]> Pileus Git - ~andy/linux/blob - drivers/net/e1000/e1000_ethtool.c
Merge branches 'at91', 'cache', 'cup', 'ep93xx', 'ixp4xx', 'nuc', 'pending-dma-stream...
[~andy/linux] / drivers / net / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32 #include <asm/uaccess.h>
33
34 enum {NETDEV_STATS, E1000_STATS};
35
36 struct e1000_stats {
37         char stat_string[ETH_GSTRING_LEN];
38         int type;
39         int sizeof_stat;
40         int stat_offset;
41 };
42
43 #define E1000_STAT(m)           E1000_STATS, \
44                                 sizeof(((struct e1000_adapter *)0)->m), \
45                                 offsetof(struct e1000_adapter, m)
46 #define E1000_NETDEV_STAT(m)    NETDEV_STATS, \
47                                 sizeof(((struct net_device *)0)->m), \
48                                 offsetof(struct net_device, m)
49
50 static const struct e1000_stats e1000_gstrings_stats[] = {
51         { "rx_packets", E1000_STAT(stats.gprc) },
52         { "tx_packets", E1000_STAT(stats.gptc) },
53         { "rx_bytes", E1000_STAT(stats.gorcl) },
54         { "tx_bytes", E1000_STAT(stats.gotcl) },
55         { "rx_broadcast", E1000_STAT(stats.bprc) },
56         { "tx_broadcast", E1000_STAT(stats.bptc) },
57         { "rx_multicast", E1000_STAT(stats.mprc) },
58         { "tx_multicast", E1000_STAT(stats.mptc) },
59         { "rx_errors", E1000_STAT(stats.rxerrc) },
60         { "tx_errors", E1000_STAT(stats.txerrc) },
61         { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
62         { "multicast", E1000_STAT(stats.mprc) },
63         { "collisions", E1000_STAT(stats.colc) },
64         { "rx_length_errors", E1000_STAT(stats.rlerrc) },
65         { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
66         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
67         { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
68         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
69         { "rx_missed_errors", E1000_STAT(stats.mpc) },
70         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
71         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
72         { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
73         { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
74         { "tx_window_errors", E1000_STAT(stats.latecol) },
75         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
76         { "tx_deferred_ok", E1000_STAT(stats.dc) },
77         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
78         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
79         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
80         { "tx_restart_queue", E1000_STAT(restart_queue) },
81         { "rx_long_length_errors", E1000_STAT(stats.roc) },
82         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
83         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
84         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
85         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
86         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
87         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
88         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
89         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
90         { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
91         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
92         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
93         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
94         { "tx_smbus", E1000_STAT(stats.mgptc) },
95         { "rx_smbus", E1000_STAT(stats.mgprc) },
96         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
97 };
98
99 #define E1000_QUEUE_STATS_LEN 0
100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103         "Register test  (offline)", "Eeprom test    (offline)",
104         "Interrupt test (offline)", "Loopback test  (offline)",
105         "Link test   (on/offline)"
106 };
107 #define E1000_TEST_LEN  ARRAY_SIZE(e1000_gstrings_test)
108
109 static int e1000_get_settings(struct net_device *netdev,
110                               struct ethtool_cmd *ecmd)
111 {
112         struct e1000_adapter *adapter = netdev_priv(netdev);
113         struct e1000_hw *hw = &adapter->hw;
114
115         if (hw->media_type == e1000_media_type_copper) {
116
117                 ecmd->supported = (SUPPORTED_10baseT_Half |
118                                    SUPPORTED_10baseT_Full |
119                                    SUPPORTED_100baseT_Half |
120                                    SUPPORTED_100baseT_Full |
121                                    SUPPORTED_1000baseT_Full|
122                                    SUPPORTED_Autoneg |
123                                    SUPPORTED_TP);
124                 ecmd->advertising = ADVERTISED_TP;
125
126                 if (hw->autoneg == 1) {
127                         ecmd->advertising |= ADVERTISED_Autoneg;
128                         /* the e1000 autoneg seems to match ethtool nicely */
129                         ecmd->advertising |= hw->autoneg_advertised;
130                 }
131
132                 ecmd->port = PORT_TP;
133                 ecmd->phy_address = hw->phy_addr;
134
135                 if (hw->mac_type == e1000_82543)
136                         ecmd->transceiver = XCVR_EXTERNAL;
137                 else
138                         ecmd->transceiver = XCVR_INTERNAL;
139
140         } else {
141                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
142                                      SUPPORTED_FIBRE |
143                                      SUPPORTED_Autoneg);
144
145                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
146                                      ADVERTISED_FIBRE |
147                                      ADVERTISED_Autoneg);
148
149                 ecmd->port = PORT_FIBRE;
150
151                 if (hw->mac_type >= e1000_82545)
152                         ecmd->transceiver = XCVR_INTERNAL;
153                 else
154                         ecmd->transceiver = XCVR_EXTERNAL;
155         }
156
157         if (er32(STATUS) & E1000_STATUS_LU) {
158
159                 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
160                                                    &adapter->link_duplex);
161                 ecmd->speed = adapter->link_speed;
162
163                 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
164                  *          and HALF_DUPLEX != DUPLEX_HALF */
165
166                 if (adapter->link_duplex == FULL_DUPLEX)
167                         ecmd->duplex = DUPLEX_FULL;
168                 else
169                         ecmd->duplex = DUPLEX_HALF;
170         } else {
171                 ecmd->speed = -1;
172                 ecmd->duplex = -1;
173         }
174
175         ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
176                          hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
177         return 0;
178 }
179
180 static int e1000_set_settings(struct net_device *netdev,
181                               struct ethtool_cmd *ecmd)
182 {
183         struct e1000_adapter *adapter = netdev_priv(netdev);
184         struct e1000_hw *hw = &adapter->hw;
185
186         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
187                 msleep(1);
188
189         if (ecmd->autoneg == AUTONEG_ENABLE) {
190                 hw->autoneg = 1;
191                 if (hw->media_type == e1000_media_type_fiber)
192                         hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
193                                      ADVERTISED_FIBRE |
194                                      ADVERTISED_Autoneg;
195                 else
196                         hw->autoneg_advertised = ecmd->advertising |
197                                                  ADVERTISED_TP |
198                                                  ADVERTISED_Autoneg;
199                 ecmd->advertising = hw->autoneg_advertised;
200         } else
201                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
202                         clear_bit(__E1000_RESETTING, &adapter->flags);
203                         return -EINVAL;
204                 }
205
206         /* reset the link */
207
208         if (netif_running(adapter->netdev)) {
209                 e1000_down(adapter);
210                 e1000_up(adapter);
211         } else
212                 e1000_reset(adapter);
213
214         clear_bit(__E1000_RESETTING, &adapter->flags);
215         return 0;
216 }
217
218 static void e1000_get_pauseparam(struct net_device *netdev,
219                                  struct ethtool_pauseparam *pause)
220 {
221         struct e1000_adapter *adapter = netdev_priv(netdev);
222         struct e1000_hw *hw = &adapter->hw;
223
224         pause->autoneg =
225                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
226
227         if (hw->fc == E1000_FC_RX_PAUSE)
228                 pause->rx_pause = 1;
229         else if (hw->fc == E1000_FC_TX_PAUSE)
230                 pause->tx_pause = 1;
231         else if (hw->fc == E1000_FC_FULL) {
232                 pause->rx_pause = 1;
233                 pause->tx_pause = 1;
234         }
235 }
236
237 static int e1000_set_pauseparam(struct net_device *netdev,
238                                 struct ethtool_pauseparam *pause)
239 {
240         struct e1000_adapter *adapter = netdev_priv(netdev);
241         struct e1000_hw *hw = &adapter->hw;
242         int retval = 0;
243
244         adapter->fc_autoneg = pause->autoneg;
245
246         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
247                 msleep(1);
248
249         if (pause->rx_pause && pause->tx_pause)
250                 hw->fc = E1000_FC_FULL;
251         else if (pause->rx_pause && !pause->tx_pause)
252                 hw->fc = E1000_FC_RX_PAUSE;
253         else if (!pause->rx_pause && pause->tx_pause)
254                 hw->fc = E1000_FC_TX_PAUSE;
255         else if (!pause->rx_pause && !pause->tx_pause)
256                 hw->fc = E1000_FC_NONE;
257
258         hw->original_fc = hw->fc;
259
260         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
261                 if (netif_running(adapter->netdev)) {
262                         e1000_down(adapter);
263                         e1000_up(adapter);
264                 } else
265                         e1000_reset(adapter);
266         } else
267                 retval = ((hw->media_type == e1000_media_type_fiber) ?
