]> Pileus Git - ~andy/linux/blob - drivers/net/e1000/e1000_main.c
e1000: use DMA API instead of PCI DMA functions
[~andy/linux] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k5-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
37
38 /* e1000_pci_tbl - PCI Device ID Table
39  *
40  * Last entry must be all 0s
41  *
42  * Macro expands to...
43  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
44  */
45 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
46         INTEL_E1000_ETHERNET_DEVICE(0x1000),
47         INTEL_E1000_ETHERNET_DEVICE(0x1001),
48         INTEL_E1000_ETHERNET_DEVICE(0x1004),
49         INTEL_E1000_ETHERNET_DEVICE(0x1008),
50         INTEL_E1000_ETHERNET_DEVICE(0x1009),
51         INTEL_E1000_ETHERNET_DEVICE(0x100C),
52         INTEL_E1000_ETHERNET_DEVICE(0x100D),
53         INTEL_E1000_ETHERNET_DEVICE(0x100E),
54         INTEL_E1000_ETHERNET_DEVICE(0x100F),
55         INTEL_E1000_ETHERNET_DEVICE(0x1010),
56         INTEL_E1000_ETHERNET_DEVICE(0x1011),
57         INTEL_E1000_ETHERNET_DEVICE(0x1012),
58         INTEL_E1000_ETHERNET_DEVICE(0x1013),
59         INTEL_E1000_ETHERNET_DEVICE(0x1014),
60         INTEL_E1000_ETHERNET_DEVICE(0x1015),
61         INTEL_E1000_ETHERNET_DEVICE(0x1016),
62         INTEL_E1000_ETHERNET_DEVICE(0x1017),
63         INTEL_E1000_ETHERNET_DEVICE(0x1018),
64         INTEL_E1000_ETHERNET_DEVICE(0x1019),
65         INTEL_E1000_ETHERNET_DEVICE(0x101A),
66         INTEL_E1000_ETHERNET_DEVICE(0x101D),
67         INTEL_E1000_ETHERNET_DEVICE(0x101E),
68         INTEL_E1000_ETHERNET_DEVICE(0x1026),
69         INTEL_E1000_ETHERNET_DEVICE(0x1027),
70         INTEL_E1000_ETHERNET_DEVICE(0x1028),
71         INTEL_E1000_ETHERNET_DEVICE(0x1075),
72         INTEL_E1000_ETHERNET_DEVICE(0x1076),
73         INTEL_E1000_ETHERNET_DEVICE(0x1077),
74         INTEL_E1000_ETHERNET_DEVICE(0x1078),
75         INTEL_E1000_ETHERNET_DEVICE(0x1079),
76         INTEL_E1000_ETHERNET_DEVICE(0x107A),
77         INTEL_E1000_ETHERNET_DEVICE(0x107B),
78         INTEL_E1000_ETHERNET_DEVICE(0x107C),
79         INTEL_E1000_ETHERNET_DEVICE(0x108A),
80         INTEL_E1000_ETHERNET_DEVICE(0x1099),
81         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82         /* required last entry */
83         {0,}
84 };
85
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
87
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98                              struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100                              struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
106
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121                                 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123                                 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_watchdog(unsigned long data);
127 static void e1000_82547_tx_fifo_stall(unsigned long data);
128 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
129                                     struct net_device *netdev);
130 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
131 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
132 static int e1000_set_mac(struct net_device *netdev, void *p);
133 static irqreturn_t e1000_intr(int irq, void *data);
134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
135                                struct e1000_tx_ring *tx_ring);
136 static int e1000_clean(struct napi_struct *napi, int budget);
137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
138                                struct e1000_rx_ring *rx_ring,
139                                int *work_done, int work_to_do);
140 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
141                                      struct e1000_rx_ring *rx_ring,
142                                      int *work_done, int work_to_do);
143 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
144                                    struct e1000_rx_ring *rx_ring,
145                                    int cleaned_count);
146 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
147                                          struct e1000_rx_ring *rx_ring,
148                                          int cleaned_count);
149 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
150 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
151                            int cmd);
152 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
153 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
154 static void e1000_tx_timeout(struct net_device *dev);
155 static void e1000_reset_task(struct work_struct *work);
156 static void e1000_smartspeed(struct e1000_adapter *adapter);
157 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
158                                        struct sk_buff *skb);
159
160 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
161 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
162 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
163 static void e1000_restore_vlan(struct e1000_adapter *adapter);
164
165 #ifdef CONFIG_PM
166 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
167 static int e1000_resume(struct pci_dev *pdev);
168 #endif
169 static void e1000_shutdown(struct pci_dev *pdev);
170
171 #ifdef CONFIG_NET_POLL_CONTROLLER
172 /* for netdump / net console */
173 static void e1000_netpoll (struct net_device *netdev);
174 #endif
175
176 #define COPYBREAK_DEFAULT 256
177 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
178 module_param(copybreak, uint, 0644);
179 MODULE_PARM_DESC(copybreak,
180         "Maximum size of packet that is copied to a new buffer on receive");
181
182 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
183                      pci_channel_state_t state);
184 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
185 static void e1000_io_resume(struct pci_dev *pdev);
186
187 static struct pci_error_handlers e1000_err_handler = {
188         .error_detected = e1000_io_error_detected,
189         .slot_reset = e1000_io_slot_reset,
190         .resume = e1000_io_resume,
191 };
192
193 static struct pci_driver e1000_driver = {
194         .name     = e1000_driver_name,
195         .id_table = e1000_pci_tbl,
196         .probe    = e1000_probe,
197         .remove   = __devexit_p(e1000_remove),
198 #ifdef CONFIG_PM
199         /* Power Managment Hooks */
200         .suspend  = e1000_suspend,
201         .resume   = e1000_resume,
202 #endif
203         .shutdown = e1000_shutdown,
204         .err_handler = &e1000_err_handler
205 };
206
207 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
208 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
209 MODULE_LICENSE("GPL");
210 MODULE_VERSION(DRV_VERSION);
211
212 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
213 module_param(debug, int, 0);
214 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
215
216 /**
217  * e1000_init_module - Driver Registration Routine
218  *
219  * e1000_init_module is the first routine called when the driver is
220  * loaded. All it does is register with the PCI subsystem.
221  **/
222
223 static int __init e1000_init_module(void)
224 {
225         int ret;
226         printk(KERN_INFO "%s - version %s\n",
227                e1000_driver_string, e1000_driver_version);
228
229         printk(KERN_INFO "%s\n", e1000_copyright);
230
231         ret = pci_register_driver(&e1000_driver);
232         if (copybreak != COPYBREAK_DEFAULT) {
233                 if (copybreak == 0)
234                         printk(KERN_INFO "e1000: copybreak disabled\n");
235                 else
236                         printk(KERN_INFO "e1000: copybreak enabled for "
237                                "packets <= %u bytes\n", copybreak);
238         }
239         return ret;
240 }
241
242 module_init(e1000_init_module);
243
244 /**
245  * e1000_exit_module - Driver Exit Cleanup Routine
246  *
247  * e1000_exit_module is called just before the driver is removed
248  * from memory.
249  **/
250
251 static void __exit e1000_exit_module(void)
252 {
253         pci_unregister_driver(&e1000_driver);
254 }
255
256 module_exit(e1000_exit_module);
257
258 static int e1000_request_irq(struct e1000_adapter *adapter)
259 {
260         struct net_device *netdev = adapter->netdev;
261         irq_handler_t handler = e1000_intr;
262         int irq_flags = IRQF_SHARED;
263         int err;
264
265         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
266                           netdev);
267         if (err) {
268                 DPRINTK(PROBE, ERR,
269                         "Unable to allocate interrupt Error: %d\n", err);
270         }
271
272         return err;
273 }
274
275 static void e1000_free_irq(struct e1000_adapter *adapter)
276 {
277         struct net_device *netdev = adapter->netdev;
278
279         free_irq(adapter->pdev->irq, netdev);
280 }
281
282 /**
283  * e1000_irq_disable - Mask off interrupt generation on the NIC
284  * @adapter: board private structure
285  **/
286
287 static void e1000_irq_disable(struct e1000_adapter *adapter)
288 {
289         struct e1000_hw *hw = &adapter->hw;
290
291         ew32(IMC, ~0);
292         E1000_WRITE_FLUSH();
293         synchronize_irq(adapter->pdev->irq);
294 }
295
296 /**
297  * e1000_irq_enable - Enable default interrupt generation settings
298  * @adapter: board private structure
299  **/
300
301 static void e1000_irq_enable(struct e1000_adapter *adapter)
302 {
303         struct e1000_hw *hw = &adapter->hw;
304
305         ew32(IMS, IMS_ENABLE_MASK);
306         E1000_WRITE_FLUSH();
307 }
308
309 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
310 {
311         struct e1000_hw *hw = &adapter->hw;
312         struct net_device *netdev = adapter->netdev;
313         u16 vid = hw->mng_cookie.vlan_id;
314         u16 old_vid = adapter->mng_vlan_id;
315         if (adapter->vlgrp) {
316                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
317                         if (hw->mng_cookie.status &
318                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
319                                 e1000_vlan_rx_add_vid(netdev, vid);
320                                 adapter->mng_vlan_id = vid;
321                         } else
322                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
323
324                         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
325                                         (vid != old_vid) &&
326                             !vlan_group_get_device(adapter->vlgrp, old_vid))
327                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
328                 } else
329                         adapter->mng_vlan_id = vid;
330         }
331 }
332
333 static void e1000_init_manageability(struct e1000_adapter *adapter)
334 {
335         struct e1000_hw *hw = &adapter->hw;
336
337         if (adapter->en_mng_pt) {
338                 u32 manc = er32(MANC);
339
340                 /* disable hardware interception of ARP */
341                 manc &= ~(E1000_MANC_ARP_EN);
342
343                 ew32(MANC, manc);
344         }
345 }
346
347 static void e1000_release_manageability(struct e1000_adapter *adapter)
348 {
349         struct e1000_hw *hw = &adapter->hw;
350
351         if (adapter->en_mng_pt) {
352                 u32 manc = er32(MANC);
353
354                 /* re-enable hardware interception of ARP */
355                 manc |= E1000_MANC_ARP_EN;
356
357                 ew32(MANC, manc);
358         }
359 }
360
361 /**
362  * e1000_configure - configure the hardware for RX and TX
363  * @adapter = private board structure
364  **/
365 static void e1000_configure(struct e1000_adapter *adapter)
366 {
367         struct net_device *netdev = adapter->netdev;
368         int i;
369
370         e1000_set_rx_mode(netdev);
371
372         e1000_restore_vlan(adapter);
373         e1000_init_manageability(adapter);
374
375         e1000_configure_tx(adapter);
376         e1000_setup_rctl(adapter);
377         e1000_configure_rx(adapter);
378         /* call E1000_DESC_UNUSED which always leaves
379          * at least 1 descriptor unused to make sure
380          * next_to_use != next_to_clean */
381         for (i = 0; i < adapter->num_rx_queues; i++) {
382                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
383                 adapter->alloc_rx_buf(adapter, ring,
384                                       E1000_DESC_UNUSED(ring));
385         }
386 }
387
388 int e1000_up(struct e1000_adapter *adapter)
389 {
390         struct e1000_hw *hw = &adapter->hw;
391
392         /* hardware has been reset, we need to reload some things */
393         e1000_configure(adapter);
394
395         clear_bit(__E1000_DOWN, &adapter->flags);
396
397         napi_enable(&adapter->napi);
398
399         e1000_irq_enable(adapter);
400
401         netif_wake_queue(adapter->netdev);
402
403         /* fire a link change interrupt to start the watchdog */
404         ew32(ICS, E1000_ICS_LSC);
405         return 0;
406 }
407
408 /**
409  * e1000_power_up_phy - restore link in case the phy was powered down
410  * @adapter: address of board private structure
411  *
412  * The phy may be powered down to save power and turn off link when the
413  * driver is unloaded and wake on lan is not enabled (among others)
414  * *** this routine MUST be followed by a call to e1000_reset ***
415  *
416  **/
417
418 void e1000_power_up_phy(struct e1000_adapter *adapter)
419 {
420         struct e1000_hw *hw = &adapter->hw;
421         u16 mii_reg = 0;
422
423         /* Just clear the power down bit to wake the phy back up */
424         if (hw->media_type == e1000_media_type_copper) {
425                 /* according to the manual, the phy will retain its
426                  * settings across a power-down/up cycle */
427                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
428                 mii_reg &= ~MII_CR_POWER_DOWN;
429                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
430         }
431 }
432
433 static void e1000_power_down_phy(struct e1000_adapter *adapter)
434 {
435         struct e1000_hw *hw = &adapter->hw;
436
437         /* Power down the PHY so no link is implied when interface is down *
438          * The PHY cannot be powered down if any of the following is true *
439          * (a) WoL is enabled
440          * (b) AMT is active
441          * (c) SoL/IDER session is active */
442         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
443            hw->media_type == e1000_media_type_copper) {
444                 u16 mii_reg = 0;
445
446                 switch (hw->mac_type) {
447                 case e1000_82540:
448                 case e1000_82545:
449                 case e1000_82545_rev_3:
450                 case e1000_82546:
451                 case e1000_82546_rev_3:
452                 case e1000_82541:
453                 case e1000_82541_rev_2:
454                 case e1000_82547:
455                 case e1000_82547_rev_2:
456                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
457                                 goto out;
458                         break;
459                 default:
460                         goto out;
461                 }
462                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
463                 mii_reg |= MII_CR_POWER_DOWN;
464                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
465                 mdelay(1);
466         }
467 out:
468         return;
469 }
470
471 void e1000_down(struct e1000_adapter *adapter)
472 {
473         struct e1000_hw *hw = &adapter->hw;
474         struct net_device *netdev = adapter->netdev;
475         u32 rctl, tctl;
476
477         /* signal that we're down so the interrupt handler does not
478          * reschedule our watchdog timer */
479         set_bit(__E1000_DOWN, &adapter->flags);
480
481         /* disable receives in the hardware */
482         rctl = er32(RCTL);
483         ew32(RCTL, rctl & ~E1000_RCTL_EN);
484         /* flush and sleep below */
485
486         netif_tx_disable(netdev);
487
488         /* disable transmits in the hardware */
489         tctl = er32(TCTL);
490         tctl &= ~E1000_TCTL_EN;
491         ew32(TCTL, tctl);
492         /* flush both disables and wait for them to finish */
493         E1000_WRITE_FLUSH();
494         msleep(10);
495
496         napi_disable(&adapter->napi);
497
498         e1000_irq_disable(adapter);
499
500         del_timer_sync(&adapter->tx_fifo_stall_timer);
501         del_timer_sync(&adapter->watchdog_timer);
502         del_timer_sync(&adapter->phy_info_timer);
503
504         adapter->link_speed = 0;
505         adapter->link_duplex = 0;
506         netif_carrier_off(netdev);
507
508         e1000_reset(adapter);
509         e1000_clean_all_tx_rings(adapter);
510         e1000_clean_all_rx_rings(adapter);
511 }
512
513 void e1000_reinit_locked(struct e1000_adapter *adapter)
514 {
515         WARN_ON(in_interrupt());
516         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
517                 msleep(1);
518         e1000_down(adapter);
519         e1000_up(adapter);
520         clear_bit(__E1000_RESETTING, &adapter->flags);
521 }
522
523 void e1000_reset(struct e1000_adapter *adapter)
524 {
525         struct e1000_hw *hw = &adapter->hw;
526         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
527         bool legacy_pba_adjust = false;
528         u16 hwm;
529
530         /* Repartition Pba for greater than 9k mtu
531          * To take effect CTRL.RST is required.
532          */
533
534         switch (hw->mac_type) {
535         case e1000_82542_rev2_0:
536         case e1000_82542_rev2_1:
537         case e1000_82543:
538         case e1000_82544:
539         case e1000_82540:
540         case e1000_82541:
541         case e1000_82541_rev_2:
542                 legacy_pba_adjust = true;
543                 pba = E1000_PBA_48K;
544                 break;
545         case e1000_82545:
546         case e1000_82545_rev_3:
547         case e1000_82546:
548         case e1000_82546_rev_3:
549                 pba = E1000_PBA_48K;
550                 break;
551         case e1000_82547:
552         case e1000_82547_rev_2:
553                 legacy_pba_adjust = true;
554                 pba = E1000_PBA_30K;
555                 break;
556         case e1000_undefined:
557         case e1000_num_macs:
558                 break;
559         }
560
561         if (legacy_pba_adjust) {
562                 if (hw->max_frame_size > E1000_RXBUFFER_8192)
563                         pba -= 8; /* allocate more FIFO for Tx */
564
565                 if (hw->mac_type == e1000_82547) {
566                         adapter->tx_fifo_head = 0;
567                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
568                         adapter->tx_fifo_size =
569                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
570                         atomic_set(&adapter->tx_fifo_stall, 0);
571                 }
572         } else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
573                 /* adjust PBA for jumbo frames */
574                 ew32(PBA, pba);
575
576                 /* To maintain wire speed transmits, the Tx FIFO should be
577                  * large enough to accommodate two full transmit packets,
578                  * rounded up to the next 1KB and expressed in KB.  Likewise,
579                  * the Rx FIFO should be large enough to accommodate at least
580                  * one full receive packet and is similarly rounded up and
581                  * expressed in KB. */
582                 pba = er32(PBA);
583                 /* upper 16 bits has Tx packet buffer allocation size in KB */
584                 tx_space = pba >> 16;
585                 /* lower 16 bits has Rx packet buffer allocation size in KB */
586                 pba &= 0xffff;
587                 /*
588                  * the tx fifo also stores 16 bytes of information about the tx
589                  * but don't include ethernet FCS because hardware appends it
590                  */
591                 min_tx_space = (hw->max_frame_size +
592                                 sizeof(struct e1000_tx_desc) -
593                                 ETH_FCS_LEN) * 2;
594                 min_tx_space = ALIGN(min_tx_space, 1024);
595                 min_tx_space >>= 10;
596                 /* software strips receive CRC, so leave room for it */
597                 min_rx_space = hw->max_frame_size;
598                 min_rx_space = ALIGN(min_rx_space, 1024);
599                 min_rx_space >>= 10;
600
601                 /* If current Tx allocation is less than the min Tx FIFO size,
602                  * and the min Tx FIFO size is less than the current Rx FIFO
603                  * allocation, take space away from current Rx allocation */
604                 if (tx_space < min_tx_space &&
605                     ((min_tx_space - tx_space) < pba)) {
606                         pba = pba - (min_tx_space - tx_space);
607
608                         /* PCI/PCIx hardware has PBA alignment constraints */
609                         switch (hw->mac_type) {
610                         case e1000_82545 ... e1000_82546_rev_3:
611                                 pba &= ~(E1000_PBA_8K - 1);
612                                 break;
613                         default:
614                                 break;
615                         }
616
617                         /* if short on rx space, rx wins and must trump tx
618                          * adjustment or use Early Receive if available */
619                         if (pba < min_rx_space)
620                                 pba = min_rx_space;
621                 }
622         }
623
624         ew32(PBA, pba);
625
626         /*
627          * flow control settings:
628          * The high water mark must be low enough to fit one full frame
629          * (or the size used for early receive) above it in the Rx FIFO.
