conn_and_cmd_data =
3394                         cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3395                                     HW_CID(bp, cid));
3396
3397         type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3398
3399         type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3400                  SPE_HDR_FUNCTION_ID);
3401
3402         spe->hdr.type = cpu_to_le16(type);
3403
3404         spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3405         spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3406
3407         /*
3408          * It's ok if the actual decrement is issued towards the memory
3409          * somewhere between the spin_lock and spin_unlock. Thus no
3410          * more explict memory barrier is needed.
3411          */
3412         if (common)
3413                 atomic_dec(&bp->eq_spq_left);
3414         else
3415                 atomic_dec(&bp->cq_spq_left);
3416
3417
3418         DP(BNX2X_MSG_SP,
3419            "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3420            bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3421            (u32)(U64_LO(bp->spq_mapping) +
3422            (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3423            HW_CID(bp, cid), data_hi, data_lo, type,
3424            atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3425
3426         bnx2x_sp_prod_update(bp);
3427         spin_unlock_bh(&bp->spq_lock);
3428         return 0;
3429 }
3430
3431 /* acquire split MCP access lock register */
3432 static int bnx2x_acquire_alr(struct bnx2x *bp)
3433 {
3434         u32 j, val;
3435         int rc = 0;
3436
3437         might_sleep();
3438         for (j = 0; j < 1000; j++) {
3439                 val = (1UL << 31);
3440                 REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3441                 val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3442                 if (val & (1L << 31))
3443                         break;
3444
3445                 msleep(5);
3446         }
3447         if (!(val & (1L << 31))) {
3448                 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3449                 rc = -EBUSY;
3450         }
3451
3452         return rc;
3453 }
3454
3455 /* release split MCP access lock register */
3456 static void bnx2x_release_alr(struct bnx2x *bp)
3457 {
3458         REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3459 }
3460
3461 #define BNX2X_DEF_SB_ATT_IDX    0x0001
3462 #define BNX2X_DEF_SB_IDX        0x0002
3463
3464 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3465 {
3466         struct host_sp_status_block *def_sb = bp->def_status_blk;
3467         u16 rc = 0;
3468
3469         barrier(); /* status block is written to by the chip */
3470         if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3471                 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3472                 rc |= BNX2X_DEF_SB_ATT_IDX;
3473         }
3474
3475         if (bp->def_idx != def_sb->sp_sb.running_index) {
3476                 bp->def_idx = def_sb->sp_sb.running_index;
3477                 rc |= BNX2X_DEF_SB_IDX;
3478         }
3479
3480         /* Do not reorder: indecies reading should complete before handling */
3481         barrier();
3482         return rc;
3483 }
3484
3485 /*
3486  * slow path service functions
3487  */
3488
3489 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3490 {
3491         int port = BP_PORT(bp);
3492         u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3493                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
3494         u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3495                                        NIG_REG_MASK_INTERRUPT_PORT0;
3496         u32 aeu_mask;
3497         u32 nig_mask = 0;
3498         u32 reg_addr;
3499
3500         if (bp->attn_state & asserted)
3501                 BNX2X_ERR("IGU ERROR\n");
3502
3503         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3504         aeu_mask = REG_RD(bp, aeu_addr);
3505
3506         DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3507            aeu_mask, asserted);
3508         aeu_mask &= ~(asserted & 0x3ff);
3509         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3510
3511         REG_WR(bp, aeu_addr, aeu_mask);
3512         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3513
3514         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3515         bp->attn_state |= asserted;
3516         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3517
3518         if (asserted & ATTN_HARD_WIRED_MASK) {
3519                 if (asserted & ATTN_NIG_FOR_FUNC) {
3520
3521                         bnx2x_acquire_phy_lock(bp);
3522
3523                         /* save nig interrupt mask */
3524                         nig_mask = REG_RD(bp, nig_int_mask_addr);
3525
3526                         /* If nig_mask is not set, no need to call the update
3527                          * function.
3528                          */
3529                         if (nig_mask) {
3530                                 REG_WR(bp, nig_int_mask_addr, 0);
3531
3532                                 bnx2x_link_attn(bp);
3533                         }
3534
3535                         /* handle unicore attn? */
3536                 }
3537                 if (asserted & ATTN_SW_TIMER_4_FUNC)
3538                         DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3539
3540                 if (asserted & GPIO_2_FUNC)
3541                         DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3542
3543                 if (asserted & GPIO_3_FUNC)
3544                         DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3545
3546                 if (asserted & GPIO_4_FUNC)
3547                         DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3548
3549                 if (port == 0) {
3550                         if (asserted & ATTN_GENERAL_ATTN_1) {
3551                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3552                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3553                         }
3554                         if (asserted & ATTN_GENERAL_ATTN_2) {
3555                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3556                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3557                         }
3558                         if (asserted & ATTN_GENERAL_ATTN_3) {
3559                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3560                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3561                         }
3562                 } else {
3563                         if (asserted & ATTN_GENERAL_ATTN_4) {
3564                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3565                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3566                         }
3567                         if (asserted & ATTN_GENERAL_ATTN_5) {
3568                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3569                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3570                         }
3571                         if (asserted & ATTN_GENERAL_ATTN_6) {
3572                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3573                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3574                         }
3575                 }
3576
3577         } /* if hardwired */
3578
3579         if (bp->common.int_block == INT_BLOCK_HC)
3580                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
3581                             COMMAND_REG_ATTN_BITS_SET);
3582         else
3583                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3584
3585         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3586            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3587         REG_WR(bp, reg_addr, asserted);
3588
3589         /* now set back the mask */
3590         if (asserted & ATTN_NIG_FOR_FUNC) {
3591                 REG_WR(bp, nig_int_mask_addr, nig_mask);
3592                 bnx2x_release_phy_lock(bp);
3593         }
3594 }
3595
3596 static void bnx2x_fan_failure(struct bnx2x *bp)
3597 {
3598         int port = BP_PORT(bp);
3599         u32 ext_phy_config;
3600         /* mark the failure */
3601         ext_phy_config =
3602                 SHMEM_RD(bp,
3603                          dev_info.port_hw_config[port].external_phy_config);
3604
3605         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3606         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3607         SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3608                  ext_phy_config);
3609
3610         /* log the failure */
3611         netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
3612                             "Please contact OEM Support for assistance\n");
3613
3614         /*
3615          * Scheudle device reset (unload)
3616          * This is due to some boards consuming sufficient power when driver is
3617          * up to overheat if fan fails.
3618          */
3619         smp_mb__before_clear_bit();
3620         set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3621         smp_mb__after_clear_bit();
3622         schedule_delayed_work(&bp->sp_rtnl_task, 0);
3623
3624 }
3625
3626 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3627 {
3628         int port = BP_PORT(bp);
3629         int reg_offset;
3630         u32 val;
3631
3632         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3633                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3634
3635         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3636
3637                 val = REG_RD(bp, reg_offset);
3638                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3639                 REG_WR(bp, reg_offset, val);
3640
3641                 BNX2X_ERR("SPIO5 hw attention\n");
3642
3643                 /* Fan failure attention */
3644                 bnx2x_hw_reset_phy(&bp->link_params);
3645                 bnx2x_fan_failure(bp);
3646         }
3647
3648         if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3649                 bnx2x_acquire_phy_lock(bp);
3650                 bnx2x_handle_module_detect_int(&bp->link_params);
3651                 bnx2x_release_phy_lock(bp);
3652         }
3653
3654         if (attn & HW_INTERRUT_ASSERT_SET_0) {
3655
3656                 val = REG_RD(bp, reg_offset);
3657                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3658                 REG_WR(bp, reg_offset, val);
3659
3660                 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3661                           (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3662                 bnx2x_panic();
3663         }
3664 }
3665
3666 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3667 {
3668         u32 val;
3669
3670         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3671
3672                 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3673                 BNX2X_ERR("DB hw attention 0x%x\n", val);
3674                 /* DORQ discard attention */
3675                 if (val & 0x2)
3676                         BNX2X_ERR("FATAL error from DORQ\n");
3677         }
3678
3679         if (attn & HW_INTERRUT_ASSERT_SET_1) {
3680
3681                 int port = BP_PORT(bp);
3682                 int reg_offset;
3683
3684                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3685                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3686
3687                 val = REG_RD(bp, reg_offset);
3688                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3689                 REG_WR(bp, reg_offset, val);
3690
3691                 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3692                           (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3693                 bnx2x_panic();
3694         }
3695 }
3696
3697 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3698 {
3699         u32 val;
3700
3701         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3702
3703                 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3704                 BNX2X_ERR("CFC hw attention 0x%x\n", val);
3705                 /* CFC error attention */
3706                 if (val & 0x2)
3707                         BNX2X_ERR("FATAL error from CFC\n");
3708         }
3709
3710         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3711                 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3712                 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3713                 /* RQ_USDMDP_FIFO_OVERFLOW */
3714                 if (val & 0x18000)
3715                         BNX2X_ERR("FATAL error from PXP\n");
3716
3717                 if (!CHIP_IS_E1x(bp)) {
3718                         val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3719                         BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3720                 }
3721         }
3722
3723         if (attn & HW_INTERRUT_ASSERT_SET_2) {
3724
3725                 int port = BP_PORT(bp);
3726                 int reg_offset;
3727
3728                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3729                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3730
3731                 val = REG_RD(bp, reg_offset);
3732                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3733                 REG_WR(bp, reg_offset, val);
3734
3735                 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3736                           (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3737                 bnx2x_panic();
3738         }
3739 }
3740
3741 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3742 {
3743         u32 val;
3744
3745         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3746
3747                 if (attn & BNX2X_PMF_LINK_ASSERT) {
3748                         int func = BP_FUNC(bp);
3749
3750                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3751                         bnx2x_read_mf_cfg(bp);
3752                         bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3753                                         func_mf_config[BP_ABS_FUNC(bp)].config);
3754                         val = SHMEM_RD(bp,
3755                                        func_mb[BP_FW_MB_IDX(bp)].drv_status);
3756                         if (val & DRV_STATUS_DCC_EVENT_MASK)
3757                                 bnx2x_dcc_event(bp,
3758                                             (val & DRV_STATUS_DCC_EVENT_MASK));
3759
3760                         if (val & DRV_STATUS_SET_MF_BW)
3761                                 bnx2x_set_mf_bw(bp);
3762
3763                         if (val & DRV_STATUS_DRV_INFO_REQ)
3764                                 bnx2x_handle_drv_info_req(bp);
3765                         if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3766                                 bnx2x_pmf_update(bp);
3767
3768                         if (bp->port.pmf &&
3769                             (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3770                                 bp->dcbx_enabled > 0)
3771                                 /* start dcbx state machine */
3772                                 bnx2x_dcbx_set_params(bp,
3773                                         BNX2X_DCBX_STATE_NEG_RECEIVED);
3774                         if (val & DRV_STATUS_AFEX_EVENT_MASK)
3775                                 bnx2x_handle_afex_cmd(bp,
3776                                         val & DRV_STATUS_AFEX_EVENT_MASK);
3777                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
3778                                 bnx2x_handle_eee_event(bp);
3779                         if (bp->link_vars.periodic_flags &
3780                             PERIODIC_FLAGS_LINK_EVENT) {
3781                                 /*  sync with link */
3782                                 bnx2x_acquire_phy_lock(bp);
3783                                 bp->link_vars.periodic_flags &=
3784                                         ~PERIODIC_FLAGS_LINK_EVENT;
3785                                 bnx2x_release_phy_lock(bp);
3786                                 if (IS_MF(bp))
3787                                         bnx2x_link_sync_notify(bp);
3788                                 bnx2x_link_report(bp);
3789                         }
3790                         /* Always call it here: bnx2x_link_report() will
3791                          * prevent the link indication duplication.
3792                          */
3793                         bnx2x__link_status_update(bp);
3794                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
3795
3796                         BNX2X_ERR("MC assert!\n");
3797                         bnx2x_mc_assert(bp);
3798                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3799                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3800                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3801                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3802                         bnx2x_panic();
3803
3804                 } else if (attn & BNX2X_MCP_ASSERT) {
3805
3806                         BNX2X_ERR("MCP assert!\n");
3807                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3808                         bnx2x_fw_dump(bp);
3809
3810                 } else
3811                         BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3812         }
3813
3814         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3815                 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3816                 if (attn & BNX2X_GRC_TIMEOUT) {
3817                         val = CHIP_IS_E1(bp) ? 0 :
3818                                         REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3819                         BNX2X_ERR("GRC time-out 0x%08x\n", val);
3820                 }
3821                 if (attn & BNX2X_GRC_RSV) {
3822                         val = CHIP_IS_E1(bp) ? 0 :
3823                                         REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3824                         BNX2X_ERR("GRC reserved 0x%08x\n", val);
3825                 }
3826                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3827         }
3828 }
3829
3830 /*
3831  * Bits map:
3832  * 0-7   - Engine0 load counter.
3833  * 8-15  - Engine1 load counter.
3834  * 16    - Engine0 RESET_IN_PROGRESS bit.
3835  * 17    - Engine1 RESET_IN_PROGRESS bit.
3836  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3837  *         on the engine
3838  * 19    - Engine1 ONE_IS_LOADED.
3839  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
3840  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
3841  *         just the one belonging to its engine).
3842  *
3843  */
3844 #define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
3845
3846 #define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
3847 #define BNX2X_PATH0_LOAD_CNT_SHIFT      0
3848 #define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
3849 #define BNX2X_PATH1_LOAD_CNT_SHIFT      8
3850 #define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
3851 #define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
3852 #define BNX2X_GLOBAL_RESET_BIT          0x00040000
3853
3854 /*
3855  * Set the GLOBAL_RESET bit.
3856  *
3857  * Should be run under rtnl lock
3858  */
3859 void bnx2x_set_reset_global(struct bnx2x *bp)
3860 {
3861         u32 val;
3862         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3863         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3864         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3865         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3866 }
3867
3868 /*
3869  * Clear the GLOBAL_RESET bit.
3870  *
3871  * Should be run under rtnl lock
3872  */
3873 static void bnx2x_clear_reset_global(struct bnx2x *bp)
3874 {
3875         u32 val;
3876         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3877         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3878         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3879         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3880 }
3881
3882 /*
3883  * Checks the GLOBAL_RESET bit.
3884  *
3885  * should be run under rtnl lock
3886  */
3887 static bool bnx2x_reset_is_global(struct bnx2x *bp)
3888 {
3889         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3890
3891         DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3892         return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3893 }
3894
3895 /*
3896  * Clear RESET_IN_PROGRESS bit for the current engine.
3897  *
3898  * Should be run under rtnl lock
3899  */
3900 static void bnx2x_set_reset_done(struct bnx2x *bp)
3901 {
3902         u32 val;
3903         u32 bit = BP_PATH(bp) ?
3904                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3905         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3906         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3907
3908         /* Clear the bit */
3909         val &= ~bit;
3910         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3911
3912         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3913 }
3914
3915 /*
3916  * Set RESET_IN_PROGRESS for the current engine.
3917  *
3918  * should be run under rtnl lock
3919  */
3920 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3921 {
3922         u32 val;
3923         u32 bit = BP_PATH(bp) ?
3924                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3925         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3926         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3927
3928         /* Set the bit */
3929         val |= bit;
3930         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3931         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3932 }
3933
3934 /*
3935  * Checks the RESET_IN_PROGRESS bit for the given engine.
3936  * should be run under rtnl lock
3937  */
3938 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
3939 {
3940         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3941         u32 bit = engine ?
3942                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3943
3944         /* return false if bit is set */
3945         return (val & bit) ? false : true;
3946 }
3947
3948 /*
3949  * set pf load for the current pf.
3950  *
3951  * should be run under rtnl lock
3952  */
3953 void bnx2x_set_pf_load(struct bnx2x *bp)
3954 {
3955         u32 val1, val;
3956         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3957                              BNX2X_PATH0_LOAD_CNT_MASK;
3958         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3959                              BNX2X_PATH0_LOAD_CNT_SHIFT;
3960
3961         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3962         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3963
3964         DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
3965
3966         /* get the current counter value */
3967         val1 = (val & mask) >> shift;
3968
3969         /* set bit of that PF */
3970         val1 |= (1 << bp->pf_num);
3971
3972         /* clear the old value */
3973         val &= ~mask;
3974
3975         /* set the new one */
3976         val |= ((val1 << shift) & mask);
3977
3978         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3979         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
3980 }
3981
3982 /**
3983  * bnx2x_clear_pf_load - clear pf load mark
3984  *
3985  * @bp:         driver handle
3986  *
3987  * Should be run under rtnl lock.
3988  * Decrements the load counter for the current engine. Returns
3989  * whether other functions are still loaded
3990  */
3991 bool bnx2x_clear_pf_load(struct bnx2x *bp)
3992 {
3993         u32 val1, val;
3994         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3995                              BNX2X_PATH0_LOAD_CNT_MASK;
3996         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3997                              BNX2X_PATH0_LOAD_CNT_SHIFT;
3998
3999         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4000         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4001         DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4002
4003         /* get the current counter value */
4004         val1 = (val & mask) >> shift;
4005
4006         /* clear bit of that PF */
4007         val1 &= ~(1 << bp->pf_num);
4008
4009         /* clear the old value */
4010         val &= ~mask;
4011
4012         /* set the new one */
4013         val |= ((val1 << shift) & mask);
4014
4015         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4016         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4017         return val1 != 0;
4018 }
4019
4020 /*
4021  * Read the load status for the current engine.
4022  *
4023  * should be run under rtnl lock
4024  */
4025 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4026 {
4027         u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4028                              BNX2X_PATH0_LOAD_CNT_MASK);
4029         u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4030                              BNX2X_PATH0_LOAD_CNT_SHIFT);
4031         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4032
4033         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4034
4035         val = (val & mask) >> shift;
4036
4037         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4038            engine, val);
4039
4040         return val != 0;
4041 }
4042
4043 static void _print_next_block(int idx, const char *blk)
4044 {
4045         pr_cont("%s%s", idx ? ", " : "", blk);
4046 }
4047
4048 static int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
4049                                            bool print)
4050 {
4051         int i = 0;
4052         u32 cur_bit = 0;
4053         for (i = 0; sig; i++) {
4054                 cur_bit = ((u32)0x1 << i);
4055                 if (sig & cur_bit) {
4056                         switch (cur_bit) {
4057                         case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4058                                 if (print)
4059                                         _print_next_block(par_num++, "BRB");
4060                                 break;
4061                         case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4062                                 if (print)
4063                                         _print_next_block(par_num++, "PARSER");
4064                                 break;
4065                         case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4066                                 if (print)
4067                                         _print_next_block(par_num++, "TSDM");
4068                                 break;
4069                         case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4070                                 if (print)
4071                                         _print_next_block(par_num++,
4072                                                           "SEARCHER");
4073                                 break;
4074                         case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4075                                 if (print)
4076                                         _print_next_block(par_num++, "TCM");
4077                                 break;
4078                         case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4079                                 if (print)
4080                                         _print_next_block(par_num++, "TSEMI");
4081                                 break;
4082                         case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4083                                 if (print)
4084                                         _print_next_block(par_num++, "XPB");
4085                                 break;
4086                         }
4087
4088                         /* Clear the bit */
4089                         sig &= ~cur_bit;
4090                 }
4091         }
4092
4093         return par_num;
4094 }
4095
4096 static int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
4097                                            bool *global, bool print)
4098 {
4099         int i = 0;
4100         u32 cur_bit = 0;
4101         for (i = 0; sig; i++) {
4102                 cur_bit = ((u32)0x1 << i);
4103                 if (sig & cur_bit) {
4104                         switch (cur_bit) {
4105                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4106                                 if (print)
4107                                         _print_next_block(par_num++, "PBF");
4108                                 break;
4109                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4110                                 if (print)
4111                                         _print_next_block(par_num++, "QM");
4112                                 break;
4113                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4114                                 if (print)
4115                                         _print_next_block(par_num++, "TM");
4116                                 break;
4117                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4118                                 if (print)
4119                                         _print_next_block(par_num++, "XSDM");
4120                                 break;
4121                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4122                                 if (print)
4123                                         _print_next_block(par_num++, "XCM");
4124                                 break;
4125                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4126                                 if (print)
4127                                         _print_next_block(par_num++, "XSEMI");
4128                                 break;
4129                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4130                                 if (print)
4131                                         _print_next_block(par_num++,
4132                                                           "DOORBELLQ");
4133                                 break;
4134                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4135                                 if (print)
4136                                         _print_next_block(par_num++, "NIG");
4137                                 break;
4138                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4139                                 if (print)
4140                                         _print_next_block(par_num++,
4141                                                           "VAUX PCI CORE");
4142                                 *global = true;
4143                                 break;
4144                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4145                                 if (print)
4146                                         _print_next_block(par_num++, "DEBUG");
4147                                 break;
4148                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4149                                 if (print)
4150                                         _print_next_block(par_num++, "USDM");
4151                                 break;
4152                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4153                                 if (print)
4154                                         _print_next_block(par_num++, "UCM");
4155                                 break;
4156                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4157                                 if (print)
4158                                         _print_next_block(par_num++, "USEMI");
4159                                 break;
4160                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4161                                 if (print)
4162                                         _print_next_block(par_num++, "UPB");
4163                                 break;
4164                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4165                                 if (print)
4166                                         _print_next_block(par_num++, "CSDM");
4167                                 break;
4168                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4169                                 if (print)
4170                                         _print_next_block(par_num++, "CCM");
4171                                 break;
4172                         }
4173
4174                         /* Clear the bit */
4175                         sig &= ~cur_bit;
4176                 }
4177         }
4178
4179         return par_num;
4180 }
4181
4182 static int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
4183                                            bool print)
4184 {
4185         int i = 0;
4186         u32 cur_bit = 0;
4187         for (i = 0; sig; i++) {
4188                 cur_bit = ((u32)0x1 << i);
4189                 if (sig & cur_bit) {
4190                         switch (cur_bit) {
4191                         case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4192                                 if (print)
4193                                         _print_next_block(par_num++, "CSEMI");
4194                                 break;
4195                         case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4196                                 if (print)
4197                                         _print_next_block(par_num++, "PXP");
4198                                 break;
4199                         case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4200                                 if (print)
4201                                         _print_next_block(par_num++,
4202                                         "PXPPCICLOCKCLIENT");
4203                                 break;
4204                         case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4205                                 if (print)
4206                                         _print_next_block(par_num++, "CFC");
4207                                 break;
4208                         case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4209                                 if (print)
4210                                         _print_next_block(par_num++, "CDU");
4211                                 break;
4212                         case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4213                                 if (print)
4214                                         _print_next_block(par_num++, "DMAE");
4215                                 break;
4216                         case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4217                                 if (print)
4218                                         _print_next_block(par_num++, "IGU");
4219                                 break;
4220                         case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4221                                 if (print)
4222                                         _print_next_block(par_num++, "MISC");
4223                                 break;
4224                         }
4225
4226                         /* Clear the bit */
4227                         sig &= ~cur_bit;
4228                 }
4229         }
4230
4231         return par_num;
4232 }
4233
4234 static int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4235                                            bool *global, bool print)
4236 {
4237         int i = 0;
4238         u32 cur_bit = 0;
4239         for (i = 0; sig; i++) {
4240                 cur_bit = ((u32)0x1 << i);
4241                 if (sig & cur_bit) {
4242                         switch (cur_bit) {
4243                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4244                                 if (print)
4245                                         _print_next_block(par_num++, "MCP ROM");
4246                                 *global = true;
4247                                 break;
4248                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4249                                 if (print)
4250                                         _print_next_block(par_num++,
4251                                                           "MCP UMP RX");
4252                                 *global = true;
4253                                 break;
4254                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4255                                 if (print)
4256                                         _print_next_block(par_num++,
4257                                                           "MCP UMP TX");
4258                                 *global = true;
4259                                 break;
4260                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4261                                 if (print)
4262                                         _print_next_block(par_num++,
4263                                                           "MCP SCPAD");
4264                                 *global = true;
4265                                 break;
4266                         }
4267
4268                         /* Clear the bit */
4269                         sig &= ~cur_bit;
4270                 }
4271         }
4272
4273         return par_num;
4274 }
4275
4276 static int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
4277                                            bool print)
4278 {
4279         int i = 0;
4280         u32 cur_bit = 0;
4281         for (i = 0; sig; i++) {
4282                 cur_bit = ((u32)0x1 << i);
4283                 if (sig & cur_bit) {
4284                         switch (cur_bit) {
4285                         case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4286                                 if (print)
4287                                         _print_next_block(par_num++, "PGLUE_B");
4288                                 break;
4289                         case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4290                                 if (print)
4291                                         _print_next_block(par_num++, "ATC");
4292                                 break;
4293                         }
4294
4295                         /* Clear the bit */
4296                         sig &= ~cur_bit;
4297                 }
4298         }
4299
4300         return par_num;
4301 }
4302
4303 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4304                               u32 *sig)
4305 {
4306         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4307             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4308             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4309             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4310             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4311                 int par_num = 0;
4312                 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4313                                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4314                           sig[0] & HW_PRTY_ASSERT_SET_0,
4315                           sig[1] & HW_PRTY_ASSERT_SET_1,
4316                           sig[2] & HW_PRTY_ASSERT_SET_2,
4317                           sig[3] & HW_PRTY_ASSERT_SET_3,
4318                           sig[4] & HW_PRTY_ASSERT_SET_4);
4319                 if (print)
4320                         netdev_err(bp->dev,
4321                                    "Parity errors detected in blocks: ");
4322                 par_num = bnx2x_check_blocks_with_parity0(
4323                         sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4324                 par_num = bnx2x_check_blocks_with_parity1(
4325                         sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4326                 par_num = bnx2x_check_blocks_with_parity2(
4327                         sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4328                 par_num = bnx2x_check_blocks_with_parity3(
4329                         sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4330                 par_num = bnx2x_check_blocks_with_parity4(
4331                         sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4332
4333                 if (print)
4334                         pr_cont("\n");
4335
4336                 return true;
4337         } else
4338                 return false;
4339 }
4340
4341 /**
4342  * bnx2x_chk_parity_attn - checks for parity attentions.
4343  *
4344  * @bp:         driver handle
4345  * @global:     true if there was a global attention
4346  * @print:      show parity attention in syslog
4347  */
4348 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4349 {
4350         struct attn_route attn = { {0} };
4351         int port = BP_PORT(bp);
4352
4353         attn.sig[0] = REG_RD(bp,
4354                 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4355                              port*4);
4356         attn.sig[1] = REG_RD(bp,
4357                 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4358                              port*4);
4359         attn.sig[2] = REG_RD(bp,
4360                 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4361                              port*4);
4362         attn.sig[3] = REG_RD(bp,
4363                 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4364                              port*4);
4365
4366         if (!CHIP_IS_E1x(bp))
4367                 attn.sig[4] = REG_RD(bp,
4368                         MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4369                                      port*4);
4370
4371         return bnx2x_parity_attn(bp, global, print, attn.sig);
4372 }
4373
4374
4375 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4376 {
4377         u32 val;
4378         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4379
4380                 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4381                 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4382                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4383                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4384                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4385                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4386                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4387                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4388                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4389                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4390                 if (val &
4391                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4392                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4393                 if (val &
4394                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4395                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4396                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4397                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4398                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4399                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4400                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4401                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4402         }
4403         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4404                 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4405                 BNX2X_ERR("ATC hw attention 0x%x\n", val);
4406                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4407                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4408                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4409                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4410                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4411                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4412                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4413                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4414                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4415                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4416                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4417                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4418         }
4419
4420         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4421                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4422                 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4423                 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4424                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4425         }
4426
4427 }
4428
4429 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4430 {
4431         struct attn_route attn, *group_mask;
4432         int port = BP_PORT(bp);
4433         int index;
4434         u32 reg_addr;
4435         u32 val;
4436         u32 aeu_mask;
4437         bool global = false;
4438
4439         /* need to take HW lock because MCP or other port might also
4440            try to handle this event */
4441         bnx2x_acquire_alr(bp);
4442
4443         if (bnx2x_chk_parity_attn(bp, &global, true)) {
4444 #ifndef BNX2X_STOP_ON_ERROR
4445                 bp->recovery_state = BNX2X_RECOVERY_INIT;
4446                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4447                 /* Disable HW interrupts */
4448                 bnx2x_int_disable(bp);
4449                 /* In case of parity errors don't handle attentions so that
4450                  * other function would "see" parity errors.
4451                  */
4452 #else
4453                 bnx2x_panic();
4454 #endif
4455                 bnx2x_release_alr(bp);
4456                 return;
4457         }
4458
4459         attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4460         attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4461         attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4462         attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4463         if (!CHIP_IS_E1x(bp))
4464                 attn.sig[4] =
4465                       REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4466         else
4467                 attn.sig[4] = 0;
4468
4469         DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4470            attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4471
4472         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4473                 if (deasserted & (1 << index)) {
4474                         group_mask = &bp->attn_group[index];
4475
4476                         DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
4477                            index,
4478                            group_mask->sig[0], group_mask->sig[1],
4479                            group_mask->sig[2], group_mask->sig[3],
4480                            group_mask->sig[4]);
4481
4482                         bnx2x_attn_int_deasserted4(bp,
4483                                         attn.sig[4] & group_mask->sig[4]);
4484                         bnx2x_attn_int_deasserted3(bp,
4485                                         attn.sig[3] & group_mask->sig[3]);
4486                         bnx2x_attn_int_deasserted1(bp,
4487                                         attn.sig[1] & group_mask->sig[1]);
4488                         bnx2x_attn_int_deasserted2(bp,
4489                                         attn.sig[2] & group_mask->sig[2]);
4490                         bnx2x_attn_int_deasserted0(bp,
4491                                         attn.sig[0] & group_mask->sig[0]);
4492                 }
4493         }
4494
4495         bnx2x_release_alr(bp);
4496
4497         if (bp->common.int_block == INT_BLOCK_HC)
4498                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4499                             COMMAND_REG_ATTN_BITS_CLR);
4500         else
4501                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4502
4503         val = ~deasserted;
4504         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4505            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4506         REG_WR(bp, reg_addr, val);
4507
4508         if (~bp->attn_state & deasserted)
4509                 BNX2X_ERR("IGU ERROR\n");
4510
4511         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4512                           MISC_REG_AEU_MASK_ATTN_FUNC_0;
4513
4514         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4515         aeu_mask = REG_RD(bp, reg_addr);
4516
4517         DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
4518            aeu_mask, deasserted);
4519         aeu_mask |= (deasserted & 0x3ff);
4520         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4521
4522         REG_WR(bp, reg_addr, aeu_mask);
4523         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4524
4525         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4526         bp->attn_state &= ~deasserted;
4527         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4528 }
4529
4530 static void bnx2x_attn_int(struct bnx2x *bp)
4531 {
4532         /* read local copy of bits */
4533         u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4534                                                                 attn_bits);
4535         u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4536                                                                 attn_bits_ack);
4537         u32 attn_state = bp->attn_state;
4538
4539         /* look for changed bits */
4540         u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
4541         u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
4542
4543         DP(NETIF_MSG_HW,
4544            "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
4545            attn_bits, attn_ack, asserted, deasserted);
4546
4547         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4548                 BNX2X_ERR("BAD attention state\n");
4549
4550         /* handle bits that were raised */
4551         if (asserted)
4552                 bnx2x_attn_int_asserted(bp, asserted);
4553
4554         if (deasserted)
4555                 bnx2x_attn_int_deasserted(bp, deasserted);
4556 }
4557
4558 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4559                       u16 index, u8 op, u8 update)
4560 {
4561         u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4562
4563         bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4564                              igu_addr);
4565 }
4566
4567 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4568 {
4569         /* No memory barriers */
4570         storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4571         mmiowb(); /* keep prod updates ordered */
4572 }
4573
4574 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4575                                       union event_ring_elem *elem)
4576 {
4577         u8 err = elem->message.error;
4578
4579         if (!bp->cnic_eth_dev.starting_cid  ||
4580             (cid < bp->cnic_eth_dev.starting_cid &&
4581             cid != bp->cnic_eth_dev.iscsi_l2_cid))
4582                 return 1;
4583
4584         DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4585
4586         if (unlikely(err)) {
4587
4588                 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4589                           cid);
4590                 bnx2x_panic_dump(bp);
4591         }
4592         bnx2x_cnic_cfc_comp(bp, cid, err);
4593         return 0;
4594 }
4595
4596 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4597 {
4598         struct bnx2x_mcast_ramrod_params rparam;
4599         int rc;
4600
4601         memset(&rparam, 0, sizeof(rparam));
4602
4603         rparam.mcast_obj = &bp->mcast_obj;
4604
4605         netif_addr_lock_bh(bp->dev);
4606
4607         /* Clear pending state for the last command */
4608         bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4609
4610         /* If there are pending mcast commands - send them */
4611         if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4612                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4613                 if (rc < 0)
4614                         BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4615                                   rc);
4616         }
4617
4618         netif_addr_unlock_bh(bp->dev);
4619 }
4620
4621 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4622                                             union event_ring_elem *elem)
4623 {
4624         unsigned long ramrod_flags = 0;
4625         int rc = 0;
4626         u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4627         struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4628
4629         /* Always push next commands out, don't wait here */
4630         __set_bit(RAMROD_CONT, &ramrod_flags);
4631
4632         switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4633         case BNX2X_FILTER_MAC_PENDING:
4634                 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
4635                 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
4636                         vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4637                 else
4638                         vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
4639
4640                 break;
4641         case BNX2X_FILTER_MCAST_PENDING:
4642                 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
4643                 /* This is only relevant for 57710 where multicast MACs are
4644                  * configured as unicast MACs using the same ramrod.
