]> Pileus Git - ~andy/linux/blob - drivers/net/e1000e/ethtool.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[~andy/linux] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
35
36 #include "e1000.h"
37
38 struct e1000_stats {
39         char stat_string[ETH_GSTRING_LEN];
40         int sizeof_stat;
41         int stat_offset;
42 };
43
44 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
45                       offsetof(struct e1000_adapter, m)
46 static const struct e1000_stats e1000_gstrings_stats[] = {
47         { "rx_packets", E1000_STAT(stats.gprc) },
48         { "tx_packets", E1000_STAT(stats.gptc) },
49         { "rx_bytes", E1000_STAT(stats.gorc) },
50         { "tx_bytes", E1000_STAT(stats.gotc) },
51         { "rx_broadcast", E1000_STAT(stats.bprc) },
52         { "tx_broadcast", E1000_STAT(stats.bptc) },
53         { "rx_multicast", E1000_STAT(stats.mprc) },
54         { "tx_multicast", E1000_STAT(stats.mptc) },
55         { "rx_errors", E1000_STAT(net_stats.rx_errors) },
56         { "tx_errors", E1000_STAT(net_stats.tx_errors) },
57         { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
58         { "multicast", E1000_STAT(stats.mprc) },
59         { "collisions", E1000_STAT(stats.colc) },
60         { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
61         { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
62         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63         { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
64         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65         { "rx_missed_errors", E1000_STAT(stats.mpc) },
66         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
67         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68         { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
69         { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
70         { "tx_window_errors", E1000_STAT(stats.latecol) },
71         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72         { "tx_deferred_ok", E1000_STAT(stats.dc) },
73         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
74         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76         { "tx_restart_queue", E1000_STAT(restart_queue) },
77         { "rx_long_length_errors", E1000_STAT(stats.roc) },
78         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
79         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
80         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86         { "rx_long_byte_count", E1000_STAT(stats.gorc) },
87         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89         { "rx_header_split", E1000_STAT(rx_hdr_split) },
90         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
91         { "tx_smbus", E1000_STAT(stats.mgptc) },
92         { "rx_smbus", E1000_STAT(stats.mgprc) },
93         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
94         { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
95         { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
96 };
97
98 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
99 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
100 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
101         "Register test  (offline)", "Eeprom test    (offline)",
102         "Interrupt test (offline)", "Loopback test  (offline)",
103         "Link test   (on/offline)"
104 };
105 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
106
107 static int e1000_get_settings(struct net_device *netdev,
108                               struct ethtool_cmd *ecmd)
109 {
110         struct e1000_adapter *adapter = netdev_priv(netdev);
111         struct e1000_hw *hw = &adapter->hw;
112         u32 status;
113
114         if (hw->phy.media_type == e1000_media_type_copper) {
115
116                 ecmd->supported = (SUPPORTED_10baseT_Half |
117                                    SUPPORTED_10baseT_Full |
118                                    SUPPORTED_100baseT_Half |
119                                    SUPPORTED_100baseT_Full |
120                                    SUPPORTED_1000baseT_Full |
121                                    SUPPORTED_Autoneg |
122                                    SUPPORTED_TP);
123                 if (hw->phy.type == e1000_phy_ife)
124                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
125                 ecmd->advertising = ADVERTISED_TP;
126
127                 if (hw->mac.autoneg == 1) {
128                         ecmd->advertising |= ADVERTISED_Autoneg;
129                         /* the e1000 autoneg seems to match ethtool nicely */
130                         ecmd->advertising |= hw->phy.autoneg_advertised;
131                 }
132
133                 ecmd->port = PORT_TP;
134                 ecmd->phy_address = hw->phy.addr;
135                 ecmd->transceiver = XCVR_INTERNAL;
136
137         } else {
138                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
139                                      SUPPORTED_FIBRE |
140                                      SUPPORTED_Autoneg);
141
142                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
143                                      ADVERTISED_FIBRE |
144                                      ADVERTISED_Autoneg);
145
146                 ecmd->port = PORT_FIBRE;
147                 ecmd->transceiver = XCVR_EXTERNAL;
148         }
149
150         status = er32(STATUS);
151         if (status & E1000_STATUS_LU) {
152                 if (status & E1000_STATUS_SPEED_1000)
153                         ecmd->speed = 1000;
154                 else if (status & E1000_STATUS_SPEED_100)
155                         ecmd->speed = 100;
156                 else
157                         ecmd->speed = 10;
158
159                 if (status & E1000_STATUS_FD)
160                         ecmd->duplex = DUPLEX_FULL;
161                 else
162                         ecmd->duplex = DUPLEX_HALF;
163         } else {
164                 ecmd->speed = -1;
165                 ecmd->duplex = -1;
166         }
167
168         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
169                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
170         return 0;
171 }
172
173 static u32 e1000_get_link(struct net_device *netdev)
174 {
175         struct e1000_adapter *adapter = netdev_priv(netdev);
176         struct e1000_hw *hw = &adapter->hw;
177         u32 status;
178         
179         status = er32(STATUS);
180         return (status & E1000_STATUS_LU);
181 }
182
183 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
184 {
185         struct e1000_mac_info *mac = &adapter->hw.mac;
186
187         mac->autoneg = 0;
188
189         /* Fiber NICs only allow 1000 gbps Full duplex */
190         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
191                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
192                 ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
193                          "configuration\n");
194                 return -EINVAL;
195         }
196
197         switch (spddplx) {
198         case SPEED_10 + DUPLEX_HALF:
199                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
200                 break;
201         case SPEED_10 + DUPLEX_FULL:
202                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
203                 break;
204         case SPEED_100 + DUPLEX_HALF:
205                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
206                 break;
207         case SPEED_100 + DUPLEX_FULL:
208                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
209                 break;
210         case SPEED_1000 + DUPLEX_FULL:
211                 mac->autoneg = 1;
212                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
213                 break;
214         case SPEED_1000 + DUPLEX_HALF: /* not supported */
215         default:
216                 ndev_err(adapter->netdev, "Unsupported Speed/Duplex "
217                          "configuration\n");
218                 return -EINVAL;
219         }
220         return 0;
221 }
222
223 static int e1000_set_settings(struct net_device *netdev,
224                               struct ethtool_cmd *ecmd)
225 {
226         struct e1000_adapter *adapter = netdev_priv(netdev);
227         struct e1000_hw *hw = &adapter->hw;
228
229         /*
230          * When SoL/IDER sessions are active, autoneg/speed/duplex
231          * cannot be changed
232          */
233         if (e1000_check_reset_block(hw)) {
234                 ndev_err(netdev, "Cannot change link "
235                          "characteristics when SoL/IDER is active.\n");
236                 return -EINVAL;
237         }
238
239         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
240                 msleep(1);
241
242         if (ecmd->autoneg == AUTONEG_ENABLE) {
243                 hw->mac.autoneg = 1;
244                 if (hw->phy.media_type == e1000_media_type_fiber)
245                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
246                                                      ADVERTISED_FIBRE |
247                                                      ADVERTISED_Autoneg;
248                 else
249                         hw->phy.autoneg_advertised = ecmd->advertising |
250                                                      ADVERTISED_TP |
251                                                      ADVERTISED_Autoneg;
252                 ecmd->advertising = hw->phy.autoneg_advertised;
253                 if (adapter->fc_autoneg)
254                         hw->fc.original_type = e1000_fc_default;
255         } else {
256                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
257                         clear_bit(__E1000_RESETTING, &adapter->state);
258                         return -EINVAL;