630          * Set it to the lower of:
631          * - 90% of the Rx FIFO size, and
632          * - the full Rx FIFO size minus the early receive size (for parts
633          *   with ERT support assuming ERT set to E1000_ERT_2048), or
634          * - the full Rx FIFO size minus one full frame
635          */
636         hwm = min(((pba << 10) * 9 / 10),
637                   ((pba << 10) - hw->max_frame_size));
638
639         hw->fc_high_water = hwm & 0xFFF8;       /* 8-byte granularity */
640         hw->fc_low_water = hw->fc_high_water - 8;
641         hw->fc_pause_time = E1000_FC_PAUSE_TIME;
642         hw->fc_send_xon = 1;
643         hw->fc = hw->original_fc;
644
645         /* Allow time for pending master requests to run */
646         e1000_reset_hw(hw);
647         if (hw->mac_type >= e1000_82544)
648                 ew32(WUC, 0);
649
650         if (e1000_init_hw(hw))
651                 DPRINTK(PROBE, ERR, "Hardware Error\n");
652         e1000_update_mng_vlan(adapter);
653
654         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
655         if (hw->mac_type >= e1000_82544 &&
656             hw->autoneg == 1 &&
657             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
658                 u32 ctrl = er32(CTRL);
659                 /* clear phy power management bit if we are in gig only mode,
660                  * which if enabled will attempt negotiation to 100Mb, which
661                  * can cause a loss of link at power off or driver unload */
662                 ctrl &= ~E1000_CTRL_SWDPIN3;
663                 ew32(CTRL, ctrl);
664         }
665
666         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
667         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
668
669         e1000_reset_adaptive(hw);
670         e1000_phy_get_info(hw, &adapter->phy_info);
671
672         e1000_release_manageability(adapter);
673 }
674
675 /**
676  *  Dump the eeprom for users having checksum issues
677  **/
678 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
679 {
680         struct net_device *netdev = adapter->netdev;
681         struct ethtool_eeprom eeprom;
682         const struct ethtool_ops *ops = netdev->ethtool_ops;
683         u8 *data;
684         int i;
685         u16 csum_old, csum_new = 0;
686
687         eeprom.len = ops->get_eeprom_len(netdev);
688         eeprom.offset = 0;
689
690         data = kmalloc(eeprom.len, GFP_KERNEL);
691         if (!data) {
692                 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
693                        " data\n");
694                 return;
695         }
696
697         ops->get_eeprom(netdev, &eeprom, data);
698
699         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
700                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
701         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
702                 csum_new += data[i] + (data[i + 1] << 8);
703         csum_new = EEPROM_SUM - csum_new;
704
705         printk(KERN_ERR "/*********************/\n");
706         printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
707         printk(KERN_ERR "Calculated              : 0x%04x\n", csum_new);
708
709         printk(KERN_ERR "Offset    Values\n");
710         printk(KERN_ERR "========  ======\n");
711         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
712
713         printk(KERN_ERR "Include this output when contacting your support "
714                "provider.\n");
715         printk(KERN_ERR "This is not a software error! Something bad "
716                "happened to your hardware or\n");
717         printk(KERN_ERR "EEPROM image. Ignoring this "
718                "problem could result in further problems,\n");
719         printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
720         printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
721                "which is invalid\n");
722         printk(KERN_ERR "and requires you to set the proper MAC "
723                "address manually before continuing\n");
724         printk(KERN_ERR "to enable this network device.\n");
725         printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
726                "to your hardware vendor\n");
727         printk(KERN_ERR "or Intel Customer Support.\n");
728         printk(KERN_ERR "/*********************/\n");
729
730         kfree(data);
731 }
732
733 /**
734  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
735  * @pdev: PCI device information struct
736  *
737  * Return true if an adapter needs ioport resources
738  **/
739 static int e1000_is_need_ioport(struct pci_dev *pdev)
740 {
741         switch (pdev->device) {
742         case E1000_DEV_ID_82540EM:
743         case E1000_DEV_ID_82540EM_LOM:
744         case E1000_DEV_ID_82540EP:
745         case E1000_DEV_ID_82540EP_LOM:
746         case E1000_DEV_ID_82540EP_LP:
747         case E1000_DEV_ID_82541EI:
748         case E1000_DEV_ID_82541EI_MOBILE:
749         case E1000_DEV_ID_82541ER:
750         case E1000_DEV_ID_82541ER_LOM:
751         case E1000_DEV_ID_82541GI:
752         case E1000_DEV_ID_82541GI_LF:
753         case E1000_DEV_ID_82541GI_MOBILE:
754         case E1000_DEV_ID_82544EI_COPPER:
755         case E1000_DEV_ID_82544EI_FIBER:
756         case E1000_DEV_ID_82544GC_COPPER:
757         case E1000_DEV_ID_82544GC_LOM:
758         case E1000_DEV_ID_82545EM_COPPER:
759         case E1000_DEV_ID_82545EM_FIBER:
760         case E1000_DEV_ID_82546EB_COPPER:
761         case E1000_DEV_ID_82546EB_FIBER:
762         case E1000_DEV_ID_82546EB_QUAD_COPPER:
763                 return true;
764         default:
765                 return false;
766         }
767 }
768
769 static const struct net_device_ops e1000_netdev_ops = {
770         .ndo_open               = e1000_open,
771         .ndo_stop               = e1000_close,
772         .ndo_start_xmit         = e1000_xmit_frame,
773         .ndo_get_stats          = e1000_get_stats,
774         .ndo_set_rx_mode        = e1000_set_rx_mode,
775         .ndo_set_mac_address    = e1000_set_mac,
776         .ndo_tx_timeout         = e1000_tx_timeout,
777         .ndo_change_mtu         = e1000_change_mtu,
778         .ndo_do_ioctl           = e1000_ioctl,
779         .ndo_validate_addr      = eth_validate_addr,
780
781         .ndo_vlan_rx_register   = e1000_vlan_rx_register,
782         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
783         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
784 #ifdef CONFIG_NET_POLL_CONTROLLER
785         .ndo_poll_controller    = e1000_netpoll,
786 #endif
787 };
788
789 /**
790  * e1000_probe - Device Initialization Routine
791  * @pdev: PCI device information struct
792  * @ent: entry in e1000_pci_tbl
793  *
794  * Returns 0 on success, negative on failure
795  *
796  * e1000_probe initializes an adapter identified by a pci_dev structure.
797  * The OS initialization, configuring of the adapter private structure,
798  * and a hardware reset occur.
799  **/
800 static int __devinit e1000_probe(struct pci_dev *pdev,
801                                  const struct pci_device_id *ent)
802 {
803         struct net_device *netdev;
804         struct e1000_adapter *adapter;
805         struct e1000_hw *hw;
806
807         static int cards_found = 0;
808         static int global_quad_port_a = 0; /* global ksp3 port a indication */
809         int i, err, pci_using_dac;
810         u16 eeprom_data = 0;
811         u16 eeprom_apme_mask = E1000_EEPROM_APME;
812         int bars, need_ioport;
813
814         /* do not allocate ioport bars when not needed */
815         need_ioport = e1000_is_need_ioport(pdev);
816         if (need_ioport) {
817                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
818                 err = pci_enable_device(pdev);
819         } else {
820                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
821                 err = pci_enable_device_mem(pdev);
822         }
823         if (err)
824                 return err;
825
826         if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
827             !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
828                 pci_using_dac = 1;
829         } else {
830                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
831                 if (err) {
832                         err = dma_set_coherent_mask(&pdev->dev,
833                                                     DMA_BIT_MASK(32));
834                         if (err) {
835                                 E1000_ERR("No usable DMA configuration, "
836                                           "aborting\n");
837                                 goto err_dma;
838                         }
839                 }
840                 pci_using_dac = 0;
841         }
842
843         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
844         if (err)
845                 goto err_pci_reg;
846
847         pci_set_master(pdev);
848         err = pci_save_state(pdev);
849         if (err)
850                 goto err_alloc_etherdev;
851
852         err = -ENOMEM;
853         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
854         if (!netdev)
855                 goto err_alloc_etherdev;
856
857         SET_NETDEV_DEV(netdev, &pdev->dev);
858
859         pci_set_drvdata(pdev, netdev);
860         adapter = netdev_priv(netdev);
861         adapter->netdev = netdev;
862         adapter->pdev = pdev;
863         adapter->msg_enable = (1 << debug) - 1;
864         adapter->bars = bars;
865         adapter->need_ioport = need_ioport;
866
867         hw = &adapter->hw;
868         hw->back = adapter;
869
870         err = -EIO;
871         hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
872         if (!hw->hw_addr)
873                 goto err_ioremap;
874
875         if (adapter->need_ioport) {
876                 for (i = BAR_1; i <= BAR_5; i++) {
877                         if (pci_resource_len(pdev, i) == 0)
878                                 continue;
879                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
880                                 hw->io_base = pci_resource_start(pdev, i);
881                                 break;
882                         }
883                 }
884         }
885
886         netdev->netdev_ops = &e1000_netdev_ops;
887         e1000_set_ethtool_ops(netdev);
888         netdev->watchdog_timeo = 5 * HZ;
889         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
890
891         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
892
893         adapter->bd_number = cards_found;
894
895         /* setup the private structure */
896
897         err = e1000_sw_init(adapter);
898         if (err)
899                 goto err_sw_init;
900
901         err = -EIO;
902
903         if (hw->mac_type >= e1000_82543) {
904                 netdev->features = NETIF_F_SG |
905                                    NETIF_F_HW_CSUM |
906                                    NETIF_F_HW_VLAN_TX |
907                                    NETIF_F_HW_VLAN_RX |
908                                    NETIF_F_HW_VLAN_FILTER;
909         }
910
911         if ((hw->mac_type >= e1000_82544) &&
912            (hw->mac_type != e1000_82547))
913                 netdev->features |= NETIF_F_TSO;
914
915         if (pci_using_dac)
916                 netdev->features |= NETIF_F_HIGHDMA;
917
918         netdev->vlan_features |= NETIF_F_TSO;
919         netdev->vlan_features |= NETIF_F_HW_CSUM;
920         netdev->vlan_features |= NETIF_F_SG;
921
922         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
923
924         /* initialize eeprom parameters */
925         if (e1000_init_eeprom_params(hw)) {
926                 E1000_ERR("EEPROM initialization failed\n");
927                 goto err_eeprom;
928         }
929
930         /* before reading the EEPROM, reset the controller to
931          * put the device in a known good starting state */
932
933         e1000_reset_hw(hw);
934
935         /* make sure the EEPROM is good */
936         if (e1000_validate_eeprom_checksum(hw) < 0) {
937                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
938                 e1000_dump_eeprom(adapter);
939                 /*
940                  * set MAC address to all zeroes to invalidate and temporary
941                  * disable this device for the user. This blocks regular
942                  * traffic while still permitting ethtool ioctls from reaching
943                  * the hardware as well as allowing the user to run the
944                  * interface after manually setting a hw addr using
945                  * `ip set address`
946                  */
947                 memset(hw->mac_addr, 0, netdev->addr_len);
948         } else {
949                 /* copy the MAC address out of the EEPROM */
950                 if (e1000_read_mac_addr(hw))
951                         DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
952         }
953         /* don't block initalization here due to bad MAC address */
954         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
955         memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
956
957         if (!is_valid_ether_addr(netdev->perm_addr))
958                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
959
960         e1000_get_bus_info(hw);
961
962         init_timer(&adapter->tx_fifo_stall_timer);
963         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
964         adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
965
966         init_timer(&adapter->watchdog_timer);
967         adapter->watchdog_timer.function = &e1000_watchdog;
968         adapter->watchdog_timer.data = (unsigned long) adapter;
969
970         init_timer(&adapter->phy_info_timer);
971         adapter->phy_info_timer.function = &e1000_update_phy_info;
972         adapter->phy_info_timer.data = (unsigned long)adapter;
973
974         INIT_WORK(&adapter->reset_task, e1000_reset_task);
975
976         e1000_check_options(adapter);
977
978         /* Initial Wake on LAN setting
979          * If APM wake is enabled in the EEPROM,
980          * enable the ACPI Magic Packet filter
981          */
982
983         switch (hw->mac_type) {
984         case e1000_82542_rev2_0:
985         case e1000_82542_rev2_1:
986         case e1000_82543:
987                 break;
988         case e1000_82544:
989                 e1000_read_eeprom(hw,
990                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
991                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
992                 break;
993         case e1000_82546:
994         case e1000_82546_rev_3:
995                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
996                         e1000_read_eeprom(hw,
997                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
998                         break;
999                 }
1000                 /* Fall Through */
1001         default:
1002                 e1000_read_eeprom(hw,
1003                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1004                 break;
1005         }
1006         if (eeprom_data & eeprom_apme_mask)
1007                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1008
1009         /* now that we have the eeprom settings, apply the special cases
1010          * where the eeprom may be wrong or the board simply won't support
1011          * wake on lan on a particular port */
1012         switch (pdev->device) {
1013         case E1000_DEV_ID_82546GB_PCIE:
1014                 adapter->eeprom_wol = 0;
1015                 break;
1016         case E1000_DEV_ID_82546EB_FIBER:
1017         case E1000_DEV_ID_82546GB_FIBER:
1018                 /* Wake events only supported on port A for dual fiber
1019                  * regardless of eeprom setting */
1020                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1021                         adapter->eeprom_wol = 0;
1022                 break;
1023         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1024                 /* if quad port adapter, disable WoL on all but port A */
1025                 if (global_quad_port_a != 0)
1026                         adapter->eeprom_wol = 0;
1027                 else
1028                         adapter->quad_port_a = 1;
1029                 /* Reset for multiple quad port adapters */
1030                 if (++global_quad_port_a == 4)
1031                         global_quad_port_a = 0;
1032                 break;
1033         }
1034
1035         /* initialize the wol settings based on the eeprom settings */
1036         adapter->wol = adapter->eeprom_wol;
1037         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1038
1039         /* print bus type/speed/width info */
1040         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1041                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1042                 ((hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1043                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1044                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1045                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1046                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" : "32-bit"));
1047
1048         printk("%pM\n", netdev->dev_addr);
1049
1050         /* reset the hardware with the new settings */
1051         e1000_reset(adapter);
1052
1053         strcpy(netdev->name, "eth%d");
1054         err = register_netdev(netdev);
1055         if (err)
1056                 goto err_register;
1057
1058         /* carrier off reporting is important to ethtool even BEFORE open */
1059         netif_carrier_off(netdev);
1060
1061         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1062
1063         cards_found++;
1064         return 0;
1065
1066 err_register:
1067 err_eeprom:
1068         e1000_phy_hw_reset(hw);
1069
1070         if (hw->flash_address)
1071                 iounmap(hw->flash_address);
1072         kfree(adapter->tx_ring);
1073         kfree(adapter->rx_ring);
1074 err_sw_init:
1075         iounmap(hw->hw_addr);
1076 err_ioremap:
1077         free_netdev(netdev);
1078 err_alloc_etherdev:
1079         pci_release_selected_regions(pdev, bars);
1080 err_pci_reg:
1081 err_dma:
1082         pci_disable_device(pdev);
1083         return err;
1084 }
1085
1086 /**
1087  * e1000_remove - Device Removal Routine
1088  * @pdev: PCI device information struct
1089  *
1090  * e1000_remove is called by the PCI subsystem to alert the driver
1091  * that it should release a PCI device.  The could be caused by a
1092  * Hot-Plug event, or because the driver is going to be removed from
1093  * memory.
1094  **/
1095
1096 static void __devexit e1000_remove(struct pci_dev *pdev)
1097 {
1098         struct net_device *netdev = pci_get_drvdata(pdev);
1099         struct e1000_adapter *adapter = netdev_priv(netdev);
1100         struct e1000_hw *hw = &adapter->hw;
1101
1102         set_bit(__E1000_DOWN, &adapter->flags);
1103         del_timer_sync(&adapter->tx_fifo_stall_timer);
1104         del_timer_sync(&adapter->watchdog_timer);
1105         del_timer_sync(&adapter->phy_info_timer);
1106
1107         cancel_work_sync(&adapter->reset_task);
1108
1109         e1000_release_manageability(adapter);
1110
1111         unregister_netdev(netdev);
1112
1113         e1000_phy_hw_reset(hw);
1114
1115         kfree(adapter->tx_ring);
1116         kfree(adapter->rx_ring);
1117
1118         iounmap(hw->hw_addr);
1119         if (hw->flash_address)
1120                 iounmap(hw->flash_address);
1121         pci_release_selected_regions(pdev, adapter->bars);
1122
1123         free_netdev(netdev);
1124
1125         pci_disable_device(pdev);
1126 }
1127
1128 /**
1129  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1130  * @adapter: board private structure to initialize
1131  *
1132  * e1000_sw_init initializes the Adapter private data structure.
1133  * Fields are initialized based on PCI device information and
1134  * OS network device settings (MTU size).
1135  **/
1136
1137 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1138 {
1139         struct e1000_hw *hw = &adapter->hw;
1140         struct net_device *netdev = adapter->netdev;
1141         struct pci_dev *pdev = adapter->pdev;
1142
1143         /* PCI config space info */
1144
1145         hw->vendor_id = pdev->vendor;
1146         hw->device_id = pdev->device;
1147         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1148         hw->subsystem_id = pdev->subsystem_device;
1149         hw->revision_id = pdev->revision;
1150
1151         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1152
1153         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1154         hw->max_frame_size = netdev->mtu +
1155                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1156         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1157
1158         /* identify the MAC */
1159
1160         if (e1000_set_mac_type(hw)) {
1161                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1162                 return -EIO;
1163         }
1164
1165         switch (hw->mac_type) {
1166         default:
1167                 break;
1168         case e1000_82541:
1169         case e1000_82547:
1170         case e1000_82541_rev_2:
1171         case e1000_82547_rev_2:
1172                 hw->phy_init_script = 1;
1173                 break;
1174         }
1175
1176         e1000_set_media_type(hw);
1177
1178         hw->wait_autoneg_complete = false;
1179         hw->tbi_compatibility_en = true;
1180         hw->adaptive_ifs = true;
1181
1182         /* Copper options */
1183
1184         if (hw->media_type == e1000_media_type_copper) {
1185                 hw->mdix = AUTO_ALL_MODES;
1186                 hw->disable_polarity_correction = false;
1187                 hw->master_slave = E1000_MASTER_SLAVE;
1188         }
1189
1190         adapter->num_tx_queues = 1;
1191         adapter->num_rx_queues = 1;
1192
1193         if (e1000_alloc_queues(adapter)) {
1194                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1195                 return -ENOMEM;
1196         }
1197
1198         /* Explicitly disable IRQ since the NIC can be in any state. */
1199         e1000_irq_disable(adapter);
1200
1201         spin_lock_init(&adapter->stats_lock);
1202
1203         set_bit(__E1000_DOWN, &adapter->flags);
1204
1205         return 0;
1206 }
1207
1208 /**
1209  * e1000_alloc_queues - Allocate memory for all rings
1210  * @adapter: board private structure to initialize
1211  *
1212  * We allocate one ring per queue at run-time since we don't know the
1213  * number of queues at compile-time.
1214  **/
1215
1216 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1217 {
1218         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1219                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1220         if (!adapter->tx_ring)
1221                 return -ENOMEM;
1222
1223         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1224                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1225         if (!adapter->rx_ring) {
1226                 kfree(adapter->tx_ring);
1227                 return -ENOMEM;
1228         }
1229
1230         return E1000_SUCCESS;
1231 }
1232
1233 /**
1234  * e1000_open - Called when a network interface is made active
1235  * @netdev: network interface device structure
1236  *
1237  * Returns 0 on success, negative value on failure
1238  *
1239  * The open entry point is called when a network interface is made
1240  * active by the system (IFF_UP).  At this point all resources needed
1241  * for transmit and receive operations are allocated, the interrupt
1242  * handler is registered with the OS, the watchdog timer is started,
1243  * and the stack is notified that the interface is ready.