4645                  */
4646                 bnx2x_handle_mcast_eqe(bp);
4647                 return;
4648         default:
4649                 BNX2X_ERR("Unsupported classification command: %d\n",
4650                           elem->message.data.eth_event.echo);
4651                 return;
4652         }
4653
4654         rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4655
4656         if (rc < 0)
4657                 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4658         else if (rc > 0)
4659                 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4660
4661 }
4662
4663 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4664
4665 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4666 {
4667         netif_addr_lock_bh(bp->dev);
4668
4669         clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4670
4671         /* Send rx_mode command again if was requested */
4672         if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4673                 bnx2x_set_storm_rx_mode(bp);
4674         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4675                                     &bp->sp_state))
4676                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
4677         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4678                                     &bp->sp_state))
4679                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
4680
4681         netif_addr_unlock_bh(bp->dev);
4682 }
4683
4684 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
4685                                               union event_ring_elem *elem)
4686 {
4687         if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
4688                 DP(BNX2X_MSG_SP,
4689                    "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
4690                    elem->message.data.vif_list_event.func_bit_map);
4691                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
4692                         elem->message.data.vif_list_event.func_bit_map);
4693         } else if (elem->message.data.vif_list_event.echo ==
4694                    VIF_LIST_RULE_SET) {
4695                 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
4696                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
4697         }
4698 }
4699
4700 /* called with rtnl_lock */
4701 static void bnx2x_after_function_update(struct bnx2x *bp)
4702 {
4703         int q, rc;
4704         struct bnx2x_fastpath *fp;
4705         struct bnx2x_queue_state_params queue_params = {NULL};
4706         struct bnx2x_queue_update_params *q_update_params =
4707                 &queue_params.params.update;
4708
4709         /* Send Q update command with afex vlan removal values  for all Qs */
4710         queue_params.cmd = BNX2X_Q_CMD_UPDATE;
4711
4712         /* set silent vlan removal values according to vlan mode */
4713         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
4714                   &q_update_params->update_flags);
4715         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
4716                   &q_update_params->update_flags);
4717         __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
4718
4719         /* in access mode mark mask and value are 0 to strip all vlans */
4720         if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
4721                 q_update_params->silent_removal_value = 0;
4722                 q_update_params->silent_removal_mask = 0;
4723         } else {
4724                 q_update_params->silent_removal_value =
4725                         (bp->afex_def_vlan_tag & VLAN_VID_MASK);
4726                 q_update_params->silent_removal_mask = VLAN_VID_MASK;
4727         }
4728
4729         for_each_eth_queue(bp, q) {
4730                 /* Set the appropriate Queue object */
4731                 fp = &bp->fp[q];
4732                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
4733
4734                 /* send the ramrod */
4735                 rc = bnx2x_queue_state_change(bp, &queue_params);
4736                 if (rc < 0)
4737                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
4738                                   q);
4739         }
4740
4741         if (!NO_FCOE(bp)) {
4742                 fp = &bp->fp[FCOE_IDX(bp)];
4743                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
4744
4745                 /* clear pending completion bit */
4746                 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
4747
4748                 /* mark latest Q bit */
4749                 smp_mb__before_clear_bit();
4750                 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
4751                 smp_mb__after_clear_bit();
4752
4753                 /* send Q update ramrod for FCoE Q */
4754                 rc = bnx2x_queue_state_change(bp, &queue_params);
4755                 if (rc < 0)
4756                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
4757                                   q);
4758         } else {
4759                 /* If no FCoE ring - ACK MCP now */
4760                 bnx2x_link_report(bp);
4761                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
4762         }
4763 }
4764
4765 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4766         struct bnx2x *bp, u32 cid)
4767 {
4768         DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4769
4770         if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
4771                 return &bnx2x_fcoe_sp_obj(bp, q_obj);
4772         else
4773                 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
4774 }
4775
4776 static void bnx2x_eq_int(struct bnx2x *bp)
4777 {
4778         u16 hw_cons, sw_cons, sw_prod;
4779         union event_ring_elem *elem;
4780         u8 echo;
4781         u32 cid;
4782         u8 opcode;
4783         int spqe_cnt = 0;
4784         struct bnx2x_queue_sp_obj *q_obj;
4785         struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4786         struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4787
4788         hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4789
4790         /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4791          * when we get the the next-page we nned to adjust so the loop
4792          * condition below will be met. The next element is the size of a
4793          * regular element and hence incrementing by 1
4794          */
4795         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4796                 hw_cons++;
4797
4798         /* This function may never run in parallel with itself for a
4799          * specific bp, thus there is no need in "paired" read memory
4800          * barrier here.
4801          */
4802         sw_cons = bp->eq_cons;
4803         sw_prod = bp->eq_prod;
4804
4805         DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
4806                         hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4807
4808         for (; sw_cons != hw_cons;
4809               sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4810
4811
4812                 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4813
4814                 cid = SW_CID(elem->message.data.cfc_del_event.cid);
4815                 opcode = elem->message.opcode;
4816
4817
4818                 /* handle eq element */
4819                 switch (opcode) {
4820                 case EVENT_RING_OPCODE_STAT_QUERY:
4821                         DP(BNX2X_MSG_SP | BNX2X_MSG_STATS,
4822                            "got statistics comp event %d\n",
4823                            bp->stats_comp++);
4824                         /* nothing to do with stats comp */
4825                         goto next_spqe;
4826
4827                 case EVENT_RING_OPCODE_CFC_DEL:
4828                         /* handle according to cid range */
4829                         /*
4830                          * we may want to verify here that the bp state is
4831                          * HALTING
4832                          */
4833                         DP(BNX2X_MSG_SP,
4834                            "got delete ramrod for MULTI[%d]\n", cid);
4835
4836                         if (CNIC_LOADED(bp) &&
4837                             !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4838                                 goto next_spqe;
4839
4840                         q_obj = bnx2x_cid_to_q_obj(bp, cid);
4841
4842                         if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4843                                 break;
4844
4845
4846
4847                         goto next_spqe;
4848
4849                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
4850                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
4851                         if (f_obj->complete_cmd(bp, f_obj,
4852                                                 BNX2X_F_CMD_TX_STOP))
4853                                 break;
4854                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4855                         goto next_spqe;
4856
4857                 case EVENT_RING_OPCODE_START_TRAFFIC:
4858                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
4859                         if (f_obj->complete_cmd(bp, f_obj,
4860                                                 BNX2X_F_CMD_TX_START))
4861                                 break;
4862                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4863                         goto next_spqe;
4864
4865                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
4866                         echo = elem->message.data.function_update_event.echo;
4867                         if (echo == SWITCH_UPDATE) {
4868                                 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4869                                    "got FUNC_SWITCH_UPDATE ramrod\n");
4870                                 if (f_obj->complete_cmd(
4871                                         bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
4872                                         break;
4873
4874                         } else {
4875                                 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
4876                                    "AFEX: ramrod completed FUNCTION_UPDATE\n");
4877                                 f_obj->complete_cmd(bp, f_obj,
4878                                                     BNX2X_F_CMD_AFEX_UPDATE);
4879
4880                                 /* We will perform the Queues update from
4881                                  * sp_rtnl task as all Queue SP operations
4882                                  * should run under rtnl_lock.
4883                                  */
4884                                 smp_mb__before_clear_bit();
4885                                 set_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE,
4886                                         &bp->sp_rtnl_state);
4887                                 smp_mb__after_clear_bit();
4888
4889                                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4890                         }
4891
4892                         goto next_spqe;
4893
4894                 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
4895                         f_obj->complete_cmd(bp, f_obj,
4896                                             BNX2X_F_CMD_AFEX_VIFLISTS);
4897                         bnx2x_after_afex_vif_lists(bp, elem);
4898                         goto next_spqe;
4899                 case EVENT_RING_OPCODE_FUNCTION_START:
4900                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4901                            "got FUNC_START ramrod\n");
4902                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4903                                 break;
4904
4905                         goto next_spqe;
4906
4907                 case EVENT_RING_OPCODE_FUNCTION_STOP:
4908                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4909                            "got FUNC_STOP ramrod\n");
4910                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4911                                 break;
4912
4913                         goto next_spqe;
4914                 }
4915
4916                 switch (opcode | bp->state) {
4917                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4918                       BNX2X_STATE_OPEN):
4919                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4920                       BNX2X_STATE_OPENING_WAIT4_PORT):
4921                         cid = elem->message.data.eth_event.echo &
4922                                 BNX2X_SWCID_MASK;
4923                         DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4924                            cid);
4925                         rss_raw->clear_pending(rss_raw);
4926                         break;
4927
4928                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4929                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4930                 case (EVENT_RING_OPCODE_SET_MAC |
4931                       BNX2X_STATE_CLOSING_WAIT4_HALT):
4932                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4933                       BNX2X_STATE_OPEN):
4934                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4935                       BNX2X_STATE_DIAG):
4936                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4937                       BNX2X_STATE_CLOSING_WAIT4_HALT):
4938                         DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
4939                         bnx2x_handle_classification_eqe(bp, elem);
4940                         break;
4941
4942                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4943                       BNX2X_STATE_OPEN):
4944                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4945                       BNX2X_STATE_DIAG):
4946                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4947                       BNX2X_STATE_CLOSING_WAIT4_HALT):
4948                         DP(BNX2X_MSG_SP, "got mcast ramrod\n");
4949                         bnx2x_handle_mcast_eqe(bp);
4950                         break;
4951
4952                 case (EVENT_RING_OPCODE_FILTERS_RULES |
4953                       BNX2X_STATE_OPEN):
4954                 case (EVENT_RING_OPCODE_FILTERS_RULES |
4955                       BNX2X_STATE_DIAG):
4956                 case (EVENT_RING_OPCODE_FILTERS_RULES |
4957                       BNX2X_STATE_CLOSING_WAIT4_HALT):
4958                         DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
4959                         bnx2x_handle_rx_mode_eqe(bp);
4960                         break;
4961                 default:
4962                         /* unknown event log error and continue */
4963                         BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4964                                   elem->message.opcode, bp->state);
4965                 }
4966 next_spqe:
4967                 spqe_cnt++;
4968         } /* for */
4969
4970         smp_mb__before_atomic_inc();
4971         atomic_add(spqe_cnt, &bp->eq_spq_left);
4972
4973         bp->eq_cons = sw_cons;
4974         bp->eq_prod = sw_prod;
4975         /* Make sure that above mem writes were issued towards the memory */
4976         smp_wmb();
4977
4978         /* update producer */
4979         bnx2x_update_eq_prod(bp, bp->eq_prod);
4980 }
4981
4982 static void bnx2x_sp_task(struct work_struct *work)
4983 {
4984         struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
4985         u16 status;
4986
4987         status = bnx2x_update_dsb_idx(bp);
4988 /*      if (status == 0)                                     */
4989 /*              BNX2X_ERR("spurious slowpath interrupt!\n"); */
4990
4991         DP(BNX2X_MSG_SP, "got a slowpath interrupt (status 0x%x)\n", status);
4992
4993         /* HW attentions */
4994         if (status & BNX2X_DEF_SB_ATT_IDX) {
4995                 bnx2x_attn_int(bp);
4996                 status &= ~BNX2X_DEF_SB_ATT_IDX;
4997         }
4998
4999         /* SP events: STAT_QUERY and others */
5000         if (status & BNX2X_DEF_SB_IDX) {
5001                 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5002
5003                 if (FCOE_INIT(bp) &&
5004                     (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5005                         /*
5006                          * Prevent local bottom-halves from running as
5007                          * we are going to change the local NAPI list.
5008                          */
5009                         local_bh_disable();
5010                         napi_schedule(&bnx2x_fcoe(bp, napi));
5011                         local_bh_enable();
5012                 }
5013
5014                 /* Handle EQ completions */
5015                 bnx2x_eq_int(bp);
5016
5017                 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5018                         le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5019
5020                 status &= ~BNX2X_DEF_SB_IDX;
5021         }
5022
5023         if (unlikely(status))
5024                 DP(BNX2X_MSG_SP, "got an unknown interrupt! (status 0x%x)\n",
5025                    status);
5026
5027         bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5028              le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5029
5030         /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5031         if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5032                                &bp->sp_state)) {
5033                 bnx2x_link_report(bp);
5034                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5035         }
5036 }
5037
5038 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5039 {
5040         struct net_device *dev = dev_instance;
5041         struct bnx2x *bp = netdev_priv(dev);
5042
5043         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5044                      IGU_INT_DISABLE, 0);
5045
5046 #ifdef BNX2X_STOP_ON_ERROR
5047         if (unlikely(bp->panic))
5048                 return IRQ_HANDLED;
5049 #endif
5050
5051         if (CNIC_LOADED(bp)) {
5052                 struct cnic_ops *c_ops;
5053
5054                 rcu_read_lock();
5055                 c_ops = rcu_dereference(bp->cnic_ops);
5056                 if (c_ops)
5057                         c_ops->cnic_handler(bp->cnic_data, NULL);
5058                 rcu_read_unlock();
5059         }
5060
5061         queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
5062
5063         return IRQ_HANDLED;
5064 }
5065
5066 /* end of slow path */
5067
5068
5069 void bnx2x_drv_pulse(struct bnx2x *bp)
5070 {
5071         SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5072                  bp->fw_drv_pulse_wr_seq);
5073 }
5074
5075
5076 static void bnx2x_timer(unsigned long data)
5077 {
5078         struct bnx2x *bp = (struct bnx2x *) data;
5079
5080         if (!netif_running(bp->dev))
5081                 return;
5082
5083         if (!BP_NOMCP(bp)) {
5084                 int mb_idx = BP_FW_MB_IDX(bp);
5085                 u32 drv_pulse;
5086                 u32 mcp_pulse;
5087
5088                 ++bp->fw_drv_pulse_wr_seq;
5089                 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5090                 /* TBD - add SYSTEM_TIME */
5091                 drv_pulse = bp->fw_drv_pulse_wr_seq;
5092                 bnx2x_drv_pulse(bp);
5093
5094                 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5095                              MCP_PULSE_SEQ_MASK);
5096                 /* The delta between driver pulse and mcp response
5097                  * should be 1 (before mcp response) or 0 (after mcp response)
5098                  */
5099                 if ((drv_pulse != mcp_pulse) &&
5100                     (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
5101                         /* someone lost a heartbeat... */
5102                         BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5103                                   drv_pulse, mcp_pulse);
5104                 }
5105         }
5106
5107         if (bp->state == BNX2X_STATE_OPEN)
5108                 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5109
5110         mod_timer(&bp->timer, jiffies + bp->current_interval);
5111 }
5112
5113 /* end of Statistics */
5114
5115 /* nic init */
5116
5117 /*
5118  * nic init service functions
5119  */
5120
5121 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5122 {
5123         u32 i;
5124         if (!(len%4) && !(addr%4))
5125                 for (i = 0; i < len; i += 4)
5126                         REG_WR(bp, addr + i, fill);
5127         else
5128                 for (i = 0; i < len; i++)
5129                         REG_WR8(bp, addr + i, fill);
5130
5131 }
5132
5133 /* helper: writes FP SP data to FW - data_size in dwords */
5134 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5135                                 int fw_sb_id,
5136                                 u32 *sb_data_p,
5137                                 u32 data_size)
5138 {
5139         int index;
5140         for (index = 0; index < data_size; index++)
5141                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5142                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5143                         sizeof(u32)*index,
5144                         *(sb_data_p + index));
5145 }
5146
5147 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5148 {
5149         u32 *sb_data_p;
5150         u32 data_size = 0;
5151         struct hc_status_block_data_e2 sb_data_e2;
5152         struct hc_status_block_data_e1x sb_data_e1x;
5153
5154         /* disable the function first */
5155         if (!CHIP_IS_E1x(bp)) {
5156                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5157                 sb_data_e2.common.state = SB_DISABLED;
5158                 sb_data_e2.common.p_func.vf_valid = false;
5159                 sb_data_p = (u32 *)&sb_data_e2;
5160                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5161         } else {
5162                 memset(&sb_data_e1x, 0,
5163                        sizeof(struct hc_status_block_data_e1x));
5164                 sb_data_e1x.common.state = SB_DISABLED;
5165                 sb_data_e1x.common.p_func.vf_valid = false;
5166                 sb_data_p = (u32 *)&sb_data_e1x;
5167                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5168         }
5169         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5170
5171         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5172                         CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5173                         CSTORM_STATUS_BLOCK_SIZE);
5174         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5175                         CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5176                         CSTORM_SYNC_BLOCK_SIZE);
5177 }
5178
5179 /* helper:  writes SP SB data to FW */
5180 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5181                 struct hc_sp_status_block_data *sp_sb_data)
5182 {
5183         int func = BP_FUNC(bp);
5184         int i;
5185         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5186                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5187                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5188                         i*sizeof(u32),
5189                         *((u32 *)sp_sb_data + i));
5190 }
5191
5192 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5193 {
5194         int func = BP_FUNC(bp);
5195         struct hc_sp_status_block_data sp_sb_data;
5196         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5197
5198         sp_sb_data.state = SB_DISABLED;
5199         sp_sb_data.p_func.vf_valid = false;
5200
5201         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5202
5203         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5204                         CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5205                         CSTORM_SP_STATUS_BLOCK_SIZE);
5206         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5207                         CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5208                         CSTORM_SP_SYNC_BLOCK_SIZE);
5209
5210 }
5211
5212
5213 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5214                                            int igu_sb_id, int igu_seg_id)
5215 {
5216         hc_sm->igu_sb_id = igu_sb_id;
5217         hc_sm->igu_seg_id = igu_seg_id;
5218         hc_sm->timer_value = 0xFF;
5219         hc_sm->time_to_expire = 0xFFFFFFFF;
5220 }
5221
5222
5223 /* allocates state machine ids. */
5224 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5225 {
5226         /* zero out state machine indices */
5227         /* rx indices */
5228         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5229
5230         /* tx indices */
5231         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5232         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5233         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5234         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5235
5236         /* map indices */
5237         /* rx indices */
5238         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5239                 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5240
5241         /* tx indices */
5242         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5243                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5244         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5245                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5246         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5247                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5248         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5249                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5250 }
5251
5252 static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5253                           u8 vf_valid, int fw_sb_id, int igu_sb_id)
5254 {
5255         int igu_seg_id;
5256
5257         struct hc_status_block_data_e2 sb_data_e2;
5258         struct hc_status_block_data_e1x sb_data_e1x;
5259         struct hc_status_block_sm  *hc_sm_p;
5260         int data_size;
5261         u32 *sb_data_p;
5262
5263         if (CHIP_INT_MODE_IS_BC(bp))
5264                 igu_seg_id = HC_SEG_ACCESS_NORM;
5265         else
5266                 igu_seg_id = IGU_SEG_ACCESS_NORM;
5267
5268         bnx2x_zero_fp_sb(bp, fw_sb_id);
5269
5270         if (!CHIP_IS_E1x(bp)) {
5271                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5272                 sb_data_e2.common.state = SB_ENABLED;
5273                 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5274                 sb_data_e2.common.p_func.vf_id = vfid;
5275                 sb_data_e2.common.p_func.vf_valid = vf_valid;
5276                 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5277                 sb_data_e2.common.same_igu_sb_1b = true;
5278                 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5279                 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5280                 hc_sm_p = sb_data_e2.common.state_machine;
5281                 sb_data_p = (u32 *)&sb_data_e2;
5282                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5283                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5284         } else {
5285                 memset(&sb_data_e1x, 0,
5286                        sizeof(struct hc_status_block_data_e1x));
5287                 sb_data_e1x.common.state = SB_ENABLED;
5288                 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5289                 sb_data_e1x.common.p_func.vf_id = 0xff;
5290                 sb_data_e1x.common.p_func.vf_valid = false;
5291                 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5292                 sb_data_e1x.common.same_igu_sb_1b = true;
5293                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5294                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5295                 hc_sm_p = sb_data_e1x.common.state_machine;
5296                 sb_data_p = (u32 *)&sb_data_e1x;
5297                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5298                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5299         }
5300
5301         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5302                                        igu_sb_id, igu_seg_id);
5303         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5304                                        igu_sb_id, igu_seg_id);
5305
5306         DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5307
5308         /* write indecies to HW */
5309         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5310 }
5311
5312 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5313                                      u16 tx_usec, u16 rx_usec)
5314 {
5315         bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5316                                     false, rx_usec);
5317         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5318                                        HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5319                                        tx_usec);
5320         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5321                                        HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5322                                        tx_usec);
5323         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5324                                        HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5325                                        tx_usec);
5326 }
5327
5328 static void bnx2x_init_def_sb(struct bnx2x *bp)
5329 {
5330         struct host_sp_status_block *def_sb = bp->def_status_blk;
5331         dma_addr_t mapping = bp->def_status_blk_mapping;
5332         int igu_sp_sb_index;
5333         int igu_seg_id;
5334         int port = BP_PORT(bp);
5335         int func = BP_FUNC(bp);
5336         int reg_offset, reg_offset_en5;
5337         u64 section;
5338         int index;
5339         struct hc_sp_status_block_data sp_sb_data;
5340         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5341
5342         if (CHIP_INT_MODE_IS_BC(bp)) {
5343                 igu_sp_sb_index = DEF_SB_IGU_ID;
5344                 igu_seg_id = HC_SEG_ACCESS_DEF;
5345         } else {
5346                 igu_sp_sb_index = bp->igu_dsb_id;
5347                 igu_seg_id = IGU_SEG_ACCESS_DEF;
5348         }
5349
5350         /* ATTN */
5351         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5352                                             atten_status_block);
5353         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5354
5355         bp->attn_state = 0;
5356
5357         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5358                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5359         reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5360                                  MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5361         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5362                 int sindex;
5363                 /* take care of sig[0]..sig[4] */
5364                 for (sindex = 0; sindex < 4; sindex++)
5365                         bp->attn_group[index].sig[sindex] =
5366                            REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5367
5368                 if (!CHIP_IS_E1x(bp))
5369                         /*
5370                          * enable5 is separate from the rest of the registers,
5371                          * and therefore the address skip is 4
5372                          * and not 16 between the different groups
5373                          */
5374                         bp->attn_group[index].sig[4] = REG_RD(bp,
5375                                         reg_offset_en5 + 0x4*index);
5376                 else
5377                         bp->attn_group[index].sig[4] = 0;
5378         }
5379
5380         if (bp->common.int_block == INT_BLOCK_HC) {
5381                 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5382                                      HC_REG_ATTN_MSG0_ADDR_L);
5383
5384                 REG_WR(bp, reg_offset, U64_LO(section));
5385                 REG_WR(bp, reg_offset + 4, U64_HI(section));
5386         } else if (!CHIP_IS_E1x(bp)) {
5387                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5388                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5389         }
5390
5391         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5392                                             sp_sb);
5393
5394         bnx2x_zero_sp_sb(bp);
5395
5396         sp_sb_data.state                = SB_ENABLED;
5397         sp_sb_data.host_sb_addr.lo      = U64_LO(section);
5398         sp_sb_data.host_sb_addr.hi      = U64_HI(section);
5399         sp_sb_data.igu_sb_id            = igu_sp_sb_index;
5400         sp_sb_data.igu_seg_id           = igu_seg_id;
5401         sp_sb_data.p_func.pf_id         = func;
5402         sp_sb_data.p_func.vnic_id       = BP_VN(bp);
5403         sp_sb_data.p_func.vf_id         = 0xff;
5404
5405         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5406
5407         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5408 }
5409
5410 void bnx2x_update_coalesce(struct bnx2x *bp)
5411 {
5412         int i;
5413
5414         for_each_eth_queue(bp, i)
5415                 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5416                                          bp->tx_ticks, bp->rx_ticks);
5417 }
5418
5419 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5420 {
5421         spin_lock_init(&bp->spq_lock);
5422         atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5423
5424         bp->spq_prod_idx = 0;
5425         bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5426         bp->spq_prod_bd = bp->spq;
5427         bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5428 }
5429
5430 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5431 {
5432         int i;
5433         for (i = 1; i <= NUM_EQ_PAGES; i++) {
5434                 union event_ring_elem *elem =
5435                         &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5436
5437                 elem->next_page.addr.hi =
5438                         cpu_to_le32(U64_HI(bp->eq_mapping +
5439                                    BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5440                 elem->next_page.addr.lo =
5441                         cpu_to_le32(U64_LO(bp->eq_mapping +
5442                                    BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5443         }
5444         bp->eq_cons = 0;
5445         bp->eq_prod = NUM_EQ_DESC;
5446         bp->eq_cons_sb = BNX2X_EQ_INDEX;
5447         /* we want a warning message before it gets rought... */
5448         atomic_set(&bp->eq_spq_left,
5449                 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5450 }
5451
5452
5453 /* called with netif_addr_lock_bh() */
5454 void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5455                          unsigned long rx_mode_flags,
5456                          unsigned long rx_accept_flags,
5457                          unsigned long tx_accept_flags,
5458                          unsigned long ramrod_flags)
5459 {
5460         struct bnx2x_rx_mode_ramrod_params ramrod_param;
5461         int rc;
5462
5463         memset(&ramrod_param, 0, sizeof(ramrod_param));
5464
5465         /* Prepare ramrod parameters */
5466         ramrod_param.cid = 0;
5467         ramrod_param.cl_id = cl_id;
5468         ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5469         ramrod_param.func_id = BP_FUNC(bp);
5470
5471         ramrod_param.pstate = &bp->sp_state;
5472         ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5473
5474         ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5475         ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5476
5477         set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5478
5479         ramrod_param.ramrod_flags = ramrod_flags;
5480         ramrod_param.rx_mode_flags = rx_mode_flags;
5481
5482         ramrod_param.rx_accept_flags = rx_accept_flags;
5483         ramrod_param.tx_accept_flags = tx_accept_flags;
5484
5485         rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5486         if (rc < 0) {
5487                 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5488                 return;
5489         }
5490 }
5491
5492 /* called with netif_addr_lock_bh() */
5493 void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5494 {
5495         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5496         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5497
5498         if (!NO_FCOE(bp))
5499
5500                 /* Configure rx_mode of FCoE Queue */
5501                 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5502
5503         switch (bp->rx_mode) {
5504         case BNX2X_RX_MODE_NONE:
5505                 /*
5506                  * 'drop all' supersedes any accept flags that may have been
5507                  * passed to the function.
5508                  */
5509                 break;
5510         case BNX2X_RX_MODE_NORMAL:
5511                 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5512                 __set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5513                 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5514
5515                 /* internal switching mode */
5516                 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5517                 __set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5518                 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5519
5520                 break;
5521         case BNX2X_RX_MODE_ALLMULTI:
5522                 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5523                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5524                 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5525
5526                 /* internal switching mode */
5527                 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5528                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5529                 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5530
5531                 break;
5532         case BNX2X_RX_MODE_PROMISC:
5533                 /* According to deffinition of SI mode, iface in promisc mode
5534                  * should receive matched and unmatched (in resolution of port)
5535                  * unicast packets.
5536                  */
5537                 __set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5538                 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5539                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5540                 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5541
5542                 /* internal switching mode */
5543                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5544                 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5545
5546                 if (IS_MF_SI(bp))
5547                         __set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5548                 else
5549                         __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5550
5551                 break;
5552         default:
5553                 BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5554                 return;
5555         }
5556
5557         if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5558                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5559                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5560         }
5561
5562         __set_bit(RAMROD_RX, &ramrod_flags);
5563         __set_bit(RAMROD_TX, &ramrod_flags);
5564
5565         bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5566                             tx_accept_flags, ramrod_flags);
5567 }
5568
5569 static void bnx2x_init_internal_common(struct bnx2x *bp)
5570 {
5571         int i;
5572
5573         if (IS_MF_SI(bp))
5574                 /*
5575                  * In switch independent mode, the TSTORM needs to accept
5576                  * packets that failed classification, since approximate match
5577                  * mac addresses aren't written to NIG LLH
5578                  */
5579                 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5580                             TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5581         else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5582                 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5583                             TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5584
5585         /* Zero this manually as its initialization is
5586            currently missing in the initTool */
5587         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5588                 REG_WR(bp, BAR_USTRORM_INTMEM +
5589                        USTORM_AGG_DATA_OFFSET + i * 4, 0);
5590         if (!CHIP_IS_E1x(bp)) {
5591                 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5592                         CHIP_INT_MODE_IS_BC(bp) ?