259                 }
260         }
261
262         /* reset the link */
263
264         if (netif_running(adapter->netdev)) {
265                 e1000e_down(adapter);
266                 e1000e_up(adapter);
267         } else {
268                 e1000e_reset(adapter);
269         }
270
271         clear_bit(__E1000_RESETTING, &adapter->state);
272         return 0;
273 }
274
275 static void e1000_get_pauseparam(struct net_device *netdev,
276                                  struct ethtool_pauseparam *pause)
277 {
278         struct e1000_adapter *adapter = netdev_priv(netdev);
279         struct e1000_hw *hw = &adapter->hw;
280
281         pause->autoneg =
282                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
283
284         if (hw->fc.type == e1000_fc_rx_pause) {
285                 pause->rx_pause = 1;
286         } else if (hw->fc.type == e1000_fc_tx_pause) {
287                 pause->tx_pause = 1;
288         } else if (hw->fc.type == e1000_fc_full) {
289                 pause->rx_pause = 1;
290                 pause->tx_pause = 1;
291         }
292 }
293
294 static int e1000_set_pauseparam(struct net_device *netdev,
295                                 struct ethtool_pauseparam *pause)
296 {
297         struct e1000_adapter *adapter = netdev_priv(netdev);
298         struct e1000_hw *hw = &adapter->hw;
299         int retval = 0;
300
301         adapter->fc_autoneg = pause->autoneg;
302
303         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
304                 msleep(1);
305
306         if (pause->rx_pause && pause->tx_pause)
307                 hw->fc.type = e1000_fc_full;
308         else if (pause->rx_pause && !pause->tx_pause)
309                 hw->fc.type = e1000_fc_rx_pause;
310         else if (!pause->rx_pause && pause->tx_pause)
311                 hw->fc.type = e1000_fc_tx_pause;
312         else if (!pause->rx_pause && !pause->tx_pause)
313                 hw->fc.type = e1000_fc_none;
314
315         hw->fc.original_type = hw->fc.type;
316
317         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
318                 hw->fc.type = e1000_fc_default;
319                 if (netif_running(adapter->netdev)) {
320                         e1000e_down(adapter);
321                         e1000e_up(adapter);
322                 } else {
323                         e1000e_reset(adapter);
324                 }
325         } else {
326                 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
327                           hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw));
328         }
329
330         clear_bit(__E1000_RESETTING, &adapter->state);
331         return retval;
332 }
333
334 static u32 e1000_get_rx_csum(struct net_device *netdev)
335 {
336         struct e1000_adapter *adapter = netdev_priv(netdev);
337         return (adapter->flags & FLAG_RX_CSUM_ENABLED);
338 }
339
340 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
341 {
342         struct e1000_adapter *adapter = netdev_priv(netdev);
343
344         if (data)
345                 adapter->flags |= FLAG_RX_CSUM_ENABLED;
346         else
347                 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
348
349         if (netif_running(netdev))
350                 e1000e_reinit_locked(adapter);
351         else
352                 e1000e_reset(adapter);
353         return 0;
354 }
355
356 static u32 e1000_get_tx_csum(struct net_device *netdev)
357 {
358         return ((netdev->features & NETIF_F_HW_CSUM) != 0);
359 }
360
361 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
362 {
363         if (data)
364                 netdev->features |= NETIF_F_HW_CSUM;
365         else
366                 netdev->features &= ~NETIF_F_HW_CSUM;
367
368         return 0;
369 }
370
371 static int e1000_set_tso(struct net_device *netdev, u32 data)
372 {
373         struct e1000_adapter *adapter = netdev_priv(netdev);
374
375         if (data) {
376                 netdev->features |= NETIF_F_TSO;
377                 netdev->features |= NETIF_F_TSO6;
378         } else {
379                 netdev->features &= ~NETIF_F_TSO;
380                 netdev->features &= ~NETIF_F_TSO6;
381         }
382
383         ndev_info(netdev, "TSO is %s\n",
384                   data ? "Enabled" : "Disabled");
385         adapter->flags |= FLAG_TSO_FORCE;
386         return 0;
387 }
388
389 static u32 e1000_get_msglevel(struct net_device *netdev)
390 {
391         struct e1000_adapter *adapter = netdev_priv(netdev);
392         return adapter->msg_enable;
393 }
394
395 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
396 {
397         struct e1000_adapter *adapter = netdev_priv(netdev);
398         adapter->msg_enable = data;
399 }
400
401 static int e1000_get_regs_len(struct net_device *netdev)
402 {
403 #define E1000_REGS_LEN 32 /* overestimate */
404         return E1000_REGS_LEN * sizeof(u32);
405 }
406
407 static void e1000_get_regs(struct net_device *netdev,
408                            struct ethtool_regs *regs, void *p)
409 {
410         struct e1000_adapter *adapter = netdev_priv(netdev);
411         struct e1000_hw *hw = &adapter->hw;
412         u32 *regs_buff = p;
413         u16 phy_data;
414         u8 revision_id;
415
416         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
417
418         pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
419
420         regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
421
422         regs_buff[0]  = er32(CTRL);
423         regs_buff[1]  = er32(STATUS);
424
425         regs_buff[2]  = er32(RCTL);
426         regs_buff[3]  = er32(RDLEN);
427         regs_buff[4]  = er32(RDH);
428         regs_buff[5]  = er32(RDT);
429         regs_buff[6]  = er32(RDTR);
430
431         regs_buff[7]  = er32(TCTL);
432         regs_buff[8]  = er32(TDLEN);
433         regs_buff[9]  = er32(TDH);
434         regs_buff[10] = er32(TDT);
435         regs_buff[11] = er32(TIDV);
436
437         regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
438         if (hw->phy.type == e1000_phy_m88) {
439                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
440                 regs_buff[13] = (u32)phy_data; /* cable length */
441                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
442                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
443                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
444                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
445                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
446                 regs_buff[18] = regs_buff[13]; /* cable polarity */
447                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
448                 regs_buff[20] = regs_buff[17]; /* polarity correction */
449                 /* phy receive errors */
450                 regs_buff[22] = adapter->phy_stats.receive_errors;
451                 regs_buff[23] = regs_buff[13]; /* mdix mode */
452         }
453         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
454         e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
455         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
456         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
457 }
458
459 static int e1000_get_eeprom_len(struct net_device *netdev)
460 {
461         struct e1000_adapter *adapter = netdev_priv(netdev);
462         return adapter->hw.nvm.word_size * 2;
463 }
464
465 static int e1000_get_eeprom(struct net_device *netdev,
466                             struct ethtool_eeprom *eeprom, u8 *bytes)
467 {
468         struct e1000_adapter *adapter = netdev_priv(netdev);
469         struct e1000_hw *hw = &adapter->hw;
470         u16 *eeprom_buff;
471         int first_word;
472         int last_word;
473         int ret_val = 0;
474         u16 i;
475
476         if (eeprom->len == 0)
477                 return -EINVAL;
478
479         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
480
481         first_word = eeprom->offset >> 1;
482         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
483
484         eeprom_buff = kmalloc(sizeof(u16) *
485                         (last_word - first_word + 1), GFP_KERNEL);
486         if (!eeprom_buff)
487                 return -ENOMEM;
488
489         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
490                 ret_val = e1000_read_nvm(hw, first_word,
491                                          last_word - first_word + 1,
492                                          eeprom_buff);
493         } else {
494                 for (i = 0; i < last_word - first_word + 1; i++) {
495                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
496                                                       &eeprom_buff[i]);
497                         if (ret_val)
498                                 break;
499                 }
500         }
501
502         /* Device's eeprom is always little-endian, word addressable */
503         for (i = 0; i < last_word - first_word + 1; i++)
504                 le16_to_cpus(&eeprom_buff[i]);
505
506         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
507         kfree(eeprom_buff);
508
509         return ret_val;
510 }
511
512 static int e1000_set_eeprom(struct net_device *netdev,
513                             struct ethtool_eeprom *eeprom, u8 *bytes)
514 {
515         struct e1000_adapter *adapter = netdev_priv(netdev);
516         struct e1000_hw *hw = &adapter->hw;
517         u16 *eeprom_buff;
518         void *ptr;
519         int max_len;
520         int first_word;
521         int last_word;
522         int ret_val = 0;
523         u16 i;
524
525         if (eeprom->len == 0)
526                 return -EOPNOTSUPP;
527
528         if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
529                 return -EFAULT;
530
531         max_len = hw->nvm.word_size * 2;