1244  **/
1245
1246 static int e1000_open(struct net_device *netdev)
1247 {
1248         struct e1000_adapter *adapter = netdev_priv(netdev);
1249         struct e1000_hw *hw = &adapter->hw;
1250         int err;
1251
1252         /* disallow open during test */
1253         if (test_bit(__E1000_TESTING, &adapter->flags))
1254                 return -EBUSY;
1255
1256         netif_carrier_off(netdev);
1257
1258         /* allocate transmit descriptors */
1259         err = e1000_setup_all_tx_resources(adapter);
1260         if (err)
1261                 goto err_setup_tx;
1262
1263         /* allocate receive descriptors */
1264         err = e1000_setup_all_rx_resources(adapter);
1265         if (err)
1266                 goto err_setup_rx;
1267
1268         e1000_power_up_phy(adapter);
1269
1270         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1271         if ((hw->mng_cookie.status &
1272                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1273                 e1000_update_mng_vlan(adapter);
1274         }
1275
1276         /* before we allocate an interrupt, we must be ready to handle it.
1277          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1278          * as soon as we call pci_request_irq, so we have to setup our
1279          * clean_rx handler before we do so.  */
1280         e1000_configure(adapter);
1281
1282         err = e1000_request_irq(adapter);
1283         if (err)
1284                 goto err_req_irq;
1285
1286         /* From here on the code is the same as e1000_up() */
1287         clear_bit(__E1000_DOWN, &adapter->flags);
1288
1289         napi_enable(&adapter->napi);
1290
1291         e1000_irq_enable(adapter);
1292
1293         netif_start_queue(netdev);
1294
1295         /* fire a link status change interrupt to start the watchdog */
1296         ew32(ICS, E1000_ICS_LSC);
1297
1298         return E1000_SUCCESS;
1299
1300 err_req_irq:
1301         e1000_power_down_phy(adapter);
1302         e1000_free_all_rx_resources(adapter);
1303 err_setup_rx:
1304         e1000_free_all_tx_resources(adapter);
1305 err_setup_tx:
1306         e1000_reset(adapter);
1307
1308         return err;
1309 }
1310
1311 /**
1312  * e1000_close - Disables a network interface
1313  * @netdev: network interface device structure
1314  *
1315  * Returns 0, this is not allowed to fail
1316  *
1317  * The close entry point is called when an interface is de-activated
1318  * by the OS.  The hardware is still under the drivers control, but
1319  * needs to be disabled.  A global MAC reset is issued to stop the
1320  * hardware, and all transmit and receive resources are freed.
1321  **/
1322
1323 static int e1000_close(struct net_device *netdev)
1324 {
1325         struct e1000_adapter *adapter = netdev_priv(netdev);
1326         struct e1000_hw *hw = &adapter->hw;
1327
1328         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1329         e1000_down(adapter);
1330         e1000_power_down_phy(adapter);
1331         e1000_free_irq(adapter);
1332
1333         e1000_free_all_tx_resources(adapter);
1334         e1000_free_all_rx_resources(adapter);
1335
1336         /* kill manageability vlan ID if supported, but not if a vlan with
1337          * the same ID is registered on the host OS (let 8021q kill it) */
1338         if ((hw->mng_cookie.status &
1339                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1340              !(adapter->vlgrp &&
1341                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1342                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1343         }
1344
1345         return 0;
1346 }
1347
1348 /**
1349  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1350  * @adapter: address of board private structure
1351  * @start: address of beginning of memory
1352  * @len: length of memory
1353  **/
1354 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1355                                   unsigned long len)
1356 {
1357         struct e1000_hw *hw = &adapter->hw;
1358         unsigned long begin = (unsigned long)start;
1359         unsigned long end = begin + len;
1360
1361         /* First rev 82545 and 82546 need to not allow any memory
1362          * write location to cross 64k boundary due to errata 23 */
1363         if (hw->mac_type == e1000_82545 ||
1364             hw->mac_type == e1000_82546) {
1365                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1366         }
1367
1368         return true;
1369 }
1370
1371 /**
1372  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1373  * @adapter: board private structure
1374  * @txdr:    tx descriptor ring (for a specific queue) to setup
1375  *
1376  * Return 0 on success, negative on failure
1377  **/
1378
1379 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1380                                     struct e1000_tx_ring *txdr)
1381 {
1382         struct pci_dev *pdev = adapter->pdev;
1383         int size;
1384
1385         size = sizeof(struct e1000_buffer) * txdr->count;
1386         txdr->buffer_info = vmalloc(size);
1387         if (!txdr->buffer_info) {
1388                 DPRINTK(PROBE, ERR,
1389                 "Unable to allocate memory for the transmit descriptor ring\n");
1390                 return -ENOMEM;
1391         }
1392         memset(txdr->buffer_info, 0, size);
1393
1394         /* round up to nearest 4K */
1395
1396         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1397         txdr->size = ALIGN(txdr->size, 4096);
1398
1399         txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1400                                         GFP_KERNEL);
1401         if (!txdr->desc) {
1402 setup_tx_desc_die:
1403                 vfree(txdr->buffer_info);
1404                 DPRINTK(PROBE, ERR,
1405                 "Unable to allocate memory for the transmit descriptor ring\n");
1406                 return -ENOMEM;
1407         }
1408
1409         /* Fix for errata 23, can't cross 64kB boundary */
1410         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1411                 void *olddesc = txdr->desc;
1412                 dma_addr_t olddma = txdr->dma;
1413                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1414                                      "at %p\n", txdr->size, txdr->desc);
1415                 /* Try again, without freeing the previous */
1416                 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1417                                                 &txdr->dma, GFP_KERNEL);
1418                 /* Failed allocation, critical failure */
1419                 if (!txdr->desc) {
1420                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1421                                           olddma);
1422                         goto setup_tx_desc_die;
1423                 }
1424
1425                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1426                         /* give up */
1427                         dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1428                                           txdr->dma);
1429                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1430                                           olddma);
1431                         DPRINTK(PROBE, ERR,
1432                                 "Unable to allocate aligned memory "
1433                                 "for the transmit descriptor ring\n");
1434                         vfree(txdr->buffer_info);
1435                         return -ENOMEM;
1436                 } else {
1437                         /* Free old allocation, new allocation was successful */
1438                         dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1439                                           olddma);
1440                 }
1441         }
1442         memset(txdr->desc, 0, txdr->size);
1443
1444         txdr->next_to_use = 0;
1445         txdr->next_to_clean = 0;
1446
1447         return 0;
1448 }
1449
1450 /**
1451  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1452  *                                (Descriptors) for all queues
1453  * @adapter: board private structure
1454  *
1455  * Return 0 on success, negative on failure
1456  **/
1457
1458 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1459 {
1460         int i, err = 0;
1461
1462         for (i = 0; i < adapter->num_tx_queues; i++) {
1463                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1464                 if (err) {
1465                         DPRINTK(PROBE, ERR,
1466                                 "Allocation for Tx Queue %u failed\n", i);
1467                         for (i-- ; i >= 0; i--)
1468                                 e1000_free_tx_resources(adapter,
1469                                                         &adapter->tx_ring[i]);
1470                         break;
1471                 }
1472         }
1473
1474         return err;
1475 }
1476
1477 /**
1478  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1479  * @adapter: board private structure
1480  *
1481  * Configure the Tx unit of the MAC after a reset.
1482  **/
1483
1484 static void e1000_configure_tx(struct e1000_adapter *adapter)
1485 {
1486         u64 tdba;
1487         struct e1000_hw *hw = &adapter->hw;
1488         u32 tdlen, tctl, tipg;
1489         u32 ipgr1, ipgr2;
1490
1491         /* Setup the HW Tx Head and Tail descriptor pointers */
1492
1493         switch (adapter->num_tx_queues) {
1494         case 1:
1495         default:
1496                 tdba = adapter->tx_ring[0].dma;
1497                 tdlen = adapter->tx_ring[0].count *
1498                         sizeof(struct e1000_tx_desc);
1499                 ew32(TDLEN, tdlen);
1500                 ew32(TDBAH, (tdba >> 32));
1501                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1502                 ew32(TDT, 0);
1503                 ew32(TDH, 0);
1504                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1505                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1506                 break;
1507         }
1508
1509         /* Set the default values for the Tx Inter Packet Gap timer */
1510         if ((hw->media_type == e1000_media_type_fiber ||
1511              hw->media_type == e1000_media_type_internal_serdes))
1512                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1513         else
1514                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1515
1516         switch (hw->mac_type) {
1517         case e1000_82542_rev2_0:
1518         case e1000_82542_rev2_1:
1519                 tipg = DEFAULT_82542_TIPG_IPGT;
1520                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1521                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1522                 break;
1523         default:
1524                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1525                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1526                 break;
1527         }
1528         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1529         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1530         ew32(TIPG, tipg);
1531
1532         /* Set the Tx Interrupt Delay register */
1533
1534         ew32(TIDV, adapter->tx_int_delay);
1535         if (hw->mac_type >= e1000_82540)
1536                 ew32(TADV, adapter->tx_abs_int_delay);
1537
1538         /* Program the Transmit Control Register */
1539
1540         tctl = er32(TCTL);
1541         tctl &= ~E1000_TCTL_CT;
1542         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1543                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1544
1545         e1000_config_collision_dist(hw);
1546
1547         /* Setup Transmit Descriptor Settings for eop descriptor */
1548         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1549
1550         /* only set IDE if we are delaying interrupts using the timers */
1551         if (adapter->tx_int_delay)
1552                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1553
1554         if (hw->mac_type < e1000_82543)
1555                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1556         else
1557                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1558
1559         /* Cache if we're 82544 running in PCI-X because we'll
1560          * need this to apply a workaround later in the send path. */
1561         if (hw->mac_type == e1000_82544 &&
1562             hw->bus_type == e1000_bus_type_pcix)
1563                 adapter->pcix_82544 = 1;
1564
1565         ew32(TCTL, tctl);
1566
1567 }
1568
1569 /**
1570  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1571  * @adapter: board private structure
1572  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1573  *
1574  * Returns 0 on success, negative on failure
1575  **/
1576
1577 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1578                                     struct e1000_rx_ring *rxdr)
1579 {
1580         struct pci_dev *pdev = adapter->pdev;
1581         int size, desc_len;
1582
1583         size = sizeof(struct e1000_buffer) * rxdr->count;
1584         rxdr->buffer_info = vmalloc(size);
1585         if (!rxdr->buffer_info) {
1586                 DPRINTK(PROBE, ERR,
1587                 "Unable to allocate memory for the receive descriptor ring\n");
1588                 return -ENOMEM;
1589         }
1590         memset(rxdr->buffer_info, 0, size);
1591
1592         desc_len = sizeof(struct e1000_rx_desc);
1593
1594         /* Round up to nearest 4K */
1595
1596         rxdr->size = rxdr->count * desc_len;
1597         rxdr->size = ALIGN(rxdr->size, 4096);
1598
1599         rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1600                                         GFP_KERNEL);
1601
1602         if (!rxdr->desc) {
1603                 DPRINTK(PROBE, ERR,
1604                 "Unable to allocate memory for the receive descriptor ring\n");
1605 setup_rx_desc_die:
1606                 vfree(rxdr->buffer_info);
1607                 return -ENOMEM;
1608         }
1609
1610         /* Fix for errata 23, can't cross 64kB boundary */
1611         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1612                 void *olddesc = rxdr->desc;
1613                 dma_addr_t olddma = rxdr->dma;
1614                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1615                                      "at %p\n", rxdr->size, rxdr->desc);
1616                 /* Try again, without freeing the previous */
1617                 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1618                                                 &rxdr->dma, GFP_KERNEL);
1619                 /* Failed allocation, critical failure */
1620                 if (!rxdr->desc) {
1621                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1622                                           olddma);
1623                         DPRINTK(PROBE, ERR,
1624                                 "Unable to allocate memory "
1625                                 "for the receive descriptor ring\n");
1626                         goto setup_rx_desc_die;
1627                 }
1628
1629                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1630                         /* give up */
1631                         dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1632                                           rxdr->dma);
1633                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1634                                           olddma);
1635                         DPRINTK(PROBE, ERR,
1636                                 "Unable to allocate aligned memory "
1637                                 "for the receive descriptor ring\n");
1638                         goto setup_rx_desc_die;
1639                 } else {
1640                         /* Free old allocation, new allocation was successful */
1641                         dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1642                                           olddma);
1643                 }
1644         }
1645         memset(rxdr->desc, 0, rxdr->size);
1646
1647         rxdr->next_to_clean = 0;
1648         rxdr->next_to_use = 0;
1649         rxdr->rx_skb_top = NULL;
1650
1651         return 0;
1652 }
1653
1654 /**
1655  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1656  *                                (Descriptors) for all queues
1657  * @adapter: board private structure
1658  *
1659  * Return 0 on success, negative on failure
1660  **/
1661
1662 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1663 {
1664         int i, err = 0;
1665
1666         for (i = 0; i < adapter->num_rx_queues; i++) {
1667                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1668                 if (err) {
1669                         DPRINTK(PROBE, ERR,
1670                                 "Allocation for Rx Queue %u failed\n", i);
1671                         for (i-- ; i >= 0; i--)
1672                                 e1000_free_rx_resources(adapter,
1673                                                         &adapter->rx_ring[i]);
1674                         break;
1675                 }
1676         }
1677
1678         return err;
1679 }
1680
1681 /**
1682  * e1000_setup_rctl - configure the receive control registers
1683  * @adapter: Board private structure
1684  **/
1685 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1686 {
1687         struct e1000_hw *hw = &adapter->hw;
1688         u32 rctl;
1689
1690         rctl = er32(RCTL);
1691
1692         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1693
1694         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1695                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1696                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1697
1698         if (hw->tbi_compatibility_on == 1)
1699                 rctl |= E1000_RCTL_SBP;
1700         else
1701                 rctl &= ~E1000_RCTL_SBP;
1702
1703         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1704                 rctl &= ~E1000_RCTL_LPE;
1705         else
1706                 rctl |= E1000_RCTL_LPE;
1707
1708         /* Setup buffer sizes */
1709         rctl &= ~E1000_RCTL_SZ_4096;
1710         rctl |= E1000_RCTL_BSEX;
1711         switch (adapter->rx_buffer_len) {
1712                 case E1000_RXBUFFER_2048:
1713                 default:
1714                         rctl |= E1000_RCTL_SZ_2048;
1715                         rctl &= ~E1000_RCTL_BSEX;
1716                         break;
1717                 case E1000_RXBUFFER_4096:
1718                         rctl |= E1000_RCTL_SZ_4096;
1719                         break;
1720                 case E1000_RXBUFFER_8192:
1721                         rctl |= E1000_RCTL_SZ_8192;
1722                         break;
1723                 case E1000_RXBUFFER_16384:
1724                         rctl |= E1000_RCTL_SZ_16384;
1725                         break;
1726         }
1727
1728         ew32(RCTL, rctl);
1729 }
1730
1731 /**
1732  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1733  * @adapter: board private structure
1734  *
1735  * Configure the Rx unit of the MAC after a reset.