268                           e1000_setup_link(hw) : e1000_force_mac_fc(hw));
269
270         clear_bit(__E1000_RESETTING, &adapter->flags);
271         return retval;
272 }
273
274 static u32 e1000_get_rx_csum(struct net_device *netdev)
275 {
276         struct e1000_adapter *adapter = netdev_priv(netdev);
277         return adapter->rx_csum;
278 }
279
280 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
281 {
282         struct e1000_adapter *adapter = netdev_priv(netdev);
283         adapter->rx_csum = data;
284
285         if (netif_running(netdev))
286                 e1000_reinit_locked(adapter);
287         else
288                 e1000_reset(adapter);
289         return 0;
290 }
291
292 static u32 e1000_get_tx_csum(struct net_device *netdev)
293 {
294         return (netdev->features & NETIF_F_HW_CSUM) != 0;
295 }
296
297 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
298 {
299         struct e1000_adapter *adapter = netdev_priv(netdev);
300         struct e1000_hw *hw = &adapter->hw;
301
302         if (hw->mac_type < e1000_82543) {
303                 if (!data)
304                         return -EINVAL;
305                 return 0;
306         }
307
308         if (data)
309                 netdev->features |= NETIF_F_HW_CSUM;
310         else
311                 netdev->features &= ~NETIF_F_HW_CSUM;
312
313         return 0;
314 }
315
316 static int e1000_set_tso(struct net_device *netdev, u32 data)
317 {
318         struct e1000_adapter *adapter = netdev_priv(netdev);
319         struct e1000_hw *hw = &adapter->hw;
320
321         if ((hw->mac_type < e1000_82544) ||
322             (hw->mac_type == e1000_82547))
323                 return data ? -EINVAL : 0;
324
325         if (data)
326                 netdev->features |= NETIF_F_TSO;
327         else
328                 netdev->features &= ~NETIF_F_TSO;
329
330         netdev->features &= ~NETIF_F_TSO6;
331
332         DPRINTK(PROBE, INFO, "TSO is %s\n", data ? "Enabled" : "Disabled");
333         adapter->tso_force = true;
334         return 0;
335 }
336
337 static u32 e1000_get_msglevel(struct net_device *netdev)
338 {
339         struct e1000_adapter *adapter = netdev_priv(netdev);
340         return adapter->msg_enable;
341 }
342
343 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
344 {
345         struct e1000_adapter *adapter = netdev_priv(netdev);
346         adapter->msg_enable = data;
347 }
348
349 static int e1000_get_regs_len(struct net_device *netdev)
350 {
351 #define E1000_REGS_LEN 32
352         return E1000_REGS_LEN * sizeof(u32);
353 }
354
355 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
356                            void *p)
357 {
358         struct e1000_adapter *adapter = netdev_priv(netdev);
359         struct e1000_hw *hw = &adapter->hw;
360         u32 *regs_buff = p;
361         u16 phy_data;
362
363         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
364
365         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
366
367         regs_buff[0]  = er32(CTRL);
368         regs_buff[1]  = er32(STATUS);
369
370         regs_buff[2]  = er32(RCTL);
371         regs_buff[3]  = er32(RDLEN);
372         regs_buff[4]  = er32(RDH);
373         regs_buff[5]  = er32(RDT);
374         regs_buff[6]  = er32(RDTR);
375
376         regs_buff[7]  = er32(TCTL);
377         regs_buff[8]  = er32(TDLEN);
378         regs_buff[9]  = er32(TDH);
379         regs_buff[10] = er32(TDT);
380         regs_buff[11] = er32(TIDV);
381
382         regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
383         if (hw->phy_type == e1000_phy_igp) {
384                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
385                                     IGP01E1000_PHY_AGC_A);
386                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
387                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
388                 regs_buff[13] = (u32)phy_data; /* cable length */
389                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
390                                     IGP01E1000_PHY_AGC_B);
391                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
392                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
393                 regs_buff[14] = (u32)phy_data; /* cable length */
394                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
395                                     IGP01E1000_PHY_AGC_C);
396                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
397                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
398                 regs_buff[15] = (u32)phy_data; /* cable length */
399                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
400                                     IGP01E1000_PHY_AGC_D);
401                 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
402                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
403                 regs_buff[16] = (u32)phy_data; /* cable length */
404                 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
405                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
406                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
407                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
408                 regs_buff[18] = (u32)phy_data; /* cable polarity */
409                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
410                                     IGP01E1000_PHY_PCS_INIT_REG);
411                 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
412                                    IGP01E1000_PHY_PAGE_SELECT, &phy_data);
413                 regs_buff[19] = (u32)phy_data; /* cable polarity */
414                 regs_buff[20] = 0; /* polarity correction enabled (always) */
415                 regs_buff[22] = 0; /* phy receive errors (unavailable) */
416                 regs_buff[23] = regs_buff[18]; /* mdix mode */
417                 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
418         } else {
419                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
420                 regs_buff[13] = (u32)phy_data; /* cable length */
421                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
422                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
423                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
424                 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
425                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
426                 regs_buff[18] = regs_buff[13]; /* cable polarity */
427                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
428                 regs_buff[20] = regs_buff[17]; /* polarity correction */
429                 /* phy receive errors */
430                 regs_buff[22] = adapter->phy_stats.receive_errors;
431                 regs_buff[23] = regs_buff[13]; /* mdix mode */
432         }
433         regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
434         e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
435         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
436         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
437         if (hw->mac_type >= e1000_82540 &&
438             hw->media_type == e1000_media_type_copper) {
439                 regs_buff[26] = er32(MANC);
440         }
441 }
442
443 static int e1000_get_eeprom_len(struct net_device *netdev)
444 {
445         struct e1000_adapter *adapter = netdev_priv(netdev);
446         struct e1000_hw *hw = &adapter->hw;
447
448         return hw->eeprom.word_size * 2;
449 }
450
451 static int e1000_get_eeprom(struct net_device *netdev,
452                             struct ethtool_eeprom *eeprom, u8 *bytes)
453 {
454         struct e1000_adapter *adapter = netdev_priv(netdev);
455         struct e1000_hw *hw = &adapter->hw;
456         u16 *eeprom_buff;
457         int first_word, last_word;
458         int ret_val = 0;
459         u16 i;
460
461         if (eeprom->len == 0)
462                 return -EINVAL;
463
464         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
465
466         first_word = eeprom->offset >> 1;
467         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
468
469         eeprom_buff = kmalloc(sizeof(u16) *
470                         (last_word - first_word + 1), GFP_KERNEL);
471         if (!eeprom_buff)
472                 return -ENOMEM;
473
474         if (hw->eeprom.type == e1000_eeprom_spi)
475                 ret_val = e1000_read_eeprom(hw, first_word,
476                                             last_word - first_word + 1,
477                                             eeprom_buff);
478         else {
479                 for (i = 0; i < last_word - first_word + 1; i++) {
480                         ret_val = e1000_read_eeprom(hw, first_word + i, 1,
481                                                     &eeprom_buff[i]);
482                         if (ret_val)