532
533         first_word = eeprom->offset >> 1;
534         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
535         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
536         if (!eeprom_buff)
537                 return -ENOMEM;
538
539         ptr = (void *)eeprom_buff;
540
541         if (eeprom->offset & 1) {
542                 /* need read/modify/write of first changed EEPROM word */
543                 /* only the second byte of the word is being modified */
544                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
545                 ptr++;
546         }
547         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
548                 /* need read/modify/write of last changed EEPROM word */
549                 /* only the first byte of the word is being modified */
550                 ret_val = e1000_read_nvm(hw, last_word, 1,
551                                   &eeprom_buff[last_word - first_word]);
552
553         /* Device's eeprom is always little-endian, word addressable */
554         for (i = 0; i < last_word - first_word + 1; i++)
555                 le16_to_cpus(&eeprom_buff[i]);
556
557         memcpy(ptr, bytes, eeprom->len);
558
559         for (i = 0; i < last_word - first_word + 1; i++)
560                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
561
562         ret_val = e1000_write_nvm(hw, first_word,
563                                   last_word - first_word + 1, eeprom_buff);
564
565         /*
566          * Update the checksum over the first part of the EEPROM if needed
567          * and flush shadow RAM for 82573 controllers
568          */
569         if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG) ||
570                                (hw->mac.type == e1000_82573)))
571                 e1000e_update_nvm_checksum(hw);
572
573         kfree(eeprom_buff);
574         return ret_val;
575 }
576
577 static void e1000_get_drvinfo(struct net_device *netdev,
578                               struct ethtool_drvinfo *drvinfo)
579 {
580         struct e1000_adapter *adapter = netdev_priv(netdev);
581         char firmware_version[32];
582         u16 eeprom_data;
583
584         strncpy(drvinfo->driver,  e1000e_driver_name, 32);
585         strncpy(drvinfo->version, e1000e_driver_version, 32);
586
587         /*
588          * EEPROM image version # is reported as firmware version # for
589          * PCI-E controllers
590          */
591         e1000_read_nvm(&adapter->hw, 5, 1, &eeprom_data);
592         sprintf(firmware_version, "%d.%d-%d",
593                 (eeprom_data & 0xF000) >> 12,
594                 (eeprom_data & 0x0FF0) >> 4,
595                 eeprom_data & 0x000F);
596
597         strncpy(drvinfo->fw_version, firmware_version, 32);
598         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
599         drvinfo->regdump_len = e1000_get_regs_len(netdev);
600         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
601 }
602
603 static void e1000_get_ringparam(struct net_device *netdev,
604                                 struct ethtool_ringparam *ring)
605 {
606         struct e1000_adapter *adapter = netdev_priv(netdev);
607         struct e1000_ring *tx_ring = adapter->tx_ring;
608         struct e1000_ring *rx_ring = adapter->rx_ring;
609
610         ring->rx_max_pending = E1000_MAX_RXD;
611         ring->tx_max_pending = E1000_MAX_TXD;
612         ring->rx_mini_max_pending = 0;
613         ring->rx_jumbo_max_pending = 0;
614         ring->rx_pending = rx_ring->count;
615         ring->tx_pending = tx_ring->count;
616         ring->rx_mini_pending = 0;
617         ring->rx_jumbo_pending = 0;
618 }
619
620 static int e1000_set_ringparam(struct net_device *netdev,
621                                struct ethtool_ringparam *ring)
622 {
623         struct e1000_adapter *adapter = netdev_priv(netdev);
624         struct e1000_ring *tx_ring, *tx_old;
625         struct e1000_ring *rx_ring, *rx_old;
626         int err;
627
628         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
629                 return -EINVAL;
630
631         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
632                 msleep(1);
633
634         if (netif_running(adapter->netdev))
635                 e1000e_down(adapter);
636
637         tx_old = adapter->tx_ring;
638         rx_old = adapter->rx_ring;
639
640         err = -ENOMEM;
641         tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
642         if (!tx_ring)
643                 goto err_alloc_tx;
644         /*
645          * use a memcpy to save any previously configured
646          * items like napi structs from having to be
647          * reinitialized
648          */
649         memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
650
651         rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
652         if (!rx_ring)
653                 goto err_alloc_rx;
654         memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
655
656         adapter->tx_ring = tx_ring;
657         adapter->rx_ring = rx_ring;
658
659         rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
660         rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
661         rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
662
663         tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
664         tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
665         tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
666
667         if (netif_running(adapter->netdev)) {
668                 /* Try to get new resources before deleting old */
669                 err = e1000e_setup_rx_resources(adapter);
670                 if (err)
671                         goto err_setup_rx;
672                 err = e1000e_setup_tx_resources(adapter);
673                 if (err)
674                         goto err_setup_tx;
675
676                 /*
677                  * restore the old in order to free it,
678                  * then add in the new
679                  */
680                 adapter->rx_ring = rx_old;
681                 adapter->tx_ring = tx_old;
682                 e1000e_free_rx_resources(adapter);
683                 e1000e_free_tx_resources(adapter);
684                 kfree(tx_old);
685                 kfree(rx_old);
686                 adapter->rx_ring = rx_ring;
687                 adapter->tx_ring = tx_ring;
688                 err = e1000e_up(adapter);
689                 if (err)
690                         goto err_setup;
691         }
692
693         clear_bit(__E1000_RESETTING, &adapter->state);
694         return 0;
695 err_setup_tx:
696         e1000e_free_rx_resources(adapter);
697 err_setup_rx:
698         adapter->rx_ring = rx_old;
699         adapter->tx_ring = tx_old;
700         kfree(rx_ring);
701 err_alloc_rx:
702         kfree(tx_ring);
703 err_alloc_tx:
704         e1000e_up(adapter);
705 err_setup:
706         clear_bit(__E1000_RESETTING, &adapter->state);
707         return err;
708 }
709
710 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
711                              int reg, int offset, u32 mask, u32 write)
712 {
713         u32 pat, val;
714         static const u32 test[] =
715                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
716         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
717                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
718                                       (test[pat] & write));
719                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
720                 if (val != (test[pat] & write & mask)) {
721                         ndev_err(adapter->netdev, "pattern test reg %04X "
722                                  "failed: got 0x%08X expected 0x%08X\n",
723                                  reg + offset,
724                                  val, (test[pat] & write & mask));
725                         *data = reg;
726                         return 1;
727                 }
728         }
729         return 0;
730 }
731
732 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
733                               int reg, u32 mask, u32 write)
734 {
735         u32 val;
736         __ew32(&adapter->hw, reg, write & mask);
737         val = __er32(&adapter->hw, reg);
738         if ((write & mask) != (val & mask)) {
739                 ndev_err(adapter->netdev, "set/check reg %04X test failed: "
740                          "got 0x%08X expected 0x%08X\n", reg, (val & mask),
741                          (write & mask));
742                 *data = reg;
743                 return 1;
744         }
745         return 0;
746 }
747 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
748         do {                                                                   \
749                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
750                         return 1;                                              \
751         } while (0)
752 #define REG_PATTERN_TEST(reg, mask, write)                                     \
753         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
754
755 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
756         do {                                                                   \
757                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
758                         return 1;                                              \
759         } while (0)
760
761 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
762 {
763         struct e1000_hw *hw = &adapter->hw;
764         struct e1000_mac_info *mac = &adapter->hw.mac;
765         struct net_device *netdev = adapter->netdev;
766         u32 value;
767         u32 before;
768         u32 after;
769         u32 i;
770         u32 toggle;
771
772         /*
773          * The status register is Read Only, so a write should fail.