5593                         HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5594         }
5595 }
5596
5597 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5598 {
5599         switch (load_code) {
5600         case FW_MSG_CODE_DRV_LOAD_COMMON:
5601         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5602                 bnx2x_init_internal_common(bp);
5603                 /* no break */
5604
5605         case FW_MSG_CODE_DRV_LOAD_PORT:
5606                 /* nothing to do */
5607                 /* no break */
5608
5609         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5610                 /* internal memory per function is
5611                    initialized inside bnx2x_pf_init */
5612                 break;
5613
5614         default:
5615                 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5616                 break;
5617         }
5618 }
5619
5620 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5621 {
5622         return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
5623 }
5624
5625 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5626 {
5627         return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
5628 }
5629
5630 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5631 {
5632         if (CHIP_IS_E1x(fp->bp))
5633                 return BP_L_ID(fp->bp) + fp->index;
5634         else    /* We want Client ID to be the same as IGU SB ID for 57712 */
5635                 return bnx2x_fp_igu_sb_id(fp);
5636 }
5637
5638 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5639 {
5640         struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5641         u8 cos;
5642         unsigned long q_type = 0;
5643         u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5644         fp->rx_queue = fp_idx;
5645         fp->cid = fp_idx;
5646         fp->cl_id = bnx2x_fp_cl_id(fp);
5647         fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5648         fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5649         /* qZone id equals to FW (per path) client id */
5650         fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
5651
5652         /* init shortcut */
5653         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5654
5655         /* Setup SB indicies */
5656         fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5657
5658         /* Configure Queue State object */
5659         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5660         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5661
5662         BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5663
5664         /* init tx data */
5665         for_each_cos_in_tx_queue(fp, cos) {
5666                 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
5667                                   CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
5668                                   FP_COS_TO_TXQ(fp, cos, bp),
5669                                   BNX2X_TX_SB_INDEX_BASE + cos, fp);
5670                 cids[cos] = fp->txdata_ptr[cos]->cid;
5671         }
5672
5673         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
5674                              fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5675                              bnx2x_sp_mapping(bp, q_rdata), q_type);
5676
5677         /**
5678          * Configure classification DBs: Always enable Tx switching
5679          */
5680         bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5681
5682         DP(NETIF_MSG_IFUP, "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
5683                    fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5684                    fp->igu_sb_id);
5685         bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5686                       fp->fw_sb_id, fp->igu_sb_id);
5687
5688         bnx2x_update_fpsb_idx(fp);
5689 }
5690
5691 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
5692 {
5693         int i;
5694
5695         for (i = 1; i <= NUM_TX_RINGS; i++) {
5696                 struct eth_tx_next_bd *tx_next_bd =
5697                         &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
5698
5699                 tx_next_bd->addr_hi =
5700                         cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
5701                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
5702                 tx_next_bd->addr_lo =
5703                         cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
5704                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
5705         }
5706
5707         SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
5708         txdata->tx_db.data.zero_fill1 = 0;
5709         txdata->tx_db.data.prod = 0;
5710
5711         txdata->tx_pkt_prod = 0;
5712         txdata->tx_pkt_cons = 0;
5713         txdata->tx_bd_prod = 0;
5714         txdata->tx_bd_cons = 0;
5715         txdata->tx_pkt = 0;
5716 }
5717
5718 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
5719 {
5720         int i;
5721
5722         for_each_tx_queue_cnic(bp, i)
5723                 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
5724 }
5725 static void bnx2x_init_tx_rings(struct bnx2x *bp)
5726 {
5727         int i;
5728         u8 cos;
5729
5730         for_each_eth_queue(bp, i)
5731                 for_each_cos_in_tx_queue(&bp->fp[i], cos)
5732                         bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
5733 }
5734
5735 void bnx2x_nic_init_cnic(struct bnx2x *bp)
5736 {
5737         if (!NO_FCOE(bp))
5738                 bnx2x_init_fcoe_fp(bp);
5739
5740         bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5741                       BNX2X_VF_ID_INVALID, false,
5742                       bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5743
5744         /* ensure status block indices were read */
5745         rmb();
5746         bnx2x_init_rx_rings_cnic(bp);
5747         bnx2x_init_tx_rings_cnic(bp);
5748
5749         /* flush all */
5750         mb();
5751         mmiowb();
5752 }
5753
5754 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5755 {
5756         int i;
5757
5758         for_each_eth_queue(bp, i)
5759                 bnx2x_init_eth_fp(bp, i);
5760         /* Initialize MOD_ABS interrupts */
5761         bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5762                                bp->common.shmem_base, bp->common.shmem2_base,
5763                                BP_PORT(bp));
5764         /* ensure status block indices were read */
5765         rmb();
5766
5767         bnx2x_init_def_sb(bp);
5768         bnx2x_update_dsb_idx(bp);
5769         bnx2x_init_rx_rings(bp);
5770         bnx2x_init_tx_rings(bp);
5771         bnx2x_init_sp_ring(bp);
5772         bnx2x_init_eq_ring(bp);
5773         bnx2x_init_internal(bp, load_code);
5774         bnx2x_pf_init(bp);
5775         bnx2x_stats_init(bp);
5776
5777         /* flush all before enabling interrupts */
5778         mb();
5779         mmiowb();
5780
5781         bnx2x_int_enable(bp);
5782
5783         /* Check for SPIO5 */
5784         bnx2x_attn_int_deasserted0(bp,
5785                 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5786                                    AEU_INPUTS_ATTN_BITS_SPIO5);
5787 }
5788
5789 /* end of nic init */
5790
5791 /*
5792  * gzip service functions
5793  */
5794
5795 static int bnx2x_gunzip_init(struct bnx2x *bp)
5796 {
5797         bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5798                                             &bp->gunzip_mapping, GFP_KERNEL);
5799         if (bp->gunzip_buf  == NULL)
5800                 goto gunzip_nomem1;
5801
5802         bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5803         if (bp->strm  == NULL)
5804                 goto gunzip_nomem2;
5805
5806         bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5807         if (bp->strm->workspace == NULL)
5808                 goto gunzip_nomem3;
5809
5810         return 0;
5811
5812 gunzip_nomem3:
5813         kfree(bp->strm);
5814         bp->strm = NULL;
5815
5816 gunzip_nomem2:
5817         dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5818                           bp->gunzip_mapping);
5819         bp->gunzip_buf = NULL;
5820
5821 gunzip_nomem1:
5822         BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
5823         return -ENOMEM;
5824 }
5825
5826 static void bnx2x_gunzip_end(struct bnx2x *bp)
5827 {
5828         if (bp->strm) {
5829                 vfree(bp->strm->workspace);
5830                 kfree(bp->strm);
5831                 bp->strm = NULL;
5832         }
5833
5834         if (bp->gunzip_buf) {
5835                 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5836                                   bp->gunzip_mapping);
5837                 bp->gunzip_buf = NULL;
5838         }
5839 }
5840
5841 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5842 {
5843         int n, rc;
5844
5845         /* check gzip header */
5846         if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5847                 BNX2X_ERR("Bad gzip header\n");
5848                 return -EINVAL;
5849         }
5850
5851         n = 10;
5852
5853 #define FNAME                           0x8
5854
5855         if (zbuf[3] & FNAME)
5856                 while ((zbuf[n++] != 0) && (n < len));
5857
5858         bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5859         bp->strm->avail_in = len - n;
5860         bp->strm->next_out = bp->gunzip_buf;
5861         bp->strm->avail_out = FW_BUF_SIZE;
5862
5863         rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5864         if (rc != Z_OK)
5865                 return rc;
5866
5867         rc = zlib_inflate(bp->strm, Z_FINISH);
5868         if ((rc != Z_OK) && (rc != Z_STREAM_END))
5869                 netdev_err(bp->dev, "Firmware decompression error: %s\n",
5870                            bp->strm->msg);
5871
5872         bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5873         if (bp->gunzip_outlen & 0x3)
5874                 netdev_err(bp->dev,
5875                            "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
5876                                 bp->gunzip_outlen);
5877         bp->gunzip_outlen >>= 2;
5878
5879         zlib_inflateEnd(bp->strm);
5880
5881         if (rc == Z_STREAM_END)
5882                 return 0;
5883
5884         return rc;
5885 }
5886
5887 /* nic load/unload */
5888
5889 /*
5890  * General service functions
5891  */
5892
5893 /* send a NIG loopback debug packet */
5894 static void bnx2x_lb_pckt(struct bnx2x *bp)
5895 {
5896         u32 wb_write[3];
5897
5898         /* Ethernet source and destination addresses */
5899         wb_write[0] = 0x55555555;
5900         wb_write[1] = 0x55555555;
5901         wb_write[2] = 0x20;             /* SOP */
5902         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5903
5904         /* NON-IP protocol */
5905         wb_write[0] = 0x09000000;
5906         wb_write[1] = 0x55555555;
5907         wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
5908         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5909 }
5910
5911 /* some of the internal memories
5912  * are not directly readable from the driver
5913  * to test them we send debug packets
5914  */
5915 static int bnx2x_int_mem_test(struct bnx2x *bp)
5916 {
5917         int factor;
5918         int count, i;
5919         u32 val = 0;
5920
5921         if (CHIP_REV_IS_FPGA(bp))
5922                 factor = 120;
5923         else if (CHIP_REV_IS_EMUL(bp))
5924                 factor = 200;
5925         else
5926                 factor = 1;
5927
5928         /* Disable inputs of parser neighbor blocks */
5929         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5930         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5931         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5932         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5933
5934         /*  Write 0 to parser credits for CFC search request */
5935         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5936
5937         /* send Ethernet packet */
5938         bnx2x_lb_pckt(bp);
5939
5940         /* TODO do i reset NIG statistic? */
5941         /* Wait until NIG register shows 1 packet of size 0x10 */
5942         count = 1000 * factor;
5943         while (count) {
5944
5945                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5946                 val = *bnx2x_sp(bp, wb_data[0]);
5947                 if (val == 0x10)
5948                         break;
5949
5950                 msleep(10);
5951                 count--;
5952         }
5953         if (val != 0x10) {
5954                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
5955                 return -1;
5956         }
5957
5958         /* Wait until PRS register shows 1 packet */
5959         count = 1000 * factor;
5960         while (count) {
5961                 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5962                 if (val == 1)
5963                         break;
5964
5965                 msleep(10);
5966                 count--;
5967         }
5968         if (val != 0x1) {
5969                 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5970                 return -2;
5971         }
5972
5973         /* Reset and init BRB, PRS */
5974         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5975         msleep(50);
5976         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5977         msleep(50);
5978         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5979         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5980
5981         DP(NETIF_MSG_HW, "part2\n");
5982
5983         /* Disable inputs of parser neighbor blocks */
5984         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5985         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5986         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5987         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5988
5989         /* Write 0 to parser credits for CFC search request */
5990         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5991
5992         /* send 10 Ethernet packets */
5993         for (i = 0; i < 10; i++)
5994                 bnx2x_lb_pckt(bp);
5995
5996         /* Wait until NIG register shows 10 + 1
5997            packets of size 11*0x10 = 0xb0 */
5998         count = 1000 * factor;
5999         while (count) {
6000
6001                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6002                 val = *bnx2x_sp(bp, wb_data[0]);
6003                 if (val == 0xb0)
6004                         break;
6005
6006                 msleep(10);
6007                 count--;
6008         }
6009         if (val != 0xb0) {
6010                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6011                 return -3;
6012         }
6013
6014         /* Wait until PRS register shows 2 packets */
6015         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6016         if (val != 2)
6017                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6018
6019         /* Write 1 to parser credits for CFC search request */
6020         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6021
6022         /* Wait until PRS register shows 3 packets */
6023         msleep(10 * factor);
6024         /* Wait until NIG register shows 1 packet of size 0x10 */
6025         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6026         if (val != 3)
6027                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6028
6029         /* clear NIG EOP FIFO */
6030         for (i = 0; i < 11; i++)
6031                 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6032         val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6033         if (val != 1) {
6034                 BNX2X_ERR("clear of NIG failed\n");
6035                 return -4;
6036         }
6037
6038         /* Reset and init BRB, PRS, NIG */
6039         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6040         msleep(50);
6041         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6042         msleep(50);
6043         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6044         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6045         if (!CNIC_SUPPORT(bp))
6046                 /* set NIC mode */
6047                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6048
6049         /* Enable inputs of parser neighbor blocks */
6050         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6051         REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6052         REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6053         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6054
6055         DP(NETIF_MSG_HW, "done\n");
6056
6057         return 0; /* OK */
6058 }
6059
6060 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6061 {
6062         REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6063         if (!CHIP_IS_E1x(bp))
6064                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6065         else
6066                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6067         REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6068         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6069         /*
6070          * mask read length error interrupts in brb for parser
6071          * (parsing unit and 'checksum and crc' unit)
6072          * these errors are legal (PU reads fixed length and CAC can cause
6073          * read length error on truncated packets)
6074          */
6075         REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6076         REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6077         REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6078         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6079         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6080         REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6081 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6082 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6083         REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6084         REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6085         REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6086 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6087 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6088         REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6089         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6090         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6091         REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6092 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6093 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6094
6095         if (CHIP_REV_IS_FPGA(bp))
6096                 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
6097         else if (!CHIP_IS_E1x(bp))
6098                 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
6099                            (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
6100                                 | PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
6101                                 | PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
6102                                 | PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
6103                                 | PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
6104         else
6105                 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
6106         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6107         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6108         REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6109 /*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6110
6111         if (!CHIP_IS_E1x(bp))
6112                 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6113                 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6114
6115         REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6116         REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6117 /*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6118         REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6119 }
6120
6121 static void bnx2x_reset_common(struct bnx2x *bp)
6122 {
6123         u32 val = 0x1400;
6124
6125         /* reset_common */
6126         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6127                0xd3ffff7f);
6128
6129         if (CHIP_IS_E3(bp)) {
6130                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6131                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6132         }
6133
6134         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6135 }
6136
6137 static void bnx2x_setup_dmae(struct bnx2x *bp)
6138 {
6139         bp->dmae_ready = 0;
6140         spin_lock_init(&bp->dmae_lock);
6141 }
6142
6143 static void bnx2x_init_pxp(struct bnx2x *bp)
6144 {
6145         u16 devctl;
6146         int r_order, w_order;
6147
6148         pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6149         DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6150         w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6151         if (bp->mrrs == -1)
6152                 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6153         else {
6154                 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6155                 r_order = bp->mrrs;
6156         }
6157
6158         bnx2x_init_pxp_arb(bp, r_order, w_order);
6159 }
6160
6161 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6162 {
6163         int is_required;
6164         u32 val;
6165         int port;
6166
6167         if (BP_NOMCP(bp))
6168                 return;
6169
6170         is_required = 0;
6171         val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6172               SHARED_HW_CFG_FAN_FAILURE_MASK;
6173
6174         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6175                 is_required = 1;
6176
6177         /*
6178          * The fan failure mechanism is usually related to the PHY type since
6179          * the power consumption of the board is affected by the PHY. Currently,
6180          * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6181          */
6182         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6183                 for (port = PORT_0; port < PORT_MAX; port++) {
6184                         is_required |=
6185                                 bnx2x_fan_failure_det_req(
6186                                         bp,
6187                                         bp->common.shmem_base,
6188                                         bp->common.shmem2_base,
6189                                         port);
6190                 }
6191
6192         DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6193
6194         if (is_required == 0)
6195                 return;
6196
6197         /* Fan failure is indicated by SPIO 5 */
6198         bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6199
6200         /* set to active low mode */
6201         val = REG_RD(bp, MISC_REG_SPIO_INT);
6202         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6203         REG_WR(bp, MISC_REG_SPIO_INT, val);
6204
6205         /* enable interrupt to signal the IGU */
6206         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6207         val |= MISC_SPIO_SPIO5;
6208         REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6209 }
6210
6211 static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
6212 {
6213         u32 offset = 0;
6214
6215         if (CHIP_IS_E1(bp))
6216                 return;
6217         if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
6218                 return;
6219
6220         switch (BP_ABS_FUNC(bp)) {
6221         case 0:
6222                 offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
6223                 break;
6224         case 1:
6225                 offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
6226                 break;
6227         case 2:
6228                 offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
6229                 break;
6230         case 3:
6231                 offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
6232                 break;
6233         case 4:
6234                 offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
6235                 break;
6236         case 5:
6237                 offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
6238                 break;
6239         case 6:
6240                 offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
6241                 break;
6242         case 7:
6243                 offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
6244                 break;
6245         default:
6246                 return;
6247         }
6248
6249         REG_WR(bp, offset, pretend_func_num);
6250         REG_RD(bp, offset);
6251         DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
6252 }
6253
6254 void bnx2x_pf_disable(struct bnx2x *bp)
6255 {
6256         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6257         val &= ~IGU_PF_CONF_FUNC_EN;
6258
6259         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6260         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6261         REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6262 }
6263
6264 static void bnx2x__common_init_phy(struct bnx2x *bp)
6265 {
6266         u32 shmem_base[2], shmem2_base[2];
6267         /* Avoid common init in case MFW supports LFA */
6268         if (SHMEM2_RD(bp, size) >
6269             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6270                 return;
6271         shmem_base[0] =  bp->common.shmem_base;
6272         shmem2_base[0] = bp->common.shmem2_base;
6273         if (!CHIP_IS_E1x(bp)) {
6274                 shmem_base[1] =
6275                         SHMEM2_RD(bp, other_shmem_base_addr);
6276                 shmem2_base[1] =
6277                         SHMEM2_RD(bp, other_shmem2_base_addr);
6278         }
6279         bnx2x_acquire_phy_lock(bp);
6280         bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6281                               bp->common.chip_id);
6282         bnx2x_release_phy_lock(bp);
6283 }
6284
6285 /**
6286  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6287  *
6288  * @bp:         driver handle
6289  */
6290 static int bnx2x_init_hw_common(struct bnx2x *bp)
6291 {
6292         u32 val;
6293
6294         DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6295
6296         /*
6297          * take the UNDI lock to protect undi_unload flow from accessing
6298          * registers while we're resetting the chip
6299          */
6300         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6301
6302         bnx2x_reset_common(bp);
6303         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6304
6305         val = 0xfffc;
6306         if (CHIP_IS_E3(bp)) {
6307                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6308                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6309         }
6310         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6311
6312         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6313
6314         bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6315
6316         if (!CHIP_IS_E1x(bp)) {
6317                 u8 abs_func_id;
6318
6319                 /**
6320                  * 4-port mode or 2-port mode we need to turn of master-enable
6321                  * for everyone, after that, turn it back on for self.
6322                  * so, we disregard multi-function or not, and always disable
6323                  * for all functions on the given path, this means 0,2,4,6 for
6324                  * path 0 and 1,3,5,7 for path 1
6325                  */
6326                 for (abs_func_id = BP_PATH(bp);
6327                      abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6328                         if (abs_func_id == BP_ABS_FUNC(bp)) {
6329                                 REG_WR(bp,
6330                                     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6331                                     1);
6332                                 continue;
6333                         }
6334
6335                         bnx2x_pretend_func(bp, abs_func_id);
6336                         /* clear pf enable */
6337                         bnx2x_pf_disable(bp);
6338                         bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6339                 }
6340         }
6341
6342         bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6343         if (CHIP_IS_E1(bp)) {
6344                 /* enable HW interrupt from PXP on USDM overflow
6345                    bit 16 on INT_MASK_0 */
6346                 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6347         }
6348
6349         bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6350         bnx2x_init_pxp(bp);
6351
6352 #ifdef __BIG_ENDIAN
6353         REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6354         REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6355         REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6356         REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6357         REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6358         /* make sure this value is 0 */
6359         REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6360
6361 /*      REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6362         REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6363         REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6364         REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6365         REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6366 #endif
6367
6368         bnx2x_ilt_init_page_size(bp, INITOP_SET);
6369
6370         if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6371                 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6372
6373         /* let the HW do it's magic ... */
6374         msleep(100);
6375         /* finish PXP init */
6376         val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6377         if (val != 1) {
6378                 BNX2X_ERR("PXP2 CFG failed\n");
6379                 return -EBUSY;
6380         }
6381         val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6382         if (val != 1) {
6383                 BNX2X_ERR("PXP2 RD_INIT failed\n");
6384                 return -EBUSY;
6385         }
6386
6387         /* Timers bug workaround E2 only. We need to set the entire ILT to
6388          * have entries with value "0" and valid bit on.
6389          * This needs to be done by the first PF that is loaded in a path
6390          * (i.e. common phase)
6391          */
6392         if (!CHIP_IS_E1x(bp)) {
6393 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6394  * (i.e. vnic3) to start even if it is marked as "scan-off".
6395  * This occurs when a different function (func2,3) is being marked
6396  * as "scan-off". Real-life scenario for example: if a driver is being
6397  * load-unloaded while func6,7 are down. This will cause the timer to access
6398  * the ilt, translate to a logical address and send a request to read/write.
6399  * Since the ilt for the function that is down is not valid, this will cause
6400  * a translation error which is unrecoverable.
6401  * The Workaround is intended to make sure that when this happens nothing fatal
6402  * will occur. The workaround:
6403  *      1.  First PF driver which loads on a path will:
6404  *              a.  After taking the chip out of reset, by using pretend,
6405  *                  it will write "0" to the following registers of
6406  *                  the other vnics.
6407  *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6408  *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6409  *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6410  *                  And for itself it will write '1' to
6411  *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6412  *                  dmae-operations (writing to pram for example.)
6413  *                  note: can be done for only function 6,7 but cleaner this
6414  *                        way.
6415  *              b.  Write zero+valid to the entire ILT.
6416  *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6417  *                  VNIC3 (of that port). The range allocated will be the
6418  *                  entire ILT. This is needed to prevent  ILT range error.
6419  *      2.  Any PF driver load flow:
6420  *              a.  ILT update with the physical addresses of the allocated
6421  *                  logical pages.
6422  *              b.  Wait 20msec. - note that this timeout is needed to make
6423  *                  sure there are no requests in one of the PXP internal
6424  *                  queues with "old" ILT addresses.
6425  *              c.  PF enable in the PGLC.
6426  *              d.  Clear the was_error of the PF in the PGLC. (could have
6427  *                  occured while driver was down)
6428  *              e.  PF enable in the CFC (WEAK + STRONG)
6429  *              f.  Timers scan enable
6430  *      3.  PF driver unload flow:
6431  *              a.  Clear the Timers scan_en.
6432  *              b.  Polling for scan_on=0 for that PF.
6433  *              c.  Clear the PF enable bit in the PXP.
6434  *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
6435  *              e.  Write zero+valid to all ILT entries (The valid bit must
6436  *                  stay set)
6437  *              f.  If this is VNIC 3 of a port then also init
6438  *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
6439  *                  to the last enrty in the ILT.
6440  *
6441  *      Notes:
6442  *      Currently the PF error in the PGLC is non recoverable.
6443  *      In the future the there will be a recovery routine for this error.
6444  *      Currently attention is masked.
6445  *      Having an MCP lock on the load/unload process does not guarantee that
6446  *      there is no Timer disable during Func6/7 enable. This is because the
6447  *      Timers scan is currently being cleared by the MCP on FLR.
6448  *      Step 2.d can be done only for PF6/7 and the driver can also check if
6449  *      there is error before clearing it. But the flow above is simpler and
6450  *      more general.
6451  *      All ILT entries are written by zero+valid and not just PF6/7
6452  *      ILT entries since in the future the ILT entries allocation for
6453  *      PF-s might be dynamic.
6454  */
6455                 struct ilt_client_info ilt_cli;
6456                 struct bnx2x_ilt ilt;
6457                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6458                 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6459
6460                 /* initialize dummy TM client */
6461                 ilt_cli.start = 0;
6462                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6463                 ilt_cli.client_num = ILT_CLIENT_TM;
6464
6465                 /* Step 1: set zeroes to all ilt page entries with valid bit on
6466                  * Step 2: set the timers first/last ilt entry to point
6467                  * to the entire range to prevent ILT range error for 3rd/4th
6468                  * vnic (this code assumes existance of the vnic)
6469                  *
6470                  * both steps performed by call to bnx2x_ilt_client_init_op()
6471                  * with dummy TM client
6472                  *
6473                  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6474                  * and his brother are split registers
6475                  */
6476                 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6477                 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6478                 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6479
6480                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6481                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6482                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6483         }
6484
6485
6486         REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6487         REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6488
6489         if (!CHIP_IS_E1x(bp)) {
6490                 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6491                                 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6492                 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6493
6494                 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6495
6496                 /* let the HW do it's magic ... */
6497                 do {
6498                         msleep(200);
6499                         val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6500                 } while (factor-- && (val != 1));
6501
6502                 if (val != 1) {
6503                         BNX2X_ERR("ATC_INIT failed\n");
6504                         return -EBUSY;
6505                 }
6506         }
6507
6508         bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6509
6510         /* clean the DMAE memory */
6511         bp->dmae_ready = 1;
6512         bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6513
6514         bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6515
6516         bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6517
6518         bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6519
6520         bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6521
6522         bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6523         bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6524         bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6525         bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6526
6527         bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6528
6529
6530         /* QM queues pointers table */
6531         bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6532
6533         /* soft reset pulse */
6534         REG_WR(bp, QM_REG_SOFT_RESET, 1);
6535         REG_WR(bp, QM_REG_SOFT_RESET, 0);
6536
6537         if (CNIC_SUPPORT(bp))
6538                 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6539
6540         bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6541         REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6542         if (!CHIP_REV_IS_SLOW(bp))
6543                 /* enable hw interrupt from doorbell Q */
6544                 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6545
6546         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6547
6548         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6549         REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6550
6551         if (!CHIP_IS_E1(bp))
6552                 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6553
6554         if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
6555                 if (IS_MF_AFEX(bp)) {
6556                         /* configure that VNTag and VLAN headers must be
6557                          * received in afex mode
6558                          */
6559                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
6560                         REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
6561                         REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
6562                         REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
6563                         REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
6564                 } else {
6565                         /* Bit-map indicating which L2 hdrs may appear
6566                          * after the basic Ethernet header
6567                          */
6568                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6569                                bp->path_has_ovlan ? 7 : 6);
6570                 }
6571         }
6572
6573         bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6574         bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6575         bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6576         bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6577
6578         if (!CHIP_IS_E1x(bp)) {
6579                 /* reset VFC memories */
6580                 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6581                            VFC_MEMORIES_RST_REG_CAM_RST |
6582                            VFC_MEMORIES_RST_REG_RAM_RST);
6583                 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6584                            VFC_MEMORIES_RST_REG_CAM_RST |
6585                            VFC_MEMORIES_RST_REG_RAM_RST);
6586
6587                 msleep(20);
6588         }
6589
6590         bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6591         bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6592         bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6593         bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6594
6595         /* sync semi rtc */
6596         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6597                0x80000000);
6598         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6599                0x80000000);
6600
6601         bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6602         bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6603         bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6604
6605         if (!CHIP_IS_E1x(bp)) {
6606                 if (IS_MF_AFEX(bp)) {
6607                         /* configure that VNTag and VLAN headers must be
6608                          * sent in afex mode
6609                          */
6610                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
6611                         REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
6612                         REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
6613                         REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
6614                         REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
6615                 } else {
6616                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6617                                bp->path_has_ovlan ? 7 : 6);
6618                 }
6619         }
6620
6621         REG_WR(bp, SRC_REG_SOFT_RST, 1);
6622
6623         bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6624
6625         if (CNIC_SUPPORT(bp)) {
6626                 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6627                 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6628                 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6629                 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6630                 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6631                 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6632                 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6633                 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6634                 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6635                 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6636         }
6637         REG_WR(bp, SRC_REG_SOFT_RST, 0);
6638
6639         if (sizeof(union cdu_context) != 1024)
6640                 /* we currently assume that a context is 1024 bytes */
6641                 dev_alert(&bp->pdev->dev,
6642                           "please adjust the size of cdu_context(%ld)\n",
6643                           (long)sizeof(union cdu_context));
6644
6645         bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6646         val = (4 << 24) + (0 << 12) + 1024;
6647         REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6648
6649         bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6650         REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6651         /* enable context validation interrupt from CFC */
6652         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6653
6654         /* set the thresholds to prevent CFC/CDU race */
6655         REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6656
6657         bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6658
6659         if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6660                 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6661
6662         bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6663         bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6664
6665         /* Reset PCIE errors for debug */
6666         REG_WR(bp, 0x2814, 0xffffffff);
6667         REG_WR(bp, 0x3820, 0xffffffff);
6668
6669         if (!CHIP_IS_E1x(bp)) {
6670                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6671                            (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6672                                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6673                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6674                            (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6675                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6676                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6677                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6678                            (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6679                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6680                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6681         }
6682
6683         bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6684         if (!CHIP_IS_E1(bp)) {
6685                 /* in E3 this done in per-port section */
6686                 if (!CHIP_IS_E3(bp))
6687                         REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6688         }
6689         if (CHIP_IS_E1H(bp))
6690                 /* not applicable for E2 (and above ...) */
6691                 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6692
6693         if (CHIP_REV_IS_SLOW(bp))
6694                 msleep(200);
6695
6696         /* finish CFC init */
6697         val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6698         if (val != 1) {
6699                 BNX2X_ERR("CFC LL_INIT failed\n");
6700                 return -EBUSY;
6701         }
6702         val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6703         if (val != 1) {
6704                 BNX2X_ERR("CFC AC_INIT failed\n");
6705                 return -EBUSY;
6706         }
6707         val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6708         if (val != 1) {
6709                 BNX2X_ERR("CFC CAM_INIT failed\n");
6710                 return -EBUSY;
6711         }
6712         REG_WR(bp, CFC_REG_DEBUG0, 0);
6713
6714         if (CHIP_IS_E1(bp)) {
6715                 /* read NIG statistic
6716                    to see if this is our first up since powerup */
6717                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6718                 val = *bnx2x_sp(bp, wb_data[0]);
6719
6720                 /* do internal memory self test */
6721                 if ((val == 0) && bnx2x_int_mem_test(bp)) {
6722                         BNX2X_ERR("internal mem self test failed\n");
6723                         return -EBUSY;
6724                 }
6725         }
6726
6727         bnx2x_setup_fan_failure_detection(bp);
6728
6729         /* clear PXP2 attentions */
6730         REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6731
6732         bnx2x_enable_blocks_attention(bp);
6733         bnx2x_enable_blocks_parity(bp);
6734
6735         if (!BP_NOMCP(bp)) {
6736                 if (CHIP_IS_E1x(bp))
6737                         bnx2x__common_init_phy(bp);
6738         } else
6739                 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6740
6741         return 0;
6742 }
6743
6744 /**
6745  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6746  *
6747  * @bp:         driver handle
6748  */
6749 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6750 {
6751         int rc = bnx2x_init_hw_common(bp);
6752
6753         if (rc)
6754                 return rc;
6755
6756         /* In E2 2-PORT mode, same ext phy is used for the two paths */
6757         if (!BP_NOMCP(bp))
6758                 bnx2x__common_init_phy(bp);
6759
6760         return 0;
6761 }
6762
6763 static int bnx2x_init_hw_port(struct bnx2x *bp)
6764 {
6765         int port = BP_PORT(bp);
6766         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6767         u32 low, high;
6768         u32 val;
6769
6770
6771         DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
6772
6773         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6774
6775         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6776         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6777         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6778
6779         /* Timers bug workaround: disables the pf_master bit in pglue at
6780          * common phase, we need to enable it here before any dmae access are
6781          * attempted. Therefore we manually added the enable-master to the
6782          * port phase (it also happens in the function phase)
6783          */
6784         if (!CHIP_IS_E1x(bp))
6785                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6786
6787         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6788         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6789         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6790         bnx2x_init_block(bp, BLOCK_QM, init_phase);
6791
6792         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6793         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6794         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6795         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6796
6797         /* QM cid (connection) count */
6798         bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6799
6800         if (CNIC_SUPPORT(bp)) {
6801                 bnx2x_init_block(bp, BLOCK_TM, init_phase);
6802                 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6803                 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6804         }
6805
6806         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6807
6808         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6809
6810         if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6811
6812                 if (IS_MF(bp))
6813                         low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6814                 else if (bp->dev->mtu > 4096) {
6815                         if (bp->flags & ONE_PORT_FLAG)
6816                                 low = 160;
6817                         else {
6818                                 val = bp->dev->mtu;
6819                                 /* (24*1024 + val*4)/256 */
6820                                 low = 96 + (val/64) +
6821                                                 ((val % 64) ? 1 : 0);
6822                         }
6823                 } else
6824                         low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6825                 high = low + 56;        /* 14*1024/256 */
6826                 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6827                 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6828         }
6829
6830         if (CHIP_MODE_IS_4_PORT(bp))
6831                 REG_WR(bp, (BP_PORT(bp) ?
6832                             BRB1_REG_MAC_GUARANTIED_1 :
6833                             BRB1_REG_MAC_GUARANTIED_0), 40);
6834
6835
6836         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6837         if (CHIP_IS_E3B0(bp)) {
6838                 if (IS_MF_AFEX(bp)) {
6839                         /* configure headers for AFEX mode */
6840                         REG_WR(bp, BP_PORT(bp) ?
6841                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6842                                PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
6843                         REG_WR(bp, BP_PORT(bp) ?
6844                                PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
6845                                PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
6846                         REG_WR(bp, BP_PORT(bp) ?
6847                                PRS_REG_MUST_HAVE_HDRS_PORT_1 :
6848                                PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
6849                 } else {
6850                         /* Ovlan exists only if we are in multi-function +
6851                          * switch-dependent mode, in switch-independent there
6852                          * is no ovlan headers
6853                          */
6854                         REG_WR(bp, BP_PORT(bp) ?
6855                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6856                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6857                                (bp->path_has_ovlan ? 7 : 6));
6858                 }
6859         }
6860
6861         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6862         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6863         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6864         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6865
6866         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6867         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6868         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6869         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6870
6871         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6872         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6873
6874         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6875
6876         if (CHIP_IS_E1x(bp)) {
6877                 /* configure PBF to work without PAUSE mtu 9000 */
6878                 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6879
6880                 /* update threshold */
6881                 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6882                 /* update init credit */
6883                 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6884
6885                 /* probe changes */
6886                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6887                 udelay(50);
6888                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6889         }
6890
6891         if (CNIC_SUPPORT(bp))
6892                 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6893
6894         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6895         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6896
6897         if (CHIP_IS_E1(bp)) {
6898                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6899                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6900         }
6901         bnx2x_init_block(bp, BLOCK_HC, init_phase);
6902
6903         bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6904
6905         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6906         /* init aeu_mask_attn_func_0/1:
6907          *  - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6908          *  - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6909          *             bits 4-7 are used for "per vn group attention" */
6910         val = IS_MF(bp) ? 0xF7 : 0x7;
6911         /* Enable DCBX attention for all but E1 */
6912         val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6913         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6914
6915         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6916
6917         if (!CHIP_IS_E1x(bp)) {
6918                 /* Bit-map indicating which L2 hdrs may appear after the
6919                  * basic Ethernet header
6920                  */
6921                 if (IS_MF_AFEX(bp))
6922                         REG_WR(bp, BP_PORT(bp) ?
6923                                NIG_REG_P1_HDRS_AFTER_BASIC :
6924                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
6925                 else
6926                         REG_WR(bp, BP_PORT(bp) ?
6927                                NIG_REG_P1_HDRS_AFTER_BASIC :
6928                                NIG_REG_P0_HDRS_AFTER_BASIC,
6929                                IS_MF_SD(bp) ? 7 : 6);
6930
6931                 if (CHIP_IS_E3(bp))
6932                         REG_WR(bp, BP_PORT(bp) ?
6933                                    NIG_REG_LLH1_MF_MODE :
6934                                    NIG_REG_LLH_MF_MODE, IS_MF(bp));
6935         }
6936         if (!CHIP_IS_E3(bp))
6937                 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
6938
6939         if (!CHIP_IS_E1(bp)) {
6940                 /* 0x2 disable mf_ov, 0x1 enable */
6941                 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
6942                        (IS_MF_SD(bp) ? 0x1 : 0x2));
6943
6944                 if (!CHIP_IS_E1x(bp)) {
6945                         val = 0;
6946                         switch (bp->mf_mode) {
6947                         case MULTI_FUNCTION_SD:
6948                                 val = 1;
6949                                 break;
6950                         case MULTI_FUNCTION_SI:
6951                         case MULTI_FUNCTION_AFEX:
6952                                 val = 2;
6953                                 break;
6954                         }
6955
6956                         REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
6957                                                   NIG_REG_LLH0_CLS_TYPE), val);
6958                 }
6959                 {
6960                         REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
6961                         REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
6962                         REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
6963                 }
6964         }
6965
6966
6967         /* If SPIO5 is set to generate interrupts, enable it for this port */
6968         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6969         if (val & MISC_SPIO_SPIO5) {
6970                 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6971                                        MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6972                 val = REG_RD(bp, reg_addr);
6973                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
6974                 REG_WR(bp, reg_addr, val);
6975         }
6976
6977         return 0;
6978 }
6979
6980 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
6981 {
6982         int reg;
6983         u32 wb_write[2];
6984
6985         if (CHIP_IS_E1(bp))
6986                 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
6987         else
6988                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
6989
6990         wb_write[0] = ONCHIP_ADDR1(addr);
6991         wb_write[1] = ONCHIP_ADDR2(addr);
6992         REG_WR_DMAE(bp, reg, wb_write, 2);
6993 }
6994
6995 static void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func,
6996                                    u8 idu_sb_id, bool is_Pf)
6997 {
6998         u32 data, ctl, cnt = 100;
6999         u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7000         u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7001         u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7002         u32 sb_bit =  1 << (idu_sb_id%32);
7003         u32 func_encode = func | (is_Pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7004         u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7005
7006         /* Not supported in BC mode */
7007         if (CHIP_INT_MODE_IS_BC(bp))
7008                 return;
7009
7010         data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7011                         << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7012                 IGU_REGULAR_CLEANUP_SET                         |
7013                 IGU_REGULAR_BCLEANUP;
7014
7015         ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7016               func_encode << IGU_CTRL_REG_FID_SHIFT             |
7017               IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7018
7019         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7020                          data, igu_addr_data);
7021         REG_WR(bp, igu_addr_data, data);
7022         mmiowb();
7023         barrier();
7024         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7025                           ctl, igu_addr_ctl);
7026         REG_WR(bp, igu_addr_ctl, ctl);
7027         mmiowb();
7028         barrier();
7029
7030         /* wait for clean up to finish */
7031         while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7032                 msleep(20);
7033
7034
7035         if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7036                 DP(NETIF_MSG_HW,
7037                    "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7038                           idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7039         }
7040 }
7041
7042 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7043 {
7044         bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7045 }
7046
7047 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7048 {
7049         u32 i, base = FUNC_ILT_BASE(func);
7050         for (i = base; i < base + ILT_PER_FUNC; i++)
7051                 bnx2x_ilt_wr(bp, i, 0);
7052 }
7053
7054
7055 static void bnx2x_init_searcher(struct bnx2x *bp)
7056 {
7057         int port = BP_PORT(bp);
7058         bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7059         /* T1 hash bits value determines the T1 number of entries */
7060         REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7061 }
7062
7063 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7064 {
7065         int rc;
7066         struct bnx2x_func_state_params func_params = {NULL};
7067         struct bnx2x_func_switch_update_params *switch_update_params =
7068                 &func_params.params.switch_update;
7069
7070         /* Prepare parameters for function state transitions */
7071         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7072         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7073
7074         func_params.f_obj = &bp->func_obj;
7075         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7076
7077         /* Function parameters */
7078         switch_update_params->suspend = suspend;
7079
7080         rc = bnx2x_func_state_change(bp, &func_params);
7081
7082         return rc;
7083 }
7084
7085 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7086 {
7087         int rc, i, port = BP_PORT(bp);
7088         int vlan_en = 0, mac_en[NUM_MACS];
7089
7090
7091         /* Close input from network */
7092         if (bp->mf_mode == SINGLE_FUNCTION) {
7093                 bnx2x_set_rx_filter(&bp->link_params, 0);
7094         } else {
7095                 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7096                                    NIG_REG_LLH0_FUNC_EN);
7097                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7098                           NIG_REG_LLH0_FUNC_EN, 0);
7099                 for (i = 0; i < NUM_MACS; i++) {
7100                         mac_en[i] = REG_RD(bp, port ?
7101                                              (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7102                                               4 * i) :
7103                                              (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7104                                               4 * i));
7105                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7106                                               4 * i) :
7107                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7108                 }
7109         }
7110
7111         /* Close BMC to host */
7112         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7113                NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7114
7115         /* Suspend Tx switching to the PF. Completion of this ramrod
7116          * further guarantees that all the packets of that PF / child
7117          * VFs in BRB were processed by the Parser, so it is safe to
7118          * change the NIC_MODE register.
7119          */
7120         rc = bnx2x_func_switch_update(bp, 1);
7121         if (rc) {
7122                 BNX2X_ERR("Can't suspend tx-switching!\n");
7123                 return rc;
7124         }
7125
7126         /* Change NIC_MODE register */
7127         REG_WR(bp, PRS_REG_NIC_MODE, 0);
7128
7129         /* Open input from network */
7130         if (bp->mf_mode == SINGLE_FUNCTION) {
7131                 bnx2x_set_rx_filter(&bp->link_params, 1);
7132         } else {
7133                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7134                           NIG_REG_LLH0_FUNC_EN, vlan_en);
7135                 for (i = 0; i < NUM_MACS; i++) {
7136                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7137                                               4 * i) :
7138                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7139                                   mac_en[i]);
7140                 }
7141         }
7142
7143         /* Enable BMC to host */
7144         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7145                NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7146
7147         /* Resume Tx switching to the PF */
7148         rc = bnx2x_func_switch_update(bp, 0);
7149         if (rc) {
7150                 BNX2X_ERR("Can't resume tx-switching!\n");
7151                 return rc;
7152         }
7153
7154         DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7155         return 0;
7156 }
7157
7158 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7159 {
7160         int rc;
7161
7162         bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7163
7164         if (CONFIGURE_NIC_MODE(bp)) {
7165                 /* Configrue searcher as part of function hw init */
7166                 bnx2x_init_searcher(bp);
7167
7168                 /* Reset NIC mode */
7169                 rc = bnx2x_reset_nic_mode(bp);
7170                 if (rc)
7171                         BNX2X_ERR("Can't change NIC mode!\n");
7172                 return rc;
7173         }
7174
7175         return 0;
7176 }
7177
7178 static int bnx2x_init_hw_func(struct bnx2x *bp)
7179 {
7180         int port = BP_PORT(bp);
7181         int func = BP_FUNC(bp);
7182         int init_phase = PHASE_PF0 + func;
7183         struct bnx2x_ilt *ilt = BP_ILT(bp);
7184         u16 cdu_ilt_start;
7185         u32 addr, val;
7186         u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7187         int i, main_mem_width, rc;
7188
7189         DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7190
7191         /* FLR cleanup - hmmm */
7192         if (!CHIP_IS_E1x(bp)) {
7193                 rc = bnx2x_pf_flr_clnup(bp);
7194                 if (rc)
7195                         return rc;
7196         }
7197
7198         /* set MSI reconfigure capability */
7199         if (bp->common.int_block == INT_BLOCK_HC) {
7200                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7201                 val = REG_RD(bp, addr);
7202                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7203                 REG_WR(bp, addr, val);
7204         }
7205
7206         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7207         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7208
7209         ilt = BP_ILT(bp);
7210         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7211
7212         for (i = 0; i < L2_ILT_LINES(bp); i++) {
7213                 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7214                 ilt->lines[cdu_ilt_start + i].page_mapping =
7215                         bp->context[i].cxt_mapping;
7216                 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7217         }
7218         bnx2x_ilt_init_op(bp, INITOP_SET);
7219
7220         if (!CONFIGURE_NIC_MODE(bp)) {
7221                 bnx2x_init_searcher(bp);
7222                 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7223                 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7224         } else {
7225                 /* Set NIC mode */
7226                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7227                 DP(NETIF_MSG_IFUP, "NIC MODE configrued\n");
7228
7229         }
7230
7231         if (!CHIP_IS_E1x(bp)) {
7232                 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7233
7234                 /* Turn on a single ISR mode in IGU if driver is going to use
7235                  * INT#x or MSI
7236                  */
7237                 if (!(bp->flags & USING_MSIX_FLAG))
7238                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7239                 /*
7240                  * Timers workaround bug: function init part.