483                                 break;
484                 }
485         }
486
487         /* Device's eeprom is always little-endian, word addressable */
488         for (i = 0; i < last_word - first_word + 1; i++)
489                 le16_to_cpus(&eeprom_buff[i]);
490
491         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
492                         eeprom->len);
493         kfree(eeprom_buff);
494
495         return ret_val;
496 }
497
498 static int e1000_set_eeprom(struct net_device *netdev,
499                             struct ethtool_eeprom *eeprom, u8 *bytes)
500 {
501         struct e1000_adapter *adapter = netdev_priv(netdev);
502         struct e1000_hw *hw = &adapter->hw;
503         u16 *eeprom_buff;
504         void *ptr;
505         int max_len, first_word, last_word, ret_val = 0;
506         u16 i;
507
508         if (eeprom->len == 0)
509                 return -EOPNOTSUPP;
510
511         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
512                 return -EFAULT;
513
514         max_len = hw->eeprom.word_size * 2;
515
516         first_word = eeprom->offset >> 1;
517         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
518         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
519         if (!eeprom_buff)
520                 return -ENOMEM;
521
522         ptr = (void *)eeprom_buff;
523
524         if (eeprom->offset & 1) {
525                 /* need read/modify/write of first changed EEPROM word */
526                 /* only the second byte of the word is being modified */
527                 ret_val = e1000_read_eeprom(hw, first_word, 1,
528                                             &eeprom_buff[0]);
529                 ptr++;
530         }
531         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
532                 /* need read/modify/write of last changed EEPROM word */
533                 /* only the first byte of the word is being modified */
534                 ret_val = e1000_read_eeprom(hw, last_word, 1,
535                                   &eeprom_buff[last_word - first_word]);
536         }
537
538         /* Device's eeprom is always little-endian, word addressable */
539         for (i = 0; i < last_word - first_word + 1; i++)
540                 le16_to_cpus(&eeprom_buff[i]);
541
542         memcpy(ptr, bytes, eeprom->len);
543
544         for (i = 0; i < last_word - first_word + 1; i++)
545                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
546
547         ret_val = e1000_write_eeprom(hw, first_word,
548                                      last_word - first_word + 1, eeprom_buff);
549
550         /* Update the checksum over the first part of the EEPROM if needed */
551         if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
552                 e1000_update_eeprom_checksum(hw);
553
554         kfree(eeprom_buff);
555         return ret_val;
556 }
557
558 static void e1000_get_drvinfo(struct net_device *netdev,
559                               struct ethtool_drvinfo *drvinfo)
560 {
561         struct e1000_adapter *adapter = netdev_priv(netdev);
562         char firmware_version[32];
563
564         strncpy(drvinfo->driver,  e1000_driver_name, 32);
565         strncpy(drvinfo->version, e1000_driver_version, 32);
566
567         sprintf(firmware_version, "N/A");
568         strncpy(drvinfo->fw_version, firmware_version, 32);
569         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
570         drvinfo->regdump_len = e1000_get_regs_len(netdev);
571         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
572 }
573
574 static void e1000_get_ringparam(struct net_device *netdev,
575                                 struct ethtool_ringparam *ring)
576 {
577         struct e1000_adapter *adapter = netdev_priv(netdev);
578         struct e1000_hw *hw = &adapter->hw;
579         e1000_mac_type mac_type = hw->mac_type;
580         struct e1000_tx_ring *txdr = adapter->tx_ring;
581         struct e1000_rx_ring *rxdr = adapter->rx_ring;
582
583         ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
584                 E1000_MAX_82544_RXD;
585         ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
586                 E1000_MAX_82544_TXD;
587         ring->rx_mini_max_pending = 0;
588         ring->rx_jumbo_max_pending = 0;
589         ring->rx_pending = rxdr->count;
590         ring->tx_pending = txdr->count;
591         ring->rx_mini_pending = 0;
592         ring->rx_jumbo_pending = 0;
593 }
594
595 static int e1000_set_ringparam(struct net_device *netdev,
596                                struct ethtool_ringparam *ring)
597 {
598         struct e1000_adapter *adapter = netdev_priv(netdev);
599         struct e1000_hw *hw = &adapter->hw;
600         e1000_mac_type mac_type = hw->mac_type;
601         struct e1000_tx_ring *txdr, *tx_old;
602         struct e1000_rx_ring *rxdr, *rx_old;
603         int i, err;
604
605         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
606                 return -EINVAL;
607
608         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
609                 msleep(1);
610
611         if (netif_running(adapter->netdev))
612                 e1000_down(adapter);
613
614         tx_old = adapter->tx_ring;
615         rx_old = adapter->rx_ring;
616
617         err = -ENOMEM;
618         txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
619         if (!txdr)
620                 goto err_alloc_tx;
621
622         rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
623         if (!rxdr)
624                 goto err_alloc_rx;
625
626         adapter->tx_ring = txdr;
627         adapter->rx_ring = rxdr;
628
629         rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
630         rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
631                 E1000_MAX_RXD : E1000_MAX_82544_RXD));
632         rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
633
634         txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
635         txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
636                 E1000_MAX_TXD : E1000_MAX_82544_TXD));
637         txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
638
639         for (i = 0; i < adapter->num_tx_queues; i++)
640                 txdr[i].count = txdr->count;
641         for (i = 0; i < adapter->num_rx_queues; i++)
642                 rxdr[i].count = rxdr->count;
643
644         if (netif_running(adapter->netdev)) {
645                 /* Try to get new resources before deleting old */
646                 err = e1000_setup_all_rx_resources(adapter);
647                 if (err)
648                         goto err_setup_rx;
649                 err = e1000_setup_all_tx_resources(adapter);
650                 if (err)
651                         goto err_setup_tx;
652
653                 /* save the new, restore the old in order to free it,
654                  * then restore the new back again */
655
656                 adapter->rx_ring = rx_old;
657                 adapter->tx_ring = tx_old;
658                 e1000_free_all_rx_resources(adapter);
659                 e1000_free_all_tx_resources(adapter);
660                 kfree(tx_old);
661                 kfree(rx_old);
662                 adapter->rx_ring = rxdr;
663                 adapter->tx_ring = txdr;
664                 err = e1000_up(adapter);
665                 if (err)
666                         goto err_setup;
667         }
668
669         clear_bit(__E1000_RESETTING, &adapter->flags);
670         return 0;
671 err_setup_tx:
672         e1000_free_all_rx_resources(adapter);
673 err_setup_rx:
674         adapter->rx_ring = rx_old;
675         adapter->tx_ring = tx_old;
676         kfree(rxdr);
677 err_alloc_rx:
678         kfree(txdr);
679 err_alloc_tx:
680         e1000_up(adapter);
681 err_setup:
682         clear_bit(__E1000_RESETTING, &adapter->flags);
683         return err;
684 }
685
686 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
687                              u32 mask, u32 write)
688 {
689         struct e1000_hw *hw = &adapter->hw;
690         static const u32 test[] =
691                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
692         u8 __iomem *address = hw->hw_addr + reg;
693         u32 read;
694         int i;
695
696         for (i = 0; i < ARRAY_SIZE(test); i++) {
697                 writel(write & test[i], address);
698                 read = readl(address);
699                 if (read != (write & test[i] & mask)) {
700                         DPRINTK(DRV, ERR, "pattern test reg %04X failed: "
701                                 "got 0x%08X expected 0x%08X\n",
702                                 reg, read, (write & test[i] & mask));
703                         *data = reg;
704                         return true;
705                 }
706         }
707         return false;
708 }
709
710 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
711                               u32 mask, u32 write)
712 {
713         struct e1000_hw *hw = &adapter->hw;
