]> Pileus Git - ~andy/linux/blob - drivers/net/e1000e/ethtool.c
39349d6dcd0b138b62def2bcd428930f8cba5eb5
[~andy/linux] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2010 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36
37 #include "e1000.h"
38
39 enum {NETDEV_STATS, E1000_STATS};
40
41 struct e1000_stats {
42         char stat_string[ETH_GSTRING_LEN];
43         int type;
44         int sizeof_stat;
45         int stat_offset;
46 };
47
48 #define E1000_STAT(m)           E1000_STATS, \
49                                 sizeof(((struct e1000_adapter *)0)->m), \
50                                 offsetof(struct e1000_adapter, m)
51 #define E1000_NETDEV_STAT(m)    NETDEV_STATS, \
52                                 sizeof(((struct net_device *)0)->m), \
53                                 offsetof(struct net_device, m)
54
55 static const struct e1000_stats e1000_gstrings_stats[] = {
56         { "rx_packets", E1000_STAT(stats.gprc) },
57         { "tx_packets", E1000_STAT(stats.gptc) },
58         { "rx_bytes", E1000_STAT(stats.gorc) },
59         { "tx_bytes", E1000_STAT(stats.gotc) },
60         { "rx_broadcast", E1000_STAT(stats.bprc) },
61         { "tx_broadcast", E1000_STAT(stats.bptc) },
62         { "rx_multicast", E1000_STAT(stats.mprc) },
63         { "tx_multicast", E1000_STAT(stats.mptc) },
64         { "rx_errors", E1000_NETDEV_STAT(stats.rx_errors) },
65         { "tx_errors", E1000_NETDEV_STAT(stats.tx_errors) },
66         { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
67         { "multicast", E1000_STAT(stats.mprc) },
68         { "collisions", E1000_STAT(stats.colc) },
69         { "rx_length_errors", E1000_NETDEV_STAT(stats.rx_length_errors) },
70         { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
71         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
72         { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
73         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
74         { "rx_missed_errors", E1000_STAT(stats.mpc) },
75         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
76         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
77         { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
78         { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
79         { "tx_window_errors", E1000_STAT(stats.latecol) },
80         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
81         { "tx_deferred_ok", E1000_STAT(stats.dc) },
82         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
83         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
84         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
85         { "tx_restart_queue", E1000_STAT(restart_queue) },
86         { "rx_long_length_errors", E1000_STAT(stats.roc) },
87         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
88         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
89         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
90         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
91         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
92         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
93         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
94         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
95         { "rx_long_byte_count", E1000_STAT(stats.gorc) },
96         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
97         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
98         { "rx_header_split", E1000_STAT(rx_hdr_split) },
99         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
100         { "tx_smbus", E1000_STAT(stats.mgptc) },
101         { "rx_smbus", E1000_STAT(stats.mgprc) },
102         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
103         { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
104         { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
105 };
106
107 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
108 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
109 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
110         "Register test  (offline)", "Eeprom test    (offline)",
111         "Interrupt test (offline)", "Loopback test  (offline)",
112         "Link test   (on/offline)"
113 };
114 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
115
116 static int e1000_get_settings(struct net_device *netdev,
117                               struct ethtool_cmd *ecmd)
118 {
119         struct e1000_adapter *adapter = netdev_priv(netdev);
120         struct e1000_hw *hw = &adapter->hw;
121
122         if (hw->phy.media_type == e1000_media_type_copper) {
123
124                 ecmd->supported = (SUPPORTED_10baseT_Half |
125                                    SUPPORTED_10baseT_Full |
126                                    SUPPORTED_100baseT_Half |
127                                    SUPPORTED_100baseT_Full |
128                                    SUPPORTED_1000baseT_Full |
129                                    SUPPORTED_Autoneg |
130                                    SUPPORTED_TP);
131                 if (hw->phy.type == e1000_phy_ife)
132                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
133                 ecmd->advertising = ADVERTISED_TP;
134
135                 if (hw->mac.autoneg == 1) {
136                         ecmd->advertising |= ADVERTISED_Autoneg;
137                         /* the e1000 autoneg seems to match ethtool nicely */
138                         ecmd->advertising |= hw->phy.autoneg_advertised;
139                 }
140
141                 ecmd->port = PORT_TP;
142                 ecmd->phy_address = hw->phy.addr;
143                 ecmd->transceiver = XCVR_INTERNAL;
144
145         } else {
146                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
147                                      SUPPORTED_FIBRE |
148                                      SUPPORTED_Autoneg);
149
150                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
151                                      ADVERTISED_FIBRE |
152                                      ADVERTISED_Autoneg);
153
154                 ecmd->port = PORT_FIBRE;
155                 ecmd->transceiver = XCVR_EXTERNAL;
156         }
157
158         ecmd->speed = -1;
159         ecmd->duplex = -1;
160
161         if (netif_running(netdev)) {
162                 if (netif_carrier_ok(netdev)) {
163                         ecmd->speed = adapter->link_speed;
164                         ecmd->duplex = adapter->link_duplex - 1;
165                 }
166         } else {
167                 u32 status = er32(STATUS);
168                 if (status & E1000_STATUS_LU) {
169                         if (status & E1000_STATUS_SPEED_1000)
170                                 ecmd->speed = 1000;
171                         else if (status & E1000_STATUS_SPEED_100)
172                                 ecmd->speed = 100;
173                         else
174                                 ecmd->speed = 10;
175
176                         if (status & E1000_STATUS_FD)
177                                 ecmd->duplex = DUPLEX_FULL;
178                         else
179                                 ecmd->duplex = DUPLEX_HALF;
180                 }
181         }
182
183         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
184                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
185
186         /* MDI-X => 2; MDI =>1; Invalid =>0 */
187         if ((hw->phy.media_type == e1000_media_type_copper) &&
188             netif_carrier_ok(netdev))
189                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
190                                                       ETH_TP_MDI;
191         else
192                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
193
194         return 0;
195 }
196
197 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
198 {
199         struct e1000_mac_info *mac = &adapter->hw.mac;
200
201         mac->autoneg = 0;
202
203         /* Fiber NICs only allow 1000 gbps Full duplex */
204         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
205                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
206                 e_err("Unsupported Speed/Duplex configuration\n");
207                 return -EINVAL;
208         }
209
210         switch (spddplx) {
211         case SPEED_10 + DUPLEX_HALF:
212                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
213                 break;
214         case SPEED_10 + DUPLEX_FULL:
215                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
216                 break;
217         case SPEED_100 + DUPLEX_HALF:
218                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
219                 break;
220         case SPEED_100 + DUPLEX_FULL:
221                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
222                 break;
223         case SPEED_1000 + DUPLEX_FULL:
224                 mac->autoneg = 1;
225                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
226                 break;
227         case SPEED_1000 + DUPLEX_HALF: /* not supported */
228         default:
229                 e_err("Unsupported Speed/Duplex configuration\n");
230                 return -EINVAL;
231         }
232         return 0;
233 }
234
235 static int e1000_set_settings(struct net_device *netdev,
236                               struct ethtool_cmd *ecmd)
237 {
238         struct e1000_adapter *adapter = netdev_priv(netdev);
239         struct e1000_hw *hw = &adapter->hw;
240
241         /*
242          * When SoL/IDER sessions are active, autoneg/speed/duplex
243          * cannot be changed
244          */
245         if (e1000_check_reset_block(hw)) {
246                 e_err("Cannot change link characteristics when SoL/IDER is "
247                       "active.\n");
248                 return -EINVAL;
249         }
250
251         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
252                 msleep(1);
253
254         if (ecmd->autoneg == AUTONEG_ENABLE) {
255                 hw->mac.autoneg = 1;
256                 if (hw->phy.media_type == e1000_media_type_fiber)
257                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
258                                                      ADVERTISED_FIBRE |
259                                                      ADVERTISED_Autoneg;
260                 else
261                         hw->phy.autoneg_advertised = ecmd->advertising |
