]> Pileus Git - ~andy/linux/blob - drivers/net/e1000/e1000_main.c
[PATCH] e1000: Added RX buffer enhancements
[~andy/linux] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   
4   Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
5   
6   This program is free software; you can redistribute it and/or modify it 
7   under the terms of the GNU General Public License as published by the Free 
8   Software Foundation; either version 2 of the License, or (at your option) 
9   any later version.
10   
11   This program is distributed in the hope that it will be useful, but WITHOUT 
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for 
14   more details.
15   
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc., 59 
18   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
19   
20   The full GNU General Public License is included in this distribution in the
21   file called LICENSE.
22   
23   Contact Information:
24   Linux NICS <linux.nics@intel.com>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 /* Change Log
32  * 6.0.58       4/20/05
33  *   o Accepted ethtool cleanup patch from Stephen Hemminger 
34  * 6.0.44+      2/15/05
35  *   o applied Anton's patch to resolve tx hang in hardware
36  *   o Applied Andrew Mortons patch - e1000 stops working after resume
37  */
38
39 char e1000_driver_name[] = "e1000";
40 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
41 #ifndef CONFIG_E1000_NAPI
42 #define DRIVERNAPI
43 #else
44 #define DRIVERNAPI "-NAPI"
45 #endif
46 #define DRV_VERSION "6.3.9-k2"DRIVERNAPI
47 char e1000_driver_version[] = DRV_VERSION;
48 static char e1000_copyright[] = "Copyright (c) 1999-2005 Intel Corporation.";
49
50 /* e1000_pci_tbl - PCI Device ID Table
51  *
52  * Last entry must be all 0s
53  *
54  * Macro expands to...
55  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
56  */
57 static struct pci_device_id e1000_pci_tbl[] = {
58         INTEL_E1000_ETHERNET_DEVICE(0x1000),
59         INTEL_E1000_ETHERNET_DEVICE(0x1001),
60         INTEL_E1000_ETHERNET_DEVICE(0x1004),
61         INTEL_E1000_ETHERNET_DEVICE(0x1008),
62         INTEL_E1000_ETHERNET_DEVICE(0x1009),
63         INTEL_E1000_ETHERNET_DEVICE(0x100C),
64         INTEL_E1000_ETHERNET_DEVICE(0x100D),
65         INTEL_E1000_ETHERNET_DEVICE(0x100E),
66         INTEL_E1000_ETHERNET_DEVICE(0x100F),
67         INTEL_E1000_ETHERNET_DEVICE(0x1010),
68         INTEL_E1000_ETHERNET_DEVICE(0x1011),
69         INTEL_E1000_ETHERNET_DEVICE(0x1012),
70         INTEL_E1000_ETHERNET_DEVICE(0x1013),
71         INTEL_E1000_ETHERNET_DEVICE(0x1014),
72         INTEL_E1000_ETHERNET_DEVICE(0x1015),
73         INTEL_E1000_ETHERNET_DEVICE(0x1016),
74         INTEL_E1000_ETHERNET_DEVICE(0x1017),
75         INTEL_E1000_ETHERNET_DEVICE(0x1018),
76         INTEL_E1000_ETHERNET_DEVICE(0x1019),
77         INTEL_E1000_ETHERNET_DEVICE(0x101A),
78         INTEL_E1000_ETHERNET_DEVICE(0x101D),
79         INTEL_E1000_ETHERNET_DEVICE(0x101E),
80         INTEL_E1000_ETHERNET_DEVICE(0x1026),
81         INTEL_E1000_ETHERNET_DEVICE(0x1027),
82         INTEL_E1000_ETHERNET_DEVICE(0x1028),
83         INTEL_E1000_ETHERNET_DEVICE(0x105E),
84         INTEL_E1000_ETHERNET_DEVICE(0x105F),
85         INTEL_E1000_ETHERNET_DEVICE(0x1060),
86         INTEL_E1000_ETHERNET_DEVICE(0x1075),
87         INTEL_E1000_ETHERNET_DEVICE(0x1076),
88         INTEL_E1000_ETHERNET_DEVICE(0x1077),
89         INTEL_E1000_ETHERNET_DEVICE(0x1078),
90         INTEL_E1000_ETHERNET_DEVICE(0x1079),
91         INTEL_E1000_ETHERNET_DEVICE(0x107A),
92         INTEL_E1000_ETHERNET_DEVICE(0x107B),
93         INTEL_E1000_ETHERNET_DEVICE(0x107C),
94         INTEL_E1000_ETHERNET_DEVICE(0x107D),
95         INTEL_E1000_ETHERNET_DEVICE(0x107E),
96         INTEL_E1000_ETHERNET_DEVICE(0x107F),
97         INTEL_E1000_ETHERNET_DEVICE(0x108A),
98         INTEL_E1000_ETHERNET_DEVICE(0x108B),
99         INTEL_E1000_ETHERNET_DEVICE(0x108C),
100         INTEL_E1000_ETHERNET_DEVICE(0x1099),
101         INTEL_E1000_ETHERNET_DEVICE(0x109A),
102         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
103         /* required last entry */
104         {0,}
105 };
106
107 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
108
109 int e1000_up(struct e1000_adapter *adapter);
110 void e1000_down(struct e1000_adapter *adapter);
111 void e1000_reset(struct e1000_adapter *adapter);
112 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
113 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
114 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
115 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
116 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
117 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
118                                     struct e1000_tx_ring *txdr);
119 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
120                                     struct e1000_rx_ring *rxdr);
121 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
122                                     struct e1000_tx_ring *tx_ring);
123 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
124                                     struct e1000_rx_ring *rx_ring);
125 void e1000_update_stats(struct e1000_adapter *adapter);
126
127 /* Local Function Prototypes */
128
129 static int e1000_init_module(void);
130 static void e1000_exit_module(void);
131 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
132 static void __devexit e1000_remove(struct pci_dev *pdev);
133 static int e1000_alloc_queues(struct e1000_adapter *adapter);
134 #ifdef CONFIG_E1000_MQ
135 static void e1000_setup_queue_mapping(struct e1000_adapter *adapter);
136 #endif
137 static int e1000_sw_init(struct e1000_adapter *adapter);
138 static int e1000_open(struct net_device *netdev);
139 static int e1000_close(struct net_device *netdev);
140 static void e1000_configure_tx(struct e1000_adapter *adapter);
141 static void e1000_configure_rx(struct e1000_adapter *adapter);
142 static void e1000_setup_rctl(struct e1000_adapter *adapter);
143 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
144 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
145 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
146                                 struct e1000_tx_ring *tx_ring);
147 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
148                                 struct e1000_rx_ring *rx_ring);
149 static void e1000_set_multi(struct net_device *netdev);
150 static void e1000_update_phy_info(unsigned long data);
151 static void e1000_watchdog(unsigned long data);
152 static void e1000_watchdog_task(struct e1000_adapter *adapter);
153 static void e1000_82547_tx_fifo_stall(unsigned long data);
154 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
155 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
156 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
157 static int e1000_set_mac(struct net_device *netdev, void *p);
158 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
159 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
160                                     struct e1000_tx_ring *tx_ring);
161 #ifdef CONFIG_E1000_NAPI
162 static int e1000_clean(struct net_device *poll_dev, int *budget);
163 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
164                                     struct e1000_rx_ring *rx_ring,
165                                     int *work_done, int work_to_do);
166 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
167                                        struct e1000_rx_ring *rx_ring,
168                                        int *work_done, int work_to_do);
169 #else
170 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
171                                     struct e1000_rx_ring *rx_ring);
172 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
173                                        struct e1000_rx_ring *rx_ring);
174 #endif
175 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
176                                    struct e1000_rx_ring *rx_ring,
177                                    int cleaned_count);
178 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
179                                       struct e1000_rx_ring *rx_ring,
180                                       int cleaned_count);
181 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
182 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
183                            int cmd);
184 void e1000_set_ethtool_ops(struct net_device *netdev);
185 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
186 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
187 static void e1000_tx_timeout(struct net_device *dev);
188 static void e1000_tx_timeout_task(struct net_device *dev);
189 static void e1000_smartspeed(struct e1000_adapter *adapter);
190 static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
191                                               struct sk_buff *skb);
192
193 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
194 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
195 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
196 static void e1000_restore_vlan(struct e1000_adapter *adapter);
197
198 #ifdef CONFIG_PM
199 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
200 static int e1000_resume(struct pci_dev *pdev);
201 #endif
202
203 #ifdef CONFIG_NET_POLL_CONTROLLER
204 /* for netdump / net console */
205 static void e1000_netpoll (struct net_device *netdev);
206 #endif
207
208 #ifdef CONFIG_E1000_MQ
209 /* for multiple Rx queues */
210 void e1000_rx_schedule(void *data);
211 #endif
212
213 /* Exported from other modules */
214
215 extern void e1000_check_options(struct e1000_adapter *adapter);
216
217 static struct pci_driver e1000_driver = {
218         .name     = e1000_driver_name,
219         .id_table = e1000_pci_tbl,
220         .probe    = e1000_probe,
221         .remove   = __devexit_p(e1000_remove),
222         /* Power Managment Hooks */
223 #ifdef CONFIG_PM
224         .suspend  = e1000_suspend,
225         .resume   = e1000_resume
226 #endif
227 };
228
229 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
230 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
231 MODULE_LICENSE("GPL");
232 MODULE_VERSION(DRV_VERSION);
233
234 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
235 module_param(debug, int, 0);
236 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
237
238 /**
239  * e1000_init_module - Driver Registration Routine
240  *
241  * e1000_init_module is the first routine called when the driver is
242  * loaded. All it does is register with the PCI subsystem.
243  **/
244
245 static int __init
246 e1000_init_module(void)
247 {
248         int ret;
249         printk(KERN_INFO "%s - version %s\n",
250                e1000_driver_string, e1000_driver_version);
251
252         printk(KERN_INFO "%s\n", e1000_copyright);
253
254         ret = pci_module_init(&e1000_driver);
255
256         return ret;
257 }
258
259 module_init(e1000_init_module);
260
261 /**
262  * e1000_exit_module - Driver Exit Cleanup Routine
263  *
264  * e1000_exit_module is called just before the driver is removed
265  * from memory.
266  **/
267
268 static void __exit
269 e1000_exit_module(void)
270 {
271         pci_unregister_driver(&e1000_driver);
272 }
273
274 module_exit(e1000_exit_module);
275
276 /**
277  * e1000_irq_disable - Mask off interrupt generation on the NIC
278  * @adapter: board private structure
279  **/
280
281 static inline void
282 e1000_irq_disable(struct e1000_adapter *adapter)
283 {
284         atomic_inc(&adapter->irq_sem);
285         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
286         E1000_WRITE_FLUSH(&adapter->hw);
287         synchronize_irq(adapter->pdev->irq);
288 }
289
290 /**
291  * e1000_irq_enable - Enable default interrupt generation settings
292  * @adapter: board private structure
293  **/
294
295 static inline void
296 e1000_irq_enable(struct e1000_adapter *adapter)
297 {
298         if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
299                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
300                 E1000_WRITE_FLUSH(&adapter->hw);
301         }
302 }
303
304 static void
305 e1000_update_mng_vlan(struct e1000_adapter *adapter)
306 {
307         struct net_device *netdev = adapter->netdev;
308         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
309         uint16_t old_vid = adapter->mng_vlan_id;
310         if(adapter->vlgrp) {
311                 if(!adapter->vlgrp->vlan_devices[vid]) {
312                         if(adapter->hw.mng_cookie.status &
313                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
314                                 e1000_vlan_rx_add_vid(netdev, vid);
315                                 adapter->mng_vlan_id = vid;
316                         } else
317                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
318                                 
319                         if((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
320                                         (vid != old_vid) && 
321                                         !adapter->vlgrp->vlan_devices[old_vid])
322                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
323                 }
324         }
325 }
326
327 /**
328  * e1000_release_hw_control - release control of the h/w to f/w
329  * @adapter: address of board private structure
330  *
331  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
332  * For ASF and Pass Through versions of f/w this means that the
333  * driver is no longer loaded. For AMT version (only with 82573) i
334  * of the f/w this means that the netowrk i/f is closed.
335  * 
336  **/
337
338 static inline void 
339 e1000_release_hw_control(struct e1000_adapter *adapter)
340 {
341         uint32_t ctrl_ext;
342         uint32_t swsm;
343
344         /* Let firmware taken over control of h/w */
345         switch (adapter->hw.mac_type) {
346         case e1000_82571:
347         case e1000_82572:
348                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
349                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
350                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
351                 break;
352         case e1000_82573:
353                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
354                 E1000_WRITE_REG(&adapter->hw, SWSM,
355                                 swsm & ~E1000_SWSM_DRV_LOAD);
356         default:
357                 break;
358         }
359 }
360
361 /**
362  * e1000_get_hw_control - get control of the h/w from f/w
363  * @adapter: address of board private structure
364  *
365  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
366  * For ASF and Pass Through versions of f/w this means that 
367  * the driver is loaded. For AMT version (only with 82573) 
368  * of the f/w this means that the netowrk i/f is open.
369  * 
370  **/
371
372 static inline void 
373 e1000_get_hw_control(struct e1000_adapter *adapter)
374 {
375         uint32_t ctrl_ext;
376         uint32_t swsm;
377         /* Let firmware know the driver has taken over */
378         switch (adapter->hw.mac_type) {
379         case e1000_82571:
380         case e1000_82572:
381                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
382                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
383                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
384                 break;
385         case e1000_82573:
386                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
387                 E1000_WRITE_REG(&adapter->hw, SWSM,
388                                 swsm | E1000_SWSM_DRV_LOAD);
389                 break;
390         default:
391                 break;
392         }
393 }
394
395 int
396 e1000_up(struct e1000_adapter *adapter)
397 {
398         struct net_device *netdev = adapter->netdev;
399         int i, err;
400
401         /* hardware has been reset, we need to reload some things */
402
403         /* Reset the PHY if it was previously powered down */
404         if(adapter->hw.media_type == e1000_media_type_copper) {
405                 uint16_t mii_reg;
406                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
407                 if(mii_reg & MII_CR_POWER_DOWN)
408                         e1000_phy_reset(&adapter->hw);
409         }
410
411         e1000_set_multi(netdev);
412
413         e1000_restore_vlan(adapter);
414
415         e1000_configure_tx(adapter);
416         e1000_setup_rctl(adapter);
417         e1000_configure_rx(adapter);
418         /* call E1000_DESC_UNUSED which always leaves
419          * at least 1 descriptor unused to make sure
420          * next_to_use != next_to_clean */
421         for (i = 0; i < adapter->num_rx_queues; i++) {
422                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
423                 adapter->alloc_rx_buf(adapter, ring,
424                                       E1000_DESC_UNUSED(ring));
425         }
426
427 #ifdef CONFIG_PCI_MSI
428         if(adapter->hw.mac_type > e1000_82547_rev_2) {
429                 adapter->have_msi = TRUE;
430                 if((err = pci_enable_msi(adapter->pdev))) {
431                         DPRINTK(PROBE, ERR,
432                          "Unable to allocate MSI interrupt Error: %d\n", err);
433                         adapter->have_msi = FALSE;
434                 }
435         }
436 #endif
437         if((err = request_irq(adapter->pdev->irq, &e1000_intr,
438                               SA_SHIRQ | SA_SAMPLE_RANDOM,
439                               netdev->name, netdev))) {
440                 DPRINTK(PROBE, ERR,
441                     "Unable to allocate interrupt Error: %d\n", err);
442                 return err;
443         }
444
445 #ifdef CONFIG_E1000_MQ
446         e1000_setup_queue_mapping(adapter);
447 #endif
448
449         adapter->tx_queue_len = netdev->tx_queue_len;
450
451         mod_timer(&adapter->watchdog_timer, jiffies);
452
453 #ifdef CONFIG_E1000_NAPI
454         netif_poll_enable(netdev);
455 #endif
456         e1000_irq_enable(adapter);
457
458         return 0;
459 }
460
461 void
462 e1000_down(struct e1000_adapter *adapter)
463 {
464         struct net_device *netdev = adapter->netdev;
465         boolean_t mng_mode_enabled = (adapter->hw.mac_type >= e1000_82571) &&
466                                      e1000_check_mng_mode(&adapter->hw);
467
468         e1000_irq_disable(adapter);
469 #ifdef CONFIG_E1000_MQ
470         while (atomic_read(&adapter->rx_sched_call_data.count) != 0);
471 #endif
472         free_irq(adapter->pdev->irq, netdev);
473 #ifdef CONFIG_PCI_MSI
474         if(adapter->hw.mac_type > e1000_82547_rev_2 &&
475            adapter->have_msi == TRUE)
476                 pci_disable_msi(adapter->pdev);
477 #endif
478         del_timer_sync(&adapter->tx_fifo_stall_timer);
479         del_timer_sync(&adapter->watchdog_timer);
480         del_timer_sync(&adapter->phy_info_timer);
481
482 #ifdef CONFIG_E1000_NAPI
483         netif_poll_disable(netdev);
484 #endif
485         netdev->tx_queue_len = adapter->tx_queue_len;
486         adapter->link_speed = 0;
487         adapter->link_duplex = 0;
488         netif_carrier_off(netdev);
489         netif_stop_queue(netdev);
490
491         e1000_reset(adapter);
492         e1000_clean_all_tx_rings(adapter);
493         e1000_clean_all_rx_rings(adapter);
494
495         /* Power down the PHY so no link is implied when interface is down *
496          * The PHY cannot be powered down if any of the following is TRUE *
497          * (a) WoL is enabled
498          * (b) AMT is active
499          * (c) SoL/IDER session is active */
500         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
501            adapter->hw.media_type == e1000_media_type_copper &&
502            !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN) &&
503            !mng_mode_enabled &&
504            !e1000_check_phy_reset_block(&adapter->hw)) {
505                 uint16_t mii_reg;
506                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
507                 mii_reg |= MII_CR_POWER_DOWN;
508                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
509                 mdelay(1);
510         }
511 }
512
513 void
514 e1000_reset(struct e1000_adapter *adapter)
515 {
516         uint32_t pba, manc;
517         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
518
519         /* Repartition Pba for greater than 9k mtu
520          * To take effect CTRL.RST is required.
521          */
522
523         switch (adapter->hw.mac_type) {
524         case e1000_82547:
525         case e1000_82547_rev_2:
526                 pba = E1000_PBA_30K;
527                 break;
528         case e1000_82571:
529         case e1000_82572:
530                 pba = E1000_PBA_38K;
531                 break;
532         case e1000_82573:
533                 pba = E1000_PBA_12K;
534                 break;
535         default:
536                 pba = E1000_PBA_48K;
537                 break;
538         }
539
540         if((adapter->hw.mac_type != e1000_82573) &&
541            (adapter->netdev->mtu > E1000_RXBUFFER_8192))
542                 pba -= 8; /* allocate more FIFO for Tx */
543
544
545         if(adapter->hw.mac_type == e1000_82547) {
546                 adapter->tx_fifo_head = 0;
547                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
548                 adapter->tx_fifo_size =
549                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
550                 atomic_set(&adapter->tx_fifo_stall, 0);
551         }
552
553         E1000_WRITE_REG(&adapter->hw, PBA, pba);
554
555         /* flow control settings */
556         /* Set the FC high water mark to 90% of the FIFO size.
