]> Pileus Git - ~andy/linux/blob - drivers/net/e1000e/ich8lan.c
e1000e: cleanup ops function pointers
[~andy/linux] / drivers / net / e1000e / ich8lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 82562G 10/100 Network Connection
31  * 82562G-2 10/100 Network Connection
32  * 82562GT 10/100 Network Connection
33  * 82562GT-2 10/100 Network Connection
34  * 82562V 10/100 Network Connection
35  * 82562V-2 10/100 Network Connection
36  * 82566DC-2 Gigabit Network Connection
37  * 82566DC Gigabit Network Connection
38  * 82566DM-2 Gigabit Network Connection
39  * 82566DM Gigabit Network Connection
40  * 82566MC Gigabit Network Connection
41  * 82566MM Gigabit Network Connection
42  * 82567LM Gigabit Network Connection
43  * 82567LF Gigabit Network Connection
44  * 82567V Gigabit Network Connection
45  * 82567LM-2 Gigabit Network Connection
46  * 82567LF-2 Gigabit Network Connection
47  * 82567V-2 Gigabit Network Connection
48  * 82567LF-3 Gigabit Network Connection
49  * 82567LM-3 Gigabit Network Connection
50  * 82567LM-4 Gigabit Network Connection
51  * 82577LM Gigabit Network Connection
52  * 82577LC Gigabit Network Connection
53  * 82578DM Gigabit Network Connection
54  * 82578DC Gigabit Network Connection
55  */
56
57 #include "e1000.h"
58
59 #define ICH_FLASH_GFPREG                0x0000
60 #define ICH_FLASH_HSFSTS                0x0004
61 #define ICH_FLASH_HSFCTL                0x0006
62 #define ICH_FLASH_FADDR                 0x0008
63 #define ICH_FLASH_FDATA0                0x0010
64 #define ICH_FLASH_PR0                   0x0074
65
66 #define ICH_FLASH_READ_COMMAND_TIMEOUT  500
67 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
68 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
69 #define ICH_FLASH_LINEAR_ADDR_MASK      0x00FFFFFF
70 #define ICH_FLASH_CYCLE_REPEAT_COUNT    10
71
72 #define ICH_CYCLE_READ                  0
73 #define ICH_CYCLE_WRITE                 2
74 #define ICH_CYCLE_ERASE                 3
75
76 #define FLASH_GFPREG_BASE_MASK          0x1FFF
77 #define FLASH_SECTOR_ADDR_SHIFT         12
78
79 #define ICH_FLASH_SEG_SIZE_256          256
80 #define ICH_FLASH_SEG_SIZE_4K           4096
81 #define ICH_FLASH_SEG_SIZE_8K           8192
82 #define ICH_FLASH_SEG_SIZE_64K          65536
83
84
85 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
86
87 #define E1000_ICH_MNG_IAMT_MODE         0x2
88
89 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
90                                  (ID_LED_DEF1_OFF2 <<  8) | \
91                                  (ID_LED_DEF1_ON2  <<  4) | \
92                                  (ID_LED_DEF1_DEF2))
93
94 #define E1000_ICH_NVM_SIG_WORD          0x13
95 #define E1000_ICH_NVM_SIG_MASK          0xC000
96 #define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
97 #define E1000_ICH_NVM_SIG_VALUE         0x80
98
99 #define E1000_ICH8_LAN_INIT_TIMEOUT     1500
100
101 #define E1000_FEXTNVM_SW_CONFIG         1
102 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
103
104 #define PCIE_ICH8_SNOOP_ALL             PCIE_NO_SNOOP_ALL
105
106 #define E1000_ICH_RAR_ENTRIES           7
107
108 #define PHY_PAGE_SHIFT 5
109 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
110                            ((reg) & MAX_PHY_REG_ADDRESS))
111 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
112 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
113
114 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS    0x0002
115 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
116 #define IGP3_VR_CTRL_MODE_SHUTDOWN      0x0200
117
118 #define HV_LED_CONFIG           PHY_REG(768, 30) /* LED Configuration */
119
120 #define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
121
122 /* SMBus Address Phy Register */
123 #define HV_SMB_ADDR            PHY_REG(768, 26)
124 #define HV_SMB_ADDR_PEC_EN     0x0200
125 #define HV_SMB_ADDR_VALID      0x0080
126
127 /* Strapping Option Register - RO */
128 #define E1000_STRAP                     0x0000C
129 #define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
130 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
131
132 /* OEM Bits Phy Register */
133 #define HV_OEM_BITS            PHY_REG(768, 25)
134 #define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
135 #define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
136 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
137
138 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
139 #define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
140
141 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
142 /* Offset 04h HSFSTS */
143 union ich8_hws_flash_status {
144         struct ich8_hsfsts {
145                 u16 flcdone    :1; /* bit 0 Flash Cycle Done */
146                 u16 flcerr     :1; /* bit 1 Flash Cycle Error */
147                 u16 dael       :1; /* bit 2 Direct Access error Log */
148                 u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
149                 u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
150                 u16 reserved1  :2; /* bit 13:6 Reserved */
151                 u16 reserved2  :6; /* bit 13:6 Reserved */
152                 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
153                 u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
154         } hsf_status;
155         u16 regval;
156 };
157
158 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
159 /* Offset 06h FLCTL */
160 union ich8_hws_flash_ctrl {
161         struct ich8_hsflctl {
162                 u16 flcgo      :1;   /* 0 Flash Cycle Go */
163                 u16 flcycle    :2;   /* 2:1 Flash Cycle */
164                 u16 reserved   :5;   /* 7:3 Reserved  */
165                 u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
166                 u16 flockdn    :6;   /* 15:10 Reserved */
167         } hsf_ctrl;
168         u16 regval;
169 };
170
171 /* ICH Flash Region Access Permissions */
172 union ich8_hws_flash_regacc {
173         struct ich8_flracc {
174                 u32 grra      :8; /* 0:7 GbE region Read Access */
175                 u32 grwa      :8; /* 8:15 GbE region Write Access */
176                 u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
177                 u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
178         } hsf_flregacc;
179         u16 regval;
180 };
181
182 /* ICH Flash Protected Region */
183 union ich8_flash_protected_range {
184         struct ich8_pr {
185                 u32 base:13;     /* 0:12 Protected Range Base */
186                 u32 reserved1:2; /* 13:14 Reserved */
187                 u32 rpe:1;       /* 15 Read Protection Enable */
188                 u32 limit:13;    /* 16:28 Protected Range Limit */
189                 u32 reserved2:2; /* 29:30 Reserved */
190                 u32 wpe:1;       /* 31 Write Protection Enable */
191         } range;
192         u32 regval;
193 };
194
195 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
196 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
197 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
198 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
199 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
200 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
201                                                 u32 offset, u8 byte);
202 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
203                                          u8 *data);
204 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
205                                          u16 *data);
206 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
207                                          u8 size, u16 *data);
208 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
209 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
210 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
211 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
212 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
213 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
214 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
215 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
216 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
217 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
218 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
219 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
220 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
221 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
222
223 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
224 {
225         return readw(hw->flash_address + reg);
226 }
227
228 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
229 {
230         return readl(hw->flash_address + reg);
231 }
232
233 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
234 {
235         writew(val, hw->flash_address + reg);
236 }
237
238 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
239 {
240         writel(val, hw->flash_address + reg);
241 }
242
243 #define er16flash(reg)          __er16flash(hw, (reg))
244 #define er32flash(reg)          __er32flash(hw, (reg))
245 #define ew16flash(reg,val)      __ew16flash(hw, (reg), (val))
246 #define ew32flash(reg,val)      __ew32flash(hw, (reg), (val))
247
248 /**
249  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
250  *  @hw: pointer to the HW structure
251  *
252  *  Initialize family-specific PHY parameters and function pointers.
253  **/
254 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
255 {
256         struct e1000_phy_info *phy = &hw->phy;
257         s32 ret_val = 0;
258
259         phy->addr                     = 1;
260         phy->reset_delay_us           = 100;
261
262         phy->ops.check_polarity       = e1000_check_polarity_ife_ich8lan;
263         phy->ops.read_reg             = e1000_read_phy_reg_hv;
264         phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
265         phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
266         phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
267         phy->ops.write_reg            = e1000_write_phy_reg_hv;
268         phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
269         phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
270
271         phy->id = e1000_phy_unknown;
272         e1000e_get_phy_id(hw);
273         phy->type = e1000e_get_phy_type_from_id(phy->id);
274
275         if (phy->type == e1000_phy_82577) {
276                 phy->ops.check_polarity = e1000_check_polarity_82577;
277                 phy->ops.force_speed_duplex =
278                         e1000_phy_force_speed_duplex_82577;
279                 phy->ops.get_cable_length   = e1000_get_cable_length_82577;
280                 phy->ops.get_info = e1000_get_phy_info_82577;
281                 phy->ops.commit = e1000e_phy_sw_reset;
282         }
283
284         return ret_val;
285 }
286
287 /**
288  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
289  *  @hw: pointer to the HW structure
290  *
291  *  Initialize family-specific PHY parameters and function pointers.
292  **/
293 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
294 {
295         struct e1000_phy_info *phy = &hw->phy;
296         s32 ret_val;
297         u16 i = 0;
298
299         phy->addr                       = 1;
300         phy->reset_delay_us             = 100;
301
302         /*
303          * We may need to do this twice - once for IGP and if that fails,
304          * we'll set BM func pointers and try again
305          */
306         ret_val = e1000e_determine_phy_address(hw);
307         if (ret_val) {
308                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
309                 phy->ops.read_reg  = e1000e_read_phy_reg_bm;
310                 ret_val = e1000e_determine_phy_address(hw);
311                 if (ret_val)
312                         return ret_val;
313         }
314
315         phy->id = 0;
316         while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
317                (i++ < 100)) {
318                 msleep(1);
319                 ret_val = e1000e_get_phy_id(hw);
320                 if (ret_val)
321                         return ret_val;
322         }
323
324         /* Verify phy id */
325         switch (phy->id) {
326         case IGP03E1000_E_PHY_ID:
327                 phy->type = e1000_phy_igp_3;
328                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
329                 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
330                 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
331                 break;
332         case IFE_E_PHY_ID:
333         case IFE_PLUS_E_PHY_ID:
334         case IFE_C_E_PHY_ID:
335                 phy->type = e1000_phy_ife;
336                 phy->autoneg_mask = E1000_ALL_NOT_GIG;
337                 break;
338         case BME1000_E_PHY_ID:
339                 phy->type = e1000_phy_bm;
340                 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
341                 phy->ops.read_reg = e1000e_read_phy_reg_bm;
342                 phy->ops.write_reg = e1000e_write_phy_reg_bm;
343                 phy->ops.commit = e1000e_phy_sw_reset;
344                 break;
345         default:
346                 return -E1000_ERR_PHY;
347                 break;
348         }
349
350         phy->ops.check_polarity = e1000_check_polarity_ife_ich8lan;
351
352         return 0;
353 }
354
355 /**
356  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
357  *  @hw: pointer to the HW structure
358  *
359  *  Initialize family-specific NVM parameters and function
360  *  pointers.
361  **/
362 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
363 {
364         struct e1000_nvm_info *nvm = &hw->nvm;
365         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
366         u32 gfpreg, sector_base_addr, sector_end_addr;
367         u16 i;
368
369         /* Can't read flash registers if the register set isn't mapped. */
370         if (!hw->flash_address) {
371                 e_dbg("ERROR: Flash registers not mapped\n");
372                 return -E1000_ERR_CONFIG;
373         }
374
375         nvm->type = e1000_nvm_flash_sw;
376
377         gfpreg = er32flash(ICH_FLASH_GFPREG);
378
379         /*
380          * sector_X_addr is a "sector"-aligned address (4096 bytes)
381          * Add 1 to sector_end_addr since this sector is included in
382          * the overall size.
383          */
384         sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
385         sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
386
387         /* flash_base_addr is byte-aligned */
388         nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
389
390         /*
391          * find total size of the NVM, then cut in half since the total
392          * size represents two separate NVM banks.
393          */
394         nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
395                                 << FLASH_SECTOR_ADDR_SHIFT;
396         nvm->flash_bank_size /= 2;
397         /* Adjust to word count */
398         nvm->flash_bank_size /= sizeof(u16);
399
400         nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
401
402         /* Clear shadow ram */
403         for (i = 0; i < nvm->word_size; i++) {
404                 dev_spec->shadow_ram[i].modified = 0;
405                 dev_spec->shadow_ram[i].value    = 0xFFFF;
406         }
407
408         return 0;
409 }
410
411 /**
412  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
413  *  @hw: pointer to the HW structure
414  *
415  *  Initialize family-specific MAC parameters and function
416  *  pointers.
417  **/
418 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
419 {
420         struct e1000_hw *hw = &adapter->hw;
421         struct e1000_mac_info *mac = &hw->mac;
422
423         /* Set media type function pointer */
424         hw->phy.media_type = e1000_media_type_copper;
425
426         /* Set mta register count */
427         mac->mta_reg_count = 32;
428         /* Set rar entry count */
429         mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
430         if (mac->type == e1000_ich8lan)
431                 mac->rar_entry_count--;
432         /* Set if manageability features are enabled. */
433         mac->arc_subsystem_valid = 1;
434
435         /* LED operations */
436         switch (mac->type) {
437         case e1000_ich8lan:
438         case e1000_ich9lan:
439         case e1000_ich10lan:
440                 /* ID LED init */
441                 mac->ops.id_led_init = e1000e_id_led_init;
442                 /* setup LED */
443                 mac->ops.setup_led = e1000e_setup_led_generic;
444                 /* cleanup LED */
445                 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
446                 /* turn on/off LED */
447                 mac->ops.led_on = e1000_led_on_ich8lan;
448                 mac->ops.led_off = e1000_led_off_ich8lan;
449                 break;
450         case e1000_pchlan:
451                 /* ID LED init */
452                 mac->ops.id_led_init = e1000_id_led_init_pchlan;
453                 /* setup LED */
454                 mac->ops.setup_led = e1000_setup_led_pchlan;
455                 /* cleanup LED */
456                 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
457                 /* turn on/off LED */
458                 mac->ops.led_on = e1000_led_on_pchlan;
459                 mac->ops.led_off = e1000_led_off_pchlan;
460                 break;
461         default:
462                 break;
463         }
464
465         /* Enable PCS Lock-loss workaround for ICH8 */
466         if (mac->type == e1000_ich8lan)
467                 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
468
469         return 0;
470 }
471
472 /**
473  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
474  *  @hw: pointer to the HW structure
475  *
476  *  Checks to see of the link status of the hardware has changed.  If a
477  *  change in link status has been detected, then we read the PHY registers
478  *  to get the current speed/duplex if link exists.