262                                                      ADVERTISED_TP |
263                                                      ADVERTISED_Autoneg;
264                 ecmd->advertising = hw->phy.autoneg_advertised;
265                 if (adapter->fc_autoneg)
266                         hw->fc.requested_mode = e1000_fc_default;
267         } else {
268                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
269                         clear_bit(__E1000_RESETTING, &adapter->state);
270                         return -EINVAL;
271                 }
272         }
273
274         /* reset the link */
275
276         if (netif_running(adapter->netdev)) {
277                 e1000e_down(adapter);
278                 e1000e_up(adapter);
279         } else {
280                 e1000e_reset(adapter);
281         }
282
283         clear_bit(__E1000_RESETTING, &adapter->state);
284         return 0;
285 }
286
287 static void e1000_get_pauseparam(struct net_device *netdev,
288                                  struct ethtool_pauseparam *pause)
289 {
290         struct e1000_adapter *adapter = netdev_priv(netdev);
291         struct e1000_hw *hw = &adapter->hw;
292
293         pause->autoneg =
294                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
295
296         if (hw->fc.current_mode == e1000_fc_rx_pause) {
297                 pause->rx_pause = 1;
298         } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
299                 pause->tx_pause = 1;
300         } else if (hw->fc.current_mode == e1000_fc_full) {
301                 pause->rx_pause = 1;
302                 pause->tx_pause = 1;
303         }
304 }
305
306 static int e1000_set_pauseparam(struct net_device *netdev,
307                                 struct ethtool_pauseparam *pause)
308 {
309         struct e1000_adapter *adapter = netdev_priv(netdev);
310         struct e1000_hw *hw = &adapter->hw;
311         int retval = 0;
312
313         adapter->fc_autoneg = pause->autoneg;
314
315         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
316                 msleep(1);
317
318         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
319                 hw->fc.requested_mode = e1000_fc_default;
320                 if (netif_running(adapter->netdev)) {
321                         e1000e_down(adapter);
322                         e1000e_up(adapter);
323                 } else {
324                         e1000e_reset(adapter);
325                 }
326         } else {
327                 if (pause->rx_pause && pause->tx_pause)
328                         hw->fc.requested_mode = e1000_fc_full;
329                 else if (pause->rx_pause && !pause->tx_pause)
330                         hw->fc.requested_mode = e1000_fc_rx_pause;
331                 else if (!pause->rx_pause && pause->tx_pause)
332                         hw->fc.requested_mode = e1000_fc_tx_pause;
333                 else if (!pause->rx_pause && !pause->tx_pause)
334                         hw->fc.requested_mode = e1000_fc_none;
335
336                 hw->fc.current_mode = hw->fc.requested_mode;
337
338                 if (hw->phy.media_type == e1000_media_type_fiber) {
339                         retval = hw->mac.ops.setup_link(hw);
340                         /* implicit goto out */
341                 } else {
342                         retval = e1000e_force_mac_fc(hw);
343                         if (retval)
344                                 goto out;
345                         e1000e_set_fc_watermarks(hw);
346                 }
347         }
348
349 out:
350         clear_bit(__E1000_RESETTING, &adapter->state);
351         return retval;
352 }
353
354 static u32 e1000_get_rx_csum(struct net_device *netdev)
355 {
356         struct e1000_adapter *adapter = netdev_priv(netdev);
357         return adapter->flags & FLAG_RX_CSUM_ENABLED;
358 }
359
360 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
361 {
362         struct e1000_adapter *adapter = netdev_priv(netdev);
363
364         if (data)
365                 adapter->flags |= FLAG_RX_CSUM_ENABLED;
366         else
367                 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
368
369         if (netif_running(netdev))
370                 e1000e_reinit_locked(adapter);
371         else
372                 e1000e_reset(adapter);
373         return 0;
374 }
375
376 static u32 e1000_get_tx_csum(struct net_device *netdev)
377 {
378         return (netdev->features & NETIF_F_HW_CSUM) != 0;
379 }
380
381 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
382 {
383         if (data)
384                 netdev->features |= NETIF_F_HW_CSUM;
385         else
386                 netdev->features &= ~NETIF_F_HW_CSUM;
387
388         return 0;
389 }
390
391 static int e1000_set_tso(struct net_device *netdev, u32 data)
392 {
393         struct e1000_adapter *adapter = netdev_priv(netdev);
394
395         if (data) {
396                 netdev->features |= NETIF_F_TSO;
397                 netdev->features |= NETIF_F_TSO6;
398         } else {
399                 netdev->features &= ~NETIF_F_TSO;
400                 netdev->features &= ~NETIF_F_TSO6;
401         }
402
403         adapter->flags |= FLAG_TSO_FORCE;
404         return 0;
405 }
406
407 static u32 e1000_get_msglevel(struct net_device *netdev)
408 {
409         struct e1000_adapter *adapter = netdev_priv(netdev);
410         return adapter->msg_enable;
411 }
412
413 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
414 {
415         struct e1000_adapter *adapter = netdev_priv(netdev);
416         adapter->msg_enable = data;
417 }
418
419 static int e1000_get_regs_len(struct net_device *netdev)
420 {
421 #define E1000_REGS_LEN 32 /* overestimate */
422         return E1000_REGS_LEN * sizeof(u32);
423 }
424
425 static void e1000_get_regs(struct net_device *netdev,
426                            struct ethtool_regs *regs, void *p)
427 {
428         struct e1000_adapter *adapter = netdev_priv(netdev);
429         struct e1000_hw *hw = &adapter->hw;
430         u32 *regs_buff = p;
431         u16 phy_data;
432         u8 revision_id;
433
434         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
435
436         pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
437
438         regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
439
440         regs_buff[0]  = er32(CTRL);
441         regs_buff[1]  = er32(STATUS);
442
443         regs_buff[2]  = er32(RCTL);
444         regs_buff[3]  = er32(RDLEN);
445         regs_buff[4]  = er32(RDH);
446         regs_buff[5]  = er32(RDT);
447         regs_buff[6]  = er32(RDTR);
448
449         regs_buff[7]  = er32(TCTL);
450         regs_buff[8]  = er32(TDLEN);
451         regs_buff[9]  = er32(TDH);
452         regs_buff[10] = er32(TDT);
453         regs_buff[11] = er32(TIDV);
454
455         regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
456
457         /* ethtool doesn't use anything past this point, so all this
458          * code is likely legacy junk for apps that may or may not
459          * exist */
460         if (hw->phy.type == e1000_phy_m88) {
461                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
462                 regs_buff[13] = (u32)phy_data; /* cable length */
463                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
464                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
465                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
466                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
467                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
468                 regs_buff[18] = regs_buff[13]; /* cable polarity */
469                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
470                 regs_buff[20] = regs_buff[17]; /* polarity correction */
471                 /* phy receive errors */
472                 regs_buff[22] = adapter->phy_stats.receive_errors;
473                 regs_buff[23] = regs_buff[13]; /* mdix mode */
474         }
475         regs_buff[21] = 0; /* was idle_errors */
476         e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
477         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
478         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
479 }
480
481 static int e1000_get_eeprom_len(struct net_device *netdev)
482 {
483         struct e1000_adapter *adapter = netdev_priv(netdev);
484         return adapter->hw.nvm.word_size * 2;
485 }
486
487 static int e1000_get_eeprom(struct net_device *netdev,
488                             struct ethtool_eeprom *eeprom, u8 *bytes)
489 {
490         struct e1000_adapter *adapter = netdev_priv(netdev);
491         struct e1000_hw *hw = &adapter->hw;
492         u16 *eeprom_buff;
493         int first_word;
494         int last_word;
495         int ret_val = 0;
496         u16 i;
497
498         if (eeprom->len == 0)
499                 return -EINVAL;
500
501         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
502
503         first_word = eeprom->offset >> 1;
504         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
505
506         eeprom_buff = kmalloc(sizeof(u16) *
507                         (last_word - first_word + 1), GFP_KERNEL);
508         if (!eeprom_buff)
509                 return -ENOMEM;
510
511         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
512                 ret_val = e1000_read_nvm(hw, first_word,
513                                          last_word - first_word + 1,
514                                          eeprom_buff);
515         } else {
516                 for (i = 0; i < last_word - first_word + 1; i++) {
517                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
518                                                       &eeprom_buff[i]);
519                         if (ret_val)
520                                 break;
521                 }
522         }
523
524         if (ret_val) {
525                 /* a read error occurred, throw away the result */
526                 memset(eeprom_buff, 0xff, sizeof(u16) *
527                        (last_word - first_word + 1));
528         } else {
529                 /* Device's eeprom is always little-endian, word addressable */
530                 for (i = 0; i < last_word - first_word + 1; i++)
531                         le16_to_cpus(&eeprom_buff[i]);
532         }
533
534         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
535         kfree(eeprom_buff);
536
537         return ret_val;
538 }
539
540 static int e1000_set_eeprom(struct net_device *netdev,