7241                  * Need to wait 20msec after initializing ILT,
7242                  * needed to make sure there are no requests in
7243                  * one of the PXP internal queues with "old" ILT addresses
7244                  */
7245                 msleep(20);
7246                 /*
7247                  * Master enable - Due to WB DMAE writes performed before this
7248                  * register is re-initialized as part of the regular function
7249                  * init
7250                  */
7251                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7252                 /* Enable the function in IGU */
7253                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7254         }
7255
7256         bp->dmae_ready = 1;
7257
7258         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7259
7260         if (!CHIP_IS_E1x(bp))
7261                 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7262
7263         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7264         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7265         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7266         bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7267         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7268         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7269         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7270         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7271         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7272         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7273         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7274         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7275         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7276
7277         if (!CHIP_IS_E1x(bp))
7278                 REG_WR(bp, QM_REG_PF_EN, 1);
7279
7280         if (!CHIP_IS_E1x(bp)) {
7281                 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7282                 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7283                 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7284                 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7285         }
7286         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7287
7288         bnx2x_init_block(bp, BLOCK_TM, init_phase);
7289         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7290         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7291         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7292         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7293         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7294         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7295         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7296         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7297         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7298         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7299         if (!CHIP_IS_E1x(bp))
7300                 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7301
7302         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7303
7304         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7305
7306         if (!CHIP_IS_E1x(bp))
7307                 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7308
7309         if (IS_MF(bp)) {
7310                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7311                 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7312         }
7313
7314         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7315
7316         /* HC init per function */
7317         if (bp->common.int_block == INT_BLOCK_HC) {
7318                 if (CHIP_IS_E1H(bp)) {
7319                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7320
7321                         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7322                         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7323                 }
7324                 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7325
7326         } else {
7327                 int num_segs, sb_idx, prod_offset;
7328
7329                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7330
7331                 if (!CHIP_IS_E1x(bp)) {
7332                         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7333                         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7334                 }
7335
7336                 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7337
7338                 if (!CHIP_IS_E1x(bp)) {
7339                         int dsb_idx = 0;
7340                         /**
7341                          * Producer memory:
7342                          * E2 mode: address 0-135 match to the mapping memory;
7343                          * 136 - PF0 default prod; 137 - PF1 default prod;
7344                          * 138 - PF2 default prod; 139 - PF3 default prod;
7345                          * 140 - PF0 attn prod;    141 - PF1 attn prod;
7346                          * 142 - PF2 attn prod;    143 - PF3 attn prod;
7347                          * 144-147 reserved.
7348                          *
7349                          * E1.5 mode - In backward compatible mode;
7350                          * for non default SB; each even line in the memory
7351                          * holds the U producer and each odd line hold
7352                          * the C producer. The first 128 producers are for
7353                          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7354                          * producers are for the DSB for each PF.
7355                          * Each PF has five segments: (the order inside each
7356                          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7357                          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7358                          * 144-147 attn prods;
7359                          */
7360                         /* non-default-status-blocks */
7361                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7362                                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7363                         for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7364                                 prod_offset = (bp->igu_base_sb + sb_idx) *
7365                                         num_segs;
7366
7367                                 for (i = 0; i < num_segs; i++) {
7368                                         addr = IGU_REG_PROD_CONS_MEMORY +
7369                                                         (prod_offset + i) * 4;
7370                                         REG_WR(bp, addr, 0);
7371                                 }
7372                                 /* send consumer update with value 0 */
7373                                 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7374                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7375                                 bnx2x_igu_clear_sb(bp,
7376                                                    bp->igu_base_sb + sb_idx);
7377                         }
7378
7379                         /* default-status-blocks */
7380                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7381                                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7382
7383                         if (CHIP_MODE_IS_4_PORT(bp))
7384                                 dsb_idx = BP_FUNC(bp);
7385                         else
7386                                 dsb_idx = BP_VN(bp);
7387
7388                         prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7389                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
7390                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
7391
7392                         /*
7393                          * igu prods come in chunks of E1HVN_MAX (4) -
7394                          * does not matters what is the current chip mode
7395                          */
7396                         for (i = 0; i < (num_segs * E1HVN_MAX);
7397                              i += E1HVN_MAX) {
7398                                 addr = IGU_REG_PROD_CONS_MEMORY +
7399                                                         (prod_offset + i)*4;
7400                                 REG_WR(bp, addr, 0);
7401                         }
7402                         /* send consumer update with 0 */
7403                         if (CHIP_INT_MODE_IS_BC(bp)) {
7404                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7405                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7406                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7407                                              CSTORM_ID, 0, IGU_INT_NOP, 1);
7408                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7409                                              XSTORM_ID, 0, IGU_INT_NOP, 1);
7410                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7411                                              TSTORM_ID, 0, IGU_INT_NOP, 1);
7412                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7413                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
7414                         } else {
7415                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7416                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7417                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7418                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
7419                         }
7420                         bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7421
7422                         /* !!! these should become driver const once
7423                            rf-tool supports split-68 const */
7424                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
7425                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
7426                         REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
7427                         REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
7428                         REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
7429                         REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
7430                 }
7431         }
7432
7433         /* Reset PCIE errors for debug */
7434         REG_WR(bp, 0x2114, 0xffffffff);
7435         REG_WR(bp, 0x2120, 0xffffffff);
7436
7437         if (CHIP_IS_E1x(bp)) {
7438                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
7439                 main_mem_base = HC_REG_MAIN_MEMORY +
7440                                 BP_PORT(bp) * (main_mem_size * 4);
7441                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
7442                 main_mem_width = 8;
7443
7444                 val = REG_RD(bp, main_mem_prty_clr);
7445                 if (val)
7446                         DP(NETIF_MSG_HW,
7447                            "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
7448                            val);
7449
7450                 /* Clear "false" parity errors in MSI-X table */
7451                 for (i = main_mem_base;
7452                      i < main_mem_base + main_mem_size * 4;
7453                      i += main_mem_width) {
7454                         bnx2x_read_dmae(bp, i, main_mem_width / 4);
7455                         bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
7456                                          i, main_mem_width / 4);
7457                 }
7458                 /* Clear HC parity attention */
7459                 REG_RD(bp, main_mem_prty_clr);
7460         }
7461
7462 #ifdef BNX2X_STOP_ON_ERROR
7463         /* Enable STORMs SP logging */
7464         REG_WR8(bp, BAR_USTRORM_INTMEM +
7465                USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7466         REG_WR8(bp, BAR_TSTRORM_INTMEM +
7467                TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7468         REG_WR8(bp, BAR_CSTRORM_INTMEM +
7469                CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7470         REG_WR8(bp, BAR_XSTRORM_INTMEM +
7471                XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
7472 #endif
7473
7474         bnx2x_phy_probe(&bp->link_params);
7475
7476         return 0;
7477 }
7478
7479
7480 void bnx2x_free_mem_cnic(struct bnx2x *bp)
7481 {
7482         bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
7483
7484         if (!CHIP_IS_E1x(bp))
7485                 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7486                                sizeof(struct host_hc_status_block_e2));
7487         else
7488                 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7489                                sizeof(struct host_hc_status_block_e1x));
7490
7491         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7492 }
7493
7494 void bnx2x_free_mem(struct bnx2x *bp)
7495 {
7496         int i;
7497
7498         /* fastpath */
7499         bnx2x_free_fp_mem(bp);
7500         /* end of fastpath */
7501
7502         BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7503                        sizeof(struct host_sp_status_block));
7504
7505         BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7506                        bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7507
7508         BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7509                        sizeof(struct bnx2x_slowpath));
7510
7511         for (i = 0; i < L2_ILT_LINES(bp); i++)
7512                 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
7513                                bp->context[i].size);
7514         bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7515
7516         BNX2X_FREE(bp->ilt->lines);
7517
7518         BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7519
7520         BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7521                        BCM_PAGE_SIZE * NUM_EQ_PAGES);
7522 }
7523
7524 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
7525 {
7526         int num_groups;
7527         int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
7528
7529         /* number of queues for statistics is number of eth queues + FCoE */
7530         u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
7531
7532         /* Total number of FW statistics requests =
7533          * 1 for port stats + 1 for PF stats + potential 1 for FCoE stats +
7534          * num of queues
7535          */
7536         bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
7537
7538
7539         /* Request is built from stats_query_header and an array of
7540          * stats_query_cmd_group each of which contains
7541          * STATS_QUERY_CMD_COUNT rules. The real number or requests is
7542          * configured in the stats_query_header.
7543          */
7544         num_groups = ((bp->fw_stats_num) / STATS_QUERY_CMD_COUNT) +
7545                      (((bp->fw_stats_num) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
7546
7547         bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
7548                         num_groups * sizeof(struct stats_query_cmd_group);
7549
7550         /* Data for statistics requests + stats_conter
7551          *
7552          * stats_counter holds per-STORM counters that are incremented
7553          * when STORM has finished with the current request.
7554          *
7555          * memory for FCoE offloaded statistics are counted anyway,
7556          * even if they will not be sent.
7557          */
7558         bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
7559                 sizeof(struct per_pf_stats) +
7560                 sizeof(struct fcoe_statistics_params) +
7561                 sizeof(struct per_queue_stats) * num_queue_stats +
7562                 sizeof(struct stats_counter);
7563
7564         BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
7565                         bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7566
7567         /* Set shortcuts */
7568         bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
7569         bp->fw_stats_req_mapping = bp->fw_stats_mapping;
7570
7571         bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
7572                 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
7573
7574         bp->fw_stats_data_mapping = bp->fw_stats_mapping +
7575                                    bp->fw_stats_req_sz;
7576         return 0;
7577
7578 alloc_mem_err:
7579         BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7580                        bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7581         BNX2X_ERR("Can't allocate memory\n");
7582         return -ENOMEM;
7583 }
7584
7585 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
7586 {
7587         if (!CHIP_IS_E1x(bp))
7588                 /* size = the status block + ramrod buffers */
7589                 BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7590                                 sizeof(struct host_hc_status_block_e2));
7591         else
7592                 BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb,
7593                                 &bp->cnic_sb_mapping,
7594                                 sizeof(struct
7595                                        host_hc_status_block_e1x));
7596
7597         if (CONFIGURE_NIC_MODE(bp))
7598                 /* allocate searcher T2 table, as it wan't allocated before */
7599                 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7600
7601         /* write address to which L5 should insert its values */
7602         bp->cnic_eth_dev.addr_drv_info_to_mcp =
7603                 &bp->slowpath->drv_info_to_mcp;
7604
7605         if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
7606                 goto alloc_mem_err;
7607
7608         return 0;
7609
7610 alloc_mem_err:
7611         bnx2x_free_mem_cnic(bp);
7612         BNX2X_ERR("Can't allocate memory\n");
7613         return -ENOMEM;
7614 }
7615
7616 int bnx2x_alloc_mem(struct bnx2x *bp)
7617 {
7618         int i, allocated, context_size;
7619
7620         if (!CONFIGURE_NIC_MODE(bp))
7621                 /* allocate searcher T2 table */
7622                 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7623
7624         BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7625                         sizeof(struct host_sp_status_block));
7626
7627         BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7628                         sizeof(struct bnx2x_slowpath));
7629
7630         /* Allocated memory for FW statistics  */
7631         if (bnx2x_alloc_fw_stats_mem(bp))
7632                 goto alloc_mem_err;
7633
7634         /* Allocate memory for CDU context:
7635          * This memory is allocated separately and not in the generic ILT
7636          * functions because CDU differs in few aspects:
7637          * 1. There are multiple entities allocating memory for context -
7638          * 'regular' driver, CNIC and SRIOV driver. Each separately controls
7639          * its own ILT lines.
7640          * 2. Since CDU page-size is not a single 4KB page (which is the case
7641          * for the other ILT clients), to be efficient we want to support
7642          * allocation of sub-page-size in the last entry.
7643          * 3. Context pointers are used by the driver to pass to FW / update
7644          * the context (for the other ILT clients the pointers are used just to
7645          * free the memory during unload).
7646          */
7647         context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7648
7649         for (i = 0, allocated = 0; allocated < context_size; i++) {
7650                 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
7651                                           (context_size - allocated));
7652                 BNX2X_PCI_ALLOC(bp->context[i].vcxt,
7653                                 &bp->context[i].cxt_mapping,
7654                                 bp->context[i].size);
7655                 allocated += bp->context[i].size;
7656         }
7657         BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7658
7659         if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7660                 goto alloc_mem_err;
7661
7662         /* Slow path ring */
7663         BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7664
7665         /* EQ */
7666         BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7667                         BCM_PAGE_SIZE * NUM_EQ_PAGES);
7668
7669
7670         /* fastpath */
7671         /* need to be done at the end, since it's self adjusting to amount
7672          * of memory available for RSS queues
7673          */
7674         if (bnx2x_alloc_fp_mem(bp))
7675                 goto alloc_mem_err;
7676         return 0;
7677
7678 alloc_mem_err:
7679         bnx2x_free_mem(bp);
7680         BNX2X_ERR("Can't allocate memory\n");
7681         return -ENOMEM;
7682 }
7683
7684 /*
7685  * Init service functions
7686  */
7687
7688 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7689                       struct bnx2x_vlan_mac_obj *obj, bool set,
7690                       int mac_type, unsigned long *ramrod_flags)
7691 {
7692         int rc;
7693         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7694
7695         memset(&ramrod_param, 0, sizeof(ramrod_param));
7696
7697         /* Fill general parameters */
7698         ramrod_param.vlan_mac_obj = obj;
7699         ramrod_param.ramrod_flags = *ramrod_flags;
7700
7701         /* Fill a user request section if needed */
7702         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7703                 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7704
7705                 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7706
7707                 /* Set the command: ADD or DEL */
7708                 if (set)
7709                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7710                 else
7711                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7712         }
7713
7714         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7715
7716         if (rc == -EEXIST) {
7717                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
7718                 /* do not treat adding same MAC as error */
7719                 rc = 0;
7720         } else if (rc < 0)
7721                 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7722
7723         return rc;
7724 }
7725
7726 int bnx2x_del_all_macs(struct bnx2x *bp,
7727                        struct bnx2x_vlan_mac_obj *mac_obj,
7728                        int mac_type, bool wait_for_comp)
7729 {
7730         int rc;
7731         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
7732
7733         /* Wait for completion of requested */
7734         if (wait_for_comp)
7735                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7736
7737         /* Set the mac type of addresses we want to clear */
7738         __set_bit(mac_type, &vlan_mac_flags);
7739
7740         rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7741         if (rc < 0)
7742                 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7743
7744         return rc;
7745 }
7746
7747 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7748 {
7749         unsigned long ramrod_flags = 0;
7750
7751         if (is_zero_ether_addr(bp->dev->dev_addr) &&
7752             (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
7753                 DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
7754                    "Ignoring Zero MAC for STORAGE SD mode\n");
7755                 return 0;
7756         }
7757
7758         DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7759
7760         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7761         /* Eth MAC is set on RSS leading client (fp[0]) */
7762         return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->sp_objs->mac_obj,
7763                                  set, BNX2X_ETH_MAC, &ramrod_flags);
7764 }
7765
7766 int bnx2x_setup_leading(struct bnx2x *bp)
7767 {
7768         return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7769 }
7770
7771 /**
7772  * bnx2x_set_int_mode - configure interrupt mode
7773  *
7774  * @bp:         driver handle
7775  *
7776  * In case of MSI-X it will also try to enable MSI-X.
7777  */
7778 void bnx2x_set_int_mode(struct bnx2x *bp)
7779 {
7780         switch (int_mode) {
7781         case INT_MODE_MSI:
7782                 bnx2x_enable_msi(bp);
7783                 /* falling through... */
7784         case INT_MODE_INTx:
7785                 bp->num_ethernet_queues = 1;
7786                 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
7787                 BNX2X_DEV_INFO("set number of queues to 1\n");
7788                 break;
7789         default:
7790                 /* if we can't use MSI-X we only need one fp,
7791                  * so try to enable MSI-X with the requested number of fp's
7792                  * and fallback to MSI or legacy INTx with one fp
7793                  */
7794                 if (bnx2x_enable_msix(bp) ||
7795                     bp->flags & USING_SINGLE_MSIX_FLAG) {
7796                         /* failed to enable multiple MSI-X */
7797                         BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
7798                                        bp->num_queues,
7799                                        1 + bp->num_cnic_queues);
7800
7801                         bp->num_queues = 1 + bp->num_cnic_queues;
7802
7803                         /* Try to enable MSI */
7804                         if (!(bp->flags & USING_SINGLE_MSIX_FLAG) &&
7805                             !(bp->flags & DISABLE_MSI_FLAG))
7806                                 bnx2x_enable_msi(bp);
7807                 }
7808                 break;
7809         }
7810 }
7811
7812 /* must be called prioir to any HW initializations */
7813 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7814 {
7815         return L2_ILT_LINES(bp);
7816 }
7817
7818 void bnx2x_ilt_set_info(struct bnx2x *bp)
7819 {
7820         struct ilt_client_info *ilt_client;
7821         struct bnx2x_ilt *ilt = BP_ILT(bp);
7822         u16 line = 0;
7823
7824         ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7825         DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7826
7827         /* CDU */
7828         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7829         ilt_client->client_num = ILT_CLIENT_CDU;
7830         ilt_client->page_size = CDU_ILT_PAGE_SZ;
7831         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7832         ilt_client->start = line;
7833         line += bnx2x_cid_ilt_lines(bp);
7834
7835         if (CNIC_SUPPORT(bp))
7836                 line += CNIC_ILT_LINES;
7837         ilt_client->end = line - 1;
7838
7839         DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7840            ilt_client->start,
7841            ilt_client->end,
7842            ilt_client->page_size,
7843            ilt_client->flags,
7844            ilog2(ilt_client->page_size >> 12));
7845
7846         /* QM */
7847         if (QM_INIT(bp->qm_cid_count)) {
7848                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
7849                 ilt_client->client_num = ILT_CLIENT_QM;
7850                 ilt_client->page_size = QM_ILT_PAGE_SZ;
7851                 ilt_client->flags = 0;
7852                 ilt_client->start = line;
7853
7854                 /* 4 bytes for each cid */
7855                 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7856                                                          QM_ILT_PAGE_SZ);
7857
7858                 ilt_client->end = line - 1;
7859
7860                 DP(NETIF_MSG_IFUP,
7861                    "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7862                    ilt_client->start,
7863                    ilt_client->end,
7864                    ilt_client->page_size,
7865                    ilt_client->flags,
7866                    ilog2(ilt_client->page_size >> 12));
7867
7868         }
7869
7870         if (CNIC_SUPPORT(bp)) {
7871                 /* SRC */
7872                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7873                 ilt_client->client_num = ILT_CLIENT_SRC;
7874                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
7875                 ilt_client->flags = 0;
7876                 ilt_client->start = line;
7877                 line += SRC_ILT_LINES;
7878                 ilt_client->end = line - 1;
7879
7880                 DP(NETIF_MSG_IFUP,
7881                    "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7882                    ilt_client->start,
7883                    ilt_client->end,
7884                    ilt_client->page_size,
7885                    ilt_client->flags,
7886                    ilog2(ilt_client->page_size >> 12));
7887
7888                 /* TM */
7889                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
7890                 ilt_client->client_num = ILT_CLIENT_TM;
7891                 ilt_client->page_size = TM_ILT_PAGE_SZ;
7892                 ilt_client->flags = 0;
7893                 ilt_client->start = line;
7894                 line += TM_ILT_LINES;
7895                 ilt_client->end = line - 1;
7896
7897                 DP(NETIF_MSG_IFUP,
7898                    "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
7899                    ilt_client->start,
7900                    ilt_client->end,
7901                    ilt_client->page_size,
7902                    ilt_client->flags,
7903                    ilog2(ilt_client->page_size >> 12));
7904         }
7905
7906         BUG_ON(line > ILT_MAX_LINES);
7907 }
7908
7909 /**
7910  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7911  *
7912  * @bp:                 driver handle
7913  * @fp:                 pointer to fastpath
7914  * @init_params:        pointer to parameters structure
7915  *
7916  * parameters configured:
7917  *      - HC configuration
7918  *      - Queue's CDU context
7919  */
7920 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7921         struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
7922 {
7923
7924         u8 cos;
7925         int cxt_index, cxt_offset;
7926
7927         /* FCoE Queue uses Default SB, thus has no HC capabilities */
7928         if (!IS_FCOE_FP(fp)) {
7929                 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
7930                 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
7931
7932                 /* If HC is supporterd, enable host coalescing in the transition
7933                  * to INIT state.
7934                  */
7935                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
7936                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
7937
7938                 /* HC rate */
7939                 init_params->rx.hc_rate = bp->rx_ticks ?
7940                         (1000000 / bp->rx_ticks) : 0;
7941                 init_params->tx.hc_rate = bp->tx_ticks ?
7942                         (1000000 / bp->tx_ticks) : 0;
7943
7944                 /* FW SB ID */
7945                 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
7946                         fp->fw_sb_id;
7947
7948                 /*
7949                  * CQ index among the SB indices: FCoE clients uses the default
7950                  * SB, therefore it's different.
7951                  */
7952                 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
7953                 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
7954         }
7955
7956         /* set maximum number of COSs supported by this queue */
7957         init_params->max_cos = fp->max_cos;
7958
7959         DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
7960             fp->index, init_params->max_cos);
7961
7962         /* set the context pointers queue object */
7963         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
7964                 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
7965                 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
7966                                 ILT_PAGE_CIDS);
7967                 init_params->cxts[cos] =
7968                         &bp->context[cxt_index].vcxt[cxt_offset].eth;
7969         }
7970 }
7971
7972 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7973                         struct bnx2x_queue_state_params *q_params,
7974                         struct bnx2x_queue_setup_tx_only_params *tx_only_params,
7975                         int tx_index, bool leading)
7976 {
7977         memset(tx_only_params, 0, sizeof(*tx_only_params));
7978
7979         /* Set the command */
7980         q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
7981
7982         /* Set tx-only QUEUE flags: don't zero statistics */
7983         tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
7984
7985         /* choose the index of the cid to send the slow path on */
7986         tx_only_params->cid_index = tx_index;
7987
7988         /* Set general TX_ONLY_SETUP parameters */
7989         bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
7990
7991         /* Set Tx TX_ONLY_SETUP parameters */
7992         bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
7993
7994         DP(NETIF_MSG_IFUP,
7995            "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
7996            tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
7997            q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
7998            tx_only_params->gen_params.spcl_id, tx_only_params->flags);
7999
8000         /* send the ramrod */
8001         return bnx2x_queue_state_change(bp, q_params);
8002 }
8003
8004
8005 /**
8006  * bnx2x_setup_queue - setup queue
8007  *
8008  * @bp:         driver handle
8009  * @fp:         pointer to fastpath
8010  * @leading:    is leading
8011  *
8012  * This function performs 2 steps in a Queue state machine
8013  *      actually: 1) RESET->INIT 2) INIT->SETUP
8014  */
8015
8016 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8017                        bool leading)
8018 {
8019         struct bnx2x_queue_state_params q_params = {NULL};
8020         struct bnx2x_queue_setup_params *setup_params =
8021                                                 &q_params.params.setup;
8022         struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8023                                                 &q_params.params.tx_only;
8024         int rc;
8025         u8 tx_index;
8026
8027         DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8028
8029         /* reset IGU state skip FCoE L2 queue */
8030         if (!IS_FCOE_FP(fp))
8031                 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8032                              IGU_INT_ENABLE, 0);
8033
8034         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8035         /* We want to wait for completion in this context */
8036         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8037
8038         /* Prepare the INIT parameters */
8039         bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8040
8041         /* Set the command */
8042         q_params.cmd = BNX2X_Q_CMD_INIT;
8043
8044         /* Change the state to INIT */
8045         rc = bnx2x_queue_state_change(bp, &q_params);
8046         if (rc) {
8047                 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8048                 return rc;
8049         }
8050
8051         DP(NETIF_MSG_IFUP, "init complete\n");
8052
8053
8054         /* Now move the Queue to the SETUP state... */
8055         memset(setup_params, 0, sizeof(*setup_params));
8056
8057         /* Set QUEUE flags */
8058         setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8059
8060         /* Set general SETUP parameters */
8061         bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8062                                 FIRST_TX_COS_INDEX);
8063
8064         bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8065                             &setup_params->rxq_params);
8066
8067         bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8068                            FIRST_TX_COS_INDEX);
8069
8070         /* Set the command */
8071         q_params.cmd = BNX2X_Q_CMD_SETUP;
8072
8073         if (IS_FCOE_FP(fp))
8074                 bp->fcoe_init = true;
8075
8076         /* Change the state to SETUP */
8077         rc = bnx2x_queue_state_change(bp, &q_params);
8078         if (rc) {
8079                 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8080                 return rc;
8081         }
8082
8083         /* loop through the relevant tx-only indices */
8084         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8085               tx_index < fp->max_cos;
8086               tx_index++) {
8087
8088                 /* prepare and send tx-only ramrod*/
8089                 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8090                                           tx_only_params, tx_index, leading);
8091                 if (rc) {
8092                         BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8093                                   fp->index, tx_index);
8094                         return rc;
8095                 }
8096         }
8097
8098         return rc;
8099 }
8100
8101 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8102 {
8103         struct bnx2x_fastpath *fp = &bp->fp[index];
8104         struct bnx2x_fp_txdata *txdata;
8105         struct bnx2x_queue_state_params q_params = {NULL};
8106         int rc, tx_index;
8107
8108         DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8109
8110         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8111         /* We want to wait for completion in this context */
8112         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8113
8114
8115         /* close tx-only connections */
8116         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8117              tx_index < fp->max_cos;
8118              tx_index++){
8119
8120                 /* ascertain this is a normal queue*/
8121                 txdata = fp->txdata_ptr[tx_index];
8122
8123                 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8124                                                         txdata->txq_index);
8125
8126                 /* send halt terminate on tx-only connection */
8127                 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8128                 memset(&q_params.params.terminate, 0,
8129                        sizeof(q_params.params.terminate));
8130                 q_params.params.terminate.cid_index = tx_index;
8131
8132                 rc = bnx2x_queue_state_change(bp, &q_params);
8133                 if (rc)
8134                         return rc;
8135
8136                 /* send halt terminate on tx-only connection */
8137                 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8138                 memset(&q_params.params.cfc_del, 0,
8139                        sizeof(q_params.params.cfc_del));
8140                 q_params.params.cfc_del.cid_index = tx_index;
8141                 rc = bnx2x_queue_state_change(bp, &q_params);
8142                 if (rc)
8143                         return rc;
8144         }
8145         /* Stop the primary connection: */
8146         /* ...halt the connection */
8147         q_params.cmd = BNX2X_Q_CMD_HALT;
8148         rc = bnx2x_queue_state_change(bp, &q_params);
8149         if (rc)
8150                 return rc;
8151
8152         /* ...terminate the connection */
8153         q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8154         memset(&q_params.params.terminate, 0,
8155                sizeof(q_params.params.terminate));
8156         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8157         rc = bnx2x_queue_state_change(bp, &q_params);
8158         if (rc)
8159                 return rc;
8160         /* ...delete cfc entry */
8161         q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8162         memset(&q_params.params.cfc_del, 0,
8163                sizeof(q_params.params.cfc_del));
8164         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8165         return bnx2x_queue_state_change(bp, &q_params);
8166 }
8167
8168
8169 static void bnx2x_reset_func(struct bnx2x *bp)
8170 {
8171         int port = BP_PORT(bp);
8172         int func = BP_FUNC(bp);
8173         int i;
8174
8175         /* Disable the function in the FW */
8176         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8177         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8178         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8179         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8180
8181         /* FP SBs */
8182         for_each_eth_queue(bp, i) {
8183                 struct bnx2x_fastpath *fp = &bp->fp[i];
8184                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8185                            CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8186                            SB_DISABLED);
8187         }
8188
8189         if (CNIC_LOADED(bp))
8190                 /* CNIC SB */
8191                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8192                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8193                         (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8194
8195         /* SP SB */
8196         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8197                    CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8198                    SB_DISABLED);
8199
8200         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8201                 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8202                        0);
8203
8204         /* Configure IGU */
8205         if (bp->common.int_block == INT_BLOCK_HC) {
8206                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8207                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8208         } else {
8209                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8210                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8211         }
8212
8213         if (CNIC_LOADED(bp)) {
8214                 /* Disable Timer scan */
8215                 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8216                 /*
8217                  * Wait for at least 10ms and up to 2 second for the timers
8218                  * scan to complete
8219                  */
8220                 for (i = 0; i < 200; i++) {
8221                         msleep(10);
8222                         if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8223                                 break;
8224                 }
8225         }
8226         /* Clear ILT */
8227         bnx2x_clear_func_ilt(bp, func);
8228
8229         /* Timers workaround bug for E2: if this is vnic-3,
8230          * we need to set the entire ilt range for this timers.
8231          */
8232         if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8233                 struct ilt_client_info ilt_cli;
8234                 /* use dummy TM client */
8235                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8236                 ilt_cli.start = 0;
8237                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8238                 ilt_cli.client_num = ILT_CLIENT_TM;
8239
8240                 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8241         }
8242
8243         /* this assumes that reset_port() called before reset_func()*/
8244         if (!CHIP_IS_E1x(bp))
8245                 bnx2x_pf_disable(bp);
8246
8247         bp->dmae_ready = 0;
8248 }
8249
8250 static void bnx2x_reset_port(struct bnx2x *bp)
8251 {
8252         int port = BP_PORT(bp);
8253         u32 val;
8254
8255         /* Reset physical Link */
8256         bnx2x__link_reset(bp);
8257
8258         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8259
8260         /* Do not rcv packets to BRB */
8261         REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8262         /* Do not direct rcv packets that are not for MCP to the BRB */
8263         REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8264                            NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8265
8266         /* Configure AEU */
8267         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8268
8269         msleep(100);
8270         /* Check for BRB port occupancy */
8271         val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8272         if (val)
8273                 DP(NETIF_MSG_IFDOWN,
8274                    "BRB1 is not empty  %d blocks are occupied\n", val);
8275
8276         /* TODO: Close Doorbell port? */
8277 }
8278
8279 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8280 {
8281         struct bnx2x_func_state_params func_params = {NULL};
8282
8283         /* Prepare parameters for function state transitions */
8284         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8285
8286         func_params.f_obj = &bp->func_obj;
8287         func_params.cmd = BNX2X_F_CMD_HW_RESET;
8288
8289         func_params.params.hw_init.load_phase = load_code;
8290
8291         return bnx2x_func_state_change(bp, &func_params);
8292 }
8293
8294 static int bnx2x_func_stop(struct bnx2x *bp)
8295 {
8296         struct bnx2x_func_state_params func_params = {NULL};
8297         int rc;
8298
8299         /* Prepare parameters for function state transitions */
8300         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8301         func_params.f_obj = &bp->func_obj;
8302         func_params.cmd = BNX2X_F_CMD_STOP;
8303
8304         /*
8305          * Try to stop the function the 'good way'. If fails (in case
8306          * of a parity error during bnx2x_chip_cleanup()) and we are
8307          * not in a debug mode, perform a state transaction in order to
8308          * enable further HW_RESET transaction.
8309          */
8310         rc = bnx2x_func_state_change(bp, &func_params);
8311         if (rc) {
8312 #ifdef BNX2X_STOP_ON_ERROR
8313                 return rc;
8314 #else
8315                 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8316                 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8317                 return bnx2x_func_state_change(bp, &func_params);
8318 #endif
8319         }
8320
8321         return 0;
8322 }
8323
8324 /**
8325  * bnx2x_send_unload_req - request unload mode from the MCP.
8326  *
8327  * @bp:                 driver handle
8328  * @unload_mode:        requested function's unload mode
8329  *
8330  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8331  */
8332 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8333 {
8334         u32 reset_code = 0;
8335         int port = BP_PORT(bp);
8336
8337         /* Select the UNLOAD request mode */
8338         if (unload_mode == UNLOAD_NORMAL)
8339                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8340
8341         else if (bp->flags & NO_WOL_FLAG)
8342                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8343
8344         else if (bp->wol) {
8345                 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8346                 u8 *mac_addr = bp->dev->dev_addr;
8347                 u32 val;
8348                 u16 pmc;
8349
8350                 /* The mac address is written to entries 1-4 to
8351                  * preserve entry 0 which is used by the PMF
8352                  */
8353                 u8 entry = (BP_VN(bp) + 1)*8;
8354
8355                 val = (mac_addr[0] << 8) | mac_addr[1];
8356                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8357
8358                 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8359                       (mac_addr[4] << 8) | mac_addr[5];
8360                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8361
8362                 /* Enable the PME and clear the status */
8363                 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
8364                 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8365                 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
8366
8367                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8368
8369         } else
8370                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8371
8372         /* Send the request to the MCP */
8373         if (!BP_NOMCP(bp))
8374                 reset_code = bnx2x_fw_command(bp, reset_code, 0);
8375         else {
8376                 int path = BP_PATH(bp);
8377
8378                 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8379                    path, load_count[path][0], load_count[path][1],
8380                    load_count[path][2]);
8381                 load_count[path][0]--;
8382                 load_count[path][1 + port]--;
8383                 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8384                    path, load_count[path][0], load_count[path][1],
8385                    load_count[path][2]);
8386                 if (load_count[path][0] == 0)
8387                         reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8388                 else if (load_count[path][1 + port] == 0)
8389                         reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8390                 else
8391                         reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8392         }
8393
8394         return reset_code;
8395 }
8396
8397 /**
8398  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8399  *
8400  * @bp:         driver handle
8401  * @keep_link:          true iff link should be kept up
8402  */
8403 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8404 {
8405         u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8406
8407         /* Report UNLOAD_DONE to MCP */
8408         if (!BP_NOMCP(bp))
8409                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8410 }
8411
8412 static int bnx2x_func_wait_started(struct bnx2x *bp)
8413 {
8414         int tout = 50;
8415         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8416
8417         if (!bp->port.pmf)
8418                 return 0;
8419
8420         /*
8421          * (assumption: No Attention from MCP at this stage)
8422          * PMF probably in the middle of TXdisable/enable transaction
8423          * 1. Sync IRS for default SB
8424          * 2. Sync SP queue - this guarantes us that attention handling started
8425          * 3. Wait, that TXdisable/enable transaction completes
8426          *
8427          * 1+2 guranty that if DCBx attention was scheduled it already changed
8428          * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
8429          * received complettion for the transaction the state is TX_STOPPED.
8430          * State will return to STARTED after completion of TX_STOPPED-->STARTED
8431          * transaction.