479  **/
480 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
481 {
482         struct e1000_mac_info *mac = &hw->mac;
483         s32 ret_val;
484         bool link;
485
486         /*
487          * We only want to go out to the PHY registers to see if Auto-Neg
488          * has completed and/or if our link status has changed.  The
489          * get_link_status flag is set upon receiving a Link Status
490          * Change or Rx Sequence Error interrupt.
491          */
492         if (!mac->get_link_status) {
493                 ret_val = 0;
494                 goto out;
495         }
496
497         /*
498          * First we want to see if the MII Status Register reports
499          * link.  If so, then we want to get the current speed/duplex
500          * of the PHY.
501          */
502         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
503         if (ret_val)
504                 goto out;
505
506         if (hw->mac.type == e1000_pchlan) {
507                 ret_val = e1000_k1_gig_workaround_hv(hw, link);
508                 if (ret_val)
509                         goto out;
510         }
511
512         if (!link)
513                 goto out; /* No link detected */
514
515         mac->get_link_status = false;
516
517         if (hw->phy.type == e1000_phy_82578) {
518                 ret_val = e1000_link_stall_workaround_hv(hw);
519                 if (ret_val)
520                         goto out;
521         }
522
523         /*
524          * Check if there was DownShift, must be checked
525          * immediately after link-up
526          */
527         e1000e_check_downshift(hw);
528
529         /*
530          * If we are forcing speed/duplex, then we simply return since
531          * we have already determined whether we have link or not.
532          */
533         if (!mac->autoneg) {
534                 ret_val = -E1000_ERR_CONFIG;
535                 goto out;
536         }
537
538         /*
539          * Auto-Neg is enabled.  Auto Speed Detection takes care
540          * of MAC speed/duplex configuration.  So we only need to
541          * configure Collision Distance in the MAC.
542          */
543         e1000e_config_collision_dist(hw);
544
545         /*
546          * Configure Flow Control now that Auto-Neg has completed.
547          * First, we need to restore the desired flow control
548          * settings because we may have had to re-autoneg with a
549          * different link partner.
550          */
551         ret_val = e1000e_config_fc_after_link_up(hw);
552         if (ret_val)
553                 e_dbg("Error configuring flow control\n");
554
555 out:
556         return ret_val;
557 }
558
559 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
560 {
561         struct e1000_hw *hw = &adapter->hw;
562         s32 rc;
563
564         rc = e1000_init_mac_params_ich8lan(adapter);
565         if (rc)
566                 return rc;
567
568         rc = e1000_init_nvm_params_ich8lan(hw);
569         if (rc)
570                 return rc;
571
572         if (hw->mac.type == e1000_pchlan)
573                 rc = e1000_init_phy_params_pchlan(hw);
574         else
575                 rc = e1000_init_phy_params_ich8lan(hw);
576         if (rc)
577                 return rc;
578
579         if (adapter->hw.phy.type == e1000_phy_ife) {
580                 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
581                 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
582         }
583
584         if ((adapter->hw.mac.type == e1000_ich8lan) &&
585             (adapter->hw.phy.type == e1000_phy_igp_3))
586                 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
587
588         return 0;
589 }
590
591 static DEFINE_MUTEX(nvm_mutex);
592
593 /**
594  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
595  *  @hw: pointer to the HW structure
596  *
597  *  Acquires the mutex for performing NVM operations.
598  **/
599 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
600 {
601         mutex_lock(&nvm_mutex);
602
603         return 0;
604 }
605
606 /**
607  *  e1000_release_nvm_ich8lan - Release NVM mutex
608  *  @hw: pointer to the HW structure
609  *
610  *  Releases the mutex used while performing NVM operations.
611  **/
612 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
613 {
614         mutex_unlock(&nvm_mutex);
615
616         return;
617 }
618
619 static DEFINE_MUTEX(swflag_mutex);
620
621 /**
622  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
623  *  @hw: pointer to the HW structure
624  *
625  *  Acquires the software control flag for performing PHY and select
626  *  MAC CSR accesses.
627  **/
628 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
629 {
630         u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
631         s32 ret_val = 0;
632
633         might_sleep();
634
635         mutex_lock(&swflag_mutex);
636
637         while (timeout) {
638                 extcnf_ctrl = er32(EXTCNF_CTRL);
639                 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
640                         break;
641
642                 mdelay(1);
643                 timeout--;
644         }
645
646         if (!timeout) {
647                 e_dbg("SW/FW/HW has locked the resource for too long.\n");
648                 ret_val = -E1000_ERR_CONFIG;
649                 goto out;
650         }
651
652         timeout = SW_FLAG_TIMEOUT;
653
654         extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
655         ew32(EXTCNF_CTRL, extcnf_ctrl);
656
657         while (timeout) {
658                 extcnf_ctrl = er32(EXTCNF_CTRL);
659                 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
660                         break;
661
662                 mdelay(1);
663                 timeout--;
664         }
665
666         if (!timeout) {
667                 e_dbg("Failed to acquire the semaphore.\n");
668                 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
669                 ew32(EXTCNF_CTRL, extcnf_ctrl);
670                 ret_val = -E1000_ERR_CONFIG;
671                 goto out;
672         }
673
674 out:
675         if (ret_val)
676                 mutex_unlock(&swflag_mutex);
677
678         return ret_val;
679 }
680
681 /**
682  *  e1000_release_swflag_ich8lan - Release software control flag
683  *  @hw: pointer to the HW structure
684  *
685  *  Releases the software control flag for performing PHY and select
686  *  MAC CSR accesses.
687  **/
688 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
689 {
690         u32 extcnf_ctrl;
691
692         extcnf_ctrl = er32(EXTCNF_CTRL);
693         extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
694         ew32(EXTCNF_CTRL, extcnf_ctrl);
695
696         mutex_unlock(&swflag_mutex);
697
698         return;
699 }
700
701 /**
702  *  e1000_check_mng_mode_ich8lan - Checks management mode
703  *  @hw: pointer to the HW structure
704  *
705  *  This checks if the adapter has manageability enabled.
706  *  This is a function pointer entry point only called by read/write
707  *  routines for the PHY and NVM parts.
708  **/
709 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
710 {
711         u32 fwsm = er32(FWSM);
712
713         return (fwsm & E1000_FWSM_MODE_MASK) ==
714                 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
715 }
716
717 /**
718  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
719  *  @hw: pointer to the HW structure
720  *
721  *  Checks if firmware is blocking the reset of the PHY.
722  *  This is a function pointer entry point only called by
723  *  reset routines.
724  **/
725 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
726 {
727         u32 fwsm;
728
729         fwsm = er32(FWSM);
730
731         return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
732 }
733
734 /**
735  *  e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
736  *  @hw: pointer to the HW structure
737  *
738  *  Forces the speed and duplex settings of the PHY.
739  *  This is a function pointer entry point only called by
740  *  PHY setup routines.
741  **/
742 static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
743 {
744         struct e1000_phy_info *phy = &hw->phy;
745         s32 ret_val;
746         u16 data;
747         bool link;
748
749         if (phy->type != e1000_phy_ife) {
750                 ret_val = e1000e_phy_force_speed_duplex_igp(hw);
751                 return ret_val;
752         }
753
754         ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
755         if (ret_val)
756                 return ret_val;
757
758         e1000e_phy_force_speed_duplex_setup(hw, &data);
759
760         ret_val = e1e_wphy(hw, PHY_CONTROL, data);
761         if (ret_val)
762                 return ret_val;
763
764         /* Disable MDI-X support for 10/100 */
765         ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
766         if (ret_val)
767                 return ret_val;
768
769         data &= ~IFE_PMC_AUTO_MDIX;
770         data &= ~IFE_PMC_FORCE_MDIX;
771
772         ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
773         if (ret_val)
774                 return ret_val;
775
776         e_dbg("IFE PMC: %X\n", data);
777
778         udelay(1);
779
780         if (phy->autoneg_wait_to_complete) {
781                 e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
782
783                 ret_val = e1000e_phy_has_link_generic(hw,
784                                                      PHY_FORCE_LIMIT,
785                                                      100000,
786                                                      &link);
787                 if (ret_val)
788                         return ret_val;
789
790                 if (!link)
791                         e_dbg("Link taking longer than expected.\n");
792
793                 /* Try once more */
794                 ret_val = e1000e_phy_has_link_generic(hw,
795                                                      PHY_FORCE_LIMIT,
796                                                      100000,
797                                                      &link);
798                 if (ret_val)
799                         return ret_val;
800         }
801
802         return 0;
803 }
804
805 /**
806  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
807  *  @hw:   pointer to the HW structure
808  *
809  *  SW should configure the LCD from the NVM extended configuration region
810  *  as a workaround for certain parts.
811  **/
812 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
813 {
814         struct e1000_phy_info *phy = &hw->phy;
815         u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
816         s32 ret_val;
817         u16 word_addr, reg_data, reg_addr, phy_page = 0;
818
819         ret_val = hw->phy.ops.acquire(hw);
820         if (ret_val)
821                 return ret_val;
822
823         /*
824          * Initialize the PHY from the NVM on ICH platforms.  This
825          * is needed due to an issue where the NVM configuration is
826          * not properly autoloaded after power transitions.
827          * Therefore, after each PHY reset, we will load the
828          * configuration data out of the NVM manually.
829          */
830         if ((hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) ||
831                 (hw->mac.type == e1000_pchlan)) {
832                 struct e1000_adapter *adapter = hw->adapter;
833
834                 /* Check if SW needs to configure the PHY */
835                 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
836                     (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M) ||
837                     (hw->mac.type == e1000_pchlan))
838                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
839                 else
840                         sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
841
842                 data = er32(FEXTNVM);
843                 if (!(data & sw_cfg_mask))
844                         goto out;
845
846                 /* Wait for basic configuration completes before proceeding */
847                 e1000_lan_init_done_ich8lan(hw);
848
849                 /*
850                  * Make sure HW does not configure LCD from PHY
851                  * extended configuration before SW configuration
852                  */
853                 data = er32(EXTCNF_CTRL);
854                 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
855                         goto out;
856
857                 cnf_size = er32(EXTCNF_SIZE);
858                 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
859                 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
860                 if (!cnf_size)
861                         goto out;
862
863                 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
864                 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
865
866                 if (!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
867                     (hw->mac.type == e1000_pchlan)) {
868                         /*
869                          * HW configures the SMBus address and LEDs when the
870                          * OEM and LCD Write Enable bits are set in the NVM.
871                          * When both NVM bits are cleared, SW will configure
872                          * them instead.
873                          */
874                         data = er32(STRAP);
875                         data &= E1000_STRAP_SMBUS_ADDRESS_MASK;
876                         reg_data = data >> E1000_STRAP_SMBUS_ADDRESS_SHIFT;
877                         reg_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
878                         ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR,
879                                                                 reg_data);
880                         if (ret_val)
881                                 goto out;
882
883                         data = er32(LEDCTL);
884                         ret_val = e1000_write_phy_reg_hv_locked(hw,
885                                                                 HV_LED_CONFIG,
886                                                                 (u16)data);
887                         if (ret_val)
888                                 goto out;
889                 }
890                 /* Configure LCD from extended configuration region. */
891
892                 /* cnf_base_addr is in DWORD */
893                 word_addr = (u16)(cnf_base_addr << 1);
894
895                 for (i = 0; i < cnf_size; i++) {
896                         ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
897                                                    &reg_data);
898                         if (ret_val)
899                                 goto out;
900
901                         ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
902                                                    1, &reg_addr);
903                         if (ret_val)
904                                 goto out;
905
906                         /* Save off the PHY page for future writes. */
907                         if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
908                                 phy_page = reg_data;
909                                 continue;
910                         }
911
912                         reg_addr &= PHY_REG_MASK;
913                         reg_addr |= phy_page;
914
915                         ret_val = phy->ops.write_reg_locked(hw,
916                                                             (u32)reg_addr,
917                                                             reg_data);
918                         if (ret_val)
919                                 goto out;
920                 }
921         }
922
923 out:
924         hw->phy.ops.release(hw);
925         return ret_val;
926 }
927
928 /**
929  *  e1000_k1_gig_workaround_hv - K1 Si workaround
930  *  @hw:   pointer to the HW structure
931  *  @link: link up bool flag
932  *
933  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
934  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
935  *  If link is down, the function will restore the default K1 setting located
936  *  in the NVM.