774          * Some bits that get toggled are ignored.
775          */
776         switch (mac->type) {
777         /* there are several bits on newer hardware that are r/w */
778         case e1000_82571:
779         case e1000_82572:
780         case e1000_80003es2lan:
781                 toggle = 0x7FFFF3FF;
782                 break;
783         case e1000_82573:
784         case e1000_ich8lan:
785         case e1000_ich9lan:
786                 toggle = 0x7FFFF033;
787                 break;
788         default:
789                 toggle = 0xFFFFF833;
790                 break;
791         }
792
793         before = er32(STATUS);
794         value = (er32(STATUS) & toggle);
795         ew32(STATUS, toggle);
796         after = er32(STATUS) & toggle;
797         if (value != after) {
798                 ndev_err(netdev, "failed STATUS register test got: "
799                          "0x%08X expected: 0x%08X\n", after, value);
800                 *data = 1;
801                 return 1;
802         }
803         /* restore previous status */
804         ew32(STATUS, before);
805
806         if ((mac->type != e1000_ich8lan) &&
807             (mac->type != e1000_ich9lan)) {
808                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
809                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
810                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
811                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
812         }
813
814         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
815         REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
816         REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
817         REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
818         REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
819         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
820         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
821         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
822         REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
823         REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
824
825         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
826
827         before = (((mac->type == e1000_ich8lan) ||
828                    (mac->type == e1000_ich9lan)) ? 0x06C3B33E : 0x06DFB3FE);
829         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
830         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
831
832         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
833         REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
834         if ((mac->type != e1000_ich8lan) &&
835             (mac->type != e1000_ich9lan))
836                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
837         REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
838         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
839         for (i = 0; i < mac->rar_entry_count; i++)
840                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
841                                        0x8003FFFF, 0xFFFFFFFF);
842
843         for (i = 0; i < mac->mta_reg_count; i++)
844                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
845
846         *data = 0;
847         return 0;
848 }
849
850 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
851 {
852         u16 temp;
853         u16 checksum = 0;
854         u16 i;
855
856         *data = 0;
857         /* Read and add up the contents of the EEPROM */
858         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
859                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
860                         *data = 1;
861                         break;
862                 }
863                 checksum += temp;
864         }
865
866         /* If Checksum is not Correct return error else test passed */
867         if ((checksum != (u16) NVM_SUM) && !(*data))
868                 *data = 2;
869
870         return *data;
871 }
872
873 static irqreturn_t e1000_test_intr(int irq, void *data)
874 {
875         struct net_device *netdev = (struct net_device *) data;
876         struct e1000_adapter *adapter = netdev_priv(netdev);
877         struct e1000_hw *hw = &adapter->hw;
878
879         adapter->test_icr |= er32(ICR);
880
881         return IRQ_HANDLED;
882 }
883
884 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
885 {
886         struct net_device *netdev = adapter->netdev;
887         struct e1000_hw *hw = &adapter->hw;
888         u32 mask;
889         u32 shared_int = 1;
890         u32 irq = adapter->pdev->irq;
891         int i;
892
893         *data = 0;
894
895         /* NOTE: we don't test MSI interrupts here, yet */
896         /* Hook up test interrupt handler just for this test */
897         if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
898                          netdev)) {
899                 shared_int = 0;
900         } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
901                  netdev->name, netdev)) {
902                 *data = 1;
903                 return -1;
904         }
905         ndev_info(netdev, "testing %s interrupt\n",
906                   (shared_int ? "shared" : "unshared"));
907
908         /* Disable all the interrupts */
909         ew32(IMC, 0xFFFFFFFF);
910         msleep(10);
911
912         /* Test each interrupt */
913         for (i = 0; i < 10; i++) {
914
915                 if (((adapter->hw.mac.type == e1000_ich8lan) ||
916                      (adapter->hw.mac.type == e1000_ich9lan)) && i == 8)
917                         continue;
918
919                 /* Interrupt to test */
920                 mask = 1 << i;
921
922                 if (!shared_int) {
923                         /*
924                          * Disable the interrupt to be reported in
925                          * the cause register and then force the same
926                          * interrupt and see if one gets posted.  If
927                          * an interrupt was posted to the bus, the
928                          * test failed.
929                          */
930                         adapter->test_icr = 0;
931                         ew32(IMC, mask);
932                         ew32(ICS, mask);
933                         msleep(10);
934
935                         if (adapter->test_icr & mask) {
936                                 *data = 3;
937                                 break;
938                         }
939                 }
940
941                 /*
942                  * Enable the interrupt to be reported in
943                  * the cause register and then force the same
944                  * interrupt and see if one gets posted.  If
945                  * an interrupt was not posted to the bus, the
946                  * test failed.
947                  */
948                 adapter->test_icr = 0;
949                 ew32(IMS, mask);
950                 ew32(ICS, mask);
951                 msleep(10);
952
953                 if (!(adapter->test_icr & mask)) {
954                         *data = 4;
955                         break;
956                 }
957
958                 if (!shared_int) {
959                         /*
960                          * Disable the other interrupts to be reported in
961                          * the cause register and then force the other
962                          * interrupts and see if any get posted.  If
963                          * an interrupt was posted to the bus, the
964                          * test failed.