8432          */
8433
8434         /* make sure default SB ISR is done */
8435         if (msix)
8436                 synchronize_irq(bp->msix_table[0].vector);
8437         else
8438                 synchronize_irq(bp->pdev->irq);
8439
8440         flush_workqueue(bnx2x_wq);
8441
8442         while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8443                                 BNX2X_F_STATE_STARTED && tout--)
8444                 msleep(20);
8445
8446         if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8447                                                 BNX2X_F_STATE_STARTED) {
8448 #ifdef BNX2X_STOP_ON_ERROR
8449                 BNX2X_ERR("Wrong function state\n");
8450                 return -EBUSY;
8451 #else
8452                 /*
8453                  * Failed to complete the transaction in a "good way"
8454                  * Force both transactions with CLR bit
8455                  */
8456                 struct bnx2x_func_state_params func_params = {NULL};
8457
8458                 DP(NETIF_MSG_IFDOWN,
8459                    "Hmmm... unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
8460
8461                 func_params.f_obj = &bp->func_obj;
8462                 __set_bit(RAMROD_DRV_CLR_ONLY,
8463                                         &func_params.ramrod_flags);
8464
8465                 /* STARTED-->TX_ST0PPED */
8466                 func_params.cmd = BNX2X_F_CMD_TX_STOP;
8467                 bnx2x_func_state_change(bp, &func_params);
8468
8469                 /* TX_ST0PPED-->STARTED */
8470                 func_params.cmd = BNX2X_F_CMD_TX_START;
8471                 return bnx2x_func_state_change(bp, &func_params);
8472 #endif
8473         }
8474
8475         return 0;
8476 }
8477
8478 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
8479 {
8480         int port = BP_PORT(bp);
8481         int i, rc = 0;
8482         u8 cos;
8483         struct bnx2x_mcast_ramrod_params rparam = {NULL};
8484         u32 reset_code;
8485
8486         /* Wait until tx fastpath tasks complete */
8487         for_each_tx_queue(bp, i) {
8488                 struct bnx2x_fastpath *fp = &bp->fp[i];
8489
8490                 for_each_cos_in_tx_queue(fp, cos)
8491                         rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
8492 #ifdef BNX2X_STOP_ON_ERROR
8493                 if (rc)
8494                         return;
8495 #endif
8496         }
8497
8498         /* Give HW time to discard old tx messages */
8499         usleep_range(1000, 1000);
8500
8501         /* Clean all ETH MACs */
8502         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
8503                                 false);
8504         if (rc < 0)
8505                 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
8506
8507         /* Clean up UC list  */
8508         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
8509                                 true);
8510         if (rc < 0)
8511                 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
8512                           rc);
8513
8514         /* Disable LLH */
8515         if (!CHIP_IS_E1(bp))
8516                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
8517
8518         /* Set "drop all" (stop Rx).
8519          * We need to take a netif_addr_lock() here in order to prevent
8520          * a race between the completion code and this code.
8521          */
8522         netif_addr_lock_bh(bp->dev);
8523         /* Schedule the rx_mode command */
8524         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
8525                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
8526         else
8527                 bnx2x_set_storm_rx_mode(bp);
8528
8529         /* Cleanup multicast configuration */
8530         rparam.mcast_obj = &bp->mcast_obj;
8531         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
8532         if (rc < 0)
8533                 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8534
8535         netif_addr_unlock_bh(bp->dev);
8536
8537
8538
8539         /*
8540          * Send the UNLOAD_REQUEST to the MCP. This will return if
8541          * this function should perform FUNC, PORT or COMMON HW
8542          * reset.
8543          */
8544         reset_code = bnx2x_send_unload_req(bp, unload_mode);
8545
8546         /*
8547          * (assumption: No Attention from MCP at this stage)
8548          * PMF probably in the middle of TXdisable/enable transaction
8549          */
8550         rc = bnx2x_func_wait_started(bp);
8551         if (rc) {
8552                 BNX2X_ERR("bnx2x_func_wait_started failed\n");
8553 #ifdef BNX2X_STOP_ON_ERROR
8554                 return;
8555 #endif
8556         }
8557
8558         /* Close multi and leading connections
8559          * Completions for ramrods are collected in a synchronous way
8560          */
8561         for_each_eth_queue(bp, i)
8562                 if (bnx2x_stop_queue(bp, i))
8563 #ifdef BNX2X_STOP_ON_ERROR
8564                         return;
8565 #else
8566                         goto unload_error;
8567 #endif
8568
8569         if (CNIC_LOADED(bp)) {
8570                 for_each_cnic_queue(bp, i)
8571                         if (bnx2x_stop_queue(bp, i))
8572 #ifdef BNX2X_STOP_ON_ERROR
8573                                 return;
8574 #else
8575                                 goto unload_error;
8576 #endif
8577         }
8578
8579         /* If SP settings didn't get completed so far - something
8580          * very wrong has happen.
8581          */
8582         if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8583                 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8584
8585 #ifndef BNX2X_STOP_ON_ERROR
8586 unload_error:
8587 #endif
8588         rc = bnx2x_func_stop(bp);
8589         if (rc) {
8590                 BNX2X_ERR("Function stop failed!\n");
8591 #ifdef BNX2X_STOP_ON_ERROR
8592                 return;
8593 #endif
8594         }
8595
8596         /* Disable HW interrupts, NAPI */
8597         bnx2x_netif_stop(bp, 1);
8598         /* Delete all NAPI objects */
8599         bnx2x_del_all_napi(bp);
8600         if (CNIC_LOADED(bp))
8601                 bnx2x_del_all_napi_cnic(bp);
8602
8603         /* Release IRQs */
8604         bnx2x_free_irq(bp);
8605
8606         /* Reset the chip */
8607         rc = bnx2x_reset_hw(bp, reset_code);
8608         if (rc)
8609                 BNX2X_ERR("HW_RESET failed\n");
8610
8611
8612         /* Report UNLOAD_DONE to MCP */
8613         bnx2x_send_unload_done(bp, keep_link);
8614 }
8615
8616 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8617 {
8618         u32 val;
8619
8620         DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
8621
8622         if (CHIP_IS_E1(bp)) {
8623                 int port = BP_PORT(bp);
8624                 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8625                         MISC_REG_AEU_MASK_ATTN_FUNC_0;
8626
8627                 val = REG_RD(bp, addr);
8628                 val &= ~(0x300);
8629                 REG_WR(bp, addr, val);
8630         } else {
8631                 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8632                 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8633                          MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8634                 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8635         }
8636 }
8637
8638 /* Close gates #2, #3 and #4: */
8639 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8640 {
8641         u32 val;
8642
8643         /* Gates #2 and #4a are closed/opened for "not E1" only */
8644         if (!CHIP_IS_E1(bp)) {
8645                 /* #4 */
8646                 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8647                 /* #2 */
8648                 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8649         }
8650
8651         /* #3 */
8652         if (CHIP_IS_E1x(bp)) {
8653                 /* Prevent interrupts from HC on both ports */
8654                 val = REG_RD(bp, HC_REG_CONFIG_1);
8655                 REG_WR(bp, HC_REG_CONFIG_1,
8656                        (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8657                        (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8658
8659                 val = REG_RD(bp, HC_REG_CONFIG_0);
8660                 REG_WR(bp, HC_REG_CONFIG_0,
8661                        (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8662                        (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8663         } else {
8664                 /* Prevent incomming interrupts in IGU */
8665                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8666
8667                 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8668                        (!close) ?
8669                        (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8670                        (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8671         }
8672
8673         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
8674                 close ? "closing" : "opening");
8675         mmiowb();
8676 }
8677
8678 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
8679
8680 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8681 {
8682         /* Do some magic... */
8683         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8684         *magic_val = val & SHARED_MF_CLP_MAGIC;
8685         MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8686 }
8687
8688 /**
8689  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8690  *
8691  * @bp:         driver handle
8692  * @magic_val:  old value of the `magic' bit.
8693  */
8694 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8695 {
8696         /* Restore the `magic' bit value... */
8697         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8698         MF_CFG_WR(bp, shared_mf_config.clp_mb,
8699                 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8700 }
8701
8702 /**
8703  * bnx2x_reset_mcp_prep - prepare for MCP reset.
8704  *
8705  * @bp:         driver handle
8706  * @magic_val:  old value of 'magic' bit.
8707  *
8708  * Takes care of CLP configurations.
8709  */
8710 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8711 {
8712         u32 shmem;
8713         u32 validity_offset;
8714
8715         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
8716
8717         /* Set `magic' bit in order to save MF config */
8718         if (!CHIP_IS_E1(bp))
8719                 bnx2x_clp_reset_prep(bp, magic_val);
8720
8721         /* Get shmem offset */
8722         shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8723         validity_offset = offsetof(struct shmem_region, validity_map[0]);
8724
8725         /* Clear validity map flags */
8726         if (shmem > 0)
8727                 REG_WR(bp, shmem + validity_offset, 0);
8728 }
8729
8730 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
8731 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
8732
8733 /**
8734  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
8735  *
8736  * @bp: driver handle
8737  */
8738 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
8739 {
8740         /* special handling for emulation and FPGA,
8741            wait 10 times longer */
8742         if (CHIP_REV_IS_SLOW(bp))
8743                 msleep(MCP_ONE_TIMEOUT*10);
8744         else
8745                 msleep(MCP_ONE_TIMEOUT);
8746 }
8747
8748 /*
8749  * initializes bp->common.shmem_base and waits for validity signature to appear
8750  */
8751 static int bnx2x_init_shmem(struct bnx2x *bp)
8752 {
8753         int cnt = 0;
8754         u32 val = 0;
8755
8756         do {
8757                 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8758                 if (bp->common.shmem_base) {
8759                         val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8760                         if (val & SHR_MEM_VALIDITY_MB)
8761                                 return 0;
8762                 }
8763
8764                 bnx2x_mcp_wait_one(bp);
8765
8766         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8767
8768         BNX2X_ERR("BAD MCP validity signature\n");
8769
8770         return -ENODEV;
8771 }
8772
8773 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8774 {
8775         int rc = bnx2x_init_shmem(bp);
8776
8777         /* Restore the `magic' bit value */
8778         if (!CHIP_IS_E1(bp))
8779                 bnx2x_clp_reset_done(bp, magic_val);
8780
8781         return rc;
8782 }
8783
8784 static void bnx2x_pxp_prep(struct bnx2x *bp)
8785 {
8786         if (!CHIP_IS_E1(bp)) {
8787                 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8788                 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8789                 mmiowb();
8790         }
8791 }
8792
8793 /*
8794  * Reset the whole chip except for:
8795  *      - PCIE core
8796  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
8797  *              one reset bit)
8798  *      - IGU
8799  *      - MISC (including AEU)
8800  *      - GRC
8801  *      - RBCN, RBCP
8802  */
8803 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
8804 {
8805         u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
8806         u32 global_bits2, stay_reset2;
8807
8808         /*
8809          * Bits that have to be set in reset_mask2 if we want to reset 'global'
8810          * (per chip) blocks.
8811          */
8812         global_bits2 =
8813                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8814                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8815
8816         /* Don't reset the following blocks */
8817         not_reset_mask1 =
8818                 MISC_REGISTERS_RESET_REG_1_RST_HC |
8819                 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8820                 MISC_REGISTERS_RESET_REG_1_RST_PXP;
8821
8822         not_reset_mask2 =
8823                 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8824                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8825                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8826                 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8827                 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8828                 MISC_REGISTERS_RESET_REG_2_RST_GRC  |
8829                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8830                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8831                 MISC_REGISTERS_RESET_REG_2_RST_ATC |
8832                 MISC_REGISTERS_RESET_REG_2_PGLC;
8833
8834         /*
8835          * Keep the following blocks in reset:
8836          *  - all xxMACs are handled by the bnx2x_link code.
8837          */
8838         stay_reset2 =
8839                 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8840                 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8841                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8842                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8843                 MISC_REGISTERS_RESET_REG_2_UMAC0 |
8844                 MISC_REGISTERS_RESET_REG_2_UMAC1 |
8845                 MISC_REGISTERS_RESET_REG_2_XMAC |
8846                 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8847
8848         /* Full reset masks according to the chip */
8849         reset_mask1 = 0xffffffff;
8850
8851         if (CHIP_IS_E1(bp))
8852                 reset_mask2 = 0xffff;
8853         else if (CHIP_IS_E1H(bp))
8854                 reset_mask2 = 0x1ffff;
8855         else if (CHIP_IS_E2(bp))
8856                 reset_mask2 = 0xfffff;
8857         else /* CHIP_IS_E3 */
8858                 reset_mask2 = 0x3ffffff;
8859
8860         /* Don't reset global blocks unless we need to */
8861         if (!global)
8862                 reset_mask2 &= ~global_bits2;
8863
8864         /*
8865          * In case of attention in the QM, we need to reset PXP
8866          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8867          * because otherwise QM reset would release 'close the gates' shortly
8868          * before resetting the PXP, then the PSWRQ would send a write
8869          * request to PGLUE. Then when PXP is reset, PGLUE would try to
8870          * read the payload data from PSWWR, but PSWWR would not
8871          * respond. The write queue in PGLUE would stuck, dmae commands
8872          * would not return. Therefore it's important to reset the second
8873          * reset register (containing the
8874          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8875          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8876          * bit).
8877          */
8878         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8879                reset_mask2 & (~not_reset_mask2));
8880
8881         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8882                reset_mask1 & (~not_reset_mask1));
8883
8884         barrier();
8885         mmiowb();
8886
8887         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8888                reset_mask2 & (~stay_reset2));
8889
8890         barrier();
8891         mmiowb();
8892
8893         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8894         mmiowb();
8895 }
8896
8897 /**
8898  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8899  * It should get cleared in no more than 1s.
8900  *
8901  * @bp: driver handle
8902  *
8903  * It should get cleared in no more than 1s. Returns 0 if
8904  * pending writes bit gets cleared.
8905  */
8906 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8907 {
8908         u32 cnt = 1000;
8909         u32 pend_bits = 0;
8910
8911         do {
8912                 pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8913
8914                 if (pend_bits == 0)
8915                         break;
8916
8917                 usleep_range(1000, 1000);
8918         } while (cnt-- > 0);
8919
8920         if (cnt <= 0) {
8921                 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8922                           pend_bits);
8923                 return -EBUSY;
8924         }
8925
8926         return 0;
8927 }
8928
8929 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
8930 {
8931         int cnt = 1000;
8932         u32 val = 0;
8933         u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
8934
8935
8936         /* Empty the Tetris buffer, wait for 1s */
8937         do {
8938                 sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
8939                 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
8940                 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
8941                 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
8942                 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
8943                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
8944                     ((port_is_idle_0 & 0x1) == 0x1) &&
8945                     ((port_is_idle_1 & 0x1) == 0x1) &&
8946                     (pgl_exp_rom2 == 0xffffffff))
8947                         break;
8948                 usleep_range(1000, 1000);
8949         } while (cnt-- > 0);
8950
8951         if (cnt <= 0) {
8952                 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
8953                 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8954                           sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
8955                           pgl_exp_rom2);
8956                 return -EAGAIN;
8957         }
8958
8959         barrier();
8960
8961         /* Close gates #2, #3 and #4 */
8962         bnx2x_set_234_gates(bp, true);
8963
8964         /* Poll for IGU VQs for 57712 and newer chips */
8965         if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
8966                 return -EAGAIN;
8967
8968
8969         /* TBD: Indicate that "process kill" is in progress to MCP */
8970
8971         /* Clear "unprepared" bit */
8972         REG_WR(bp, MISC_REG_UNPREPARED, 0);
8973         barrier();
8974
8975         /* Make sure all is written to the chip before the reset */
8976         mmiowb();
8977
8978         /* Wait for 1ms to empty GLUE and PCI-E core queues,
8979          * PSWHST, GRC and PSWRD Tetris buffer.
8980          */
8981         usleep_range(1000, 1000);
8982
8983         /* Prepare to chip reset: */
8984         /* MCP */
8985         if (global)
8986                 bnx2x_reset_mcp_prep(bp, &val);
8987
8988         /* PXP */
8989         bnx2x_pxp_prep(bp);
8990         barrier();
8991
8992         /* reset the chip */
8993         bnx2x_process_kill_chip_reset(bp, global);
8994         barrier();
8995
8996         /* Recover after reset: */
8997         /* MCP */
8998         if (global && bnx2x_reset_mcp_comp(bp, val))
8999                 return -EAGAIN;
9000
9001         /* TBD: Add resetting the NO_MCP mode DB here */
9002
9003         /* PXP */
9004         bnx2x_pxp_prep(bp);
9005
9006         /* Open the gates #2, #3 and #4 */
9007         bnx2x_set_234_gates(bp, false);
9008
9009         /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9010          * reset state, re-enable attentions. */
9011
9012         return 0;
9013 }
9014
9015 static int bnx2x_leader_reset(struct bnx2x *bp)
9016 {
9017         int rc = 0;
9018         bool global = bnx2x_reset_is_global(bp);
9019         u32 load_code;
9020
9021         /* if not going to reset MCP - load "fake" driver to reset HW while
9022          * driver is owner of the HW
9023          */
9024         if (!global && !BP_NOMCP(bp)) {
9025                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9026                                              DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9027                 if (!load_code) {
9028                         BNX2X_ERR("MCP response failure, aborting\n");
9029                         rc = -EAGAIN;
9030                         goto exit_leader_reset;
9031                 }
9032                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9033                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9034                         BNX2X_ERR("MCP unexpected resp, aborting\n");
9035                         rc = -EAGAIN;
9036                         goto exit_leader_reset2;
9037                 }
9038                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9039                 if (!load_code) {
9040                         BNX2X_ERR("MCP response failure, aborting\n");
9041                         rc = -EAGAIN;
9042                         goto exit_leader_reset2;
9043                 }
9044         }
9045
9046         /* Try to recover after the failure */
9047         if (bnx2x_process_kill(bp, global)) {
9048                 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9049                           BP_PATH(bp));
9050                 rc = -EAGAIN;
9051                 goto exit_leader_reset2;
9052         }
9053
9054         /*
9055          * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9056          * state.
9057          */
9058         bnx2x_set_reset_done(bp);
9059         if (global)
9060                 bnx2x_clear_reset_global(bp);
9061
9062 exit_leader_reset2:
9063         /* unload "fake driver" if it was loaded */
9064         if (!global && !BP_NOMCP(bp)) {
9065                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9066                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9067         }
9068 exit_leader_reset:
9069         bp->is_leader = 0;
9070         bnx2x_release_leader_lock(bp);
9071         smp_mb();
9072         return rc;
9073 }
9074
9075 static void bnx2x_recovery_failed(struct bnx2x *bp)
9076 {
9077         netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9078
9079         /* Disconnect this device */
9080         netif_device_detach(bp->dev);
9081
9082         /*
9083          * Block ifup for all function on this engine until "process kill"
9084          * or power cycle.
9085          */
9086         bnx2x_set_reset_in_progress(bp);
9087
9088         /* Shut down the power */
9089         bnx2x_set_power_state(bp, PCI_D3hot);
9090
9091         bp->recovery_state = BNX2X_RECOVERY_FAILED;
9092
9093         smp_mb();
9094 }
9095
9096 /*
9097  * Assumption: runs under rtnl lock. This together with the fact
9098  * that it's called only from bnx2x_sp_rtnl() ensure that it
9099  * will never be called when netif_running(bp->dev) is false.
9100  */
9101 static void bnx2x_parity_recover(struct bnx2x *bp)
9102 {
9103         bool global = false;
9104         u32 error_recovered, error_unrecovered;
9105         bool is_parity;
9106
9107         DP(NETIF_MSG_HW, "Handling parity\n");
9108         while (1) {
9109                 switch (bp->recovery_state) {
9110                 case BNX2X_RECOVERY_INIT:
9111                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9112                         is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9113                         WARN_ON(!is_parity);
9114
9115                         /* Try to get a LEADER_LOCK HW lock */
9116                         if (bnx2x_trylock_leader_lock(bp)) {
9117                                 bnx2x_set_reset_in_progress(bp);
9118                                 /*
9119                                  * Check if there is a global attention and if
9120                                  * there was a global attention, set the global
9121                                  * reset bit.
9122                                  */
9123
9124                                 if (global)
9125                                         bnx2x_set_reset_global(bp);
9126
9127                                 bp->is_leader = 1;
9128                         }
9129
9130                         /* Stop the driver */
9131                         /* If interface has been removed - break */
9132                         if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9133                                 return;
9134
9135                         bp->recovery_state = BNX2X_RECOVERY_WAIT;
9136
9137                         /* Ensure "is_leader", MCP command sequence and
9138                          * "recovery_state" update values are seen on other
9139                          * CPUs.
9140                          */
9141                         smp_mb();
9142                         break;
9143
9144                 case BNX2X_RECOVERY_WAIT:
9145                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9146                         if (bp->is_leader) {
9147                                 int other_engine = BP_PATH(bp) ? 0 : 1;
9148                                 bool other_load_status =
9149                                         bnx2x_get_load_status(bp, other_engine);
9150                                 bool load_status =
9151                                         bnx2x_get_load_status(bp, BP_PATH(bp));
9152                                 global = bnx2x_reset_is_global(bp);
9153
9154                                 /*
9155                                  * In case of a parity in a global block, let
9156                                  * the first leader that performs a
9157                                  * leader_reset() reset the global blocks in
9158                                  * order to clear global attentions. Otherwise
9159                                  * the the gates will remain closed for that
9160                                  * engine.
9161                                  */
9162                                 if (load_status ||
9163                                     (global && other_load_status)) {
9164                                         /* Wait until all other functions get
9165                                          * down.
9166                                          */
9167                                         schedule_delayed_work(&bp->sp_rtnl_task,
9168                                                                 HZ/10);
9169                                         return;
9170                                 } else {
9171                                         /* If all other functions got down -
9172                                          * try to bring the chip back to
9173                                          * normal. In any case it's an exit
9174                                          * point for a leader.
9175                                          */
9176                                         if (bnx2x_leader_reset(bp)) {
9177                                                 bnx2x_recovery_failed(bp);
9178                                                 return;
9179                                         }
9180
9181                                         /* If we are here, means that the
9182                                          * leader has succeeded and doesn't
9183                                          * want to be a leader any more. Try
9184                                          * to continue as a none-leader.
9185                                          */
9186                                         break;
9187                                 }
9188                         } else { /* non-leader */
9189                                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9190                                         /* Try to get a LEADER_LOCK HW lock as
9191                                          * long as a former leader may have
9192                                          * been unloaded by the user or
9193                                          * released a leadership by another
9194                                          * reason.
9195                                          */
9196                                         if (bnx2x_trylock_leader_lock(bp)) {
9197                                                 /* I'm a leader now! Restart a
9198                                                  * switch case.
9199                                                  */
9200                                                 bp->is_leader = 1;
9201                                                 break;
9202                                         }
9203
9204                                         schedule_delayed_work(&bp->sp_rtnl_task,
9205                                                                 HZ/10);
9206                                         return;
9207
9208                                 } else {
9209                                         /*
9210                                          * If there was a global attention, wait
9211                                          * for it to be cleared.
9212                                          */
9213                                         if (bnx2x_reset_is_global(bp)) {
9214                                                 schedule_delayed_work(
9215                                                         &bp->sp_rtnl_task,
9216                                                         HZ/10);
9217                                                 return;
9218                                         }
9219
9220                                         error_recovered =
9221                                           bp->eth_stats.recoverable_error;
9222                                         error_unrecovered =
9223                                           bp->eth_stats.unrecoverable_error;
9224                                         bp->recovery_state =
9225                                                 BNX2X_RECOVERY_NIC_LOADING;
9226                                         if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9227                                                 error_unrecovered++;
9228                                                 netdev_err(bp->dev,
9229                                                            "Recovery failed. Power cycle needed\n");
9230                                                 /* Disconnect this device */
9231                                                 netif_device_detach(bp->dev);
9232                                                 /* Shut down the power */
9233                                                 bnx2x_set_power_state(
9234                                                         bp, PCI_D3hot);
9235                                                 smp_mb();
9236                                         } else {
9237                                                 bp->recovery_state =
9238                                                         BNX2X_RECOVERY_DONE;
9239                                                 error_recovered++;
9240                                                 smp_mb();
9241                                         }
9242                                         bp->eth_stats.recoverable_error =
9243                                                 error_recovered;
9244                                         bp->eth_stats.unrecoverable_error =
9245                                                 error_unrecovered;
9246
9247                                         return;
9248                                 }
9249                         }
9250                 default:
9251                         return;
9252                 }
9253         }
9254 }
9255
9256 static int bnx2x_close(struct net_device *dev);
9257
9258 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9259  * scheduled on a general queue in order to prevent a dead lock.
9260  */
9261 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9262 {
9263         struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9264
9265         rtnl_lock();
9266
9267         if (!netif_running(bp->dev))
9268                 goto sp_rtnl_exit;
9269
9270         /* if stop on error is defined no recovery flows should be executed */
9271 #ifdef BNX2X_STOP_ON_ERROR
9272         BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9273                   "you will need to reboot when done\n");
9274         goto sp_rtnl_not_reset;
9275 #endif
9276
9277         if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9278                 /*
9279                  * Clear all pending SP commands as we are going to reset the
9280                  * function anyway.
9281                  */
9282                 bp->sp_rtnl_state = 0;
9283                 smp_mb();
9284
9285                 bnx2x_parity_recover(bp);
9286
9287                 goto sp_rtnl_exit;
9288         }
9289
9290         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9291                 /*
9292                  * Clear all pending SP commands as we are going to reset the
9293                  * function anyway.
9294                  */
9295                 bp->sp_rtnl_state = 0;
9296                 smp_mb();
9297
9298                 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9299                 bnx2x_nic_load(bp, LOAD_NORMAL);
9300
9301                 goto sp_rtnl_exit;
9302         }
9303 #ifdef BNX2X_STOP_ON_ERROR
9304 sp_rtnl_not_reset:
9305 #endif
9306         if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9307                 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9308         if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9309                 bnx2x_after_function_update(bp);
9310         /*
9311          * in case of fan failure we need to reset id if the "stop on error"
9312          * debug flag is set, since we trying to prevent permanent overheating
9313          * damage
9314          */
9315         if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9316                 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9317                 netif_device_detach(bp->dev);
9318                 bnx2x_close(bp->dev);
9319         }
9320
9321 sp_rtnl_exit:
9322         rtnl_unlock();
9323 }
9324
9325 /* end of nic load/unload */
9326
9327 static void bnx2x_period_task(struct work_struct *work)
9328 {
9329         struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9330
9331         if (!netif_running(bp->dev))
9332                 goto period_task_exit;
9333
9334         if (CHIP_REV_IS_SLOW(bp)) {
9335                 BNX2X_ERR("period task called on emulation, ignoring\n");
9336                 goto period_task_exit;
9337         }
9338
9339         bnx2x_acquire_phy_lock(bp);
9340         /*
9341          * The barrier is needed to ensure the ordering between the writing to
9342          * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9343          * the reading here.
9344          */
9345         smp_mb();
9346         if (bp->port.pmf) {
9347                 bnx2x_period_func(&bp->link_params, &bp->link_vars);
9348
9349                 /* Re-queue task in 1 sec */
9350                 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9351         }
9352
9353         bnx2x_release_phy_lock(bp);
9354 period_task_exit:
9355         return;
9356 }
9357
9358 /*
9359  * Init service functions
9360  */
9361
9362 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9363 {
9364         u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9365         u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9366         return base + (BP_ABS_FUNC(bp)) * stride;
9367 }
9368
9369 static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
9370 {
9371         u32 reg = bnx2x_get_pretend_reg(bp);
9372
9373         /* Flush all outstanding writes */
9374         mmiowb();
9375
9376         /* Pretend to be function 0 */
9377         REG_WR(bp, reg, 0);
9378         REG_RD(bp, reg);        /* Flush the GRC transaction (in the chip) */
9379
9380         /* From now we are in the "like-E1" mode */
9381         bnx2x_int_disable(bp);
9382
9383         /* Flush all outstanding writes */
9384         mmiowb();
9385
9386         /* Restore the original function */
9387         REG_WR(bp, reg, BP_ABS_FUNC(bp));
9388         REG_RD(bp, reg);
9389 }
9390
9391 static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
9392 {
9393         if (CHIP_IS_E1(bp))
9394                 bnx2x_int_disable(bp);
9395         else
9396                 bnx2x_undi_int_disable_e1h(bp);
9397 }
9398
9399 static void __devinit bnx2x_prev_unload_close_mac(struct bnx2x *bp)
9400 {
9401         u32 val, base_addr, offset, mask, reset_reg;
9402         bool mac_stopped = false;
9403         u8 port = BP_PORT(bp);
9404
9405         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9406
9407         if (!CHIP_IS_E3(bp)) {
9408                 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9409                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9410                 if ((mask & reset_reg) && val) {
9411                         u32 wb_data[2];
9412                         BNX2X_DEV_INFO("Disable bmac Rx\n");
9413                         base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9414                                                 : NIG_REG_INGRESS_BMAC0_MEM;
9415                         offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9416                                                 : BIGMAC_REGISTER_BMAC_CONTROL;
9417
9418                         /*
9419                          * use rd/wr since we cannot use dmae. This is safe
9420                          * since MCP won't access the bus due to the request
9421                          * to unload, and no function on the path can be
9422                          * loaded at this time.
9423                          */
9424                         wb_data[0] = REG_RD(bp, base_addr + offset);
9425                         wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
9426                         wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
9427                         REG_WR(bp, base_addr + offset, wb_data[0]);
9428                         REG_WR(bp, base_addr + offset + 0x4, wb_data[1]);
9429
9430                 }
9431                 BNX2X_DEV_INFO("Disable emac Rx\n");
9432                 REG_WR(bp, NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4, 0);
9433
9434                 mac_stopped = true;
9435         } else {
9436                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
9437                         BNX2X_DEV_INFO("Disable xmac Rx\n");
9438                         base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
9439                         val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
9440                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9441                                val & ~(1 << 1));
9442                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
9443                                val | (1 << 1));
9444                         REG_WR(bp, base_addr + XMAC_REG_CTRL, 0);
9445                         mac_stopped = true;
9446                 }
9447                 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
9448                 if (mask & reset_reg) {
9449                         BNX2X_DEV_INFO("Disable umac Rx\n");
9450                         base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
9451                         REG_WR(bp, base_addr + UMAC_REG_COMMAND_CONFIG, 0);
9452                         mac_stopped = true;
9453                 }
9454         }
9455
9456         if (mac_stopped)
9457                 msleep(20);
9458
9459 }
9460
9461 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
9462 #define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
9463 #define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
9464 #define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
9465
9466 static void __devinit bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port,
9467                                                  u8 inc)
9468 {
9469         u16 rcq, bd;
9470         u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
9471
9472         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
9473         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
9474
9475         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
9476         REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
9477
9478         BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
9479                        port, bd, rcq);
9480 }
9481
9482 static int __devinit bnx2x_prev_mcp_done(struct bnx2x *bp)
9483 {
9484         u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
9485                                   DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
9486         if (!rc) {
9487                 BNX2X_ERR("MCP response failure, aborting\n");
9488                 return -EBUSY;
9489         }
9490
9491         return 0;
9492 }
9493
9494 static bool __devinit bnx2x_prev_is_path_marked(struct bnx2x *bp)
9495 {
9496         struct bnx2x_prev_path_list *tmp_list;
9497         int rc = false;
9498
9499         if (down_trylock(&bnx2x_prev_sem))
9500                 return false;
9501
9502         list_for_each_entry(tmp_list, &bnx2x_prev_list, list) {
9503                 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
9504                     bp->pdev->bus->number == tmp_list->bus &&
9505                     BP_PATH(bp) == tmp_list->path) {
9506                         rc = true;
9507                         BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
9508                                        BP_PATH(bp));
9509                         break;
9510                 }
9511         }
9512
9513         up(&bnx2x_prev_sem);
9514
9515         return rc;
9516 }
9517
9518 static int __devinit bnx2x_prev_mark_path(struct bnx2x *bp)
9519 {
9520         struct bnx2x_prev_path_list *tmp_list;
9521         int rc;
9522
9523         tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
9524         if (!tmp_list) {
9525                 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
9526                 return -ENOMEM;
9527         }
9528
9529         tmp_list->bus = bp->pdev->bus->number;
9530         tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
9531         tmp_list->path = BP_PATH(bp);
9532
9533         rc = down_interruptible(&bnx2x_prev_sem);
9534         if (rc) {
9535                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
9536                 kfree(tmp_list);
9537         } else {
9538                 BNX2X_DEV_INFO("Marked path [%d] - finished previous unload\n",
9539                                 BP_PATH(bp));
9540                 list_add(&tmp_list->list, &bnx2x_prev_list);
9541                 up(&bnx2x_prev_sem);
9542         }
9543
9544         return rc;
9545 }
9546
9547 static int __devinit bnx2x_do_flr(struct bnx2x *bp)
9548 {
9549         int i;
9550         u16 status;
9551         struct pci_dev *dev = bp->pdev;
9552
9553
9554         if (CHIP_IS_E1x(bp)) {
9555                 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
9556                 return -EINVAL;
9557         }
9558
9559         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
9560         if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
9561                 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
9562                           bp->common.bc_ver);
9563                 return -EINVAL;
9564         }
9565
9566         /* Wait for Transaction Pending bit clean */
9567         for (i = 0; i < 4; i++) {
9568                 if (i)
9569                         msleep((1 << (i - 1)) * 100);
9570
9571                 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
9572                 if (!(status & PCI_EXP_DEVSTA_TRPND))
9573                         goto clear;
9574         }
9575
9576         dev_err(&dev->dev,
9577                 "transaction is not cleared; proceeding with reset anyway\n");
9578
9579 clear:
9580
9581         BNX2X_DEV_INFO("Initiating FLR\n");
9582         bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
9583
9584         return 0;
9585 }
9586
9587 static int __devinit bnx2x_prev_unload_uncommon(struct bnx2x *bp)
9588 {
9589         int rc;
9590
9591         BNX2X_DEV_INFO("Uncommon unload Flow\n");
9592
9593         /* Test if previous unload process was already finished for this path */
9594         if (bnx2x_prev_is_path_marked(bp))
9595                 return bnx2x_prev_mcp_done(bp);
9596
9597         /* If function has FLR capabilities, and existing FW version matches
9598          * the one required, then FLR will be sufficient to clean any residue
9599          * left by previous driver
9600          */
9601         rc = bnx2x_test_firmware_version(bp, false);
9602
9603         if (!rc) {
9604                 /* fw version is good */
9605                 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
9606                 rc = bnx2x_do_flr(bp);
9607         }
9608
9609         if (!rc) {
9610                 /* FLR was performed */
9611                 BNX2X_DEV_INFO("FLR successful\n");
9612                 return 0;
9613         }
9614
9615         BNX2X_DEV_INFO("Could not FLR\n");
9616
9617         /* Close the MCP request, return failure*/
9618         rc = bnx2x_prev_mcp_done(bp);
9619         if (!rc)
9620                 rc = BNX2X_PREV_WAIT_NEEDED;
9621
9622         return rc;
9623 }
9624
9625 static int __devinit bnx2x_prev_unload_common(struct bnx2x *bp)
9626 {
9627         u32 reset_reg, tmp_reg = 0, rc;
9628         /* It is possible a previous function received 'common' answer,
9629          * but hasn't loaded yet, therefore creating a scenario of
9630          * multiple functions receiving 'common' on the same path.