714         u8 __iomem *address = hw->hw_addr + reg;
715         u32 read;
716
717         writel(write & mask, address);
718         read = readl(address);
719         if ((read & mask) != (write & mask)) {
720                 DPRINTK(DRV, ERR, "set/check reg %04X test failed: "
721                         "got 0x%08X expected 0x%08X\n",
722                         reg, (read & mask), (write & mask));
723                 *data = reg;
724                 return true;
725         }
726         return false;
727 }
728
729 #define REG_PATTERN_TEST(reg, mask, write)                           \
730         do {                                                         \
731                 if (reg_pattern_test(adapter, data,                  \
732                              (hw->mac_type >= e1000_82543)   \
733                              ? E1000_##reg : E1000_82542_##reg,      \
734                              mask, write))                           \
735                         return 1;                                    \
736         } while (0)
737
738 #define REG_SET_AND_CHECK(reg, mask, write)                          \
739         do {                                                         \
740                 if (reg_set_and_check(adapter, data,                 \
741                               (hw->mac_type >= e1000_82543)  \
742                               ? E1000_##reg : E1000_82542_##reg,     \
743                               mask, write))                          \
744                         return 1;                                    \
745         } while (0)
746
747 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
748 {
749         u32 value, before, after;
750         u32 i, toggle;
751         struct e1000_hw *hw = &adapter->hw;
752
753         /* The status register is Read Only, so a write should fail.
754          * Some bits that get toggled are ignored.
755          */
756
757         /* there are several bits on newer hardware that are r/w */
758         toggle = 0xFFFFF833;
759
760         before = er32(STATUS);
761         value = (er32(STATUS) & toggle);
762         ew32(STATUS, toggle);
763         after = er32(STATUS) & toggle;
764         if (value != after) {
765                 DPRINTK(DRV, ERR, "failed STATUS register test got: "
766                         "0x%08X expected: 0x%08X\n", after, value);
767                 *data = 1;
768                 return 1;
769         }
770         /* restore previous status */
771         ew32(STATUS, before);
772
773         REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
774         REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
775         REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
776         REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
777
778         REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
779         REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
780         REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
781         REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
782         REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
783         REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
784         REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
785         REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
786         REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
787         REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
788
789         REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
790
791         before = 0x06DFB3FE;
792         REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
793         REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
794
795         if (hw->mac_type >= e1000_82543) {
796
797                 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
798                 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
799                 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
800                 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
801                 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
802                 value = E1000_RAR_ENTRIES;
803                 for (i = 0; i < value; i++) {
804                         REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
805                                          0xFFFFFFFF);
806                 }
807
808         } else {
809
810                 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
811                 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
812                 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
813                 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
814
815         }
816
817         value = E1000_MC_TBL_SIZE;
818         for (i = 0; i < value; i++)
819                 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
820
821         *data = 0;
822         return 0;
823 }
824
825 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
826 {
827         struct e1000_hw *hw = &adapter->hw;
828         u16 temp;
829         u16 checksum = 0;
830         u16 i;
831
832         *data = 0;
833         /* Read and add up the contents of the EEPROM */
834         for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
835                 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
836                         *data = 1;
837                         break;
838                 }
839                 checksum += temp;
840         }
841
842         /* If Checksum is not Correct return error else test passed */
843         if ((checksum != (u16)EEPROM_SUM) && !(*data))
844                 *data = 2;
845
846         return *data;
847 }
848
849 static irqreturn_t e1000_test_intr(int irq, void *data)
850 {
851         struct net_device *netdev = (struct net_device *)data;
852         struct e1000_adapter *adapter = netdev_priv(netdev);
853         struct e1000_hw *hw = &adapter->hw;
854
855         adapter->test_icr |= er32(ICR);
856
857         return IRQ_HANDLED;
858 }
859
860 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
861 {
862         struct net_device *netdev = adapter->netdev;
863         u32 mask, i = 0;
864         bool shared_int = true;
865         u32 irq = adapter->pdev->irq;
866         struct e1000_hw *hw = &adapter->hw;
867
868         *data = 0;
869
870         /* NOTE: we don't test MSI interrupts here, yet */
871         /* Hook up test interrupt handler just for this test */
872         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
873                          netdev))
874                 shared_int = false;
875         else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
876                  netdev->name, netdev)) {
877                 *data = 1;
878                 return -1;
879         }
880         DPRINTK(HW, INFO, "testing %s interrupt\n",
881                 (shared_int ? "shared" : "unshared"));
882
883         /* Disable all the interrupts */
884         ew32(IMC, 0xFFFFFFFF);
885         msleep(10);
886
887         /* Test each interrupt */
888         for (; i < 10; i++) {
889
890                 /* Interrupt to test */
891                 mask = 1 << i;
892
893                 if (!shared_int) {
894                         /* Disable the interrupt to be reported in
895                          * the cause register and then force the same
896                          * interrupt and see if one gets posted.  If
897                          * an interrupt was posted to the bus, the
898                          * test failed.
899                          */
900                         adapter->test_icr = 0;
901                         ew32(IMC, mask);
902                         ew32(ICS, mask);
903                         msleep(10);
904
905                         if (adapter->test_icr & mask) {
906                                 *data = 3;
907                                 break;
908                         }
909                 }
910
911                 /* Enable the interrupt to be reported in
912                  * the cause register and then force the same
913                  * interrupt and see if one gets posted.  If
914                  * an interrupt was not posted to the bus, the
915                  * test failed.
916                  */
917                 adapter->test_icr = 0;
918                 ew32(IMS, mask);
919                 ew32(ICS, mask);
920                 msleep(10);
921
922                 if (!(adapter->test_icr & mask)) {
923                         *data = 4;
924                         break;
925                 }
926
927                 if (!shared_int) {
928                         /* Disable the other interrupts to be reported in
929                          * the cause register and then force the other
930                          * interrupts and see if any get posted.  If
931                          * an interrupt was posted to the bus, the
932                          * test failed.