557          * Required to clear last 3 LSB */
558         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
559
560         adapter->hw.fc_high_water = fc_high_water_mark;
561         adapter->hw.fc_low_water = fc_high_water_mark - 8;
562         adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
563         adapter->hw.fc_send_xon = 1;
564         adapter->hw.fc = adapter->hw.original_fc;
565
566         /* Allow time for pending master requests to run */
567         e1000_reset_hw(&adapter->hw);
568         if(adapter->hw.mac_type >= e1000_82544)
569                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
570         if(e1000_init_hw(&adapter->hw))
571                 DPRINTK(PROBE, ERR, "Hardware Error\n");
572         e1000_update_mng_vlan(adapter);
573         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
574         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
575
576         e1000_reset_adaptive(&adapter->hw);
577         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
578         if (adapter->en_mng_pt) {
579                 manc = E1000_READ_REG(&adapter->hw, MANC);
580                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
581                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
582         }
583 }
584
585 /**
586  * e1000_probe - Device Initialization Routine
587  * @pdev: PCI device information struct
588  * @ent: entry in e1000_pci_tbl
589  *
590  * Returns 0 on success, negative on failure
591  *
592  * e1000_probe initializes an adapter identified by a pci_dev structure.
593  * The OS initialization, configuring of the adapter private structure,
594  * and a hardware reset occur.
595  **/
596
597 static int __devinit
598 e1000_probe(struct pci_dev *pdev,
599             const struct pci_device_id *ent)
600 {
601         struct net_device *netdev;
602         struct e1000_adapter *adapter;
603         unsigned long mmio_start, mmio_len;
604
605         static int cards_found = 0;
606         int i, err, pci_using_dac;
607         uint16_t eeprom_data;
608         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
609         if((err = pci_enable_device(pdev)))
610                 return err;
611
612         if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
613                 pci_using_dac = 1;
614         } else {
615                 if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
616                         E1000_ERR("No usable DMA configuration, aborting\n");
617                         return err;
618                 }
619                 pci_using_dac = 0;
620         }
621
622         if((err = pci_request_regions(pdev, e1000_driver_name)))
623                 return err;
624
625         pci_set_master(pdev);
626
627         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
628         if(!netdev) {
629                 err = -ENOMEM;
630                 goto err_alloc_etherdev;
631         }
632
633         SET_MODULE_OWNER(netdev);
634         SET_NETDEV_DEV(netdev, &pdev->dev);
635
636         pci_set_drvdata(pdev, netdev);
637         adapter = netdev_priv(netdev);
638         adapter->netdev = netdev;
639         adapter->pdev = pdev;
640         adapter->hw.back = adapter;
641         adapter->msg_enable = (1 << debug) - 1;
642
643         mmio_start = pci_resource_start(pdev, BAR_0);
644         mmio_len = pci_resource_len(pdev, BAR_0);
645
646         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
647         if(!adapter->hw.hw_addr) {
648                 err = -EIO;
649                 goto err_ioremap;
650         }
651
652         for(i = BAR_1; i <= BAR_5; i++) {
653                 if(pci_resource_len(pdev, i) == 0)
654                         continue;
655                 if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
656                         adapter->hw.io_base = pci_resource_start(pdev, i);
657                         break;
658                 }
659         }
660
661         netdev->open = &e1000_open;
662         netdev->stop = &e1000_close;
663         netdev->hard_start_xmit = &e1000_xmit_frame;
664         netdev->get_stats = &e1000_get_stats;
665         netdev->set_multicast_list = &e1000_set_multi;
666         netdev->set_mac_address = &e1000_set_mac;
667         netdev->change_mtu = &e1000_change_mtu;
668         netdev->do_ioctl = &e1000_ioctl;
669         e1000_set_ethtool_ops(netdev);
670         netdev->tx_timeout = &e1000_tx_timeout;
671         netdev->watchdog_timeo = 5 * HZ;
672 #ifdef CONFIG_E1000_NAPI
673         netdev->poll = &e1000_clean;
674         netdev->weight = 64;
675 #endif
676         netdev->vlan_rx_register = e1000_vlan_rx_register;
677         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
678         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
679 #ifdef CONFIG_NET_POLL_CONTROLLER
680         netdev->poll_controller = e1000_netpoll;
681 #endif
682         strcpy(netdev->name, pci_name(pdev));
683
684         netdev->mem_start = mmio_start;
685         netdev->mem_end = mmio_start + mmio_len;
686         netdev->base_addr = adapter->hw.io_base;
687
688         adapter->bd_number = cards_found;
689
690         /* setup the private structure */
691
692         if((err = e1000_sw_init(adapter)))
693                 goto err_sw_init;
694
695         if((err = e1000_check_phy_reset_block(&adapter->hw)))
696                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
697
698         if(adapter->hw.mac_type >= e1000_82543) {
699                 netdev->features = NETIF_F_SG |
700                                    NETIF_F_HW_CSUM |
701                                    NETIF_F_HW_VLAN_TX |
702                                    NETIF_F_HW_VLAN_RX |
703                                    NETIF_F_HW_VLAN_FILTER;
704         }
705
706 #ifdef NETIF_F_TSO
707         if((adapter->hw.mac_type >= e1000_82544) &&
708            (adapter->hw.mac_type != e1000_82547))
709                 netdev->features |= NETIF_F_TSO;
710
711 #ifdef NETIF_F_TSO_IPV6
712         if(adapter->hw.mac_type > e1000_82547_rev_2)
713                 netdev->features |= NETIF_F_TSO_IPV6;
714 #endif
715 #endif
716         if(pci_using_dac)
717                 netdev->features |= NETIF_F_HIGHDMA;
718
719         /* hard_start_xmit is safe against parallel locking */
720         netdev->features |= NETIF_F_LLTX; 
721  
722         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
723
724         /* before reading the EEPROM, reset the controller to 
725          * put the device in a known good starting state */
726         
727         e1000_reset_hw(&adapter->hw);
728
729         /* make sure the EEPROM is good */
730
731         if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
732                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
733                 err = -EIO;
734                 goto err_eeprom;
735         }
736
737         /* copy the MAC address out of the EEPROM */
738
739         if(e1000_read_mac_addr(&adapter->hw))
740                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
741         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
742         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
743
744         if(!is_valid_ether_addr(netdev->perm_addr)) {
745                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
746                 err = -EIO;
747                 goto err_eeprom;
748         }
749
750         e1000_read_part_num(&adapter->hw, &(adapter->part_num));
751
752         e1000_get_bus_info(&adapter->hw);
753
754         init_timer(&adapter->tx_fifo_stall_timer);
755         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
756         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
757
758         init_timer(&adapter->watchdog_timer);
759         adapter->watchdog_timer.function = &e1000_watchdog;
760         adapter->watchdog_timer.data = (unsigned long) adapter;
761
762         INIT_WORK(&adapter->watchdog_task,
763                 (void (*)(void *))e1000_watchdog_task, adapter);
764
765         init_timer(&adapter->phy_info_timer);
766         adapter->phy_info_timer.function = &e1000_update_phy_info;
767         adapter->phy_info_timer.data = (unsigned long) adapter;
768
769         INIT_WORK(&adapter->tx_timeout_task,
770                 (void (*)(void *))e1000_tx_timeout_task, netdev);
771
772         /* we're going to reset, so assume we have no link for now */
773
774         netif_carrier_off(netdev);
775         netif_stop_queue(netdev);
776
777         e1000_check_options(adapter);
778
779         /* Initial Wake on LAN setting
780          * If APM wake is enabled in the EEPROM,
781          * enable the ACPI Magic Packet filter
782          */
783
784         switch(adapter->hw.mac_type) {
785         case e1000_82542_rev2_0:
786         case e1000_82542_rev2_1:
787         case e1000_82543:
788                 break;
789         case e1000_82544:
790                 e1000_read_eeprom(&adapter->hw,
791                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
792                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
793                 break;
794         case e1000_82546:
795         case e1000_82546_rev_3:
796         case e1000_82571:
797                 if(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
798                         e1000_read_eeprom(&adapter->hw,
799                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
800                         break;
801                 }
802                 /* Fall Through */
803         default:
804                 e1000_read_eeprom(&adapter->hw,
805                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
806                 break;
807         }
808         if(eeprom_data & eeprom_apme_mask)
809                 adapter->wol |= E1000_WUFC_MAG;
810
811         /* print bus type/speed/width info */
812         {
813         struct e1000_hw *hw = &adapter->hw;
814         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
815                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
816                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
817                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
818                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
819                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
820                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
821                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
822                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
823                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
824                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
825                  "32-bit"));
826         }
827
828         for (i = 0; i < 6; i++)
829                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
830
831         /* reset the hardware with the new settings */
832         e1000_reset(adapter);
833
834         /* If the controller is 82573 and f/w is AMT, do not set
835          * DRV_LOAD until the interface is up.  For all other cases,
836          * let the f/w know that the h/w is now under the control
837          * of the driver. */
838         if (adapter->hw.mac_type != e1000_82573 ||
839             !e1000_check_mng_mode(&adapter->hw))
840                 e1000_get_hw_control(adapter);
841
842         strcpy(netdev->name, "eth%d");
843         if((err = register_netdev(netdev)))
844                 goto err_register;
845
846         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
847
848         cards_found++;
849         return 0;
850
851 err_register:
852 err_sw_init:
853 err_eeprom:
854         iounmap(adapter->hw.hw_addr);
855 err_ioremap:
856         free_netdev(netdev);
857 err_alloc_etherdev:
858         pci_release_regions(pdev);
859         return err;
860 }
861
862 /**
863  * e1000_remove - Device Removal Routine
864  * @pdev: PCI device information struct
865  *
866  * e1000_remove is called by the PCI subsystem to alert the driver
867  * that it should release a PCI device.  The could be caused by a
868  * Hot-Plug event, or because the driver is going to be removed from
869  * memory.
870  **/
871
872 static void __devexit
873 e1000_remove(struct pci_dev *pdev)
874 {
875         struct net_device *netdev = pci_get_drvdata(pdev);
876         struct e1000_adapter *adapter = netdev_priv(netdev);
877         uint32_t manc;
878 #ifdef CONFIG_E1000_NAPI
879         int i;
880 #endif
881
882         flush_scheduled_work();
883
884         if(adapter->hw.mac_type >= e1000_82540 &&
885            adapter->hw.media_type == e1000_media_type_copper) {
886                 manc = E1000_READ_REG(&adapter->hw, MANC);
887                 if(manc & E1000_MANC_SMBUS_EN) {
888                         manc |= E1000_MANC_ARP_EN;
889                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
890                 }
891         }
892
893         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
894          * would have already happened in close and is redundant. */
895         e1000_release_hw_control(adapter);
896
897         unregister_netdev(netdev);
898 #ifdef CONFIG_E1000_NAPI
899         for (i = 0; i < adapter->num_rx_queues; i++)
900                 __dev_put(&adapter->polling_netdev[i]);
901 #endif
902
903         if(!e1000_check_phy_reset_block(&adapter->hw))
904                 e1000_phy_hw_reset(&adapter->hw);
905
906         kfree(adapter->tx_ring);
907         kfree(adapter->rx_ring);
908 #ifdef CONFIG_E1000_NAPI
909         kfree(adapter->polling_netdev);
910 #endif
911
912         iounmap(adapter->hw.hw_addr);
913         pci_release_regions(pdev);
914
915 #ifdef CONFIG_E1000_MQ
916         free_percpu(adapter->cpu_netdev);
917         free_percpu(adapter->cpu_tx_ring);
918 #endif
919         free_netdev(netdev);
920
921         pci_disable_device(pdev);
922 }
923
924 /**
925  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
926  * @adapter: board private structure to initialize
927  *
928  * e1000_sw_init initializes the Adapter private data structure.
929  * Fields are initialized based on PCI device information and
930  * OS network device settings (MTU size).
931  **/
932
933 static int __devinit
934 e1000_sw_init(struct e1000_adapter *adapter)
935 {
936         struct e1000_hw *hw = &adapter->hw;
937         struct net_device *netdev = adapter->netdev;
938         struct pci_dev *pdev = adapter->pdev;
939 #ifdef CONFIG_E1000_NAPI
940         int i;
941 #endif
942
943         /* PCI config space info */
944
945         hw->vendor_id = pdev->vendor;
946         hw->device_id = pdev->device;
947         hw->subsystem_vendor_id = pdev->subsystem_vendor;
948         hw->subsystem_id = pdev->subsystem_device;
949
950         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
951
952         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
953
954         adapter->rx_buffer_len = E1000_RXBUFFER_2048;
955         adapter->rx_ps_bsize0 = E1000_RXBUFFER_256;
956         hw->max_frame_size = netdev->mtu +
957                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
958         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
959
960         /* identify the MAC */
961
962         if(e1000_set_mac_type(hw)) {
963                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
964                 return -EIO;
965         }
966
967         /* initialize eeprom parameters */
968
969         if(e1000_init_eeprom_params(hw)) {
970                 E1000_ERR("EEPROM initialization failed\n");
971                 return -EIO;
972         }
973
974         switch(hw->mac_type) {
975         default:
976                 break;
977         case e1000_82541:
978         case e1000_82547:
979         case e1000_82541_rev_2:
980         case e1000_82547_rev_2:
981                 hw->phy_init_script = 1;
982                 break;
983         }
984
985         e1000_set_media_type(hw);
986
987         hw->wait_autoneg_complete = FALSE;
988         hw->tbi_compatibility_en = TRUE;
989         hw->adaptive_ifs = TRUE;
990
991         /* Copper options */
992
993         if(hw->media_type == e1000_media_type_copper) {
994                 hw->mdix = AUTO_ALL_MODES;
995                 hw->disable_polarity_correction = FALSE;
996                 hw->master_slave = E1000_MASTER_SLAVE;
997         }
998
999 #ifdef CONFIG_E1000_MQ
1000         /* Number of supported queues */
1001         switch (hw->mac_type) {
1002         case e1000_82571:
1003         case e1000_82572:
1004                 /* These controllers support 2 tx queues, but with a single
1005                  * qdisc implementation, multiple tx queues aren't quite as
1006                  * interesting.  If we can find a logical way of mapping
1007                  * flows to a queue, then perhaps we can up the num_tx_queue
1008                  * count back to its default.  Until then, we run the risk of
1009                  * terrible performance due to SACK overload. */
1010                 adapter->num_tx_queues = 1;
1011                 adapter->num_rx_queues = 2;
1012                 break;
1013         default:
1014                 adapter->num_tx_queues = 1;
1015                 adapter->num_rx_queues = 1;
1016                 break;
1017         }
1018         adapter->num_rx_queues = min(adapter->num_rx_queues, num_online_cpus());
1019         adapter->num_tx_queues = min(adapter->num_tx_queues, num_online_cpus());
1020         DPRINTK(DRV, INFO, "Multiqueue Enabled: Rx Queue count = %u %s\n",
1021                 adapter->num_rx_queues,
1022                 ((adapter->num_rx_queues == 1)
1023                  ? ((num_online_cpus() > 1)
1024                         ? "(due to unsupported feature in current adapter)"
1025                         : "(due to unsupported system configuration)")
1026                  : ""));
1027         DPRINTK(DRV, INFO, "Multiqueue Enabled: Tx Queue count = %u\n",
1028                 adapter->num_tx_queues);
1029 #else
1030         adapter->num_tx_queues = 1;
1031         adapter->num_rx_queues = 1;
1032 #endif
1033
1034         if (e1000_alloc_queues(adapter)) {
1035                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1036                 return -ENOMEM;
1037         }
1038
1039 #ifdef CONFIG_E1000_NAPI
1040         for (i = 0; i < adapter->num_rx_queues; i++) {
1041                 adapter->polling_netdev[i].priv = adapter;
1042                 adapter->polling_netdev[i].poll = &e1000_clean;
1043                 adapter->polling_netdev[i].weight = 64;
1044                 dev_hold(&adapter->polling_netdev[i]);
1045                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1046         }
1047         spin_lock_init(&adapter->tx_queue_lock);
1048 #endif
1049
1050         atomic_set(&adapter->irq_sem, 1);
1051         spin_lock_init(&adapter->stats_lock);
1052
1053         return 0;
1054 }
1055
1056 /**
1057  * e1000_alloc_queues - Allocate memory for all rings
1058  * @adapter: board private structure to initialize
1059  *
1060  * We allocate one ring per queue at run-time since we don't know the
1061  * number of queues at compile-time.  The polling_netdev array is
1062  * intended for Multiqueue, but should work fine with a single queue.
1063  **/
1064
1065 static int __devinit
1066 e1000_alloc_queues(struct e1000_adapter *adapter)
1067 {
1068         int size;
1069
1070         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1071         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1072         if (!adapter->tx_ring)
1073                 return -ENOMEM;
1074         memset(adapter->tx_ring, 0, size);
1075
1076         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1077         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1078         if (!adapter->rx_ring) {
1079                 kfree(adapter->tx_ring);
1080                 return -ENOMEM;
1081         }
1082         memset(adapter->rx_ring, 0, size);
1083
1084 #ifdef CONFIG_E1000_NAPI
1085         size = sizeof(struct net_device) * adapter->num_rx_queues;
1086         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1087         if (!adapter->polling_netdev) {
1088                 kfree(adapter->tx_ring);
1089                 kfree(adapter->rx_ring);
1090                 return -ENOMEM;
1091         }
1092         memset(adapter->polling_netdev, 0, size);
1093 #endif
1094
1095 #ifdef CONFIG_E1000_MQ
1096         adapter->rx_sched_call_data.func = e1000_rx_schedule;
1097         adapter->rx_sched_call_data.info = adapter->netdev;
1098
1099         adapter->cpu_netdev = alloc_percpu(struct net_device *);
1100         adapter->cpu_tx_ring = alloc_percpu(struct e1000_tx_ring *);
1101 #endif
1102
1103         return E1000_SUCCESS;
1104 }
1105
1106 #ifdef CONFIG_E1000_MQ
1107 static void __devinit
1108 e1000_setup_queue_mapping(struct e1000_adapter *adapter)
1109 {
1110         int i, cpu;
1111
1112         adapter->rx_sched_call_data.func = e1000_rx_schedule;
1113         adapter->rx_sched_call_data.info = adapter->netdev;
1114         cpus_clear(adapter->rx_sched_call_data.cpumask);
1115
1116         adapter->cpu_netdev = alloc_percpu(struct net_device *);
1117         adapter->cpu_tx_ring = alloc_percpu(struct e1000_tx_ring *);
1118
1119         lock_cpu_hotplug();
1120         i = 0;
1121         for_each_online_cpu(cpu) {
1122                 *per_cpu_ptr(adapter->cpu_tx_ring, cpu) = &adapter->tx_ring[i % adapter->num_tx_queues];
1123                 /* This is incomplete because we'd like to assign separate
1124                  * physical cpus to these netdev polling structures and
1125                  * avoid saturating a subset of cpus.