965                          */
966                         adapter->test_icr = 0;
967                         ew32(IMC, ~mask & 0x00007FFF);
968                         ew32(ICS, ~mask & 0x00007FFF);
969                         msleep(10);
970
971                         if (adapter->test_icr) {
972                                 *data = 5;
973                                 break;
974                         }
975                 }
976         }
977
978         /* Disable all the interrupts */
979         ew32(IMC, 0xFFFFFFFF);
980         msleep(10);
981
982         /* Unhook test interrupt handler */
983         free_irq(irq, netdev);
984
985         return *data;
986 }
987
988 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
989 {
990         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
991         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
992         struct pci_dev *pdev = adapter->pdev;
993         int i;
994
995         if (tx_ring->desc && tx_ring->buffer_info) {
996                 for (i = 0; i < tx_ring->count; i++) {
997                         if (tx_ring->buffer_info[i].dma)
998                                 pci_unmap_single(pdev,
999                                         tx_ring->buffer_info[i].dma,
1000                                         tx_ring->buffer_info[i].length,
1001                                         PCI_DMA_TODEVICE);
1002                         if (tx_ring->buffer_info[i].skb)
1003                                 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1004                 }
1005         }
1006
1007         if (rx_ring->desc && rx_ring->buffer_info) {
1008                 for (i = 0; i < rx_ring->count; i++) {
1009                         if (rx_ring->buffer_info[i].dma)
1010                                 pci_unmap_single(pdev,
1011                                         rx_ring->buffer_info[i].dma,
1012                                         2048, PCI_DMA_FROMDEVICE);
1013                         if (rx_ring->buffer_info[i].skb)
1014                                 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1015                 }
1016         }
1017
1018         if (tx_ring->desc) {
1019                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1020                                   tx_ring->dma);
1021                 tx_ring->desc = NULL;
1022         }
1023         if (rx_ring->desc) {
1024                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1025                                   rx_ring->dma);
1026                 rx_ring->desc = NULL;
1027         }
1028
1029         kfree(tx_ring->buffer_info);
1030         tx_ring->buffer_info = NULL;
1031         kfree(rx_ring->buffer_info);
1032         rx_ring->buffer_info = NULL;
1033 }
1034
1035 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1036 {
1037         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1038         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1039         struct pci_dev *pdev = adapter->pdev;
1040         struct e1000_hw *hw = &adapter->hw;
1041         u32 rctl;
1042         int i;
1043         int ret_val;
1044
1045         /* Setup Tx descriptor ring and Tx buffers */
1046
1047         if (!tx_ring->count)
1048                 tx_ring->count = E1000_DEFAULT_TXD;
1049
1050         tx_ring->buffer_info = kcalloc(tx_ring->count,
1051                                        sizeof(struct e1000_buffer),
1052                                        GFP_KERNEL);
1053         if (!(tx_ring->buffer_info)) {
1054                 ret_val = 1;
1055                 goto err_nomem;
1056         }
1057
1058         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1059         tx_ring->size = ALIGN(tx_ring->size, 4096);
1060         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1061                                            &tx_ring->dma, GFP_KERNEL);
1062         if (!tx_ring->desc) {
1063                 ret_val = 2;
1064                 goto err_nomem;
1065         }
1066         tx_ring->next_to_use = 0;
1067         tx_ring->next_to_clean = 0;
1068
1069         ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1070         ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1071         ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1072         ew32(TDH, 0);
1073         ew32(TDT, 0);
1074         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1075              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1076              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1077
1078         for (i = 0; i < tx_ring->count; i++) {
1079                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1080                 struct sk_buff *skb;
1081                 unsigned int skb_size = 1024;
1082
1083                 skb = alloc_skb(skb_size, GFP_KERNEL);
1084                 if (!skb) {
1085                         ret_val = 3;
1086                         goto err_nomem;
1087                 }
1088                 skb_put(skb, skb_size);
1089                 tx_ring->buffer_info[i].skb = skb;
1090                 tx_ring->buffer_info[i].length = skb->len;
1091                 tx_ring->buffer_info[i].dma =
1092                         pci_map_single(pdev, skb->data, skb->len,
1093                                        PCI_DMA_TODEVICE);
1094                 if (pci_dma_mapping_error(tx_ring->buffer_info[i].dma)) {
1095                         ret_val = 4;
1096                         goto err_nomem;
1097                 }
1098                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1099                 tx_desc->lower.data = cpu_to_le32(skb->len);
1100                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1101                                                    E1000_TXD_CMD_IFCS |
1102                                                    E1000_TXD_CMD_RS);
1103                 tx_desc->upper.data = 0;
1104         }
1105
1106         /* Setup Rx descriptor ring and Rx buffers */
1107
1108         if (!rx_ring->count)
1109                 rx_ring->count = E1000_DEFAULT_RXD;
1110
1111         rx_ring->buffer_info = kcalloc(rx_ring->count,
1112                                        sizeof(struct e1000_buffer),
1113                                        GFP_KERNEL);
1114         if (!(rx_ring->buffer_info)) {
1115                 ret_val = 5;
1116                 goto err_nomem;
1117         }
1118
1119         rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1120         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1121                                            &rx_ring->dma, GFP_KERNEL);
1122         if (!rx_ring->desc) {
1123                 ret_val = 6;
1124                 goto err_nomem;
1125         }
1126         rx_ring->next_to_use = 0;
1127         rx_ring->next_to_clean = 0;
1128
1129         rctl = er32(RCTL);
1130         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1131         ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1132         ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1133         ew32(RDLEN, rx_ring->size);
1134         ew32(RDH, 0);
1135         ew32(RDT, 0);
1136         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1137                 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1138                 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1139                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1140                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1141         ew32(RCTL, rctl);
1142
1143         for (i = 0; i < rx_ring->count; i++) {
1144                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1145                 struct sk_buff *skb;
1146
1147                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1148                 if (!skb) {
1149                         ret_val = 7;
1150                         goto err_nomem;
1151                 }
1152                 skb_reserve(skb, NET_IP_ALIGN);
1153                 rx_ring->buffer_info[i].skb = skb;
1154                 rx_ring->buffer_info[i].dma =
1155                         pci_map_single(pdev, skb->data, 2048,
1156                                        PCI_DMA_FROMDEVICE);
1157                 if (pci_dma_mapping_error(rx_ring->buffer_info[i].dma)) {
1158                         ret_val = 8;
1159                         goto err_nomem;
1160                 }
1161                 rx_desc->buffer_addr =
1162                         cpu_to_le64(rx_ring->buffer_info[i].dma);
1163                 memset(skb->data, 0x00, skb->len);
1164         }
1165
1166         return 0;
1167
1168 err_nomem:
1169         e1000_free_desc_rings(adapter);
1170         return ret_val;
1171 }
1172
1173 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1174 {
1175         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1176         e1e_wphy(&adapter->hw, 29, 0x001F);
1177         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1178         e1e_wphy(&adapter->hw, 29, 0x001A);
1179         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1180 }
1181
1182 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1183 {
1184         struct e1000_hw *hw = &adapter->hw;
1185         u32 ctrl_reg = 0;
1186         u32 stat_reg = 0;
1187
1188         hw->mac.autoneg = 0;
1189
1190         if (hw->phy.type == e1000_phy_m88) {
1191                 /* Auto-MDI/MDIX Off */
1192                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1193                 /* reset to update Auto-MDI/MDIX */
1194                 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1195                 /* autoneg off */
1196                 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1197         } else if (hw->phy.type == e1000_phy_gg82563)
1198                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1199
1200         ctrl_reg = er32(CTRL);
1201
1202         switch (hw->phy.type) {
1203         case e1000_phy_ife:
1204                 /* force 100, set loopback */
1205                 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1206
1207                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1208                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1209                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1210                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1211                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1212                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1213                 break;
1214         default:
1215                 /* force 1000, set loopback */
1216                 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1217                 mdelay(250);
1218
1219                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1220                 ctrl_reg = er32(CTRL);
1221                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1222                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1223                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1224                              E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1225                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1226
1227                 if ((adapter->hw.mac.type == e1000_ich8lan) ||
1228                     (adapter->hw.mac.type == e1000_ich9lan))
1229                         ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1230         }
1231
1232         if (hw->phy.media_type == e1000_media_type_copper &&
1233             hw->phy.type == e1000_phy_m88) {
1234                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1235         } else {
1236                 /*
1237                  * Set the ILOS bit on the fiber Nic if half duplex link is
1238                  * detected.