1736  **/
1737
1738 static void e1000_configure_rx(struct e1000_adapter *adapter)
1739 {
1740         u64 rdba;
1741         struct e1000_hw *hw = &adapter->hw;
1742         u32 rdlen, rctl, rxcsum;
1743
1744         if (adapter->netdev->mtu > ETH_DATA_LEN) {
1745                 rdlen = adapter->rx_ring[0].count *
1746                         sizeof(struct e1000_rx_desc);
1747                 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1748                 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1749         } else {
1750                 rdlen = adapter->rx_ring[0].count *
1751                         sizeof(struct e1000_rx_desc);
1752                 adapter->clean_rx = e1000_clean_rx_irq;
1753                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1754         }
1755
1756         /* disable receives while setting up the descriptors */
1757         rctl = er32(RCTL);
1758         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1759
1760         /* set the Receive Delay Timer Register */
1761         ew32(RDTR, adapter->rx_int_delay);
1762
1763         if (hw->mac_type >= e1000_82540) {
1764                 ew32(RADV, adapter->rx_abs_int_delay);
1765                 if (adapter->itr_setting != 0)
1766                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1767         }
1768
1769         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1770          * the Base and Length of the Rx Descriptor Ring */
1771         switch (adapter->num_rx_queues) {
1772         case 1:
1773         default:
1774                 rdba = adapter->rx_ring[0].dma;
1775                 ew32(RDLEN, rdlen);
1776                 ew32(RDBAH, (rdba >> 32));
1777                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1778                 ew32(RDT, 0);
1779                 ew32(RDH, 0);
1780                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1781                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1782                 break;
1783         }
1784
1785         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1786         if (hw->mac_type >= e1000_82543) {
1787                 rxcsum = er32(RXCSUM);
1788                 if (adapter->rx_csum)
1789                         rxcsum |= E1000_RXCSUM_TUOFL;
1790                 else
1791                         /* don't need to clear IPPCSE as it defaults to 0 */
1792                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1793                 ew32(RXCSUM, rxcsum);
1794         }
1795
1796         /* Enable Receives */
1797         ew32(RCTL, rctl);
1798 }
1799
1800 /**
1801  * e1000_free_tx_resources - Free Tx Resources per Queue
1802  * @adapter: board private structure
1803  * @tx_ring: Tx descriptor ring for a specific queue
1804  *
1805  * Free all transmit software resources
1806  **/
1807
1808 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1809                                     struct e1000_tx_ring *tx_ring)
1810 {
1811         struct pci_dev *pdev = adapter->pdev;
1812
1813         e1000_clean_tx_ring(adapter, tx_ring);
1814
1815         vfree(tx_ring->buffer_info);
1816         tx_ring->buffer_info = NULL;
1817
1818         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1819                           tx_ring->dma);
1820
1821         tx_ring->desc = NULL;
1822 }
1823
1824 /**
1825  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1826  * @adapter: board private structure
1827  *
1828  * Free all transmit software resources
1829  **/
1830
1831 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1832 {
1833         int i;
1834
1835         for (i = 0; i < adapter->num_tx_queues; i++)
1836                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1837 }
1838
1839 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1840                                              struct e1000_buffer *buffer_info)
1841 {
1842         if (buffer_info->dma) {
1843                 if (buffer_info->mapped_as_page)
1844                         dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1845                                        buffer_info->length, DMA_TO_DEVICE);
1846                 else
1847                         dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1848                                          buffer_info->length,
1849                                          DMA_TO_DEVICE);
1850                 buffer_info->dma = 0;
1851         }
1852         if (buffer_info->skb) {
1853                 dev_kfree_skb_any(buffer_info->skb);
1854                 buffer_info->skb = NULL;
1855         }
1856         buffer_info->time_stamp = 0;
1857         /* buffer_info must be completely set up in the transmit path */
1858 }
1859
1860 /**
1861  * e1000_clean_tx_ring - Free Tx Buffers
1862  * @adapter: board private structure
1863  * @tx_ring: ring to be cleaned
1864  **/
1865
1866 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1867                                 struct e1000_tx_ring *tx_ring)
1868 {
1869         struct e1000_hw *hw = &adapter->hw;
1870         struct e1000_buffer *buffer_info;
1871         unsigned long size;
1872         unsigned int i;
1873
1874         /* Free all the Tx ring sk_buffs */
1875
1876         for (i = 0; i < tx_ring->count; i++) {
1877                 buffer_info = &tx_ring->buffer_info[i];
1878                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1879         }
1880
1881         size = sizeof(struct e1000_buffer) * tx_ring->count;
1882         memset(tx_ring->buffer_info, 0, size);
1883
1884         /* Zero out the descriptor ring */
1885
1886         memset(tx_ring->desc, 0, tx_ring->size);
1887
1888         tx_ring->next_to_use = 0;
1889         tx_ring->next_to_clean = 0;
1890         tx_ring->last_tx_tso = 0;
1891
1892         writel(0, hw->hw_addr + tx_ring->tdh);
1893         writel(0, hw->hw_addr + tx_ring->tdt);
1894 }
1895
1896 /**
1897  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1898  * @adapter: board private structure
1899  **/
1900
1901 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1902 {
1903         int i;
1904
1905         for (i = 0; i < adapter->num_tx_queues; i++)
1906                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1907 }
1908
1909 /**
1910  * e1000_free_rx_resources - Free Rx Resources
1911  * @adapter: board private structure
1912  * @rx_ring: ring to clean the resources from
1913  *
1914  * Free all receive software resources
1915  **/
1916
1917 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
1918                                     struct e1000_rx_ring *rx_ring)
1919 {
1920         struct pci_dev *pdev = adapter->pdev;
1921
1922         e1000_clean_rx_ring(adapter, rx_ring);
1923
1924         vfree(rx_ring->buffer_info);
1925         rx_ring->buffer_info = NULL;
1926
1927         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1928                           rx_ring->dma);
1929
1930         rx_ring->desc = NULL;
1931 }
1932
1933 /**
1934  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1935  * @adapter: board private structure
1936  *
1937  * Free all receive software resources
1938  **/
1939
1940 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1941 {
1942         int i;
1943
1944         for (i = 0; i < adapter->num_rx_queues; i++)
1945                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1946 }
1947
1948 /**
1949  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1950  * @adapter: board private structure
1951  * @rx_ring: ring to free buffers from
1952  **/
1953
1954 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
1955                                 struct e1000_rx_ring *rx_ring)
1956 {
1957         struct e1000_hw *hw = &adapter->hw;
1958         struct e1000_buffer *buffer_info;
1959         struct pci_dev *pdev = adapter->pdev;
1960         unsigned long size;
1961         unsigned int i;
1962
1963         /* Free all the Rx ring sk_buffs */
1964         for (i = 0; i < rx_ring->count; i++) {
1965                 buffer_info = &rx_ring->buffer_info[i];
1966                 if (buffer_info->dma &&
1967                     adapter->clean_rx == e1000_clean_rx_irq) {
1968                         dma_unmap_single(&pdev->dev, buffer_info->dma,
1969                                          buffer_info->length,
1970                                          DMA_FROM_DEVICE);
1971                 } else if (buffer_info->dma &&
1972                            adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
1973                         dma_unmap_page(&pdev->dev, buffer_info->dma,
1974                                        buffer_info->length,
1975                                        DMA_FROM_DEVICE);
1976                 }
1977
1978                 buffer_info->dma = 0;
1979                 if (buffer_info->page) {
1980                         put_page(buffer_info->page);
1981                         buffer_info->page = NULL;
1982                 }
1983                 if (buffer_info->skb) {
1984                         dev_kfree_skb(buffer_info->skb);
1985                         buffer_info->skb = NULL;
1986                 }
1987         }
1988
1989         /* there also may be some cached data from a chained receive */
1990         if (rx_ring->rx_skb_top) {
1991                 dev_kfree_skb(rx_ring->rx_skb_top);
1992                 rx_ring->rx_skb_top = NULL;
1993         }
1994
1995         size = sizeof(struct e1000_buffer) * rx_ring->count;
1996         memset(rx_ring->buffer_info, 0, size);
1997
1998         /* Zero out the descriptor ring */
1999         memset(rx_ring->desc, 0, rx_ring->size);
2000
2001         rx_ring->next_to_clean = 0;
2002         rx_ring->next_to_use = 0;
2003
2004         writel(0, hw->hw_addr + rx_ring->rdh);
2005         writel(0, hw->hw_addr + rx_ring->rdt);
2006 }
2007
2008 /**
2009  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2010  * @adapter: board private structure
2011  **/
2012
2013 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2014 {
2015         int i;
2016
2017         for (i = 0; i < adapter->num_rx_queues; i++)
2018                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2019 }
2020
2021 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2022  * and memory write and invalidate disabled for certain operations
2023  */
2024 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2025 {
2026         struct e1000_hw *hw = &adapter->hw;
2027         struct net_device *netdev = adapter->netdev;
2028         u32 rctl;
2029
2030         e1000_pci_clear_mwi(hw);
2031
2032         rctl = er32(RCTL);
2033         rctl |= E1000_RCTL_RST;
2034         ew32(RCTL, rctl);
2035         E1000_WRITE_FLUSH();
2036         mdelay(5);
2037
2038         if (netif_running(netdev))
2039                 e1000_clean_all_rx_rings(adapter);
2040 }
2041
2042 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2043 {
2044         struct e1000_hw *hw = &adapter->hw;
2045         struct net_device *netdev = adapter->netdev;
2046         u32 rctl;
2047
2048         rctl = er32(RCTL);
2049         rctl &= ~E1000_RCTL_RST;
2050         ew32(RCTL, rctl);
2051         E1000_WRITE_FLUSH();
2052         mdelay(5);
2053
2054         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2055                 e1000_pci_set_mwi(hw);
2056
2057         if (netif_running(netdev)) {
2058                 /* No need to loop, because 82542 supports only 1 queue */
2059                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2060                 e1000_configure_rx(adapter);
2061                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2062         }
2063 }
2064
2065 /**
2066  * e1000_set_mac - Change the Ethernet Address of the NIC
2067  * @netdev: network interface device structure
2068  * @p: pointer to an address structure
2069  *
2070  * Returns 0 on success, negative on failure
2071  **/
2072
2073 static int e1000_set_mac(struct net_device *netdev, void *p)
2074 {
2075         struct e1000_adapter *adapter = netdev_priv(netdev);
2076         struct e1000_hw *hw = &adapter->hw;
2077         struct sockaddr *addr = p;
2078
2079         if (!is_valid_ether_addr(addr->sa_data))
2080                 return -EADDRNOTAVAIL;
2081
2082         /* 82542 2.0 needs to be in reset to write receive address registers */
2083
2084         if (hw->mac_type == e1000_82542_rev2_0)
2085                 e1000_enter_82542_rst(adapter);
2086
2087         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2088         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2089
2090         e1000_rar_set(hw, hw->mac_addr, 0);
2091
2092         if (hw->mac_type == e1000_82542_rev2_0)
2093                 e1000_leave_82542_rst(adapter);
2094
2095         return 0;
2096 }
2097
2098 /**
2099  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2100  * @netdev: network interface device structure
2101  *
2102  * The set_rx_mode entry point is called whenever the unicast or multicast
2103  * address lists or the network interface flags are updated. This routine is
2104  * responsible for configuring the hardware for proper unicast, multicast,
2105  * promiscuous mode, and all-multi behavior.
2106  **/
2107
2108 static void e1000_set_rx_mode(struct net_device *netdev)
2109 {
2110         struct e1000_adapter *adapter = netdev_priv(netdev);
2111         struct e1000_hw *hw = &adapter->hw;
2112         struct netdev_hw_addr *ha;
2113         bool use_uc = false;
2114         u32 rctl;
2115         u32 hash_value;
2116         int i, rar_entries = E1000_RAR_ENTRIES;
2117         int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2118         u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2119
2120         if (!mcarray) {
2121                 DPRINTK(PROBE, ERR, "memory allocation failed\n");
2122                 return;
2123         }
2124
2125         /* Check for Promiscuous and All Multicast modes */
2126
2127         rctl = er32(RCTL);
2128
2129         if (netdev->flags & IFF_PROMISC) {
2130                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2131                 rctl &= ~E1000_RCTL_VFE;
2132         } else {
2133                 if (netdev->flags & IFF_ALLMULTI)
2134                         rctl |= E1000_RCTL_MPE;
2135                 else
2136                         rctl &= ~E1000_RCTL_MPE;
2137                 /* Enable VLAN filter if there is a VLAN */
2138                 if (adapter->vlgrp)
2139                         rctl |= E1000_RCTL_VFE;
2140         }
2141
2142         if (netdev_uc_count(netdev) > rar_entries - 1) {
2143                 rctl |= E1000_RCTL_UPE;
2144         } else if (!(netdev->flags & IFF_PROMISC)) {
2145                 rctl &= ~E1000_RCTL_UPE;
2146                 use_uc = true;
2147         }
2148
2149         ew32(RCTL, rctl);
2150
2151         /* 82542 2.0 needs to be in reset to write receive address registers */
2152
2153         if (hw->mac_type == e1000_82542_rev2_0)
2154                 e1000_enter_82542_rst(adapter);
2155
2156         /* load the first 14 addresses into the exact filters 1-14. Unicast
2157          * addresses take precedence to avoid disabling unicast filtering
2158          * when possible.
2159          *
2160          * RAR 0 is used for the station MAC adddress
2161          * if there are not 14 addresses, go ahead and clear the filters
2162          */
2163         i = 1;
2164         if (use_uc)
2165                 netdev_for_each_uc_addr(ha, netdev) {
2166                         if (i == rar_entries)
2167                                 break;
2168                         e1000_rar_set(hw, ha->addr, i++);
2169                 }
2170
2171         WARN_ON(i == rar_entries);
2172
2173         netdev_for_each_mc_addr(ha, netdev) {
2174                 if (i == rar_entries) {
2175                         /* load any remaining addresses into the hash table */
2176                         u32 hash_reg, hash_bit, mta;
2177                         hash_value = e1000_hash_mc_addr(hw, ha->addr);
2178                         hash_reg = (hash_value >> 5) & 0x7F;
2179                         hash_bit = hash_value & 0x1F;
2180                         mta = (1 << hash_bit);
2181                         mcarray[hash_reg] |= mta;
2182                 } else {
2183                         e1000_rar_set(hw, ha->addr, i++);
2184                 }
2185         }
2186
2187         for (; i < rar_entries; i++) {
2188                 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2189                 E1000_WRITE_FLUSH();
2190                 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2191                 E1000_WRITE_FLUSH();
2192         }
2193
2194         /* write the hash table completely, write from bottom to avoid
2195          * both stupid write combining chipsets, and flushing each write */
2196         for (i = mta_reg_count - 1; i >= 0 ; i--) {
2197                 /*
2198                  * If we are on an 82544 has an errata where writing odd
2199                  * offsets overwrites the previous even offset, but writing
2200                  * backwards over the range solves the issue by always
2201                  * writing the odd offset first
2202                  */
2203                 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2204         }
2205         E1000_WRITE_FLUSH();
2206
2207         if (hw->mac_type == e1000_82542_rev2_0)
2208                 e1000_leave_82542_rst(adapter);
2209
2210         kfree(mcarray);
2211 }
2212
2213 /* Need to wait a few seconds after link up to get diagnostic information from
2214  * the phy */
2215
2216 static void e1000_update_phy_info(unsigned long data)
2217 {
2218         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2219         struct e1000_hw *hw = &adapter->hw;
2220         e1000_phy_get_info(hw, &adapter->phy_info);
2221 }
2222
2223 /**
2224  * e1000_82547_tx_fifo_stall - Timer Call-back
2225  * @data: pointer to adapter cast into an unsigned long
2226  **/
2227
2228 static void e1000_82547_tx_fifo_stall(unsigned long data)
2229 {
2230         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2231         struct e1000_hw *hw = &adapter->hw;
2232         struct net_device *netdev = adapter->netdev;
2233         u32 tctl;
2234
2235         if (atomic_read(&adapter->tx_fifo_stall)) {
2236                 if ((er32(TDT) == er32(TDH)) &&
2237                    (er32(TDFT) == er32(TDFH)) &&
2238                    (er32(TDFTS) == er32(TDFHS))) {
2239                         tctl = er32(TCTL);
2240                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2241                         ew32(TDFT, adapter->tx_head_addr);
2242                         ew32(TDFH, adapter->tx_head_addr);
2243                         ew32(TDFTS, adapter->tx_head_addr);
2244                         ew32(TDFHS, adapter->tx_head_addr);
2245                         ew32(TCTL, tctl);
2246                         E1000_WRITE_FLUSH();
2247
2248                         adapter->tx_fifo_head = 0;
2249                         atomic_set(&adapter->tx_fifo_stall, 0);
2250                         netif_wake_queue(netdev);
2251                 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2252                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2253                 }
2254         }
2255 }
2256
2257 bool e1000_has_link(struct e1000_adapter *adapter)
2258 {
2259         struct e1000_hw *hw = &adapter->hw;
2260         bool link_active = false;
2261
2262         /* get_link_status is set on LSC (link status) interrupt or
2263          * rx sequence error interrupt.  get_link_status will stay
2264          * false until the e1000_check_for_link establishes link
2265          * for copper adapters ONLY
2266          */
2267         switch (hw->media_type) {
2268         case e1000_media_type_copper:
2269                 if (hw->get_link_status) {
2270                         e1000_check_for_link(hw);
2271                         link_active = !hw->get_link_status;
2272                 } else {
2273                         link_active = true;
2274                 }
2275                 break;
2276         case e1000_media_type_fiber:
2277                 e1000_check_for_link(hw);
2278                 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2279                 break;
2280         case e1000_media_type_internal_serdes:
2281                 e1000_check_for_link(hw);
2282                 link_active = hw->serdes_has_link;
2283                 break;
2284         default:
2285                 break;
2286         }
2287
2288         return link_active;
2289 }
2290
2291 /**
2292  * e1000_watchdog - Timer Call-back
2293  * @data: pointer to adapter cast into an unsigned long
2294  **/
2295 static void e1000_watchdog(unsigned long data)
2296 {
2297         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2298         struct e1000_hw *hw = &adapter->hw;
2299         struct net_device *netdev = adapter->netdev;
2300         struct e1000_tx_ring *txdr = adapter->tx_ring;
2301         u32 link, tctl;
2302
2303         link = e1000_has_link(adapter);
2304         if ((netif_carrier_ok(netdev)) && link)
2305                 goto link_up;
2306
2307         if (link) {
2308                 if (!netif_carrier_ok(netdev)) {
2309                         u32 ctrl;
2310                         bool txb2b = true;
2311                         /* update snapshot of PHY registers on LSC */
2312                         e1000_get_speed_and_duplex(hw,
2313                                                    &adapter->link_speed,
2314                                                    &adapter->link_duplex);
2315
2316                         ctrl = er32(CTRL);
2317                         printk(KERN_INFO "e1000: %s NIC Link is Up %d Mbps %s, "
2318                                "Flow Control: %s\n",
2319                                netdev->name,
2320                                adapter->link_speed,
2321                                adapter->link_duplex == FULL_DUPLEX ?
2322                                 "Full Duplex" : "Half Duplex",
2323                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2324                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2325                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2326                                 E1000_CTRL_TFCE) ? "TX" : "None" )));
2327
2328                         /* adjust timeout factor according to speed/duplex */
2329                         adapter->tx_timeout_factor = 1;
2330                         switch (adapter->link_speed) {
2331                         case SPEED_10:
2332                                 txb2b = false;
2333                                 adapter->tx_timeout_factor = 16;
2334                                 break;
2335                         case SPEED_100:
2336                                 txb2b = false;
2337                                 /* maybe add some timeout factor ? */
2338                                 break;
2339                         }
2340
2341                         /* enable transmits in the hardware */
2342                         tctl = er32(TCTL);
2343                         tctl |= E1000_TCTL_EN;
2344                         ew32(TCTL, tctl);
2345
2346                         netif_carrier_on(netdev);
2347                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2348                                 mod_timer(&adapter->phy_info_timer,
2349                                           round_jiffies(jiffies + 2 * HZ));
2350                         adapter->smartspeed = 0;
2351                 }
2352         } else {
2353                 if (netif_carrier_ok(netdev)) {
2354                         adapter->link_speed = 0;
2355                         adapter->link_duplex = 0;
2356                         printk(KERN_INFO "e1000: %s NIC Link is Down\n",
2357                                netdev->name);
2358                         netif_carrier_off(netdev);
2359
2360                         if (!test_bit(__E1000_DOWN, &adapter->flags))
2361                                 mod_timer(&adapter->phy_info_timer,
2362                                           round_jiffies(jiffies + 2 * HZ));
2363                 }
2364
2365                 e1000_smartspeed(adapter);
2366         }
2367
2368 link_up:
2369         e1000_update_stats(adapter);
2370
2371         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2372         adapter->tpt_old = adapter->stats.tpt;
2373         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2374         adapter->colc_old = adapter->stats.colc;
2375
2376         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2377         adapter->gorcl_old = adapter->stats.gorcl;
2378         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2379         adapter->gotcl_old = adapter->stats.gotcl;
2380
2381         e1000_update_adaptive(hw);
2382
2383         if (!netif_carrier_ok(netdev)) {
2384                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2385                         /* We've lost link, so the controller stops DMA,
2386                          * but we've got queued Tx work that's never going
2387                          * to get done, so reset controller to flush Tx.
2388                          * (Do the reset outside of interrupt context). */
2389                         adapter->tx_timeout_count++;
2390                         schedule_work(&adapter->reset_task);
2391                         /* return immediately since reset is imminent */
2392                         return;
2393                 }
2394         }
2395
2396         /* Cause software interrupt to ensure rx ring is cleaned */
2397         ew32(ICS, E1000_ICS_RXDMT0);
2398
2399         /* Force detection of hung controller every watchdog period */
2400         adapter->detect_tx_hung = true;
2401
2402         /* Reset the timer */
2403         if (!test_bit(__E1000_DOWN, &adapter->flags))
2404                 mod_timer(&adapter->watchdog_timer,
2405                           round_jiffies(jiffies + 2 * HZ));
2406 }
2407
2408 enum latency_range {
2409         lowest_latency = 0,
2410         low_latency = 1,
2411         bulk_latency = 2,
2412         latency_invalid = 255
2413 };
2414
2415 /**
2416  * e1000_update_itr - update the dynamic ITR value based on statistics
2417  * @adapter: pointer to adapter
2418  * @itr_setting: current adapter->itr
2419  * @packets: the number of packets during this measurement interval
2420  * @bytes: the number of bytes during this measurement interval
2421  *
2422  *      Stores a new ITR value based on packets and byte
2423  *      counts during the last interrupt.  The advantage of per interrupt
2424  *      computation is faster updates and more accurate ITR for the current
2425  *      traffic pattern.  Constants in this function were computed
2426  *      based on theoretical maximum wire speed and thresholds were set based
2427  *      on testing data as well as attempting to minimize response time
2428  *      while increasing bulk throughput.