1126                  */
1127                 if (i < adapter->num_rx_queues) {
1128                         *per_cpu_ptr(adapter->cpu_netdev, cpu) = &adapter->polling_netdev[i];
1129                         adapter->rx_ring[i].cpu = cpu;
1130                         cpu_set(cpu, adapter->cpumask);
1131                 } else
1132                         *per_cpu_ptr(adapter->cpu_netdev, cpu) = NULL;
1133
1134                 i++;
1135         }
1136         unlock_cpu_hotplug();
1137 }
1138 #endif
1139
1140 /**
1141  * e1000_open - Called when a network interface is made active
1142  * @netdev: network interface device structure
1143  *
1144  * Returns 0 on success, negative value on failure
1145  *
1146  * The open entry point is called when a network interface is made
1147  * active by the system (IFF_UP).  At this point all resources needed
1148  * for transmit and receive operations are allocated, the interrupt
1149  * handler is registered with the OS, the watchdog timer is started,
1150  * and the stack is notified that the interface is ready.
1151  **/
1152
1153 static int
1154 e1000_open(struct net_device *netdev)
1155 {
1156         struct e1000_adapter *adapter = netdev_priv(netdev);
1157         int err;
1158
1159         /* allocate transmit descriptors */
1160
1161         if ((err = e1000_setup_all_tx_resources(adapter)))
1162                 goto err_setup_tx;
1163
1164         /* allocate receive descriptors */
1165
1166         if ((err = e1000_setup_all_rx_resources(adapter)))
1167                 goto err_setup_rx;
1168
1169         if((err = e1000_up(adapter)))
1170                 goto err_up;
1171         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1172         if((adapter->hw.mng_cookie.status &
1173                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1174                 e1000_update_mng_vlan(adapter);
1175         }
1176
1177         /* If AMT is enabled, let the firmware know that the network
1178          * interface is now open */
1179         if (adapter->hw.mac_type == e1000_82573 &&
1180             e1000_check_mng_mode(&adapter->hw))
1181                 e1000_get_hw_control(adapter);
1182
1183         return E1000_SUCCESS;
1184
1185 err_up:
1186         e1000_free_all_rx_resources(adapter);
1187 err_setup_rx:
1188         e1000_free_all_tx_resources(adapter);
1189 err_setup_tx:
1190         e1000_reset(adapter);
1191
1192         return err;
1193 }
1194
1195 /**
1196  * e1000_close - Disables a network interface
1197  * @netdev: network interface device structure
1198  *
1199  * Returns 0, this is not allowed to fail
1200  *
1201  * The close entry point is called when an interface is de-activated
1202  * by the OS.  The hardware is still under the drivers control, but
1203  * needs to be disabled.  A global MAC reset is issued to stop the
1204  * hardware, and all transmit and receive resources are freed.
1205  **/
1206
1207 static int
1208 e1000_close(struct net_device *netdev)
1209 {
1210         struct e1000_adapter *adapter = netdev_priv(netdev);
1211
1212         e1000_down(adapter);
1213
1214         e1000_free_all_tx_resources(adapter);
1215         e1000_free_all_rx_resources(adapter);
1216
1217         if((adapter->hw.mng_cookie.status &
1218                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1219                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1220         }
1221
1222         /* If AMT is enabled, let the firmware know that the network
1223          * interface is now closed */
1224         if (adapter->hw.mac_type == e1000_82573 &&
1225             e1000_check_mng_mode(&adapter->hw))
1226                 e1000_release_hw_control(adapter);
1227
1228         return 0;
1229 }
1230
1231 /**
1232  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1233  * @adapter: address of board private structure
1234  * @start: address of beginning of memory
1235  * @len: length of memory
1236  **/
1237 static inline boolean_t
1238 e1000_check_64k_bound(struct e1000_adapter *adapter,
1239                       void *start, unsigned long len)
1240 {
1241         unsigned long begin = (unsigned long) start;
1242         unsigned long end = begin + len;
1243
1244         /* First rev 82545 and 82546 need to not allow any memory
1245          * write location to cross 64k boundary due to errata 23 */
1246         if (adapter->hw.mac_type == e1000_82545 ||
1247             adapter->hw.mac_type == e1000_82546) {
1248                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1249         }
1250
1251         return TRUE;
1252 }
1253
1254 /**
1255  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1256  * @adapter: board private structure
1257  * @txdr:    tx descriptor ring (for a specific queue) to setup
1258  *
1259  * Return 0 on success, negative on failure
1260  **/
1261
1262 static int
1263 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1264                          struct e1000_tx_ring *txdr)
1265 {
1266         struct pci_dev *pdev = adapter->pdev;
1267         int size;
1268
1269         size = sizeof(struct e1000_buffer) * txdr->count;
1270
1271         txdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1272         if(!txdr->buffer_info) {
1273                 DPRINTK(PROBE, ERR,
1274                 "Unable to allocate memory for the transmit descriptor ring\n");
1275                 return -ENOMEM;
1276         }
1277         memset(txdr->buffer_info, 0, size);
1278
1279         /* round up to nearest 4K */
1280
1281         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1282         E1000_ROUNDUP(txdr->size, 4096);
1283
1284         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1285         if(!txdr->desc) {
1286 setup_tx_desc_die:
1287                 vfree(txdr->buffer_info);
1288                 DPRINTK(PROBE, ERR,
1289                 "Unable to allocate memory for the transmit descriptor ring\n");
1290                 return -ENOMEM;
1291         }
1292
1293         /* Fix for errata 23, can't cross 64kB boundary */
1294         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1295                 void *olddesc = txdr->desc;
1296                 dma_addr_t olddma = txdr->dma;
1297                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1298                                      "at %p\n", txdr->size, txdr->desc);
1299                 /* Try again, without freeing the previous */
1300                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1301                 if(!txdr->desc) {
1302                 /* Failed allocation, critical failure */
1303                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1304                         goto setup_tx_desc_die;
1305                 }
1306
1307                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1308                         /* give up */
1309                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1310                                             txdr->dma);
1311                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1312                         DPRINTK(PROBE, ERR,
1313                                 "Unable to allocate aligned memory "
1314                                 "for the transmit descriptor ring\n");
1315                         vfree(txdr->buffer_info);
1316                         return -ENOMEM;
1317                 } else {
1318                         /* Free old allocation, new allocation was successful */
1319                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1320                 }
1321         }
1322         memset(txdr->desc, 0, txdr->size);
1323
1324         txdr->next_to_use = 0;
1325         txdr->next_to_clean = 0;
1326         spin_lock_init(&txdr->tx_lock);
1327
1328         return 0;
1329 }
1330
1331 /**
1332  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1333  *                                (Descriptors) for all queues
1334  * @adapter: board private structure
1335  *
1336  * If this function returns with an error, then it's possible one or
1337  * more of the rings is populated (while the rest are not).  It is the
1338  * callers duty to clean those orphaned rings.
1339  *
1340  * Return 0 on success, negative on failure
1341  **/
1342
1343 int
1344 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1345 {
1346         int i, err = 0;
1347
1348         for (i = 0; i < adapter->num_tx_queues; i++) {
1349                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1350                 if (err) {
1351                         DPRINTK(PROBE, ERR,
1352                                 "Allocation for Tx Queue %u failed\n", i);
1353                         break;
1354                 }
1355         }
1356
1357         return err;
1358 }
1359
1360 /**
1361  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1362  * @adapter: board private structure
1363  *
1364  * Configure the Tx unit of the MAC after a reset.
1365  **/
1366
1367 static void
1368 e1000_configure_tx(struct e1000_adapter *adapter)
1369 {
1370         uint64_t tdba;
1371         struct e1000_hw *hw = &adapter->hw;
1372         uint32_t tdlen, tctl, tipg, tarc;
1373         uint32_t ipgr1, ipgr2;
1374
1375         /* Setup the HW Tx Head and Tail descriptor pointers */
1376
1377         switch (adapter->num_tx_queues) {
1378         case 2:
1379                 tdba = adapter->tx_ring[1].dma;
1380                 tdlen = adapter->tx_ring[1].count *
1381                         sizeof(struct e1000_tx_desc);
1382                 E1000_WRITE_REG(hw, TDBAL1, (tdba & 0x00000000ffffffffULL));
1383                 E1000_WRITE_REG(hw, TDBAH1, (tdba >> 32));
1384                 E1000_WRITE_REG(hw, TDLEN1, tdlen);
1385                 E1000_WRITE_REG(hw, TDH1, 0);
1386                 E1000_WRITE_REG(hw, TDT1, 0);
1387                 adapter->tx_ring[1].tdh = E1000_TDH1;
1388                 adapter->tx_ring[1].tdt = E1000_TDT1;
1389                 /* Fall Through */
1390         case 1:
1391         default:
1392                 tdba = adapter->tx_ring[0].dma;
1393                 tdlen = adapter->tx_ring[0].count *
1394                         sizeof(struct e1000_tx_desc);
1395                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1396                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1397                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1398                 E1000_WRITE_REG(hw, TDH, 0);
1399                 E1000_WRITE_REG(hw, TDT, 0);
1400                 adapter->tx_ring[0].tdh = E1000_TDH;
1401                 adapter->tx_ring[0].tdt = E1000_TDT;
1402                 break;
1403         }
1404
1405         /* Set the default values for the Tx Inter Packet Gap timer */
1406
1407         if (hw->media_type == e1000_media_type_fiber ||
1408             hw->media_type == e1000_media_type_internal_serdes)
1409                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1410         else
1411                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1412
1413         switch (hw->mac_type) {
1414         case e1000_82542_rev2_0:
1415         case e1000_82542_rev2_1:
1416                 tipg = DEFAULT_82542_TIPG_IPGT;
1417                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1418                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1419                 break;
1420         default:
1421                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1422                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1423                 break;
1424         }
1425         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1426         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1427         E1000_WRITE_REG(hw, TIPG, tipg);
1428
1429         /* Set the Tx Interrupt Delay register */
1430
1431         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1432         if (hw->mac_type >= e1000_82540)
1433                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1434
1435         /* Program the Transmit Control Register */
1436
1437         tctl = E1000_READ_REG(hw, TCTL);
1438
1439         tctl &= ~E1000_TCTL_CT;
1440         tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | E1000_TCTL_RTLC |
1441                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1442
1443         E1000_WRITE_REG(hw, TCTL, tctl);
1444
1445         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1446                 tarc = E1000_READ_REG(hw, TARC0);
1447                 tarc |= ((1 << 25) | (1 << 21));
1448                 E1000_WRITE_REG(hw, TARC0, tarc);
1449                 tarc = E1000_READ_REG(hw, TARC1);
1450                 tarc |= (1 << 25);
1451                 if (tctl & E1000_TCTL_MULR)
1452                         tarc &= ~(1 << 28);
1453                 else
1454                         tarc |= (1 << 28);
1455                 E1000_WRITE_REG(hw, TARC1, tarc);
1456         }
1457
1458         e1000_config_collision_dist(hw);
1459
1460         /* Setup Transmit Descriptor Settings for eop descriptor */
1461         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1462                 E1000_TXD_CMD_IFCS;
1463
1464         if (hw->mac_type < e1000_82543)
1465                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1466         else
1467                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1468
1469         /* Cache if we're 82544 running in PCI-X because we'll
1470          * need this to apply a workaround later in the send path. */
1471         if (hw->mac_type == e1000_82544 &&
1472             hw->bus_type == e1000_bus_type_pcix)
1473                 adapter->pcix_82544 = 1;
1474 }
1475
1476 /**
1477  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1478  * @adapter: board private structure
1479  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1480  *
1481  * Returns 0 on success, negative on failure
1482  **/
1483
1484 static int
1485 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1486                          struct e1000_rx_ring *rxdr)
1487 {
1488         struct pci_dev *pdev = adapter->pdev;
1489         int size, desc_len;
1490
1491         size = sizeof(struct e1000_buffer) * rxdr->count;
1492         rxdr->buffer_info = vmalloc_node(size, pcibus_to_node(pdev->bus));
1493         if (!rxdr->buffer_info) {
1494                 DPRINTK(PROBE, ERR,
1495                 "Unable to allocate memory for the receive descriptor ring\n");
1496                 return -ENOMEM;
1497         }
1498         memset(rxdr->buffer_info, 0, size);
1499
1500         size = sizeof(struct e1000_ps_page) * rxdr->count;
1501         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1502         if(!rxdr->ps_page) {
1503                 vfree(rxdr->buffer_info);
1504                 DPRINTK(PROBE, ERR,
1505                 "Unable to allocate memory for the receive descriptor ring\n");
1506                 return -ENOMEM;
1507         }
1508         memset(rxdr->ps_page, 0, size);
1509
1510         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1511         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1512         if(!rxdr->ps_page_dma) {
1513                 vfree(rxdr->buffer_info);
1514                 kfree(rxdr->ps_page);
1515                 DPRINTK(PROBE, ERR,
1516                 "Unable to allocate memory for the receive descriptor ring\n");
1517                 return -ENOMEM;
1518         }
1519         memset(rxdr->ps_page_dma, 0, size);
1520
1521         if(adapter->hw.mac_type <= e1000_82547_rev_2)
1522                 desc_len = sizeof(struct e1000_rx_desc);
1523         else
1524                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1525
1526         /* Round up to nearest 4K */
1527
1528         rxdr->size = rxdr->count * desc_len;
1529         E1000_ROUNDUP(rxdr->size, 4096);
1530
1531         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1532
1533         if (!rxdr->desc) {
1534                 DPRINTK(PROBE, ERR,
1535                 "Unable to allocate memory for the receive descriptor ring\n");
1536 setup_rx_desc_die:
1537                 vfree(rxdr->buffer_info);
1538                 kfree(rxdr->ps_page);
1539                 kfree(rxdr->ps_page_dma);
1540                 return -ENOMEM;
1541         }
1542
1543         /* Fix for errata 23, can't cross 64kB boundary */
1544         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1545                 void *olddesc = rxdr->desc;
1546                 dma_addr_t olddma = rxdr->dma;
1547                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1548                                      "at %p\n", rxdr->size, rxdr->desc);
1549                 /* Try again, without freeing the previous */
1550                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1551                 /* Failed allocation, critical failure */
1552                 if (!rxdr->desc) {
1553                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1554                         DPRINTK(PROBE, ERR,
1555                                 "Unable to allocate memory "
1556                                 "for the receive descriptor ring\n");
1557                         goto setup_rx_desc_die;
1558                 }
1559
1560                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1561                         /* give up */
1562                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1563                                             rxdr->dma);
1564                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1565                         DPRINTK(PROBE, ERR,
1566                                 "Unable to allocate aligned memory "
1567                                 "for the receive descriptor ring\n");
1568                         goto setup_rx_desc_die;
1569                 } else {
1570                         /* Free old allocation, new allocation was successful */
1571                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1572                 }
1573         }
1574         memset(rxdr->desc, 0, rxdr->size);
1575
1576         rxdr->next_to_clean = 0;
1577         rxdr->next_to_use = 0;
1578         rxdr->rx_skb_top = NULL;
1579         rxdr->rx_skb_prev = NULL;
1580
1581         return 0;
1582 }
1583
1584 /**
1585  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1586  *                                (Descriptors) for all queues
1587  * @adapter: board private structure
1588  *
1589  * If this function returns with an error, then it's possible one or
1590  * more of the rings is populated (while the rest are not).  It is the
1591  * callers duty to clean those orphaned rings.
1592  *
1593  * Return 0 on success, negative on failure
1594  **/
1595
1596 int
1597 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1598 {
1599         int i, err = 0;
1600
1601         for (i = 0; i < adapter->num_rx_queues; i++) {
1602                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1603                 if (err) {
1604                         DPRINTK(PROBE, ERR,
1605                                 "Allocation for Rx Queue %u failed\n", i);
1606                         break;
1607                 }
1608         }
1609
1610         return err;
1611 }
1612
1613 /**
1614  * e1000_setup_rctl - configure the receive control registers
1615  * @adapter: Board private structure
1616  **/
1617 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1618                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1619 static void
1620 e1000_setup_rctl(struct e1000_adapter *adapter)
1621 {
1622         uint32_t rctl, rfctl;
1623         uint32_t psrctl = 0;
1624 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1625         uint32_t pages = 0;
1626 #endif
1627
1628         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1629
1630         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1631
1632         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1633                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1634                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1635
1636         if (adapter->hw.mac_type > e1000_82543)
1637                 rctl |= E1000_RCTL_SECRC;
1638
1639         if (adapter->hw.tbi_compatibility_on == 1)
1640                 rctl |= E1000_RCTL_SBP;
1641         else
1642                 rctl &= ~E1000_RCTL_SBP;
1643
1644         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1645                 rctl &= ~E1000_RCTL_LPE;
1646         else
1647                 rctl |= E1000_RCTL_LPE;
1648
1649         /* Setup buffer sizes */
1650         if(adapter->hw.mac_type >= e1000_82571) {
1651                 /* We can now specify buffers in 1K increments.
1652                  * BSIZE and BSEX are ignored in this case. */
1653                 rctl |= adapter->rx_buffer_len << 0x11;
1654         } else {
1655                 rctl &= ~E1000_RCTL_SZ_4096;
1656                 rctl &= ~E1000_RCTL_BSEX;
1657                 rctl |= E1000_RCTL_SZ_2048;
1658         }
1659
1660 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1661         /* 82571 and greater support packet-split where the protocol
1662          * header is placed in skb->data and the packet data is
1663          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1664          * In the case of a non-split, skb->data is linearly filled,
1665          * followed by the page buffers.  Therefore, skb->data is
1666          * sized to hold the largest protocol header.
1667          */
1668         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1669         if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1670             PAGE_SIZE <= 16384)
1671                 adapter->rx_ps_pages = pages;
1672         else
1673                 adapter->rx_ps_pages = 0;
1674 #endif
1675         if (adapter->rx_ps_pages) {
1676                 /* Configure extra packet-split registers */
1677                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1678                 rfctl |= E1000_RFCTL_EXTEN;
1679                 /* disable IPv6 packet split support */
1680                 rfctl |= E1000_RFCTL_IPV6_DIS;
1681                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1682
1683                 rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC;
1684                 
1685                 psrctl |= adapter->rx_ps_bsize0 >>
1686                         E1000_PSRCTL_BSIZE0_SHIFT;
1687
1688                 switch (adapter->rx_ps_pages) {
1689                 case 3:
1690                         psrctl |= PAGE_SIZE <<
1691                                 E1000_PSRCTL_BSIZE3_SHIFT;
1692                 case 2:
1693                         psrctl |= PAGE_SIZE <<
1694                                 E1000_PSRCTL_BSIZE2_SHIFT;
1695                 case 1:
1696                         psrctl |= PAGE_SIZE >>
1697                                 E1000_PSRCTL_BSIZE1_SHIFT;
1698                         break;
1699                 }
1700
1701                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1702         }
1703
1704         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1705 }
1706
1707 /**
1708  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1709  * @adapter: board private structure
1710  *
1711  * Configure the Rx unit of the MAC after a reset.