1239                  */
1240                 stat_reg = er32(STATUS);
1241                 if ((stat_reg & E1000_STATUS_FD) == 0)
1242                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1243         }
1244
1245         ew32(CTRL, ctrl_reg);
1246
1247         /*
1248          * Disable the receiver on the PHY so when a cable is plugged in, the
1249          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1250          */
1251         if (hw->phy.type == e1000_phy_m88)
1252                 e1000_phy_disable_receiver(adapter);
1253
1254         udelay(500);
1255
1256         return 0;
1257 }
1258
1259 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1260 {
1261         struct e1000_hw *hw = &adapter->hw;
1262         u32 ctrl = er32(CTRL);
1263         int link = 0;
1264
1265         /* special requirements for 82571/82572 fiber adapters */
1266
1267         /*
1268          * jump through hoops to make sure link is up because serdes
1269          * link is hardwired up
1270          */
1271         ctrl |= E1000_CTRL_SLU;
1272         ew32(CTRL, ctrl);
1273
1274         /* disable autoneg */
1275         ctrl = er32(TXCW);
1276         ctrl &= ~(1 << 31);
1277         ew32(TXCW, ctrl);
1278
1279         link = (er32(STATUS) & E1000_STATUS_LU);
1280
1281         if (!link) {
1282                 /* set invert loss of signal */
1283                 ctrl = er32(CTRL);
1284                 ctrl |= E1000_CTRL_ILOS;
1285                 ew32(CTRL, ctrl);
1286         }
1287
1288         /*
1289          * special write to serdes control register to enable SerDes analog
1290          * loopback
1291          */
1292 #define E1000_SERDES_LB_ON 0x410
1293         ew32(SCTL, E1000_SERDES_LB_ON);
1294         msleep(10);
1295
1296         return 0;
1297 }
1298
1299 /* only call this for fiber/serdes connections to es2lan */
1300 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1301 {
1302         struct e1000_hw *hw = &adapter->hw;
1303         u32 ctrlext = er32(CTRL_EXT);
1304         u32 ctrl = er32(CTRL);
1305
1306         /*
1307          * save CTRL_EXT to restore later, reuse an empty variable (unused
1308          * on mac_type 80003es2lan)
1309          */
1310         adapter->tx_fifo_head = ctrlext;
1311
1312         /* clear the serdes mode bits, putting the device into mac loopback */
1313         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1314         ew32(CTRL_EXT, ctrlext);
1315
1316         /* force speed to 1000/FD, link up */
1317         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1318         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1319                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1320         ew32(CTRL, ctrl);
1321
1322         /* set mac loopback */
1323         ctrl = er32(RCTL);
1324         ctrl |= E1000_RCTL_LBM_MAC;
1325         ew32(RCTL, ctrl);
1326
1327         /* set testing mode parameters (no need to reset later) */
1328 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1329 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1330         ew32(KMRNCTRLSTA,
1331              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1332
1333         return 0;
1334 }
1335
1336 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1337 {
1338         struct e1000_hw *hw = &adapter->hw;
1339         u32 rctl;
1340
1341         if (hw->phy.media_type == e1000_media_type_fiber ||
1342             hw->phy.media_type == e1000_media_type_internal_serdes) {
1343                 switch (hw->mac.type) {
1344                 case e1000_80003es2lan:
1345                         return e1000_set_es2lan_mac_loopback(adapter);
1346                         break;
1347                 case e1000_82571:
1348                 case e1000_82572:
1349                         return e1000_set_82571_fiber_loopback(adapter);
1350                         break;
1351                 default:
1352                         rctl = er32(RCTL);
1353                         rctl |= E1000_RCTL_LBM_TCVR;
1354                         ew32(RCTL, rctl);
1355                         return 0;
1356                 }
1357         } else if (hw->phy.media_type == e1000_media_type_copper) {
1358                 return e1000_integrated_phy_loopback(adapter);
1359         }
1360
1361         return 7;
1362 }
1363
1364 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1365 {
1366         struct e1000_hw *hw = &adapter->hw;
1367         u32 rctl;
1368         u16 phy_reg;
1369
1370         rctl = er32(RCTL);
1371         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1372         ew32(RCTL, rctl);
1373
1374         switch (hw->mac.type) {
1375         case e1000_80003es2lan:
1376                 if (hw->phy.media_type == e1000_media_type_fiber ||
1377                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1378                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1379                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1380                         adapter->tx_fifo_head = 0;
1381                 }
1382                 /* fall through */
1383         case e1000_82571:
1384         case e1000_82572:
1385                 if (hw->phy.media_type == e1000_media_type_fiber ||
1386                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1387 #define E1000_SERDES_LB_OFF 0x400
1388                         ew32(SCTL, E1000_SERDES_LB_OFF);
1389                         msleep(10);
1390                         break;
1391                 }
1392                 /* Fall Through */
1393         default:
1394                 hw->mac.autoneg = 1;
1395                 if (hw->phy.type == e1000_phy_gg82563)
1396                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1397                 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1398                 if (phy_reg & MII_CR_LOOPBACK) {
1399                         phy_reg &= ~MII_CR_LOOPBACK;
1400                         e1e_wphy(hw, PHY_CONTROL, phy_reg);
1401                         e1000e_commit_phy(hw);
1402                 }
1403                 break;
1404         }
1405 }
1406
1407 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1408                                       unsigned int frame_size)
1409 {
1410         memset(skb->data, 0xFF, frame_size);
1411         frame_size &= ~1;
1412         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1413         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1414         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1415 }
1416
1417 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1418                                     unsigned int frame_size)
1419 {
1420         frame_size &= ~1;
1421         if (*(skb->data + 3) == 0xFF)
1422                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1423                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1424                         return 0;
1425         return 13;
1426 }
1427
1428 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1429 {
1430         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1431         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1432         struct pci_dev *pdev = adapter->pdev;
1433         struct e1000_hw *hw = &adapter->hw;
1434         int i, j, k, l;
1435         int lc;
1436         int good_cnt;
1437         int ret_val = 0;
1438         unsigned long time;
1439
1440         ew32(RDT, rx_ring->count - 1);
1441
1442         /*
1443          * Calculate the loop count based on the largest descriptor ring
1444          * The idea is to wrap the largest ring a number of times using 64
1445          * send/receive pairs during each loop
1446          */
1447
1448         if (rx_ring->count <= tx_ring->count)
1449                 lc = ((tx_ring->count / 64) * 2) + 1;
1450         else
1451                 lc = ((rx_ring->count / 64) * 2) + 1;
1452
1453         k = 0;
1454         l = 0;
1455         for (j = 0; j <= lc; j++) { /* loop count loop */
1456                 for (i = 0; i < 64; i++) { /* send the packets */
1457                         e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1458                                                   1024);
1459                         pci_dma_sync_single_for_device(pdev,
1460                                         tx_ring->buffer_info[k].dma,
1461                                         tx_ring->buffer_info[k].length,
1462                                         PCI_DMA_TODEVICE);
1463                         k++;
1464                         if (k == tx_ring->count)
1465                                 k = 0;
1466                 }