937  **/
938 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
939 {
940         s32 ret_val = 0;
941         u16 status_reg = 0;
942         bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
943
944         if (hw->mac.type != e1000_pchlan)
945                 goto out;
946
947         /* Wrap the whole flow with the sw flag */
948         ret_val = hw->phy.ops.acquire(hw);
949         if (ret_val)
950                 goto out;
951
952         /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
953         if (link) {
954                 if (hw->phy.type == e1000_phy_82578) {
955                         ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
956                                                                   &status_reg);
957                         if (ret_val)
958                                 goto release;
959
960                         status_reg &= BM_CS_STATUS_LINK_UP |
961                                       BM_CS_STATUS_RESOLVED |
962                                       BM_CS_STATUS_SPEED_MASK;
963
964                         if (status_reg == (BM_CS_STATUS_LINK_UP |
965                                            BM_CS_STATUS_RESOLVED |
966                                            BM_CS_STATUS_SPEED_1000))
967                                 k1_enable = false;
968                 }
969
970                 if (hw->phy.type == e1000_phy_82577) {
971                         ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
972                                                                   &status_reg);
973                         if (ret_val)
974                                 goto release;
975
976                         status_reg &= HV_M_STATUS_LINK_UP |
977                                       HV_M_STATUS_AUTONEG_COMPLETE |
978                                       HV_M_STATUS_SPEED_MASK;
979
980                         if (status_reg == (HV_M_STATUS_LINK_UP |
981                                            HV_M_STATUS_AUTONEG_COMPLETE |
982                                            HV_M_STATUS_SPEED_1000))
983                                 k1_enable = false;
984                 }
985
986                 /* Link stall fix for link up */
987                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
988                                                            0x0100);
989                 if (ret_val)
990                         goto release;
991
992         } else {
993                 /* Link stall fix for link down */
994                 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
995                                                            0x4100);
996                 if (ret_val)
997                         goto release;
998         }
999
1000         ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1001
1002 release:
1003         hw->phy.ops.release(hw);
1004 out:
1005         return ret_val;
1006 }
1007
1008 /**
1009  *  e1000_configure_k1_ich8lan - Configure K1 power state
1010  *  @hw: pointer to the HW structure
1011  *  @enable: K1 state to configure
1012  *
1013  *  Configure the K1 power state based on the provided parameter.
1014  *  Assumes semaphore already acquired.
1015  *
1016  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1017  **/
1018 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1019 {
1020         s32 ret_val = 0;
1021         u32 ctrl_reg = 0;
1022         u32 ctrl_ext = 0;
1023         u32 reg = 0;
1024         u16 kmrn_reg = 0;
1025
1026         ret_val = e1000e_read_kmrn_reg_locked(hw,
1027                                              E1000_KMRNCTRLSTA_K1_CONFIG,
1028                                              &kmrn_reg);
1029         if (ret_val)
1030                 goto out;
1031
1032         if (k1_enable)
1033                 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1034         else
1035                 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1036
1037         ret_val = e1000e_write_kmrn_reg_locked(hw,
1038                                               E1000_KMRNCTRLSTA_K1_CONFIG,
1039                                               kmrn_reg);
1040         if (ret_val)
1041                 goto out;
1042
1043         udelay(20);
1044         ctrl_ext = er32(CTRL_EXT);
1045         ctrl_reg = er32(CTRL);
1046
1047         reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1048         reg |= E1000_CTRL_FRCSPD;
1049         ew32(CTRL, reg);
1050
1051         ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1052         udelay(20);
1053         ew32(CTRL, ctrl_reg);
1054         ew32(CTRL_EXT, ctrl_ext);
1055         udelay(20);
1056
1057 out:
1058         return ret_val;
1059 }
1060
1061 /**
1062  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1063  *  @hw:       pointer to the HW structure
1064  *  @d0_state: boolean if entering d0 or d3 device state
1065  *
1066  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1067  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1068  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1069  **/
1070 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1071 {
1072         s32 ret_val = 0;
1073         u32 mac_reg;
1074         u16 oem_reg;
1075
1076         if (hw->mac.type != e1000_pchlan)
1077                 return ret_val;
1078
1079         ret_val = hw->phy.ops.acquire(hw);
1080         if (ret_val)
1081                 return ret_val;
1082
1083         mac_reg = er32(EXTCNF_CTRL);
1084         if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1085                 goto out;
1086
1087         mac_reg = er32(FEXTNVM);
1088         if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1089                 goto out;
1090
1091         mac_reg = er32(PHY_CTRL);
1092
1093         ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1094         if (ret_val)
1095                 goto out;
1096
1097         oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1098
1099         if (d0_state) {
1100                 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1101                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1102
1103                 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1104                         oem_reg |= HV_OEM_BITS_LPLU;
1105         } else {
1106                 if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
1107                         oem_reg |= HV_OEM_BITS_GBE_DIS;
1108
1109                 if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
1110                         oem_reg |= HV_OEM_BITS_LPLU;
1111         }
1112         /* Restart auto-neg to activate the bits */
1113         oem_reg |= HV_OEM_BITS_RESTART_AN;
1114         ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1115
1116 out:
1117         hw->phy.ops.release(hw);
1118
1119         return ret_val;
1120 }
1121
1122
1123 /**
1124  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1125  *  done after every PHY reset.
1126  **/
1127 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1128 {
1129         s32 ret_val = 0;
1130
1131         if (hw->mac.type != e1000_pchlan)
1132                 return ret_val;
1133
1134         if (((hw->phy.type == e1000_phy_82577) &&
1135              ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1136             ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1137                 /* Disable generation of early preamble */
1138                 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1139                 if (ret_val)
1140                         return ret_val;
1141
1142                 /* Preamble tuning for SSC */
1143                 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
1144                 if (ret_val)
1145                         return ret_val;
1146         }
1147
1148         if (hw->phy.type == e1000_phy_82578) {
1149                 /*
1150                  * Return registers to default by doing a soft reset then
1151                  * writing 0x3140 to the control register.
1152                  */
1153                 if (hw->phy.revision < 2) {
1154                         e1000e_phy_sw_reset(hw);
1155                         ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1156                 }
1157         }
1158
1159         /* Select page 0 */
1160         ret_val = hw->phy.ops.acquire(hw);
1161         if (ret_val)
1162                 return ret_val;
1163
1164         hw->phy.addr = 1;
1165         ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1166         if (ret_val)
1167                 goto out;
1168         hw->phy.ops.release(hw);
1169
1170         /*
1171          * Configure the K1 Si workaround during phy reset assuming there is
1172          * link so that it disables K1 if link is in 1Gbps.
1173          */
1174         ret_val = e1000_k1_gig_workaround_hv(hw, true);
1175
1176 out:
1177         return ret_val;
1178 }
1179
1180 /**
1181  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
1182  *  @hw: pointer to the HW structure
1183  *
1184  *  Check the appropriate indication the MAC has finished configuring the
1185  *  PHY after a software reset.
1186  **/
1187 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1188 {
1189         u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1190
1191         /* Wait for basic configuration completes before proceeding */
1192         do {
1193                 data = er32(STATUS);
1194                 data &= E1000_STATUS_LAN_INIT_DONE;
1195                 udelay(100);
1196         } while ((!data) && --loop);
1197
1198         /*
1199          * If basic configuration is incomplete before the above loop
1200          * count reaches 0, loading the configuration from NVM will
1201          * leave the PHY in a bad state possibly resulting in no link.
1202          */
1203         if (loop == 0)
1204                 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1205
1206         /* Clear the Init Done bit for the next init event */
1207         data = er32(STATUS);
1208         data &= ~E1000_STATUS_LAN_INIT_DONE;
1209         ew32(STATUS, data);
1210 }
1211
1212 /**
1213  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1214  *  @hw: pointer to the HW structure
1215  *
1216  *  Resets the PHY
1217  *  This is a function pointer entry point called by drivers
1218  *  or other shared routines.
1219  **/
1220 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1221 {
1222         s32 ret_val = 0;
1223         u16 reg;
1224
1225         ret_val = e1000e_phy_hw_reset_generic(hw);
1226         if (ret_val)
1227                 return ret_val;
1228
1229         /* Allow time for h/w to get to a quiescent state after reset */
1230         mdelay(10);
1231
1232         if (hw->mac.type == e1000_pchlan) {
1233                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1234                 if (ret_val)
1235                         return ret_val;
1236         }
1237
1238         /* Dummy read to clear the phy wakeup bit after lcd reset */
1239         if (hw->mac.type == e1000_pchlan)
1240                 e1e_rphy(hw, BM_WUC, &reg);
1241
1242         /* Configure the LCD with the extended configuration region in NVM */
1243         ret_val = e1000_sw_lcd_config_ich8lan(hw);
1244         if (ret_val)
1245                 goto out;
1246
1247         /* Configure the LCD with the OEM bits in NVM */
1248         if (hw->mac.type == e1000_pchlan)
1249                 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1250
1251 out:
1252         return 0;
1253 }
1254
1255 /**
1256  *  e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
1257  *  @hw: pointer to the HW structure
1258  *
1259  *  Populates "phy" structure with various feature states.
1260  *  This function is only called by other family-specific
1261  *  routines.
1262  **/
1263 static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
1264 {
1265         struct e1000_phy_info *phy = &hw->phy;
1266         s32 ret_val;
1267         u16 data;
1268         bool link;
1269
1270         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1271         if (ret_val)
1272                 return ret_val;
1273
1274         if (!link) {
1275                 e_dbg("Phy info is only valid if link is up\n");
1276                 return -E1000_ERR_CONFIG;
1277         }
1278
1279         ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
1280         if (ret_val)
1281                 return ret_val;
1282         phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
1283
1284         if (phy->polarity_correction) {
1285                 ret_val = phy->ops.check_polarity(hw);
1286                 if (ret_val)
1287                         return ret_val;
1288         } else {
1289                 /* Polarity is forced */
1290                 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
1291                                       ? e1000_rev_polarity_reversed
1292                                       : e1000_rev_polarity_normal;
1293         }
1294
1295         ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1296         if (ret_val)
1297                 return ret_val;
1298
1299         phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
1300
1301         /* The following parameters are undefined for 10/100 operation. */
1302         phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1303         phy->local_rx = e1000_1000t_rx_status_undefined;
1304         phy->remote_rx = e1000_1000t_rx_status_undefined;
1305
1306         return 0;
1307 }
1308
1309 /**
1310  *  e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
1311  *  @hw: pointer to the HW structure
1312  *
1313  *  Wrapper for calling the get_phy_info routines for the appropriate phy type.
1314  *  This is a function pointer entry point called by drivers
1315  *  or other shared routines.
1316  **/
1317 static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
1318 {
1319         switch (hw->phy.type) {
1320         case e1000_phy_ife:
1321                 return e1000_get_phy_info_ife_ich8lan(hw);
1322                 break;
1323         case e1000_phy_igp_3:
1324         case e1000_phy_bm:
1325         case e1000_phy_82578:
1326         case e1000_phy_82577:
1327                 return e1000e_get_phy_info_igp(hw);
1328                 break;
1329         default:
1330                 break;
1331         }
1332
1333         return -E1000_ERR_PHY_TYPE;
1334 }
1335
1336 /**
1337  *  e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
1338  *  @hw: pointer to the HW structure
1339  *
1340  *  Polarity is determined on the polarity reversal feature being enabled.
1341  *  This function is only called by other family-specific
1342  *  routines.
1343  **/
1344 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
1345 {
1346         struct e1000_phy_info *phy = &hw->phy;
1347         s32 ret_val;
1348         u16 phy_data, offset, mask;
1349
1350         /*
1351          * Polarity is determined based on the reversal feature being enabled.
1352          */
1353         if (phy->polarity_correction) {
1354                 offset  = IFE_PHY_EXTENDED_STATUS_CONTROL;
1355                 mask    = IFE_PESC_POLARITY_REVERSED;
1356         } else {
1357                 offset  = IFE_PHY_SPECIAL_CONTROL;
1358                 mask    = IFE_PSC_FORCE_POLARITY;
1359         }
1360
1361         ret_val = e1e_rphy(hw, offset, &phy_data);
1362
1363         if (!ret_val)
1364                 phy->cable_polarity = (phy_data & mask)
1365                                       ? e1000_rev_polarity_reversed
1366                                       : e1000_rev_polarity_normal;
1367
1368         return ret_val;
1369 }
1370
1371 /**
1372  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1373  *  @hw: pointer to the HW structure
1374  *  @active: true to enable LPLU, false to disable
1375  *
1376  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
1377  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1378  *  the phy speed. This function will manually set the LPLU bit and restart
1379  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
1380  *  since it configures the same bit.
1381  **/
1382 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1383 {
1384         s32 ret_val = 0;
1385         u16 oem_reg;
1386
1387         ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1388         if (ret_val)
1389                 goto out;
1390
1391         if (active)
1392                 oem_reg |= HV_OEM_BITS_LPLU;
1393         else
1394                 oem_reg &= ~HV_OEM_BITS_LPLU;
1395
1396         oem_reg |= HV_OEM_BITS_RESTART_AN;
1397         ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1398
1399 out:
1400         return ret_val;
1401 }
1402
1403 /**
1404  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1405  *  @hw: pointer to the HW structure
1406  *  @active: TRUE to enable LPLU, FALSE to disable
1407  *
1408  *  Sets the LPLU D0 state according to the active flag.  When
1409  *  activating LPLU this function also disables smart speed
1410  *  and vice versa.  LPLU will not be activated unless the
1411  *  device autonegotiation advertisement meets standards of
1412  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1413  *  This is a function pointer entry point only called by
1414  *  PHY setup routines.
1415  **/
1416 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1417 {
1418         struct e1000_phy_info *phy = &hw->phy;
1419         u32 phy_ctrl;
1420         s32 ret_val = 0;
1421         u16 data;
1422
1423         if (phy->type == e1000_phy_ife)
1424                 return ret_val;
1425
1426         phy_ctrl = er32(PHY_CTRL);
1427
1428         if (active) {
1429                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1430                 ew32(PHY_CTRL, phy_ctrl);
1431
1432                 if (phy->type != e1000_phy_igp_3)
1433                         return 0;
1434
1435                 /*
1436                  * Call gig speed drop workaround on LPLU before accessing
1437                  * any PHY registers
1438                  */
1439                 if (hw->mac.type == e1000_ich8lan)
1440                         e1000e_gig_downshift_workaround_ich8lan(hw);
1441
1442                 /* When LPLU is enabled, we should disable SmartSpeed */
1443                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1444                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1445                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1446                 if (ret_val)
1447                         return ret_val;
1448         } else {
1449                 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1450                 ew32(PHY_CTRL, phy_ctrl);
1451
1452                 if (phy->type != e1000_phy_igp_3)
1453                         return 0;
1454
1455                 /*
1456                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1457                  * during Dx states where the power conservation is most
1458                  * important.  During driver activity we should enable
1459                  * SmartSpeed, so performance is maintained.