1712  **/
1713
1714 static void
1715 e1000_configure_rx(struct e1000_adapter *adapter)
1716 {
1717         uint64_t rdba;
1718         struct e1000_hw *hw = &adapter->hw;
1719         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1720 #ifdef CONFIG_E1000_MQ
1721         uint32_t reta, mrqc;
1722         int i;
1723 #endif
1724
1725         if (adapter->rx_ps_pages) {
1726                 rdlen = adapter->rx_ring[0].count *
1727                         sizeof(union e1000_rx_desc_packet_split);
1728                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1729                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1730         } else {
1731                 rdlen = adapter->rx_ring[0].count *
1732                         sizeof(struct e1000_rx_desc);
1733                 adapter->clean_rx = e1000_clean_rx_irq;
1734                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1735         }
1736
1737         /* disable receives while setting up the descriptors */
1738         rctl = E1000_READ_REG(hw, RCTL);
1739         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1740
1741         /* set the Receive Delay Timer Register */
1742         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1743
1744         if (hw->mac_type >= e1000_82540) {
1745                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1746                 if(adapter->itr > 1)
1747                         E1000_WRITE_REG(hw, ITR,
1748                                 1000000000 / (adapter->itr * 256));
1749         }
1750
1751         if (hw->mac_type >= e1000_82571) {
1752                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1753                 /* Reset delay timers after every interrupt */
1754                 ctrl_ext |= E1000_CTRL_EXT_CANC;
1755 #ifdef CONFIG_E1000_NAPI
1756                 /* Auto-Mask interrupts upon ICR read. */
1757                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1758 #endif
1759                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1760                 E1000_WRITE_REG(hw, IAM, ~0);
1761                 E1000_WRITE_FLUSH(hw);
1762         }
1763
1764         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1765          * the Base and Length of the Rx Descriptor Ring */
1766         switch (adapter->num_rx_queues) {
1767 #ifdef CONFIG_E1000_MQ
1768         case 2:
1769                 rdba = adapter->rx_ring[1].dma;
1770                 E1000_WRITE_REG(hw, RDBAL1, (rdba & 0x00000000ffffffffULL));
1771                 E1000_WRITE_REG(hw, RDBAH1, (rdba >> 32));
1772                 E1000_WRITE_REG(hw, RDLEN1, rdlen);
1773                 E1000_WRITE_REG(hw, RDH1, 0);
1774                 E1000_WRITE_REG(hw, RDT1, 0);
1775                 adapter->rx_ring[1].rdh = E1000_RDH1;
1776                 adapter->rx_ring[1].rdt = E1000_RDT1;
1777                 /* Fall Through */
1778 #endif
1779         case 1:
1780         default:
1781                 rdba = adapter->rx_ring[0].dma;
1782                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1783                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1784                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1785                 E1000_WRITE_REG(hw, RDH, 0);
1786                 E1000_WRITE_REG(hw, RDT, 0);
1787                 adapter->rx_ring[0].rdh = E1000_RDH;
1788                 adapter->rx_ring[0].rdt = E1000_RDT;
1789                 break;
1790         }
1791
1792 #ifdef CONFIG_E1000_MQ
1793         if (adapter->num_rx_queues > 1) {
1794                 uint32_t random[10];
1795
1796                 get_random_bytes(&random[0], 40);
1797
1798                 if (hw->mac_type <= e1000_82572) {
1799                         E1000_WRITE_REG(hw, RSSIR, 0);
1800                         E1000_WRITE_REG(hw, RSSIM, 0);
1801                 }
1802
1803                 switch (adapter->num_rx_queues) {
1804                 case 2:
1805                 default:
1806                         reta = 0x00800080;
1807                         mrqc = E1000_MRQC_ENABLE_RSS_2Q;
1808                         break;
1809                 }
1810
1811                 /* Fill out redirection table */
1812                 for (i = 0; i < 32; i++)
1813                         E1000_WRITE_REG_ARRAY(hw, RETA, i, reta);
1814                 /* Fill out hash function seeds */
1815                 for (i = 0; i < 10; i++)
1816                         E1000_WRITE_REG_ARRAY(hw, RSSRK, i, random[i]);
1817
1818                 mrqc |= (E1000_MRQC_RSS_FIELD_IPV4 |
1819                          E1000_MRQC_RSS_FIELD_IPV4_TCP);
1820                 E1000_WRITE_REG(hw, MRQC, mrqc);
1821         }
1822
1823         /* Multiqueue and packet checksumming are mutually exclusive. */
1824         if (hw->mac_type >= e1000_82571) {
1825                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1826                 rxcsum |= E1000_RXCSUM_PCSD;
1827                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1828         }
1829
1830 #else
1831
1832         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1833         if (hw->mac_type >= e1000_82543) {
1834                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1835                 if(adapter->rx_csum == TRUE) {
1836                         rxcsum |= E1000_RXCSUM_TUOFL;
1837
1838                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1839                          * Must be used in conjunction with packet-split. */
1840                         if ((hw->mac_type >= e1000_82571) && 
1841                            (adapter->rx_ps_pages)) {
1842                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1843                         }
1844                 } else {
1845                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1846                         /* don't need to clear IPPCSE as it defaults to 0 */
1847                 }
1848                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1849         }
1850 #endif /* CONFIG_E1000_MQ */
1851
1852         if (hw->mac_type == e1000_82573)
1853                 E1000_WRITE_REG(hw, ERT, 0x0100);
1854
1855         /* Enable Receives */
1856         E1000_WRITE_REG(hw, RCTL, rctl);
1857 }
1858
1859 /**
1860  * e1000_free_tx_resources - Free Tx Resources per Queue
1861  * @adapter: board private structure
1862  * @tx_ring: Tx descriptor ring for a specific queue
1863  *
1864  * Free all transmit software resources
1865  **/
1866
1867 static void
1868 e1000_free_tx_resources(struct e1000_adapter *adapter,
1869                         struct e1000_tx_ring *tx_ring)
1870 {
1871         struct pci_dev *pdev = adapter->pdev;
1872
1873         e1000_clean_tx_ring(adapter, tx_ring);
1874
1875         vfree(tx_ring->buffer_info);
1876         tx_ring->buffer_info = NULL;
1877
1878         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1879
1880         tx_ring->desc = NULL;
1881 }
1882
1883 /**
1884  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1885  * @adapter: board private structure
1886  *
1887  * Free all transmit software resources
1888  **/
1889
1890 void
1891 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1892 {
1893         int i;
1894
1895         for (i = 0; i < adapter->num_tx_queues; i++)
1896                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1897 }
1898
1899 static inline void
1900 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1901                         struct e1000_buffer *buffer_info)
1902 {
1903         if(buffer_info->dma) {
1904                 pci_unmap_page(adapter->pdev,
1905                                 buffer_info->dma,
1906                                 buffer_info->length,
1907                                 PCI_DMA_TODEVICE);
1908         }
1909         if (buffer_info->skb)
1910                 dev_kfree_skb_any(buffer_info->skb);
1911         memset(buffer_info, 0, sizeof(struct e1000_buffer));
1912 }
1913
1914 /**
1915  * e1000_clean_tx_ring - Free Tx Buffers
1916  * @adapter: board private structure
1917  * @tx_ring: ring to be cleaned
1918  **/
1919
1920 static void
1921 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1922                     struct e1000_tx_ring *tx_ring)
1923 {
1924         struct e1000_buffer *buffer_info;
1925         unsigned long size;
1926         unsigned int i;
1927
1928         /* Free all the Tx ring sk_buffs */
1929
1930         for(i = 0; i < tx_ring->count; i++) {
1931                 buffer_info = &tx_ring->buffer_info[i];
1932                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1933         }
1934
1935         size = sizeof(struct e1000_buffer) * tx_ring->count;
1936         memset(tx_ring->buffer_info, 0, size);
1937
1938         /* Zero out the descriptor ring */
1939
1940         memset(tx_ring->desc, 0, tx_ring->size);
1941
1942         tx_ring->next_to_use = 0;
1943         tx_ring->next_to_clean = 0;
1944         tx_ring->last_tx_tso = 0;
1945
1946         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
1947         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
1948 }
1949
1950 /**
1951  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1952  * @adapter: board private structure
1953  **/
1954
1955 static void
1956 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1957 {
1958         int i;
1959
1960         for (i = 0; i < adapter->num_tx_queues; i++)
1961                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1962 }
1963
1964 /**
1965  * e1000_free_rx_resources - Free Rx Resources
1966  * @adapter: board private structure
1967  * @rx_ring: ring to clean the resources from
1968  *
1969  * Free all receive software resources
1970  **/
1971
1972 static void
1973 e1000_free_rx_resources(struct e1000_adapter *adapter,
1974                         struct e1000_rx_ring *rx_ring)
1975 {
1976         struct pci_dev *pdev = adapter->pdev;
1977
1978         e1000_clean_rx_ring(adapter, rx_ring);
1979
1980         vfree(rx_ring->buffer_info);
1981         rx_ring->buffer_info = NULL;
1982         kfree(rx_ring->ps_page);
1983         rx_ring->ps_page = NULL;
1984         kfree(rx_ring->ps_page_dma);
1985         rx_ring->ps_page_dma = NULL;
1986
1987         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
1988
1989         rx_ring->desc = NULL;
1990 }
1991
1992 /**
1993  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1994  * @adapter: board private structure
1995  *
1996  * Free all receive software resources
1997  **/
1998
1999 void
2000 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2001 {
2002         int i;
2003
2004         for (i = 0; i < adapter->num_rx_queues; i++)
2005                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2006 }
2007
2008 /**
2009  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2010  * @adapter: board private structure
2011  * @rx_ring: ring to free buffers from
2012  **/
2013
2014 static void
2015 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2016                     struct e1000_rx_ring *rx_ring)
2017 {
2018         struct e1000_buffer *buffer_info;
2019         struct e1000_ps_page *ps_page;
2020         struct e1000_ps_page_dma *ps_page_dma;
2021         struct pci_dev *pdev = adapter->pdev;
2022         unsigned long size;
2023         unsigned int i, j;
2024
2025         /* Free all the Rx ring sk_buffs */
2026
2027         for(i = 0; i < rx_ring->count; i++) {
2028                 buffer_info = &rx_ring->buffer_info[i];
2029                 if(buffer_info->skb) {
2030                         pci_unmap_single(pdev,
2031                                          buffer_info->dma,
2032                                          buffer_info->length,
2033                                          PCI_DMA_FROMDEVICE);
2034
2035                         dev_kfree_skb(buffer_info->skb);
2036                         buffer_info->skb = NULL;
2037                 }
2038                 ps_page = &rx_ring->ps_page[i];
2039                 ps_page_dma = &rx_ring->ps_page_dma[i];
2040                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2041                         if (!ps_page->ps_page[j]) break;
2042                         pci_unmap_page(pdev,
2043                                        ps_page_dma->ps_page_dma[j],
2044                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2045                         ps_page_dma->ps_page_dma[j] = 0;
2046                         put_page(ps_page->ps_page[j]);
2047                         ps_page->ps_page[j] = NULL;
2048                 }
2049         }
2050
2051         /* there also may be some cached data in our adapter */
2052         if (rx_ring->rx_skb_top) {
2053                 dev_kfree_skb(rx_ring->rx_skb_top);
2054
2055                 /* rx_skb_prev will be wiped out by rx_skb_top */
2056                 rx_ring->rx_skb_top = NULL;
2057                 rx_ring->rx_skb_prev = NULL;
2058         }
2059
2060
2061         size = sizeof(struct e1000_buffer) * rx_ring->count;
2062         memset(rx_ring->buffer_info, 0, size);
2063         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2064         memset(rx_ring->ps_page, 0, size);
2065         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2066         memset(rx_ring->ps_page_dma, 0, size);
2067
2068         /* Zero out the descriptor ring */
2069
2070         memset(rx_ring->desc, 0, rx_ring->size);
2071
2072         rx_ring->next_to_clean = 0;
2073         rx_ring->next_to_use = 0;
2074
2075         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2076         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2077 }
2078
2079 /**
2080  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2081  * @adapter: board private structure
2082  **/
2083
2084 static void
2085 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2086 {
2087         int i;
2088
2089         for (i = 0; i < adapter->num_rx_queues; i++)
2090                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2091 }
2092
2093 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2094  * and memory write and invalidate disabled for certain operations
2095  */
2096 static void
2097 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2098 {
2099         struct net_device *netdev = adapter->netdev;
2100         uint32_t rctl;
2101
2102         e1000_pci_clear_mwi(&adapter->hw);
2103
2104         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2105         rctl |= E1000_RCTL_RST;
2106         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2107         E1000_WRITE_FLUSH(&adapter->hw);
2108         mdelay(5);
2109
2110         if(netif_running(netdev))
2111                 e1000_clean_all_rx_rings(adapter);
2112 }
2113
2114 static void
2115 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2116 {
2117         struct net_device *netdev = adapter->netdev;
2118         uint32_t rctl;
2119
2120         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2121         rctl &= ~E1000_RCTL_RST;
2122         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2123         E1000_WRITE_FLUSH(&adapter->hw);
2124         mdelay(5);
2125
2126         if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2127                 e1000_pci_set_mwi(&adapter->hw);
2128
2129         if(netif_running(netdev)) {
2130                 e1000_configure_rx(adapter);
2131                 /* No need to loop, because 82542 supports only 1 queue */
2132                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2133                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2134         }
2135 }
2136
2137 /**
2138  * e1000_set_mac - Change the Ethernet Address of the NIC
2139  * @netdev: network interface device structure
2140  * @p: pointer to an address structure
2141  *
2142  * Returns 0 on success, negative on failure
2143  **/
2144
2145 static int
2146 e1000_set_mac(struct net_device *netdev, void *p)
2147 {
2148         struct e1000_adapter *adapter = netdev_priv(netdev);
2149         struct sockaddr *addr = p;
2150
2151         if(!is_valid_ether_addr(addr->sa_data))
2152                 return -EADDRNOTAVAIL;
2153
2154         /* 82542 2.0 needs to be in reset to write receive address registers */
2155
2156         if(adapter->hw.mac_type == e1000_82542_rev2_0)
2157                 e1000_enter_82542_rst(adapter);
2158
2159         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2160         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2161
2162         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2163
2164         /* With 82571 controllers, LAA may be overwritten (with the default)
2165          * due to controller reset from the other port. */
2166         if (adapter->hw.mac_type == e1000_82571) {
2167                 /* activate the work around */
2168                 adapter->hw.laa_is_present = 1;
2169
2170                 /* Hold a copy of the LAA in RAR[14] This is done so that 
2171                  * between the time RAR[0] gets clobbered  and the time it 
2172                  * gets fixed (in e1000_watchdog), the actual LAA is in one 
2173                  * of the RARs and no incoming packets directed to this port
2174                  * are dropped. Eventaully the LAA will be in RAR[0] and 
2175                  * RAR[14] */
2176                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 
2177                                         E1000_RAR_ENTRIES - 1);
2178         }
2179
2180         if(adapter->hw.mac_type == e1000_82542_rev2_0)
2181                 e1000_leave_82542_rst(adapter);
2182
2183         return 0;
2184 }
2185
2186 /**
2187  * e1000_set_multi - Multicast and Promiscuous mode set
2188  * @netdev: network interface device structure
2189  *
2190  * The set_multi entry point is called whenever the multicast address
2191  * list or the network interface flags are updated.  This routine is
2192  * responsible for configuring the hardware for proper multicast,
2193  * promiscuous mode, and all-multi behavior.
2194  **/
2195
2196 static void
2197 e1000_set_multi(struct net_device *netdev)
2198 {
2199         struct e1000_adapter *adapter = netdev_priv(netdev);
2200         struct e1000_hw *hw = &adapter->hw;
2201         struct dev_mc_list *mc_ptr;
2202         uint32_t rctl;
2203         uint32_t hash_value;
2204         int i, rar_entries = E1000_RAR_ENTRIES;
2205
2206         /* reserve RAR[14] for LAA over-write work-around */
2207         if (adapter->hw.mac_type == e1000_82571)
2208                 rar_entries--;
2209
2210         /* Check for Promiscuous and All Multicast modes */
2211
2212         rctl = E1000_READ_REG(hw, RCTL);
2213
2214         if(netdev->flags & IFF_PROMISC) {
2215                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2216         } else if(netdev->flags & IFF_ALLMULTI) {
2217                 rctl |= E1000_RCTL_MPE;
2218                 rctl &= ~E1000_RCTL_UPE;
2219         } else {
2220                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2221         }
2222
2223         E1000_WRITE_REG(hw, RCTL, rctl);
2224
2225         /* 82542 2.0 needs to be in reset to write receive address registers */
2226
2227         if(hw->mac_type == e1000_82542_rev2_0)
2228                 e1000_enter_82542_rst(adapter);
2229
2230         /* load the first 14 multicast address into the exact filters 1-14
2231          * RAR 0 is used for the station MAC adddress
2232          * if there are not 14 addresses, go ahead and clear the filters
2233          * -- with 82571 controllers only 0-13 entries are filled here
2234          */
2235         mc_ptr = netdev->mc_list;
2236
2237         for(i = 1; i < rar_entries; i++) {
2238                 if (mc_ptr) {
2239                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2240                         mc_ptr = mc_ptr->next;
2241                 } else {
2242                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2243                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2244                 }
2245         }
2246
2247         /* clear the old settings from the multicast hash table */
2248
2249         for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
2250                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2251
2252         /* load any remaining addresses into the hash table */
2253
2254         for(; mc_ptr; mc_ptr = mc_ptr->next) {
2255                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2256                 e1000_mta_set(hw, hash_value);
2257         }
2258
2259         if(hw->mac_type == e1000_82542_rev2_0)
2260                 e1000_leave_82542_rst(adapter);
2261 }
2262
2263 /* Need to wait a few seconds after link up to get diagnostic information from
2264  * the phy */
2265
2266 static void
2267 e1000_update_phy_info(unsigned long data)
2268 {
2269         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2270         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2271 }
2272
2273 /**
2274  * e1000_82547_tx_fifo_stall - Timer Call-back
2275  * @data: pointer to adapter cast into an unsigned long
2276  **/
2277
2278 static void
2279 e1000_82547_tx_fifo_stall(unsigned long data)
2280 {
2281         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2282         struct net_device *netdev = adapter->netdev;
2283         uint32_t tctl;
2284
2285         if(atomic_read(&adapter->tx_fifo_stall)) {
2286                 if((E1000_READ_REG(&adapter->hw, TDT) ==
2287                     E1000_READ_REG(&adapter->hw, TDH)) &&
2288                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2289                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2290                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2291                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2292                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2293                         E1000_WRITE_REG(&adapter->hw, TCTL,
2294                                         tctl & ~E1000_TCTL_EN);
2295                         E1000_WRITE_REG(&adapter->hw, TDFT,
2296                                         adapter->tx_head_addr);
2297                         E1000_WRITE_REG(&adapter->hw, TDFH,
2298                                         adapter->tx_head_addr);
2299                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2300                                         adapter->tx_head_addr);
2301                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2302                                         adapter->tx_head_addr);
2303                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2304                         E1000_WRITE_FLUSH(&adapter->hw);
2305
2306                         adapter->tx_fifo_head = 0;
2307                         atomic_set(&adapter->tx_fifo_stall, 0);
2308                         netif_wake_queue(netdev);
2309                 } else {
2310                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2311                 }
2312         }
2313 }
2314
2315 /**
2316  * e1000_watchdog - Timer Call-back
2317  * @data: pointer to adapter cast into an unsigned long
2318  **/
2319 static void
2320 e1000_watchdog(unsigned long data)
2321 {
2322         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2323
2324         /* Do the rest outside of interrupt context */
2325         schedule_work(&adapter->watchdog_task);
2326 }
2327
2328 static void
2329 e1000_watchdog_task(struct e1000_adapter *adapter)
2330 {
2331         struct net_device *netdev = adapter->netdev;
2332         struct e1000_tx_ring *txdr = adapter->tx_ring;
2333         uint32_t link;
2334
2335         e1000_check_for_link(&adapter->hw);
2336         if (adapter->hw.mac_type == e1000_82573) {
2337                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2338                 if(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2339                         e1000_update_mng_vlan(adapter);
2340         }       
2341
2342         if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2343            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2344                 link = !adapter->hw.serdes_link_down;
2345         else
2346                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2347
2348         if(link) {
2349                 if(!netif_carrier_ok(netdev)) {
2350                         e1000_get_speed_and_duplex(&adapter->hw,
2351                                                    &adapter->link_speed,
2352                                                    &adapter->link_duplex);
2353
2354                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2355                                adapter->link_speed,
2356                                adapter->link_duplex == FULL_DUPLEX ?