541                             struct ethtool_eeprom *eeprom, u8 *bytes)
542 {
543         struct e1000_adapter *adapter = netdev_priv(netdev);
544         struct e1000_hw *hw = &adapter->hw;
545         u16 *eeprom_buff;
546         void *ptr;
547         int max_len;
548         int first_word;
549         int last_word;
550         int ret_val = 0;
551         u16 i;
552
553         if (eeprom->len == 0)
554                 return -EOPNOTSUPP;
555
556         if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
557                 return -EFAULT;
558
559         if (adapter->flags & FLAG_READ_ONLY_NVM)
560                 return -EINVAL;
561
562         max_len = hw->nvm.word_size * 2;
563
564         first_word = eeprom->offset >> 1;
565         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
566         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
567         if (!eeprom_buff)
568                 return -ENOMEM;
569
570         ptr = (void *)eeprom_buff;
571
572         if (eeprom->offset & 1) {
573                 /* need read/modify/write of first changed EEPROM word */
574                 /* only the second byte of the word is being modified */
575                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
576                 ptr++;
577         }
578         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
579                 /* need read/modify/write of last changed EEPROM word */
580                 /* only the first byte of the word is being modified */
581                 ret_val = e1000_read_nvm(hw, last_word, 1,
582                                   &eeprom_buff[last_word - first_word]);
583
584         if (ret_val)
585                 goto out;
586
587         /* Device's eeprom is always little-endian, word addressable */
588         for (i = 0; i < last_word - first_word + 1; i++)
589                 le16_to_cpus(&eeprom_buff[i]);
590
591         memcpy(ptr, bytes, eeprom->len);
592
593         for (i = 0; i < last_word - first_word + 1; i++)
594                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
595
596         ret_val = e1000_write_nvm(hw, first_word,
597                                   last_word - first_word + 1, eeprom_buff);
598
599         if (ret_val)
600                 goto out;
601
602         /*
603          * Update the checksum over the first part of the EEPROM if needed
604          * and flush shadow RAM for applicable controllers
605          */
606         if ((first_word <= NVM_CHECKSUM_REG) ||
607             (hw->mac.type == e1000_82583) ||
608             (hw->mac.type == e1000_82574) ||
609             (hw->mac.type == e1000_82573))
610                 ret_val = e1000e_update_nvm_checksum(hw);
611
612 out:
613         kfree(eeprom_buff);
614         return ret_val;
615 }
616
617 static void e1000_get_drvinfo(struct net_device *netdev,
618                               struct ethtool_drvinfo *drvinfo)
619 {
620         struct e1000_adapter *adapter = netdev_priv(netdev);
621         char firmware_version[32];
622
623         strncpy(drvinfo->driver,  e1000e_driver_name, 32);
624         strncpy(drvinfo->version, e1000e_driver_version, 32);
625
626         /*
627          * EEPROM image version # is reported as firmware version # for
628          * PCI-E controllers
629          */
630         sprintf(firmware_version, "%d.%d-%d",
631                 (adapter->eeprom_vers & 0xF000) >> 12,
632                 (adapter->eeprom_vers & 0x0FF0) >> 4,
633                 (adapter->eeprom_vers & 0x000F));
634
635         strncpy(drvinfo->fw_version, firmware_version, 32);
636         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
637         drvinfo->regdump_len = e1000_get_regs_len(netdev);
638         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
639 }
640
641 static void e1000_get_ringparam(struct net_device *netdev,
642                                 struct ethtool_ringparam *ring)
643 {
644         struct e1000_adapter *adapter = netdev_priv(netdev);
645         struct e1000_ring *tx_ring = adapter->tx_ring;
646         struct e1000_ring *rx_ring = adapter->rx_ring;
647
648         ring->rx_max_pending = E1000_MAX_RXD;
649         ring->tx_max_pending = E1000_MAX_TXD;
650         ring->rx_mini_max_pending = 0;
651         ring->rx_jumbo_max_pending = 0;
652         ring->rx_pending = rx_ring->count;
653         ring->tx_pending = tx_ring->count;
654         ring->rx_mini_pending = 0;
655         ring->rx_jumbo_pending = 0;
656 }
657
658 static int e1000_set_ringparam(struct net_device *netdev,
659                                struct ethtool_ringparam *ring)
660 {
661         struct e1000_adapter *adapter = netdev_priv(netdev);
662         struct e1000_ring *tx_ring, *tx_old;
663         struct e1000_ring *rx_ring, *rx_old;
664         int err;
665
666         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
667                 return -EINVAL;
668
669         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
670                 msleep(1);
671
672         if (netif_running(adapter->netdev))
673                 e1000e_down(adapter);
674
675         tx_old = adapter->tx_ring;
676         rx_old = adapter->rx_ring;
677
678         err = -ENOMEM;
679         tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
680         if (!tx_ring)
681                 goto err_alloc_tx;
682         /*
683          * use a memcpy to save any previously configured
684          * items like napi structs from having to be
685          * reinitialized
686          */
687         memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
688
689         rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
690         if (!rx_ring)
691                 goto err_alloc_rx;
692         memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
693
694         adapter->tx_ring = tx_ring;
695         adapter->rx_ring = rx_ring;
696
697         rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
698         rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
699         rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
700
701         tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
702         tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
703         tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
704
705         if (netif_running(adapter->netdev)) {
706                 /* Try to get new resources before deleting old */
707                 err = e1000e_setup_rx_resources(adapter);
708                 if (err)
709                         goto err_setup_rx;
710                 err = e1000e_setup_tx_resources(adapter);
711                 if (err)
712                         goto err_setup_tx;
713
714                 /*
715                  * restore the old in order to free it,
716                  * then add in the new
717                  */
718                 adapter->rx_ring = rx_old;
719                 adapter->tx_ring = tx_old;
720                 e1000e_free_rx_resources(adapter);
721                 e1000e_free_tx_resources(adapter);
722                 kfree(tx_old);
723                 kfree(rx_old);
724                 adapter->rx_ring = rx_ring;
725                 adapter->tx_ring = tx_ring;
726                 err = e1000e_up(adapter);
727                 if (err)
728                         goto err_setup;
729         }
730
731         clear_bit(__E1000_RESETTING, &adapter->state);
732         return 0;
733 err_setup_tx:
734         e1000e_free_rx_resources(adapter);
735 err_setup_rx:
736         adapter->rx_ring = rx_old;
737         adapter->tx_ring = tx_old;
738         kfree(rx_ring);
739 err_alloc_rx:
740         kfree(tx_ring);
741 err_alloc_tx:
742         e1000e_up(adapter);
743 err_setup:
744         clear_bit(__E1000_RESETTING, &adapter->state);
745         return err;
746 }
747
748 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
749                              int reg, int offset, u32 mask, u32 write)
750 {
751         u32 pat, val;
752         static const u32 test[] =
753                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
754         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
755                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
756                                       (test[pat] & write));
757                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
758                 if (val != (test[pat] & write & mask)) {
759                         e_err("pattern test reg %04X failed: got 0x%08X "
760                               "expected 0x%08X\n", reg + offset, val,
761                               (test[pat] & write & mask));
762                         *data = reg;
763                         return 1;
764                 }
765         }
766         return 0;
767 }
768
769 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
770                               int reg, u32 mask, u32 write)
771 {
772         u32 val;
773         __ew32(&adapter->hw, reg, write & mask);
774         val = __er32(&adapter->hw, reg);
775         if ((write & mask) != (val & mask)) {
776                 e_err("set/check reg %04X test failed: got 0x%08X "
777                       "expected 0x%08X\n", reg, (val & mask), (write & mask));
778                 *data = reg;
779                 return 1;
780         }
781         return 0;
782 }
783 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
784         do {                                                                   \
785                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
786                         return 1;                                              \
787         } while (0)
788 #define REG_PATTERN_TEST(reg, mask, write)                                     \
789         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
790
791 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
792         do {                                                                   \
793                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
794                         return 1;                                              \
795         } while (0)
796
797 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
798 {
799         struct e1000_hw *hw = &adapter->hw;
800         struct e1000_mac_info *mac = &adapter->hw.mac;
801         u32 value;
802         u32 before;
803         u32 after;
804         u32 i;
805         u32 toggle;
806         u32 mask;
807
808         /*
809          * The status register is Read Only, so a write should fail.