1460                  */
1461                 if (phy->smart_speed == e1000_smart_speed_on) {
1462                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1463                                            &data);
1464                         if (ret_val)
1465                                 return ret_val;
1466
1467                         data |= IGP01E1000_PSCFR_SMART_SPEED;
1468                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1469                                            data);
1470                         if (ret_val)
1471                                 return ret_val;
1472                 } else if (phy->smart_speed == e1000_smart_speed_off) {
1473                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1474                                            &data);
1475                         if (ret_val)
1476                                 return ret_val;
1477
1478                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1479                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1480                                            data);
1481                         if (ret_val)
1482                                 return ret_val;
1483                 }
1484         }
1485
1486         return 0;
1487 }
1488
1489 /**
1490  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1491  *  @hw: pointer to the HW structure
1492  *  @active: TRUE to enable LPLU, FALSE to disable
1493  *
1494  *  Sets the LPLU D3 state according to the active flag.  When
1495  *  activating LPLU this function also disables smart speed
1496  *  and vice versa.  LPLU will not be activated unless the
1497  *  device autonegotiation advertisement meets standards of
1498  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1499  *  This is a function pointer entry point only called by
1500  *  PHY setup routines.
1501  **/
1502 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1503 {
1504         struct e1000_phy_info *phy = &hw->phy;
1505         u32 phy_ctrl;
1506         s32 ret_val;
1507         u16 data;
1508
1509         phy_ctrl = er32(PHY_CTRL);
1510
1511         if (!active) {
1512                 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1513                 ew32(PHY_CTRL, phy_ctrl);
1514
1515                 if (phy->type != e1000_phy_igp_3)
1516                         return 0;
1517
1518                 /*
1519                  * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1520                  * during Dx states where the power conservation is most
1521                  * important.  During driver activity we should enable
1522                  * SmartSpeed, so performance is maintained.
1523                  */
1524                 if (phy->smart_speed == e1000_smart_speed_on) {
1525                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1526                                            &data);
1527                         if (ret_val)
1528                                 return ret_val;
1529
1530                         data |= IGP01E1000_PSCFR_SMART_SPEED;
1531                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1532                                            data);
1533                         if (ret_val)
1534                                 return ret_val;
1535                 } else if (phy->smart_speed == e1000_smart_speed_off) {
1536                         ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1537                                            &data);
1538                         if (ret_val)
1539                                 return ret_val;
1540
1541                         data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1542                         ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1543                                            data);
1544                         if (ret_val)
1545                                 return ret_val;
1546                 }
1547         } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1548                    (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1549                    (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1550                 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
1551                 ew32(PHY_CTRL, phy_ctrl);
1552
1553                 if (phy->type != e1000_phy_igp_3)
1554                         return 0;
1555
1556                 /*
1557                  * Call gig speed drop workaround on LPLU before accessing
1558                  * any PHY registers
1559                  */
1560                 if (hw->mac.type == e1000_ich8lan)
1561                         e1000e_gig_downshift_workaround_ich8lan(hw);
1562
1563                 /* When LPLU is enabled, we should disable SmartSpeed */
1564                 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1565                 if (ret_val)
1566                         return ret_val;
1567
1568                 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1569                 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1570         }
1571
1572         return 0;
1573 }
1574
1575 /**
1576  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
1577  *  @hw: pointer to the HW structure
1578  *  @bank:  pointer to the variable that returns the active bank
1579  *
1580  *  Reads signature byte from the NVM using the flash access registers.
1581  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
1582  **/
1583 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
1584 {
1585         u32 eecd;
1586         struct e1000_nvm_info *nvm = &hw->nvm;
1587         u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
1588         u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
1589         u8 sig_byte = 0;
1590         s32 ret_val = 0;
1591
1592         switch (hw->mac.type) {
1593         case e1000_ich8lan:
1594         case e1000_ich9lan:
1595                 eecd = er32(EECD);
1596                 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
1597                     E1000_EECD_SEC1VAL_VALID_MASK) {
1598                         if (eecd & E1000_EECD_SEC1VAL)
1599                                 *bank = 1;
1600                         else
1601                                 *bank = 0;
1602
1603                         return 0;
1604                 }
1605                 e_dbg("Unable to determine valid NVM bank via EEC - "
1606                        "reading flash signature\n");
1607                 /* fall-thru */
1608         default:
1609                 /* set bank to 0 in case flash read fails */
1610                 *bank = 0;
1611
1612                 /* Check bank 0 */
1613                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
1614                                                         &sig_byte);
1615                 if (ret_val)
1616                         return ret_val;
1617                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1618                     E1000_ICH_NVM_SIG_VALUE) {
1619                         *bank = 0;
1620                         return 0;
1621                 }
1622
1623                 /* Check bank 1 */
1624                 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
1625                                                         bank1_offset,
1626                                                         &sig_byte);
1627                 if (ret_val)
1628                         return ret_val;
1629                 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1630                     E1000_ICH_NVM_SIG_VALUE) {
1631                         *bank = 1;
1632                         return 0;
1633                 }
1634
1635                 e_dbg("ERROR: No valid NVM bank present\n");
1636                 return -E1000_ERR_NVM;
1637         }
1638
1639         return 0;
1640 }
1641
1642 /**
1643  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
1644  *  @hw: pointer to the HW structure
1645  *  @offset: The offset (in bytes) of the word(s) to read.
1646  *  @words: Size of data to read in words
1647  *  @data: Pointer to the word(s) to read at offset.
1648  *
1649  *  Reads a word(s) from the NVM using the flash access registers.
1650  **/
1651 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1652                                   u16 *data)
1653 {
1654         struct e1000_nvm_info *nvm = &hw->nvm;
1655         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1656         u32 act_offset;
1657         s32 ret_val = 0;
1658         u32 bank = 0;
1659         u16 i, word;
1660
1661         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1662             (words == 0)) {
1663                 e_dbg("nvm parameter(s) out of bounds\n");
1664                 ret_val = -E1000_ERR_NVM;
1665                 goto out;
1666         }
1667
1668         nvm->ops.acquire(hw);
1669
1670         ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1671         if (ret_val) {
1672                 e_dbg("Could not detect valid bank, assuming bank 0\n");
1673                 bank = 0;
1674         }
1675
1676         act_offset = (bank) ? nvm->flash_bank_size : 0;
1677         act_offset += offset;
1678
1679         ret_val = 0;
1680         for (i = 0; i < words; i++) {
1681                 if ((dev_spec->shadow_ram) &&
1682                     (dev_spec->shadow_ram[offset+i].modified)) {
1683                         data[i] = dev_spec->shadow_ram[offset+i].value;
1684                 } else {
1685                         ret_val = e1000_read_flash_word_ich8lan(hw,
1686                                                                 act_offset + i,
1687                                                                 &word);
1688                         if (ret_val)
1689                                 break;
1690                         data[i] = word;
1691                 }
1692         }
1693
1694         nvm->ops.release(hw);
1695
1696 out:
1697         if (ret_val)
1698                 e_dbg("NVM read error: %d\n", ret_val);
1699
1700         return ret_val;
1701 }
1702
1703 /**
1704  *  e1000_flash_cycle_init_ich8lan - Initialize flash
1705  *  @hw: pointer to the HW structure
1706  *
1707  *  This function does initial flash setup so that a new read/write/erase cycle
1708  *  can be started.
1709  **/
1710 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1711 {
1712         union ich8_hws_flash_status hsfsts;
1713         s32 ret_val = -E1000_ERR_NVM;
1714         s32 i = 0;
1715
1716         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1717
1718         /* Check if the flash descriptor is valid */
1719         if (hsfsts.hsf_status.fldesvalid == 0) {
1720                 e_dbg("Flash descriptor invalid.  "
1721                          "SW Sequencing must be used.");
1722                 return -E1000_ERR_NVM;
1723         }
1724
1725         /* Clear FCERR and DAEL in hw status by writing 1 */
1726         hsfsts.hsf_status.flcerr = 1;
1727         hsfsts.hsf_status.dael = 1;
1728
1729         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1730
1731         /*
1732          * Either we should have a hardware SPI cycle in progress
1733          * bit to check against, in order to start a new cycle or
1734          * FDONE bit should be changed in the hardware so that it
1735          * is 1 after hardware reset, which can then be used as an
1736          * indication whether a cycle is in progress or has been
1737          * completed.
1738          */
1739
1740         if (hsfsts.hsf_status.flcinprog == 0) {
1741                 /*
1742                  * There is no cycle running at present,
1743                  * so we can start a cycle
1744                  * Begin by setting Flash Cycle Done.
1745                  */
1746                 hsfsts.hsf_status.flcdone = 1;
1747                 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1748                 ret_val = 0;
1749         } else {
1750                 /*
1751                  * otherwise poll for sometime so the current
1752                  * cycle has a chance to end before giving up.
1753                  */
1754                 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1755                         hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1756                         if (hsfsts.hsf_status.flcinprog == 0) {
1757                                 ret_val = 0;
1758                                 break;
1759                         }
1760                         udelay(1);
1761                 }
1762                 if (ret_val == 0) {
1763                         /*
1764                          * Successful in waiting for previous cycle to timeout,
1765                          * now set the Flash Cycle Done.
1766                          */
1767                         hsfsts.hsf_status.flcdone = 1;
1768                         ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1769                 } else {
1770                         e_dbg("Flash controller busy, cannot get access");
1771                 }
1772         }
1773
1774         return ret_val;
1775 }
1776
1777 /**
1778  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1779  *  @hw: pointer to the HW structure
1780  *  @timeout: maximum time to wait for completion
1781  *
1782  *  This function starts a flash cycle and waits for its completion.
1783  **/
1784 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1785 {
1786         union ich8_hws_flash_ctrl hsflctl;
1787         union ich8_hws_flash_status hsfsts;
1788         s32 ret_val = -E1000_ERR_NVM;
1789         u32 i = 0;
1790
1791         /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1792         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1793         hsflctl.hsf_ctrl.flcgo = 1;
1794         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1795
1796         /* wait till FDONE bit is set to 1 */
1797         do {
1798                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1799                 if (hsfsts.hsf_status.flcdone == 1)
1800                         break;
1801                 udelay(1);
1802         } while (i++ < timeout);
1803
1804         if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1805                 return 0;
1806
1807         return ret_val;
1808 }
1809
1810 /**
1811  *  e1000_read_flash_word_ich8lan - Read word from flash
1812  *  @hw: pointer to the HW structure
1813  *  @offset: offset to data location
1814  *  @data: pointer to the location for storing the data
1815  *
1816  *  Reads the flash word at offset into data.  Offset is converted
1817  *  to bytes before read.
1818  **/
1819 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1820                                          u16 *data)
1821 {
1822         /* Must convert offset into bytes. */
1823         offset <<= 1;
1824
1825         return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1826 }
1827
1828 /**
1829  *  e1000_read_flash_byte_ich8lan - Read byte from flash
1830  *  @hw: pointer to the HW structure
1831  *  @offset: The offset of the byte to read.
1832  *  @data: Pointer to a byte to store the value read.
1833  *
1834  *  Reads a single byte from the NVM using the flash access registers.
1835  **/
1836 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1837                                          u8 *data)
1838 {
1839         s32 ret_val;
1840         u16 word = 0;
1841
1842         ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1843         if (ret_val)
1844                 return ret_val;
1845
1846         *data = (u8)word;
1847
1848         return 0;
1849 }
1850
1851 /**
1852  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
1853  *  @hw: pointer to the HW structure
1854  *  @offset: The offset (in bytes) of the byte or word to read.
1855  *  @size: Size of data to read, 1=byte 2=word
1856  *  @data: Pointer to the word to store the value read.
1857  *
1858  *  Reads a byte or word from the NVM using the flash access registers.
1859  **/
1860 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1861                                          u8 size, u16 *data)
1862 {
1863         union ich8_hws_flash_status hsfsts;
1864         union ich8_hws_flash_ctrl hsflctl;
1865         u32 flash_linear_addr;
1866         u32 flash_data = 0;
1867         s32 ret_val = -E1000_ERR_NVM;
1868         u8 count = 0;
1869
1870         if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1871                 return -E1000_ERR_NVM;
1872
1873         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1874                             hw->nvm.flash_base_addr;
1875
1876         do {
1877                 udelay(1);
1878                 /* Steps */
1879                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1880                 if (ret_val != 0)
1881                         break;
1882
1883                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1884                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1885                 hsflctl.hsf_ctrl.fldbcount = size - 1;
1886                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1887                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1888
1889                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1890
1891                 ret_val = e1000_flash_cycle_ich8lan(hw,
1892                                                 ICH_FLASH_READ_COMMAND_TIMEOUT);
1893
1894                 /*
1895                  * Check if FCERR is set to 1, if set to 1, clear it
1896                  * and try the whole sequence a few more times, else
1897                  * read in (shift in) the Flash Data0, the order is
1898                  * least significant byte first msb to lsb
1899                  */
1900                 if (ret_val == 0) {
1901                         flash_data = er32flash(ICH_FLASH_FDATA0);
1902                         if (size == 1) {
1903                                 *data = (u8)(flash_data & 0x000000FF);
1904                         } else if (size == 2) {
1905                                 *data = (u16)(flash_data & 0x0000FFFF);
1906                         }
1907                         break;
1908                 } else {
1909                         /*
1910                          * If we've gotten here, then things are probably
1911                          * completely hosed, but if the error condition is
1912                          * detected, it won't hurt to give it another try...