2357                                "Full Duplex" : "Half Duplex");
2358
2359                         /* tweak tx_queue_len according to speed/duplex */
2360                         netdev->tx_queue_len = adapter->tx_queue_len;
2361                         adapter->tx_timeout_factor = 1;
2362                         if (adapter->link_duplex == HALF_DUPLEX) {
2363                                 switch (adapter->link_speed) {
2364                                 case SPEED_10:
2365                                         netdev->tx_queue_len = 10;
2366                                         adapter->tx_timeout_factor = 8;
2367                                         break;
2368                                 case SPEED_100:
2369                                         netdev->tx_queue_len = 100;
2370                                         break;
2371                                 }
2372                         }
2373
2374                         netif_carrier_on(netdev);
2375                         netif_wake_queue(netdev);
2376                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2377                         adapter->smartspeed = 0;
2378                 }
2379         } else {
2380                 if(netif_carrier_ok(netdev)) {
2381                         adapter->link_speed = 0;
2382                         adapter->link_duplex = 0;
2383                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2384                         netif_carrier_off(netdev);
2385                         netif_stop_queue(netdev);
2386                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2387                 }
2388
2389                 e1000_smartspeed(adapter);
2390         }
2391
2392         e1000_update_stats(adapter);
2393
2394         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2395         adapter->tpt_old = adapter->stats.tpt;
2396         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2397         adapter->colc_old = adapter->stats.colc;
2398
2399         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2400         adapter->gorcl_old = adapter->stats.gorcl;
2401         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2402         adapter->gotcl_old = adapter->stats.gotcl;
2403
2404         e1000_update_adaptive(&adapter->hw);
2405
2406 #ifdef CONFIG_E1000_MQ
2407         txdr = *per_cpu_ptr(adapter->cpu_tx_ring, smp_processor_id());
2408 #endif
2409         if (!netif_carrier_ok(netdev)) {
2410                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2411                         /* We've lost link, so the controller stops DMA,
2412                          * but we've got queued Tx work that's never going
2413                          * to get done, so reset controller to flush Tx.
2414                          * (Do the reset outside of interrupt context). */
2415                         schedule_work(&adapter->tx_timeout_task);
2416                 }
2417         }
2418
2419         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2420         if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2421                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2422                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2423                  * else is between 2000-8000. */
2424                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2425                 uint32_t dif = (adapter->gotcl > adapter->gorcl ? 
2426                         adapter->gotcl - adapter->gorcl :
2427                         adapter->gorcl - adapter->gotcl) / 10000;
2428                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2429                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2430         }
2431
2432         /* Cause software interrupt to ensure rx ring is cleaned */
2433         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2434
2435         /* Force detection of hung controller every watchdog period */
2436         adapter->detect_tx_hung = TRUE;
2437
2438         /* With 82571 controllers, LAA may be overwritten due to controller 
2439          * reset from the other port. Set the appropriate LAA in RAR[0] */
2440         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2441                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2442
2443         /* Reset the timer */
2444         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2445 }
2446
2447 #define E1000_TX_FLAGS_CSUM             0x00000001
2448 #define E1000_TX_FLAGS_VLAN             0x00000002
2449 #define E1000_TX_FLAGS_TSO              0x00000004
2450 #define E1000_TX_FLAGS_IPV4             0x00000008
2451 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2452 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2453
2454 static inline int
2455 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2456           struct sk_buff *skb)
2457 {
2458 #ifdef NETIF_F_TSO
2459         struct e1000_context_desc *context_desc;
2460         struct e1000_buffer *buffer_info;
2461         unsigned int i;
2462         uint32_t cmd_length = 0;
2463         uint16_t ipcse = 0, tucse, mss;
2464         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2465         int err;
2466
2467         if(skb_shinfo(skb)->tso_size) {
2468                 if (skb_header_cloned(skb)) {
2469                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2470                         if (err)
2471                                 return err;
2472                 }
2473
2474                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2475                 mss = skb_shinfo(skb)->tso_size;
2476                 if(skb->protocol == ntohs(ETH_P_IP)) {
2477                         skb->nh.iph->tot_len = 0;
2478                         skb->nh.iph->check = 0;
2479                         skb->h.th->check =
2480                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2481                                                    skb->nh.iph->daddr,
2482                                                    0,
2483                                                    IPPROTO_TCP,
2484                                                    0);
2485                         cmd_length = E1000_TXD_CMD_IP;
2486                         ipcse = skb->h.raw - skb->data - 1;
2487 #ifdef NETIF_F_TSO_IPV6
2488                 } else if(skb->protocol == ntohs(ETH_P_IPV6)) {
2489                         skb->nh.ipv6h->payload_len = 0;
2490                         skb->h.th->check =
2491                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2492                                                  &skb->nh.ipv6h->daddr,
2493                                                  0,
2494                                                  IPPROTO_TCP,
2495                                                  0);
2496                         ipcse = 0;
2497 #endif
2498                 }
2499                 ipcss = skb->nh.raw - skb->data;
2500                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2501                 tucss = skb->h.raw - skb->data;
2502                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2503                 tucse = 0;
2504
2505                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2506                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2507
2508                 i = tx_ring->next_to_use;
2509                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2510                 buffer_info = &tx_ring->buffer_info[i];
2511
2512                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2513                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2514                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2515                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2516                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2517                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2518                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2519                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2520                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2521
2522                 buffer_info->time_stamp = jiffies;
2523
2524                 if (++i == tx_ring->count) i = 0;
2525                 tx_ring->next_to_use = i;
2526
2527                 return TRUE;
2528         }
2529 #endif
2530
2531         return FALSE;
2532 }
2533
2534 static inline boolean_t
2535 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2536               struct sk_buff *skb)
2537 {
2538         struct e1000_context_desc *context_desc;
2539         struct e1000_buffer *buffer_info;
2540         unsigned int i;
2541         uint8_t css;
2542
2543         if(likely(skb->ip_summed == CHECKSUM_HW)) {
2544                 css = skb->h.raw - skb->data;
2545
2546                 i = tx_ring->next_to_use;
2547                 buffer_info = &tx_ring->buffer_info[i];
2548                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2549
2550                 context_desc->upper_setup.tcp_fields.tucss = css;
2551                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2552                 context_desc->upper_setup.tcp_fields.tucse = 0;
2553                 context_desc->tcp_seg_setup.data = 0;
2554                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2555
2556                 buffer_info->time_stamp = jiffies;
2557
2558                 if (unlikely(++i == tx_ring->count)) i = 0;
2559                 tx_ring->next_to_use = i;
2560
2561                 return TRUE;
2562         }
2563
2564         return FALSE;
2565 }
2566
2567 #define E1000_MAX_TXD_PWR       12
2568 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2569
2570 static inline int
2571 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2572              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2573              unsigned int nr_frags, unsigned int mss)
2574 {
2575         struct e1000_buffer *buffer_info;
2576         unsigned int len = skb->len;
2577         unsigned int offset = 0, size, count = 0, i;
2578         unsigned int f;
2579         len -= skb->data_len;
2580
2581         i = tx_ring->next_to_use;
2582
2583         while(len) {
2584                 buffer_info = &tx_ring->buffer_info[i];
2585                 size = min(len, max_per_txd);
2586 #ifdef NETIF_F_TSO
2587                 /* Workaround for Controller erratum --
2588                  * descriptor for non-tso packet in a linear SKB that follows a
2589                  * tso gets written back prematurely before the data is fully
2590                  * DMAd to the controller */
2591                 if (!skb->data_len && tx_ring->last_tx_tso &&
2592                                 !skb_shinfo(skb)->tso_size) {
2593                         tx_ring->last_tx_tso = 0;
2594                         size -= 4;
2595                 }
2596
2597                 /* Workaround for premature desc write-backs
2598                  * in TSO mode.  Append 4-byte sentinel desc */
2599                 if(unlikely(mss && !nr_frags && size == len && size > 8))
2600                         size -= 4;
2601 #endif
2602                 /* work-around for errata 10 and it applies
2603                  * to all controllers in PCI-X mode
2604                  * The fix is to make sure that the first descriptor of a
2605                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2606                  */
2607                 if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2608                                 (size > 2015) && count == 0))
2609                         size = 2015;
2610                                                                                 
2611                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2612                  * terminating buffers within evenly-aligned dwords. */
2613                 if(unlikely(adapter->pcix_82544 &&
2614                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2615                    size > 4))
2616                         size -= 4;
2617
2618                 buffer_info->length = size;
2619                 buffer_info->dma =
2620                         pci_map_single(adapter->pdev,
2621                                 skb->data + offset,
2622                                 size,
2623                                 PCI_DMA_TODEVICE);
2624                 buffer_info->time_stamp = jiffies;
2625
2626                 len -= size;
2627                 offset += size;
2628                 count++;
2629                 if(unlikely(++i == tx_ring->count)) i = 0;
2630         }
2631
2632         for(f = 0; f < nr_frags; f++) {
2633                 struct skb_frag_struct *frag;
2634
2635                 frag = &skb_shinfo(skb)->frags[f];
2636                 len = frag->size;
2637                 offset = frag->page_offset;
2638
2639                 while(len) {
2640                         buffer_info = &tx_ring->buffer_info[i];
2641                         size = min(len, max_per_txd);
2642 #ifdef NETIF_F_TSO
2643                         /* Workaround for premature desc write-backs
2644                          * in TSO mode.  Append 4-byte sentinel desc */
2645                         if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2646                                 size -= 4;
2647 #endif
2648                         /* Workaround for potential 82544 hang in PCI-X.
2649                          * Avoid terminating buffers within evenly-aligned
2650                          * dwords. */
2651                         if(unlikely(adapter->pcix_82544 &&
2652                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2653                            size > 4))
2654                                 size -= 4;
2655
2656                         buffer_info->length = size;
2657                         buffer_info->dma =
2658                                 pci_map_page(adapter->pdev,
2659                                         frag->page,
2660                                         offset,
2661                                         size,
2662                                         PCI_DMA_TODEVICE);
2663                         buffer_info->time_stamp = jiffies;
2664
2665                         len -= size;
2666                         offset += size;
2667                         count++;
2668                         if(unlikely(++i == tx_ring->count)) i = 0;
2669                 }
2670         }
2671
2672         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2673         tx_ring->buffer_info[i].skb = skb;
2674         tx_ring->buffer_info[first].next_to_watch = i;
2675
2676         return count;
2677 }
2678
2679 static inline void
2680 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2681                int tx_flags, int count)
2682 {
2683         struct e1000_tx_desc *tx_desc = NULL;
2684         struct e1000_buffer *buffer_info;
2685         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2686         unsigned int i;
2687
2688         if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2689                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2690                              E1000_TXD_CMD_TSE;
2691                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2692
2693                 if(likely(tx_flags & E1000_TX_FLAGS_IPV4))
2694                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2695         }
2696
2697         if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2698                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2699                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2700         }
2701
2702         if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2703                 txd_lower |= E1000_TXD_CMD_VLE;
2704                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2705         }
2706
2707         i = tx_ring->next_to_use;
2708
2709         while(count--) {
2710                 buffer_info = &tx_ring->buffer_info[i];
2711                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2712                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2713                 tx_desc->lower.data =
2714                         cpu_to_le32(txd_lower | buffer_info->length);
2715                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2716                 if(unlikely(++i == tx_ring->count)) i = 0;
2717         }
2718
2719         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2720
2721         /* Force memory writes to complete before letting h/w
2722          * know there are new descriptors to fetch.  (Only
2723          * applicable for weak-ordered memory model archs,
2724          * such as IA-64). */
2725         wmb();
2726
2727         tx_ring->next_to_use = i;
2728         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2729 }
2730
2731 /**
2732  * 82547 workaround to avoid controller hang in half-duplex environment.
2733  * The workaround is to avoid queuing a large packet that would span
2734  * the internal Tx FIFO ring boundary by notifying the stack to resend
2735  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2736  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2737  * to the beginning of the Tx FIFO.
2738  **/
2739
2740 #define E1000_FIFO_HDR                  0x10
2741 #define E1000_82547_PAD_LEN             0x3E0
2742
2743 static inline int
2744 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2745 {
2746         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2747         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2748
2749         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2750
2751         if(adapter->link_duplex != HALF_DUPLEX)
2752                 goto no_fifo_stall_required;
2753
2754         if(atomic_read(&adapter->tx_fifo_stall))
2755                 return 1;
2756
2757         if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2758                 atomic_set(&adapter->tx_fifo_stall, 1);
2759                 return 1;
2760         }
2761
2762 no_fifo_stall_required:
2763         adapter->tx_fifo_head += skb_fifo_len;
2764         if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
2765                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2766         return 0;
2767 }
2768
2769 #define MINIMUM_DHCP_PACKET_SIZE 282
2770 static inline int
2771 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2772 {
2773         struct e1000_hw *hw =  &adapter->hw;
2774         uint16_t length, offset;
2775         if(vlan_tx_tag_present(skb)) {
2776                 if(!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2777                         ( adapter->hw.mng_cookie.status &
2778                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2779                         return 0;
2780         }
2781         if ((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) {
2782                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2783                 if((htons(ETH_P_IP) == eth->h_proto)) {
2784                         const struct iphdr *ip = 
2785                                 (struct iphdr *)((uint8_t *)skb->data+14);
2786                         if(IPPROTO_UDP == ip->protocol) {
2787                                 struct udphdr *udp = 
2788                                         (struct udphdr *)((uint8_t *)ip + 
2789                                                 (ip->ihl << 2));
2790                                 if(ntohs(udp->dest) == 67) {
2791                                         offset = (uint8_t *)udp + 8 - skb->data;
2792                                         length = skb->len - offset;
2793
2794                                         return e1000_mng_write_dhcp_info(hw,
2795                                                         (uint8_t *)udp + 8, 
2796                                                         length);
2797                                 }
2798                         }
2799                 }
2800         }
2801         return 0;
2802 }
2803
2804 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2805 static int
2806 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2807 {
2808         struct e1000_adapter *adapter = netdev_priv(netdev);
2809         struct e1000_tx_ring *tx_ring;
2810         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2811         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2812         unsigned int tx_flags = 0;
2813         unsigned int len = skb->len;
2814         unsigned long flags;
2815         unsigned int nr_frags = 0;
2816         unsigned int mss = 0;
2817         int count = 0;
2818         int tso;
2819         unsigned int f;
2820         len -= skb->data_len;
2821
2822 #ifdef CONFIG_E1000_MQ
2823         tx_ring = *per_cpu_ptr(adapter->cpu_tx_ring, smp_processor_id());
2824 #else
2825         tx_ring = adapter->tx_ring;
2826 #endif
2827
2828         if (unlikely(skb->len <= 0)) {
2829                 dev_kfree_skb_any(skb);
2830                 return NETDEV_TX_OK;
2831         }
2832
2833 #ifdef NETIF_F_TSO
2834         mss = skb_shinfo(skb)->tso_size;
2835         /* The controller does a simple calculation to 
2836          * make sure there is enough room in the FIFO before
2837          * initiating the DMA for each buffer.  The calc is:
2838          * 4 = ceil(buffer len/mss).  To make sure we don't
2839          * overrun the FIFO, adjust the max buffer len if mss
2840          * drops. */
2841         if(mss) {
2842                 uint8_t hdr_len;
2843                 max_per_txd = min(mss << 2, max_per_txd);
2844                 max_txd_pwr = fls(max_per_txd) - 1;
2845
2846         /* TSO Workaround for 82571/2 Controllers -- if skb->data
2847          * points to just header, pull a few bytes of payload from
2848          * frags into skb->data */
2849                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2850                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len)) &&
2851                         (adapter->hw.mac_type == e1000_82571 ||
2852                         adapter->hw.mac_type == e1000_82572)) {
2853                         unsigned int pull_size;
2854                         pull_size = min((unsigned int)4, skb->data_len);
2855                         if (!__pskb_pull_tail(skb, pull_size)) {
2856                                 printk(KERN_ERR "__pskb_pull_tail failed.\n");
2857                                 dev_kfree_skb_any(skb);
2858                                 return -EFAULT;
2859                         }
2860                         len = skb->len - skb->data_len;
2861                 }
2862         }
2863
2864         if((mss) || (skb->ip_summed == CHECKSUM_HW))
2865         /* reserve a descriptor for the offload context */
2866                 count++;
2867         count++;
2868 #else
2869         if(skb->ip_summed == CHECKSUM_HW)
2870                 count++;
2871 #endif
2872
2873 #ifdef NETIF_F_TSO
2874         /* Controller Erratum workaround */
2875         if (!skb->data_len && tx_ring->last_tx_tso &&
2876                 !skb_shinfo(skb)->tso_size)
2877                 count++;
2878 #endif
2879
2880         count += TXD_USE_COUNT(len, max_txd_pwr);
2881
2882         if(adapter->pcix_82544)
2883                 count++;
2884
2885         /* work-around for errata 10 and it applies to all controllers 
2886          * in PCI-X mode, so add one more descriptor to the count
2887          */
2888         if(unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2889                         (len > 2015)))
2890                 count++;
2891
2892         nr_frags = skb_shinfo(skb)->nr_frags;
2893         for(f = 0; f < nr_frags; f++)
2894                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
2895                                        max_txd_pwr);
2896         if(adapter->pcix_82544)
2897                 count += nr_frags;
2898
2899         if(adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) )
2900                 e1000_transfer_dhcp_info(adapter, skb);
2901
2902         local_irq_save(flags);
2903         if (!spin_trylock(&tx_ring->tx_lock)) {
2904                 /* Collision - tell upper layer to requeue */
2905                 local_irq_restore(flags);
2906                 return NETDEV_TX_LOCKED;
2907         }
2908
2909         /* need: count + 2 desc gap to keep tail from touching
2910          * head, otherwise try next time */
2911         if (unlikely(E1000_DESC_UNUSED(tx_ring) < count + 2)) {
2912                 netif_stop_queue(netdev);
2913                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2914                 return NETDEV_TX_BUSY;
2915         }
2916
2917         if(unlikely(adapter->hw.mac_type == e1000_82547)) {
2918                 if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
2919                         netif_stop_queue(netdev);
2920                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
2921                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2922                         return NETDEV_TX_BUSY;
2923                 }
2924         }
2925
2926         if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
2927                 tx_flags |= E1000_TX_FLAGS_VLAN;
2928                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
2929         }
2930
2931         first = tx_ring->next_to_use;
2932         
2933         tso = e1000_tso(adapter, tx_ring, skb);
2934         if (tso < 0) {
2935                 dev_kfree_skb_any(skb);
2936                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2937                 return NETDEV_TX_OK;
2938         }
2939
2940         if (likely(tso)) {
2941                 tx_ring->last_tx_tso = 1;
2942                 tx_flags |= E1000_TX_FLAGS_TSO;
2943         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
2944                 tx_flags |= E1000_TX_FLAGS_CSUM;
2945
2946         /* Old method was to assume IPv4 packet by default if TSO was enabled.