810          * Some bits that get toggled are ignored.
811          */
812         switch (mac->type) {
813         /* there are several bits on newer hardware that are r/w */
814         case e1000_82571:
815         case e1000_82572:
816         case e1000_80003es2lan:
817                 toggle = 0x7FFFF3FF;
818                 break;
819         default:
820                 toggle = 0x7FFFF033;
821                 break;
822         }
823
824         before = er32(STATUS);
825         value = (er32(STATUS) & toggle);
826         ew32(STATUS, toggle);
827         after = er32(STATUS) & toggle;
828         if (value != after) {
829                 e_err("failed STATUS register test got: 0x%08X expected: "
830                       "0x%08X\n", after, value);
831                 *data = 1;
832                 return 1;
833         }
834         /* restore previous status */
835         ew32(STATUS, before);
836
837         if (!(adapter->flags & FLAG_IS_ICH)) {
838                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
839                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
840                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
841                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
842         }
843
844         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
845         REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
846         REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
847         REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
848         REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
849         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
850         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
851         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
852         REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
853         REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
854
855         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
856
857         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
858         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
859         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
860
861         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
862         REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
863         if (!(adapter->flags & FLAG_IS_ICH))
864                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
865         REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
866         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
867         mask = 0x8003FFFF;
868         switch (mac->type) {
869         case e1000_ich10lan:
870         case e1000_pchlan:
871         case e1000_pch2lan:
872                 mask |= (1 << 18);
873                 break;
874         default:
875                 break;
876         }
877         for (i = 0; i < mac->rar_entry_count; i++)
878                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
879                                        mask, 0xFFFFFFFF);
880
881         for (i = 0; i < mac->mta_reg_count; i++)
882                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
883
884         *data = 0;
885         return 0;
886 }
887
888 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
889 {
890         u16 temp;
891         u16 checksum = 0;
892         u16 i;
893
894         *data = 0;
895         /* Read and add up the contents of the EEPROM */
896         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
897                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
898                         *data = 1;
899                         return *data;
900                 }
901                 checksum += temp;
902         }
903
904         /* If Checksum is not Correct return error else test passed */
905         if ((checksum != (u16) NVM_SUM) && !(*data))
906                 *data = 2;
907
908         return *data;
909 }
910
911 static irqreturn_t e1000_test_intr(int irq, void *data)
912 {
913         struct net_device *netdev = (struct net_device *) data;
914         struct e1000_adapter *adapter = netdev_priv(netdev);
915         struct e1000_hw *hw = &adapter->hw;
916
917         adapter->test_icr |= er32(ICR);
918
919         return IRQ_HANDLED;
920 }
921
922 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
923 {
924         struct net_device *netdev = adapter->netdev;
925         struct e1000_hw *hw = &adapter->hw;
926         u32 mask;
927         u32 shared_int = 1;
928         u32 irq = adapter->pdev->irq;
929         int i;
930         int ret_val = 0;
931         int int_mode = E1000E_INT_MODE_LEGACY;
932
933         *data = 0;
934
935         /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
936         if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
937                 int_mode = adapter->int_mode;
938                 e1000e_reset_interrupt_capability(adapter);
939                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
940                 e1000e_set_interrupt_capability(adapter);
941         }
942         /* Hook up test interrupt handler just for this test */
943         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
944                          netdev)) {
945                 shared_int = 0;
946         } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
947                  netdev->name, netdev)) {
948                 *data = 1;
949                 ret_val = -1;
950                 goto out;
951         }
952         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
953
954         /* Disable all the interrupts */
955         ew32(IMC, 0xFFFFFFFF);
956         msleep(10);
957
958         /* Test each interrupt */
959         for (i = 0; i < 10; i++) {
960                 /* Interrupt to test */
961                 mask = 1 << i;
962
963                 if (adapter->flags & FLAG_IS_ICH) {
964                         switch (mask) {
965                         case E1000_ICR_RXSEQ:
966                                 continue;
967                         case 0x00000100:
968                                 if (adapter->hw.mac.type == e1000_ich8lan ||
969                                     adapter->hw.mac.type == e1000_ich9lan)
970                                         continue;
971                                 break;
972                         default:
973                                 break;
974                         }
975                 }
976
977                 if (!shared_int) {
978                         /*
979                          * Disable the interrupt to be reported in
980                          * the cause register and then force the same
981                          * interrupt and see if one gets posted.  If
982                          * an interrupt was posted to the bus, the
983                          * test failed.
984                          */
985                         adapter->test_icr = 0;
986                         ew32(IMC, mask);
987                         ew32(ICS, mask);
988                         msleep(10);
989
990                         if (adapter->test_icr & mask) {
991                                 *data = 3;
992                                 break;
993                         }
994                 }
995
996                 /*
997                  * Enable the interrupt to be reported in
998                  * the cause register and then force the same
999                  * interrupt and see if one gets posted.  If
1000                  * an interrupt was not posted to the bus, the
1001                  * test failed.
1002                  */
1003                 adapter->test_icr = 0;
1004                 ew32(IMS, mask);
1005                 ew32(ICS, mask);
1006                 msleep(10);
1007
1008                 if (!(adapter->test_icr & mask)) {
1009                         *data = 4;
1010                         break;
1011                 }
1012
1013                 if (!shared_int) {
1014                         /*
1015                          * Disable the other interrupts to be reported in
1016                          * the cause register and then force the other
1017                          * interrupts and see if any get posted.  If
1018                          * an interrupt was posted to the bus, the
1019                          * test failed.