933                          */
934                         adapter->test_icr = 0;
935                         ew32(IMC, ~mask & 0x00007FFF);
936                         ew32(ICS, ~mask & 0x00007FFF);
937                         msleep(10);
938
939                         if (adapter->test_icr) {
940                                 *data = 5;
941                                 break;
942                         }
943                 }
944         }
945
946         /* Disable all the interrupts */
947         ew32(IMC, 0xFFFFFFFF);
948         msleep(10);
949
950         /* Unhook test interrupt handler */
951         free_irq(irq, netdev);
952
953         return *data;
954 }
955
956 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
957 {
958         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
959         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
960         struct pci_dev *pdev = adapter->pdev;
961         int i;
962
963         if (txdr->desc && txdr->buffer_info) {
964                 for (i = 0; i < txdr->count; i++) {
965                         if (txdr->buffer_info[i].dma)
966                                 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
967                                                  txdr->buffer_info[i].length,
968                                                  PCI_DMA_TODEVICE);
969                         if (txdr->buffer_info[i].skb)
970                                 dev_kfree_skb(txdr->buffer_info[i].skb);
971                 }
972         }
973
974         if (rxdr->desc && rxdr->buffer_info) {
975                 for (i = 0; i < rxdr->count; i++) {
976                         if (rxdr->buffer_info[i].dma)
977                                 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
978                                                  rxdr->buffer_info[i].length,
979                                                  PCI_DMA_FROMDEVICE);
980                         if (rxdr->buffer_info[i].skb)
981                                 dev_kfree_skb(rxdr->buffer_info[i].skb);
982                 }
983         }
984
985         if (txdr->desc) {
986                 pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
987                 txdr->desc = NULL;
988         }
989         if (rxdr->desc) {
990                 pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
991                 rxdr->desc = NULL;
992         }
993
994         kfree(txdr->buffer_info);
995         txdr->buffer_info = NULL;
996         kfree(rxdr->buffer_info);
997         rxdr->buffer_info = NULL;
998
999         return;
1000 }
1001
1002 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1003 {
1004         struct e1000_hw *hw = &adapter->hw;
1005         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1006         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1007         struct pci_dev *pdev = adapter->pdev;
1008         u32 rctl;
1009         int i, ret_val;
1010
1011         /* Setup Tx descriptor ring and Tx buffers */
1012
1013         if (!txdr->count)
1014                 txdr->count = E1000_DEFAULT_TXD;
1015
1016         txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
1017                                     GFP_KERNEL);
1018         if (!txdr->buffer_info) {
1019                 ret_val = 1;
1020                 goto err_nomem;
1021         }
1022
1023         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1024         txdr->size = ALIGN(txdr->size, 4096);
1025         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1026         if (!txdr->desc) {
1027                 ret_val = 2;
1028                 goto err_nomem;
1029         }
1030         memset(txdr->desc, 0, txdr->size);
1031         txdr->next_to_use = txdr->next_to_clean = 0;
1032
1033         ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1034         ew32(TDBAH, ((u64)txdr->dma >> 32));
1035         ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1036         ew32(TDH, 0);
1037         ew32(TDT, 0);
1038         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1039              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1040              E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1041
1042         for (i = 0; i < txdr->count; i++) {
1043                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1044                 struct sk_buff *skb;
1045                 unsigned int size = 1024;
1046
1047                 skb = alloc_skb(size, GFP_KERNEL);
1048                 if (!skb) {
1049                         ret_val = 3;
1050                         goto err_nomem;
1051                 }
1052                 skb_put(skb, size);
1053                 txdr->buffer_info[i].skb = skb;
1054                 txdr->buffer_info[i].length = skb->len;
1055                 txdr->buffer_info[i].dma =
1056                         pci_map_single(pdev, skb->data, skb->len,
1057                                        PCI_DMA_TODEVICE);
1058                 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1059                 tx_desc->lower.data = cpu_to_le32(skb->len);
1060                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1061                                                    E1000_TXD_CMD_IFCS |
1062                                                    E1000_TXD_CMD_RPS);
1063                 tx_desc->upper.data = 0;
1064         }
1065
1066         /* Setup Rx descriptor ring and Rx buffers */
1067
1068         if (!rxdr->count)
1069                 rxdr->count = E1000_DEFAULT_RXD;
1070
1071         rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
1072                                     GFP_KERNEL);
1073         if (!rxdr->buffer_info) {
1074                 ret_val = 4;
1075                 goto err_nomem;
1076         }
1077
1078         rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1079         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1080         if (!rxdr->desc) {
1081                 ret_val = 5;
1082                 goto err_nomem;
1083         }
1084         memset(rxdr->desc, 0, rxdr->size);
1085         rxdr->next_to_use = rxdr->next_to_clean = 0;
1086
1087         rctl = er32(RCTL);
1088         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1089         ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1090         ew32(RDBAH, ((u64)rxdr->dma >> 32));
1091         ew32(RDLEN, rxdr->size);
1092         ew32(RDH, 0);
1093         ew32(RDT, 0);
1094         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1095                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1096                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1097         ew32(RCTL, rctl);
1098
1099         for (i = 0; i < rxdr->count; i++) {
1100                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1101                 struct sk_buff *skb;
1102
1103                 skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
1104                 if (!skb) {
1105                         ret_val = 6;
1106                         goto err_nomem;
1107                 }
1108                 skb_reserve(skb, NET_IP_ALIGN);
1109                 rxdr->buffer_info[i].skb = skb;
1110                 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1111                 rxdr->buffer_info[i].dma =
1112                         pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
1113                                        PCI_DMA_FROMDEVICE);
1114                 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1115                 memset(skb->data, 0x00, skb->len);
1116         }
1117
1118         return 0;
1119
1120 err_nomem:
1121         e1000_free_desc_rings(adapter);
1122         return ret_val;
1123 }
1124
1125 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1126 {
1127         struct e1000_hw *hw = &adapter->hw;
1128
1129         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1130         e1000_write_phy_reg(hw, 29, 0x001F);
1131         e1000_write_phy_reg(hw, 30, 0x8FFC);
1132         e1000_write_phy_reg(hw, 29, 0x001A);
1133         e1000_write_phy_reg(hw, 30, 0x8FF0);
1134 }
1135
1136 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1137 {
1138         struct e1000_hw *hw = &adapter->hw;
1139         u16 phy_reg;
1140
1141         /* Because we reset the PHY above, we need to re-force TX_CLK in the
1142          * Extended PHY Specific Control Register to 25MHz clock.  This
1143          * value defaults back to a 2.5MHz clock when the PHY is reset.
1144          */
1145         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1146         phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1147         e1000_write_phy_reg(hw,
1148                 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1149
1150         /* In addition, because of the s/w reset above, we need to enable
1151          * CRS on TX.  This must be set for both full and half duplex
1152          * operation.
1153          */
1154         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1155         phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1156         e1000_write_phy_reg(hw,
1157                 M88E1000_PHY_SPEC_CTRL, phy_reg);
1158 }
1159
1160 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1161 {
1162         struct e1000_hw *hw = &adapter->hw;
1163         u32 ctrl_reg;
1164         u16 phy_reg;
1165
1166         /* Setup the Device Control Register for PHY loopback test. */
1167
1168         ctrl_reg = er32(CTRL);
1169         ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1170                      E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1171                      E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1172                      E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1173                      E1000_CTRL_FD);            /* Force Duplex to FULL */
1174
1175         ew32(CTRL, ctrl_reg);
1176
1177         /* Read the PHY Specific Control Register (0x10) */
1178         e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1179
1180         /* Clear Auto-Crossover bits in PHY Specific Control Register
1181          * (bits 6:5).