1913                          * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1914                          */
1915                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1916                         if (hsfsts.hsf_status.flcerr == 1) {
1917                                 /* Repeat for some time before giving up. */
1918                                 continue;
1919                         } else if (hsfsts.hsf_status.flcdone == 0) {
1920                                 e_dbg("Timeout error - flash cycle "
1921                                          "did not complete.");
1922                                 break;
1923                         }
1924                 }
1925         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1926
1927         return ret_val;
1928 }
1929
1930 /**
1931  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
1932  *  @hw: pointer to the HW structure
1933  *  @offset: The offset (in bytes) of the word(s) to write.
1934  *  @words: Size of data to write in words
1935  *  @data: Pointer to the word(s) to write at offset.
1936  *
1937  *  Writes a byte or word to the NVM using the flash access registers.
1938  **/
1939 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1940                                    u16 *data)
1941 {
1942         struct e1000_nvm_info *nvm = &hw->nvm;
1943         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1944         u16 i;
1945
1946         if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1947             (words == 0)) {
1948                 e_dbg("nvm parameter(s) out of bounds\n");
1949                 return -E1000_ERR_NVM;
1950         }
1951
1952         nvm->ops.acquire(hw);
1953
1954         for (i = 0; i < words; i++) {
1955                 dev_spec->shadow_ram[offset+i].modified = 1;
1956                 dev_spec->shadow_ram[offset+i].value = data[i];
1957         }
1958
1959         nvm->ops.release(hw);
1960
1961         return 0;
1962 }
1963
1964 /**
1965  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1966  *  @hw: pointer to the HW structure
1967  *
1968  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
1969  *  which writes the checksum to the shadow ram.  The changes in the shadow
1970  *  ram are then committed to the EEPROM by processing each bank at a time
1971  *  checking for the modified bit and writing only the pending changes.
1972  *  After a successful commit, the shadow ram is cleared and is ready for
1973  *  future writes.
1974  **/
1975 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1976 {
1977         struct e1000_nvm_info *nvm = &hw->nvm;
1978         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1979         u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
1980         s32 ret_val;
1981         u16 data;
1982
1983         ret_val = e1000e_update_nvm_checksum_generic(hw);
1984         if (ret_val)
1985                 goto out;
1986
1987         if (nvm->type != e1000_nvm_flash_sw)
1988                 goto out;
1989
1990         nvm->ops.acquire(hw);
1991
1992         /*
1993          * We're writing to the opposite bank so if we're on bank 1,
1994          * write to bank 0 etc.  We also need to erase the segment that
1995          * is going to be written
1996          */
1997         ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1998         if (ret_val) {
1999                 e_dbg("Could not detect valid bank, assuming bank 0\n");
2000                 bank = 0;
2001         }
2002
2003         if (bank == 0) {
2004                 new_bank_offset = nvm->flash_bank_size;
2005                 old_bank_offset = 0;
2006                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2007                 if (ret_val) {
2008                         nvm->ops.release(hw);
2009                         goto out;
2010                 }
2011         } else {
2012                 old_bank_offset = nvm->flash_bank_size;
2013                 new_bank_offset = 0;
2014                 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2015                 if (ret_val) {
2016                         nvm->ops.release(hw);
2017                         goto out;
2018                 }
2019         }
2020
2021         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2022                 /*
2023                  * Determine whether to write the value stored
2024                  * in the other NVM bank or a modified value stored
2025                  * in the shadow RAM
2026                  */
2027                 if (dev_spec->shadow_ram[i].modified) {
2028                         data = dev_spec->shadow_ram[i].value;
2029                 } else {
2030                         ret_val = e1000_read_flash_word_ich8lan(hw, i +
2031                                                                 old_bank_offset,
2032                                                                 &data);
2033                         if (ret_val)
2034                                 break;
2035                 }
2036
2037                 /*
2038                  * If the word is 0x13, then make sure the signature bits
2039                  * (15:14) are 11b until the commit has completed.
2040                  * This will allow us to write 10b which indicates the
2041                  * signature is valid.  We want to do this after the write
2042                  * has completed so that we don't mark the segment valid
2043                  * while the write is still in progress
2044                  */
2045                 if (i == E1000_ICH_NVM_SIG_WORD)
2046                         data |= E1000_ICH_NVM_SIG_MASK;
2047
2048                 /* Convert offset to bytes. */
2049                 act_offset = (i + new_bank_offset) << 1;
2050
2051                 udelay(100);
2052                 /* Write the bytes to the new bank. */
2053                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2054                                                                act_offset,
2055                                                                (u8)data);
2056                 if (ret_val)
2057                         break;
2058
2059                 udelay(100);
2060                 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2061                                                           act_offset + 1,
2062                                                           (u8)(data >> 8));
2063                 if (ret_val)
2064                         break;
2065         }
2066
2067         /*
2068          * Don't bother writing the segment valid bits if sector
2069          * programming failed.
2070          */
2071         if (ret_val) {
2072                 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2073                 e_dbg("Flash commit failed.\n");
2074                 nvm->ops.release(hw);
2075                 goto out;
2076         }
2077
2078         /*
2079          * Finally validate the new segment by setting bit 15:14
2080          * to 10b in word 0x13 , this can be done without an
2081          * erase as well since these bits are 11 to start with
2082          * and we need to change bit 14 to 0b
2083          */
2084         act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2085         ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2086         if (ret_val) {
2087                 nvm->ops.release(hw);
2088                 goto out;
2089         }
2090         data &= 0xBFFF;
2091         ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2092                                                        act_offset * 2 + 1,
2093                                                        (u8)(data >> 8));
2094         if (ret_val) {
2095                 nvm->ops.release(hw);
2096                 goto out;
2097         }
2098
2099         /*
2100          * And invalidate the previously valid segment by setting
2101          * its signature word (0x13) high_byte to 0b. This can be
2102          * done without an erase because flash erase sets all bits
2103          * to 1's. We can write 1's to 0's without an erase
2104          */
2105         act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2106         ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2107         if (ret_val) {
2108                 nvm->ops.release(hw);
2109                 goto out;
2110         }
2111
2112         /* Great!  Everything worked, we can now clear the cached entries. */
2113         for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2114                 dev_spec->shadow_ram[i].modified = 0;
2115                 dev_spec->shadow_ram[i].value = 0xFFFF;
2116         }
2117
2118         nvm->ops.release(hw);
2119
2120         /*
2121          * Reload the EEPROM, or else modifications will not appear
2122          * until after the next adapter reset.
2123          */
2124         e1000e_reload_nvm(hw);
2125         msleep(10);
2126
2127 out:
2128         if (ret_val)
2129                 e_dbg("NVM update error: %d\n", ret_val);
2130
2131         return ret_val;
2132 }
2133
2134 /**
2135  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2136  *  @hw: pointer to the HW structure
2137  *
2138  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2139  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2140  *  calculated, in which case we need to calculate the checksum and set bit 6.
2141  **/
2142 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2143 {
2144         s32 ret_val;
2145         u16 data;
2146
2147         /*
2148          * Read 0x19 and check bit 6.  If this bit is 0, the checksum
2149          * needs to be fixed.  This bit is an indication that the NVM
2150          * was prepared by OEM software and did not calculate the
2151          * checksum...a likely scenario.
2152          */
2153         ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2154         if (ret_val)
2155                 return ret_val;
2156
2157         if ((data & 0x40) == 0) {
2158                 data |= 0x40;
2159                 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2160                 if (ret_val)
2161                         return ret_val;
2162                 ret_val = e1000e_update_nvm_checksum(hw);
2163                 if (ret_val)
2164                         return ret_val;
2165         }
2166
2167         return e1000e_validate_nvm_checksum_generic(hw);
2168 }
2169
2170 /**
2171  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2172  *  @hw: pointer to the HW structure
2173  *
2174  *  To prevent malicious write/erase of the NVM, set it to be read-only
2175  *  so that the hardware ignores all write/erase cycles of the NVM via
2176  *  the flash control registers.  The shadow-ram copy of the NVM will
2177  *  still be updated, however any updates to this copy will not stick
2178  *  across driver reloads.
2179  **/
2180 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2181 {
2182         struct e1000_nvm_info *nvm = &hw->nvm;
2183         union ich8_flash_protected_range pr0;
2184         union ich8_hws_flash_status hsfsts;
2185         u32 gfpreg;
2186
2187         nvm->ops.acquire(hw);
2188
2189         gfpreg = er32flash(ICH_FLASH_GFPREG);
2190
2191         /* Write-protect GbE Sector of NVM */
2192         pr0.regval = er32flash(ICH_FLASH_PR0);
2193         pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2194         pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2195         pr0.range.wpe = true;
2196         ew32flash(ICH_FLASH_PR0, pr0.regval);
2197
2198         /*
2199          * Lock down a subset of GbE Flash Control Registers, e.g.
2200          * PR0 to prevent the write-protection from being lifted.
2201          * Once FLOCKDN is set, the registers protected by it cannot
2202          * be written until FLOCKDN is cleared by a hardware reset.
2203          */
2204         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2205         hsfsts.hsf_status.flockdn = true;
2206         ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2207
2208         nvm->ops.release(hw);
2209 }
2210
2211 /**
2212  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2213  *  @hw: pointer to the HW structure
2214  *  @offset: The offset (in bytes) of the byte/word to read.
2215  *  @size: Size of data to read, 1=byte 2=word
2216  *  @data: The byte(s) to write to the NVM.
2217  *
2218  *  Writes one/two bytes to the NVM using the flash access registers.
2219  **/
2220 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2221                                           u8 size, u16 data)
2222 {
2223         union ich8_hws_flash_status hsfsts;
2224         union ich8_hws_flash_ctrl hsflctl;
2225         u32 flash_linear_addr;
2226         u32 flash_data = 0;
2227         s32 ret_val;
2228         u8 count = 0;
2229
2230         if (size < 1 || size > 2 || data > size * 0xff ||
2231             offset > ICH_FLASH_LINEAR_ADDR_MASK)
2232                 return -E1000_ERR_NVM;
2233
2234         flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2235                             hw->nvm.flash_base_addr;
2236
2237         do {
2238                 udelay(1);
2239                 /* Steps */
2240                 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2241                 if (ret_val)
2242                         break;
2243
2244                 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2245                 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2246                 hsflctl.hsf_ctrl.fldbcount = size -1;
2247                 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2248                 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2249
2250                 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2251
2252                 if (size == 1)
2253                         flash_data = (u32)data & 0x00FF;
2254                 else
2255                         flash_data = (u32)data;
2256
2257                 ew32flash(ICH_FLASH_FDATA0, flash_data);
2258
2259                 /*
2260                  * check if FCERR is set to 1 , if set to 1, clear it
2261                  * and try the whole sequence a few more times else done
2262                  */
2263                 ret_val = e1000_flash_cycle_ich8lan(hw,
2264                                                ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2265                 if (!ret_val)
2266                         break;
2267
2268                 /*
2269                  * If we're here, then things are most likely
2270                  * completely hosed, but if the error condition
2271                  * is detected, it won't hurt to give it another
2272                  * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2273                  */
2274                 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2275                 if (hsfsts.hsf_status.flcerr == 1)
2276                         /* Repeat for some time before giving up. */
2277                         continue;
2278                 if (hsfsts.hsf_status.flcdone == 0) {
2279                         e_dbg("Timeout error - flash cycle "
2280                                  "did not complete.");
2281                         break;
2282                 }
2283         } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2284
2285         return ret_val;
2286 }
2287
2288 /**
2289  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2290  *  @hw: pointer to the HW structure
2291  *  @offset: The index of the byte to read.
2292  *  @data: The byte to write to the NVM.
2293  *
2294  *  Writes a single byte to the NVM using the flash access registers.
2295  **/
2296 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2297                                           u8 data)
2298 {
2299         u16 word = (u16)data;
2300
2301         return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2302 }
2303
2304 /**
2305  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2306  *  @hw: pointer to the HW structure
2307  *  @offset: The offset of the byte to write.
2308  *  @byte: The byte to write to the NVM.
2309  *
2310  *  Writes a single byte to the NVM using the flash access registers.
2311  *  Goes through a retry algorithm before giving up.
2312  **/
2313 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2314                                                 u32 offset, u8 byte)
2315 {
2316         s32 ret_val;
2317         u16 program_retries;
2318
2319         ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2320         if (!ret_val)
2321                 return ret_val;
2322
2323         for (program_retries = 0; program_retries < 100; program_retries++) {
2324                 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2325                 udelay(100);
2326                 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2327                 if (!ret_val)
2328                         break;
2329         }
2330         if (program_retries == 100)
2331                 return -E1000_ERR_NVM;
2332
2333         return 0;
2334 }
2335
2336 /**
2337  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2338  *  @hw: pointer to the HW structure
2339  *  @bank: 0 for first bank, 1 for second bank, etc.
2340  *
2341  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2342  *  bank N is 4096 * N + flash_reg_addr.