1020                          */
1021                         adapter->test_icr = 0;
1022                         ew32(IMC, ~mask & 0x00007FFF);
1023                         ew32(ICS, ~mask & 0x00007FFF);
1024                         msleep(10);
1025
1026                         if (adapter->test_icr) {
1027                                 *data = 5;
1028                                 break;
1029                         }
1030                 }
1031         }
1032
1033         /* Disable all the interrupts */
1034         ew32(IMC, 0xFFFFFFFF);
1035         msleep(10);
1036
1037         /* Unhook test interrupt handler */
1038         free_irq(irq, netdev);
1039
1040 out:
1041         if (int_mode == E1000E_INT_MODE_MSIX) {
1042                 e1000e_reset_interrupt_capability(adapter);
1043                 adapter->int_mode = int_mode;
1044                 e1000e_set_interrupt_capability(adapter);
1045         }
1046
1047         return ret_val;
1048 }
1049
1050 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1051 {
1052         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1053         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1054         struct pci_dev *pdev = adapter->pdev;
1055         int i;
1056
1057         if (tx_ring->desc && tx_ring->buffer_info) {
1058                 for (i = 0; i < tx_ring->count; i++) {
1059                         if (tx_ring->buffer_info[i].dma)
1060                                 dma_unmap_single(&pdev->dev,
1061                                         tx_ring->buffer_info[i].dma,
1062                                         tx_ring->buffer_info[i].length,
1063                                         DMA_TO_DEVICE);
1064                         if (tx_ring->buffer_info[i].skb)
1065                                 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1066                 }
1067         }
1068
1069         if (rx_ring->desc && rx_ring->buffer_info) {
1070                 for (i = 0; i < rx_ring->count; i++) {
1071                         if (rx_ring->buffer_info[i].dma)
1072                                 dma_unmap_single(&pdev->dev,
1073                                         rx_ring->buffer_info[i].dma,
1074                                         2048, DMA_FROM_DEVICE);
1075                         if (rx_ring->buffer_info[i].skb)
1076                                 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1077                 }
1078         }
1079
1080         if (tx_ring->desc) {
1081                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1082                                   tx_ring->dma);
1083                 tx_ring->desc = NULL;
1084         }
1085         if (rx_ring->desc) {
1086                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1087                                   rx_ring->dma);
1088                 rx_ring->desc = NULL;
1089         }
1090
1091         kfree(tx_ring->buffer_info);
1092         tx_ring->buffer_info = NULL;
1093         kfree(rx_ring->buffer_info);
1094         rx_ring->buffer_info = NULL;
1095 }
1096
1097 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1098 {
1099         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1100         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1101         struct pci_dev *pdev = adapter->pdev;
1102         struct e1000_hw *hw = &adapter->hw;
1103         u32 rctl;
1104         int i;
1105         int ret_val;
1106
1107         /* Setup Tx descriptor ring and Tx buffers */
1108
1109         if (!tx_ring->count)
1110                 tx_ring->count = E1000_DEFAULT_TXD;
1111
1112         tx_ring->buffer_info = kcalloc(tx_ring->count,
1113                                        sizeof(struct e1000_buffer),
1114                                        GFP_KERNEL);
1115         if (!(tx_ring->buffer_info)) {
1116                 ret_val = 1;
1117                 goto err_nomem;
1118         }
1119
1120         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1121         tx_ring->size = ALIGN(tx_ring->size, 4096);
1122         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1123                                            &tx_ring->dma, GFP_KERNEL);
1124         if (!tx_ring->desc) {
1125                 ret_val = 2;
1126                 goto err_nomem;
1127         }
1128         tx_ring->next_to_use = 0;
1129         tx_ring->next_to_clean = 0;
1130
1131         ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1132         ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1133         ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1134         ew32(TDH, 0);
1135         ew32(TDT, 0);
1136         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1137              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1138              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1139
1140         for (i = 0; i < tx_ring->count; i++) {
1141                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1142                 struct sk_buff *skb;
1143                 unsigned int skb_size = 1024;
1144
1145                 skb = alloc_skb(skb_size, GFP_KERNEL);
1146                 if (!skb) {
1147                         ret_val = 3;
1148                         goto err_nomem;
1149                 }
1150                 skb_put(skb, skb_size);
1151                 tx_ring->buffer_info[i].skb = skb;
1152                 tx_ring->buffer_info[i].length = skb->len;
1153                 tx_ring->buffer_info[i].dma =
1154                         dma_map_single(&pdev->dev, skb->data, skb->len,
1155                                        DMA_TO_DEVICE);
1156                 if (dma_mapping_error(&pdev->dev,
1157                                       tx_ring->buffer_info[i].dma)) {
1158                         ret_val = 4;
1159                         goto err_nomem;
1160                 }
1161                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1162                 tx_desc->lower.data = cpu_to_le32(skb->len);
1163                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1164                                                    E1000_TXD_CMD_IFCS |
1165                                                    E1000_TXD_CMD_RS);
1166                 tx_desc->upper.data = 0;
1167         }
1168
1169         /* Setup Rx descriptor ring and Rx buffers */
1170
1171         if (!rx_ring->count)
1172                 rx_ring->count = E1000_DEFAULT_RXD;
1173
1174         rx_ring->buffer_info = kcalloc(rx_ring->count,
1175                                        sizeof(struct e1000_buffer),
1176                                        GFP_KERNEL);
1177         if (!(rx_ring->buffer_info)) {
1178                 ret_val = 5;
1179                 goto err_nomem;
1180         }
1181
1182         rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1183         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1184                                            &rx_ring->dma, GFP_KERNEL);
1185         if (!rx_ring->desc) {
1186                 ret_val = 6;
1187                 goto err_nomem;
1188         }
1189         rx_ring->next_to_use = 0;
1190         rx_ring->next_to_clean = 0;
1191
1192         rctl = er32(RCTL);
1193         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1194         ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1195         ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1196         ew32(RDLEN, rx_ring->size);
1197         ew32(RDH, 0);
1198         ew32(RDT, 0);
1199         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1200                 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1201                 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1202                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1203                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1204         ew32(RCTL, rctl);
1205
1206         for (i = 0; i < rx_ring->count; i++) {
1207                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1208                 struct sk_buff *skb;
1209
1210                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1211                 if (!skb) {
1212                         ret_val = 7;
1213                         goto err_nomem;
1214                 }
1215                 skb_reserve(skb, NET_IP_ALIGN);
1216                 rx_ring->buffer_info[i].skb = skb;
1217                 rx_ring->buffer_info[i].dma =
1218                         dma_map_single(&pdev->dev, skb->data, 2048,
1219                                        DMA_FROM_DEVICE);
1220                 if (dma_mapping_error(&pdev->dev,
1221                                       rx_ring->buffer_info[i].dma)) {
1222                         ret_val = 8;
1223                         goto err_nomem;
1224                 }
1225                 rx_desc->buffer_addr =
1226                         cpu_to_le64(rx_ring->buffer_info[i].dma);
1227                 memset(skb->data, 0x00, skb->len);
1228         }
1229
1230         return 0;
1231
1232 err_nomem:
1233         e1000_free_desc_rings(adapter);
1234         return ret_val;
1235 }
1236
1237 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1238 {
1239         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1240         e1e_wphy(&adapter->hw, 29, 0x001F);
1241         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1242         e1e_wphy(&adapter->hw, 29, 0x001A);
1243         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1244 }
1245
1246 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1247 {
1248         struct e1000_hw *hw = &adapter->hw;
1249         u32 ctrl_reg = 0;
1250         u32 stat_reg = 0;
1251         u16 phy_reg = 0;
1252         s32 ret_val = 0;
1253
1254         hw->mac.autoneg = 0;
1255
1256         if (hw->phy.type == e1000_phy_ife) {
1257                 /* force 100, set loopback */
1258                 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1259
1260                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1261                 ctrl_reg = er32(CTRL);
1262                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1263                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1264                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1265                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1266                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1267
1268                 ew32(CTRL, ctrl_reg);
1269                 udelay(500);
1270
1271                 return 0;
1272         }
1273
1274         /* Specific PHY configuration for loopback */
1275         switch (hw->phy.type) {
1276         case e1000_phy_m88:
1277                 /* Auto-MDI/MDIX Off */
1278                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1279                 /* reset to update Auto-MDI/MDIX */
1280                 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1281                 /* autoneg off */
1282                 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1283                 break;
1284         case e1000_phy_gg82563:
1285                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1286                 break;
1287         case e1000_phy_bm:
1288                 /* Set Default MAC Interface speed to 1GB */
1289                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1290                 phy_reg &= ~0x0007;
1291                 phy_reg |= 0x006;
1292                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1293                 /* Assert SW reset for above settings to take effect */
1294                 e1000e_commit_phy(hw);
1295                 mdelay(1);
1296                 /* Force Full Duplex */
1297                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1298                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1299                 /* Set Link Up (in force link) */
1300                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1301                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1302                 /* Force Link */
1303                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1304                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1305                 /* Set Early Link Enable */
1306                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1307                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1308                 break;
1309         case e1000_phy_82577:
1310         case e1000_phy_82578:
1311                 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1312                 ret_val = hw->phy.ops.acquire(hw);
1313                 if (ret_val) {
1314                         e_err("Cannot setup 1Gbps loopback.\n");
1315                         return ret_val;
1316                 }
1317                 e1000_configure_k1_ich8lan(hw, false);
1318                 hw->phy.ops.release(hw);
1319                 break;
1320         case e1000_phy_82579:
1321                 /* Disable PHY energy detect power down */
1322                 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1323                 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1324                 /* Disable full chip energy detect */
1325                 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1326                 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1327                 /* Enable loopback on the PHY */
1328 #define I82577_PHY_LBK_CTRL          19
1329                 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1330                 break;
1331         default:
1332                 break;
1333         }
1334
1335         /* force 1000, set loopback */
1336         e1e_wphy(hw, PHY_CONTROL, 0x4140);
1337         mdelay(250);
1338
1339         /* Now set up the MAC to the same speed/duplex as the PHY. */
1340         ctrl_reg = er32(CTRL);
1341         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1342         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1343                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1344                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1345                      E1000_CTRL_FD);     /* Force Duplex to FULL */
1346
1347         if (adapter->flags & FLAG_IS_ICH)
1348                 ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1349
1350         if (hw->phy.media_type == e1000_media_type_copper &&
1351             hw->phy.type == e1000_phy_m88) {
1352                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1353         } else {
1354                 /*
1355                  * Set the ILOS bit on the fiber Nic if half duplex link is
1356                  * detected.