9631          */
9632         BNX2X_DEV_INFO("Common unload Flow\n");
9633
9634         if (bnx2x_prev_is_path_marked(bp))
9635                 return bnx2x_prev_mcp_done(bp);
9636
9637         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
9638
9639         /* Reset should be performed after BRB is emptied */
9640         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
9641                 u32 timer_count = 1000;
9642                 bool prev_undi = false;
9643
9644                 /* Close the MAC Rx to prevent BRB from filling up */
9645                 bnx2x_prev_unload_close_mac(bp);
9646
9647                 /* Check if the UNDI driver was previously loaded
9648                  * UNDI driver initializes CID offset for normal bell to 0x7
9649                  */
9650                 reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
9651                 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
9652                         tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
9653                         if (tmp_reg == 0x7) {
9654                                 BNX2X_DEV_INFO("UNDI previously loaded\n");
9655                                 prev_undi = true;
9656                                 /* clear the UNDI indication */
9657                                 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
9658                         }
9659                 }
9660                 /* wait until BRB is empty */
9661                 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9662                 while (timer_count) {
9663                         u32 prev_brb = tmp_reg;
9664
9665                         tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
9666                         if (!tmp_reg)
9667                                 break;
9668
9669                         BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
9670
9671                         /* reset timer as long as BRB actually gets emptied */
9672                         if (prev_brb > tmp_reg)
9673                                 timer_count = 1000;
9674                         else
9675                                 timer_count--;
9676
9677                         /* If UNDI resides in memory, manually increment it */
9678                         if (prev_undi)
9679                                 bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
9680
9681                         udelay(10);
9682                 }
9683
9684                 if (!timer_count)
9685                         BNX2X_ERR("Failed to empty BRB, hope for the best\n");
9686
9687         }
9688
9689         /* No packets are in the pipeline, path is ready for reset */
9690         bnx2x_reset_common(bp);
9691
9692         rc = bnx2x_prev_mark_path(bp);
9693         if (rc) {
9694                 bnx2x_prev_mcp_done(bp);
9695                 return rc;
9696         }
9697
9698         return bnx2x_prev_mcp_done(bp);
9699 }
9700
9701 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
9702  * and boot began, or when kdump kernel was loaded. Either case would invalidate
9703  * the addresses of the transaction, resulting in was-error bit set in the pci
9704  * causing all hw-to-host pcie transactions to timeout. If this happened we want
9705  * to clear the interrupt which detected this from the pglueb and the was done
9706  * bit
9707  */
9708 static void __devinit bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
9709 {
9710         if (!CHIP_IS_E1x(bp)) {
9711                 u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
9712                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
9713                         BNX2X_ERR("was error bit was found to be set in pglueb upon startup. Clearing");
9714                         REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
9715                                1 << BP_FUNC(bp));
9716                 }
9717         }
9718 }
9719
9720 static int __devinit bnx2x_prev_unload(struct bnx2x *bp)
9721 {
9722         int time_counter = 10;
9723         u32 rc, fw, hw_lock_reg, hw_lock_val;
9724         BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
9725
9726         /* clear hw from errors which may have resulted from an interrupted
9727          * dmae transaction.
9728          */
9729         bnx2x_prev_interrupted_dmae(bp);
9730
9731         /* Release previously held locks */
9732         hw_lock_reg = (BP_FUNC(bp) <= 5) ?
9733                       (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
9734                       (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
9735
9736         hw_lock_val = (REG_RD(bp, hw_lock_reg));
9737         if (hw_lock_val) {
9738                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
9739                         BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
9740                         REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
9741                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
9742                 }
9743
9744                 BNX2X_DEV_INFO("Release Previously held hw lock\n");
9745                 REG_WR(bp, hw_lock_reg, 0xffffffff);
9746         } else
9747                 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
9748
9749         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
9750                 BNX2X_DEV_INFO("Release previously held alr\n");
9751                 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
9752         }
9753
9754
9755         do {
9756                 /* Lock MCP using an unload request */
9757                 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
9758                 if (!fw) {
9759                         BNX2X_ERR("MCP response failure, aborting\n");
9760                         rc = -EBUSY;
9761                         break;
9762                 }
9763
9764                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
9765                         rc = bnx2x_prev_unload_common(bp);
9766                         break;
9767                 }
9768
9769                 /* non-common reply from MCP night require looping */
9770                 rc = bnx2x_prev_unload_uncommon(bp);
9771                 if (rc != BNX2X_PREV_WAIT_NEEDED)
9772                         break;
9773
9774                 msleep(20);
9775         } while (--time_counter);
9776
9777         if (!time_counter || rc) {
9778                 BNX2X_ERR("Failed unloading previous driver, aborting\n");
9779                 rc = -EBUSY;
9780         }
9781
9782         BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
9783
9784         return rc;
9785 }
9786
9787 static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp)
9788 {
9789         u32 val, val2, val3, val4, id, boot_mode;
9790         u16 pmc;
9791
9792         /* Get the chip revision id and number. */
9793         /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
9794         val = REG_RD(bp, MISC_REG_CHIP_NUM);
9795         id = ((val & 0xffff) << 16);
9796         val = REG_RD(bp, MISC_REG_CHIP_REV);
9797         id |= ((val & 0xf) << 12);
9798         val = REG_RD(bp, MISC_REG_CHIP_METAL);
9799         id |= ((val & 0xff) << 4);
9800         val = REG_RD(bp, MISC_REG_BOND_ID);
9801         id |= (val & 0xf);
9802         bp->common.chip_id = id;
9803
9804         /* force 57811 according to MISC register */
9805         if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
9806                 if (CHIP_IS_57810(bp))
9807                         bp->common.chip_id = (CHIP_NUM_57811 << 16) |
9808                                 (bp->common.chip_id & 0x0000FFFF);
9809                 else if (CHIP_IS_57810_MF(bp))
9810                         bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
9811                                 (bp->common.chip_id & 0x0000FFFF);
9812                 bp->common.chip_id |= 0x1;
9813         }
9814
9815         /* Set doorbell size */
9816         bp->db_size = (1 << BNX2X_DB_SHIFT);
9817
9818         if (!CHIP_IS_E1x(bp)) {
9819                 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
9820                 if ((val & 1) == 0)
9821                         val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
9822                 else
9823                         val = (val >> 1) & 1;
9824                 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
9825                                                        "2_PORT_MODE");
9826                 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
9827                                                  CHIP_2_PORT_MODE;
9828
9829                 if (CHIP_MODE_IS_4_PORT(bp))
9830                         bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
9831                 else
9832                         bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
9833         } else {
9834                 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
9835                 bp->pfid = bp->pf_num;                  /* 0..7 */
9836         }
9837
9838         BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
9839
9840         bp->link_params.chip_id = bp->common.chip_id;
9841         BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
9842
9843         val = (REG_RD(bp, 0x2874) & 0x55);
9844         if ((bp->common.chip_id & 0x1) ||
9845             (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
9846                 bp->flags |= ONE_PORT_FLAG;
9847                 BNX2X_DEV_INFO("single port device\n");
9848         }
9849
9850         val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
9851         bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
9852                                  (val & MCPR_NVM_CFG4_FLASH_SIZE));
9853         BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
9854                        bp->common.flash_size, bp->common.flash_size);
9855
9856         bnx2x_init_shmem(bp);
9857
9858
9859
9860         bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
9861                                         MISC_REG_GENERIC_CR_1 :
9862                                         MISC_REG_GENERIC_CR_0));
9863
9864         bp->link_params.shmem_base = bp->common.shmem_base;
9865         bp->link_params.shmem2_base = bp->common.shmem2_base;
9866         if (SHMEM2_RD(bp, size) >
9867             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
9868                 bp->link_params.lfa_base =
9869                 REG_RD(bp, bp->common.shmem2_base +
9870                        (u32)offsetof(struct shmem2_region,
9871                                      lfa_host_addr[BP_PORT(bp)]));
9872         else
9873                 bp->link_params.lfa_base = 0;
9874         BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
9875                        bp->common.shmem_base, bp->common.shmem2_base);
9876
9877         if (!bp->common.shmem_base) {
9878                 BNX2X_DEV_INFO("MCP not active\n");
9879                 bp->flags |= NO_MCP_FLAG;
9880                 return;
9881         }
9882
9883         bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
9884         BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
9885
9886         bp->link_params.hw_led_mode = ((bp->common.hw_config &
9887                                         SHARED_HW_CFG_LED_MODE_MASK) >>
9888                                        SHARED_HW_CFG_LED_MODE_SHIFT);
9889
9890         bp->link_params.feature_config_flags = 0;
9891         val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
9892         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
9893                 bp->link_params.feature_config_flags |=
9894                                 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9895         else
9896                 bp->link_params.feature_config_flags &=
9897                                 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9898
9899         val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
9900         bp->common.bc_ver = val;
9901         BNX2X_DEV_INFO("bc_ver %X\n", val);
9902         if (val < BNX2X_BC_VER) {
9903                 /* for now only warn
9904                  * later we might need to enforce this */
9905                 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
9906                           BNX2X_BC_VER, val);
9907         }
9908         bp->link_params.feature_config_flags |=
9909                                 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
9910                                 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
9911
9912         bp->link_params.feature_config_flags |=
9913                 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
9914                 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
9915         bp->link_params.feature_config_flags |=
9916                 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
9917                 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
9918         bp->link_params.feature_config_flags |=
9919                 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
9920                 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
9921
9922         bp->link_params.feature_config_flags |=
9923                 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
9924                 FEATURE_CONFIG_MT_SUPPORT : 0;
9925
9926         bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
9927                         BC_SUPPORTS_PFC_STATS : 0;
9928
9929         bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
9930                         BC_SUPPORTS_FCOE_FEATURES : 0;
9931
9932         bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
9933                         BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
9934         boot_mode = SHMEM_RD(bp,
9935                         dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
9936                         PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
9937         switch (boot_mode) {
9938         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
9939                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
9940                 break;
9941         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
9942                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
9943                 break;
9944         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
9945                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
9946                 break;
9947         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
9948                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
9949                 break;
9950         }
9951
9952         pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
9953         bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
9954
9955         BNX2X_DEV_INFO("%sWoL capable\n",
9956                        (bp->flags & NO_WOL_FLAG) ? "not " : "");
9957
9958         val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
9959         val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
9960         val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
9961         val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
9962
9963         dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
9964                  val, val2, val3, val4);
9965 }
9966
9967 #define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
9968 #define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
9969
9970 static void __devinit bnx2x_get_igu_cam_info(struct bnx2x *bp)
9971 {
9972         int pfid = BP_FUNC(bp);
9973         int igu_sb_id;
9974         u32 val;
9975         u8 fid, igu_sb_cnt = 0;
9976
9977         bp->igu_base_sb = 0xff;
9978         if (CHIP_INT_MODE_IS_BC(bp)) {
9979                 int vn = BP_VN(bp);
9980                 igu_sb_cnt = bp->igu_sb_cnt;
9981                 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
9982                         FP_SB_MAX_E1x;
9983
9984                 bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
9985                         (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
9986
9987                 return;
9988         }
9989
9990         /* IGU in normal mode - read CAM */
9991         for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
9992              igu_sb_id++) {
9993                 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
9994                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
9995                         continue;
9996                 fid = IGU_FID(val);
9997                 if ((fid & IGU_FID_ENCODE_IS_PF)) {
9998                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
9999                                 continue;
10000                         if (IGU_VEC(val) == 0)
10001                                 /* default status block */
10002                                 bp->igu_dsb_id = igu_sb_id;
10003                         else {
10004                                 if (bp->igu_base_sb == 0xff)
10005                                         bp->igu_base_sb = igu_sb_id;
10006                                 igu_sb_cnt++;
10007                         }
10008                 }
10009         }
10010
10011 #ifdef CONFIG_PCI_MSI
10012         /* Due to new PF resource allocation by MFW T7.4 and above, it's
10013          * optional that number of CAM entries will not be equal to the value
10014          * advertised in PCI.
10015          * Driver should use the minimal value of both as the actual status
10016          * block count
10017          */
10018         bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10019 #endif
10020
10021         if (igu_sb_cnt == 0)
10022                 BNX2X_ERR("CAM configuration error\n");
10023 }
10024
10025 static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp,
10026                                                     u32 switch_cfg)
10027 {
10028         int cfg_size = 0, idx, port = BP_PORT(bp);
10029
10030         /* Aggregation of supported attributes of all external phys */
10031         bp->port.supported[0] = 0;
10032         bp->port.supported[1] = 0;
10033         switch (bp->link_params.num_phys) {
10034         case 1:
10035                 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10036                 cfg_size = 1;
10037                 break;
10038         case 2:
10039                 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10040                 cfg_size = 1;
10041                 break;
10042         case 3:
10043                 if (bp->link_params.multi_phy_config &
10044                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10045                         bp->port.supported[1] =
10046                                 bp->link_params.phy[EXT_PHY1].supported;
10047                         bp->port.supported[0] =
10048                                 bp->link_params.phy[EXT_PHY2].supported;
10049                 } else {
10050                         bp->port.supported[0] =
10051                                 bp->link_params.phy[EXT_PHY1].supported;
10052                         bp->port.supported[1] =
10053                                 bp->link_params.phy[EXT_PHY2].supported;
10054                 }
10055                 cfg_size = 2;
10056                 break;
10057         }
10058
10059         if (!(bp->port.supported[0] || bp->port.supported[1])) {
10060                 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10061                            SHMEM_RD(bp,
10062                            dev_info.port_hw_config[port].external_phy_config),
10063                            SHMEM_RD(bp,
10064                            dev_info.port_hw_config[port].external_phy_config2));
10065                         return;
10066         }
10067
10068         if (CHIP_IS_E3(bp))
10069                 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10070         else {
10071                 switch (switch_cfg) {
10072                 case SWITCH_CFG_1G:
10073                         bp->port.phy_addr = REG_RD(
10074                                 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10075                         break;
10076                 case SWITCH_CFG_10G:
10077                         bp->port.phy_addr = REG_RD(
10078                                 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10079                         break;
10080                 default:
10081                         BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10082                                   bp->port.link_config[0]);
10083                         return;
10084                 }
10085         }
10086         BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10087         /* mask what we support according to speed_cap_mask per configuration */
10088         for (idx = 0; idx < cfg_size; idx++) {
10089                 if (!(bp->link_params.speed_cap_mask[idx] &
10090                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10091                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10092
10093                 if (!(bp->link_params.speed_cap_mask[idx] &
10094                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10095                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10096
10097                 if (!(bp->link_params.speed_cap_mask[idx] &
10098                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10099                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10100
10101                 if (!(bp->link_params.speed_cap_mask[idx] &
10102                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10103                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10104
10105                 if (!(bp->link_params.speed_cap_mask[idx] &
10106                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10107                         bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10108                                                      SUPPORTED_1000baseT_Full);
10109
10110                 if (!(bp->link_params.speed_cap_mask[idx] &
10111                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10112                         bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10113
10114                 if (!(bp->link_params.speed_cap_mask[idx] &
10115                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10116                         bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10117
10118         }
10119
10120         BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10121                        bp->port.supported[1]);
10122 }
10123
10124 static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp)
10125 {
10126         u32 link_config, idx, cfg_size = 0;
10127         bp->port.advertising[0] = 0;
10128         bp->port.advertising[1] = 0;
10129         switch (bp->link_params.num_phys) {
10130         case 1:
10131         case 2:
10132                 cfg_size = 1;
10133                 break;
10134         case 3:
10135                 cfg_size = 2;
10136                 break;
10137         }
10138         for (idx = 0; idx < cfg_size; idx++) {
10139                 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10140                 link_config = bp->port.link_config[idx];
10141                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10142                 case PORT_FEATURE_LINK_SPEED_AUTO:
10143                         if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10144                                 bp->link_params.req_line_speed[idx] =
10145                                         SPEED_AUTO_NEG;
10146                                 bp->port.advertising[idx] |=
10147                                         bp->port.supported[idx];
10148                                 if (bp->link_params.phy[EXT_PHY1].type ==
10149                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10150                                         bp->port.advertising[idx] |=
10151                                         (SUPPORTED_100baseT_Half |
10152                                          SUPPORTED_100baseT_Full);
10153                         } else {
10154                                 /* force 10G, no AN */
10155                                 bp->link_params.req_line_speed[idx] =
10156                                         SPEED_10000;
10157                                 bp->port.advertising[idx] |=
10158                                         (ADVERTISED_10000baseT_Full |
10159                                          ADVERTISED_FIBRE);
10160                                 continue;
10161                         }
10162                         break;
10163
10164                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
10165                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10166                                 bp->link_params.req_line_speed[idx] =
10167                                         SPEED_10;
10168                                 bp->port.advertising[idx] |=
10169                                         (ADVERTISED_10baseT_Full |
10170                                          ADVERTISED_TP);
10171                         } else {
10172                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10173                                             link_config,
10174                                     bp->link_params.speed_cap_mask[idx]);
10175                                 return;
10176                         }
10177                         break;
10178
10179                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
10180                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10181                                 bp->link_params.req_line_speed[idx] =
10182                                         SPEED_10;
10183                                 bp->link_params.req_duplex[idx] =
10184                                         DUPLEX_HALF;
10185                                 bp->port.advertising[idx] |=
10186                                         (ADVERTISED_10baseT_Half |
10187                                          ADVERTISED_TP);
10188                         } else {
10189                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10190                                             link_config,
10191                                           bp->link_params.speed_cap_mask[idx]);
10192                                 return;
10193                         }
10194                         break;
10195
10196                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
10197                         if (bp->port.supported[idx] &
10198                             SUPPORTED_100baseT_Full) {
10199                                 bp->link_params.req_line_speed[idx] =
10200                                         SPEED_100;
10201                                 bp->port.advertising[idx] |=
10202                                         (ADVERTISED_100baseT_Full |
10203                                          ADVERTISED_TP);
10204                         } else {
10205                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10206                                             link_config,
10207                                           bp->link_params.speed_cap_mask[idx]);
10208                                 return;
10209                         }
10210                         break;
10211
10212                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
10213                         if (bp->port.supported[idx] &
10214                             SUPPORTED_100baseT_Half) {
10215                                 bp->link_params.req_line_speed[idx] =
10216                                                                 SPEED_100;
10217                                 bp->link_params.req_duplex[idx] =
10218                                                                 DUPLEX_HALF;
10219                                 bp->port.advertising[idx] |=
10220                                         (ADVERTISED_100baseT_Half |
10221                                          ADVERTISED_TP);
10222                         } else {
10223                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10224                                     link_config,
10225                                     bp->link_params.speed_cap_mask[idx]);
10226                                 return;
10227                         }
10228                         break;
10229
10230                 case PORT_FEATURE_LINK_SPEED_1G:
10231                         if (bp->port.supported[idx] &
10232                             SUPPORTED_1000baseT_Full) {
10233                                 bp->link_params.req_line_speed[idx] =
10234                                         SPEED_1000;
10235                                 bp->port.advertising[idx] |=
10236                                         (ADVERTISED_1000baseT_Full |
10237                                          ADVERTISED_TP);
10238                         } else {
10239                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10240                                     link_config,
10241                                     bp->link_params.speed_cap_mask[idx]);
10242                                 return;
10243                         }
10244                         break;
10245
10246                 case PORT_FEATURE_LINK_SPEED_2_5G:
10247                         if (bp->port.supported[idx] &
10248                             SUPPORTED_2500baseX_Full) {
10249                                 bp->link_params.req_line_speed[idx] =
10250                                         SPEED_2500;
10251                                 bp->port.advertising[idx] |=
10252                                         (ADVERTISED_2500baseX_Full |
10253                                                 ADVERTISED_TP);
10254                         } else {
10255                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10256                                     link_config,
10257                                     bp->link_params.speed_cap_mask[idx]);
10258                                 return;
10259                         }
10260                         break;
10261
10262                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
10263                         if (bp->port.supported[idx] &
10264                             SUPPORTED_10000baseT_Full) {
10265                                 bp->link_params.req_line_speed[idx] =
10266                                         SPEED_10000;
10267                                 bp->port.advertising[idx] |=
10268                                         (ADVERTISED_10000baseT_Full |
10269                                                 ADVERTISED_FIBRE);
10270                         } else {
10271                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10272                                     link_config,
10273                                     bp->link_params.speed_cap_mask[idx]);
10274                                 return;
10275                         }
10276                         break;
10277                 case PORT_FEATURE_LINK_SPEED_20G:
10278                         bp->link_params.req_line_speed[idx] = SPEED_20000;
10279
10280                         break;
10281                 default:
10282                         BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
10283                                   link_config);
10284                                 bp->link_params.req_line_speed[idx] =
10285                                                         SPEED_AUTO_NEG;
10286                                 bp->port.advertising[idx] =
10287                                                 bp->port.supported[idx];
10288                         break;
10289                 }
10290
10291                 bp->link_params.req_flow_ctrl[idx] = (link_config &
10292                                          PORT_FEATURE_FLOW_CONTROL_MASK);
10293                 if ((bp->link_params.req_flow_ctrl[idx] ==
10294                      BNX2X_FLOW_CTRL_AUTO) &&
10295                     !(bp->port.supported[idx] & SUPPORTED_Autoneg)) {
10296                         bp->link_params.req_flow_ctrl[idx] =
10297                                 BNX2X_FLOW_CTRL_NONE;
10298                 }
10299
10300                 BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
10301                                bp->link_params.req_line_speed[idx],
10302                                bp->link_params.req_duplex[idx],
10303                                bp->link_params.req_flow_ctrl[idx],
10304                                bp->port.advertising[idx]);
10305         }
10306 }
10307
10308 static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
10309 {
10310         mac_hi = cpu_to_be16(mac_hi);
10311         mac_lo = cpu_to_be32(mac_lo);
10312         memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
10313         memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
10314 }
10315
10316 static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp)
10317 {
10318         int port = BP_PORT(bp);
10319         u32 config;
10320         u32 ext_phy_type, ext_phy_config, eee_mode;
10321
10322         bp->link_params.bp = bp;
10323         bp->link_params.port = port;
10324
10325         bp->link_params.lane_config =
10326                 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
10327
10328         bp->link_params.speed_cap_mask[0] =
10329                 SHMEM_RD(bp,
10330                          dev_info.port_hw_config[port].speed_capability_mask);
10331         bp->link_params.speed_cap_mask[1] =
10332                 SHMEM_RD(bp,
10333                          dev_info.port_hw_config[port].speed_capability_mask2);
10334         bp->port.link_config[0] =
10335                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
10336
10337         bp->port.link_config[1] =
10338                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
10339
10340         bp->link_params.multi_phy_config =
10341                 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
10342         /* If the device is capable of WoL, set the default state according
10343          * to the HW
10344          */
10345         config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
10346         bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
10347                    (config & PORT_FEATURE_WOL_ENABLED));
10348
10349         BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
10350                        bp->link_params.lane_config,
10351                        bp->link_params.speed_cap_mask[0],
10352                        bp->port.link_config[0]);
10353
10354         bp->link_params.switch_cfg = (bp->port.link_config[0] &
10355                                       PORT_FEATURE_CONNECTED_SWITCH_MASK);
10356         bnx2x_phy_probe(&bp->link_params);
10357         bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
10358
10359         bnx2x_link_settings_requested(bp);
10360
10361         /*
10362          * If connected directly, work with the internal PHY, otherwise, work
10363          * with the external PHY
10364          */
10365         ext_phy_config =
10366                 SHMEM_RD(bp,
10367                          dev_info.port_hw_config[port].external_phy_config);
10368         ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
10369         if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
10370                 bp->mdio.prtad = bp->port.phy_addr;
10371
10372         else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
10373                  (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
10374                 bp->mdio.prtad =
10375                         XGXS_EXT_PHY_ADDR(ext_phy_config);
10376
10377         /* Configure link feature according to nvram value */
10378         eee_mode = (((SHMEM_RD(bp, dev_info.
10379                       port_feature_config[port].eee_power_mode)) &
10380                      PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
10381                     PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
10382         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
10383                 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
10384                                            EEE_MODE_ENABLE_LPI |
10385                                            EEE_MODE_OUTPUT_TIME;
10386         } else {
10387                 bp->link_params.eee_mode = 0;
10388         }
10389 }
10390
10391 void bnx2x_get_iscsi_info(struct bnx2x *bp)
10392 {
10393         u32 no_flags = NO_ISCSI_FLAG;
10394         int port = BP_PORT(bp);
10395         u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10396                                 drv_lic_key[port].max_iscsi_conn);
10397
10398         if (!CNIC_SUPPORT(bp)) {
10399                 bp->flags |= no_flags;
10400                 return;
10401         }
10402
10403         /* Get the number of maximum allowed iSCSI connections */
10404         bp->cnic_eth_dev.max_iscsi_conn =
10405                 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
10406                 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
10407
10408         BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
10409                        bp->cnic_eth_dev.max_iscsi_conn);
10410
10411         /*
10412          * If maximum allowed number of connections is zero -
10413          * disable the feature.
10414          */
10415         if (!bp->cnic_eth_dev.max_iscsi_conn)
10416                 bp->flags |= no_flags;
10417
10418 }
10419
10420 static void __devinit bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
10421 {
10422         /* Port info */
10423         bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10424                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
10425         bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10426                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
10427
10428         /* Node info */
10429         bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10430                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
10431         bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10432                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
10433 }
10434 static void __devinit bnx2x_get_fcoe_info(struct bnx2x *bp)
10435 {
10436         int port = BP_PORT(bp);
10437         int func = BP_ABS_FUNC(bp);
10438         u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
10439                                 drv_lic_key[port].max_fcoe_conn);
10440
10441         if (!CNIC_SUPPORT(bp)) {
10442                 bp->flags |= NO_FCOE_FLAG;
10443                 return;
10444         }
10445
10446         /* Get the number of maximum allowed FCoE connections */
10447         bp->cnic_eth_dev.max_fcoe_conn =
10448                 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
10449                 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
10450
10451         /* Read the WWN: */
10452         if (!IS_MF(bp)) {
10453                 /* Port info */
10454                 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
10455                         SHMEM_RD(bp,
10456                                 dev_info.port_hw_config[port].
10457                                  fcoe_wwn_port_name_upper);
10458                 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
10459                         SHMEM_RD(bp,
10460                                 dev_info.port_hw_config[port].
10461                                  fcoe_wwn_port_name_lower);
10462
10463                 /* Node info */
10464                 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
10465                         SHMEM_RD(bp,
10466                                 dev_info.port_hw_config[port].
10467                                  fcoe_wwn_node_name_upper);
10468                 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
10469                         SHMEM_RD(bp,
10470                                 dev_info.port_hw_config[port].
10471                                  fcoe_wwn_node_name_lower);
10472         } else if (!IS_MF_SD(bp)) {
10473                 /*
10474                  * Read the WWN info only if the FCoE feature is enabled for
10475                  * this function.
10476                  */
10477                 if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
10478                         bnx2x_get_ext_wwn_info(bp, func);
10479
10480         } else if (IS_MF_FCOE_SD(bp))
10481                 bnx2x_get_ext_wwn_info(bp, func);
10482
10483         BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
10484
10485         /*
10486          * If maximum allowed number of connections is zero -
10487          * disable the feature.
10488          */
10489         if (!bp->cnic_eth_dev.max_fcoe_conn)
10490                 bp->flags |= NO_FCOE_FLAG;
10491 }
10492
10493 static void __devinit bnx2x_get_cnic_info(struct bnx2x *bp)
10494 {
10495         /*
10496          * iSCSI may be dynamically disabled but reading
10497          * info here we will decrease memory usage by driver
10498          * if the feature is disabled for good
10499          */
10500         bnx2x_get_iscsi_info(bp);
10501         bnx2x_get_fcoe_info(bp);
10502 }
10503
10504 static void __devinit bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
10505 {
10506         u32 val, val2;
10507         int func = BP_ABS_FUNC(bp);
10508         int port = BP_PORT(bp);
10509         u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
10510         u8 *fip_mac = bp->fip_mac;
10511
10512         if (IS_MF(bp)) {
10513                 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
10514                  * FCoE MAC then the appropriate feature should be disabled.
10515                  * In non SD mode features configuration comes from struct
10516                  * func_ext_config.
10517                  */
10518                 if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
10519                         u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
10520                         if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
10521                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
10522                                                  iscsi_mac_addr_upper);
10523                                 val = MF_CFG_RD(bp, func_ext_config[func].
10524                                                 iscsi_mac_addr_lower);
10525                                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
10526                                 BNX2X_DEV_INFO
10527                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
10528                         } else {
10529                                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
10530                         }
10531
10532                         if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
10533                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
10534                                                  fcoe_mac_addr_upper);
10535                                 val = MF_CFG_RD(bp, func_ext_config[func].
10536                                                 fcoe_mac_addr_lower);
10537                                 bnx2x_set_mac_buf(fip_mac, val, val2);
10538                                 BNX2X_DEV_INFO
10539                                         ("Read FCoE L2 MAC: %pM\n", fip_mac);
10540                         } else {
10541                                 bp->flags |= NO_FCOE_FLAG;
10542                         }
10543
10544                         bp->mf_ext_config = cfg;
10545
10546                 } else { /* SD MODE */
10547                         if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
10548                                 /* use primary mac as iscsi mac */
10549                                 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
10550
10551                                 BNX2X_DEV_INFO("SD ISCSI MODE\n");
10552                                 BNX2X_DEV_INFO
10553                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
10554                         } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
10555                                 /* use primary mac as fip mac */
10556                                 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
10557                                 BNX2X_DEV_INFO("SD FCoE MODE\n");
10558                                 BNX2X_DEV_INFO
10559                                         ("Read FIP MAC: %pM\n", fip_mac);
10560                         }
10561                 }
10562
10563                 if (IS_MF_STORAGE_SD(bp))
10564                         /* Zero primary MAC configuration */
10565                         memset(bp->dev->dev_addr, 0, ETH_ALEN);
10566
10567                 if (IS_MF_FCOE_AFEX(bp))
10568                         /* use FIP MAC as primary MAC */
10569                         memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
10570
10571         } else {
10572                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
10573                                 iscsi_mac_upper);
10574                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
10575                                iscsi_mac_lower);
10576                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
10577
10578                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
10579                                 fcoe_fip_mac_upper);
10580                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
10581                                fcoe_fip_mac_lower);
10582                 bnx2x_set_mac_buf(fip_mac, val, val2);
10583         }
10584
10585         /* Disable iSCSI OOO if MAC configuration is invalid. */
10586         if (!is_valid_ether_addr(iscsi_mac)) {
10587                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
10588                 memset(iscsi_mac, 0, ETH_ALEN);
10589         }
10590
10591         /* Disable FCoE if MAC configuration is invalid. */
10592         if (!is_valid_ether_addr(fip_mac)) {
10593                 bp->flags |= NO_FCOE_FLAG;
10594                 memset(bp->fip_mac, 0, ETH_ALEN);
10595         }
10596 }
10597
10598 static void __devinit bnx2x_get_mac_hwinfo(struct bnx2x *bp)
10599 {
10600         u32 val, val2;
10601         int func = BP_ABS_FUNC(bp);
10602         int port = BP_PORT(bp);
10603
10604         /* Zero primary MAC configuration */
10605         memset(bp->dev->dev_addr, 0, ETH_ALEN);
10606
10607         if (BP_NOMCP(bp)) {
10608                 BNX2X_ERROR("warning: random MAC workaround active\n");
10609                 eth_hw_addr_random(bp->dev);
10610         } else if (IS_MF(bp)) {
10611                 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
10612                 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
10613                 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
10614                     (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
10615                         bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
10616
10617                 if (CNIC_SUPPORT(bp))
10618                         bnx2x_get_cnic_mac_hwinfo(bp);
10619         } else {
10620                 /* in SF read MACs from port configuration */
10621                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
10622                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
10623                 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
10624
10625                 if (CNIC_SUPPORT(bp))
10626                         bnx2x_get_cnic_mac_hwinfo(bp);
10627         }
10628
10629         memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
10630         memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
10631
10632         if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
10633                 dev_err(&bp->pdev->dev,
10634                         "bad Ethernet MAC address configuration: %pM\n"
10635                         "change it manually before bringing up the appropriate network interface\n",
10636                         bp->dev->dev_addr);
10637
10638
10639 }
10640
10641 static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp)
10642 {
10643         int /*abs*/func = BP_ABS_FUNC(bp);
10644         int vn;
10645         u32 val = 0;
10646         int rc = 0;
10647
10648         bnx2x_get_common_hwinfo(bp);
10649
10650         /*
10651          * initialize IGU parameters
10652          */
10653         if (CHIP_IS_E1x(bp)) {
10654                 bp->common.int_block = INT_BLOCK_HC;
10655
10656                 bp->igu_dsb_id = DEF_SB_IGU_ID;
10657                 bp->igu_base_sb = 0;
10658         } else {
10659                 bp->common.int_block = INT_BLOCK_IGU;
10660
10661                 /* do not allow device reset during IGU info preocessing */
10662                 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
10663
10664                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
10665
10666                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
10667                         int tout = 5000;
10668
10669                         BNX2X_DEV_INFO("FORCING Normal Mode\n");
10670
10671                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
10672                         REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
10673                         REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
10674
10675                         while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
10676                                 tout--;
10677                                 usleep_range(1000, 1000);
10678                         }
10679
10680                         if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
10681                                 dev_err(&bp->pdev->dev,
10682                                         "FORCING Normal Mode failed!!!\n");
10683                                 return -EPERM;
10684                         }
10685                 }
10686
10687                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
10688                         BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
10689                         bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
10690                 } else
10691                         BNX2X_DEV_INFO("IGU Normal Mode\n");
10692
10693                 bnx2x_get_igu_cam_info(bp);
10694
10695                 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
10696         }
10697
10698         /*
10699          * set base FW non-default (fast path) status block id, this value is
10700          * used to initialize the fw_sb_id saved on the fp/queue structure to
10701          * determine the id used by the FW.
10702          */
10703         if (CHIP_IS_E1x(bp))
10704                 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
10705         else /*
10706               * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
10707               * the same queue are indicated on the same IGU SB). So we prefer
10708               * FW and IGU SBs to be the same value.
10709               */
10710                 bp->base_fw_ndsb = bp->igu_base_sb;
10711
10712         BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
10713                        "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
10714                        bp->igu_sb_cnt, bp->base_fw_ndsb);
10715
10716         /*
10717          * Initialize MF configuration
10718          */
10719
10720         bp->mf_ov = 0;
10721         bp->mf_mode = 0;
10722         vn = BP_VN(bp);
10723
10724         if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
10725                 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
10726                                bp->common.shmem2_base, SHMEM2_RD(bp, size),
10727                               (u32)offsetof(struct shmem2_region, mf_cfg_addr));
10728
10729                 if (SHMEM2_HAS(bp, mf_cfg_addr))
10730                         bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
10731                 else
10732                         bp->common.mf_cfg_base = bp->common.shmem_base +
10733                                 offsetof(struct shmem_region, func_mb) +
10734                                 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
10735                 /*
10736                  * get mf configuration:
10737                  * 1. existence of MF configuration
10738                  * 2. MAC address must be legal (check only upper bytes)
10739                  *    for  Switch-Independent mode;
10740                  *    OVLAN must be legal for Switch-Dependent mode
10741                  * 3. SF_MODE configures specific MF mode
10742                  */
10743                 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
10744                         /* get mf configuration */
10745                         val = SHMEM_RD(bp,
10746                                        dev_info.shared_feature_config.config);
10747                         val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
10748
10749                         switch (val) {
10750                         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
10751                                 val = MF_CFG_RD(bp, func_mf_config[func].