2343  **/
2344 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2345 {
2346         struct e1000_nvm_info *nvm = &hw->nvm;
2347         union ich8_hws_flash_status hsfsts;
2348         union ich8_hws_flash_ctrl hsflctl;
2349         u32 flash_linear_addr;
2350         /* bank size is in 16bit words - adjust to bytes */
2351         u32 flash_bank_size = nvm->flash_bank_size * 2;
2352         s32 ret_val;
2353         s32 count = 0;
2354         s32 iteration;
2355         s32 sector_size;
2356         s32 j;
2357
2358         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2359
2360         /*
2361          * Determine HW Sector size: Read BERASE bits of hw flash status
2362          * register
2363          * 00: The Hw sector is 256 bytes, hence we need to erase 16
2364          *     consecutive sectors.  The start index for the nth Hw sector
2365          *     can be calculated as = bank * 4096 + n * 256
2366          * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2367          *     The start index for the nth Hw sector can be calculated
2368          *     as = bank * 4096
2369          * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2370          *     (ich9 only, otherwise error condition)
2371          * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2372          */
2373         switch (hsfsts.hsf_status.berasesz) {
2374         case 0:
2375                 /* Hw sector size 256 */
2376                 sector_size = ICH_FLASH_SEG_SIZE_256;
2377                 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2378                 break;
2379         case 1:
2380                 sector_size = ICH_FLASH_SEG_SIZE_4K;
2381                 iteration = 1;
2382                 break;
2383         case 2:
2384                 sector_size = ICH_FLASH_SEG_SIZE_8K;
2385                 iteration = 1;
2386                 break;
2387         case 3:
2388                 sector_size = ICH_FLASH_SEG_SIZE_64K;
2389                 iteration = 1;
2390                 break;
2391         default:
2392                 return -E1000_ERR_NVM;
2393         }
2394
2395         /* Start with the base address, then add the sector offset. */
2396         flash_linear_addr = hw->nvm.flash_base_addr;
2397         flash_linear_addr += (bank) ? flash_bank_size : 0;
2398
2399         for (j = 0; j < iteration ; j++) {
2400                 do {
2401                         /* Steps */
2402                         ret_val = e1000_flash_cycle_init_ich8lan(hw);
2403                         if (ret_val)
2404                                 return ret_val;
2405
2406                         /*
2407                          * Write a value 11 (block Erase) in Flash
2408                          * Cycle field in hw flash control
2409                          */
2410                         hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2411                         hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2412                         ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2413
2414                         /*
2415                          * Write the last 24 bits of an index within the
2416                          * block into Flash Linear address field in Flash
2417                          * Address.
2418                          */
2419                         flash_linear_addr += (j * sector_size);
2420                         ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2421
2422                         ret_val = e1000_flash_cycle_ich8lan(hw,
2423                                                ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2424                         if (ret_val == 0)
2425                                 break;
2426
2427                         /*
2428                          * Check if FCERR is set to 1.  If 1,
2429                          * clear it and try the whole sequence
2430                          * a few more times else Done
2431                          */
2432                         hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2433                         if (hsfsts.hsf_status.flcerr == 1)
2434                                 /* repeat for some time before giving up */
2435                                 continue;
2436                         else if (hsfsts.hsf_status.flcdone == 0)
2437                                 return ret_val;
2438                 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2439         }
2440
2441         return 0;
2442 }
2443
2444 /**
2445  *  e1000_valid_led_default_ich8lan - Set the default LED settings
2446  *  @hw: pointer to the HW structure
2447  *  @data: Pointer to the LED settings
2448  *
2449  *  Reads the LED default settings from the NVM to data.  If the NVM LED
2450  *  settings is all 0's or F's, set the LED default to a valid LED default
2451  *  setting.
2452  **/
2453 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2454 {
2455         s32 ret_val;
2456
2457         ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2458         if (ret_val) {
2459                 e_dbg("NVM Read Error\n");
2460                 return ret_val;
2461         }
2462
2463         if (*data == ID_LED_RESERVED_0000 ||
2464             *data == ID_LED_RESERVED_FFFF)
2465                 *data = ID_LED_DEFAULT_ICH8LAN;
2466
2467         return 0;
2468 }
2469
2470 /**
2471  *  e1000_id_led_init_pchlan - store LED configurations
2472  *  @hw: pointer to the HW structure
2473  *
2474  *  PCH does not control LEDs via the LEDCTL register, rather it uses
2475  *  the PHY LED configuration register.
2476  *
2477  *  PCH also does not have an "always on" or "always off" mode which
2478  *  complicates the ID feature.  Instead of using the "on" mode to indicate
2479  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2480  *  use "link_up" mode.  The LEDs will still ID on request if there is no
2481  *  link based on logic in e1000_led_[on|off]_pchlan().
2482  **/
2483 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2484 {
2485         struct e1000_mac_info *mac = &hw->mac;
2486         s32 ret_val;
2487         const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2488         const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2489         u16 data, i, temp, shift;
2490
2491         /* Get default ID LED modes */
2492         ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2493         if (ret_val)
2494                 goto out;
2495
2496         mac->ledctl_default = er32(LEDCTL);
2497         mac->ledctl_mode1 = mac->ledctl_default;
2498         mac->ledctl_mode2 = mac->ledctl_default;
2499
2500         for (i = 0; i < 4; i++) {
2501                 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2502                 shift = (i * 5);
2503                 switch (temp) {
2504                 case ID_LED_ON1_DEF2:
2505                 case ID_LED_ON1_ON2:
2506                 case ID_LED_ON1_OFF2:
2507                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2508                         mac->ledctl_mode1 |= (ledctl_on << shift);
2509                         break;
2510                 case ID_LED_OFF1_DEF2:
2511                 case ID_LED_OFF1_ON2:
2512                 case ID_LED_OFF1_OFF2:
2513                         mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2514                         mac->ledctl_mode1 |= (ledctl_off << shift);
2515                         break;
2516                 default:
2517                         /* Do nothing */
2518                         break;
2519                 }
2520                 switch (temp) {
2521                 case ID_LED_DEF1_ON2:
2522                 case ID_LED_ON1_ON2:
2523                 case ID_LED_OFF1_ON2:
2524                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2525                         mac->ledctl_mode2 |= (ledctl_on << shift);
2526                         break;
2527                 case ID_LED_DEF1_OFF2:
2528                 case ID_LED_ON1_OFF2:
2529                 case ID_LED_OFF1_OFF2:
2530                         mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2531                         mac->ledctl_mode2 |= (ledctl_off << shift);
2532                         break;
2533                 default:
2534                         /* Do nothing */
2535                         break;
2536                 }
2537         }
2538
2539 out:
2540         return ret_val;
2541 }
2542
2543 /**
2544  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2545  *  @hw: pointer to the HW structure
2546  *
2547  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2548  *  register, so the the bus width is hard coded.
2549  **/
2550 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
2551 {
2552         struct e1000_bus_info *bus = &hw->bus;
2553         s32 ret_val;
2554
2555         ret_val = e1000e_get_bus_info_pcie(hw);
2556
2557         /*
2558          * ICH devices are "PCI Express"-ish.  They have
2559          * a configuration space, but do not contain
2560          * PCI Express Capability registers, so bus width
2561          * must be hardcoded.
2562          */
2563         if (bus->width == e1000_bus_width_unknown)
2564                 bus->width = e1000_bus_width_pcie_x1;
2565
2566         return ret_val;
2567 }
2568
2569 /**
2570  *  e1000_reset_hw_ich8lan - Reset the hardware
2571  *  @hw: pointer to the HW structure
2572  *
2573  *  Does a full reset of the hardware which includes a reset of the PHY and
2574  *  MAC.
2575  **/
2576 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
2577 {
2578         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2579         u16 reg;
2580         u32 ctrl, icr, kab;
2581         s32 ret_val;
2582
2583         /*
2584          * Prevent the PCI-E bus from sticking if there is no TLP connection
2585          * on the last TLP read/write transaction when MAC is reset.
2586          */
2587         ret_val = e1000e_disable_pcie_master(hw);
2588         if (ret_val) {
2589                 e_dbg("PCI-E Master disable polling has failed.\n");
2590         }
2591
2592         e_dbg("Masking off all interrupts\n");
2593         ew32(IMC, 0xffffffff);
2594
2595         /*
2596          * Disable the Transmit and Receive units.  Then delay to allow
2597          * any pending transactions to complete before we hit the MAC
2598          * with the global reset.
2599          */
2600         ew32(RCTL, 0);
2601         ew32(TCTL, E1000_TCTL_PSP);
2602         e1e_flush();
2603
2604         msleep(10);
2605
2606         /* Workaround for ICH8 bit corruption issue in FIFO memory */
2607         if (hw->mac.type == e1000_ich8lan) {
2608                 /* Set Tx and Rx buffer allocation to 8k apiece. */
2609                 ew32(PBA, E1000_PBA_8K);
2610                 /* Set Packet Buffer Size to 16k. */
2611                 ew32(PBS, E1000_PBS_16K);
2612         }
2613
2614         if (hw->mac.type == e1000_pchlan) {
2615                 /* Save the NVM K1 bit setting*/
2616                 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
2617                 if (ret_val)
2618                         return ret_val;
2619
2620                 if (reg & E1000_NVM_K1_ENABLE)
2621                         dev_spec->nvm_k1_enabled = true;
2622                 else
2623                         dev_spec->nvm_k1_enabled = false;
2624         }
2625
2626         ctrl = er32(CTRL);
2627
2628         if (!e1000_check_reset_block(hw)) {
2629                 /* Clear PHY Reset Asserted bit */
2630                 if (hw->mac.type >= e1000_pchlan) {
2631                         u32 status = er32(STATUS);
2632                         ew32(STATUS, status & ~E1000_STATUS_PHYRA);
2633                 }
2634
2635                 /*
2636                  * PHY HW reset requires MAC CORE reset at the same
2637                  * time to make sure the interface between MAC and the
2638                  * external PHY is reset.
2639                  */
2640                 ctrl |= E1000_CTRL_PHY_RST;
2641         }
2642         ret_val = e1000_acquire_swflag_ich8lan(hw);
2643         /* Whether or not the swflag was acquired, we need to reset the part */
2644         e_dbg("Issuing a global reset to ich8lan\n");
2645         ew32(CTRL, (ctrl | E1000_CTRL_RST));
2646         msleep(20);
2647
2648         if (!ret_val)
2649                 e1000_release_swflag_ich8lan(hw);
2650
2651         if (ctrl & E1000_CTRL_PHY_RST)
2652                 ret_val = hw->phy.ops.get_cfg_done(hw);
2653
2654         if (hw->mac.type >= e1000_ich10lan) {
2655                 e1000_lan_init_done_ich8lan(hw);
2656         } else {
2657                 ret_val = e1000e_get_auto_rd_done(hw);
2658                 if (ret_val) {
2659                         /*
2660                          * When auto config read does not complete, do not
2661                          * return with an error. This can happen in situations
2662                          * where there is no eeprom and prevents getting link.
2663                          */
2664                         e_dbg("Auto Read Done did not complete\n");
2665                 }
2666         }
2667         /* Dummy read to clear the phy wakeup bit after lcd reset */
2668         if (hw->mac.type == e1000_pchlan)
2669                 e1e_rphy(hw, BM_WUC, &reg);
2670
2671         ret_val = e1000_sw_lcd_config_ich8lan(hw);
2672         if (ret_val)
2673                 goto out;
2674
2675         if (hw->mac.type == e1000_pchlan) {
2676                 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2677                 if (ret_val)
2678                         goto out;
2679         }
2680         /*
2681          * For PCH, this write will make sure that any noise
2682          * will be detected as a CRC error and be dropped rather than show up
2683          * as a bad packet to the DMA engine.
2684          */
2685         if (hw->mac.type == e1000_pchlan)
2686                 ew32(CRC_OFFSET, 0x65656565);
2687
2688         ew32(IMC, 0xffffffff);
2689         icr = er32(ICR);
2690
2691         kab = er32(KABGTXD);
2692         kab |= E1000_KABGTXD_BGSQLBIAS;
2693         ew32(KABGTXD, kab);
2694
2695         if (hw->mac.type == e1000_pchlan)
2696                 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2697
2698 out:
2699         return ret_val;
2700 }
2701
2702 /**
2703  *  e1000_init_hw_ich8lan - Initialize the hardware
2704  *  @hw: pointer to the HW structure
2705  *
2706  *  Prepares the hardware for transmit and receive by doing the following:
2707  *   - initialize hardware bits
2708  *   - initialize LED identification
2709  *   - setup receive address registers
2710  *   - setup flow control
2711  *   - setup transmit descriptors
2712  *   - clear statistics
2713  **/
2714 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
2715 {
2716         struct e1000_mac_info *mac = &hw->mac;
2717         u32 ctrl_ext, txdctl, snoop;
2718         s32 ret_val;
2719         u16 i;
2720
2721         e1000_initialize_hw_bits_ich8lan(hw);
2722
2723         /* Initialize identification LED */
2724         ret_val = mac->ops.id_led_init(hw);
2725         if (ret_val) {
2726                 e_dbg("Error initializing identification LED\n");
2727                 return ret_val;
2728         }
2729
2730         /* Setup the receive address. */
2731         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
2732
2733         /* Zero out the Multicast HASH table */
2734         e_dbg("Zeroing the MTA\n");
2735         for (i = 0; i < mac->mta_reg_count; i++)
2736                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
2737
2738         /*
2739          * The 82578 Rx buffer will stall if wakeup is enabled in host and
2740          * the ME.  Reading the BM_WUC register will clear the host wakeup bit.
2741          * Reset the phy after disabling host wakeup to reset the Rx buffer.
2742          */
2743         if (hw->phy.type == e1000_phy_82578) {
2744                 hw->phy.ops.read_reg(hw, BM_WUC, &i);
2745                 ret_val = e1000_phy_hw_reset_ich8lan(hw);
2746                 if (ret_val)
2747                         return ret_val;
2748         }
2749
2750         /* Setup link and flow control */
2751         ret_val = e1000_setup_link_ich8lan(hw);
2752
2753         /* Set the transmit descriptor write-back policy for both queues */
2754         txdctl = er32(TXDCTL(0));
2755         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2756                  E1000_TXDCTL_FULL_TX_DESC_WB;
2757         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2758                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2759         ew32(TXDCTL(0), txdctl);
2760         txdctl = er32(TXDCTL(1));
2761         txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2762                  E1000_TXDCTL_FULL_TX_DESC_WB;
2763         txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2764                  E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2765         ew32(TXDCTL(1), txdctl);
2766
2767         /*
2768          * ICH8 has opposite polarity of no_snoop bits.
2769          * By default, we should use snoop behavior.