2429  *      this functionality is controlled by the InterruptThrottleRate module
2430  *      parameter (see e1000_param.c)
2431  **/
2432 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2433                                      u16 itr_setting, int packets, int bytes)
2434 {
2435         unsigned int retval = itr_setting;
2436         struct e1000_hw *hw = &adapter->hw;
2437
2438         if (unlikely(hw->mac_type < e1000_82540))
2439                 goto update_itr_done;
2440
2441         if (packets == 0)
2442                 goto update_itr_done;
2443
2444         switch (itr_setting) {
2445         case lowest_latency:
2446                 /* jumbo frames get bulk treatment*/
2447                 if (bytes/packets > 8000)
2448                         retval = bulk_latency;
2449                 else if ((packets < 5) && (bytes > 512))
2450                         retval = low_latency;
2451                 break;
2452         case low_latency:  /* 50 usec aka 20000 ints/s */
2453                 if (bytes > 10000) {
2454                         /* jumbo frames need bulk latency setting */
2455                         if (bytes/packets > 8000)
2456                                 retval = bulk_latency;
2457                         else if ((packets < 10) || ((bytes/packets) > 1200))
2458                                 retval = bulk_latency;
2459                         else if ((packets > 35))
2460                                 retval = lowest_latency;
2461                 } else if (bytes/packets > 2000)
2462                         retval = bulk_latency;
2463                 else if (packets <= 2 && bytes < 512)
2464                         retval = lowest_latency;
2465                 break;
2466         case bulk_latency: /* 250 usec aka 4000 ints/s */
2467                 if (bytes > 25000) {
2468                         if (packets > 35)
2469                                 retval = low_latency;
2470                 } else if (bytes < 6000) {
2471                         retval = low_latency;
2472                 }
2473                 break;
2474         }
2475
2476 update_itr_done:
2477         return retval;
2478 }
2479
2480 static void e1000_set_itr(struct e1000_adapter *adapter)
2481 {
2482         struct e1000_hw *hw = &adapter->hw;
2483         u16 current_itr;
2484         u32 new_itr = adapter->itr;
2485
2486         if (unlikely(hw->mac_type < e1000_82540))
2487                 return;
2488
2489         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2490         if (unlikely(adapter->link_speed != SPEED_1000)) {
2491                 current_itr = 0;
2492                 new_itr = 4000;
2493                 goto set_itr_now;
2494         }
2495
2496         adapter->tx_itr = e1000_update_itr(adapter,
2497                                     adapter->tx_itr,
2498                                     adapter->total_tx_packets,
2499                                     adapter->total_tx_bytes);
2500         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2501         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2502                 adapter->tx_itr = low_latency;
2503
2504         adapter->rx_itr = e1000_update_itr(adapter,
2505                                     adapter->rx_itr,
2506                                     adapter->total_rx_packets,
2507                                     adapter->total_rx_bytes);
2508         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2509         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2510                 adapter->rx_itr = low_latency;
2511
2512         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2513
2514         switch (current_itr) {
2515         /* counts and packets in update_itr are dependent on these numbers */
2516         case lowest_latency:
2517                 new_itr = 70000;
2518                 break;
2519         case low_latency:
2520                 new_itr = 20000; /* aka hwitr = ~200 */
2521                 break;
2522         case bulk_latency:
2523                 new_itr = 4000;
2524                 break;
2525         default:
2526                 break;
2527         }
2528
2529 set_itr_now:
2530         if (new_itr != adapter->itr) {
2531                 /* this attempts to bias the interrupt rate towards Bulk
2532                  * by adding intermediate steps when interrupt rate is
2533                  * increasing */
2534                 new_itr = new_itr > adapter->itr ?
2535                              min(adapter->itr + (new_itr >> 2), new_itr) :
2536                              new_itr;
2537                 adapter->itr = new_itr;
2538                 ew32(ITR, 1000000000 / (new_itr * 256));
2539         }
2540
2541         return;
2542 }
2543
2544 #define E1000_TX_FLAGS_CSUM             0x00000001
2545 #define E1000_TX_FLAGS_VLAN             0x00000002
2546 #define E1000_TX_FLAGS_TSO              0x00000004
2547 #define E1000_TX_FLAGS_IPV4             0x00000008
2548 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2549 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2550
2551 static int e1000_tso(struct e1000_adapter *adapter,
2552                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2553 {
2554         struct e1000_context_desc *context_desc;
2555         struct e1000_buffer *buffer_info;
2556         unsigned int i;
2557         u32 cmd_length = 0;
2558         u16 ipcse = 0, tucse, mss;
2559         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2560         int err;
2561
2562         if (skb_is_gso(skb)) {
2563                 if (skb_header_cloned(skb)) {
2564                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2565                         if (err)
2566                                 return err;
2567                 }
2568
2569                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2570                 mss = skb_shinfo(skb)->gso_size;
2571                 if (skb->protocol == htons(ETH_P_IP)) {
2572                         struct iphdr *iph = ip_hdr(skb);
2573                         iph->tot_len = 0;
2574                         iph->check = 0;
2575                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2576                                                                  iph->daddr, 0,
2577                                                                  IPPROTO_TCP,
2578                                                                  0);
2579                         cmd_length = E1000_TXD_CMD_IP;
2580                         ipcse = skb_transport_offset(skb) - 1;
2581                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2582                         ipv6_hdr(skb)->payload_len = 0;
2583                         tcp_hdr(skb)->check =
2584                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2585                                                  &ipv6_hdr(skb)->daddr,
2586                                                  0, IPPROTO_TCP, 0);
2587                         ipcse = 0;
2588                 }
2589                 ipcss = skb_network_offset(skb);
2590                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2591                 tucss = skb_transport_offset(skb);
2592                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2593                 tucse = 0;
2594
2595                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2596                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2597
2598                 i = tx_ring->next_to_use;
2599                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2600                 buffer_info = &tx_ring->buffer_info[i];
2601
2602                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2603                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2604                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2605                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2606                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2607                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2608                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2609                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2610                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2611
2612                 buffer_info->time_stamp = jiffies;
2613                 buffer_info->next_to_watch = i;
2614
2615                 if (++i == tx_ring->count) i = 0;
2616                 tx_ring->next_to_use = i;
2617
2618                 return true;
2619         }
2620         return false;
2621 }
2622
2623 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2624                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2625 {
2626         struct e1000_context_desc *context_desc;
2627         struct e1000_buffer *buffer_info;
2628         unsigned int i;
2629         u8 css;
2630         u32 cmd_len = E1000_TXD_CMD_DEXT;
2631
2632         if (skb->ip_summed != CHECKSUM_PARTIAL)
2633                 return false;
2634
2635         switch (skb->protocol) {
2636         case cpu_to_be16(ETH_P_IP):
2637                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2638                         cmd_len |= E1000_TXD_CMD_TCP;
2639                 break;
2640         case cpu_to_be16(ETH_P_IPV6):
2641                 /* XXX not handling all IPV6 headers */
2642                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2643                         cmd_len |= E1000_TXD_CMD_TCP;
2644                 break;
2645         default:
2646                 if (unlikely(net_ratelimit()))
2647                         DPRINTK(DRV, WARNING,
2648                                 "checksum_partial proto=%x!\n", skb->protocol);
2649                 break;
2650         }
2651
2652         css = skb_transport_offset(skb);
2653
2654         i = tx_ring->next_to_use;
2655         buffer_info = &tx_ring->buffer_info[i];
2656         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2657
2658         context_desc->lower_setup.ip_config = 0;
2659         context_desc->upper_setup.tcp_fields.tucss = css;
2660         context_desc->upper_setup.tcp_fields.tucso =
2661                 css + skb->csum_offset;
2662         context_desc->upper_setup.tcp_fields.tucse = 0;
2663         context_desc->tcp_seg_setup.data = 0;
2664         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2665
2666         buffer_info->time_stamp = jiffies;
2667         buffer_info->next_to_watch = i;
2668
2669         if (unlikely(++i == tx_ring->count)) i = 0;
2670         tx_ring->next_to_use = i;
2671
2672         return true;
2673 }
2674
2675 #define E1000_MAX_TXD_PWR       12
2676 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2677
2678 static int e1000_tx_map(struct e1000_adapter *adapter,
2679                         struct e1000_tx_ring *tx_ring,
2680                         struct sk_buff *skb, unsigned int first,
2681                         unsigned int max_per_txd, unsigned int nr_frags,
2682                         unsigned int mss)
2683 {
2684         struct e1000_hw *hw = &adapter->hw;
2685         struct pci_dev *pdev = adapter->pdev;
2686         struct e1000_buffer *buffer_info;
2687         unsigned int len = skb_headlen(skb);
2688         unsigned int offset = 0, size, count = 0, i;
2689         unsigned int f;
2690
2691         i = tx_ring->next_to_use;
2692
2693         while (len) {
2694                 buffer_info = &tx_ring->buffer_info[i];
2695                 size = min(len, max_per_txd);
2696                 /* Workaround for Controller erratum --
2697                  * descriptor for non-tso packet in a linear SKB that follows a
2698                  * tso gets written back prematurely before the data is fully
2699                  * DMA'd to the controller */
2700                 if (!skb->data_len && tx_ring->last_tx_tso &&
2701                     !skb_is_gso(skb)) {
2702                         tx_ring->last_tx_tso = 0;
2703                         size -= 4;
2704                 }
2705
2706                 /* Workaround for premature desc write-backs
2707                  * in TSO mode.  Append 4-byte sentinel desc */
2708                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2709                         size -= 4;
2710                 /* work-around for errata 10 and it applies
2711                  * to all controllers in PCI-X mode
2712                  * The fix is to make sure that the first descriptor of a
2713                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2714                  */
2715                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2716                                 (size > 2015) && count == 0))
2717                         size = 2015;
2718
2719                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2720                  * terminating buffers within evenly-aligned dwords. */
2721                 if (unlikely(adapter->pcix_82544 &&
2722                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2723                    size > 4))
2724                         size -= 4;
2725
2726                 buffer_info->length = size;
2727                 /* set time_stamp *before* dma to help avoid a possible race */
2728                 buffer_info->time_stamp = jiffies;
2729                 buffer_info->mapped_as_page = false;
2730                 buffer_info->dma = dma_map_single(&pdev->dev,
2731                                                   skb->data + offset,
2732                                                   size, DMA_TO_DEVICE);
2733                 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2734                         goto dma_error;
2735                 buffer_info->next_to_watch = i;
2736
2737                 len -= size;
2738                 offset += size;
2739                 count++;
2740                 if (len) {
2741                         i++;
2742                         if (unlikely(i == tx_ring->count))
2743                                 i = 0;
2744                 }
2745         }
2746
2747         for (f = 0; f < nr_frags; f++) {
2748                 struct skb_frag_struct *frag;
2749
2750                 frag = &skb_shinfo(skb)->frags[f];
2751                 len = frag->size;
2752                 offset = frag->page_offset;
2753
2754                 while (len) {
2755                         i++;
2756                         if (unlikely(i == tx_ring->count))
2757                                 i = 0;
2758
2759                         buffer_info = &tx_ring->buffer_info[i];
2760                         size = min(len, max_per_txd);
2761                         /* Workaround for premature desc write-backs
2762                          * in TSO mode.  Append 4-byte sentinel desc */
2763                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2764                                 size -= 4;
2765                         /* Workaround for potential 82544 hang in PCI-X.
2766                          * Avoid terminating buffers within evenly-aligned
2767                          * dwords. */
2768                         if (unlikely(adapter->pcix_82544 &&
2769                             !((unsigned long)(page_to_phys(frag->page) + offset
2770                                               + size - 1) & 4) &&
2771                             size > 4))
2772                                 size -= 4;
2773
2774                         buffer_info->length = size;
2775                         buffer_info->time_stamp = jiffies;
2776                         buffer_info->mapped_as_page = true;
2777                         buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
2778                                                         offset, size,
2779                                                         DMA_TO_DEVICE);
2780                         if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2781                                 goto dma_error;
2782                         buffer_info->next_to_watch = i;
2783
2784                         len -= size;
2785                         offset += size;
2786                         count++;
2787                 }
2788         }
2789
2790         tx_ring->buffer_info[i].skb = skb;
2791         tx_ring->buffer_info[first].next_to_watch = i;
2792
2793         return count;
2794
2795 dma_error:
2796         dev_err(&pdev->dev, "TX DMA map failed\n");
2797         buffer_info->dma = 0;
2798         if (count)
2799                 count--;
2800
2801         while (count--) {
2802                 if (i==0)
2803                         i += tx_ring->count;
2804                 i--;
2805                 buffer_info = &tx_ring->buffer_info[i];
2806                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2807         }
2808
2809         return 0;
2810 }
2811
2812 static void e1000_tx_queue(struct e1000_adapter *adapter,
2813                            struct e1000_tx_ring *tx_ring, int tx_flags,
2814                            int count)
2815 {
2816         struct e1000_hw *hw = &adapter->hw;
2817         struct e1000_tx_desc *tx_desc = NULL;
2818         struct e1000_buffer *buffer_info;
2819         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2820         unsigned int i;
2821
2822         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2823                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2824                              E1000_TXD_CMD_TSE;
2825                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2826
2827                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2828                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2829         }
2830
2831         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2832                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2833                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2834         }
2835
2836         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2837                 txd_lower |= E1000_TXD_CMD_VLE;
2838                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2839         }
2840
2841         i = tx_ring->next_to_use;
2842
2843         while (count--) {
2844                 buffer_info = &tx_ring->buffer_info[i];
2845                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2846                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2847                 tx_desc->lower.data =
2848                         cpu_to_le32(txd_lower | buffer_info->length);
2849                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2850                 if (unlikely(++i == tx_ring->count)) i = 0;
2851         }
2852
2853         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2854
2855         /* Force memory writes to complete before letting h/w
2856          * know there are new descriptors to fetch.  (Only
2857          * applicable for weak-ordered memory model archs,
2858          * such as IA-64). */
2859         wmb();
2860
2861         tx_ring->next_to_use = i;
2862         writel(i, hw->hw_addr + tx_ring->tdt);
2863         /* we need this if more than one processor can write to our tail
2864          * at a time, it syncronizes IO on IA64/Altix systems */
2865         mmiowb();
2866 }
2867
2868 /**
2869  * 82547 workaround to avoid controller hang in half-duplex environment.
2870  * The workaround is to avoid queuing a large packet that would span
2871  * the internal Tx FIFO ring boundary by notifying the stack to resend
2872  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2873  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2874  * to the beginning of the Tx FIFO.
2875  **/
2876
2877 #define E1000_FIFO_HDR                  0x10
2878 #define E1000_82547_PAD_LEN             0x3E0
2879
2880 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
2881                                        struct sk_buff *skb)
2882 {
2883         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2884         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
2885
2886         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
2887
2888         if (adapter->link_duplex != HALF_DUPLEX)
2889                 goto no_fifo_stall_required;
2890
2891         if (atomic_read(&adapter->tx_fifo_stall))
2892                 return 1;
2893
2894         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2895                 atomic_set(&adapter->tx_fifo_stall, 1);
2896                 return 1;
2897         }
2898
2899 no_fifo_stall_required:
2900         adapter->tx_fifo_head += skb_fifo_len;
2901         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2902                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2903         return 0;
2904 }
2905
2906 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2907 {
2908         struct e1000_adapter *adapter = netdev_priv(netdev);
2909         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2910
2911         netif_stop_queue(netdev);
2912         /* Herbert's original patch had:
2913          *  smp_mb__after_netif_stop_queue();
2914          * but since that doesn't exist yet, just open code it. */
2915         smp_mb();
2916
2917         /* We need to check again in a case another CPU has just
2918          * made room available. */
2919         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2920                 return -EBUSY;
2921
2922         /* A reprieve! */
2923         netif_start_queue(netdev);
2924         ++adapter->restart_queue;
2925         return 0;
2926 }
2927
2928 static int e1000_maybe_stop_tx(struct net_device *netdev,
2929                                struct e1000_tx_ring *tx_ring, int size)
2930 {
2931         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
2932                 return 0;
2933         return __e1000_maybe_stop_tx(netdev, size);
2934 }
2935
2936 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2937 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
2938                                     struct net_device *netdev)
2939 {
2940         struct e1000_adapter *adapter = netdev_priv(netdev);
2941         struct e1000_hw *hw = &adapter->hw;
2942         struct e1000_tx_ring *tx_ring;
2943         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2944         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2945         unsigned int tx_flags = 0;
2946         unsigned int len = skb_headlen(skb);
2947         unsigned int nr_frags;
2948         unsigned int mss;
2949         int count = 0;
2950         int tso;
2951         unsigned int f;
2952
2953         /* This goes back to the question of how to logically map a tx queue
2954          * to a flow.  Right now, performance is impacted slightly negatively
2955          * if using multiple tx queues.  If the stack breaks away from a
2956          * single qdisc implementation, we can look at this again. */
2957         tx_ring = adapter->tx_ring;
2958
2959         if (unlikely(skb->len <= 0)) {
2960                 dev_kfree_skb_any(skb);
2961                 return NETDEV_TX_OK;
2962         }
2963
2964         mss = skb_shinfo(skb)->gso_size;
2965         /* The controller does a simple calculation to
2966          * make sure there is enough room in the FIFO before
2967          * initiating the DMA for each buffer.  The calc is:
2968          * 4 = ceil(buffer len/mss).  To make sure we don't
2969          * overrun the FIFO, adjust the max buffer len if mss
2970          * drops. */
2971         if (mss) {
2972                 u8 hdr_len;
2973                 max_per_txd = min(mss << 2, max_per_txd);
2974                 max_txd_pwr = fls(max_per_txd) - 1;
2975
2976                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2977                 if (skb->data_len && hdr_len == len) {
2978                         switch (hw->mac_type) {
2979                                 unsigned int pull_size;
2980                         case e1000_82544:
2981                                 /* Make sure we have room to chop off 4 bytes,
2982                                  * and that the end alignment will work out to
2983                                  * this hardware's requirements
2984                                  * NOTE: this is a TSO only workaround
2985                                  * if end byte alignment not correct move us
2986                                  * into the next dword */
2987                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
2988                                         break;
2989                                 /* fall through */
2990                                 pull_size = min((unsigned int)4, skb->data_len);
2991                                 if (!__pskb_pull_tail(skb, pull_size)) {
2992                                         DPRINTK(DRV, ERR,
2993                                                 "__pskb_pull_tail failed.\n");
2994                                         dev_kfree_skb_any(skb);
2995                                         return NETDEV_TX_OK;
2996                                 }
2997                                 len = skb_headlen(skb);
2998                                 break;
2999                         default:
3000                                 /* do nothing */
3001                                 break;
3002                         }
3003                 }
3004         }
3005
3006         /* reserve a descriptor for the offload context */
3007         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3008                 count++;
3009         count++;
3010
3011         /* Controller Erratum workaround */
3012         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3013                 count++;
3014
3015         count += TXD_USE_COUNT(len, max_txd_pwr);
3016
3017         if (adapter->pcix_82544)
3018                 count++;
3019
3020         /* work-around for errata 10 and it applies to all controllers
3021          * in PCI-X mode, so add one more descriptor to the count
3022          */
3023         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3024                         (len > 2015)))
3025                 count++;
3026
3027         nr_frags = skb_shinfo(skb)->nr_frags;
3028         for (f = 0; f < nr_frags; f++)
3029                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3030                                        max_txd_pwr);
3031         if (adapter->pcix_82544)
3032                 count += nr_frags;
3033
3034         /* need: count + 2 desc gap to keep tail from touching
3035          * head, otherwise try next time */
3036         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3037                 return NETDEV_TX_BUSY;
3038
3039         if (unlikely(hw->mac_type == e1000_82547)) {
3040                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3041                         netif_stop_queue(netdev);
3042                         if (!test_bit(__E1000_DOWN, &adapter->flags))
3043                                 mod_timer(&adapter->tx_fifo_stall_timer,
3044                                           jiffies + 1);
3045                         return NETDEV_TX_BUSY;
3046                 }
3047         }
3048
3049         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3050                 tx_flags |= E1000_TX_FLAGS_VLAN;
3051                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3052         }
3053
3054         first = tx_ring->next_to_use;
3055
3056         tso = e1000_tso(adapter, tx_ring, skb);
3057         if (tso < 0) {
3058                 dev_kfree_skb_any(skb);
3059                 return NETDEV_TX_OK;
3060         }
3061
3062         if (likely(tso)) {
3063                 if (likely(hw->mac_type != e1000_82544))
3064                         tx_ring->last_tx_tso = 1;
3065                 tx_flags |= E1000_TX_FLAGS_TSO;
3066         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3067                 tx_flags |= E1000_TX_FLAGS_CSUM;
3068
3069         if (likely(skb->protocol == htons(ETH_P_IP)))
3070                 tx_flags |= E1000_TX_FLAGS_IPV4;
3071
3072         count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3073                              nr_frags, mss);
3074
3075         if (count) {
3076                 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3077                 /* Make sure there is space in the ring for the next send. */
3078                 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3079
3080         } else {
3081                 dev_kfree_skb_any(skb);
3082                 tx_ring->buffer_info[first].time_stamp = 0;
3083                 tx_ring->next_to_use = first;
3084         }
3085
3086         return NETDEV_TX_OK;
3087 }
3088
3089 /**
3090  * e1000_tx_timeout - Respond to a Tx Hang
3091  * @netdev: network interface device structure
3092  **/
3093
3094 static void e1000_tx_timeout(struct net_device *netdev)
3095 {
3096         struct e1000_adapter *adapter = netdev_priv(netdev);
3097
3098         /* Do the reset outside of interrupt context */
3099         adapter->tx_timeout_count++;
3100         schedule_work(&adapter->reset_task);
3101 }
3102
3103 static void e1000_reset_task(struct work_struct *work)
3104 {
3105         struct e1000_adapter *adapter =
3106                 container_of(work, struct e1000_adapter, reset_task);
3107
3108         e1000_reinit_locked(adapter);
3109 }
3110
3111 /**
3112  * e1000_get_stats - Get System Network Statistics
3113  * @netdev: network interface device structure
3114  *
3115  * Returns the address of the device statistics structure.