1182          */
1183         phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1184         e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1185
1186         /* Perform software reset on the PHY */
1187         e1000_phy_reset(hw);
1188
1189         /* Have to setup TX_CLK and TX_CRS after software reset */
1190         e1000_phy_reset_clk_and_crs(adapter);
1191
1192         e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1193
1194         /* Wait for reset to complete. */
1195         udelay(500);
1196
1197         /* Have to setup TX_CLK and TX_CRS after software reset */
1198         e1000_phy_reset_clk_and_crs(adapter);
1199
1200         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1201         e1000_phy_disable_receiver(adapter);
1202
1203         /* Set the loopback bit in the PHY control register. */
1204         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1205         phy_reg |= MII_CR_LOOPBACK;
1206         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1207
1208         /* Setup TX_CLK and TX_CRS one more time. */
1209         e1000_phy_reset_clk_and_crs(adapter);
1210
1211         /* Check Phy Configuration */
1212         e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1213         if (phy_reg != 0x4100)
1214                  return 9;
1215
1216         e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1217         if (phy_reg != 0x0070)
1218                 return 10;
1219
1220         e1000_read_phy_reg(hw, 29, &phy_reg);
1221         if (phy_reg != 0x001A)
1222                 return 11;
1223
1224         return 0;
1225 }
1226
1227 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1228 {
1229         struct e1000_hw *hw = &adapter->hw;
1230         u32 ctrl_reg = 0;
1231         u32 stat_reg = 0;
1232
1233         hw->autoneg = false;
1234
1235         if (hw->phy_type == e1000_phy_m88) {
1236                 /* Auto-MDI/MDIX Off */
1237                 e1000_write_phy_reg(hw,
1238                                     M88E1000_PHY_SPEC_CTRL, 0x0808);
1239                 /* reset to update Auto-MDI/MDIX */
1240                 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1241                 /* autoneg off */
1242                 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1243         }
1244
1245         ctrl_reg = er32(CTRL);
1246
1247         /* force 1000, set loopback */
1248         e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1249
1250         /* Now set up the MAC to the same speed/duplex as the PHY. */
1251         ctrl_reg = er32(CTRL);
1252         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1253         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1254                         E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1255                         E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1256                         E1000_CTRL_FD);  /* Force Duplex to FULL */
1257
1258         if (hw->media_type == e1000_media_type_copper &&
1259            hw->phy_type == e1000_phy_m88)
1260                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1261         else {
1262                 /* Set the ILOS bit on the fiber Nic is half
1263                  * duplex link is detected. */
1264                 stat_reg = er32(STATUS);
1265                 if ((stat_reg & E1000_STATUS_FD) == 0)
1266                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1267         }
1268
1269         ew32(CTRL, ctrl_reg);
1270
1271         /* Disable the receiver on the PHY so when a cable is plugged in, the
1272          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1273          */
1274         if (hw->phy_type == e1000_phy_m88)
1275                 e1000_phy_disable_receiver(adapter);
1276
1277         udelay(500);
1278
1279         return 0;
1280 }
1281
1282 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1283 {
1284         struct e1000_hw *hw = &adapter->hw;
1285         u16 phy_reg = 0;
1286         u16 count = 0;
1287
1288         switch (hw->mac_type) {
1289         case e1000_82543:
1290                 if (hw->media_type == e1000_media_type_copper) {
1291                         /* Attempt to setup Loopback mode on Non-integrated PHY.
1292                          * Some PHY registers get corrupted at random, so
1293                          * attempt this 10 times.
1294                          */
1295                         while (e1000_nonintegrated_phy_loopback(adapter) &&
1296                               count++ < 10);
1297                         if (count < 11)
1298                                 return 0;
1299                 }
1300                 break;
1301
1302         case e1000_82544:
1303         case e1000_82540:
1304         case e1000_82545:
1305         case e1000_82545_rev_3:
1306         case e1000_82546:
1307         case e1000_82546_rev_3:
1308         case e1000_82541:
1309         case e1000_82541_rev_2:
1310         case e1000_82547:
1311         case e1000_82547_rev_2:
1312                 return e1000_integrated_phy_loopback(adapter);
1313                 break;
1314         default:
1315                 /* Default PHY loopback work is to read the MII
1316                  * control register and assert bit 14 (loopback mode).
1317                  */
1318                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1319                 phy_reg |= MII_CR_LOOPBACK;
1320                 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1321                 return 0;
1322                 break;
1323         }
1324
1325         return 8;
1326 }
1327
1328 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1329 {
1330         struct e1000_hw *hw = &adapter->hw;
1331         u32 rctl;
1332
1333         if (hw->media_type == e1000_media_type_fiber ||
1334             hw->media_type == e1000_media_type_internal_serdes) {
1335                 switch (hw->mac_type) {
1336                 case e1000_82545:
1337                 case e1000_82546:
1338                 case e1000_82545_rev_3:
1339                 case e1000_82546_rev_3:
1340                         return e1000_set_phy_loopback(adapter);
1341                         break;
1342                 default:
1343                         rctl = er32(RCTL);
1344                         rctl |= E1000_RCTL_LBM_TCVR;
1345                         ew32(RCTL, rctl);
1346                         return 0;
1347                 }
1348         } else if (hw->media_type == e1000_media_type_copper)
1349                 return e1000_set_phy_loopback(adapter);
1350
1351         return 7;
1352 }
1353
1354 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1355 {
1356         struct e1000_hw *hw = &adapter->hw;
1357         u32 rctl;
1358         u16 phy_reg;
1359
1360         rctl = er32(RCTL);
1361         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1362         ew32(RCTL, rctl);
1363
1364         switch (hw->mac_type) {
1365         case e1000_82545:
1366         case e1000_82546:
1367         case e1000_82545_rev_3:
1368         case e1000_82546_rev_3:
1369         default:
1370                 hw->autoneg = true;
1371                 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1372                 if (phy_reg & MII_CR_LOOPBACK) {
1373                         phy_reg &= ~MII_CR_LOOPBACK;
1374                         e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1375                         e1000_phy_reset(hw);
1376                 }
1377                 break;
1378         }
1379 }
1380
1381 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1382                                       unsigned int frame_size)
1383 {
1384         memset(skb->data, 0xFF, frame_size);
1385         frame_size &= ~1;
1386         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1387         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1388         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1389 }
1390
1391 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1392                                     unsigned int frame_size)
1393 {
1394         frame_size &= ~1;
1395         if (*(skb->data + 3) == 0xFF) {
1396                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1397                    (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1398                         return 0;
1399                 }
1400         }
1401         return 13;
1402 }
1403
1404 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1405 {
1406         struct e1000_hw *hw = &adapter->hw;
1407         struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1408         struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1409         struct pci_dev *pdev = adapter->pdev;
1410         int i, j, k, l, lc, good_cnt, ret_val=0;
1411         unsigned long time;