2770          */
2771         if (mac->type == e1000_ich8lan)
2772                 snoop = PCIE_ICH8_SNOOP_ALL;
2773         else
2774                 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
2775         e1000e_set_pcie_no_snoop(hw, snoop);
2776
2777         ctrl_ext = er32(CTRL_EXT);
2778         ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2779         ew32(CTRL_EXT, ctrl_ext);
2780
2781         /*
2782          * Clear all of the statistics registers (clear on read).  It is
2783          * important that we do this after we have tried to establish link
2784          * because the symbol error count will increment wildly if there
2785          * is no link.
2786          */
2787         e1000_clear_hw_cntrs_ich8lan(hw);
2788
2789         return 0;
2790 }
2791 /**
2792  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2793  *  @hw: pointer to the HW structure
2794  *
2795  *  Sets/Clears required hardware bits necessary for correctly setting up the
2796  *  hardware for transmit and receive.
2797  **/
2798 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
2799 {
2800         u32 reg;
2801
2802         /* Extended Device Control */
2803         reg = er32(CTRL_EXT);
2804         reg |= (1 << 22);
2805         /* Enable PHY low-power state when MAC is at D3 w/o WoL */
2806         if (hw->mac.type >= e1000_pchlan)
2807                 reg |= E1000_CTRL_EXT_PHYPDEN;
2808         ew32(CTRL_EXT, reg);
2809
2810         /* Transmit Descriptor Control 0 */
2811         reg = er32(TXDCTL(0));
2812         reg |= (1 << 22);
2813         ew32(TXDCTL(0), reg);
2814
2815         /* Transmit Descriptor Control 1 */
2816         reg = er32(TXDCTL(1));
2817         reg |= (1 << 22);
2818         ew32(TXDCTL(1), reg);
2819
2820         /* Transmit Arbitration Control 0 */
2821         reg = er32(TARC(0));
2822         if (hw->mac.type == e1000_ich8lan)
2823                 reg |= (1 << 28) | (1 << 29);
2824         reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
2825         ew32(TARC(0), reg);
2826
2827         /* Transmit Arbitration Control 1 */
2828         reg = er32(TARC(1));
2829         if (er32(TCTL) & E1000_TCTL_MULR)
2830                 reg &= ~(1 << 28);
2831         else
2832                 reg |= (1 << 28);
2833         reg |= (1 << 24) | (1 << 26) | (1 << 30);
2834         ew32(TARC(1), reg);
2835
2836         /* Device Status */
2837         if (hw->mac.type == e1000_ich8lan) {
2838                 reg = er32(STATUS);
2839                 reg &= ~(1 << 31);
2840                 ew32(STATUS, reg);
2841         }
2842 }
2843
2844 /**
2845  *  e1000_setup_link_ich8lan - Setup flow control and link settings
2846  *  @hw: pointer to the HW structure
2847  *
2848  *  Determines which flow control settings to use, then configures flow
2849  *  control.  Calls the appropriate media-specific link configuration
2850  *  function.  Assuming the adapter has a valid link partner, a valid link
2851  *  should be established.  Assumes the hardware has previously been reset
2852  *  and the transmitter and receiver are not enabled.
2853  **/
2854 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
2855 {
2856         s32 ret_val;
2857
2858         if (e1000_check_reset_block(hw))
2859                 return 0;
2860
2861         /*
2862          * ICH parts do not have a word in the NVM to determine
2863          * the default flow control setting, so we explicitly
2864          * set it to full.
2865          */
2866         if (hw->fc.requested_mode == e1000_fc_default) {
2867                 /* Workaround h/w hang when Tx flow control enabled */
2868                 if (hw->mac.type == e1000_pchlan)
2869                         hw->fc.requested_mode = e1000_fc_rx_pause;
2870                 else
2871                         hw->fc.requested_mode = e1000_fc_full;
2872         }
2873
2874         /*
2875          * Save off the requested flow control mode for use later.  Depending
2876          * on the link partner's capabilities, we may or may not use this mode.
2877          */
2878         hw->fc.current_mode = hw->fc.requested_mode;
2879
2880         e_dbg("After fix-ups FlowControl is now = %x\n",
2881                 hw->fc.current_mode);
2882
2883         /* Continue to configure the copper link. */
2884         ret_val = e1000_setup_copper_link_ich8lan(hw);
2885         if (ret_val)
2886                 return ret_val;
2887
2888         ew32(FCTTV, hw->fc.pause_time);
2889         if ((hw->phy.type == e1000_phy_82578) ||
2890             (hw->phy.type == e1000_phy_82577)) {
2891                 ret_val = hw->phy.ops.write_reg(hw,
2892                                              PHY_REG(BM_PORT_CTRL_PAGE, 27),
2893                                              hw->fc.pause_time);
2894                 if (ret_val)
2895                         return ret_val;
2896         }
2897
2898         return e1000e_set_fc_watermarks(hw);
2899 }
2900
2901 /**
2902  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2903  *  @hw: pointer to the HW structure
2904  *
2905  *  Configures the kumeran interface to the PHY to wait the appropriate time
2906  *  when polling the PHY, then call the generic setup_copper_link to finish
2907  *  configuring the copper link.
2908  **/
2909 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2910 {
2911         u32 ctrl;
2912         s32 ret_val;
2913         u16 reg_data;
2914
2915         ctrl = er32(CTRL);
2916         ctrl |= E1000_CTRL_SLU;
2917         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2918         ew32(CTRL, ctrl);
2919
2920         /*
2921          * Set the mac to wait the maximum time between each iteration
2922          * and increase the max iterations when polling the phy;
2923          * this fixes erroneous timeouts at 10Mbps.
2924          */
2925         ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
2926         if (ret_val)
2927                 return ret_val;
2928         ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
2929         if (ret_val)
2930                 return ret_val;
2931         reg_data |= 0x3F;
2932         ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
2933         if (ret_val)
2934                 return ret_val;
2935
2936         switch (hw->phy.type) {
2937         case e1000_phy_igp_3:
2938                 ret_val = e1000e_copper_link_setup_igp(hw);
2939                 if (ret_val)
2940                         return ret_val;
2941                 break;
2942         case e1000_phy_bm:
2943         case e1000_phy_82578:
2944                 ret_val = e1000e_copper_link_setup_m88(hw);
2945                 if (ret_val)
2946                         return ret_val;
2947                 break;
2948         case e1000_phy_82577:
2949                 ret_val = e1000_copper_link_setup_82577(hw);
2950                 if (ret_val)
2951                         return ret_val;
2952                 break;
2953         case e1000_phy_ife:
2954                 ret_val = hw->phy.ops.read_reg(hw, IFE_PHY_MDIX_CONTROL,
2955                                                &reg_data);
2956                 if (ret_val)
2957                         return ret_val;
2958
2959                 reg_data &= ~IFE_PMC_AUTO_MDIX;
2960
2961                 switch (hw->phy.mdix) {
2962                 case 1:
2963                         reg_data &= ~IFE_PMC_FORCE_MDIX;
2964                         break;
2965                 case 2:
2966                         reg_data |= IFE_PMC_FORCE_MDIX;
2967                         break;
2968                 case 0:
2969                 default:
2970                         reg_data |= IFE_PMC_AUTO_MDIX;
2971                         break;
2972                 }
2973                 ret_val = hw->phy.ops.write_reg(hw, IFE_PHY_MDIX_CONTROL,
2974                                                 reg_data);
2975                 if (ret_val)
2976                         return ret_val;
2977                 break;
2978         default:
2979                 break;
2980         }
2981         return e1000e_setup_copper_link(hw);
2982 }
2983
2984 /**
2985  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2986  *  @hw: pointer to the HW structure
2987  *  @speed: pointer to store current link speed
2988  *  @duplex: pointer to store the current link duplex
2989  *
2990  *  Calls the generic get_speed_and_duplex to retrieve the current link
2991  *  information and then calls the Kumeran lock loss workaround for links at
2992  *  gigabit speeds.
2993  **/
2994 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2995                                           u16 *duplex)
2996 {
2997         s32 ret_val;
2998
2999         ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3000         if (ret_val)
3001                 return ret_val;
3002
3003         if ((hw->mac.type == e1000_ich8lan) &&
3004             (hw->phy.type == e1000_phy_igp_3) &&
3005             (*speed == SPEED_1000)) {
3006                 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3007         }
3008
3009         return ret_val;
3010 }
3011
3012 /**
3013  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3014  *  @hw: pointer to the HW structure
3015  *
3016  *  Work-around for 82566 Kumeran PCS lock loss:
3017  *  On link status change (i.e. PCI reset, speed change) and link is up and
3018  *  speed is gigabit-
3019  *    0) if workaround is optionally disabled do nothing
3020  *    1) wait 1ms for Kumeran link to come up
3021  *    2) check Kumeran Diagnostic register PCS lock loss bit
3022  *    3) if not set the link is locked (all is good), otherwise...
3023  *    4) reset the PHY
3024  *    5) repeat up to 10 times
3025  *  Note: this is only called for IGP3 copper when speed is 1gb.
3026  **/
3027 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3028 {
3029         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3030         u32 phy_ctrl;
3031         s32 ret_val;
3032         u16 i, data;
3033         bool link;
3034
3035         if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3036                 return 0;
3037
3038         /*
3039          * Make sure link is up before proceeding.  If not just return.
3040          * Attempting this while link is negotiating fouled up link
3041          * stability
3042          */
3043         ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3044         if (!link)
3045                 return 0;
3046
3047         for (i = 0; i < 10; i++) {
3048                 /* read once to clear */
3049                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3050                 if (ret_val)
3051                         return ret_val;
3052                 /* and again to get new status */
3053                 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3054                 if (ret_val)
3055                         return ret_val;
3056
3057                 /* check for PCS lock */
3058                 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3059                         return 0;
3060
3061                 /* Issue PHY reset */
3062                 e1000_phy_hw_reset(hw);
3063                 mdelay(5);
3064         }
3065         /* Disable GigE link negotiation */
3066         phy_ctrl = er32(PHY_CTRL);
3067         phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3068                      E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3069         ew32(PHY_CTRL, phy_ctrl);
3070
3071         /*
3072          * Call gig speed drop workaround on Gig disable before accessing
3073          * any PHY registers
3074          */
3075         e1000e_gig_downshift_workaround_ich8lan(hw);
3076
3077         /* unable to acquire PCS lock */
3078         return -E1000_ERR_PHY;
3079 }
3080
3081 /**
3082  *  e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3083  *  @hw: pointer to the HW structure
3084  *  @state: boolean value used to set the current Kumeran workaround state
3085  *
3086  *  If ICH8, set the current Kumeran workaround state (enabled - TRUE
3087  *  /disabled - FALSE).
3088  **/
3089 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3090                                                  bool state)
3091 {
3092         struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3093
3094         if (hw->mac.type != e1000_ich8lan) {
3095                 e_dbg("Workaround applies to ICH8 only.\n");
3096                 return;
3097         }
3098
3099         dev_spec->kmrn_lock_loss_workaround_enabled = state;
3100 }
3101
3102 /**
3103  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3104  *  @hw: pointer to the HW structure
3105  *
3106  *  Workaround for 82566 power-down on D3 entry:
3107  *    1) disable gigabit link
3108  *    2) write VR power-down enable
3109  *    3) read it back
3110  *  Continue if successful, else issue LCD reset and repeat
3111  **/
3112 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3113 {
3114         u32 reg;
3115         u16 data;
3116         u8  retry = 0;
3117
3118         if (hw->phy.type != e1000_phy_igp_3)
3119                 return;
3120
3121         /* Try the workaround twice (if needed) */
3122         do {
3123                 /* Disable link */
3124                 reg = er32(PHY_CTRL);
3125                 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3126                         E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3127                 ew32(PHY_CTRL, reg);
3128
3129                 /*
3130                  * Call gig speed drop workaround on Gig disable before
3131                  * accessing any PHY registers
3132                  */
3133                 if (hw->mac.type == e1000_ich8lan)
3134                         e1000e_gig_downshift_workaround_ich8lan(hw);
3135
3136                 /* Write VR power-down enable */
3137                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3138                 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3139                 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3140
3141                 /* Read it back and test */
3142                 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3143                 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3144                 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3145                         break;
3146
3147                 /* Issue PHY reset and repeat at most one more time */
3148                 reg = er32(CTRL);
3149                 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3150                 retry++;
3151         } while (retry);
3152 }
3153
3154 /**
3155  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3156  *  @hw: pointer to the HW structure
3157  *
3158  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3159  *  LPLU, Gig disable, MDIC PHY reset):
3160  *    1) Set Kumeran Near-end loopback
3161  *    2) Clear Kumeran Near-end loopback
3162  *  Should only be called for ICH8[m] devices with IGP_3 Phy.
3163  **/
3164 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3165 {
3166         s32 ret_val;
3167         u16 reg_data;
3168
3169         if ((hw->mac.type != e1000_ich8lan) ||
3170             (hw->phy.type != e1000_phy_igp_3))
3171                 return;
3172
3173         ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3174                                       &reg_data);
3175         if (ret_val)
3176                 return;
3177         reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3178         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3179                                        reg_data);
3180         if (ret_val)
3181                 return;
3182         reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3183         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3184                                        reg_data);
3185 }
3186
3187 /**
3188  *  e1000e_disable_gig_wol_ich8lan - disable gig during WoL
3189  *  @hw: pointer to the HW structure
3190  *
3191  *  During S0 to Sx transition, it is possible the link remains at gig
3192  *  instead of negotiating to a lower speed.  Before going to Sx, set
3193  *  'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3194  *  to a lower speed.
3195  *
3196  *  Should only be called for applicable parts.
3197  **/
3198 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
3199 {
3200         u32 phy_ctrl;
3201
3202         switch (hw->mac.type) {
3203         case e1000_ich9lan:
3204         case e1000_ich10lan:
3205         case e1000_pchlan:
3206                 phy_ctrl = er32(PHY_CTRL);
3207                 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
3208                             E1000_PHY_CTRL_GBE_DISABLE;
3209                 ew32(PHY_CTRL, phy_ctrl);
3210
3211                 if (hw->mac.type == e1000_pchlan)
3212                         e1000_phy_hw_reset_ich8lan(hw);
3213         default:
3214                 break;
3215         }
3216
3217         return;
3218 }
3219
3220 /**
3221  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
3222  *  @hw: pointer to the HW structure
3223  *
3224  *  Return the LED back to the default configuration.