3116  * The statistics are actually updated from the timer callback.
3117  **/
3118
3119 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3120 {
3121         /* only return the current stats */
3122         return &netdev->stats;
3123 }
3124
3125 /**
3126  * e1000_change_mtu - Change the Maximum Transfer Unit
3127  * @netdev: network interface device structure
3128  * @new_mtu: new value for maximum frame size
3129  *
3130  * Returns 0 on success, negative on failure
3131  **/
3132
3133 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3134 {
3135         struct e1000_adapter *adapter = netdev_priv(netdev);
3136         struct e1000_hw *hw = &adapter->hw;
3137         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3138
3139         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3140             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3141                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3142                 return -EINVAL;
3143         }
3144
3145         /* Adapter-specific max frame size limits. */
3146         switch (hw->mac_type) {
3147         case e1000_undefined ... e1000_82542_rev2_1:
3148                 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3149                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3150                         return -EINVAL;
3151                 }
3152                 break;
3153         default:
3154                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3155                 break;
3156         }
3157
3158         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3159                 msleep(1);
3160         /* e1000_down has a dependency on max_frame_size */
3161         hw->max_frame_size = max_frame;
3162         if (netif_running(netdev))
3163                 e1000_down(adapter);
3164
3165         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3166          * means we reserve 2 more, this pushes us to allocate from the next
3167          * larger slab size.
3168          * i.e. RXBUFFER_2048 --> size-4096 slab
3169          *  however with the new *_jumbo_rx* routines, jumbo receives will use
3170          *  fragmented skbs */
3171
3172         if (max_frame <= E1000_RXBUFFER_2048)
3173                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3174         else
3175 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3176                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3177 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3178                 adapter->rx_buffer_len = PAGE_SIZE;
3179 #endif
3180
3181         /* adjust allocation if LPE protects us, and we aren't using SBP */
3182         if (!hw->tbi_compatibility_on &&
3183             ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3184              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3185                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3186
3187         printk(KERN_INFO "e1000: %s changing MTU from %d to %d\n",
3188                netdev->name, netdev->mtu, new_mtu);
3189         netdev->mtu = new_mtu;
3190
3191         if (netif_running(netdev))
3192                 e1000_up(adapter);
3193         else
3194                 e1000_reset(adapter);
3195
3196         clear_bit(__E1000_RESETTING, &adapter->flags);
3197
3198         return 0;
3199 }
3200
3201 /**
3202  * e1000_update_stats - Update the board statistics counters
3203  * @adapter: board private structure
3204  **/
3205
3206 void e1000_update_stats(struct e1000_adapter *adapter)
3207 {
3208         struct net_device *netdev = adapter->netdev;
3209         struct e1000_hw *hw = &adapter->hw;
3210         struct pci_dev *pdev = adapter->pdev;
3211         unsigned long flags;
3212         u16 phy_tmp;
3213
3214 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3215
3216         /*
3217          * Prevent stats update while adapter is being reset, or if the pci
3218          * connection is down.
3219          */
3220         if (adapter->link_speed == 0)
3221                 return;
3222         if (pci_channel_offline(pdev))
3223                 return;
3224
3225         spin_lock_irqsave(&adapter->stats_lock, flags);
3226
3227         /* these counters are modified from e1000_tbi_adjust_stats,
3228          * called from the interrupt context, so they must only
3229          * be written while holding adapter->stats_lock
3230          */
3231
3232         adapter->stats.crcerrs += er32(CRCERRS);
3233         adapter->stats.gprc += er32(GPRC);
3234         adapter->stats.gorcl += er32(GORCL);
3235         adapter->stats.gorch += er32(GORCH);
3236         adapter->stats.bprc += er32(BPRC);
3237         adapter->stats.mprc += er32(MPRC);
3238         adapter->stats.roc += er32(ROC);
3239
3240         adapter->stats.prc64 += er32(PRC64);
3241         adapter->stats.prc127 += er32(PRC127);
3242         adapter->stats.prc255 += er32(PRC255);
3243         adapter->stats.prc511 += er32(PRC511);
3244         adapter->stats.prc1023 += er32(PRC1023);
3245         adapter->stats.prc1522 += er32(PRC1522);
3246
3247         adapter->stats.symerrs += er32(SYMERRS);
3248         adapter->stats.mpc += er32(MPC);
3249         adapter->stats.scc += er32(SCC);
3250         adapter->stats.ecol += er32(ECOL);
3251         adapter->stats.mcc += er32(MCC);
3252         adapter->stats.latecol += er32(LATECOL);
3253         adapter->stats.dc += er32(DC);
3254         adapter->stats.sec += er32(SEC);
3255         adapter->stats.rlec += er32(RLEC);
3256         adapter->stats.xonrxc += er32(XONRXC);
3257         adapter->stats.xontxc += er32(XONTXC);
3258         adapter->stats.xoffrxc += er32(XOFFRXC);
3259         adapter->stats.xofftxc += er32(XOFFTXC);
3260         adapter->stats.fcruc += er32(FCRUC);
3261         adapter->stats.gptc += er32(GPTC);
3262         adapter->stats.gotcl += er32(GOTCL);
3263         adapter->stats.gotch += er32(GOTCH);
3264         adapter->stats.rnbc += er32(RNBC);
3265         adapter->stats.ruc += er32(RUC);
3266         adapter->stats.rfc += er32(RFC);
3267         adapter->stats.rjc += er32(RJC);
3268         adapter->stats.torl += er32(TORL);
3269         adapter->stats.torh += er32(TORH);
3270         adapter->stats.totl += er32(TOTL);
3271         adapter->stats.toth += er32(TOTH);
3272         adapter->stats.tpr += er32(TPR);
3273
3274         adapter->stats.ptc64 += er32(PTC64);
3275         adapter->stats.ptc127 += er32(PTC127);
3276         adapter->stats.ptc255 += er32(PTC255);
3277         adapter->stats.ptc511 += er32(PTC511);
3278         adapter->stats.ptc1023 += er32(PTC1023);
3279         adapter->stats.ptc1522 += er32(PTC1522);
3280
3281         adapter->stats.mptc += er32(MPTC);
3282         adapter->stats.bptc += er32(BPTC);
3283
3284         /* used for adaptive IFS */
3285
3286         hw->tx_packet_delta = er32(TPT);
3287         adapter->stats.tpt += hw->tx_packet_delta;
3288         hw->collision_delta = er32(COLC);
3289         adapter->stats.colc += hw->collision_delta;
3290
3291         if (hw->mac_type >= e1000_82543) {
3292                 adapter->stats.algnerrc += er32(ALGNERRC);
3293                 adapter->stats.rxerrc += er32(RXERRC);
3294                 adapter->stats.tncrs += er32(TNCRS);
3295                 adapter->stats.cexterr += er32(CEXTERR);
3296                 adapter->stats.tsctc += er32(TSCTC);
3297                 adapter->stats.tsctfc += er32(TSCTFC);
3298         }
3299
3300         /* Fill out the OS statistics structure */
3301         netdev->stats.multicast = adapter->stats.mprc;
3302         netdev->stats.collisions = adapter->stats.colc;
3303
3304         /* Rx Errors */
3305
3306         /* RLEC on some newer hardware can be incorrect so build
3307         * our own version based on RUC and ROC */
3308         netdev->stats.rx_errors = adapter->stats.rxerrc +
3309                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3310                 adapter->stats.ruc + adapter->stats.roc +
3311                 adapter->stats.cexterr;
3312         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3313         netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3314         netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3315         netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3316         netdev->stats.rx_missed_errors = adapter->stats.mpc;
3317
3318         /* Tx Errors */
3319         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3320         netdev->stats.tx_errors = adapter->stats.txerrc;
3321         netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3322         netdev->stats.tx_window_errors = adapter->stats.latecol;
3323         netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3324         if (hw->bad_tx_carr_stats_fd &&
3325             adapter->link_duplex == FULL_DUPLEX) {
3326                 netdev->stats.tx_carrier_errors = 0;
3327                 adapter->stats.tncrs = 0;
3328         }
3329
3330         /* Tx Dropped needs to be maintained elsewhere */
3331
3332         /* Phy Stats */
3333         if (hw->media_type == e1000_media_type_copper) {
3334                 if ((adapter->link_speed == SPEED_1000) &&
3335                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3336                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3337                         adapter->phy_stats.idle_errors += phy_tmp;
3338                 }
3339
3340                 if ((hw->mac_type <= e1000_82546) &&
3341                    (hw->phy_type == e1000_phy_m88) &&
3342                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3343                         adapter->phy_stats.receive_errors += phy_tmp;
3344         }
3345
3346         /* Management Stats */
3347         if (hw->has_smbus) {
3348                 adapter->stats.mgptc += er32(MGTPTC);
3349                 adapter->stats.mgprc += er32(MGTPRC);
3350                 adapter->stats.mgpdc += er32(MGTPDC);
3351         }
3352
3353         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3354 }
3355
3356 /**
3357  * e1000_intr - Interrupt Handler
3358  * @irq: interrupt number
3359  * @data: pointer to a network interface device structure
3360  **/
3361
3362 static irqreturn_t e1000_intr(int irq, void *data)
3363 {
3364         struct net_device *netdev = data;
3365         struct e1000_adapter *adapter = netdev_priv(netdev);
3366         struct e1000_hw *hw = &adapter->hw;
3367         u32 icr = er32(ICR);
3368
3369         if (unlikely((!icr) || test_bit(__E1000_DOWN, &adapter->flags)))
3370                 return IRQ_NONE;  /* Not our interrupt */
3371
3372         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3373                 hw->get_link_status = 1;
3374                 /* guard against interrupt when we're going down */
3375                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3376                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3377         }
3378
3379         /* disable interrupts, without the synchronize_irq bit */
3380         ew32(IMC, ~0);
3381         E1000_WRITE_FLUSH();
3382
3383         if (likely(napi_schedule_prep(&adapter->napi))) {
3384                 adapter->total_tx_bytes = 0;
3385                 adapter->total_tx_packets = 0;
3386                 adapter->total_rx_bytes = 0;
3387                 adapter->total_rx_packets = 0;
3388                 __napi_schedule(&adapter->napi);
3389         } else {
3390                 /* this really should not happen! if it does it is basically a
3391                  * bug, but not a hard error, so enable ints and continue */
3392                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3393                         e1000_irq_enable(adapter);
3394         }
3395
3396         return IRQ_HANDLED;
3397 }
3398
3399 /**
3400  * e1000_clean - NAPI Rx polling callback
3401  * @adapter: board private structure
3402  **/
3403 static int e1000_clean(struct napi_struct *napi, int budget)
3404 {
3405         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3406         int tx_clean_complete = 0, work_done = 0;
3407
3408         tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3409
3410         adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3411
3412         if (!tx_clean_complete)
3413                 work_done = budget;
3414
3415         /* If budget not fully consumed, exit the polling mode */
3416         if (work_done < budget) {
3417                 if (likely(adapter->itr_setting & 3))
3418                         e1000_set_itr(adapter);
3419                 napi_complete(napi);
3420                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3421                         e1000_irq_enable(adapter);
3422         }
3423
3424         return work_done;
3425 }
3426
3427 /**
3428  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3429  * @adapter: board private structure
3430  **/
3431 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3432                                struct e1000_tx_ring *tx_ring)
3433 {
3434         struct e1000_hw *hw = &adapter->hw;
3435         struct net_device *netdev = adapter->netdev;
3436         struct e1000_tx_desc *tx_desc, *eop_desc;
3437         struct e1000_buffer *buffer_info;
3438         unsigned int i, eop;
3439         unsigned int count = 0;
3440         unsigned int total_tx_bytes=0, total_tx_packets=0;
3441
3442         i = tx_ring->next_to_clean;
3443         eop = tx_ring->buffer_info[i].next_to_watch;
3444         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3445
3446         while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3447                (count < tx_ring->count)) {
3448                 bool cleaned = false;
3449                 for ( ; !cleaned; count++) {
3450                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3451                         buffer_info = &tx_ring->buffer_info[i];
3452                         cleaned = (i == eop);
3453
3454                         if (cleaned) {
3455                                 struct sk_buff *skb = buffer_info->skb;
3456                                 unsigned int segs, bytecount;
3457                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3458                                 /* multiply data chunks by size of headers */
3459                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3460                                             skb->len;
3461                                 total_tx_packets += segs;
3462                                 total_tx_bytes += bytecount;
3463                         }
3464                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3465                         tx_desc->upper.data = 0;
3466
3467                         if (unlikely(++i == tx_ring->count)) i = 0;
3468                 }
3469
3470                 eop = tx_ring->buffer_info[i].next_to_watch;
3471                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3472         }
3473
3474         tx_ring->next_to_clean = i;
3475
3476 #define TX_WAKE_THRESHOLD 32
3477         if (unlikely(count && netif_carrier_ok(netdev) &&
3478                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3479                 /* Make sure that anybody stopping the queue after this
3480                  * sees the new next_to_clean.