1467                 ew32(TDT, k);
1468                 msleep(200);
1469                 time = jiffies; /* set the start time for the receive */
1470                 good_cnt = 0;
1471                 do { /* receive the sent packets */
1472                         pci_dma_sync_single_for_cpu(pdev,
1473                                         rx_ring->buffer_info[l].dma, 2048,
1474                                         PCI_DMA_FROMDEVICE);
1475
1476                         ret_val = e1000_check_lbtest_frame(
1477                                         rx_ring->buffer_info[l].skb, 1024);
1478                         if (!ret_val)
1479                                 good_cnt++;
1480                         l++;
1481                         if (l == rx_ring->count)
1482                                 l = 0;
1483                         /*
1484                          * time + 20 msecs (200 msecs on 2.4) is more than
1485                          * enough time to complete the receives, if it's
1486                          * exceeded, break and error off
1487                          */
1488                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1489                 if (good_cnt != 64) {
1490                         ret_val = 13; /* ret_val is the same as mis-compare */
1491                         break;
1492                 }
1493                 if (jiffies >= (time + 20)) {
1494                         ret_val = 14; /* error code for time out error */
1495                         break;
1496                 }
1497         } /* end loop count loop */
1498         return ret_val;
1499 }
1500
1501 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1502 {
1503         /*
1504          * PHY loopback cannot be performed if SoL/IDER
1505          * sessions are active
1506          */
1507         if (e1000_check_reset_block(&adapter->hw)) {
1508                 ndev_err(adapter->netdev, "Cannot do PHY loopback test "
1509                          "when SoL/IDER is active.\n");
1510                 *data = 0;
1511                 goto out;
1512         }
1513
1514         *data = e1000_setup_desc_rings(adapter);
1515         if (*data)
1516                 goto out;
1517
1518         *data = e1000_setup_loopback_test(adapter);
1519         if (*data)
1520                 goto err_loopback;
1521
1522         *data = e1000_run_loopback_test(adapter);
1523         e1000_loopback_cleanup(adapter);
1524
1525 err_loopback:
1526         e1000_free_desc_rings(adapter);
1527 out:
1528         return *data;
1529 }
1530
1531 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1532 {
1533         struct e1000_hw *hw = &adapter->hw;
1534
1535         *data = 0;
1536         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1537                 int i = 0;
1538                 hw->mac.serdes_has_link = 0;
1539
1540                 /*
1541                  * On some blade server designs, link establishment
1542                  * could take as long as 2-3 minutes
1543                  */
1544                 do {
1545                         hw->mac.ops.check_for_link(hw);
1546                         if (hw->mac.serdes_has_link)
1547                                 return *data;
1548                         msleep(20);
1549                 } while (i++ < 3750);
1550
1551                 *data = 1;
1552         } else {
1553                 hw->mac.ops.check_for_link(hw);
1554                 if (hw->mac.autoneg)
1555                         msleep(4000);
1556
1557                 if (!(er32(STATUS) &
1558                       E1000_STATUS_LU))
1559                         *data = 1;
1560         }
1561         return *data;
1562 }
1563
1564 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1565 {
1566         switch (sset) {
1567         case ETH_SS_TEST:
1568                 return E1000_TEST_LEN;
1569         case ETH_SS_STATS:
1570                 return E1000_STATS_LEN;
1571         default:
1572                 return -EOPNOTSUPP;
1573         }
1574 }
1575
1576 static void e1000_diag_test(struct net_device *netdev,
1577                             struct ethtool_test *eth_test, u64 *data)
1578 {
1579         struct e1000_adapter *adapter = netdev_priv(netdev);
1580         u16 autoneg_advertised;
1581         u8 forced_speed_duplex;
1582         u8 autoneg;
1583         bool if_running = netif_running(netdev);
1584
1585         set_bit(__E1000_TESTING, &adapter->state);
1586         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1587                 /* Offline tests */
1588
1589                 /* save speed, duplex, autoneg settings */
1590                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1591                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1592                 autoneg = adapter->hw.mac.autoneg;
1593
1594                 ndev_info(netdev, "offline testing starting\n");
1595
1596                 /*
1597                  * Link test performed before hardware reset so autoneg doesn't
1598                  * interfere with test result
1599                  */
1600                 if (e1000_link_test(adapter, &data[4]))
1601                         eth_test->flags |= ETH_TEST_FL_FAILED;
1602
1603                 if (if_running)
1604                         /* indicate we're in test mode */
1605                         dev_close(netdev);
1606                 else
1607                         e1000e_reset(adapter);
1608
1609                 if (e1000_reg_test(adapter, &data[0]))
1610                         eth_test->flags |= ETH_TEST_FL_FAILED;
1611
1612                 e1000e_reset(adapter);
1613                 if (e1000_eeprom_test(adapter, &data[1]))
1614                         eth_test->flags |= ETH_TEST_FL_FAILED;
1615
1616                 e1000e_reset(adapter);
1617                 if (e1000_intr_test(adapter, &data[2]))
1618                         eth_test->flags |= ETH_TEST_FL_FAILED;
1619
1620                 e1000e_reset(adapter);
1621                 /* make sure the phy is powered up */
1622                 e1000e_power_up_phy(adapter);
1623                 if (e1000_loopback_test(adapter, &data[3]))
1624                         eth_test->flags |= ETH_TEST_FL_FAILED;
1625
1626                 /* restore speed, duplex, autoneg settings */
1627                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1628                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1629                 adapter->hw.mac.autoneg = autoneg;
1630
1631                 /* force this routine to wait until autoneg complete/timeout */
1632                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1633                 e1000e_reset(adapter);
1634                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1635
1636                 clear_bit(__E1000_TESTING, &adapter->state);
1637                 if (if_running)
1638                         dev_open(netdev);
1639         } else {
1640                 ndev_info(netdev, "online testing starting\n");
1641                 /* Online tests */
1642                 if (e1000_link_test(adapter, &data[4]))
1643                         eth_test->flags |= ETH_TEST_FL_FAILED;
1644
1645                 /* Online tests aren't run; pass by default */
1646                 data[0] = 0;
1647                 data[1] = 0;
1648                 data[2] = 0;
1649                 data[3] = 0;
1650
1651                 clear_bit(__E1000_TESTING, &adapter->state);
1652         }
1653         msleep_interruptible(4 * 1000);
1654 }
1655
1656 static void e1000_get_wol(struct net_device *netdev,
1657                           struct ethtool_wolinfo *wol)
1658 {
1659         struct e1000_adapter *adapter = netdev_priv(netdev);
1660
1661         wol->supported = 0;
1662         wol->wolopts = 0;
1663
1664         if (!(adapter->flags & FLAG_HAS_WOL))
1665                 return;
1666
1667         wol->supported = WAKE_UCAST | WAKE_MCAST |
1668                          WAKE_BCAST | WAKE_MAGIC |
1669                          WAKE_PHY | WAKE_ARP;
1670
1671         /* apply any specific unsupported masks here */
1672         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1673                 wol->supported &= ~WAKE_UCAST;
1674
1675                 if (adapter->wol & E1000_WUFC_EX)
1676                         ndev_err(netdev, "Interface does not support "
1677                                  "directed (unicast) frame wake-up packets\n");
1678         }
1679
1680         if (adapter->wol & E1000_WUFC_EX)
1681                 wol->wolopts |= WAKE_UCAST;
1682         if (adapter->wol & E1000_WUFC_MC)
1683                 wol->wolopts |= WAKE_MCAST;