3225  **/
3226 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3227 {
3228         if (hw->phy.type == e1000_phy_ife)
3229                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3230
3231         ew32(LEDCTL, hw->mac.ledctl_default);
3232         return 0;
3233 }
3234
3235 /**
3236  *  e1000_led_on_ich8lan - Turn LEDs on
3237  *  @hw: pointer to the HW structure
3238  *
3239  *  Turn on the LEDs.
3240  **/
3241 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3242 {
3243         if (hw->phy.type == e1000_phy_ife)
3244                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3245                                 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3246
3247         ew32(LEDCTL, hw->mac.ledctl_mode2);
3248         return 0;
3249 }
3250
3251 /**
3252  *  e1000_led_off_ich8lan - Turn LEDs off
3253  *  @hw: pointer to the HW structure
3254  *
3255  *  Turn off the LEDs.
3256  **/
3257 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3258 {
3259         if (hw->phy.type == e1000_phy_ife)
3260                 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3261                                (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
3262
3263         ew32(LEDCTL, hw->mac.ledctl_mode1);
3264         return 0;
3265 }
3266
3267 /**
3268  *  e1000_setup_led_pchlan - Configures SW controllable LED
3269  *  @hw: pointer to the HW structure
3270  *
3271  *  This prepares the SW controllable LED for use.
3272  **/
3273 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3274 {
3275         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
3276                                         (u16)hw->mac.ledctl_mode1);
3277 }
3278
3279 /**
3280  *  e1000_cleanup_led_pchlan - Restore the default LED operation
3281  *  @hw: pointer to the HW structure
3282  *
3283  *  Return the LED back to the default configuration.
3284  **/
3285 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3286 {
3287         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG,
3288                                         (u16)hw->mac.ledctl_default);
3289 }
3290
3291 /**
3292  *  e1000_led_on_pchlan - Turn LEDs on
3293  *  @hw: pointer to the HW structure
3294  *
3295  *  Turn on the LEDs.
3296  **/
3297 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3298 {
3299         u16 data = (u16)hw->mac.ledctl_mode2;
3300         u32 i, led;
3301
3302         /*
3303          * If no link, then turn LED on by setting the invert bit
3304          * for each LED that's mode is "link_up" in ledctl_mode2.
3305          */
3306         if (!(er32(STATUS) & E1000_STATUS_LU)) {
3307                 for (i = 0; i < 3; i++) {
3308                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3309                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
3310                             E1000_LEDCTL_MODE_LINK_UP)
3311                                 continue;
3312                         if (led & E1000_PHY_LED0_IVRT)
3313                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3314                         else
3315                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3316                 }
3317         }
3318
3319         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
3320 }
3321
3322 /**
3323  *  e1000_led_off_pchlan - Turn LEDs off
3324  *  @hw: pointer to the HW structure
3325  *
3326  *  Turn off the LEDs.
3327  **/
3328 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3329 {
3330         u16 data = (u16)hw->mac.ledctl_mode1;
3331         u32 i, led;
3332
3333         /*
3334          * If no link, then turn LED off by clearing the invert bit
3335          * for each LED that's mode is "link_up" in ledctl_mode1.
3336          */
3337         if (!(er32(STATUS) & E1000_STATUS_LU)) {
3338                 for (i = 0; i < 3; i++) {
3339                         led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3340                         if ((led & E1000_PHY_LED0_MODE_MASK) !=
3341                             E1000_LEDCTL_MODE_LINK_UP)
3342                                 continue;
3343                         if (led & E1000_PHY_LED0_IVRT)
3344                                 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3345                         else
3346                                 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3347                 }
3348         }
3349
3350         return hw->phy.ops.write_reg(hw, HV_LED_CONFIG, data);
3351 }
3352
3353 /**
3354  *  e1000_get_cfg_done_ich8lan - Read config done bit
3355  *  @hw: pointer to the HW structure
3356  *
3357  *  Read the management control register for the config done bit for
3358  *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
3359  *  to read the config done bit, so an error is *ONLY* logged and returns
3360  *  0.  If we were to return with error, EEPROM-less silicon
3361  *  would not be able to be reset or change link.
3362  **/
3363 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3364 {
3365         u32 bank = 0;
3366
3367         if (hw->mac.type >= e1000_pchlan) {
3368                 u32 status = er32(STATUS);
3369
3370                 if (status & E1000_STATUS_PHYRA)
3371                         ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3372                 else
3373                         e_dbg("PHY Reset Asserted not set - needs delay\n");
3374         }
3375
3376         e1000e_get_cfg_done(hw);
3377
3378         /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3379         if ((hw->mac.type != e1000_ich10lan) &&
3380             (hw->mac.type != e1000_pchlan)) {
3381                 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3382                     (hw->phy.type == e1000_phy_igp_3)) {
3383                         e1000e_phy_init_script_igp3(hw);
3384                 }
3385         } else {
3386                 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3387                         /* Maybe we should do a basic PHY config */
3388                         e_dbg("EEPROM not present\n");
3389                         return -E1000_ERR_CONFIG;
3390                 }
3391         }
3392
3393         return 0;
3394 }
3395
3396 /**
3397  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3398  *  @hw: pointer to the HW structure
3399  *
3400  *  Clears hardware counters specific to the silicon family and calls
3401  *  clear_hw_cntrs_generic to clear all general purpose counters.
3402  **/
3403 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3404 {
3405         u32 temp;
3406         u16 phy_data;
3407
3408         e1000e_clear_hw_cntrs_base(hw);
3409
3410         temp = er32(ALGNERRC);
3411         temp = er32(RXERRC);
3412         temp = er32(TNCRS);
3413         temp = er32(CEXTERR);
3414         temp = er32(TSCTC);
3415         temp = er32(TSCTFC);
3416
3417         temp = er32(MGTPRC);
3418         temp = er32(MGTPDC);
3419         temp = er32(MGTPTC);
3420
3421         temp = er32(IAC);
3422         temp = er32(ICRXOC);
3423
3424         /* Clear PHY statistics registers */
3425         if ((hw->phy.type == e1000_phy_82578) ||
3426             (hw->phy.type == e1000_phy_82577)) {
3427                 hw->phy.ops.read_reg(hw, HV_SCC_UPPER, &phy_data);
3428                 hw->phy.ops.read_reg(hw, HV_SCC_LOWER, &phy_data);
3429                 hw->phy.ops.read_reg(hw, HV_ECOL_UPPER, &phy_data);
3430                 hw->phy.ops.read_reg(hw, HV_ECOL_LOWER, &phy_data);
3431                 hw->phy.ops.read_reg(hw, HV_MCC_UPPER, &phy_data);
3432                 hw->phy.ops.read_reg(hw, HV_MCC_LOWER, &phy_data);
3433                 hw->phy.ops.read_reg(hw, HV_LATECOL_UPPER, &phy_data);
3434                 hw->phy.ops.read_reg(hw, HV_LATECOL_LOWER, &phy_data);
3435                 hw->phy.ops.read_reg(hw, HV_COLC_UPPER, &phy_data);
3436                 hw->phy.ops.read_reg(hw, HV_COLC_LOWER, &phy_data);
3437                 hw->phy.ops.read_reg(hw, HV_DC_UPPER, &phy_data);
3438                 hw->phy.ops.read_reg(hw, HV_DC_LOWER, &phy_data);
3439                 hw->phy.ops.read_reg(hw, HV_TNCRS_UPPER, &phy_data);
3440                 hw->phy.ops.read_reg(hw, HV_TNCRS_LOWER, &phy_data);
3441         }
3442 }
3443
3444 static struct e1000_mac_operations ich8_mac_ops = {
3445         .id_led_init            = e1000e_id_led_init,
3446         .check_mng_mode         = e1000_check_mng_mode_ich8lan,
3447         .check_for_link         = e1000_check_for_copper_link_ich8lan,
3448         /* cleanup_led dependent on mac type */
3449         .clear_hw_cntrs         = e1000_clear_hw_cntrs_ich8lan,
3450         .get_bus_info           = e1000_get_bus_info_ich8lan,
3451         .get_link_up_info       = e1000_get_link_up_info_ich8lan,
3452         /* led_on dependent on mac type */
3453         /* led_off dependent on mac type */
3454         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
3455         .reset_hw               = e1000_reset_hw_ich8lan,
3456         .init_hw                = e1000_init_hw_ich8lan,
3457         .setup_link             = e1000_setup_link_ich8lan,
3458         .setup_physical_interface= e1000_setup_copper_link_ich8lan,
3459         /* id_led_init dependent on mac type */
3460 };
3461
3462 static struct e1000_phy_operations ich8_phy_ops = {
3463         .acquire                = e1000_acquire_swflag_ich8lan,
3464         .check_reset_block      = e1000_check_reset_block_ich8lan,
3465         .commit                 = NULL,
3466         .force_speed_duplex     = e1000_phy_force_speed_duplex_ich8lan,
3467         .get_cfg_done           = e1000_get_cfg_done_ich8lan,
3468         .get_cable_length       = e1000e_get_cable_length_igp_2,
3469         .get_info               = e1000_get_phy_info_ich8lan,
3470         .read_reg               = e1000e_read_phy_reg_igp,
3471         .release                = e1000_release_swflag_ich8lan,
3472         .reset                  = e1000_phy_hw_reset_ich8lan,
3473         .set_d0_lplu_state      = e1000_set_d0_lplu_state_ich8lan,
3474         .set_d3_lplu_state      = e1000_set_d3_lplu_state_ich8lan,
3475         .write_reg              = e1000e_write_phy_reg_igp,
3476 };
3477
3478 static struct e1000_nvm_operations ich8_nvm_ops = {
3479         .acquire                = e1000_acquire_nvm_ich8lan,
3480         .read                   = e1000_read_nvm_ich8lan,
3481         .release                = e1000_release_nvm_ich8lan,
3482         .update                 = e1000_update_nvm_checksum_ich8lan,
3483         .valid_led_default      = e1000_valid_led_default_ich8lan,
3484         .validate               = e1000_validate_nvm_checksum_ich8lan,
3485         .write                  = e1000_write_nvm_ich8lan,
3486 };
3487
3488 struct e1000_info e1000_ich8_info = {
3489         .mac                    = e1000_ich8lan,
3490         .flags                  = FLAG_HAS_WOL
3491                                   | FLAG_IS_ICH
3492                                   | FLAG_RX_CSUM_ENABLED
3493                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3494                                   | FLAG_HAS_AMT
3495                                   | FLAG_HAS_FLASH
3496                                   | FLAG_APME_IN_WUC,
3497         .pba                    = 8,
3498         .max_hw_frame_size      = ETH_FRAME_LEN + ETH_FCS_LEN,
3499         .get_variants           = e1000_get_variants_ich8lan,
3500         .mac_ops                = &ich8_mac_ops,
3501         .phy_ops                = &ich8_phy_ops,
3502         .nvm_ops                = &ich8_nvm_ops,
3503 };
3504
3505 struct e1000_info e1000_ich9_info = {
3506         .mac                    = e1000_ich9lan,
3507         .flags                  = FLAG_HAS_JUMBO_FRAMES
3508                                   | FLAG_IS_ICH
3509                                   | FLAG_HAS_WOL
3510                                   | FLAG_RX_CSUM_ENABLED
3511                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3512                                   | FLAG_HAS_AMT
3513                                   | FLAG_HAS_ERT
3514                                   | FLAG_HAS_FLASH
3515                                   | FLAG_APME_IN_WUC,
3516         .pba                    = 10,
3517         .max_hw_frame_size      = DEFAULT_JUMBO,
3518         .get_variants           = e1000_get_variants_ich8lan,
3519         .mac_ops                = &ich8_mac_ops,
3520         .phy_ops                = &ich8_phy_ops,
3521         .nvm_ops                = &ich8_nvm_ops,
3522 };
3523
3524 struct e1000_info e1000_ich10_info = {
3525         .mac                    = e1000_ich10lan,
3526         .flags                  = FLAG_HAS_JUMBO_FRAMES
3527                                   | FLAG_IS_ICH
3528                                   | FLAG_HAS_WOL
3529                                   | FLAG_RX_CSUM_ENABLED
3530                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3531                                   | FLAG_HAS_AMT
3532                                   | FLAG_HAS_ERT
3533                                   | FLAG_HAS_FLASH
3534                                   | FLAG_APME_IN_WUC,
3535         .pba                    = 10,
3536         .max_hw_frame_size      = DEFAULT_JUMBO,
3537         .get_variants           = e1000_get_variants_ich8lan,
3538         .mac_ops                = &ich8_mac_ops,
3539         .phy_ops                = &ich8_phy_ops,
3540         .nvm_ops                = &ich8_nvm_ops,
3541 };
3542
3543 struct e1000_info e1000_pch_info = {
3544         .mac                    = e1000_pchlan,
3545         .flags                  = FLAG_IS_ICH
3546                                   | FLAG_HAS_WOL
3547                                   | FLAG_RX_CSUM_ENABLED
3548                                   | FLAG_HAS_CTRLEXT_ON_LOAD
3549                                   | FLAG_HAS_AMT
3550                                   | FLAG_HAS_FLASH
3551                                   | FLAG_HAS_JUMBO_FRAMES
3552                                   | FLAG_APME_IN_WUC,
3553         .pba                    = 26,
3554         .max_hw_frame_size      = 4096,
3555         .get_variants           = e1000_get_variants_ich8lan,
3556         .mac_ops                = &ich8_mac_ops,
3557         .phy_ops                = &ich8_phy_ops,
3558         .nvm_ops                = &ich8_nvm_ops,
3559 };