3481                  */
3482                 smp_mb();
3483
3484                 if (netif_queue_stopped(netdev) &&
3485                     !(test_bit(__E1000_DOWN, &adapter->flags))) {
3486                         netif_wake_queue(netdev);
3487                         ++adapter->restart_queue;
3488                 }
3489         }
3490
3491         if (adapter->detect_tx_hung) {
3492                 /* Detect a transmit hang in hardware, this serializes the
3493                  * check with the clearing of time_stamp and movement of i */
3494                 adapter->detect_tx_hung = false;
3495                 if (tx_ring->buffer_info[eop].time_stamp &&
3496                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3497                                (adapter->tx_timeout_factor * HZ)) &&
3498                     !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3499
3500                         /* detected Tx unit hang */
3501                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3502                                         "  Tx Queue             <%lu>\n"
3503                                         "  TDH                  <%x>\n"
3504                                         "  TDT                  <%x>\n"
3505                                         "  next_to_use          <%x>\n"
3506                                         "  next_to_clean        <%x>\n"
3507                                         "buffer_info[next_to_clean]\n"
3508                                         "  time_stamp           <%lx>\n"
3509                                         "  next_to_watch        <%x>\n"
3510                                         "  jiffies              <%lx>\n"
3511                                         "  next_to_watch.status <%x>\n",
3512                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3513                                         sizeof(struct e1000_tx_ring)),
3514                                 readl(hw->hw_addr + tx_ring->tdh),
3515                                 readl(hw->hw_addr + tx_ring->tdt),
3516                                 tx_ring->next_to_use,
3517                                 tx_ring->next_to_clean,
3518                                 tx_ring->buffer_info[eop].time_stamp,
3519                                 eop,
3520                                 jiffies,
3521                                 eop_desc->upper.fields.status);
3522                         netif_stop_queue(netdev);
3523                 }
3524         }
3525         adapter->total_tx_bytes += total_tx_bytes;
3526         adapter->total_tx_packets += total_tx_packets;
3527         netdev->stats.tx_bytes += total_tx_bytes;
3528         netdev->stats.tx_packets += total_tx_packets;
3529         return (count < tx_ring->count);
3530 }
3531
3532 /**
3533  * e1000_rx_checksum - Receive Checksum Offload for 82543
3534  * @adapter:     board private structure
3535  * @status_err:  receive descriptor status and error fields
3536  * @csum:        receive descriptor csum field
3537  * @sk_buff:     socket buffer with received data
3538  **/
3539
3540 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3541                               u32 csum, struct sk_buff *skb)
3542 {
3543         struct e1000_hw *hw = &adapter->hw;
3544         u16 status = (u16)status_err;
3545         u8 errors = (u8)(status_err >> 24);
3546         skb->ip_summed = CHECKSUM_NONE;
3547
3548         /* 82543 or newer only */
3549         if (unlikely(hw->mac_type < e1000_82543)) return;
3550         /* Ignore Checksum bit is set */
3551         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3552         /* TCP/UDP checksum error bit is set */
3553         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3554                 /* let the stack verify checksum errors */
3555                 adapter->hw_csum_err++;
3556                 return;
3557         }
3558         /* TCP/UDP Checksum has not been calculated */
3559         if (!(status & E1000_RXD_STAT_TCPCS))
3560                 return;
3561
3562         /* It must be a TCP or UDP packet with a valid checksum */
3563         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3564                 /* TCP checksum is good */
3565                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3566         }
3567         adapter->hw_csum_good++;
3568 }
3569
3570 /**
3571  * e1000_consume_page - helper function
3572  **/
3573 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3574                                u16 length)
3575 {
3576         bi->page = NULL;
3577         skb->len += length;
3578         skb->data_len += length;
3579         skb->truesize += length;
3580 }
3581
3582 /**
3583  * e1000_receive_skb - helper function to handle rx indications
3584  * @adapter: board private structure
3585  * @status: descriptor status field as written by hardware
3586  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3587  * @skb: pointer to sk_buff to be indicated to stack
3588  */
3589 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3590                               __le16 vlan, struct sk_buff *skb)
3591 {
3592         if (unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))) {
3593                 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3594                                          le16_to_cpu(vlan) &
3595                                          E1000_RXD_SPC_VLAN_MASK);
3596         } else {
3597                 netif_receive_skb(skb);
3598         }
3599 }
3600
3601 /**
3602  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3603  * @adapter: board private structure
3604  * @rx_ring: ring to clean
3605  * @work_done: amount of napi work completed this call
3606  * @work_to_do: max amount of work allowed for this call to do
3607  *
3608  * the return value indicates whether actual cleaning was done, there
3609  * is no guarantee that everything was cleaned
3610  */
3611 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3612                                      struct e1000_rx_ring *rx_ring,
3613                                      int *work_done, int work_to_do)
3614 {
3615         struct e1000_hw *hw = &adapter->hw;
3616         struct net_device *netdev = adapter->netdev;
3617         struct pci_dev *pdev = adapter->pdev;
3618         struct e1000_rx_desc *rx_desc, *next_rxd;
3619         struct e1000_buffer *buffer_info, *next_buffer;
3620         unsigned long irq_flags;
3621         u32 length;
3622         unsigned int i;
3623         int cleaned_count = 0;
3624         bool cleaned = false;
3625         unsigned int total_rx_bytes=0, total_rx_packets=0;
3626
3627         i = rx_ring->next_to_clean;
3628         rx_desc = E1000_RX_DESC(*rx_ring, i);
3629         buffer_info = &rx_ring->buffer_info[i];
3630
3631         while (rx_desc->status & E1000_RXD_STAT_DD) {
3632                 struct sk_buff *skb;
3633                 u8 status;
3634
3635                 if (*work_done >= work_to_do)
3636                         break;
3637                 (*work_done)++;
3638
3639                 status = rx_desc->status;
3640                 skb = buffer_info->skb;
3641                 buffer_info->skb = NULL;
3642
3643                 if (++i == rx_ring->count) i = 0;
3644                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3645                 prefetch(next_rxd);
3646
3647                 next_buffer = &rx_ring->buffer_info[i];
3648
3649                 cleaned = true;
3650                 cleaned_count++;
3651                 dma_unmap_page(&pdev->dev, buffer_info->dma,
3652                                buffer_info->length, DMA_FROM_DEVICE);
3653                 buffer_info->dma = 0;
3654
3655                 length = le16_to_cpu(rx_desc->length);
3656
3657                 /* errors is only valid for DD + EOP descriptors */
3658                 if (unlikely((status & E1000_RXD_STAT_EOP) &&
3659                     (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
3660                         u8 last_byte = *(skb->data + length - 1);
3661                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3662                                        last_byte)) {
3663                                 spin_lock_irqsave(&adapter->stats_lock,
3664                                                   irq_flags);
3665                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
3666                                                        length, skb->data);
3667                                 spin_unlock_irqrestore(&adapter->stats_lock,
3668                                                        irq_flags);
3669                                 length--;
3670                         } else {
3671                                 /* recycle both page and skb */
3672                                 buffer_info->skb = skb;
3673                                 /* an error means any chain goes out the window
3674                                  * too */
3675                                 if (rx_ring->rx_skb_top)
3676                                         dev_kfree_skb(rx_ring->rx_skb_top);
3677                                 rx_ring->rx_skb_top = NULL;
3678                                 goto next_desc;
3679                         }
3680                 }
3681
3682 #define rxtop rx_ring->rx_skb_top
3683                 if (!(status & E1000_RXD_STAT_EOP)) {
3684                         /* this descriptor is only the beginning (or middle) */
3685                         if (!rxtop) {
3686                                 /* this is the beginning of a chain */
3687                                 rxtop = skb;
3688                                 skb_fill_page_desc(rxtop, 0, buffer_info->page,
3689                                                    0, length);
3690                         } else {
3691                                 /* this is the middle of a chain */
3692                                 skb_fill_page_desc(rxtop,
3693                                     skb_shinfo(rxtop)->nr_frags,
3694                                     buffer_info->page, 0, length);
3695                                 /* re-use the skb, only consumed the page */
3696                                 buffer_info->skb = skb;
3697                         }
3698                         e1000_consume_page(buffer_info, rxtop, length);
3699                         goto next_desc;
3700                 } else {
3701                         if (rxtop) {
3702                                 /* end of the chain */
3703                                 skb_fill_page_desc(rxtop,
3704                                     skb_shinfo(rxtop)->nr_frags,
3705                                     buffer_info->page, 0, length);
3706                                 /* re-use the current skb, we only consumed the
3707                                  * page */
3708                                 buffer_info->skb = skb;
3709                                 skb = rxtop;
3710                                 rxtop = NULL;
3711                                 e1000_consume_page(buffer_info, skb, length);
3712                         } else {
3713                                 /* no chain, got EOP, this buf is the packet
3714                                  * copybreak to save the put_page/alloc_page */
3715                                 if (length <= copybreak &&
3716                                     skb_tailroom(skb) >= length) {
3717                                         u8 *vaddr;
3718                                         vaddr = kmap_atomic(buffer_info->page,
3719                                                             KM_SKB_DATA_SOFTIRQ);
3720                                         memcpy(skb_tail_pointer(skb), vaddr, length);
3721                                         kunmap_atomic(vaddr,
3722                                                       KM_SKB_DATA_SOFTIRQ);
3723                                         /* re-use the page, so don't erase
3724                                          * buffer_info->page */
3725                                         skb_put(skb, length);
3726                                 } else {
3727                                         skb_fill_page_desc(skb, 0,
3728                                                            buffer_info->page, 0,
3729                                                            length);
3730                                         e1000_consume_page(buffer_info, skb,
3731                                                            length);
3732                                 }
3733                         }
3734                 }
3735
3736                 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3737                 e1000_rx_checksum(adapter,
3738                                   (u32)(status) |
3739                                   ((u32)(rx_desc->errors) << 24),
3740                                   le16_to_cpu(rx_desc->csum), skb);
3741
3742                 pskb_trim(skb, skb->len - 4);
3743
3744                 /* probably a little skewed due to removing CRC */
3745                 total_rx_bytes += skb->len;
3746                 total_rx_packets++;
3747
3748                 /* eth type trans needs skb->data to point to something */
3749                 if (!pskb_may_pull(skb, ETH_HLEN)) {
3750                         DPRINTK(DRV, ERR, "pskb_may_pull failed.\n");
3751                         dev_kfree_skb(skb);
3752                         goto next_desc;
3753                 }
3754
3755                 skb->protocol = eth_type_trans(skb, netdev);
3756
3757                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3758
3759 next_desc:
3760                 rx_desc->status = 0;
3761
3762                 /* return some buffers to hardware, one at a time is too slow */
3763                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3764                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3765                         cleaned_count = 0;
3766                 }
3767
3768                 /* use prefetched values */
3769                 rx_desc = next_rxd;
3770                 buffer_info = next_buffer;
3771         }
3772         rx_ring->next_to_clean = i;
3773
3774         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3775         if (cleaned_count)
3776                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3777
3778         adapter->total_rx_packets += total_rx_packets;
3779         adapter->total_rx_bytes += total_rx_bytes;
3780         netdev->stats.rx_bytes += total_rx_bytes;
3781         netdev->stats.rx_packets += total_rx_packets;
3782         return cleaned;
3783 }
3784
3785 /**
3786  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3787  * @adapter: board private structure
3788  * @rx_ring: ring to clean
3789  * @work_done: amount of napi work completed this call
3790  * @work_to_do: max amount of work allowed for this call to do
3791  */
3792 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3793                                struct e1000_rx_ring *rx_ring,
3794                                int *work_done, int work_to_do)
3795 {
3796         struct e1000_hw *hw = &adapter->hw;
3797         struct net_device *netdev = adapter->netdev;
3798         struct pci_dev *pdev = adapter->pdev;
3799         struct e1000_rx_desc *rx_desc, *next_rxd;
3800         struct e1000_buffer *buffer_info, *next_buffer;
3801         unsigned long flags;
3802         u32 length;
3803         unsigned int i;
3804         int cleaned_count = 0;
3805         bool cleaned = false;
3806         unsigned int total_rx_bytes=0, total_rx_packets=0;
3807
3808         i = rx_ring->next_to_clean;
3809         rx_desc = E1000_RX_DESC(*rx_ring, i);
3810         buffer_info = &rx_ring->buffer_info[i];
3811
3812         while (rx_desc->status & E1000_RXD_STAT_DD) {
3813                 struct sk_buff *skb;
3814                 u8 status;
3815
3816                 if (*work_done >= work_to_do)
3817                         break;
3818                 (*work_done)++;
3819
3820                 status = rx_desc->status;
3821                 skb = buffer_info->skb;
3822                 buffer_info->skb = NULL;
3823
3824                 prefetch(skb->data - NET_IP_ALIGN);
3825
3826                 if (++i == rx_ring->count) i = 0;
3827                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3828                 prefetch(next_rxd);
3829
3830                 next_buffer = &rx_ring->buffer_info[i];
3831
3832                 cleaned = true;
3833                 cleaned_count++;
3834                 dma_unmap_single(&pdev->dev, buffer_info->dma,
3835                                  buffer_info->length, DMA_FROM_DEVICE);
3836                 buffer_info->dma = 0;
3837
3838                 length = le16_to_cpu(rx_desc->length);
3839                 /* !EOP means multiple descriptors were used to store a single
3840                  * packet, if thats the case we need to toss it.  In fact, we
3841                  * to toss every packet with the EOP bit clear and the next
3842                  * frame that _does_ have the EOP bit set, as it is by
3843                  * definition only a frame fragment
3844                  */
3845                 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
3846                         adapter->discarding = true;
3847
3848                 if (adapter->discarding) {
3849                         /* All receives must fit into a single buffer */
3850                         E1000_DBG("%s: Receive packet consumed multiple"
3851                                   " buffers\n", netdev->name);
3852                         /* recycle */
3853                         buffer_info->skb = skb;
3854                         if (status & E1000_RXD_STAT_EOP)
3855                                 adapter->discarding = false;
3856                         goto next_desc;
3857                 }
3858
3859                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3860                         u8 last_byte = *(skb->data + length - 1);
3861                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3862                                        last_byte)) {
3863                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3864                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
3865                                                        length, skb->data);
3866                                 spin_unlock_irqrestore(&adapter->stats_lock,
3867                                                        flags);
3868                                 length--;
3869                         } else {
3870                                 /* recycle */
3871                                 buffer_info->skb = skb;
3872                                 goto next_desc;
3873                         }
3874                 }
3875
3876                 /* adjust length to remove Ethernet CRC, this must be
3877                  * done after the TBI_ACCEPT workaround above */
3878                 length -= 4;
3879
3880                 /* probably a little skewed due to removing CRC */
3881                 total_rx_bytes += length;
3882                 total_rx_packets++;
3883
3884                 /* code added for copybreak, this should improve
3885                  * performance for small packets with large amounts
3886                  * of reassembly being done in the stack */
3887                 if (length < copybreak) {
3888                         struct sk_buff *new_skb =
3889                             netdev_alloc_skb_ip_align(netdev, length);
3890                         if (new_skb) {
3891                                 skb_copy_to_linear_data_offset(new_skb,
3892                                                                -NET_IP_ALIGN,
3893                                                                (skb->data -
3894                                                                 NET_IP_ALIGN),
3895                                                                (length +
3896                                                                 NET_IP_ALIGN));
3897                                 /* save the skb in buffer_info as good */
3898                                 buffer_info->skb = skb;
3899                                 skb = new_skb;
3900                         }
3901                         /* else just continue with the old one */
3902                 }
3903                 /* end copybreak code */
3904                 skb_put(skb, length);
3905
3906                 /* Receive Checksum Offload */
3907                 e1000_rx_checksum(adapter,
3908                                   (u32)(status) |
3909                                   ((u32)(rx_desc->errors) << 24),
3910                                   le16_to_cpu(rx_desc->csum), skb);
3911
3912                 skb->protocol = eth_type_trans(skb, netdev);
3913
3914                 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3915
3916 next_desc:
3917                 rx_desc->status = 0;
3918
3919                 /* return some buffers to hardware, one at a time is too slow */
3920                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3921                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3922                         cleaned_count = 0;
3923                 }
3924
3925                 /* use prefetched values */
3926                 rx_desc = next_rxd;
3927                 buffer_info = next_buffer;
3928         }
3929         rx_ring->next_to_clean = i;
3930
3931         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3932         if (cleaned_count)
3933                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3934
3935         adapter->total_rx_packets += total_rx_packets;
3936         adapter->total_rx_bytes += total_rx_bytes;
3937         netdev->stats.rx_bytes += total_rx_bytes;
3938         netdev->stats.rx_packets += total_rx_packets;
3939         return cleaned;
3940 }
3941
3942 /**
3943  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
3944  * @adapter: address of board private structure
3945  * @rx_ring: pointer to receive ring structure
3946  * @cleaned_count: number of buffers to allocate this pass
3947  **/
3948
3949 static void
3950 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
3951                              struct e1000_rx_ring *rx_ring, int cleaned_count)
3952 {
3953         struct net_device *netdev = adapter->netdev;
3954         struct pci_dev *pdev = adapter->pdev;
3955         struct e1000_rx_desc *rx_desc;
3956         struct e1000_buffer *buffer_info;
3957         struct sk_buff *skb;
3958         unsigned int i;
3959         unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
3960
3961         i = rx_ring->next_to_use;
3962         buffer_info = &rx_ring->buffer_info[i];
3963
3964         while (cleaned_count--) {
3965                 skb = buffer_info->skb;
3966                 if (skb) {
3967                         skb_trim(skb, 0);
3968                         goto check_page;
3969                 }
3970
3971                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
3972                 if (unlikely(!skb)) {
3973                         /* Better luck next round */
3974                         adapter->alloc_rx_buff_failed++;
3975                         break;
3976                 }
3977
3978                 /* Fix for errata 23, can't cross 64kB boundary */
3979                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3980                         struct sk_buff *oldskb = skb;
3981                         DPRINTK(PROBE, ERR, "skb align check failed: %u bytes "
3982                                              "at %p\n", bufsz, skb->data);
3983                         /* Try again, without freeing the previous */
3984                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
3985                         /* Failed allocation, critical failure */
3986                         if (!skb) {
3987                                 dev_kfree_skb(oldskb);
3988                                 adapter->alloc_rx_buff_failed++;
3989                                 break;
3990                         }
3991
3992                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3993                                 /* give up */
3994                                 dev_kfree_skb(skb);
3995                                 dev_kfree_skb(oldskb);
3996                                 break; /* while (cleaned_count--) */
3997                         }
3998
3999                         /* Use new allocation */
4000                         dev_kfree_skb(oldskb);
4001                 }
4002                 buffer_info->skb = skb;
4003                 buffer_info->length = adapter->rx_buffer_len;
4004 check_page:
4005                 /* allocate a new page if necessary */
4006                 if (!buffer_info->page) {
4007                         buffer_info->page = alloc_page(GFP_ATOMIC);
4008                         if (unlikely(!buffer_info->page)) {
4009                                 adapter->alloc_rx_buff_failed++;
4010                                 break;
4011                         }
4012                 }
4013
4014                 if (!buffer_info->dma) {
4015                         buffer_info->dma = dma_map_page(&pdev->dev,
4016                                                         buffer_info->page, 0,
4017                                                         buffer_info->length,
4018                                                         DMA_FROM_DEVICE);
4019                         if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4020                                 put_page(buffer_info->page);
4021                                 dev_kfree_skb(skb);
4022                                 buffer_info->page = NULL;
4023                                 buffer_info->skb = NULL;
4024                                 buffer_info->dma = 0;
4025                                 adapter->alloc_rx_buff_failed++;
4026                                 break; /* while !buffer_info->skb */
4027                         }
4028                 }
4029
4030                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4031                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4032
4033                 if (unlikely(++i == rx_ring->count))
4034                         i = 0;
4035                 buffer_info = &rx_ring->buffer_info[i];
4036         }
4037
4038         if (likely(rx_ring->next_to_use != i)) {
4039                 rx_ring->next_to_use = i;
4040                 if (unlikely(i-- == 0))
4041                         i = (rx_ring->count - 1);
4042
4043                 /* Force memory writes to complete before letting h/w
4044                  * know there are new descriptors to fetch.  (Only
4045                  * applicable for weak-ordered memory model archs,
4046                  * such as IA-64). */
4047                 wmb();
4048                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4049         }
4050 }
4051
4052 /**
4053  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4054  * @adapter: address of board private structure
4055  **/
4056
4057 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4058                                    struct e1000_rx_ring *rx_ring,
4059                                    int cleaned_count)
4060 {
4061         struct e1000_hw *hw = &adapter->hw;
4062         struct net_device *netdev = adapter->netdev;
4063         struct pci_dev *pdev = adapter->pdev;
4064         struct e1000_rx_desc *rx_desc;