1684         if (adapter->wol & E1000_WUFC_BC)
1685                 wol->wolopts |= WAKE_BCAST;
1686         if (adapter->wol & E1000_WUFC_MAG)
1687                 wol->wolopts |= WAKE_MAGIC;
1688         if (adapter->wol & E1000_WUFC_LNKC)
1689                 wol->wolopts |= WAKE_PHY;
1690         if (adapter->wol & E1000_WUFC_ARP)
1691                 wol->wolopts |= WAKE_ARP;
1692 }
1693
1694 static int e1000_set_wol(struct net_device *netdev,
1695                          struct ethtool_wolinfo *wol)
1696 {
1697         struct e1000_adapter *adapter = netdev_priv(netdev);
1698
1699         if (wol->wolopts & WAKE_MAGICSECURE)
1700                 return -EOPNOTSUPP;
1701
1702         if (!(adapter->flags & FLAG_HAS_WOL))
1703                 return wol->wolopts ? -EOPNOTSUPP : 0;
1704
1705         /* these settings will always override what we currently have */
1706         adapter->wol = 0;
1707
1708         if (wol->wolopts & WAKE_UCAST)
1709                 adapter->wol |= E1000_WUFC_EX;
1710         if (wol->wolopts & WAKE_MCAST)
1711                 adapter->wol |= E1000_WUFC_MC;
1712         if (wol->wolopts & WAKE_BCAST)
1713                 adapter->wol |= E1000_WUFC_BC;
1714         if (wol->wolopts & WAKE_MAGIC)
1715                 adapter->wol |= E1000_WUFC_MAG;
1716         if (wol->wolopts & WAKE_PHY)
1717                 adapter->wol |= E1000_WUFC_LNKC;
1718         if (wol->wolopts & WAKE_ARP)
1719                 adapter->wol |= E1000_WUFC_ARP;
1720
1721         return 0;
1722 }
1723
1724 /* toggle LED 4 times per second = 2 "blinks" per second */
1725 #define E1000_ID_INTERVAL       (HZ/4)
1726
1727 /* bit defines for adapter->led_status */
1728 #define E1000_LED_ON            0
1729
1730 static void e1000_led_blink_callback(unsigned long data)
1731 {
1732         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1733
1734         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1735                 adapter->hw.mac.ops.led_off(&adapter->hw);
1736         else
1737                 adapter->hw.mac.ops.led_on(&adapter->hw);
1738
1739         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1740 }
1741
1742 static int e1000_phys_id(struct net_device *netdev, u32 data)
1743 {
1744         struct e1000_adapter *adapter = netdev_priv(netdev);
1745
1746         if (!data)
1747                 data = INT_MAX;
1748
1749         if (adapter->hw.phy.type == e1000_phy_ife) {
1750                 if (!adapter->blink_timer.function) {
1751                         init_timer(&adapter->blink_timer);
1752                         adapter->blink_timer.function =
1753                                 e1000_led_blink_callback;
1754                         adapter->blink_timer.data = (unsigned long) adapter;
1755                 }
1756                 mod_timer(&adapter->blink_timer, jiffies);
1757                 msleep_interruptible(data * 1000);
1758                 del_timer_sync(&adapter->blink_timer);
1759                 e1e_wphy(&adapter->hw,
1760                                     IFE_PHY_SPECIAL_CONTROL_LED, 0);
1761         } else {
1762                 e1000e_blink_led(&adapter->hw);
1763                 msleep_interruptible(data * 1000);
1764         }
1765
1766         adapter->hw.mac.ops.led_off(&adapter->hw);
1767         clear_bit(E1000_LED_ON, &adapter->led_status);
1768         adapter->hw.mac.ops.cleanup_led(&adapter->hw);
1769
1770         return 0;
1771 }
1772
1773 static int e1000_get_coalesce(struct net_device *netdev,
1774                               struct ethtool_coalesce *ec)
1775 {
1776         struct e1000_adapter *adapter = netdev_priv(netdev);
1777
1778         if (adapter->itr_setting <= 3)
1779                 ec->rx_coalesce_usecs = adapter->itr_setting;
1780         else
1781                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1782
1783         return 0;
1784 }
1785
1786 static int e1000_set_coalesce(struct net_device *netdev,
1787                               struct ethtool_coalesce *ec)
1788 {
1789         struct e1000_adapter *adapter = netdev_priv(netdev);
1790         struct e1000_hw *hw = &adapter->hw;
1791
1792         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1793             ((ec->rx_coalesce_usecs > 3) &&
1794              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1795             (ec->rx_coalesce_usecs == 2))
1796                 return -EINVAL;
1797
1798         if (ec->rx_coalesce_usecs <= 3) {
1799                 adapter->itr = 20000;
1800                 adapter->itr_setting = ec->rx_coalesce_usecs;
1801         } else {
1802                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1803                 adapter->itr_setting = adapter->itr & ~3;
1804         }
1805
1806         if (adapter->itr_setting != 0)
1807                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1808         else
1809                 ew32(ITR, 0);
1810
1811         return 0;
1812 }
1813
1814 static int e1000_nway_reset(struct net_device *netdev)
1815 {
1816         struct e1000_adapter *adapter = netdev_priv(netdev);
1817         if (netif_running(netdev))
1818                 e1000e_reinit_locked(adapter);
1819         return 0;
1820 }
1821
1822 static void e1000_get_ethtool_stats(struct net_device *netdev,
1823                                     struct ethtool_stats *stats,
1824                                     u64 *data)
1825 {
1826         struct e1000_adapter *adapter = netdev_priv(netdev);
1827         int i;
1828
1829         e1000e_update_stats(adapter);
1830         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1831                 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1832                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1833                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1834         }
1835 }
1836
1837 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1838                               u8 *data)
1839 {
1840         u8 *p = data;
1841         int i;
1842
1843         switch (stringset) {
1844         case ETH_SS_TEST:
1845                 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
1846                 break;
1847         case ETH_SS_STATS:
1848                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1849                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1850                                ETH_GSTRING_LEN);
1851                         p += ETH_GSTRING_LEN;
1852                 }
1853                 break;
1854         }
1855 }
1856
1857 static const struct ethtool_ops e1000_ethtool_ops = {
1858         .get_settings           = e1000_get_settings,
1859         .set_settings           = e1000_set_settings,
1860         .get_drvinfo            = e1000_get_drvinfo,
1861         .get_regs_len           = e1000_get_regs_len,
1862         .get_regs               = e1000_get_regs,
1863         .get_wol                = e1000_get_wol,
1864         .set_wol                = e1000_set_wol,
1865         .get_msglevel           = e1000_get_msglevel,
1866         .set_msglevel           = e1000_set_msglevel,
1867         .nway_reset             = e1000_nway_reset,
1868         .get_link               = e1000_get_link,
1869         .get_eeprom_len         = e1000_get_eeprom_len,
1870         .get_eeprom             = e1000_get_eeprom,
1871         .set_eeprom             = e1000_set_eeprom,
1872         .get_ringparam          = e1000_get_ringparam,
1873         .set_ringparam          = e1000_set_ringparam,
1874         .get_pauseparam         = e1000_get_pauseparam,
1875         .set_pauseparam         = e1000_set_pauseparam,
1876         .get_rx_csum            = e1000_get_rx_csum,
1877         .set_rx_csum            = e1000_set_rx_csum,
1878         .get_tx_csum            = e1000_get_tx_csum,
1879         .set_tx_csum            = e1000_set_tx_csum,
1880         .get_sg                 = ethtool_op_get_sg,
1881         .set_sg                 = ethtool_op_set_sg,
1882         .get_tso                = ethtool_op_get_tso,
1883         .set_tso                = e1000_set_tso,
1884         .self_test              = e1000_diag_test,
1885         .get_strings            = e1000_get_strings,
1886         .phys_id                = e1000_phys_id,
1887         .get_ethtool_stats      = e1000_get_ethtool_stats,
1888         .get_sset_count         = e1000e_get_sset_count,
1889         .get_coalesce           = e1000_get_coalesce,
1890         .set_coalesce           = e1000_set_coalesce,
1891 };
1892
1893 void e1000e_set_ethtool_ops(struct net_device *netdev)
1894 {
1895         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1896 }