1357                  */
1358                 stat_reg = er32(STATUS);
1359                 if ((stat_reg & E1000_STATUS_FD) == 0)
1360                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1361         }
1362
1363         ew32(CTRL, ctrl_reg);
1364
1365         /*
1366          * Disable the receiver on the PHY so when a cable is plugged in, the
1367          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1368          */
1369         if (hw->phy.type == e1000_phy_m88)
1370                 e1000_phy_disable_receiver(adapter);
1371
1372         udelay(500);
1373
1374         return 0;
1375 }
1376
1377 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1378 {
1379         struct e1000_hw *hw = &adapter->hw;
1380         u32 ctrl = er32(CTRL);
1381         int link = 0;
1382
1383         /* special requirements for 82571/82572 fiber adapters */
1384
1385         /*
1386          * jump through hoops to make sure link is up because serdes
1387          * link is hardwired up
1388          */
1389         ctrl |= E1000_CTRL_SLU;
1390         ew32(CTRL, ctrl);
1391
1392         /* disable autoneg */
1393         ctrl = er32(TXCW);
1394         ctrl &= ~(1 << 31);
1395         ew32(TXCW, ctrl);
1396
1397         link = (er32(STATUS) & E1000_STATUS_LU);
1398
1399         if (!link) {
1400                 /* set invert loss of signal */
1401                 ctrl = er32(CTRL);
1402                 ctrl |= E1000_CTRL_ILOS;
1403                 ew32(CTRL, ctrl);
1404         }
1405
1406         /*
1407          * special write to serdes control register to enable SerDes analog
1408          * loopback
1409          */
1410 #define E1000_SERDES_LB_ON 0x410
1411         ew32(SCTL, E1000_SERDES_LB_ON);
1412         msleep(10);
1413
1414         return 0;
1415 }
1416
1417 /* only call this for fiber/serdes connections to es2lan */
1418 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1419 {
1420         struct e1000_hw *hw = &adapter->hw;
1421         u32 ctrlext = er32(CTRL_EXT);
1422         u32 ctrl = er32(CTRL);
1423
1424         /*
1425          * save CTRL_EXT to restore later, reuse an empty variable (unused
1426          * on mac_type 80003es2lan)
1427          */
1428         adapter->tx_fifo_head = ctrlext;
1429
1430         /* clear the serdes mode bits, putting the device into mac loopback */
1431         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1432         ew32(CTRL_EXT, ctrlext);
1433
1434         /* force speed to 1000/FD, link up */
1435         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1436         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1437                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1438         ew32(CTRL, ctrl);
1439
1440         /* set mac loopback */
1441         ctrl = er32(RCTL);
1442         ctrl |= E1000_RCTL_LBM_MAC;
1443         ew32(RCTL, ctrl);
1444
1445         /* set testing mode parameters (no need to reset later) */
1446 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1447 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1448         ew32(KMRNCTRLSTA,
1449              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1450
1451         return 0;
1452 }
1453
1454 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1455 {
1456         struct e1000_hw *hw = &adapter->hw;
1457         u32 rctl;
1458
1459         if (hw->phy.media_type == e1000_media_type_fiber ||
1460             hw->phy.media_type == e1000_media_type_internal_serdes) {
1461                 switch (hw->mac.type) {
1462                 case e1000_80003es2lan:
1463                         return e1000_set_es2lan_mac_loopback(adapter);
1464                         break;
1465                 case e1000_82571:
1466                 case e1000_82572:
1467                         return e1000_set_82571_fiber_loopback(adapter);
1468                         break;
1469                 default:
1470                         rctl = er32(RCTL);
1471                         rctl |= E1000_RCTL_LBM_TCVR;
1472                         ew32(RCTL, rctl);
1473                         return 0;
1474                 }
1475         } else if (hw->phy.media_type == e1000_media_type_copper) {
1476                 return e1000_integrated_phy_loopback(adapter);
1477         }
1478
1479         return 7;
1480 }
1481
1482 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1483 {
1484         struct e1000_hw *hw = &adapter->hw;
1485         u32 rctl;
1486         u16 phy_reg;
1487
1488         rctl = er32(RCTL);
1489         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1490         ew32(RCTL, rctl);
1491
1492         switch (hw->mac.type) {
1493         case e1000_80003es2lan:
1494                 if (hw->phy.media_type == e1000_media_type_fiber ||
1495                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1496                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1497                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1498                         adapter->tx_fifo_head = 0;
1499                 }
1500                 /* fall through */
1501         case e1000_82571:
1502         case e1000_82572:
1503                 if (hw->phy.media_type == e1000_media_type_fiber ||
1504                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1505 #define E1000_SERDES_LB_OFF 0x400
1506                         ew32(SCTL, E1000_SERDES_LB_OFF);
1507                         msleep(10);
1508                         break;
1509                 }
1510                 /* Fall Through */
1511         default:
1512                 hw->mac.autoneg = 1;
1513                 if (hw->phy.type == e1000_phy_gg82563)
1514                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1515                 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1516                 if (phy_reg & MII_CR_LOOPBACK) {
1517                         phy_reg &= ~MII_CR_LOOPBACK;
1518                         e1e_wphy(hw, PHY_CONTROL, phy_reg);
1519                         e1000e_commit_phy(hw);
1520                 }
1521                 break;
1522         }
1523 }
1524
1525 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1526                                       unsigned int frame_size)
1527 {
1528         memset(skb->data, 0xFF, frame_size);
1529         frame_size &= ~1;
1530         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1531         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1532         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1533 }
1534
1535 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1536                                     unsigned int frame_size)
1537 {
1538         frame_size &= ~1;
1539         if (*(skb->data + 3) == 0xFF)
1540                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1541                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1542                         return 0;
1543         return 13;
1544 }
1545
1546 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1547 {
1548         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1549         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1550         struct pci_dev *pdev = adapter->pdev;
1551         struct e1000_hw *hw = &adapter->hw;
1552         int i, j, k, l;
1553         int lc;
1554         int good_cnt;
1555         int ret_val = 0;
1556         unsigned long time;
1557
1558         ew32(RDT, rx_ring->count - 1);
1559
1560         /*
1561          * Calculate the loop count based on the largest descriptor ring
1562          * The idea is to wrap the largest ring a number of times using 64
1563          * send/receive pairs during each loop
1564          */
1565
1566         if (rx_ring->count <= tx_ring->count)
1567                 lc = ((tx_ring->count / 64) * 2) + 1;
1568         else
1569                 lc = ((rx_ring->count / 64) * 2) + 1;
1570
1571         k = 0;
1572         l = 0;
1573         for (j = 0; j <= lc; j++) { /* loop count loop */
1574                 for (i = 0; i < 64; i++) { /* send the packets */
1575                         e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1576                                                   1024);
1577                         dma_sync_single_for_device(&pdev->dev,
1578                                         tx_ring->buffer_info[k].dma,
1579                                         tx_ring->buffer_info[k].length,
1580                                         DMA_TO_DEVICE);
1581                         k++;
1582                         if (k == tx_ring->count)
1583                                 k = 0;
1584                 }
1585                 ew32(TDT, k);
1586                 msleep(200);
1587                 time = jiffies; /* set the start time for the receive */
1588                 good_cnt = 0;
1589                 do { /* receive the sent packets */
1590                         dma_sync_single_for_cpu(&pdev->dev,
1591                                         rx_ring->buffer_info[l].dma, 2048,
1592                                         DMA_FROM_DEVICE);
1593
1594                         ret_val = e1000_check_lbtest_frame(