10752                                                 mac_upper);
10753                                 /* check for legal mac (upper bytes)*/
10754                                 if (val != 0xffff) {
10755                                         bp->mf_mode = MULTI_FUNCTION_SI;
10756                                         bp->mf_config[vn] = MF_CFG_RD(bp,
10757                                                    func_mf_config[func].config);
10758                                 } else
10759                                         BNX2X_DEV_INFO("illegal MAC address for SI\n");
10760                                 break;
10761                         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
10762                                 if ((!CHIP_IS_E1x(bp)) &&
10763                                     (MF_CFG_RD(bp, func_mf_config[func].
10764                                                mac_upper) != 0xffff) &&
10765                                     (SHMEM2_HAS(bp,
10766                                                 afex_driver_support))) {
10767                                         bp->mf_mode = MULTI_FUNCTION_AFEX;
10768                                         bp->mf_config[vn] = MF_CFG_RD(bp,
10769                                                 func_mf_config[func].config);
10770                                 } else {
10771                                         BNX2X_DEV_INFO("can not configure afex mode\n");
10772                                 }
10773                                 break;
10774                         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
10775                                 /* get OV configuration */
10776                                 val = MF_CFG_RD(bp,
10777                                         func_mf_config[FUNC_0].e1hov_tag);
10778                                 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
10779
10780                                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
10781                                         bp->mf_mode = MULTI_FUNCTION_SD;
10782                                         bp->mf_config[vn] = MF_CFG_RD(bp,
10783                                                 func_mf_config[func].config);
10784                                 } else
10785                                         BNX2X_DEV_INFO("illegal OV for SD\n");
10786                                 break;
10787                         default:
10788                                 /* Unknown configuration: reset mf_config */
10789                                 bp->mf_config[vn] = 0;
10790                                 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
10791                         }
10792                 }
10793
10794                 BNX2X_DEV_INFO("%s function mode\n",
10795                                IS_MF(bp) ? "multi" : "single");
10796
10797                 switch (bp->mf_mode) {
10798                 case MULTI_FUNCTION_SD:
10799                         val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
10800                               FUNC_MF_CFG_E1HOV_TAG_MASK;
10801                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
10802                                 bp->mf_ov = val;
10803                                 bp->path_has_ovlan = true;
10804
10805                                 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
10806                                                func, bp->mf_ov, bp->mf_ov);
10807                         } else {
10808                                 dev_err(&bp->pdev->dev,
10809                                         "No valid MF OV for func %d, aborting\n",
10810                                         func);
10811                                 return -EPERM;
10812                         }
10813                         break;
10814                 case MULTI_FUNCTION_AFEX:
10815                         BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
10816                         break;
10817                 case MULTI_FUNCTION_SI:
10818                         BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
10819                                        func);
10820                         break;
10821                 default:
10822                         if (vn) {
10823                                 dev_err(&bp->pdev->dev,
10824                                         "VN %d is in a single function mode, aborting\n",
10825                                         vn);
10826                                 return -EPERM;
10827                         }
10828                         break;
10829                 }
10830
10831                 /* check if other port on the path needs ovlan:
10832                  * Since MF configuration is shared between ports
10833                  * Possible mixed modes are only
10834                  * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
10835                  */
10836                 if (CHIP_MODE_IS_4_PORT(bp) &&
10837                     !bp->path_has_ovlan &&
10838                     !IS_MF(bp) &&
10839                     bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
10840                         u8 other_port = !BP_PORT(bp);
10841                         u8 other_func = BP_PATH(bp) + 2*other_port;
10842                         val = MF_CFG_RD(bp,
10843                                         func_mf_config[other_func].e1hov_tag);
10844                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
10845                                 bp->path_has_ovlan = true;
10846                 }
10847         }
10848
10849         /* adjust igu_sb_cnt to MF for E1x */
10850         if (CHIP_IS_E1x(bp) && IS_MF(bp))
10851                 bp->igu_sb_cnt /= E1HVN_MAX;
10852
10853         /* port info */
10854         bnx2x_get_port_hwinfo(bp);
10855
10856         /* Get MAC addresses */
10857         bnx2x_get_mac_hwinfo(bp);
10858
10859         bnx2x_get_cnic_info(bp);
10860
10861         return rc;
10862 }
10863
10864 static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp)
10865 {
10866         int cnt, i, block_end, rodi;
10867         char vpd_start[BNX2X_VPD_LEN+1];
10868         char str_id_reg[VENDOR_ID_LEN+1];
10869         char str_id_cap[VENDOR_ID_LEN+1];
10870         char *vpd_data;
10871         char *vpd_extended_data = NULL;
10872         u8 len;
10873
10874         cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
10875         memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
10876
10877         if (cnt < BNX2X_VPD_LEN)
10878                 goto out_not_found;
10879
10880         /* VPD RO tag should be first tag after identifier string, hence
10881          * we should be able to find it in first BNX2X_VPD_LEN chars
10882          */
10883         i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
10884                              PCI_VPD_LRDT_RO_DATA);
10885         if (i < 0)
10886                 goto out_not_found;
10887
10888         block_end = i + PCI_VPD_LRDT_TAG_SIZE +
10889                     pci_vpd_lrdt_size(&vpd_start[i]);
10890
10891         i += PCI_VPD_LRDT_TAG_SIZE;
10892
10893         if (block_end > BNX2X_VPD_LEN) {
10894                 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
10895                 if (vpd_extended_data  == NULL)
10896                         goto out_not_found;
10897
10898                 /* read rest of vpd image into vpd_extended_data */
10899                 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
10900                 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
10901                                    block_end - BNX2X_VPD_LEN,
10902                                    vpd_extended_data + BNX2X_VPD_LEN);
10903                 if (cnt < (block_end - BNX2X_VPD_LEN))
10904                         goto out_not_found;
10905                 vpd_data = vpd_extended_data;
10906         } else
10907                 vpd_data = vpd_start;
10908
10909         /* now vpd_data holds full vpd content in both cases */
10910
10911         rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
10912                                    PCI_VPD_RO_KEYWORD_MFR_ID);
10913         if (rodi < 0)
10914                 goto out_not_found;
10915
10916         len = pci_vpd_info_field_size(&vpd_data[rodi]);
10917
10918         if (len != VENDOR_ID_LEN)
10919                 goto out_not_found;
10920
10921         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
10922
10923         /* vendor specific info */
10924         snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
10925         snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
10926         if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
10927             !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
10928
10929                 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
10930                                                 PCI_VPD_RO_KEYWORD_VENDOR0);
10931                 if (rodi >= 0) {
10932                         len = pci_vpd_info_field_size(&vpd_data[rodi]);
10933
10934                         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
10935
10936                         if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
10937                                 memcpy(bp->fw_ver, &vpd_data[rodi], len);
10938                                 bp->fw_ver[len] = ' ';
10939                         }
10940                 }
10941                 kfree(vpd_extended_data);
10942                 return;
10943         }
10944 out_not_found:
10945         kfree(vpd_extended_data);
10946         return;
10947 }
10948
10949 static void __devinit bnx2x_set_modes_bitmap(struct bnx2x *bp)
10950 {
10951         u32 flags = 0;
10952
10953         if (CHIP_REV_IS_FPGA(bp))
10954                 SET_FLAGS(flags, MODE_FPGA);
10955         else if (CHIP_REV_IS_EMUL(bp))
10956                 SET_FLAGS(flags, MODE_EMUL);
10957         else
10958                 SET_FLAGS(flags, MODE_ASIC);
10959
10960         if (CHIP_MODE_IS_4_PORT(bp))
10961                 SET_FLAGS(flags, MODE_PORT4);
10962         else
10963                 SET_FLAGS(flags, MODE_PORT2);
10964
10965         if (CHIP_IS_E2(bp))
10966                 SET_FLAGS(flags, MODE_E2);
10967         else if (CHIP_IS_E3(bp)) {
10968                 SET_FLAGS(flags, MODE_E3);
10969                 if (CHIP_REV(bp) == CHIP_REV_Ax)
10970                         SET_FLAGS(flags, MODE_E3_A0);
10971                 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
10972                         SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
10973         }
10974
10975         if (IS_MF(bp)) {
10976                 SET_FLAGS(flags, MODE_MF);
10977                 switch (bp->mf_mode) {
10978                 case MULTI_FUNCTION_SD:
10979                         SET_FLAGS(flags, MODE_MF_SD);
10980                         break;
10981                 case MULTI_FUNCTION_SI:
10982                         SET_FLAGS(flags, MODE_MF_SI);
10983                         break;
10984                 case MULTI_FUNCTION_AFEX:
10985                         SET_FLAGS(flags, MODE_MF_AFEX);
10986                         break;
10987                 }
10988         } else
10989                 SET_FLAGS(flags, MODE_SF);
10990
10991 #if defined(__LITTLE_ENDIAN)
10992         SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
10993 #else /*(__BIG_ENDIAN)*/
10994         SET_FLAGS(flags, MODE_BIG_ENDIAN);
10995 #endif
10996         INIT_MODE_FLAGS(bp) = flags;
10997 }
10998
10999 static int __devinit bnx2x_init_bp(struct bnx2x *bp)
11000 {
11001         int func;
11002         int rc;
11003
11004         mutex_init(&bp->port.phy_mutex);
11005         mutex_init(&bp->fw_mb_mutex);
11006         spin_lock_init(&bp->stats_lock);
11007
11008
11009         INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11010         INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11011         INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11012         rc = bnx2x_get_hwinfo(bp);
11013         if (rc)
11014                 return rc;
11015
11016         bnx2x_set_modes_bitmap(bp);
11017
11018         rc = bnx2x_alloc_mem_bp(bp);
11019         if (rc)
11020                 return rc;
11021
11022         bnx2x_read_fwinfo(bp);
11023
11024         func = BP_FUNC(bp);
11025
11026         /* need to reset chip if undi was active */
11027         if (!BP_NOMCP(bp)) {
11028                 /* init fw_seq */
11029                 bp->fw_seq =
11030                         SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11031                                                         DRV_MSG_SEQ_NUMBER_MASK;
11032                 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11033
11034                 bnx2x_prev_unload(bp);
11035         }
11036
11037
11038         if (CHIP_REV_IS_FPGA(bp))
11039                 dev_err(&bp->pdev->dev, "FPGA detected\n");
11040
11041         if (BP_NOMCP(bp) && (func == 0))
11042                 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11043
11044         bp->disable_tpa = disable_tpa;
11045         bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11046
11047         /* Set TPA flags */
11048         if (bp->disable_tpa) {
11049                 bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11050                 bp->dev->features &= ~NETIF_F_LRO;
11051         } else {
11052                 bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11053                 bp->dev->features |= NETIF_F_LRO;
11054         }
11055
11056         if (CHIP_IS_E1(bp))
11057                 bp->dropless_fc = 0;
11058         else
11059                 bp->dropless_fc = dropless_fc;
11060
11061         bp->mrrs = mrrs;
11062
11063         bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11064
11065         /* make sure that the numbers are in the right granularity */
11066         bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11067         bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11068
11069         bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11070
11071         init_timer(&bp->timer);
11072         bp->timer.expires = jiffies + bp->current_interval;
11073         bp->timer.data = (unsigned long) bp;
11074         bp->timer.function = bnx2x_timer;
11075
11076         bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11077         bnx2x_dcbx_init_params(bp);
11078
11079         if (CHIP_IS_E1x(bp))
11080                 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11081         else
11082                 bp->cnic_base_cl_id = FP_SB_MAX_E2;
11083
11084         /* multiple tx priority */
11085         if (CHIP_IS_E1x(bp))
11086                 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11087         if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11088                 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11089         if (CHIP_IS_E3B0(bp))
11090                 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11091
11092         /* We need at least one default status block for slow-path events,
11093          * second status block for the L2 queue, and a third status block for
11094          * CNIC if supproted.
11095          */
11096         if (CNIC_SUPPORT(bp))
11097                 bp->min_msix_vec_cnt = 3;
11098         else
11099                 bp->min_msix_vec_cnt = 2;
11100         BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11101
11102         return rc;
11103 }
11104
11105
11106 /****************************************************************************
11107 * General service functions
11108 ****************************************************************************/
11109
11110 /*
11111  * net_device service functions
11112  */
11113
11114 /* called with rtnl_lock */
11115 static int bnx2x_open(struct net_device *dev)
11116 {
11117         struct bnx2x *bp = netdev_priv(dev);
11118         bool global = false;
11119         int other_engine = BP_PATH(bp) ? 0 : 1;
11120         bool other_load_status, load_status;
11121
11122         bp->stats_init = true;
11123
11124         netif_carrier_off(dev);
11125
11126         bnx2x_set_power_state(bp, PCI_D0);
11127
11128         other_load_status = bnx2x_get_load_status(bp, other_engine);
11129         load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
11130
11131         /*
11132          * If parity had happen during the unload, then attentions
11133          * and/or RECOVERY_IN_PROGRES may still be set. In this case we
11134          * want the first function loaded on the current engine to
11135          * complete the recovery.
11136          */
11137         if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
11138             bnx2x_chk_parity_attn(bp, &global, true))
11139                 do {
11140                         /*
11141                          * If there are attentions and they are in a global
11142                          * blocks, set the GLOBAL_RESET bit regardless whether
11143                          * it will be this function that will complete the
11144                          * recovery or not.
11145                          */
11146                         if (global)
11147                                 bnx2x_set_reset_global(bp);
11148
11149                         /*
11150                          * Only the first function on the current engine should
11151                          * try to recover in open. In case of attentions in
11152                          * global blocks only the first in the chip should try
11153                          * to recover.
11154                          */
11155                         if ((!load_status &&
11156                              (!global || !other_load_status)) &&
11157                             bnx2x_trylock_leader_lock(bp) &&
11158                             !bnx2x_leader_reset(bp)) {
11159                                 netdev_info(bp->dev, "Recovered in open\n");
11160                                 break;
11161                         }
11162
11163                         /* recovery has failed... */
11164                         bnx2x_set_power_state(bp, PCI_D3hot);
11165                         bp->recovery_state = BNX2X_RECOVERY_FAILED;
11166
11167                         BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
11168                                   "If you still see this message after a few retries then power cycle is required.\n");
11169
11170                         return -EAGAIN;
11171                 } while (0);
11172
11173         bp->recovery_state = BNX2X_RECOVERY_DONE;
11174         return bnx2x_nic_load(bp, LOAD_OPEN);
11175 }
11176
11177 /* called with rtnl_lock */
11178 static int bnx2x_close(struct net_device *dev)
11179 {
11180         struct bnx2x *bp = netdev_priv(dev);
11181
11182         /* Unload the driver, release IRQs */
11183         bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
11184
11185         /* Power off */
11186         bnx2x_set_power_state(bp, PCI_D3hot);
11187
11188         return 0;
11189 }
11190
11191 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
11192                                       struct bnx2x_mcast_ramrod_params *p)
11193 {
11194         int mc_count = netdev_mc_count(bp->dev);
11195         struct bnx2x_mcast_list_elem *mc_mac =
11196                 kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
11197         struct netdev_hw_addr *ha;
11198
11199         if (!mc_mac)
11200                 return -ENOMEM;
11201
11202         INIT_LIST_HEAD(&p->mcast_list);
11203
11204         netdev_for_each_mc_addr(ha, bp->dev) {
11205                 mc_mac->mac = bnx2x_mc_addr(ha);
11206                 list_add_tail(&mc_mac->link, &p->mcast_list);
11207                 mc_mac++;
11208         }
11209
11210         p->mcast_list_len = mc_count;
11211
11212         return 0;
11213 }
11214
11215 static void bnx2x_free_mcast_macs_list(
11216         struct bnx2x_mcast_ramrod_params *p)
11217 {
11218         struct bnx2x_mcast_list_elem *mc_mac =
11219                 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
11220                                  link);
11221
11222         WARN_ON(!mc_mac);
11223         kfree(mc_mac);
11224 }
11225
11226 /**
11227  * bnx2x_set_uc_list - configure a new unicast MACs list.
11228  *
11229  * @bp: driver handle
11230  *
11231  * We will use zero (0) as a MAC type for these MACs.
11232  */
11233 static int bnx2x_set_uc_list(struct bnx2x *bp)
11234 {
11235         int rc;
11236         struct net_device *dev = bp->dev;
11237         struct netdev_hw_addr *ha;
11238         struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
11239         unsigned long ramrod_flags = 0;
11240
11241         /* First schedule a cleanup up of old configuration */
11242         rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
11243         if (rc < 0) {
11244                 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
11245                 return rc;
11246         }
11247
11248         netdev_for_each_uc_addr(ha, dev) {
11249                 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
11250                                        BNX2X_UC_LIST_MAC, &ramrod_flags);
11251                 if (rc == -EEXIST) {
11252                         DP(BNX2X_MSG_SP,
11253                            "Failed to schedule ADD operations: %d\n", rc);
11254                         /* do not treat adding same MAC as error */
11255                         rc = 0;
11256
11257                 } else if (rc < 0) {
11258
11259                         BNX2X_ERR("Failed to schedule ADD operations: %d\n",
11260                                   rc);
11261                         return rc;
11262                 }
11263         }
11264
11265         /* Execute the pending commands */
11266         __set_bit(RAMROD_CONT, &ramrod_flags);
11267         return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
11268                                  BNX2X_UC_LIST_MAC, &ramrod_flags);
11269 }
11270
11271 static int bnx2x_set_mc_list(struct bnx2x *bp)
11272 {
11273         struct net_device *dev = bp->dev;
11274         struct bnx2x_mcast_ramrod_params rparam = {NULL};
11275         int rc = 0;
11276
11277         rparam.mcast_obj = &bp->mcast_obj;
11278
11279         /* first, clear all configured multicast MACs */
11280         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
11281         if (rc < 0) {
11282                 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
11283                 return rc;
11284         }
11285
11286         /* then, configure a new MACs list */
11287         if (netdev_mc_count(dev)) {
11288                 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
11289                 if (rc) {
11290                         BNX2X_ERR("Failed to create multicast MACs list: %d\n",
11291                                   rc);
11292                         return rc;
11293                 }
11294
11295                 /* Now add the new MACs */
11296                 rc = bnx2x_config_mcast(bp, &rparam,
11297                                         BNX2X_MCAST_CMD_ADD);
11298                 if (rc < 0)
11299                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
11300                                   rc);
11301
11302                 bnx2x_free_mcast_macs_list(&rparam);
11303         }
11304
11305         return rc;
11306 }
11307
11308
11309 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
11310 void bnx2x_set_rx_mode(struct net_device *dev)
11311 {
11312         struct bnx2x *bp = netdev_priv(dev);
11313         u32 rx_mode = BNX2X_RX_MODE_NORMAL;
11314
11315         if (bp->state != BNX2X_STATE_OPEN) {
11316                 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
11317                 return;
11318         }
11319
11320         DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
11321
11322         if (dev->flags & IFF_PROMISC)
11323                 rx_mode = BNX2X_RX_MODE_PROMISC;
11324         else if ((dev->flags & IFF_ALLMULTI) ||
11325                  ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
11326                   CHIP_IS_E1(bp)))
11327                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
11328         else {
11329                 /* some multicasts */
11330                 if (bnx2x_set_mc_list(bp) < 0)
11331                         rx_mode = BNX2X_RX_MODE_ALLMULTI;
11332
11333                 if (bnx2x_set_uc_list(bp) < 0)
11334                         rx_mode = BNX2X_RX_MODE_PROMISC;
11335         }
11336
11337         bp->rx_mode = rx_mode;
11338         /* handle ISCSI SD mode */
11339         if (IS_MF_ISCSI_SD(bp))
11340                 bp->rx_mode = BNX2X_RX_MODE_NONE;
11341
11342         /* Schedule the rx_mode command */
11343         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
11344                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
11345                 return;
11346         }
11347
11348         bnx2x_set_storm_rx_mode(bp);
11349 }
11350
11351 /* called with rtnl_lock */
11352 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
11353                            int devad, u16 addr)
11354 {
11355         struct bnx2x *bp = netdev_priv(netdev);
11356         u16 value;
11357         int rc;
11358
11359         DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
11360            prtad, devad, addr);
11361
11362         /* The HW expects different devad if CL22 is used */
11363         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11364
11365         bnx2x_acquire_phy_lock(bp);
11366         rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
11367         bnx2x_release_phy_lock(bp);
11368         DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
11369
11370         if (!rc)
11371                 rc = value;
11372         return rc;
11373 }
11374
11375 /* called with rtnl_lock */
11376 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
11377                             u16 addr, u16 value)
11378 {
11379         struct bnx2x *bp = netdev_priv(netdev);
11380         int rc;
11381
11382         DP(NETIF_MSG_LINK,
11383            "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
11384            prtad, devad, addr, value);
11385
11386         /* The HW expects different devad if CL22 is used */
11387         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
11388
11389         bnx2x_acquire_phy_lock(bp);
11390         rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
11391         bnx2x_release_phy_lock(bp);
11392         return rc;
11393 }
11394
11395 /* called with rtnl_lock */
11396 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
11397 {
11398         struct bnx2x *bp = netdev_priv(dev);
11399         struct mii_ioctl_data *mdio = if_mii(ifr);
11400
11401         DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
11402            mdio->phy_id, mdio->reg_num, mdio->val_in);
11403
11404         if (!netif_running(dev))
11405                 return -EAGAIN;
11406
11407         return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
11408 }
11409
11410 #ifdef CONFIG_NET_POLL_CONTROLLER
11411 static void poll_bnx2x(struct net_device *dev)
11412 {
11413         struct bnx2x *bp = netdev_priv(dev);
11414         int i;
11415
11416         for_each_eth_queue(bp, i) {
11417                 struct bnx2x_fastpath *fp = &bp->fp[i];
11418                 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
11419         }
11420 }
11421 #endif
11422
11423 static int bnx2x_validate_addr(struct net_device *dev)
11424 {
11425         struct bnx2x *bp = netdev_priv(dev);
11426
11427         if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
11428                 BNX2X_ERR("Non-valid Ethernet address\n");
11429                 return -EADDRNOTAVAIL;
11430         }
11431         return 0;
11432 }
11433
11434 static const struct net_device_ops bnx2x_netdev_ops = {
11435         .ndo_open               = bnx2x_open,
11436         .ndo_stop               = bnx2x_close,
11437         .ndo_start_xmit         = bnx2x_start_xmit,
11438         .ndo_select_queue       = bnx2x_select_queue,
11439         .ndo_set_rx_mode        = bnx2x_set_rx_mode,
11440         .ndo_set_mac_address    = bnx2x_change_mac_addr,
11441         .ndo_validate_addr      = bnx2x_validate_addr,
11442         .ndo_do_ioctl           = bnx2x_ioctl,
11443         .ndo_change_mtu         = bnx2x_change_mtu,
11444         .ndo_fix_features       = bnx2x_fix_features,
11445         .ndo_set_features       = bnx2x_set_features,
11446         .ndo_tx_timeout         = bnx2x_tx_timeout,
11447 #ifdef CONFIG_NET_POLL_CONTROLLER
11448         .ndo_poll_controller    = poll_bnx2x,
11449 #endif
11450         .ndo_setup_tc           = bnx2x_setup_tc,
11451
11452 #ifdef NETDEV_FCOE_WWNN
11453         .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
11454 #endif
11455 };
11456
11457 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
11458 {
11459         struct device *dev = &bp->pdev->dev;
11460
11461         if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
11462                 bp->flags |= USING_DAC_FLAG;
11463                 if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
11464                         dev_err(dev, "dma_set_coherent_mask failed, aborting\n");
11465                         return -EIO;
11466                 }
11467         } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
11468                 dev_err(dev, "System does not support DMA, aborting\n");
11469                 return -EIO;
11470         }
11471
11472         return 0;
11473 }
11474
11475 static int __devinit bnx2x_init_dev(struct pci_dev *pdev,
11476                                     struct net_device *dev,
11477                                     unsigned long board_type)
11478 {
11479         struct bnx2x *bp;
11480         int rc;
11481         u32 pci_cfg_dword;
11482         bool chip_is_e1x = (board_type == BCM57710 ||
11483                             board_type == BCM57711 ||
11484                             board_type == BCM57711E);
11485
11486         SET_NETDEV_DEV(dev, &pdev->dev);
11487         bp = netdev_priv(dev);
11488
11489         bp->dev = dev;
11490         bp->pdev = pdev;
11491         bp->flags = 0;
11492
11493         rc = pci_enable_device(pdev);
11494         if (rc) {
11495                 dev_err(&bp->pdev->dev,
11496                         "Cannot enable PCI device, aborting\n");
11497                 goto err_out;
11498         }
11499
11500         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
11501                 dev_err(&bp->pdev->dev,
11502                         "Cannot find PCI device base address, aborting\n");
11503                 rc = -ENODEV;
11504                 goto err_out_disable;
11505         }
11506
11507         if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
11508                 dev_err(&bp->pdev->dev, "Cannot find second PCI device"
11509                        " base address, aborting\n");
11510                 rc = -ENODEV;
11511                 goto err_out_disable;
11512         }
11513
11514         if (atomic_read(&pdev->enable_cnt) == 1) {
11515                 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
11516                 if (rc) {
11517                         dev_err(&bp->pdev->dev,
11518                                 "Cannot obtain PCI resources, aborting\n");
11519                         goto err_out_disable;
11520                 }
11521
11522                 pci_set_master(pdev);
11523                 pci_save_state(pdev);
11524         }
11525
11526         bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
11527         if (bp->pm_cap == 0) {
11528                 dev_err(&bp->pdev->dev,
11529                         "Cannot find power management capability, aborting\n");
11530                 rc = -EIO;
11531                 goto err_out_release;
11532         }
11533
11534         if (!pci_is_pcie(pdev)) {
11535                 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
11536                 rc = -EIO;
11537                 goto err_out_release;
11538         }
11539
11540         rc = bnx2x_set_coherency_mask(bp);
11541         if (rc)
11542                 goto err_out_release;
11543
11544         dev->mem_start = pci_resource_start(pdev, 0);
11545         dev->base_addr = dev->mem_start;
11546         dev->mem_end = pci_resource_end(pdev, 0);
11547
11548         dev->irq = pdev->irq;
11549
11550         bp->regview = pci_ioremap_bar(pdev, 0);
11551         if (!bp->regview) {
11552                 dev_err(&bp->pdev->dev,
11553                         "Cannot map register space, aborting\n");
11554                 rc = -ENOMEM;
11555                 goto err_out_release;
11556         }
11557
11558         /* In E1/E1H use pci device function given by kernel.
11559          * In E2/E3 read physical function from ME register since these chips
11560          * support Physical Device Assignment where kernel BDF maybe arbitrary
11561          * (depending on hypervisor).
11562          */
11563         if (chip_is_e1x)
11564                 bp->pf_num = PCI_FUNC(pdev->devfn);
11565         else {/* chip is E2/3*/
11566                 pci_read_config_dword(bp->pdev,
11567                                       PCICFG_ME_REGISTER, &pci_cfg_dword);
11568                 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
11569                     ME_REG_ABS_PF_NUM_SHIFT);
11570         }
11571         BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
11572
11573         bnx2x_set_power_state(bp, PCI_D0);
11574
11575         /* clean indirect addresses */
11576         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
11577                                PCICFG_VENDOR_ID_OFFSET);
11578         /*
11579          * Clean the following indirect addresses for all functions since it
11580          * is not used by the driver.
11581          */
11582         REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
11583         REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
11584         REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
11585         REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
11586
11587         if (chip_is_e1x) {
11588                 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
11589                 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
11590                 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
11591                 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
11592         }
11593
11594         /*
11595          * Enable internal target-read (in case we are probed after PF FLR).
11596          * Must be done prior to any BAR read access. Only for 57712 and up
11597          */
11598         if (!chip_is_e1x)
11599                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
11600
11601         dev->watchdog_timeo = TX_TIMEOUT;
11602
11603         dev->netdev_ops = &bnx2x_netdev_ops;
11604         bnx2x_set_ethtool_ops(dev);
11605
11606         dev->priv_flags |= IFF_UNICAST_FLT;
11607
11608         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
11609                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
11610                 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
11611                 NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
11612
11613         dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
11614                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
11615
11616         dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
11617         if (bp->flags & USING_DAC_FLAG)
11618                 dev->features |= NETIF_F_HIGHDMA;
11619
11620         /* Add Loopback capability to the device */
11621         dev->hw_features |= NETIF_F_LOOPBACK;
11622
11623 #ifdef BCM_DCBNL
11624         dev->dcbnl_ops = &bnx2x_dcbnl_ops;
11625 #endif
11626
11627         /* get_port_hwinfo() will set prtad and mmds properly */
11628         bp->mdio.prtad = MDIO_PRTAD_NONE;
11629         bp->mdio.mmds = 0;
11630         bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
11631         bp->mdio.dev = dev;
11632         bp->mdio.mdio_read = bnx2x_mdio_read;
11633         bp->mdio.mdio_write = bnx2x_mdio_write;
11634
11635         return 0;
11636
11637 err_out_release:
11638         if (atomic_read(&pdev->enable_cnt) == 1)
11639                 pci_release_regions(pdev);
11640
11641 err_out_disable:
11642         pci_disable_device(pdev);
11643         pci_set_drvdata(pdev, NULL);
11644
11645 err_out:
11646         return rc;
11647 }
11648
11649 static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp,
11650                                                  int *width, int *speed)
11651 {
11652         u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
11653
11654         *width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
11655
11656         /* return value of 1=2.5GHz 2=5GHz */
11657         *speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
11658 }
11659
11660 static int bnx2x_check_firmware(struct bnx2x *bp)
11661 {
11662         const struct firmware *firmware = bp->firmware;
11663         struct bnx2x_fw_file_hdr *fw_hdr;
11664         struct bnx2x_fw_file_section *sections;
11665         u32 offset, len, num_ops;
11666         u16 *ops_offsets;
11667         int i;
11668         const u8 *fw_ver;
11669
11670         if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
11671                 BNX2X_ERR("Wrong FW size\n");
11672                 return -EINVAL;
11673         }
11674
11675         fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
11676         sections = (struct bnx2x_fw_file_section *)fw_hdr;
11677
11678         /* Make sure none of the offsets and sizes make us read beyond
11679          * the end of the firmware data */
11680         for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
11681                 offset = be32_to_cpu(sections[i].offset);
11682                 len = be32_to_cpu(sections[i].len);
11683                 if (offset + len > firmware->size) {
11684                         BNX2X_ERR("Section %d length is out of bounds\n", i);
11685                         return -EINVAL;
11686                 }
11687         }
11688
11689         /* Likewise for the init_ops offsets */
11690         offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
11691         ops_offsets = (u16 *)(firmware->data + offset);
11692         num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
11693
11694         for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
11695                 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
11696                         BNX2X_ERR("Section offset %d is out of bounds\n", i);
11697                         return -EINVAL;
11698                 }
11699         }
11700
11701         /* Check FW version */
11702         offset = be32_to_cpu(fw_hdr->fw_version.offset);
11703         fw_ver = firmware->data + offset;
11704         if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
11705             (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
11706             (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
11707             (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
11708                 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
11709                        fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
11710                        BCM_5710_FW_MAJOR_VERSION,
11711                        BCM_5710_FW_MINOR_VERSION,
11712                        BCM_5710_FW_REVISION_VERSION,
11713                        BCM_5710_FW_ENGINEERING_VERSION);
11714                 return -EINVAL;
11715         }
11716
11717         return 0;
11718 }
11719
11720 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
11721 {
11722         const __be32 *source = (const __be32 *)_source;
11723         u32 *target = (u32 *)_target;
11724         u32 i;
11725
11726         for (i = 0; i < n/4; i++)
11727                 target[i] = be32_to_cpu(source[i]);
11728 }
11729
11730 /*
11731    Ops array is stored in the following format:
11732    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
11733  */
11734 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
11735 {
11736         const __be32 *source = (const __be32 *)_source;
11737         struct raw_op *target = (struct raw_op *)_target;
11738         u32 i, j, tmp;
11739
11740         for (i = 0, j = 0; i < n/8; i++, j += 2) {
11741                 tmp = be32_to_cpu(source[j]);
11742                 target[i].op = (tmp >> 24) & 0xff;
11743                 target[i].offset = tmp & 0xffffff;
11744                 target[i].raw_data = be32_to_cpu(source[j + 1]);
11745         }
11746 }
11747
11748 /* IRO array is stored in the following format:
11749  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
11750  */
11751 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
11752 {
11753         const __be32 *source = (const __be32 *)_source;
11754         struct iro *target = (struct iro *)_target;
11755         u32 i, j, tmp;
11756
11757         for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
11758                 target[i].base = be32_to_cpu(source[j]);
11759                 j++;
11760                 tmp = be32_to_cpu(source[j]);
11761                 target[i].m1 = (tmp >> 16) & 0xffff;
11762                 target[i].m2 = tmp & 0xffff;
11763                 j++;
11764                 tmp = be32_to_cpu(source[j]);
11765                 target[i].m3 = (tmp >> 16) & 0xffff;
11766                 target[i].size = tmp & 0xffff;
11767                 j++;
11768         }
11769 }
11770
11771 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
11772 {
11773         const __be16 *source = (const __be16 *)_source;
11774         u16 *target = (u16 *)_target;
11775         u32 i;
11776
11777         for (i = 0; i < n/2; i++)
11778                 target[i] = be16_to_cpu(source[i]);
11779 }
11780
11781 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
11782 do {                                                                    \
11783         u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
11784         bp->arr = kmalloc(len, GFP_KERNEL);                             \
11785         if (!bp->arr)                                                   \
11786                 goto lbl;                                               \
11787         func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
11788              (u8 *)bp->arr, len);                                       \
11789 } while (0)
11790
11791 static int bnx2x_init_firmware(struct bnx2x *bp)
11792 {
11793         const char *fw_file_name;
11794         struct bnx2x_fw_file_hdr *fw_hdr;
11795         int rc;
11796
11797         if (bp->firmware)
11798                 return 0;
11799
11800         if (CHIP_IS_E1(bp))
11801                 fw_file_name = FW_FILE_NAME_E1;
11802         else if (CHIP_IS_E1H(bp))
11803                 fw_file_name = FW_FILE_NAME_E1H;
11804         else if (!CHIP_IS_E1x(bp))
11805                 fw_file_name = FW_FILE_NAME_E2;
11806         else {
11807                 BNX2X_ERR("Unsupported chip revision\n");
11808                 return -EINVAL;
11809         }
11810         BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
11811
11812         rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
11813         if (rc) {
11814                 BNX2X_ERR("Can't load firmware file %s\n",
11815                           fw_file_name);
11816                 goto request_firmware_exit;
11817         }
11818
11819         rc = bnx2x_check_firmware(bp);
11820         if (rc) {
11821                 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
11822                 goto request_firmware_exit;
11823         }
11824
11825         fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
11826
11827         /* Initialize the pointers to the init arrays */
11828         /* Blob */
11829         BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
11830
11831         /* Opcodes */
11832         BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
11833
11834         /* Offsets */
11835         BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
11836                             be16_to_cpu_n);
11837
11838         /* STORMs firmware */
11839         INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11840                         be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
11841         INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
11842                         be32_to_cpu(fw_hdr->tsem_pram_data.offset);
11843         INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11844                         be32_to_cpu(fw_hdr->usem_int_table_data.offset);
11845         INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
11846                         be32_to_cpu(fw_hdr->usem_pram_data.offset);
11847         INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11848                         be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
11849         INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
11850                         be32_to_cpu(fw_hdr->xsem_pram_data.offset);
11851         INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
11852                         be32_to_cpu(fw_hdr->csem_int_table_data.offset);
11853         INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
11854                         be32_to_cpu(fw_hdr->csem_pram_data.offset);
11855         /* IRO */
11856         BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
11857
11858         return 0;
11859
11860 iro_alloc_err:
11861         kfree(bp->init_ops_offsets);
11862 init_offsets_alloc_err:
11863         kfree(bp->init_ops);
11864 init_ops_alloc_err:
11865         kfree(bp->init_data);
11866 request_firmware_exit:
11867         release_firmware(bp->firmware);
11868         bp->firmware = NULL;
11869
11870         return rc;
11871 }
11872
11873 static void bnx2x_release_firmware(struct bnx2x *bp)
11874 {
11875         kfree(bp->init_ops_offsets);
11876         kfree(bp->init_ops);
11877         kfree(bp->init_data);
11878         release_firmware(bp->firmware);
11879         bp->firmware = NULL;
11880 }
11881
11882
11883 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
11884         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
11885         .init_hw_cmn      = bnx2x_init_hw_common,
11886         .init_hw_port     = bnx2x_init_hw_port,
11887         .init_hw_func     = bnx2x_init_hw_func,
11888
11889         .reset_hw_cmn     = bnx2x_reset_common,
11890         .reset_hw_port    = bnx2x_reset_port,
11891         .reset_hw_func    = bnx2x_reset_func,
11892
11893         .gunzip_init      = bnx2x_gunzip_init,
11894         .gunzip_end       = bnx2x_gunzip_end,
11895
11896         .init_fw          = bnx2x_init_firmware,
11897         .release_fw       = bnx2x_release_firmware,
11898 };
11899
11900 void bnx2x__init_func_obj(struct bnx2x *bp)
11901 {
11902         /* Prepare DMAE related driver resources */
11903         bnx2x_setup_dmae(bp);
11904
11905         bnx2x_init_func_obj(bp, &bp->func_obj,
11906                             bnx2x_sp(bp, func_rdata),
11907                             bnx2x_sp_mapping(bp, func_rdata),
11908                             bnx2x_sp(bp, func_afex_rdata),
11909                             bnx2x_sp_mapping(bp, func_afex_rdata),
11910                             &bnx2x_func_sp_drv);
11911 }
11912
11913 /* must be called after sriov-enable */
11914 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
11915 {
11916         int cid_count = BNX2X_L2_MAX_CID(bp);
11917
11918         if (CNIC_SUPPORT(bp))
11919                 cid_count += CNIC_CID_MAX;
11920         return roundup(cid_count, QM_CID_ROUND);
11921 }
11922
11923 /**
11924  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
11925  *
11926  * @dev:        pci device
11927  *
11928  */
11929 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev,
11930                                      int cnic_cnt)
11931 {
11932         int pos;
11933         u16 control;
11934
11935         pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
11936
11937         /*
11938          * If MSI-X is not supported - return number of SBs needed to support
11939          * one fast path queue: one FP queue + SB for CNIC
11940          */
11941         if (!pos)
11942                 return 1 + cnic_cnt;
11943
11944         /*
11945          * The value in the PCI configuration space is the index of the last
11946          * entry, namely one less than the actual size of the table, which is
11947          * exactly what we want to return from this function: number of all SBs
11948          * without the default SB.