2947          * 82571 hardware supports TSO capabilities for IPv6 as well...
2948          * no longer assume, we must. */
2949         if (likely(skb->protocol == ntohs(ETH_P_IP)))
2950                 tx_flags |= E1000_TX_FLAGS_IPV4;
2951
2952         e1000_tx_queue(adapter, tx_ring, tx_flags,
2953                        e1000_tx_map(adapter, tx_ring, skb, first,
2954                                     max_per_txd, nr_frags, mss));
2955
2956         netdev->trans_start = jiffies;
2957
2958         /* Make sure there is space in the ring for the next send. */
2959         if (unlikely(E1000_DESC_UNUSED(tx_ring) < MAX_SKB_FRAGS + 2))
2960                 netif_stop_queue(netdev);
2961
2962         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
2963         return NETDEV_TX_OK;
2964 }
2965
2966 /**
2967  * e1000_tx_timeout - Respond to a Tx Hang
2968  * @netdev: network interface device structure
2969  **/
2970
2971 static void
2972 e1000_tx_timeout(struct net_device *netdev)
2973 {
2974         struct e1000_adapter *adapter = netdev_priv(netdev);
2975
2976         /* Do the reset outside of interrupt context */
2977         schedule_work(&adapter->tx_timeout_task);
2978 }
2979
2980 static void
2981 e1000_tx_timeout_task(struct net_device *netdev)
2982 {
2983         struct e1000_adapter *adapter = netdev_priv(netdev);
2984
2985         adapter->tx_timeout_count++;
2986         e1000_down(adapter);
2987         e1000_up(adapter);
2988 }
2989
2990 /**
2991  * e1000_get_stats - Get System Network Statistics
2992  * @netdev: network interface device structure
2993  *
2994  * Returns the address of the device statistics structure.
2995  * The statistics are actually updated from the timer callback.
2996  **/
2997
2998 static struct net_device_stats *
2999 e1000_get_stats(struct net_device *netdev)
3000 {
3001         struct e1000_adapter *adapter = netdev_priv(netdev);
3002
3003         /* only return the current stats */
3004         return &adapter->net_stats;
3005 }
3006
3007 /**
3008  * e1000_change_mtu - Change the Maximum Transfer Unit
3009  * @netdev: network interface device structure
3010  * @new_mtu: new value for maximum frame size
3011  *
3012  * Returns 0 on success, negative on failure
3013  **/
3014
3015 static int
3016 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3017 {
3018         struct e1000_adapter *adapter = netdev_priv(netdev);
3019         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3020
3021         if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3022                 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3023                         DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3024                 return -EINVAL;
3025         }
3026
3027         /* Adapter-specific max frame size limits. */
3028         switch (adapter->hw.mac_type) {
3029         case e1000_82542_rev2_0:
3030         case e1000_82542_rev2_1:
3031         case e1000_82573:
3032                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3033                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3034                         return -EINVAL;
3035                 }
3036                 break;
3037         case e1000_82571:
3038         case e1000_82572:
3039 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3040                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3041                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3042                         return -EINVAL;
3043                 }
3044                 break;
3045         default:
3046                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3047                 break;
3048         }
3049
3050         /* since the driver code now supports splitting a packet across
3051          * multiple descriptors, most of the fifo related limitations on
3052          * jumbo frame traffic have gone away.
3053          * simply use 2k descriptors for everything.
3054          *
3055          * NOTE: dev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3056          * means we reserve 2 more, this pushes us to allocate from the next
3057          * larger slab size
3058          * i.e. RXBUFFER_2048 --> size-4096 slab */
3059
3060         /* recent hardware supports 1KB granularity */
3061         if (adapter->hw.mac_type > e1000_82547_rev_2) {
3062                 adapter->rx_buffer_len =
3063                     ((max_frame < E1000_RXBUFFER_2048) ?
3064                         max_frame : E1000_RXBUFFER_2048);
3065                 E1000_ROUNDUP(adapter->rx_buffer_len, 1024);
3066         } else
3067                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3068
3069         netdev->mtu = new_mtu;
3070
3071         if(netif_running(netdev)) {
3072                 e1000_down(adapter);
3073                 e1000_up(adapter);
3074         }
3075
3076         adapter->hw.max_frame_size = max_frame;
3077
3078         return 0;
3079 }
3080
3081 /**
3082  * e1000_update_stats - Update the board statistics counters
3083  * @adapter: board private structure
3084  **/
3085
3086 void
3087 e1000_update_stats(struct e1000_adapter *adapter)
3088 {
3089         struct e1000_hw *hw = &adapter->hw;
3090         unsigned long flags;
3091         uint16_t phy_tmp;
3092
3093 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3094
3095         spin_lock_irqsave(&adapter->stats_lock, flags);
3096
3097         /* these counters are modified from e1000_adjust_tbi_stats,
3098          * called from the interrupt context, so they must only
3099          * be written while holding adapter->stats_lock
3100          */
3101
3102         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3103         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3104         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3105         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3106         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3107         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3108         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3109         adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3110         adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3111         adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3112         adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3113         adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3114         adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3115
3116         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3117         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3118         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3119         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3120         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3121         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3122         adapter->stats.dc += E1000_READ_REG(hw, DC);
3123         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3124         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3125         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3126         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3127         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3128         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3129         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3130         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3131         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3132         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3133         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3134         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3135         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3136         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3137         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3138         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3139         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3140         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3141         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3142         adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3143         adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3144         adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3145         adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3146         adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3147         adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3148         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3149         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3150
3151         /* used for adaptive IFS */
3152
3153         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3154         adapter->stats.tpt += hw->tx_packet_delta;
3155         hw->collision_delta = E1000_READ_REG(hw, COLC);
3156         adapter->stats.colc += hw->collision_delta;
3157
3158         if(hw->mac_type >= e1000_82543) {
3159                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3160                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3161                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3162                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3163                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3164                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3165         }
3166         if(hw->mac_type > e1000_82547_rev_2) {
3167                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3168                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3169                 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3170                 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3171                 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3172                 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3173                 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3174                 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3175                 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3176         }
3177
3178         /* Fill out the OS statistics structure */
3179
3180         adapter->net_stats.rx_packets = adapter->stats.gprc;
3181         adapter->net_stats.tx_packets = adapter->stats.gptc;
3182         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3183         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3184         adapter->net_stats.multicast = adapter->stats.mprc;
3185         adapter->net_stats.collisions = adapter->stats.colc;
3186
3187         /* Rx Errors */
3188
3189         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3190                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3191                 adapter->stats.rlec + adapter->stats.cexterr;
3192         adapter->net_stats.rx_dropped = 0;
3193         adapter->net_stats.rx_length_errors = adapter->stats.rlec;
3194         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3195         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3196         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3197
3198         /* Tx Errors */
3199
3200         adapter->net_stats.tx_errors = adapter->stats.ecol +
3201                                        adapter->stats.latecol;
3202         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3203         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3204         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3205
3206         /* Tx Dropped needs to be maintained elsewhere */
3207
3208         /* Phy Stats */
3209
3210         if(hw->media_type == e1000_media_type_copper) {
3211                 if((adapter->link_speed == SPEED_1000) &&
3212                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3213                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3214                         adapter->phy_stats.idle_errors += phy_tmp;
3215                 }
3216
3217                 if((hw->mac_type <= e1000_82546) &&
3218                    (hw->phy_type == e1000_phy_m88) &&
3219                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3220                         adapter->phy_stats.receive_errors += phy_tmp;
3221         }
3222
3223         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3224 }
3225
3226 #ifdef CONFIG_E1000_MQ
3227 void
3228 e1000_rx_schedule(void *data)
3229 {
3230         struct net_device *poll_dev, *netdev = data;
3231         struct e1000_adapter *adapter = netdev->priv;
3232         int this_cpu = get_cpu();
3233
3234         poll_dev = *per_cpu_ptr(adapter->cpu_netdev, this_cpu);
3235         if (poll_dev == NULL) {
3236                 put_cpu();
3237                 return;
3238         }
3239
3240         if (likely(netif_rx_schedule_prep(poll_dev)))
3241                 __netif_rx_schedule(poll_dev);
3242         else
3243                 e1000_irq_enable(adapter);
3244
3245         put_cpu();
3246 }
3247 #endif
3248
3249 /**
3250  * e1000_intr - Interrupt Handler
3251  * @irq: interrupt number
3252  * @data: pointer to a network interface device structure
3253  * @pt_regs: CPU registers structure
3254  **/
3255
3256 static irqreturn_t
3257 e1000_intr(int irq, void *data, struct pt_regs *regs)
3258 {
3259         struct net_device *netdev = data;
3260         struct e1000_adapter *adapter = netdev_priv(netdev);
3261         struct e1000_hw *hw = &adapter->hw;
3262         uint32_t icr = E1000_READ_REG(hw, ICR);
3263 #ifndef CONFIG_E1000_NAPI
3264         int i;
3265 #else
3266         /* Interrupt Auto-Mask...upon reading ICR,
3267          * interrupts are masked.  No need for the
3268          * IMC write, but it does mean we should
3269          * account for it ASAP. */
3270         if (likely(hw->mac_type >= e1000_82571))
3271                 atomic_inc(&adapter->irq_sem);
3272 #endif
3273
3274         if (unlikely(!icr)) {
3275 #ifdef CONFIG_E1000_NAPI
3276                 if (hw->mac_type >= e1000_82571)
3277                         e1000_irq_enable(adapter);
3278 #endif
3279                 return IRQ_NONE;  /* Not our interrupt */
3280         }
3281
3282         if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3283                 hw->get_link_status = 1;
3284                 mod_timer(&adapter->watchdog_timer, jiffies);
3285         }
3286
3287 #ifdef CONFIG_E1000_NAPI
3288         if (unlikely(hw->mac_type < e1000_82571)) {
3289                 atomic_inc(&adapter->irq_sem);
3290                 E1000_WRITE_REG(hw, IMC, ~0);
3291                 E1000_WRITE_FLUSH(hw);
3292         }
3293 #ifdef CONFIG_E1000_MQ
3294         if (atomic_read(&adapter->rx_sched_call_data.count) == 0) {
3295                 /* We must setup the cpumask once count == 0 since
3296                  * each cpu bit is cleared when the work is done. */
3297                 adapter->rx_sched_call_data.cpumask = adapter->cpumask;
3298                 atomic_add(adapter->num_rx_queues - 1, &adapter->irq_sem);
3299                 atomic_set(&adapter->rx_sched_call_data.count,
3300                            adapter->num_rx_queues);
3301                 smp_call_async_mask(&adapter->rx_sched_call_data);
3302         } else {
3303                 printk("call_data.count == %u\n", atomic_read(&adapter->rx_sched_call_data.count));
3304         }
3305 #else /* if !CONFIG_E1000_MQ */
3306         if (likely(netif_rx_schedule_prep(&adapter->polling_netdev[0])))
3307                 __netif_rx_schedule(&adapter->polling_netdev[0]);
3308         else
3309                 e1000_irq_enable(adapter);
3310 #endif /* CONFIG_E1000_MQ */
3311
3312 #else /* if !CONFIG_E1000_NAPI */
3313         /* Writing IMC and IMS is needed for 82547.
3314            Due to Hub Link bus being occupied, an interrupt
3315            de-assertion message is not able to be sent.
3316            When an interrupt assertion message is generated later,
3317            two messages are re-ordered and sent out.
3318            That causes APIC to think 82547 is in de-assertion
3319            state, while 82547 is in assertion state, resulting
3320            in dead lock. Writing IMC forces 82547 into
3321            de-assertion state.
3322         */
3323         if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){
3324                 atomic_inc(&adapter->irq_sem);
3325                 E1000_WRITE_REG(hw, IMC, ~0);
3326         }
3327
3328         for(i = 0; i < E1000_MAX_INTR; i++)
3329                 if(unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3330                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3331                         break;
3332
3333         if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3334                 e1000_irq_enable(adapter);
3335
3336 #endif /* CONFIG_E1000_NAPI */
3337
3338         return IRQ_HANDLED;
3339 }
3340
3341 #ifdef CONFIG_E1000_NAPI
3342 /**
3343  * e1000_clean - NAPI Rx polling callback
3344  * @adapter: board private structure
3345  **/
3346
3347 static int
3348 e1000_clean(struct net_device *poll_dev, int *budget)
3349 {
3350         struct e1000_adapter *adapter;
3351         int work_to_do = min(*budget, poll_dev->quota);
3352         int tx_cleaned = 0, i = 0, work_done = 0;
3353
3354         /* Must NOT use netdev_priv macro here. */
3355         adapter = poll_dev->priv;
3356
3357         /* Keep link state information with original netdev */
3358         if (!netif_carrier_ok(adapter->netdev))
3359                 goto quit_polling;
3360
3361         while (poll_dev != &adapter->polling_netdev[i]) {
3362                 i++;
3363                 if (unlikely(i == adapter->num_rx_queues))
3364                         BUG();
3365         }
3366
3367         if (likely(adapter->num_tx_queues == 1)) {
3368                 /* e1000_clean is called per-cpu.  This lock protects
3369                  * tx_ring[0] from being cleaned by multiple cpus
3370                  * simultaneously.  A failure obtaining the lock means
3371                  * tx_ring[0] is currently being cleaned anyway. */
3372                 if (spin_trylock(&adapter->tx_queue_lock)) {
3373                         tx_cleaned = e1000_clean_tx_irq(adapter,
3374                                                         &adapter->tx_ring[0]);
3375                         spin_unlock(&adapter->tx_queue_lock);
3376                 }
3377         } else
3378                 tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[i]);
3379
3380         adapter->clean_rx(adapter, &adapter->rx_ring[i],
3381                           &work_done, work_to_do);
3382
3383         *budget -= work_done;
3384         poll_dev->quota -= work_done;
3385         
3386         /* If no Tx and not enough Rx work done, exit the polling mode */
3387         if((!tx_cleaned && (work_done == 0)) ||
3388            !netif_running(adapter->netdev)) {
3389 quit_polling:
3390                 netif_rx_complete(poll_dev);
3391                 e1000_irq_enable(adapter);
3392                 return 0;
3393         }
3394
3395         return 1;
3396 }
3397
3398 #endif
3399 /**
3400  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3401  * @adapter: board private structure
3402  **/
3403
3404 static boolean_t
3405 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3406                    struct e1000_tx_ring *tx_ring)
3407 {
3408         struct net_device *netdev = adapter->netdev;
3409         struct e1000_tx_desc *tx_desc, *eop_desc;
3410         struct e1000_buffer *buffer_info;
3411         unsigned int i, eop;
3412         boolean_t cleaned = FALSE;
3413
3414         i = tx_ring->next_to_clean;
3415         eop = tx_ring->buffer_info[i].next_to_watch;
3416         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3417
3418         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3419                 for(cleaned = FALSE; !cleaned; ) {
3420                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3421                         buffer_info = &tx_ring->buffer_info[i];
3422                         cleaned = (i == eop);
3423
3424 #ifdef CONFIG_E1000_MQ
3425                         tx_ring->tx_stats.bytes += buffer_info->length;
3426 #endif
3427                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3428                         memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3429
3430                         if(unlikely(++i == tx_ring->count)) i = 0;
3431                 }
3432
3433 #ifdef CONFIG_E1000_MQ
3434                 tx_ring->tx_stats.packets++;
3435 #endif
3436
3437                 eop = tx_ring->buffer_info[i].next_to_watch;
3438                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3439         }
3440
3441         tx_ring->next_to_clean = i;
3442
3443         spin_lock(&tx_ring->tx_lock);
3444
3445         if(unlikely(cleaned && netif_queue_stopped(netdev) &&
3446                     netif_carrier_ok(netdev)))
3447                 netif_wake_queue(netdev);
3448
3449         spin_unlock(&tx_ring->tx_lock);
3450
3451         if (adapter->detect_tx_hung) {
3452                 /* Detect a transmit hang in hardware, this serializes the
3453                  * check with the clearing of time_stamp and movement of i */
3454                 adapter->detect_tx_hung = FALSE;
3455                 if (tx_ring->buffer_info[eop].dma &&
3456                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3457                                adapter->tx_timeout_factor * HZ)
3458                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3459                          E1000_STATUS_TXOFF)) {
3460
3461                         /* detected Tx unit hang */
3462                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3463                                         "  Tx Queue             <%lu>\n"
3464                                         "  TDH                  <%x>\n"
3465                                         "  TDT                  <%x>\n"
3466                                         "  next_to_use          <%x>\n"
3467                                         "  next_to_clean        <%x>\n"
3468                                         "buffer_info[next_to_clean]\n"
3469                                         "  time_stamp           <%lx>\n"
3470                                         "  next_to_watch        <%x>\n"
3471                                         "  jiffies              <%lx>\n"
3472                                         "  next_to_watch.status <%x>\n",
3473                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3474                                         sizeof(struct e1000_tx_ring)),
3475                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3476                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3477                                 tx_ring->next_to_use,
3478                                 tx_ring->next_to_clean,
3479                                 tx_ring->buffer_info[eop].time_stamp,
3480                                 eop,
3481                                 jiffies,
3482                                 eop_desc->upper.fields.status);
3483                         netif_stop_queue(netdev);
3484                 }
3485         }
3486         return cleaned;
3487 }
3488
3489 /**
3490  * e1000_rx_checksum - Receive Checksum Offload for 82543
3491  * @adapter:     board private structure
3492  * @status_err:  receive descriptor status and error fields
3493  * @csum:        receive descriptor csum field
3494  * @sk_buff:     socket buffer with received data
3495  **/
3496
3497 static inline void
3498 e1000_rx_checksum(struct e1000_adapter *adapter,
3499                   uint32_t status_err, uint32_t csum,
3500                   struct sk_buff *skb)
3501 {
3502         uint16_t status = (uint16_t)status_err;
3503         uint8_t errors = (uint8_t)(status_err >> 24);
3504         skb->ip_summed = CHECKSUM_NONE;
3505
3506         /* 82543 or newer only */
3507         if(unlikely(adapter->hw.mac_type < e1000_82543)) return;
3508         /* Ignore Checksum bit is set */
3509         if(unlikely(status & E1000_RXD_STAT_IXSM)) return;
3510         /* TCP/UDP checksum error bit is set */
3511         if(unlikely(errors & E1000_RXD_ERR_TCPE)) {
3512                 /* let the stack verify checksum errors */
3513                 adapter->hw_csum_err++;
3514                 return;
3515         }
3516         /* TCP/UDP Checksum has not been calculated */
3517         if(adapter->hw.mac_type <= e1000_82547_rev_2) {
3518                 if(!(status & E1000_RXD_STAT_TCPCS))
3519                         return;
3520         } else {
3521                 if(!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3522                         return;
3523         }
3524         /* It must be a TCP or UDP packet with a valid checksum */
3525         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3526                 /* TCP checksum is good */
3527                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3528         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3529                 /* IP fragment with UDP payload */
3530                 /* Hardware complements the payload checksum, so we undo it
3531                  * and then put the value in host order for further stack use.