4065         struct e1000_buffer *buffer_info;
4066         struct sk_buff *skb;
4067         unsigned int i;
4068         unsigned int bufsz = adapter->rx_buffer_len;
4069
4070         i = rx_ring->next_to_use;
4071         buffer_info = &rx_ring->buffer_info[i];
4072
4073         while (cleaned_count--) {
4074                 skb = buffer_info->skb;
4075                 if (skb) {
4076                         skb_trim(skb, 0);
4077                         goto map_skb;
4078                 }
4079
4080                 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4081                 if (unlikely(!skb)) {
4082                         /* Better luck next round */
4083                         adapter->alloc_rx_buff_failed++;
4084                         break;
4085                 }
4086
4087                 /* Fix for errata 23, can't cross 64kB boundary */
4088                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4089                         struct sk_buff *oldskb = skb;
4090                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4091                                              "at %p\n", bufsz, skb->data);
4092                         /* Try again, without freeing the previous */
4093                         skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4094                         /* Failed allocation, critical failure */
4095                         if (!skb) {
4096                                 dev_kfree_skb(oldskb);
4097                                 adapter->alloc_rx_buff_failed++;
4098                                 break;
4099                         }
4100
4101                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4102                                 /* give up */
4103                                 dev_kfree_skb(skb);
4104                                 dev_kfree_skb(oldskb);
4105                                 adapter->alloc_rx_buff_failed++;
4106                                 break; /* while !buffer_info->skb */
4107                         }
4108
4109                         /* Use new allocation */
4110                         dev_kfree_skb(oldskb);
4111                 }
4112                 buffer_info->skb = skb;
4113                 buffer_info->length = adapter->rx_buffer_len;
4114 map_skb:
4115                 buffer_info->dma = dma_map_single(&pdev->dev,
4116                                                   skb->data,
4117                                                   buffer_info->length,
4118                                                   DMA_FROM_DEVICE);
4119                 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4120                         dev_kfree_skb(skb);
4121                         buffer_info->skb = NULL;
4122                         buffer_info->dma = 0;
4123                         adapter->alloc_rx_buff_failed++;
4124                         break; /* while !buffer_info->skb */
4125                 }
4126
4127                 /*
4128                  * XXX if it was allocated cleanly it will never map to a
4129                  * boundary crossing
4130                  */
4131
4132                 /* Fix for errata 23, can't cross 64kB boundary */
4133                 if (!e1000_check_64k_bound(adapter,
4134                                         (void *)(unsigned long)buffer_info->dma,
4135                                         adapter->rx_buffer_len)) {
4136                         DPRINTK(RX_ERR, ERR,
4137                                 "dma align check failed: %u bytes at %p\n",
4138                                 adapter->rx_buffer_len,
4139                                 (void *)(unsigned long)buffer_info->dma);
4140                         dev_kfree_skb(skb);
4141                         buffer_info->skb = NULL;
4142
4143                         dma_unmap_single(&pdev->dev, buffer_info->dma,
4144                                          adapter->rx_buffer_len,
4145                                          DMA_FROM_DEVICE);
4146                         buffer_info->dma = 0;
4147
4148                         adapter->alloc_rx_buff_failed++;
4149                         break; /* while !buffer_info->skb */
4150                 }
4151                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4152                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4153
4154                 if (unlikely(++i == rx_ring->count))
4155                         i = 0;
4156                 buffer_info = &rx_ring->buffer_info[i];
4157         }
4158
4159         if (likely(rx_ring->next_to_use != i)) {
4160                 rx_ring->next_to_use = i;
4161                 if (unlikely(i-- == 0))
4162                         i = (rx_ring->count - 1);
4163
4164                 /* Force memory writes to complete before letting h/w
4165                  * know there are new descriptors to fetch.  (Only
4166                  * applicable for weak-ordered memory model archs,
4167                  * such as IA-64). */
4168                 wmb();
4169                 writel(i, hw->hw_addr + rx_ring->rdt);
4170         }
4171 }
4172
4173 /**
4174  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4175  * @adapter:
4176  **/
4177
4178 static void e1000_smartspeed(struct e1000_adapter *adapter)
4179 {
4180         struct e1000_hw *hw = &adapter->hw;
4181         u16 phy_status;
4182         u16 phy_ctrl;
4183
4184         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4185            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4186                 return;
4187
4188         if (adapter->smartspeed == 0) {
4189                 /* If Master/Slave config fault is asserted twice,
4190                  * we assume back-to-back */
4191                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4192                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4193                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4194                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4195                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4196                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4197                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4198                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4199                                             phy_ctrl);
4200                         adapter->smartspeed++;
4201                         if (!e1000_phy_setup_autoneg(hw) &&
4202                            !e1000_read_phy_reg(hw, PHY_CTRL,
4203                                                &phy_ctrl)) {
4204                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4205                                              MII_CR_RESTART_AUTO_NEG);
4206                                 e1000_write_phy_reg(hw, PHY_CTRL,
4207                                                     phy_ctrl);
4208                         }
4209                 }
4210                 return;
4211         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4212                 /* If still no link, perhaps using 2/3 pair cable */
4213                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4214                 phy_ctrl |= CR_1000T_MS_ENABLE;
4215                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4216                 if (!e1000_phy_setup_autoneg(hw) &&
4217                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4218                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4219                                      MII_CR_RESTART_AUTO_NEG);
4220                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4221                 }
4222         }
4223         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4224         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4225                 adapter->smartspeed = 0;
4226 }
4227
4228 /**
4229  * e1000_ioctl -
4230  * @netdev:
4231  * @ifreq:
4232  * @cmd:
4233  **/
4234
4235 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4236 {
4237         switch (cmd) {
4238         case SIOCGMIIPHY:
4239         case SIOCGMIIREG:
4240         case SIOCSMIIREG:
4241                 return e1000_mii_ioctl(netdev, ifr, cmd);
4242         default:
4243                 return -EOPNOTSUPP;
4244         }
4245 }
4246
4247 /**
4248  * e1000_mii_ioctl -
4249  * @netdev:
4250  * @ifreq:
4251  * @cmd:
4252  **/
4253
4254 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4255                            int cmd)
4256 {
4257         struct e1000_adapter *adapter = netdev_priv(netdev);
4258         struct e1000_hw *hw = &adapter->hw;
4259         struct mii_ioctl_data *data = if_mii(ifr);
4260         int retval;
4261         u16 mii_reg;
4262         u16 spddplx;
4263         unsigned long flags;
4264
4265         if (hw->media_type != e1000_media_type_copper)
4266                 return -EOPNOTSUPP;
4267
4268         switch (cmd) {
4269         case SIOCGMIIPHY:
4270                 data->phy_id = hw->phy_addr;
4271                 break;
4272         case SIOCGMIIREG:
4273                 spin_lock_irqsave(&adapter->stats_lock, flags);
4274                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4275                                    &data->val_out)) {
4276                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4277                         return -EIO;
4278                 }
4279                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4280                 break;
4281         case SIOCSMIIREG:
4282                 if (data->reg_num & ~(0x1F))
4283                         return -EFAULT;
4284                 mii_reg = data->val_in;
4285                 spin_lock_irqsave(&adapter->stats_lock, flags);
4286                 if (e1000_write_phy_reg(hw, data->reg_num,
4287                                         mii_reg)) {
4288                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4289                         return -EIO;
4290                 }
4291                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4292                 if (hw->media_type == e1000_media_type_copper) {
4293                         switch (data->reg_num) {
4294                         case PHY_CTRL:
4295                                 if (mii_reg & MII_CR_POWER_DOWN)
4296                                         break;
4297                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4298                                         hw->autoneg = 1;
4299                                         hw->autoneg_advertised = 0x2F;
4300                                 } else {
4301                                         if (mii_reg & 0x40)
4302                                                 spddplx = SPEED_1000;
4303                                         else if (mii_reg & 0x2000)
4304                                                 spddplx = SPEED_100;
4305                                         else
4306                                                 spddplx = SPEED_10;
4307                                         spddplx += (mii_reg & 0x100)
4308                                                    ? DUPLEX_FULL :
4309                                                    DUPLEX_HALF;
4310                                         retval = e1000_set_spd_dplx(adapter,
4311                                                                     spddplx);
4312                                         if (retval)
4313                                                 return retval;
4314                                 }
4315                                 if (netif_running(adapter->netdev))
4316                                         e1000_reinit_locked(adapter);
4317                                 else
4318                                         e1000_reset(adapter);
4319                                 break;
4320                         case M88E1000_PHY_SPEC_CTRL:
4321                         case M88E1000_EXT_PHY_SPEC_CTRL:
4322                                 if (e1000_phy_reset(hw))
4323                                         return -EIO;
4324                                 break;
4325                         }
4326                 } else {
4327                         switch (data->reg_num) {
4328                         case PHY_CTRL:
4329                                 if (mii_reg & MII_CR_POWER_DOWN)
4330                                         break;
4331                                 if (netif_running(adapter->netdev))
4332                                         e1000_reinit_locked(adapter);
4333                                 else
4334                                         e1000_reset(adapter);
4335                                 break;
4336                         }
4337                 }
4338                 break;
4339         default:
4340                 return -EOPNOTSUPP;
4341         }
4342         return E1000_SUCCESS;
4343 }
4344
4345 void e1000_pci_set_mwi(struct e1000_hw *hw)
4346 {
4347         struct e1000_adapter *adapter = hw->back;
4348         int ret_val = pci_set_mwi(adapter->pdev);
4349
4350         if (ret_val)
4351                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4352 }
4353
4354 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4355 {
4356         struct e1000_adapter *adapter = hw->back;
4357
4358         pci_clear_mwi(adapter->pdev);
4359 }
4360
4361 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4362 {
4363         struct e1000_adapter *adapter = hw->back;
4364         return pcix_get_mmrbc(adapter->pdev);
4365 }
4366
4367 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4368 {
4369         struct e1000_adapter *adapter = hw->back;
4370         pcix_set_mmrbc(adapter->pdev, mmrbc);
4371 }
4372
4373 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4374 {
4375         outl(value, port);
4376 }
4377
4378 static void e1000_vlan_rx_register(struct net_device *netdev,
4379                                    struct vlan_group *grp)
4380 {
4381         struct e1000_adapter *adapter = netdev_priv(netdev);
4382         struct e1000_hw *hw = &adapter->hw;
4383         u32 ctrl, rctl;
4384
4385         if (!test_bit(__E1000_DOWN, &adapter->flags))
4386                 e1000_irq_disable(adapter);
4387         adapter->vlgrp = grp;
4388
4389         if (grp) {
4390                 /* enable VLAN tag insert/strip */
4391                 ctrl = er32(CTRL);
4392                 ctrl |= E1000_CTRL_VME;
4393                 ew32(CTRL, ctrl);
4394
4395                 /* enable VLAN receive filtering */
4396                 rctl = er32(RCTL);
4397                 rctl &= ~E1000_RCTL_CFIEN;
4398                 if (!(netdev->flags & IFF_PROMISC))
4399                         rctl |= E1000_RCTL_VFE;
4400                 ew32(RCTL, rctl);
4401                 e1000_update_mng_vlan(adapter);
4402         } else {
4403                 /* disable VLAN tag insert/strip */
4404                 ctrl = er32(CTRL);
4405                 ctrl &= ~E1000_CTRL_VME;
4406                 ew32(CTRL, ctrl);
4407
4408                 /* disable VLAN receive filtering */
4409                 rctl = er32(RCTL);
4410                 rctl &= ~E1000_RCTL_VFE;
4411                 ew32(RCTL, rctl);
4412
4413                 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
4414                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4415                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4416                 }
4417         }
4418
4419         if (!test_bit(__E1000_DOWN, &adapter->flags))
4420                 e1000_irq_enable(adapter);
4421 }
4422
4423 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4424 {
4425         struct e1000_adapter *adapter = netdev_priv(netdev);
4426         struct e1000_hw *hw = &adapter->hw;
4427         u32 vfta, index;
4428
4429         if ((hw->mng_cookie.status &
4430              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4431             (vid == adapter->mng_vlan_id))
4432                 return;
4433         /* add VID to filter table */
4434         index = (vid >> 5) & 0x7F;
4435         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4436         vfta |= (1 << (vid & 0x1F));
4437         e1000_write_vfta(hw, index, vfta);
4438 }
4439
4440 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4441 {
4442         struct e1000_adapter *adapter = netdev_priv(netdev);
4443         struct e1000_hw *hw = &adapter->hw;
4444         u32 vfta, index;
4445
4446         if (!test_bit(__E1000_DOWN, &adapter->flags))
4447                 e1000_irq_disable(adapter);
4448         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4449         if (!test_bit(__E1000_DOWN, &adapter->flags))
4450                 e1000_irq_enable(adapter);
4451
4452         /* remove VID from filter table */
4453         index = (vid >> 5) & 0x7F;
4454         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4455         vfta &= ~(1 << (vid & 0x1F));
4456         e1000_write_vfta(hw, index, vfta);
4457 }
4458
4459 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4460 {
4461         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4462
4463         if (adapter->vlgrp) {
4464                 u16 vid;
4465                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4466                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4467                                 continue;
4468                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4469                 }
4470         }
4471 }
4472
4473 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4474 {
4475         struct e1000_hw *hw = &adapter->hw;
4476
4477         hw->autoneg = 0;
4478
4479         /* Fiber NICs only allow 1000 gbps Full duplex */
4480         if ((hw->media_type == e1000_media_type_fiber) &&
4481                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4482                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4483                 return -EINVAL;
4484         }
4485
4486         switch (spddplx) {
4487         case SPEED_10 + DUPLEX_HALF:
4488                 hw->forced_speed_duplex = e1000_10_half;
4489                 break;
4490         case SPEED_10 + DUPLEX_FULL:
4491                 hw->forced_speed_duplex = e1000_10_full;
4492                 break;
4493         case SPEED_100 + DUPLEX_HALF:
4494                 hw->forced_speed_duplex = e1000_100_half;
4495                 break;
4496         case SPEED_100 + DUPLEX_FULL:
4497                 hw->forced_speed_duplex = e1000_100_full;
4498                 break;
4499         case SPEED_1000 + DUPLEX_FULL:
4500                 hw->autoneg = 1;
4501                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4502                 break;
4503         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4504         default:
4505                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4506                 return -EINVAL;
4507         }
4508         return 0;
4509 }
4510
4511 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4512 {
4513         struct net_device *netdev = pci_get_drvdata(pdev);
4514         struct e1000_adapter *adapter = netdev_priv(netdev);
4515         struct e1000_hw *hw = &adapter->hw;
4516         u32 ctrl, ctrl_ext, rctl, status;
4517         u32 wufc = adapter->wol;
4518 #ifdef CONFIG_PM
4519         int retval = 0;
4520 #endif
4521
4522         netif_device_detach(netdev);
4523
4524         if (netif_running(netdev)) {
4525                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4526                 e1000_down(adapter);
4527         }
4528
4529 #ifdef CONFIG_PM
4530         retval = pci_save_state(pdev);
4531         if (retval)
4532                 return retval;
4533 #endif
4534
4535         status = er32(STATUS);
4536         if (status & E1000_STATUS_LU)
4537                 wufc &= ~E1000_WUFC_LNKC;
4538
4539         if (wufc) {
4540                 e1000_setup_rctl(adapter);
4541                 e1000_set_rx_mode(netdev);
4542
4543                 /* turn on all-multi mode if wake on multicast is enabled */
4544                 if (wufc & E1000_WUFC_MC) {
4545                         rctl = er32(RCTL);
4546                         rctl |= E1000_RCTL_MPE;
4547                         ew32(RCTL, rctl);
4548                 }
4549
4550                 if (hw->mac_type >= e1000_82540) {
4551                         ctrl = er32(CTRL);
4552                         /* advertise wake from D3Cold */
4553                         #define E1000_CTRL_ADVD3WUC 0x00100000
4554                         /* phy power management enable */
4555                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4556                         ctrl |= E1000_CTRL_ADVD3WUC |
4557                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4558                         ew32(CTRL, ctrl);
4559                 }
4560
4561                 if (hw->media_type == e1000_media_type_fiber ||
4562                     hw->media_type == e1000_media_type_internal_serdes) {
4563                         /* keep the laser running in D3 */
4564                         ctrl_ext = er32(CTRL_EXT);
4565                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4566                         ew32(CTRL_EXT, ctrl_ext);
4567                 }
4568
4569                 ew32(WUC, E1000_WUC_PME_EN);
4570                 ew32(WUFC, wufc);
4571         } else {
4572                 ew32(WUC, 0);
4573                 ew32(WUFC, 0);
4574         }
4575
4576         e1000_release_manageability(adapter);
4577
4578         *enable_wake = !!wufc;
4579
4580         /* make sure adapter isn't asleep if manageability is enabled */
4581         if (adapter->en_mng_pt)
4582                 *enable_wake = true;
4583
4584         if (netif_running(netdev))
4585                 e1000_free_irq(adapter);
4586
4587         pci_disable_device(pdev);
4588
4589         return 0;
4590 }
4591
4592 #ifdef CONFIG_PM
4593 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4594 {
4595         int retval;
4596         bool wake;
4597
4598         retval = __e1000_shutdown(pdev, &wake);
4599         if (retval)
4600                 return retval;
4601
4602         if (wake) {
4603                 pci_prepare_to_sleep(pdev);
4604         } else {
4605                 pci_wake_from_d3(pdev, false);
4606                 pci_set_power_state(pdev, PCI_D3hot);
4607         }
4608
4609         return 0;
4610 }
4611
4612 static int e1000_resume(struct pci_dev *pdev)
4613 {
4614         struct net_device *netdev = pci_get_drvdata(pdev);
4615         struct e1000_adapter *adapter = netdev_priv(netdev);
4616         struct e1000_hw *hw = &adapter->hw;
4617         u32 err;
4618
4619         pci_set_power_state(pdev, PCI_D0);
4620         pci_restore_state(pdev);
4621         pci_save_state(pdev);
4622
4623         if (adapter->need_ioport)
4624                 err = pci_enable_device(pdev);
4625         else
4626                 err = pci_enable_device_mem(pdev);
4627         if (err) {
4628                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4629                 return err;
4630         }
4631         pci_set_master(pdev);
4632
4633         pci_enable_wake(pdev, PCI_D3hot, 0);
4634         pci_enable_wake(pdev, PCI_D3cold, 0);
4635
4636         if (netif_running(netdev)) {
4637                 err = e1000_request_irq(adapter);
4638                 if (err)
4639                         return err;
4640         }
4641
4642         e1000_power_up_phy(adapter);
4643         e1000_reset(adapter);
4644         ew32(WUS, ~0);
4645
4646         e1000_init_manageability(adapter);
4647
4648         if (netif_running(netdev))
4649                 e1000_up(adapter);
4650
4651         netif_device_attach(netdev);
4652
4653         return 0;
4654 }
4655 #endif
4656
4657 static void e1000_shutdown(struct pci_dev *pdev)
4658 {
4659         bool wake;
4660
4661         __e1000_shutdown(pdev, &wake);
4662
4663         if (system_state == SYSTEM_POWER_OFF) {
4664                 pci_wake_from_d3(pdev, wake);
4665                 pci_set_power_state(pdev, PCI_D3hot);
4666         }
4667 }
4668
4669 #ifdef CONFIG_NET_POLL_CONTROLLER
4670 /*
4671  * Polling 'interrupt' - used by things like netconsole to send skbs
4672  * without having to re-enable interrupts. It's not called while
4673  * the interrupt routine is executing.
4674  */
4675 static void e1000_netpoll(struct net_device *netdev)
4676 {
4677         struct e1000_adapter *adapter = netdev_priv(netdev);
4678
4679         disable_irq(adapter->pdev->irq);
4680         e1000_intr(adapter->pdev->irq, netdev);
4681         enable_irq(adapter->pdev->irq);
4682 }
4683 #endif
4684
4685 /**
4686  * e1000_io_error_detected - called when PCI error is detected
4687  * @pdev: Pointer to PCI device
4688  * @state: The current pci connection state
4689  *
4690  * This function is called after a PCI bus error affecting
4691  * this device has been detected.
4692  */
4693 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4694                                                 pci_channel_state_t state)
4695 {
4696         struct net_device *netdev = pci_get_drvdata(pdev);
4697         struct e1000_adapter *adapter = netdev_priv(netdev);
4698
4699         netif_device_detach(netdev);
4700
4701         if (state == pci_channel_io_perm_failure)
4702                 return PCI_ERS_RESULT_DISCONNECT;
4703
4704         if (netif_running(netdev))
4705                 e1000_down(adapter);
4706         pci_disable_device(pdev);
4707
4708         /* Request a slot slot reset. */
4709         return PCI_ERS_RESULT_NEED_RESET;
4710 }
4711
4712 /**
4713  * e1000_io_slot_reset - called after the pci bus has been reset.
4714  * @pdev: Pointer to PCI device
4715  *
4716  * Restart the card from scratch, as if from a cold-boot. Implementation
4717  * resembles the first-half of the e1000_resume routine.
4718  */
4719 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4720 {
4721         struct net_device *netdev = pci_get_drvdata(pdev);
4722         struct e1000_adapter *adapter = netdev_priv(netdev);
4723         struct e1000_hw *hw = &adapter->hw;
4724         int err;
4725
4726         if (adapter->need_ioport)
4727                 err = pci_enable_device(pdev);
4728         else
4729                 err = pci_enable_device_mem(pdev);
4730         if (err) {
4731                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4732                 return PCI_ERS_RESULT_DISCONNECT;
4733         }
4734         pci_set_master(pdev);
4735
4736         pci_enable_wake(pdev, PCI_D3hot, 0);
4737         pci_enable_wake(pdev, PCI_D3cold, 0);
4738
4739         e1000_reset(adapter);
4740         ew32(WUS, ~0);
4741
4742         return PCI_ERS_RESULT_RECOVERED;
4743 }
4744
4745 /**
4746  * e1000_io_resume - called when traffic can start flowing again.
4747  * @pdev: Pointer to PCI device
4748  *
4749  * This callback is called when the error recovery driver tells us that
4750  * its OK to resume normal operation. Implementation resembles the
4751  * second-half of the e1000_resume routine.
4752  */
4753 static void e1000_io_resume(struct pci_dev *pdev)
4754 {
4755         struct net_device *netdev = pci_get_drvdata(pdev);
4756         struct e1000_adapter *adapter = netdev_priv(netdev);
4757
4758         e1000_init_manageability(adapter);
4759
4760         if (netif_running(netdev)) {
4761                 if (e1000_up(adapter)) {
4762                         printk("e1000: can't bring device back up after reset\n");
4763                         return;
4764                 }
4765         }
4766
4767         netif_device_attach(netdev);
4768 }
4769
4770 /* e1000_main.c */