1595                                         rx_ring->buffer_info[l].skb, 1024);
1596                         if (!ret_val)
1597                                 good_cnt++;
1598                         l++;
1599                         if (l == rx_ring->count)
1600                                 l = 0;
1601                         /*
1602                          * time + 20 msecs (200 msecs on 2.4) is more than
1603                          * enough time to complete the receives, if it's
1604                          * exceeded, break and error off
1605                          */
1606                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1607                 if (good_cnt != 64) {
1608                         ret_val = 13; /* ret_val is the same as mis-compare */
1609                         break;
1610                 }
1611                 if (jiffies >= (time + 20)) {
1612                         ret_val = 14; /* error code for time out error */
1613                         break;
1614                 }
1615         } /* end loop count loop */
1616         return ret_val;
1617 }
1618
1619 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1620 {
1621         /*
1622          * PHY loopback cannot be performed if SoL/IDER
1623          * sessions are active
1624          */
1625         if (e1000_check_reset_block(&adapter->hw)) {
1626                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1627                 *data = 0;
1628                 goto out;
1629         }
1630
1631         *data = e1000_setup_desc_rings(adapter);
1632         if (*data)
1633                 goto out;
1634
1635         *data = e1000_setup_loopback_test(adapter);
1636         if (*data)
1637                 goto err_loopback;
1638
1639         *data = e1000_run_loopback_test(adapter);
1640         e1000_loopback_cleanup(adapter);
1641
1642 err_loopback:
1643         e1000_free_desc_rings(adapter);
1644 out:
1645         return *data;
1646 }
1647
1648 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1649 {
1650         struct e1000_hw *hw = &adapter->hw;
1651
1652         *data = 0;
1653         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1654                 int i = 0;
1655                 hw->mac.serdes_has_link = false;
1656
1657                 /*
1658                  * On some blade server designs, link establishment
1659                  * could take as long as 2-3 minutes
1660                  */
1661                 do {
1662                         hw->mac.ops.check_for_link(hw);
1663                         if (hw->mac.serdes_has_link)
1664                                 return *data;
1665                         msleep(20);
1666                 } while (i++ < 3750);
1667
1668                 *data = 1;
1669         } else {
1670                 hw->mac.ops.check_for_link(hw);
1671                 if (hw->mac.autoneg)
1672                         msleep(4000);
1673
1674                 if (!(er32(STATUS) &
1675                       E1000_STATUS_LU))
1676                         *data = 1;
1677         }
1678         return *data;
1679 }
1680
1681 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1682 {
1683         switch (sset) {
1684         case ETH_SS_TEST:
1685                 return E1000_TEST_LEN;
1686         case ETH_SS_STATS:
1687                 return E1000_STATS_LEN;
1688         default:
1689                 return -EOPNOTSUPP;
1690         }
1691 }
1692
1693 static void e1000_diag_test(struct net_device *netdev,
1694                             struct ethtool_test *eth_test, u64 *data)
1695 {
1696         struct e1000_adapter *adapter = netdev_priv(netdev);
1697         u16 autoneg_advertised;
1698         u8 forced_speed_duplex;
1699         u8 autoneg;
1700         bool if_running = netif_running(netdev);
1701
1702         set_bit(__E1000_TESTING, &adapter->state);
1703         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1704                 /* Offline tests */
1705
1706                 /* save speed, duplex, autoneg settings */
1707                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1708                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1709                 autoneg = adapter->hw.mac.autoneg;
1710
1711                 e_info("offline testing starting\n");
1712
1713                 if (if_running)
1714                         /* indicate we're in test mode */
1715                         dev_close(netdev);
1716                 else
1717                         e1000e_reset(adapter);
1718
1719                 if (e1000_reg_test(adapter, &data[0]))
1720                         eth_test->flags |= ETH_TEST_FL_FAILED;
1721
1722                 e1000e_reset(adapter);
1723                 if (e1000_eeprom_test(adapter, &data[1]))
1724                         eth_test->flags |= ETH_TEST_FL_FAILED;
1725
1726                 e1000e_reset(adapter);
1727                 if (e1000_intr_test(adapter, &data[2]))
1728                         eth_test->flags |= ETH_TEST_FL_FAILED;
1729
1730                 e1000e_reset(adapter);
1731                 /* make sure the phy is powered up */
1732                 e1000e_power_up_phy(adapter);
1733                 if (e1000_loopback_test(adapter, &data[3]))
1734                         eth_test->flags |= ETH_TEST_FL_FAILED;
1735
1736                 /* force this routine to wait until autoneg complete/timeout */
1737                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1738                 e1000e_reset(adapter);
1739                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1740
1741                 if (e1000_link_test(adapter, &data[4]))
1742                         eth_test->flags |= ETH_TEST_FL_FAILED;
1743
1744                 /* restore speed, duplex, autoneg settings */
1745                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1746                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1747                 adapter->hw.mac.autoneg = autoneg;
1748                 e1000e_reset(adapter);
1749
1750                 clear_bit(__E1000_TESTING, &adapter->state);
1751                 if (if_running)
1752                         dev_open(netdev);
1753         } else {
1754                 if (!if_running && (adapter->flags & FLAG_HAS_AMT)) {
1755                         clear_bit(__E1000_TESTING, &adapter->state);
1756                         dev_open(netdev);
1757                         set_bit(__E1000_TESTING, &adapter->state);
1758                 }
1759
1760                 e_info("online testing starting\n");
1761                 /* Online tests */
1762                 if (e1000_link_test(adapter, &data[4]))
1763                         eth_test->flags |= ETH_TEST_FL_FAILED;
1764
1765                 /* Online tests aren't run; pass by default */
1766                 data[0] = 0;
1767                 data[1] = 0;
1768                 data[2] = 0;
1769                 data[3] = 0;
1770
1771                 if (!if_running && (adapter->flags & FLAG_HAS_AMT))
1772                         dev_close(netdev);
1773
1774                 clear_bit(__E1000_TESTING, &adapter->state);
1775         }
1776         msleep_interruptible(4 * 1000);
1777 }
1778
1779 static void e1000_get_wol(struct net_device *netdev,
1780                           struct ethtool_wolinfo *wol)
1781 {
1782         struct e1000_adapter *adapter = netdev_priv(netdev);
1783
1784         wol->supported = 0;
1785         wol->wolopts = 0;
1786
1787         if (!(adapter->flags & FLAG_HAS_WOL) ||
1788             !device_can_wakeup(&adapter->pdev->dev))
1789                 return;
1790
1791         wol->supported = WAKE_UCAST | WAKE_MCAST |
1792                          WAKE_BCAST | WAKE_MAGIC |
1793                          WAKE_PHY | WAKE_ARP;
1794
1795         /* apply any specific unsupported masks here */
1796         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1797                 wol->supported &= ~WAKE_UCAST;
1798
1799                 if (adapter->wol & E1000_WUFC_EX)
1800                         e_err("Interface does not support directed (unicast) "
1801                               "frame wake-up packets\n");
1802         }
1803
1804         if (adapter->wol & E1000_WUFC_EX)
1805                 wol->wolopts |= WAKE_UCAST;
1806         if (adapter->wol & E1000_WUFC_MC)
1807                 wol->wolopts |= WAKE_MCAST;
1808         if (adapter->wol & E1000_WUFC_BC)
1809                 wol->wolopts |= WAKE_BCAST;
1810         if (adapter->wol & E1000_WUFC_MAG)
1811                 wol->wolopts |= WAKE_MAGIC;
1812         if (adapter->wol & E1000_WUFC_LNKC)
1813                 wol->wolopts |= WAKE_PHY;
1814         if (adapter->wol & E1000_WUFC_ARP)
1815                 wol->wolopts |= WAKE_ARP;
1816 }
1817
1818 static int e1000_set_wol(struct net_device *netdev,
1819                          struct ethtool_wolinfo *wol)
1820 {
1821         struct e1000_adapter *adapter = netdev_priv(netdev);
1822
1823         if (!(adapter->flags & FLAG_HAS_WOL) ||
1824             !device_can_wakeup(&adapter->pdev->dev) ||
1825             (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1826                               WAKE_MAGIC | WAKE_PHY | WAKE_ARP)))