11949          */
11950         pci_read_config_word(pdev, pos  + PCI_MSI_FLAGS, &control);
11951         return control & PCI_MSIX_FLAGS_QSIZE;
11952 }
11953
11954 static int __devinit bnx2x_init_one(struct pci_dev *pdev,
11955                                     const struct pci_device_id *ent)
11956 {
11957         struct net_device *dev = NULL;
11958         struct bnx2x *bp;
11959         int pcie_width, pcie_speed;
11960         int rc, max_non_def_sbs;
11961         int rx_count, tx_count, rss_count, doorbell_size;
11962         int cnic_cnt;
11963         /*
11964          * An estimated maximum supported CoS number according to the chip
11965          * version.
11966          * We will try to roughly estimate the maximum number of CoSes this chip
11967          * may support in order to minimize the memory allocated for Tx
11968          * netdev_queue's. This number will be accurately calculated during the
11969          * initialization of bp->max_cos based on the chip versions AND chip
11970          * revision in the bnx2x_init_bp().
11971          */
11972         u8 max_cos_est = 0;
11973
11974         switch (ent->driver_data) {
11975         case BCM57710:
11976         case BCM57711:
11977         case BCM57711E:
11978                 max_cos_est = BNX2X_MULTI_TX_COS_E1X;
11979                 break;
11980
11981         case BCM57712:
11982         case BCM57712_MF:
11983                 max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
11984                 break;
11985
11986         case BCM57800:
11987         case BCM57800_MF:
11988         case BCM57810:
11989         case BCM57810_MF:
11990         case BCM57840_O:
11991         case BCM57840_4_10:
11992         case BCM57840_2_20:
11993         case BCM57840_MFO:
11994         case BCM57840_MF:
11995         case BCM57811:
11996         case BCM57811_MF:
11997                 max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
11998                 break;
11999
12000         default:
12001                 pr_err("Unknown board_type (%ld), aborting\n",
12002                            ent->driver_data);
12003                 return -ENODEV;
12004         }
12005
12006         cnic_cnt = 1;
12007         max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
12008
12009         WARN_ON(!max_non_def_sbs);
12010
12011         /* Maximum number of RSS queues: one IGU SB goes to CNIC */
12012         rss_count = max_non_def_sbs - cnic_cnt;
12013
12014         /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
12015         rx_count = rss_count + cnic_cnt;
12016
12017         /*
12018          * Maximum number of netdev Tx queues:
12019          * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
12020          */
12021         tx_count = rss_count * max_cos_est + cnic_cnt;
12022
12023         /* dev zeroed in init_etherdev */
12024         dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
12025         if (!dev)
12026                 return -ENOMEM;
12027
12028         bp = netdev_priv(dev);
12029
12030         bp->igu_sb_cnt = max_non_def_sbs;
12031         bp->msg_enable = debug;
12032         bp->cnic_support = cnic_cnt;
12033
12034         pci_set_drvdata(pdev, dev);
12035
12036         rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
12037         if (rc < 0) {
12038                 free_netdev(dev);
12039                 return rc;
12040         }
12041
12042         BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
12043         BNX2X_DEV_INFO("max_non_def_sbs %d\n", max_non_def_sbs);
12044
12045         BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
12046                           tx_count, rx_count);
12047
12048         rc = bnx2x_init_bp(bp);
12049         if (rc)
12050                 goto init_one_exit;
12051
12052         /*
12053          * Map doorbels here as we need the real value of bp->max_cos which
12054          * is initialized in bnx2x_init_bp().
12055          */
12056         doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
12057         if (doorbell_size > pci_resource_len(pdev, 2)) {
12058                 dev_err(&bp->pdev->dev,
12059                         "Cannot map doorbells, bar size too small, aborting\n");
12060                 rc = -ENOMEM;
12061                 goto init_one_exit;
12062         }
12063         bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
12064                                         doorbell_size);
12065         if (!bp->doorbells) {
12066                 dev_err(&bp->pdev->dev,
12067                         "Cannot map doorbell space, aborting\n");
12068                 rc = -ENOMEM;
12069                 goto init_one_exit;
12070         }
12071
12072         /* calc qm_cid_count */
12073         bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
12074
12075         /* disable FCOE L2 queue for E1x*/
12076         if (CHIP_IS_E1x(bp))
12077                 bp->flags |= NO_FCOE_FLAG;
12078
12079         /* disable FCOE for 57840 device, until FW supports it */
12080         switch (ent->driver_data) {
12081         case BCM57840_O:
12082         case BCM57840_4_10:
12083         case BCM57840_2_20:
12084         case BCM57840_MFO:
12085         case BCM57840_MF:
12086                 bp->flags |= NO_FCOE_FLAG;
12087         }
12088
12089         /* Set bp->num_queues for MSI-X mode*/
12090         bnx2x_set_num_queues(bp);
12091
12092         /* Configure interrupt mode: try to enable MSI-X/MSI if
12093          * needed.
12094          */
12095         bnx2x_set_int_mode(bp);
12096
12097         rc = register_netdev(dev);
12098         if (rc) {
12099                 dev_err(&pdev->dev, "Cannot register net device\n");
12100                 goto init_one_exit;
12101         }
12102
12103
12104         if (!NO_FCOE(bp)) {
12105                 /* Add storage MAC address */
12106                 rtnl_lock();
12107                 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12108                 rtnl_unlock();
12109         }
12110
12111         bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
12112
12113         BNX2X_DEV_INFO(
12114                 "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
12115                     board_info[ent->driver_data].name,
12116                     (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
12117                     pcie_width,
12118                     ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
12119                      (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
12120                     "5GHz (Gen2)" : "2.5GHz",
12121                     dev->base_addr, bp->pdev->irq, dev->dev_addr);
12122
12123         return 0;
12124
12125 init_one_exit:
12126         if (bp->regview)
12127                 iounmap(bp->regview);
12128
12129         if (bp->doorbells)
12130                 iounmap(bp->doorbells);
12131
12132         free_netdev(dev);
12133
12134         if (atomic_read(&pdev->enable_cnt) == 1)
12135                 pci_release_regions(pdev);
12136
12137         pci_disable_device(pdev);
12138         pci_set_drvdata(pdev, NULL);
12139
12140         return rc;
12141 }
12142
12143 static void __devexit bnx2x_remove_one(struct pci_dev *pdev)
12144 {
12145         struct net_device *dev = pci_get_drvdata(pdev);
12146         struct bnx2x *bp;
12147
12148         if (!dev) {
12149                 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
12150                 return;
12151         }
12152         bp = netdev_priv(dev);
12153
12154         /* Delete storage MAC address */
12155         if (!NO_FCOE(bp)) {
12156                 rtnl_lock();
12157                 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
12158                 rtnl_unlock();
12159         }
12160
12161 #ifdef BCM_DCBNL
12162         /* Delete app tlvs from dcbnl */
12163         bnx2x_dcbnl_update_applist(bp, true);
12164 #endif
12165
12166         unregister_netdev(dev);
12167
12168         /* Power on: we can't let PCI layer write to us while we are in D3 */
12169         bnx2x_set_power_state(bp, PCI_D0);
12170
12171         /* Disable MSI/MSI-X */
12172         bnx2x_disable_msi(bp);
12173
12174         /* Power off */
12175         bnx2x_set_power_state(bp, PCI_D3hot);
12176
12177         /* Make sure RESET task is not scheduled before continuing */
12178         cancel_delayed_work_sync(&bp->sp_rtnl_task);
12179
12180         if (bp->regview)
12181                 iounmap(bp->regview);
12182
12183         if (bp->doorbells)
12184                 iounmap(bp->doorbells);
12185
12186         bnx2x_release_firmware(bp);
12187
12188         bnx2x_free_mem_bp(bp);
12189
12190         free_netdev(dev);
12191
12192         if (atomic_read(&pdev->enable_cnt) == 1)
12193                 pci_release_regions(pdev);
12194
12195         pci_disable_device(pdev);
12196         pci_set_drvdata(pdev, NULL);
12197 }
12198
12199 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
12200 {
12201         int i;
12202
12203         bp->state = BNX2X_STATE_ERROR;
12204
12205         bp->rx_mode = BNX2X_RX_MODE_NONE;
12206
12207         if (CNIC_LOADED(bp))
12208                 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
12209
12210         /* Stop Tx */
12211         bnx2x_tx_disable(bp);
12212
12213         bnx2x_netif_stop(bp, 0);
12214         /* Delete all NAPI objects */
12215         bnx2x_del_all_napi(bp);
12216         if (CNIC_LOADED(bp))
12217                 bnx2x_del_all_napi_cnic(bp);
12218
12219         del_timer_sync(&bp->timer);
12220
12221         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
12222
12223         /* Release IRQs */
12224         bnx2x_free_irq(bp);
12225
12226         /* Free SKBs, SGEs, TPA pool and driver internals */
12227         bnx2x_free_skbs(bp);
12228
12229         for_each_rx_queue(bp, i)
12230                 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
12231
12232         bnx2x_free_mem(bp);
12233
12234         bp->state = BNX2X_STATE_CLOSED;
12235
12236         netif_carrier_off(bp->dev);
12237
12238         return 0;
12239 }
12240
12241 static void bnx2x_eeh_recover(struct bnx2x *bp)
12242 {
12243         u32 val;
12244
12245         mutex_init(&bp->port.phy_mutex);
12246
12247
12248         val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
12249         if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
12250                 != (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
12251                 BNX2X_ERR("BAD MCP validity signature\n");
12252 }
12253
12254 /**
12255  * bnx2x_io_error_detected - called when PCI error is detected
12256  * @pdev: Pointer to PCI device
12257  * @state: The current pci connection state
12258  *
12259  * This function is called after a PCI bus error affecting
12260  * this device has been detected.
12261  */
12262 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
12263                                                 pci_channel_state_t state)
12264 {
12265         struct net_device *dev = pci_get_drvdata(pdev);
12266         struct bnx2x *bp = netdev_priv(dev);
12267
12268         rtnl_lock();
12269
12270         netif_device_detach(dev);
12271
12272         if (state == pci_channel_io_perm_failure) {
12273                 rtnl_unlock();
12274                 return PCI_ERS_RESULT_DISCONNECT;
12275         }
12276
12277         if (netif_running(dev))
12278                 bnx2x_eeh_nic_unload(bp);
12279
12280         pci_disable_device(pdev);
12281
12282         rtnl_unlock();
12283
12284         /* Request a slot reset */
12285         return PCI_ERS_RESULT_NEED_RESET;
12286 }
12287
12288 /**
12289  * bnx2x_io_slot_reset - called after the PCI bus has been reset
12290  * @pdev: Pointer to PCI device
12291  *
12292  * Restart the card from scratch, as if from a cold-boot.
12293  */
12294 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
12295 {
12296         struct net_device *dev = pci_get_drvdata(pdev);
12297         struct bnx2x *bp = netdev_priv(dev);
12298
12299         rtnl_lock();
12300
12301         if (pci_enable_device(pdev)) {
12302                 dev_err(&pdev->dev,
12303                         "Cannot re-enable PCI device after reset\n");
12304                 rtnl_unlock();
12305                 return PCI_ERS_RESULT_DISCONNECT;
12306         }
12307
12308         pci_set_master(pdev);
12309         pci_restore_state(pdev);
12310
12311         if (netif_running(dev))
12312                 bnx2x_set_power_state(bp, PCI_D0);
12313
12314         rtnl_unlock();
12315
12316         return PCI_ERS_RESULT_RECOVERED;
12317 }
12318
12319 /**
12320  * bnx2x_io_resume - called when traffic can start flowing again
12321  * @pdev: Pointer to PCI device
12322  *
12323  * This callback is called when the error recovery driver tells us that
12324  * its OK to resume normal operation.
12325  */
12326 static void bnx2x_io_resume(struct pci_dev *pdev)
12327 {
12328         struct net_device *dev = pci_get_drvdata(pdev);
12329         struct bnx2x *bp = netdev_priv(dev);
12330
12331         if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
12332                 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
12333                 return;
12334         }
12335
12336         rtnl_lock();
12337
12338         bnx2x_eeh_recover(bp);
12339
12340         if (netif_running(dev))
12341                 bnx2x_nic_load(bp, LOAD_NORMAL);
12342
12343         netif_device_attach(dev);
12344
12345         rtnl_unlock();
12346 }
12347
12348 static const struct pci_error_handlers bnx2x_err_handler = {
12349         .error_detected = bnx2x_io_error_detected,
12350         .slot_reset     = bnx2x_io_slot_reset,
12351         .resume         = bnx2x_io_resume,
12352 };
12353
12354 static struct pci_driver bnx2x_pci_driver = {
12355         .name        = DRV_MODULE_NAME,
12356         .id_table    = bnx2x_pci_tbl,
12357         .probe       = bnx2x_init_one,
12358         .remove      = __devexit_p(bnx2x_remove_one),
12359         .suspend     = bnx2x_suspend,
12360         .resume      = bnx2x_resume,
12361         .err_handler = &bnx2x_err_handler,
12362 };
12363
12364 static int __init bnx2x_init(void)
12365 {
12366         int ret;
12367
12368         pr_info("%s", version);
12369
12370         bnx2x_wq = create_singlethread_workqueue("bnx2x");
12371         if (bnx2x_wq == NULL) {
12372                 pr_err("Cannot create workqueue\n");
12373                 return -ENOMEM;
12374         }
12375
12376         ret = pci_register_driver(&bnx2x_pci_driver);
12377         if (ret) {
12378                 pr_err("Cannot register driver\n");
12379                 destroy_workqueue(bnx2x_wq);
12380         }
12381         return ret;
12382 }
12383
12384 static void __exit bnx2x_cleanup(void)
12385 {
12386         struct list_head *pos, *q;
12387         pci_unregister_driver(&bnx2x_pci_driver);
12388
12389         destroy_workqueue(bnx2x_wq);
12390
12391         /* Free globablly allocated resources */
12392         list_for_each_safe(pos, q, &bnx2x_prev_list) {
12393                 struct bnx2x_prev_path_list *tmp =
12394                         list_entry(pos, struct bnx2x_prev_path_list, list);
12395                 list_del(pos);
12396                 kfree(tmp);
12397         }
12398 }
12399
12400 void bnx2x_notify_link_changed(struct bnx2x *bp)
12401 {
12402         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
12403 }
12404
12405 module_init(bnx2x_init);
12406 module_exit(bnx2x_cleanup);
12407
12408 /**
12409  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
12410  *
12411  * @bp:         driver handle
12412  * @set:        set or clear the CAM entry
12413  *
12414  * This function will wait until the ramdord completion returns.
12415  * Return 0 if success, -ENODEV if ramrod doesn't return.
12416  */
12417 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
12418 {
12419         unsigned long ramrod_flags = 0;
12420
12421         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
12422         return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
12423                                  &bp->iscsi_l2_mac_obj, true,
12424                                  BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
12425 }
12426
12427 /* count denotes the number of new completions we have seen */
12428 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
12429 {
12430         struct eth_spe *spe;
12431         int cxt_index, cxt_offset;
12432
12433 #ifdef BNX2X_STOP_ON_ERROR
12434         if (unlikely(bp->panic))
12435                 return;
12436 #endif
12437
12438         spin_lock_bh(&bp->spq_lock);
12439         BUG_ON(bp->cnic_spq_pending < count);
12440         bp->cnic_spq_pending -= count;
12441
12442
12443         for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
12444                 u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
12445                                 & SPE_HDR_CONN_TYPE) >>
12446                                 SPE_HDR_CONN_TYPE_SHIFT;
12447                 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
12448                                 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
12449
12450                 /* Set validation for iSCSI L2 client before sending SETUP
12451                  *  ramrod
12452                  */
12453                 if (type == ETH_CONNECTION_TYPE) {
12454                         if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
12455                                 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
12456                                         ILT_PAGE_CIDS;
12457                                 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
12458                                         (cxt_index * ILT_PAGE_CIDS);
12459                                 bnx2x_set_ctx_validation(bp,
12460                                         &bp->context[cxt_index].
12461                                                          vcxt[cxt_offset].eth,
12462                                         BNX2X_ISCSI_ETH_CID(bp));
12463                         }
12464                 }
12465
12466                 /*
12467                  * There may be not more than 8 L2, not more than 8 L5 SPEs
12468                  * and in the air. We also check that number of outstanding
12469                  * COMMON ramrods is not more than the EQ and SPQ can
12470                  * accommodate.
12471                  */
12472                 if (type == ETH_CONNECTION_TYPE) {
12473                         if (!atomic_read(&bp->cq_spq_left))
12474                                 break;
12475                         else
12476                                 atomic_dec(&bp->cq_spq_left);
12477                 } else if (type == NONE_CONNECTION_TYPE) {
12478                         if (!atomic_read(&bp->eq_spq_left))
12479                                 break;
12480                         else
12481                                 atomic_dec(&bp->eq_spq_left);
12482                 } else if ((type == ISCSI_CONNECTION_TYPE) ||
12483                            (type == FCOE_CONNECTION_TYPE)) {
12484                         if (bp->cnic_spq_pending >=
12485                             bp->cnic_eth_dev.max_kwqe_pending)
12486                                 break;
12487                         else
12488                                 bp->cnic_spq_pending++;
12489                 } else {
12490                         BNX2X_ERR("Unknown SPE type: %d\n", type);
12491                         bnx2x_panic();
12492                         break;
12493                 }
12494
12495                 spe = bnx2x_sp_get_next(bp);
12496                 *spe = *bp->cnic_kwq_cons;
12497
12498                 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
12499                    bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
12500
12501                 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
12502                         bp->cnic_kwq_cons = bp->cnic_kwq;
12503                 else
12504                         bp->cnic_kwq_cons++;
12505         }
12506         bnx2x_sp_prod_update(bp);
12507         spin_unlock_bh(&bp->spq_lock);
12508 }
12509
12510 static int bnx2x_cnic_sp_queue(struct net_device *dev,
12511                                struct kwqe_16 *kwqes[], u32 count)
12512 {
12513         struct bnx2x *bp = netdev_priv(dev);
12514         int i;
12515
12516 #ifdef BNX2X_STOP_ON_ERROR
12517         if (unlikely(bp->panic)) {
12518                 BNX2X_ERR("Can't post to SP queue while panic\n");
12519                 return -EIO;
12520         }
12521 #endif
12522
12523         if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
12524             (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
12525                 BNX2X_ERR("Handling parity error recovery. Try again later\n");
12526                 return -EAGAIN;
12527         }
12528
12529         spin_lock_bh(&bp->spq_lock);
12530
12531         for (i = 0; i < count; i++) {
12532                 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
12533
12534                 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
12535                         break;
12536
12537                 *bp->cnic_kwq_prod = *spe;
12538
12539                 bp->cnic_kwq_pending++;
12540
12541                 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
12542                    spe->hdr.conn_and_cmd_data, spe->hdr.type,
12543                    spe->data.update_data_addr.hi,
12544                    spe->data.update_data_addr.lo,
12545                    bp->cnic_kwq_pending);
12546
12547                 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
12548                         bp->cnic_kwq_prod = bp->cnic_kwq;
12549                 else
12550                         bp->cnic_kwq_prod++;
12551         }
12552
12553         spin_unlock_bh(&bp->spq_lock);
12554
12555         if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
12556                 bnx2x_cnic_sp_post(bp, 0);
12557
12558         return i;
12559 }
12560
12561 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
12562 {
12563         struct cnic_ops *c_ops;
12564         int rc = 0;
12565
12566         mutex_lock(&bp->cnic_mutex);
12567         c_ops = rcu_dereference_protected(bp->cnic_ops,
12568                                           lockdep_is_held(&bp->cnic_mutex));
12569         if (c_ops)
12570                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
12571         mutex_unlock(&bp->cnic_mutex);
12572
12573         return rc;
12574 }
12575
12576 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
12577 {
12578         struct cnic_ops *c_ops;
12579         int rc = 0;
12580
12581         rcu_read_lock();
12582         c_ops = rcu_dereference(bp->cnic_ops);
12583         if (c_ops)
12584                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
12585         rcu_read_unlock();
12586
12587         return rc;
12588 }
12589
12590 /*
12591  * for commands that have no data
12592  */
12593 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
12594 {
12595         struct cnic_ctl_info ctl = {0};
12596
12597         ctl.cmd = cmd;
12598
12599         return bnx2x_cnic_ctl_send(bp, &ctl);
12600 }
12601
12602 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
12603 {
12604         struct cnic_ctl_info ctl = {0};
12605
12606         /* first we tell CNIC and only then we count this as a completion */
12607         ctl.cmd = CNIC_CTL_COMPLETION_CMD;
12608         ctl.data.comp.cid = cid;
12609         ctl.data.comp.error = err;
12610
12611         bnx2x_cnic_ctl_send_bh(bp, &ctl);
12612         bnx2x_cnic_sp_post(bp, 0);
12613 }
12614
12615
12616 /* Called with netif_addr_lock_bh() taken.
12617  * Sets an rx_mode config for an iSCSI ETH client.
12618  * Doesn't block.
12619  * Completion should be checked outside.
12620  */
12621 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
12622 {
12623         unsigned long accept_flags = 0, ramrod_flags = 0;
12624         u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
12625         int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
12626
12627         if (start) {
12628                 /* Start accepting on iSCSI L2 ring. Accept all multicasts
12629                  * because it's the only way for UIO Queue to accept
12630                  * multicasts (in non-promiscuous mode only one Queue per
12631                  * function will receive multicast packets (leading in our
12632                  * case).
12633                  */
12634                 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
12635                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
12636                 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
12637                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
12638
12639                 /* Clear STOP_PENDING bit if START is requested */
12640                 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
12641
12642                 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
12643         } else
12644                 /* Clear START_PENDING bit if STOP is requested */
12645                 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
12646
12647         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
12648                 set_bit(sched_state, &bp->sp_state);
12649         else {
12650                 __set_bit(RAMROD_RX, &ramrod_flags);
12651                 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
12652                                     ramrod_flags);
12653         }
12654 }
12655
12656
12657 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
12658 {
12659         struct bnx2x *bp = netdev_priv(dev);
12660         int rc = 0;
12661
12662         switch (ctl->cmd) {
12663         case DRV_CTL_CTXTBL_WR_CMD: {
12664                 u32 index = ctl->data.io.offset;
12665                 dma_addr_t addr = ctl->data.io.dma_addr;
12666
12667                 bnx2x_ilt_wr(bp, index, addr);
12668                 break;
12669         }
12670
12671         case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
12672                 int count = ctl->data.credit.credit_count;
12673
12674                 bnx2x_cnic_sp_post(bp, count);
12675                 break;
12676         }
12677
12678         /* rtnl_lock is held.  */
12679         case DRV_CTL_START_L2_CMD: {
12680                 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12681                 unsigned long sp_bits = 0;
12682
12683                 /* Configure the iSCSI classification object */
12684                 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
12685                                    cp->iscsi_l2_client_id,
12686                                    cp->iscsi_l2_cid, BP_FUNC(bp),
12687                                    bnx2x_sp(bp, mac_rdata),
12688                                    bnx2x_sp_mapping(bp, mac_rdata),
12689                                    BNX2X_FILTER_MAC_PENDING,
12690                                    &bp->sp_state, BNX2X_OBJ_TYPE_RX,
12691                                    &bp->macs_pool);
12692
12693                 /* Set iSCSI MAC address */
12694                 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
12695                 if (rc)
12696                         break;
12697
12698                 mmiowb();
12699                 barrier();
12700
12701                 /* Start accepting on iSCSI L2 ring */
12702
12703                 netif_addr_lock_bh(dev);
12704                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
12705                 netif_addr_unlock_bh(dev);
12706
12707                 /* bits to wait on */
12708                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
12709                 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
12710
12711                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
12712                         BNX2X_ERR("rx_mode completion timed out!\n");
12713
12714                 break;
12715         }
12716
12717         /* rtnl_lock is held.  */
12718         case DRV_CTL_STOP_L2_CMD: {
12719                 unsigned long sp_bits = 0;
12720
12721                 /* Stop accepting on iSCSI L2 ring */
12722                 netif_addr_lock_bh(dev);
12723                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
12724                 netif_addr_unlock_bh(dev);
12725
12726                 /* bits to wait on */
12727                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
12728                 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
12729
12730                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
12731                         BNX2X_ERR("rx_mode completion timed out!\n");
12732
12733                 mmiowb();
12734                 barrier();
12735
12736                 /* Unset iSCSI L2 MAC */
12737                 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
12738                                         BNX2X_ISCSI_ETH_MAC, true);
12739                 break;
12740         }
12741         case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
12742                 int count = ctl->data.credit.credit_count;
12743
12744                 smp_mb__before_atomic_inc();
12745                 atomic_add(count, &bp->cq_spq_left);
12746                 smp_mb__after_atomic_inc();
12747                 break;
12748         }
12749         case DRV_CTL_ULP_REGISTER_CMD: {
12750                 int ulp_type = ctl->data.register_data.ulp_type;
12751
12752                 if (CHIP_IS_E3(bp)) {
12753                         int idx = BP_FW_MB_IDX(bp);
12754                         u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
12755                         int path = BP_PATH(bp);
12756                         int port = BP_PORT(bp);
12757                         int i;
12758                         u32 scratch_offset;
12759                         u32 *host_addr;
12760
12761                         /* first write capability to shmem2 */
12762                         if (ulp_type == CNIC_ULP_ISCSI)
12763                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
12764                         else if (ulp_type == CNIC_ULP_FCOE)
12765                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
12766                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
12767
12768                         if ((ulp_type != CNIC_ULP_FCOE) ||
12769                             (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
12770                             (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
12771                                 break;
12772
12773                         /* if reached here - should write fcoe capabilities */
12774                         scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
12775                         if (!scratch_offset)
12776                                 break;
12777                         scratch_offset += offsetof(struct glob_ncsi_oem_data,
12778                                                    fcoe_features[path][port]);
12779                         host_addr = (u32 *) &(ctl->data.register_data.
12780                                               fcoe_features);
12781                         for (i = 0; i < sizeof(struct fcoe_capabilities);
12782                              i += 4)
12783                                 REG_WR(bp, scratch_offset + i,
12784                                        *(host_addr + i/4));
12785                 }
12786                 break;
12787         }
12788
12789         case DRV_CTL_ULP_UNREGISTER_CMD: {
12790                 int ulp_type = ctl->data.ulp_type;
12791
12792                 if (CHIP_IS_E3(bp)) {
12793                         int idx = BP_FW_MB_IDX(bp);
12794                         u32 cap;
12795
12796                         cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
12797                         if (ulp_type == CNIC_ULP_ISCSI)
12798                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
12799                         else if (ulp_type == CNIC_ULP_FCOE)
12800                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
12801                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
12802                 }
12803                 break;
12804         }
12805
12806         default:
12807                 BNX2X_ERR("unknown command %x\n", ctl->cmd);
12808                 rc = -EINVAL;
12809         }
12810
12811         return rc;
12812 }
12813
12814 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
12815 {
12816         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12817
12818         if (bp->flags & USING_MSIX_FLAG) {
12819                 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
12820                 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
12821                 cp->irq_arr[0].vector = bp->msix_table[1].vector;
12822         } else {
12823                 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
12824                 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
12825         }
12826         if (!CHIP_IS_E1x(bp))
12827                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
12828         else
12829                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
12830
12831         cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
12832         cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
12833         cp->irq_arr[1].status_blk = bp->def_status_blk;
12834         cp->irq_arr[1].status_blk_num = DEF_SB_ID;
12835         cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
12836
12837         cp->num_irq = 2;
12838 }
12839
12840 void bnx2x_setup_cnic_info(struct bnx2x *bp)
12841 {
12842         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12843
12844
12845         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
12846                              bnx2x_cid_ilt_lines(bp);
12847         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
12848         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
12849         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
12850
12851         if (NO_ISCSI_OOO(bp))
12852                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
12853 }
12854
12855 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
12856                                void *data)
12857 {
12858         struct bnx2x *bp = netdev_priv(dev);
12859         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12860         int rc;
12861
12862         DP(NETIF_MSG_IFUP, "Register_cnic called\n");
12863
12864         if (ops == NULL) {
12865                 BNX2X_ERR("NULL ops received\n");
12866                 return -EINVAL;
12867         }
12868
12869         if (!CNIC_SUPPORT(bp)) {
12870                 BNX2X_ERR("Can't register CNIC when not supported\n");
12871                 return -EOPNOTSUPP;
12872         }
12873
12874         if (!CNIC_LOADED(bp)) {
12875                 rc = bnx2x_load_cnic(bp);
12876                 if (rc) {
12877                         BNX2X_ERR("CNIC-related load failed\n");
12878                         return rc;
12879                 }
12880
12881         }
12882
12883         bp->cnic_enabled = true;
12884
12885         bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
12886         if (!bp->cnic_kwq)
12887                 return -ENOMEM;
12888
12889         bp->cnic_kwq_cons = bp->cnic_kwq;
12890         bp->cnic_kwq_prod = bp->cnic_kwq;
12891         bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
12892
12893         bp->cnic_spq_pending = 0;
12894         bp->cnic_kwq_pending = 0;
12895
12896         bp->cnic_data = data;
12897
12898         cp->num_irq = 0;
12899         cp->drv_state |= CNIC_DRV_STATE_REGD;
12900         cp->iro_arr = bp->iro_arr;
12901
12902         bnx2x_setup_cnic_irq_info(bp);
12903
12904         rcu_assign_pointer(bp->cnic_ops, ops);
12905
12906         return 0;
12907 }
12908
12909 static int bnx2x_unregister_cnic(struct net_device *dev)
12910 {
12911         struct bnx2x *bp = netdev_priv(dev);
12912         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12913
12914         mutex_lock(&bp->cnic_mutex);
12915         cp->drv_state = 0;
12916         RCU_INIT_POINTER(bp->cnic_ops, NULL);
12917         mutex_unlock(&bp->cnic_mutex);
12918         synchronize_rcu();
12919         kfree(bp->cnic_kwq);
12920         bp->cnic_kwq = NULL;
12921
12922         return 0;
12923 }
12924
12925 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
12926 {
12927         struct bnx2x *bp = netdev_priv(dev);
12928         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
12929
12930         /* If both iSCSI and FCoE are disabled - return NULL in
12931          * order to indicate CNIC that it should not try to work
12932          * with this device.
12933          */
12934         if (NO_ISCSI(bp) && NO_FCOE(bp))
12935                 return NULL;
12936
12937         cp->drv_owner = THIS_MODULE;
12938         cp->chip_id = CHIP_ID(bp);
12939         cp->pdev = bp->pdev;
12940         cp->io_base = bp->regview;
12941         cp->io_base2 = bp->doorbells;
12942         cp->max_kwqe_pending = 8;
12943         cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
12944         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
12945                              bnx2x_cid_ilt_lines(bp);
12946         cp->ctx_tbl_len = CNIC_ILT_LINES;
12947         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
12948         cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
12949         cp->drv_ctl = bnx2x_drv_ctl;
12950         cp->drv_register_cnic = bnx2x_register_cnic;
12951         cp->drv_unregister_cnic = bnx2x_unregister_cnic;
12952         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
12953         cp->iscsi_l2_client_id =
12954                 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
12955         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
12956
12957         if (NO_ISCSI_OOO(bp))
12958                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
12959
12960         if (NO_ISCSI(bp))
12961                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
12962
12963         if (NO_FCOE(bp))
12964                 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
12965
12966         BNX2X_DEV_INFO(
12967                 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
12968            cp->ctx_blk_size,
12969            cp->ctx_tbl_offset,
12970            cp->ctx_tbl_len,
12971            cp->starting_cid);
12972         return cp;
12973 }
12974 EXPORT_SYMBOL(bnx2x_cnic_probe);
12975
12976