3532                  */
3533                 csum = ntohl(csum ^ 0xFFFF);
3534                 skb->csum = csum;
3535                 skb->ip_summed = CHECKSUM_HW;
3536         }
3537         adapter->hw_csum_good++;
3538 }
3539
3540 /**
3541  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3542  * @adapter: board private structure
3543  **/
3544
3545 static boolean_t
3546 #ifdef CONFIG_E1000_NAPI
3547 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3548                    struct e1000_rx_ring *rx_ring,
3549                    int *work_done, int work_to_do)
3550 #else
3551 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3552                    struct e1000_rx_ring *rx_ring)
3553 #endif
3554 {
3555         struct net_device *netdev = adapter->netdev;
3556         struct pci_dev *pdev = adapter->pdev;
3557         struct e1000_rx_desc *rx_desc;
3558         struct e1000_buffer *buffer_info;
3559         unsigned long flags;
3560         uint32_t length;
3561         uint8_t last_byte;
3562         unsigned int i;
3563         int cleaned_count = 0;
3564         boolean_t cleaned = FALSE, multi_descriptor = FALSE;
3565
3566         i = rx_ring->next_to_clean;
3567         rx_desc = E1000_RX_DESC(*rx_ring, i);
3568         buffer_info = &rx_ring->buffer_info[i];
3569
3570         while (rx_desc->status & E1000_RXD_STAT_DD) {
3571                 struct sk_buff *skb;
3572                 u8 status;
3573 #ifdef CONFIG_E1000_NAPI
3574                 if(*work_done >= work_to_do)
3575                         break;
3576                 (*work_done)++;
3577 #endif
3578                 status = rx_desc->status;
3579                 skb = buffer_info->skb;
3580                 cleaned = TRUE;
3581                 cleaned_count++;
3582                 pci_unmap_single(pdev,
3583                                  buffer_info->dma,
3584                                  buffer_info->length,
3585                                  PCI_DMA_FROMDEVICE);
3586
3587                 length = le16_to_cpu(rx_desc->length);
3588
3589                 skb_put(skb, length);
3590
3591                 if (!(status & E1000_RXD_STAT_EOP)) {
3592                         if (!rx_ring->rx_skb_top) {
3593                                 rx_ring->rx_skb_top = skb;
3594                                 rx_ring->rx_skb_top->len = length;
3595                                 rx_ring->rx_skb_prev = skb;
3596                         } else {
3597                                 if (skb_shinfo(rx_ring->rx_skb_top)->frag_list) {
3598                                         rx_ring->rx_skb_prev->next = skb;
3599                                         skb->prev = rx_ring->rx_skb_prev;
3600                                 } else {
3601                                         skb_shinfo(rx_ring->rx_skb_top)->frag_list = skb;
3602                                 }
3603                                 rx_ring->rx_skb_prev = skb;
3604                                 rx_ring->rx_skb_top->data_len += length;
3605                         }
3606                         goto next_desc;
3607                 } else {
3608                         if (rx_ring->rx_skb_top) {
3609                                 if (skb_shinfo(rx_ring->rx_skb_top)
3610                                                         ->frag_list) {
3611                                         rx_ring->rx_skb_prev->next = skb;
3612                                         skb->prev = rx_ring->rx_skb_prev;
3613                                 } else
3614                                         skb_shinfo(rx_ring->rx_skb_top)
3615                                                         ->frag_list = skb;
3616
3617                                 rx_ring->rx_skb_top->data_len += length;
3618                                 rx_ring->rx_skb_top->len +=
3619                                         rx_ring->rx_skb_top->data_len;
3620
3621                                 skb = rx_ring->rx_skb_top;
3622                                 multi_descriptor = TRUE;
3623                                 rx_ring->rx_skb_top = NULL;
3624                                 rx_ring->rx_skb_prev = NULL;
3625                         }
3626                 }
3627
3628                 if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3629                         last_byte = *(skb->data + length - 1);
3630                         if (TBI_ACCEPT(&adapter->hw, status,
3631                                       rx_desc->errors, length, last_byte)) {
3632                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3633                                 e1000_tbi_adjust_stats(&adapter->hw,
3634                                                        &adapter->stats,
3635                                                        length, skb->data);
3636                                 spin_unlock_irqrestore(&adapter->stats_lock,
3637                                                        flags);
3638                                 length--;
3639                         } else {
3640                                 dev_kfree_skb_irq(skb);
3641                                 goto next_desc;
3642                         }
3643                 }
3644
3645                 /* code added for copybreak, this should improve
3646                  * performance for small packets with large amounts
3647                  * of reassembly being done in the stack */
3648 #define E1000_CB_LENGTH 256
3649                 if ((length < E1000_CB_LENGTH) &&
3650                    !rx_ring->rx_skb_top &&
3651                    /* or maybe (status & E1000_RXD_STAT_EOP) && */
3652                    !multi_descriptor) {
3653                         struct sk_buff *new_skb =
3654                             dev_alloc_skb(length + NET_IP_ALIGN);
3655                         if (new_skb) {
3656                                 skb_reserve(new_skb, NET_IP_ALIGN);
3657                                 new_skb->dev = netdev;
3658                                 memcpy(new_skb->data - NET_IP_ALIGN,
3659                                        skb->data - NET_IP_ALIGN,
3660                                        length + NET_IP_ALIGN);
3661                                 /* save the skb in buffer_info as good */
3662                                 buffer_info->skb = skb;
3663                                 skb = new_skb;
3664                                 skb_put(skb, length);
3665                         }
3666                 }
3667
3668                 /* end copybreak code */
3669
3670                 /* Receive Checksum Offload */
3671                 e1000_rx_checksum(adapter,
3672                                   (uint32_t)(status) |
3673                                   ((uint32_t)(rx_desc->errors) << 24),
3674                                   rx_desc->csum, skb);
3675                 skb->protocol = eth_type_trans(skb, netdev);
3676 #ifdef CONFIG_E1000_NAPI
3677                 if(unlikely(adapter->vlgrp &&
3678                             (status & E1000_RXD_STAT_VP))) {
3679                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3680                                                  le16_to_cpu(rx_desc->special) &
3681                                                  E1000_RXD_SPC_VLAN_MASK);
3682                 } else {
3683                         netif_receive_skb(skb);
3684                 }
3685 #else /* CONFIG_E1000_NAPI */
3686                 if(unlikely(adapter->vlgrp &&
3687                             (status & E1000_RXD_STAT_VP))) {
3688                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3689                                         le16_to_cpu(rx_desc->special) &
3690                                         E1000_RXD_SPC_VLAN_MASK);
3691                 } else {
3692                         netif_rx(skb);
3693                 }
3694 #endif /* CONFIG_E1000_NAPI */
3695                 netdev->last_rx = jiffies;
3696 #ifdef CONFIG_E1000_MQ
3697                 rx_ring->rx_stats.packets++;
3698                 rx_ring->rx_stats.bytes += length;
3699 #endif
3700
3701 next_desc:
3702                 rx_desc->status = 0;
3703
3704                 /* return some buffers to hardware, one at a time is too slow */
3705                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3706                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3707                         cleaned_count = 0;
3708                 }
3709
3710         }
3711         rx_ring->next_to_clean = i;
3712
3713         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3714         if (cleaned_count)
3715                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3716
3717         return cleaned;
3718 }
3719
3720 /**
3721  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3722  * @adapter: board private structure
3723  **/
3724
3725 static boolean_t
3726 #ifdef CONFIG_E1000_NAPI
3727 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3728                       struct e1000_rx_ring *rx_ring,
3729                       int *work_done, int work_to_do)
3730 #else
3731 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3732                       struct e1000_rx_ring *rx_ring)
3733 #endif
3734 {
3735         union e1000_rx_desc_packet_split *rx_desc;
3736         struct net_device *netdev = adapter->netdev;
3737         struct pci_dev *pdev = adapter->pdev;
3738         struct e1000_buffer *buffer_info;
3739         struct e1000_ps_page *ps_page;
3740         struct e1000_ps_page_dma *ps_page_dma;
3741         struct sk_buff *skb;
3742         unsigned int i, j;
3743         uint32_t length, staterr;
3744         int cleaned_count = 0;
3745         boolean_t cleaned = FALSE;
3746
3747         i = rx_ring->next_to_clean;
3748         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3749         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3750
3751         while(staterr & E1000_RXD_STAT_DD) {
3752                 buffer_info = &rx_ring->buffer_info[i];
3753                 ps_page = &rx_ring->ps_page[i];
3754                 ps_page_dma = &rx_ring->ps_page_dma[i];
3755 #ifdef CONFIG_E1000_NAPI
3756                 if(unlikely(*work_done >= work_to_do))
3757                         break;
3758                 (*work_done)++;
3759 #endif
3760                 cleaned = TRUE;
3761                 cleaned_count++;
3762                 pci_unmap_single(pdev, buffer_info->dma,
3763                                  buffer_info->length,
3764                                  PCI_DMA_FROMDEVICE);
3765
3766                 skb = buffer_info->skb;
3767
3768                 if(unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3769                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3770                                   " the full packet\n", netdev->name);
3771                         dev_kfree_skb_irq(skb);
3772                         goto next_desc;
3773                 }
3774
3775                 if(unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3776                         dev_kfree_skb_irq(skb);
3777                         goto next_desc;
3778                 }
3779
3780                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3781
3782                 if(unlikely(!length)) {
3783                         E1000_DBG("%s: Last part of the packet spanning"
3784                                   " multiple descriptors\n", netdev->name);
3785                         dev_kfree_skb_irq(skb);
3786                         goto next_desc;
3787                 }
3788
3789                 /* Good Receive */
3790                 skb_put(skb, length);
3791
3792                 for(j = 0; j < adapter->rx_ps_pages; j++) {
3793                         if(!(length = le16_to_cpu(rx_desc->wb.upper.length[j])))
3794                                 break;
3795
3796                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3797                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
3798                         ps_page_dma->ps_page_dma[j] = 0;
3799                         skb_shinfo(skb)->frags[j].page =
3800                                 ps_page->ps_page[j];
3801                         ps_page->ps_page[j] = NULL;
3802                         skb_shinfo(skb)->frags[j].page_offset = 0;
3803                         skb_shinfo(skb)->frags[j].size = length;
3804                         skb_shinfo(skb)->nr_frags++;
3805                         skb->len += length;
3806                         skb->data_len += length;
3807                 }
3808
3809                 e1000_rx_checksum(adapter, staterr,
3810                                   rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
3811                 skb->protocol = eth_type_trans(skb, netdev);
3812
3813                 if(likely(rx_desc->wb.upper.header_status &
3814                           E1000_RXDPS_HDRSTAT_HDRSP))
3815                         adapter->rx_hdr_split++;
3816 #ifdef CONFIG_E1000_NAPI
3817                 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3818                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3819                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3820                                 E1000_RXD_SPC_VLAN_MASK);
3821                 } else {
3822                         netif_receive_skb(skb);
3823                 }
3824 #else /* CONFIG_E1000_NAPI */
3825                 if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
3826                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3827                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
3828                                 E1000_RXD_SPC_VLAN_MASK);
3829                 } else {
3830                         netif_rx(skb);
3831                 }
3832 #endif /* CONFIG_E1000_NAPI */
3833                 netdev->last_rx = jiffies;
3834 #ifdef CONFIG_E1000_MQ
3835                 rx_ring->rx_stats.packets++;
3836                 rx_ring->rx_stats.bytes += length;
3837 #endif
3838
3839 next_desc:
3840                 rx_desc->wb.middle.status_error &= ~0xFF;
3841                 buffer_info->skb = NULL;
3842
3843                 /* return some buffers to hardware, one at a time is too slow */
3844                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3845                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3846                         cleaned_count = 0;
3847                 }
3848
3849                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3850         }
3851         rx_ring->next_to_clean = i;
3852
3853         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3854         if (cleaned_count)
3855                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3856
3857         return cleaned;
3858 }
3859
3860 /**
3861  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
3862  * @adapter: address of board private structure
3863  **/
3864
3865 static void
3866 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
3867                        struct e1000_rx_ring *rx_ring,
3868                        int cleaned_count)
3869 {
3870         struct net_device *netdev = adapter->netdev;
3871         struct pci_dev *pdev = adapter->pdev;
3872         struct e1000_rx_desc *rx_desc;
3873         struct e1000_buffer *buffer_info;
3874         struct sk_buff *skb;
3875         unsigned int i;
3876         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
3877
3878         i = rx_ring->next_to_use;
3879         buffer_info = &rx_ring->buffer_info[i];
3880
3881         while (cleaned_count--) {
3882                 if (!(skb = buffer_info->skb))
3883                         skb = dev_alloc_skb(bufsz);
3884                 else {
3885                         skb_trim(skb, 0);
3886                         goto map_skb;
3887                 }
3888
3889
3890                 if(unlikely(!skb)) {
3891                         /* Better luck next round */
3892                         adapter->alloc_rx_buff_failed++;
3893                         break;
3894                 }
3895
3896                 /* Fix for errata 23, can't cross 64kB boundary */
3897                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3898                         struct sk_buff *oldskb = skb;
3899                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
3900                                              "at %p\n", bufsz, skb->data);
3901                         /* Try again, without freeing the previous */
3902                         skb = dev_alloc_skb(bufsz);
3903                         /* Failed allocation, critical failure */
3904                         if (!skb) {
3905                                 dev_kfree_skb(oldskb);
3906                                 break;
3907                         }
3908
3909                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3910                                 /* give up */
3911                                 dev_kfree_skb(skb);
3912                                 dev_kfree_skb(oldskb);
3913                                 break; /* while !buffer_info->skb */
3914                         } else {
3915                                 /* Use new allocation */
3916                                 dev_kfree_skb(oldskb);
3917                         }
3918                 }
3919                 /* Make buffer alignment 2 beyond a 16 byte boundary
3920                  * this will result in a 16 byte aligned IP header after
3921                  * the 14 byte MAC header is removed
3922                  */
3923                 skb_reserve(skb, NET_IP_ALIGN);
3924
3925                 skb->dev = netdev;
3926
3927                 buffer_info->skb = skb;
3928                 buffer_info->length = adapter->rx_buffer_len;
3929 map_skb:
3930                 buffer_info->dma = pci_map_single(pdev,
3931                                                   skb->data,
3932                                                   adapter->rx_buffer_len,
3933                                                   PCI_DMA_FROMDEVICE);
3934
3935                 /* Fix for errata 23, can't cross 64kB boundary */
3936                 if (!e1000_check_64k_bound(adapter,
3937                                         (void *)(unsigned long)buffer_info->dma,
3938                                         adapter->rx_buffer_len)) {
3939                         DPRINTK(RX_ERR, ERR,
3940                                 "dma align check failed: %u bytes at %p\n",
3941                                 adapter->rx_buffer_len,
3942                                 (void *)(unsigned long)buffer_info->dma);
3943                         dev_kfree_skb(skb);
3944                         buffer_info->skb = NULL;
3945
3946                         pci_unmap_single(pdev, buffer_info->dma,
3947                                          adapter->rx_buffer_len,
3948                                          PCI_DMA_FROMDEVICE);
3949
3950                         break; /* while !buffer_info->skb */
3951                 }
3952                 rx_desc = E1000_RX_DESC(*rx_ring, i);
3953                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3954
3955                 if(unlikely(++i == rx_ring->count)) i = 0;
3956                 buffer_info = &rx_ring->buffer_info[i];
3957         }
3958
3959         if (likely(rx_ring->next_to_use != i)) {
3960                 rx_ring->next_to_use = i;
3961                 if (unlikely(i-- == 0))
3962                         i = (rx_ring->count - 1);
3963
3964                 /* Force memory writes to complete before letting h/w
3965                  * know there are new descriptors to fetch.  (Only
3966                  * applicable for weak-ordered memory model archs,
3967                  * such as IA-64). */
3968                 wmb();
3969                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
3970         }
3971 }
3972
3973 /**
3974  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
3975  * @adapter: address of board private structure
3976  **/
3977
3978 static void
3979 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
3980                           struct e1000_rx_ring *rx_ring,
3981                           int cleaned_count)
3982 {
3983         struct net_device *netdev = adapter->netdev;
3984         struct pci_dev *pdev = adapter->pdev;
3985         union e1000_rx_desc_packet_split *rx_desc;
3986         struct e1000_buffer *buffer_info;
3987         struct e1000_ps_page *ps_page;
3988         struct e1000_ps_page_dma *ps_page_dma;
3989         struct sk_buff *skb;
3990         unsigned int i, j;
3991
3992         i = rx_ring->next_to_use;
3993         buffer_info = &rx_ring->buffer_info[i];
3994         ps_page = &rx_ring->ps_page[i];
3995         ps_page_dma = &rx_ring->ps_page_dma[i];
3996
3997         while (cleaned_count--) {
3998                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3999
4000                 for(j = 0; j < PS_PAGE_BUFFERS; j++) {
4001                         if (j < adapter->rx_ps_pages) {
4002                                 if (likely(!ps_page->ps_page[j])) {
4003                                         ps_page->ps_page[j] =
4004                                                 alloc_page(GFP_ATOMIC);
4005                                         if (unlikely(!ps_page->ps_page[j])) {
4006                                                 adapter->alloc_rx_buff_failed++;
4007                                                 goto no_buffers;
4008                                         }
4009                                         ps_page_dma->ps_page_dma[j] =
4010                                                 pci_map_page(pdev,
4011                                                             ps_page->ps_page[j],
4012                                                             0, PAGE_SIZE,
4013                                                             PCI_DMA_FROMDEVICE);
4014                                 }
4015                                 /* Refresh the desc even if buffer_addrs didn't
4016                                  * change because each write-back erases 
4017                                  * this info.