1827                 return -EOPNOTSUPP;
1828
1829         /* these settings will always override what we currently have */
1830         adapter->wol = 0;
1831
1832         if (wol->wolopts & WAKE_UCAST)
1833                 adapter->wol |= E1000_WUFC_EX;
1834         if (wol->wolopts & WAKE_MCAST)
1835                 adapter->wol |= E1000_WUFC_MC;
1836         if (wol->wolopts & WAKE_BCAST)
1837                 adapter->wol |= E1000_WUFC_BC;
1838         if (wol->wolopts & WAKE_MAGIC)
1839                 adapter->wol |= E1000_WUFC_MAG;
1840         if (wol->wolopts & WAKE_PHY)
1841                 adapter->wol |= E1000_WUFC_LNKC;
1842         if (wol->wolopts & WAKE_ARP)
1843                 adapter->wol |= E1000_WUFC_ARP;
1844
1845         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1846
1847         return 0;
1848 }
1849
1850 /* toggle LED 4 times per second = 2 "blinks" per second */
1851 #define E1000_ID_INTERVAL       (HZ/4)
1852
1853 /* bit defines for adapter->led_status */
1854 #define E1000_LED_ON            0
1855
1856 void e1000e_led_blink_task(struct work_struct *work)
1857 {
1858         struct e1000_adapter *adapter = container_of(work,
1859                                         struct e1000_adapter, led_blink_task);
1860
1861         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1862                 adapter->hw.mac.ops.led_off(&adapter->hw);
1863         else
1864                 adapter->hw.mac.ops.led_on(&adapter->hw);
1865 }
1866
1867 static void e1000_led_blink_callback(unsigned long data)
1868 {
1869         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1870
1871         schedule_work(&adapter->led_blink_task);
1872         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1873 }
1874
1875 static int e1000_phys_id(struct net_device *netdev, u32 data)
1876 {
1877         struct e1000_adapter *adapter = netdev_priv(netdev);
1878         struct e1000_hw *hw = &adapter->hw;
1879
1880         if (!data)
1881                 data = INT_MAX;
1882
1883         if ((hw->phy.type == e1000_phy_ife) ||
1884             (hw->mac.type == e1000_pchlan) ||
1885             (hw->mac.type == e1000_pch2lan) ||
1886             (hw->mac.type == e1000_82583) ||
1887             (hw->mac.type == e1000_82574)) {
1888                 if (!adapter->blink_timer.function) {
1889                         init_timer(&adapter->blink_timer);
1890                         adapter->blink_timer.function =
1891                                 e1000_led_blink_callback;
1892                         adapter->blink_timer.data = (unsigned long) adapter;
1893                 }
1894                 mod_timer(&adapter->blink_timer, jiffies);
1895                 msleep_interruptible(data * 1000);
1896                 del_timer_sync(&adapter->blink_timer);
1897                 if (hw->phy.type == e1000_phy_ife)
1898                         e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1899         } else {
1900                 e1000e_blink_led(hw);
1901                 msleep_interruptible(data * 1000);
1902         }
1903
1904         hw->mac.ops.led_off(hw);
1905         clear_bit(E1000_LED_ON, &adapter->led_status);
1906         hw->mac.ops.cleanup_led(hw);
1907
1908         return 0;
1909 }
1910
1911 static int e1000_get_coalesce(struct net_device *netdev,
1912                               struct ethtool_coalesce *ec)
1913 {
1914         struct e1000_adapter *adapter = netdev_priv(netdev);
1915
1916         if (adapter->itr_setting <= 4)
1917                 ec->rx_coalesce_usecs = adapter->itr_setting;
1918         else
1919                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1920
1921         return 0;
1922 }
1923
1924 static int e1000_set_coalesce(struct net_device *netdev,
1925                               struct ethtool_coalesce *ec)
1926 {
1927         struct e1000_adapter *adapter = netdev_priv(netdev);
1928         struct e1000_hw *hw = &adapter->hw;
1929
1930         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1931             ((ec->rx_coalesce_usecs > 4) &&
1932              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1933             (ec->rx_coalesce_usecs == 2))
1934                 return -EINVAL;
1935
1936         if (ec->rx_coalesce_usecs == 4) {
1937                 adapter->itr = adapter->itr_setting = 4;
1938         } else if (ec->rx_coalesce_usecs <= 3) {
1939                 adapter->itr = 20000;
1940                 adapter->itr_setting = ec->rx_coalesce_usecs;
1941         } else {
1942                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1943                 adapter->itr_setting = adapter->itr & ~3;
1944         }
1945
1946         if (adapter->itr_setting != 0)
1947                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1948         else
1949                 ew32(ITR, 0);
1950
1951         return 0;
1952 }
1953
1954 static int e1000_nway_reset(struct net_device *netdev)
1955 {
1956         struct e1000_adapter *adapter = netdev_priv(netdev);
1957         if (netif_running(netdev))
1958                 e1000e_reinit_locked(adapter);
1959         return 0;
1960 }
1961
1962 static void e1000_get_ethtool_stats(struct net_device *netdev,
1963                                     struct ethtool_stats *stats,
1964                                     u64 *data)
1965 {
1966         struct e1000_adapter *adapter = netdev_priv(netdev);
1967         int i;
1968         char *p = NULL;
1969
1970         e1000e_update_stats(adapter);
1971         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1972                 switch (e1000_gstrings_stats[i].type) {
1973                 case NETDEV_STATS:
1974                         p = (char *) netdev +
1975                                         e1000_gstrings_stats[i].stat_offset;
1976                         break;
1977                 case E1000_STATS:
1978                         p = (char *) adapter +
1979                                         e1000_gstrings_stats[i].stat_offset;
1980                         break;
1981                 default:
1982                         data[i] = 0;
1983                         continue;
1984                 }
1985
1986                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1987                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1988         }
1989 }
1990
1991 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1992                               u8 *data)
1993 {
1994         u8 *p = data;
1995         int i;
1996
1997         switch (stringset) {
1998         case ETH_SS_TEST:
1999                 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
2000                 break;
2001         case ETH_SS_STATS:
2002                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2003                         memcpy(p, e1000_gstrings_stats[i].stat_string,
2004                                ETH_GSTRING_LEN);
2005                         p += ETH_GSTRING_LEN;
2006                 }
2007                 break;
2008         }
2009 }
2010
2011 static const struct ethtool_ops e1000_ethtool_ops = {
2012         .get_settings           = e1000_get_settings,
2013         .set_settings           = e1000_set_settings,
2014         .get_drvinfo            = e1000_get_drvinfo,
2015         .get_regs_len           = e1000_get_regs_len,
2016         .get_regs               = e1000_get_regs,
2017         .get_wol                = e1000_get_wol,
2018         .set_wol                = e1000_set_wol,
2019         .get_msglevel           = e1000_get_msglevel,
2020         .set_msglevel           = e1000_set_msglevel,
2021         .nway_reset             = e1000_nway_reset,
2022         .get_link               = ethtool_op_get_link,
2023         .get_eeprom_len         = e1000_get_eeprom_len,
2024         .get_eeprom             = e1000_get_eeprom,
2025         .set_eeprom             = e1000_set_eeprom,
2026         .get_ringparam          = e1000_get_ringparam,
2027         .set_ringparam          = e1000_set_ringparam,
2028         .get_pauseparam         = e1000_get_pauseparam,
2029         .set_pauseparam         = e1000_set_pauseparam,
2030         .get_rx_csum            = e1000_get_rx_csum,
2031         .set_rx_csum            = e1000_set_rx_csum,
2032         .get_tx_csum            = e1000_get_tx_csum,
2033         .set_tx_csum            = e1000_set_tx_csum,
2034         .get_sg                 = ethtool_op_get_sg,
2035         .set_sg                 = ethtool_op_set_sg,
2036         .get_tso                = ethtool_op_get_tso,
2037         .set_tso                = e1000_set_tso,
2038         .self_test              = e1000_diag_test,
2039         .get_strings            = e1000_get_strings,
2040         .phys_id                = e1000_phys_id,
2041         .get_ethtool_stats      = e1000_get_ethtool_stats,
2042         .get_sset_count         = e1000e_get_sset_count,
2043         .get_coalesce           = e1000_get_coalesce,
2044         .set_coalesce           = e1000_set_coalesce,
2045         .get_flags              = ethtool_op_get_flags,
2046 };
2047
2048 void e1000e_set_ethtool_ops(struct net_device *netdev)
2049 {
2050         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2051 }