1412
1413         ew32(RDT, rxdr->count - 1);
1414
1415         /* Calculate the loop count based on the largest descriptor ring
1416          * The idea is to wrap the largest ring a number of times using 64
1417          * send/receive pairs during each loop
1418          */
1419
1420         if (rxdr->count <= txdr->count)
1421                 lc = ((txdr->count / 64) * 2) + 1;
1422         else
1423                 lc = ((rxdr->count / 64) * 2) + 1;
1424
1425         k = l = 0;
1426         for (j = 0; j <= lc; j++) { /* loop count loop */
1427                 for (i = 0; i < 64; i++) { /* send the packets */
1428                         e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1429                                         1024);
1430                         pci_dma_sync_single_for_device(pdev,
1431                                         txdr->buffer_info[k].dma,
1432                                         txdr->buffer_info[k].length,
1433                                         PCI_DMA_TODEVICE);
1434                         if (unlikely(++k == txdr->count)) k = 0;
1435                 }
1436                 ew32(TDT, k);
1437                 msleep(200);
1438                 time = jiffies; /* set the start time for the receive */
1439                 good_cnt = 0;
1440                 do { /* receive the sent packets */
1441                         pci_dma_sync_single_for_cpu(pdev,
1442                                         rxdr->buffer_info[l].dma,
1443                                         rxdr->buffer_info[l].length,
1444                                         PCI_DMA_FROMDEVICE);
1445
1446                         ret_val = e1000_check_lbtest_frame(
1447                                         rxdr->buffer_info[l].skb,
1448                                         1024);
1449                         if (!ret_val)
1450                                 good_cnt++;
1451                         if (unlikely(++l == rxdr->count)) l = 0;
1452                         /* time + 20 msecs (200 msecs on 2.4) is more than
1453                          * enough time to complete the receives, if it's
1454                          * exceeded, break and error off
1455                          */
1456                 } while (good_cnt < 64 && jiffies < (time + 20));
1457                 if (good_cnt != 64) {
1458                         ret_val = 13; /* ret_val is the same as mis-compare */
1459                         break;
1460                 }
1461                 if (jiffies >= (time + 2)) {
1462                         ret_val = 14; /* error code for time out error */
1463                         break;
1464                 }
1465         } /* end loop count loop */
1466         return ret_val;
1467 }
1468
1469 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1470 {
1471         *data = e1000_setup_desc_rings(adapter);
1472         if (*data)
1473                 goto out;
1474         *data = e1000_setup_loopback_test(adapter);
1475         if (*data)
1476                 goto err_loopback;
1477         *data = e1000_run_loopback_test(adapter);
1478         e1000_loopback_cleanup(adapter);
1479
1480 err_loopback:
1481         e1000_free_desc_rings(adapter);
1482 out:
1483         return *data;
1484 }
1485
1486 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1487 {
1488         struct e1000_hw *hw = &adapter->hw;
1489         *data = 0;
1490         if (hw->media_type == e1000_media_type_internal_serdes) {
1491                 int i = 0;
1492                 hw->serdes_has_link = false;
1493
1494                 /* On some blade server designs, link establishment
1495                  * could take as long as 2-3 minutes */
1496                 do {
1497                         e1000_check_for_link(hw);
1498                         if (hw->serdes_has_link)
1499                                 return *data;
1500                         msleep(20);
1501                 } while (i++ < 3750);
1502
1503                 *data = 1;
1504         } else {
1505                 e1000_check_for_link(hw);
1506                 if (hw->autoneg)  /* if auto_neg is set wait for it */
1507                         msleep(4000);
1508
1509                 if (!(er32(STATUS) & E1000_STATUS_LU)) {
1510                         *data = 1;
1511                 }
1512         }
1513         return *data;
1514 }
1515
1516 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1517 {
1518         switch (sset) {
1519         case ETH_SS_TEST:
1520                 return E1000_TEST_LEN;
1521         case ETH_SS_STATS:
1522                 return E1000_STATS_LEN;
1523         default:
1524                 return -EOPNOTSUPP;
1525         }
1526 }
1527
1528 static void e1000_diag_test(struct net_device *netdev,
1529                             struct ethtool_test *eth_test, u64 *data)
1530 {
1531         struct e1000_adapter *adapter = netdev_priv(netdev);
1532         struct e1000_hw *hw = &adapter->hw;
1533         bool if_running = netif_running(netdev);
1534
1535         set_bit(__E1000_TESTING, &adapter->flags);
1536         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1537                 /* Offline tests */
1538
1539                 /* save speed, duplex, autoneg settings */
1540                 u16 autoneg_advertised = hw->autoneg_advertised;
1541                 u8 forced_speed_duplex = hw->forced_speed_duplex;
1542                 u8 autoneg = hw->autoneg;
1543
1544                 DPRINTK(HW, INFO, "offline testing starting\n");
1545
1546                 /* Link test performed before hardware reset so autoneg doesn't
1547                  * interfere with test result */
1548                 if (e1000_link_test(adapter, &data[4]))
1549                         eth_test->flags |= ETH_TEST_FL_FAILED;
1550
1551                 if (if_running)
1552                         /* indicate we're in test mode */
1553                         dev_close(netdev);
1554                 else
1555                         e1000_reset(adapter);
1556
1557                 if (e1000_reg_test(adapter, &data[0]))
1558                         eth_test->flags |= ETH_TEST_FL_FAILED;
1559
1560                 e1000_reset(adapter);
1561                 if (e1000_eeprom_test(adapter, &data[1]))
1562                         eth_test->flags |= ETH_TEST_FL_FAILED;
1563
1564                 e1000_reset(adapter);
1565                 if (e1000_intr_test(adapter, &data[2]))
1566                         eth_test->flags |= ETH_TEST_FL_FAILED;
1567
1568                 e1000_reset(adapter);
1569                 /* make sure the phy is powered up */
1570                 e1000_power_up_phy(adapter);
1571                 if (e1000_loopback_test(adapter, &data[3]))
1572                         eth_test->flags |= ETH_TEST_FL_FAILED;
1573
1574                 /* restore speed, duplex, autoneg settings */
1575                 hw->autoneg_advertised = autoneg_advertised;
1576                 hw->forced_speed_duplex = forced_speed_duplex;
1577                 hw->autoneg = autoneg;
1578
1579                 e1000_reset(adapter);
1580                 clear_bit(__E1000_TESTING, &adapter->flags);
1581                 if (if_running)
1582                         dev_open(netdev);
1583         } else {
1584                 DPRINTK(HW, INFO, "online testing starting\n");
1585                 /* Online tests */
1586                 if (e1000_link_test(adapter, &data[4]))
1587                         eth_test->flags |= ETH_TEST_FL_FAILED;
1588
1589                 /* Online tests aren't run; pass by default */
1590                 data[0] = 0;
1591                 data[1] = 0;
1592                 data[2] = 0;
1593                 data[3] = 0;
1594
1595                 clear_bit(__E1000_TESTING, &adapter->flags);
1596         }
1597         msleep_interruptible(4 * 1000);
1598 }
1599
1600 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1601                                struct ethtool_wolinfo *wol)
1602 {
1603         struct e1000_hw *hw = &adapter->hw;
1604         int retval = 1; /* fail by default */
1605
1606         switch (hw->device_id) {
1607         case E1000_DEV_ID_82542:
1608         case E1000_DEV_ID_82543GC_FIBER:
1609         case E1000_DEV_ID_82543GC_COPPER:
1610         case E1000_DEV_ID_82544EI_FIBER:
1611         case E1000_DEV_ID_82546EB_QUAD_COPPER:
1612         case E1000_DEV_ID_82545EM_FIBER:
1613         case E1000_DEV_ID_82545EM_COPPER:
1614         case E1000_DEV_ID_82546GB_QUAD_COPPER:
1615         case E1000_DEV_ID_82546GB_PCIE:
1616                 /* these don't support WoL at all */
1617                 wol->supported = 0;
1618                 break;
1619         case E1000_DEV_ID_82546EB_FIBER:
1620         case E1000_DEV_ID_82546GB_FIBER:
1621                 /* Wake events not supported on port B */