4018                                  */
4019                                 rx_desc->read.buffer_addr[j+1] =
4020                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4021                         } else
4022                                 rx_desc->read.buffer_addr[j+1] = ~0;
4023                 }
4024
4025                 skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4026
4027                 if (unlikely(!skb)) {
4028                         adapter->alloc_rx_buff_failed++;
4029                         break;
4030                 }
4031
4032                 /* Make buffer alignment 2 beyond a 16 byte boundary
4033                  * this will result in a 16 byte aligned IP header after
4034                  * the 14 byte MAC header is removed
4035                  */
4036                 skb_reserve(skb, NET_IP_ALIGN);
4037
4038                 skb->dev = netdev;
4039
4040                 buffer_info->skb = skb;
4041                 buffer_info->length = adapter->rx_ps_bsize0;
4042                 buffer_info->dma = pci_map_single(pdev, skb->data,
4043                                                   adapter->rx_ps_bsize0,
4044                                                   PCI_DMA_FROMDEVICE);
4045
4046                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4047
4048                 if(unlikely(++i == rx_ring->count)) i = 0;
4049                 buffer_info = &rx_ring->buffer_info[i];
4050                 ps_page = &rx_ring->ps_page[i];
4051                 ps_page_dma = &rx_ring->ps_page_dma[i];
4052         }
4053
4054 no_buffers:
4055         if (likely(rx_ring->next_to_use != i)) {
4056                 rx_ring->next_to_use = i;
4057                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4058
4059                 /* Force memory writes to complete before letting h/w
4060                  * know there are new descriptors to fetch.  (Only
4061                  * applicable for weak-ordered memory model archs,
4062                  * such as IA-64). */
4063                 wmb();
4064                 /* Hardware increments by 16 bytes, but packet split
4065                  * descriptors are 32 bytes...so we increment tail
4066                  * twice as much.
4067                  */
4068                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4069         }
4070 }
4071
4072 /**
4073  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4074  * @adapter:
4075  **/
4076
4077 static void
4078 e1000_smartspeed(struct e1000_adapter *adapter)
4079 {
4080         uint16_t phy_status;
4081         uint16_t phy_ctrl;
4082
4083         if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4084            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4085                 return;
4086
4087         if(adapter->smartspeed == 0) {
4088                 /* If Master/Slave config fault is asserted twice,
4089                  * we assume back-to-back */
4090                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4091                 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4092                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4093                 if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4094                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4095                 if(phy_ctrl & CR_1000T_MS_ENABLE) {
4096                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4097                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4098                                             phy_ctrl);
4099                         adapter->smartspeed++;
4100                         if(!e1000_phy_setup_autoneg(&adapter->hw) &&
4101                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4102                                                &phy_ctrl)) {
4103                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4104                                              MII_CR_RESTART_AUTO_NEG);
4105                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4106                                                     phy_ctrl);
4107                         }
4108                 }
4109                 return;
4110         } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4111                 /* If still no link, perhaps using 2/3 pair cable */
4112                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4113                 phy_ctrl |= CR_1000T_MS_ENABLE;
4114                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4115                 if(!e1000_phy_setup_autoneg(&adapter->hw) &&
4116                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4117                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4118                                      MII_CR_RESTART_AUTO_NEG);
4119                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4120                 }
4121         }
4122         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4123         if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4124                 adapter->smartspeed = 0;
4125 }
4126
4127 /**
4128  * e1000_ioctl -
4129  * @netdev:
4130  * @ifreq:
4131  * @cmd:
4132  **/
4133
4134 static int
4135 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4136 {
4137         switch (cmd) {
4138         case SIOCGMIIPHY:
4139         case SIOCGMIIREG:
4140         case SIOCSMIIREG:
4141                 return e1000_mii_ioctl(netdev, ifr, cmd);
4142         default:
4143                 return -EOPNOTSUPP;
4144         }
4145 }
4146
4147 /**
4148  * e1000_mii_ioctl -
4149  * @netdev:
4150  * @ifreq:
4151  * @cmd:
4152  **/
4153
4154 static int
4155 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4156 {
4157         struct e1000_adapter *adapter = netdev_priv(netdev);
4158         struct mii_ioctl_data *data = if_mii(ifr);
4159         int retval;
4160         uint16_t mii_reg;
4161         uint16_t spddplx;
4162         unsigned long flags;
4163
4164         if(adapter->hw.media_type != e1000_media_type_copper)
4165                 return -EOPNOTSUPP;
4166
4167         switch (cmd) {
4168         case SIOCGMIIPHY:
4169                 data->phy_id = adapter->hw.phy_addr;
4170                 break;
4171         case SIOCGMIIREG:
4172                 if(!capable(CAP_NET_ADMIN))
4173                         return -EPERM;
4174                 spin_lock_irqsave(&adapter->stats_lock, flags);
4175                 if(e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4176                                    &data->val_out)) {
4177                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4178                         return -EIO;
4179                 }
4180                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4181                 break;
4182         case SIOCSMIIREG:
4183                 if(!capable(CAP_NET_ADMIN))
4184                         return -EPERM;
4185                 if(data->reg_num & ~(0x1F))
4186                         return -EFAULT;
4187                 mii_reg = data->val_in;
4188                 spin_lock_irqsave(&adapter->stats_lock, flags);
4189                 if(e1000_write_phy_reg(&adapter->hw, data->reg_num,
4190                                         mii_reg)) {
4191                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4192                         return -EIO;
4193                 }
4194                 if(adapter->hw.phy_type == e1000_phy_m88) {
4195                         switch (data->reg_num) {
4196                         case PHY_CTRL:
4197                                 if(mii_reg & MII_CR_POWER_DOWN)
4198                                         break;
4199                                 if(mii_reg & MII_CR_AUTO_NEG_EN) {
4200                                         adapter->hw.autoneg = 1;
4201                                         adapter->hw.autoneg_advertised = 0x2F;
4202                                 } else {
4203                                         if (mii_reg & 0x40)
4204                                                 spddplx = SPEED_1000;
4205                                         else if (mii_reg & 0x2000)
4206                                                 spddplx = SPEED_100;
4207                                         else
4208                                                 spddplx = SPEED_10;
4209                                         spddplx += (mii_reg & 0x100)
4210                                                    ? FULL_DUPLEX :
4211                                                    HALF_DUPLEX;
4212                                         retval = e1000_set_spd_dplx(adapter,
4213                                                                     spddplx);
4214                                         if(retval) {
4215                                                 spin_unlock_irqrestore(
4216                                                         &adapter->stats_lock, 
4217                                                         flags);
4218                                                 return retval;
4219                                         }
4220                                 }
4221                                 if(netif_running(adapter->netdev)) {
4222                                         e1000_down(adapter);
4223                                         e1000_up(adapter);
4224                                 } else
4225                                         e1000_reset(adapter);
4226                                 break;
4227                         case M88E1000_PHY_SPEC_CTRL:
4228                         case M88E1000_EXT_PHY_SPEC_CTRL:
4229                                 if(e1000_phy_reset(&adapter->hw)) {
4230                                         spin_unlock_irqrestore(
4231                                                 &adapter->stats_lock, flags);
4232                                         return -EIO;
4233                                 }
4234                                 break;
4235                         }
4236                 } else {
4237                         switch (data->reg_num) {
4238                         case PHY_CTRL:
4239                                 if(mii_reg & MII_CR_POWER_DOWN)
4240                                         break;
4241                                 if(netif_running(adapter->netdev)) {
4242                                         e1000_down(adapter);
4243                                         e1000_up(adapter);
4244                                 } else
4245                                         e1000_reset(adapter);
4246                                 break;
4247                         }
4248                 }
4249                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4250                 break;
4251         default:
4252                 return -EOPNOTSUPP;
4253         }
4254         return E1000_SUCCESS;
4255 }
4256
4257 void
4258 e1000_pci_set_mwi(struct e1000_hw *hw)
4259 {
4260         struct e1000_adapter *adapter = hw->back;
4261         int ret_val = pci_set_mwi(adapter->pdev);
4262
4263         if(ret_val)
4264                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4265 }
4266
4267 void
4268 e1000_pci_clear_mwi(struct e1000_hw *hw)
4269 {
4270         struct e1000_adapter *adapter = hw->back;
4271
4272         pci_clear_mwi(adapter->pdev);
4273 }
4274
4275 void
4276 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4277 {
4278         struct e1000_adapter *adapter = hw->back;
4279
4280         pci_read_config_word(adapter->pdev, reg, value);
4281 }
4282
4283 void
4284 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4285 {
4286         struct e1000_adapter *adapter = hw->back;
4287
4288         pci_write_config_word(adapter->pdev, reg, *value);
4289 }
4290
4291 uint32_t
4292 e1000_io_read(struct e1000_hw *hw, unsigned long port)
4293 {
4294         return inl(port);
4295 }
4296
4297 void
4298 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4299 {
4300         outl(value, port);
4301 }
4302
4303 static void
4304 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4305 {
4306         struct e1000_adapter *adapter = netdev_priv(netdev);
4307         uint32_t ctrl, rctl;
4308
4309         e1000_irq_disable(adapter);
4310         adapter->vlgrp = grp;
4311
4312         if(grp) {
4313                 /* enable VLAN tag insert/strip */
4314                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4315                 ctrl |= E1000_CTRL_VME;
4316                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4317
4318                 /* enable VLAN receive filtering */
4319                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4320                 rctl |= E1000_RCTL_VFE;
4321                 rctl &= ~E1000_RCTL_CFIEN;
4322                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4323                 e1000_update_mng_vlan(adapter);
4324         } else {
4325                 /* disable VLAN tag insert/strip */
4326                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4327                 ctrl &= ~E1000_CTRL_VME;
4328                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4329
4330                 /* disable VLAN filtering */
4331                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4332                 rctl &= ~E1000_RCTL_VFE;
4333                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4334                 if(adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4335                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4336                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4337                 }
4338         }
4339
4340         e1000_irq_enable(adapter);
4341 }
4342
4343 static void
4344 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4345 {
4346         struct e1000_adapter *adapter = netdev_priv(netdev);
4347         uint32_t vfta, index;
4348         if((adapter->hw.mng_cookie.status &
4349                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4350                 (vid == adapter->mng_vlan_id))
4351                 return;
4352         /* add VID to filter table */
4353         index = (vid >> 5) & 0x7F;
4354         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4355         vfta |= (1 << (vid & 0x1F));
4356         e1000_write_vfta(&adapter->hw, index, vfta);
4357 }
4358
4359 static void
4360 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4361 {
4362         struct e1000_adapter *adapter = netdev_priv(netdev);
4363         uint32_t vfta, index;
4364
4365         e1000_irq_disable(adapter);
4366
4367         if(adapter->vlgrp)
4368                 adapter->vlgrp->vlan_devices[vid] = NULL;
4369
4370         e1000_irq_enable(adapter);
4371
4372         if((adapter->hw.mng_cookie.status &
4373                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4374             (vid == adapter->mng_vlan_id)) {
4375                 /* release control to f/w */
4376                 e1000_release_hw_control(adapter);
4377                 return;
4378         }
4379
4380         /* remove VID from filter table */
4381         index = (vid >> 5) & 0x7F;
4382         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4383         vfta &= ~(1 << (vid & 0x1F));
4384         e1000_write_vfta(&adapter->hw, index, vfta);
4385 }
4386
4387 static void
4388 e1000_restore_vlan(struct e1000_adapter *adapter)
4389 {
4390         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4391
4392         if(adapter->vlgrp) {
4393                 uint16_t vid;
4394                 for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4395                         if(!adapter->vlgrp->vlan_devices[vid])
4396                                 continue;
4397                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4398                 }
4399         }
4400 }
4401
4402 int
4403 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4404 {
4405         adapter->hw.autoneg = 0;
4406
4407         /* Fiber NICs only allow 1000 gbps Full duplex */
4408         if((adapter->hw.media_type == e1000_media_type_fiber) &&
4409                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4410                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4411                 return -EINVAL;
4412         }
4413
4414         switch(spddplx) {
4415         case SPEED_10 + DUPLEX_HALF:
4416                 adapter->hw.forced_speed_duplex = e1000_10_half;
4417                 break;
4418         case SPEED_10 + DUPLEX_FULL:
4419                 adapter->hw.forced_speed_duplex = e1000_10_full;
4420                 break;
4421         case SPEED_100 + DUPLEX_HALF:
4422                 adapter->hw.forced_speed_duplex = e1000_100_half;
4423                 break;
4424         case SPEED_100 + DUPLEX_FULL:
4425                 adapter->hw.forced_speed_duplex = e1000_100_full;
4426                 break;
4427         case SPEED_1000 + DUPLEX_FULL:
4428                 adapter->hw.autoneg = 1;
4429                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4430                 break;
4431         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4432         default:
4433                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4434                 return -EINVAL;
4435         }
4436         return 0;
4437 }
4438
4439 #ifdef CONFIG_PM
4440 static int
4441 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4442 {
4443         struct net_device *netdev = pci_get_drvdata(pdev);
4444         struct e1000_adapter *adapter = netdev_priv(netdev);
4445         uint32_t ctrl, ctrl_ext, rctl, manc, status;
4446         uint32_t wufc = adapter->wol;
4447         int retval = 0;
4448
4449         netif_device_detach(netdev);
4450
4451         if(netif_running(netdev))
4452                 e1000_down(adapter);
4453
4454         status = E1000_READ_REG(&adapter->hw, STATUS);
4455         if(status & E1000_STATUS_LU)
4456                 wufc &= ~E1000_WUFC_LNKC;
4457
4458         if(wufc) {
4459                 e1000_setup_rctl(adapter);
4460                 e1000_set_multi(netdev);
4461
4462                 /* turn on all-multi mode if wake on multicast is enabled */
4463                 if(adapter->wol & E1000_WUFC_MC) {
4464                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4465                         rctl |= E1000_RCTL_MPE;
4466                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4467                 }
4468
4469                 if(adapter->hw.mac_type >= e1000_82540) {
4470                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4471                         /* advertise wake from D3Cold */
4472                         #define E1000_CTRL_ADVD3WUC 0x00100000
4473                         /* phy power management enable */
4474                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4475                         ctrl |= E1000_CTRL_ADVD3WUC |
4476                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4477                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4478                 }
4479
4480                 if(adapter->hw.media_type == e1000_media_type_fiber ||
4481                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4482                         /* keep the laser running in D3 */
4483                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4484                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4485                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4486                 }
4487
4488                 /* Allow time for pending master requests to run */
4489                 e1000_disable_pciex_master(&adapter->hw);
4490
4491                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4492                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4493                 retval = pci_enable_wake(pdev, PCI_D3hot, 1);
4494                 if (retval)
4495                         DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
4496                 retval = pci_enable_wake(pdev, PCI_D3cold, 1);
4497                 if (retval)
4498                         DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
4499         } else {
4500                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4501                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4502                 retval = pci_enable_wake(pdev, PCI_D3hot, 0);
4503                 if (retval)
4504                         DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
4505                 retval = pci_enable_wake(pdev, PCI_D3cold, 0); /* 4 == D3 cold */
4506                 if (retval)
4507                         DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
4508         }
4509
4510         pci_save_state(pdev);
4511
4512         if(adapter->hw.mac_type >= e1000_82540 &&
4513            adapter->hw.media_type == e1000_media_type_copper) {
4514                 manc = E1000_READ_REG(&adapter->hw, MANC);
4515                 if(manc & E1000_MANC_SMBUS_EN) {
4516                         manc |= E1000_MANC_ARP_EN;
4517                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4518                         retval = pci_enable_wake(pdev, PCI_D3hot, 1);
4519                         if (retval)
4520                                 DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
4521                         retval = pci_enable_wake(pdev, PCI_D3cold, 1);
4522                         if (retval)
4523                                 DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
4524                 }
4525         }
4526
4527         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4528          * would have already happened in close and is redundant. */
4529         e1000_release_hw_control(adapter);
4530
4531         pci_disable_device(pdev);
4532
4533         retval = pci_set_power_state(pdev, pci_choose_state(pdev, state));
4534         if (retval)
4535                 DPRINTK(PROBE, ERR, "Error in setting power state\n");
4536
4537         return 0;
4538 }
4539
4540 static int
4541 e1000_resume(struct pci_dev *pdev)
4542 {
4543         struct net_device *netdev = pci_get_drvdata(pdev);
4544         struct e1000_adapter *adapter = netdev_priv(netdev);
4545         int retval;
4546         uint32_t manc, ret_val;
4547
4548         retval = pci_set_power_state(pdev, PCI_D0);
4549         if (retval)
4550                 DPRINTK(PROBE, ERR, "Error in setting power state\n");
4551         ret_val = pci_enable_device(pdev);
4552         pci_set_master(pdev);
4553
4554         retval = pci_enable_wake(pdev, PCI_D3hot, 0);
4555         if (retval)
4556                 DPRINTK(PROBE, ERR, "Error enabling D3 wake\n");
4557         retval = pci_enable_wake(pdev, PCI_D3cold, 0);
4558         if (retval)
4559                 DPRINTK(PROBE, ERR, "Error enabling D3 cold wake\n");
4560
4561         e1000_reset(adapter);
4562         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4563
4564         if(netif_running(netdev))
4565                 e1000_up(adapter);
4566
4567         netif_device_attach(netdev);
4568
4569         if(adapter->hw.mac_type >= e1000_82540 &&
4570            adapter->hw.media_type == e1000_media_type_copper) {
4571                 manc = E1000_READ_REG(&adapter->hw, MANC);
4572                 manc &= ~(E1000_MANC_ARP_EN);
4573                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4574         }
4575
4576         /* If the controller is 82573 and f/w is AMT, do not set
4577          * DRV_LOAD until the interface is up.  For all other cases,
4578          * let the f/w know that the h/w is now under the control
4579          * of the driver. */
4580         if (adapter->hw.mac_type != e1000_82573 ||
4581             !e1000_check_mng_mode(&adapter->hw))
4582                 e1000_get_hw_control(adapter);
4583
4584         return 0;
4585 }
4586 #endif
4587 #ifdef CONFIG_NET_POLL_CONTROLLER
4588 /*
4589  * Polling 'interrupt' - used by things like netconsole to send skbs
4590  * without having to re-enable interrupts. It's not called while
4591  * the interrupt routine is executing.
4592  */
4593 static void
4594 e1000_netpoll(struct net_device *netdev)
4595 {
4596         struct e1000_adapter *adapter = netdev_priv(netdev);
4597         disable_irq(adapter->pdev->irq);
4598         e1000_intr(adapter->pdev->irq, netdev, NULL);
4599         e1000_clean_tx_irq(adapter, adapter->tx_ring);
4600 #ifndef CONFIG_E1000_NAPI
4601         adapter->clean_rx(adapter, adapter->rx_ring);
4602 #endif
4603         enable_irq(adapter->pdev->irq);
4604 }
4605 #endif
4606
4607 /* e1000_main.c */