1622                 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1623                         wol->supported = 0;
1624                         break;
1625                 }
1626                 /* return success for non excluded adapter ports */
1627                 retval = 0;
1628                 break;
1629         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1630                 /* quad port adapters only support WoL on port A */
1631                 if (!adapter->quad_port_a) {
1632                         wol->supported = 0;
1633                         break;
1634                 }
1635                 /* return success for non excluded adapter ports */
1636                 retval = 0;
1637                 break;
1638         default:
1639                 /* dual port cards only support WoL on port A from now on
1640                  * unless it was enabled in the eeprom for port B
1641                  * so exclude FUNC_1 ports from having WoL enabled */
1642                 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1643                     !adapter->eeprom_wol) {
1644                         wol->supported = 0;
1645                         break;
1646                 }
1647
1648                 retval = 0;
1649         }
1650
1651         return retval;
1652 }
1653
1654 static void e1000_get_wol(struct net_device *netdev,
1655                           struct ethtool_wolinfo *wol)
1656 {
1657         struct e1000_adapter *adapter = netdev_priv(netdev);
1658         struct e1000_hw *hw = &adapter->hw;
1659
1660         wol->supported = WAKE_UCAST | WAKE_MCAST |
1661                          WAKE_BCAST | WAKE_MAGIC;
1662         wol->wolopts = 0;
1663
1664         /* this function will set ->supported = 0 and return 1 if wol is not
1665          * supported by this hardware */
1666         if (e1000_wol_exclusion(adapter, wol) ||
1667             !device_can_wakeup(&adapter->pdev->dev))
1668                 return;
1669
1670         /* apply any specific unsupported masks here */
1671         switch (hw->device_id) {
1672         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1673                 /* KSP3 does not suppport UCAST wake-ups */
1674                 wol->supported &= ~WAKE_UCAST;
1675
1676                 if (adapter->wol & E1000_WUFC_EX)
1677                         DPRINTK(DRV, ERR, "Interface does not support "
1678                         "directed (unicast) frame wake-up packets\n");
1679                 break;
1680         default:
1681                 break;
1682         }
1683
1684         if (adapter->wol & E1000_WUFC_EX)
1685                 wol->wolopts |= WAKE_UCAST;
1686         if (adapter->wol & E1000_WUFC_MC)
1687                 wol->wolopts |= WAKE_MCAST;
1688         if (adapter->wol & E1000_WUFC_BC)
1689                 wol->wolopts |= WAKE_BCAST;
1690         if (adapter->wol & E1000_WUFC_MAG)
1691                 wol->wolopts |= WAKE_MAGIC;
1692
1693         return;
1694 }
1695
1696 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1697 {
1698         struct e1000_adapter *adapter = netdev_priv(netdev);
1699         struct e1000_hw *hw = &adapter->hw;
1700
1701         if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1702                 return -EOPNOTSUPP;
1703
1704         if (e1000_wol_exclusion(adapter, wol) ||
1705             !device_can_wakeup(&adapter->pdev->dev))
1706                 return wol->wolopts ? -EOPNOTSUPP : 0;
1707
1708         switch (hw->device_id) {
1709         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1710                 if (wol->wolopts & WAKE_UCAST) {
1711                         DPRINTK(DRV, ERR, "Interface does not support "
1712                         "directed (unicast) frame wake-up packets\n");
1713                         return -EOPNOTSUPP;
1714                 }
1715                 break;
1716         default:
1717                 break;
1718         }
1719
1720         /* these settings will always override what we currently have */
1721         adapter->wol = 0;
1722
1723         if (wol->wolopts & WAKE_UCAST)
1724                 adapter->wol |= E1000_WUFC_EX;
1725         if (wol->wolopts & WAKE_MCAST)
1726                 adapter->wol |= E1000_WUFC_MC;
1727         if (wol->wolopts & WAKE_BCAST)
1728                 adapter->wol |= E1000_WUFC_BC;
1729         if (wol->wolopts & WAKE_MAGIC)
1730                 adapter->wol |= E1000_WUFC_MAG;
1731
1732         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1733
1734         return 0;
1735 }
1736
1737 /* toggle LED 4 times per second = 2 "blinks" per second */
1738 #define E1000_ID_INTERVAL       (HZ/4)
1739
1740 /* bit defines for adapter->led_status */
1741 #define E1000_LED_ON            0
1742
1743 static void e1000_led_blink_callback(unsigned long data)
1744 {
1745         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1746         struct e1000_hw *hw = &adapter->hw;
1747
1748         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1749                 e1000_led_off(hw);
1750         else
1751                 e1000_led_on(hw);
1752
1753         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1754 }
1755
1756 static int e1000_phys_id(struct net_device *netdev, u32 data)
1757 {
1758         struct e1000_adapter *adapter = netdev_priv(netdev);
1759         struct e1000_hw *hw = &adapter->hw;
1760
1761         if (!data)
1762                 data = INT_MAX;
1763
1764         if (!adapter->blink_timer.function) {
1765                 init_timer(&adapter->blink_timer);
1766                 adapter->blink_timer.function = e1000_led_blink_callback;
1767                 adapter->blink_timer.data = (unsigned long)adapter;
1768         }
1769         e1000_setup_led(hw);
1770         mod_timer(&adapter->blink_timer, jiffies);
1771         msleep_interruptible(data * 1000);
1772         del_timer_sync(&adapter->blink_timer);
1773
1774         e1000_led_off(hw);
1775         clear_bit(E1000_LED_ON, &adapter->led_status);
1776         e1000_cleanup_led(hw);
1777
1778         return 0;
1779 }
1780
1781 static int e1000_get_coalesce(struct net_device *netdev,
1782                               struct ethtool_coalesce *ec)
1783 {
1784         struct e1000_adapter *adapter = netdev_priv(netdev);
1785
1786         if (adapter->hw.mac_type < e1000_82545)
1787                 return -EOPNOTSUPP;
1788
1789         if (adapter->itr_setting <= 3)
1790                 ec->rx_coalesce_usecs = adapter->itr_setting;
1791         else
1792                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1793
1794         return 0;
1795 }
1796
1797 static int e1000_set_coalesce(struct net_device *netdev,
1798                               struct ethtool_coalesce *ec)
1799 {
1800         struct e1000_adapter *adapter = netdev_priv(netdev);
1801         struct e1000_hw *hw = &adapter->hw;
1802
1803         if (hw->mac_type < e1000_82545)
1804                 return -EOPNOTSUPP;
1805
1806         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1807             ((ec->rx_coalesce_usecs > 3) &&
1808              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1809             (ec->rx_coalesce_usecs == 2))
1810                 return -EINVAL;
1811
1812         if (ec->rx_coalesce_usecs <= 3) {
1813                 adapter->itr = 20000;
1814                 adapter->itr_setting = ec->rx_coalesce_usecs;
1815         } else {
1816                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1817                 adapter->itr_setting = adapter->itr & ~3;
1818         }
1819
1820         if (adapter->itr_setting != 0)
1821                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1822         else
1823                 ew32(ITR, 0);
1824
1825         return 0;
1826 }
1827
1828 static int e1000_nway_reset(struct net_device *netdev)
1829 {
1830         struct e1000_adapter *adapter = netdev_priv(netdev);
1831         if (netif_running(netdev))
1832                 e1000_reinit_locked(adapter);
1833         return 0;
1834 }
1835
1836 static void e1000_get_ethtool_stats(struct net_device *netdev,
1837                                     struct ethtool_stats *stats, u64 *data)
1838 {
1839         struct e1000_adapter *adapter = netdev_priv(netdev);
1840         int i;
1841         char *p = NULL;
1842
1843         e1000_update_stats(adapter);
1844         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1845                 switch (e1000_gstrings_stats[i].type) {
1846                 case NETDEV_STATS:
1847                         p = (char *) netdev +
1848                                         e1000_gstrings_stats[i].stat_offset;
1849                         break;
1850                 case E1000_STATS:
1851                         p = (char *) adapter +
1852                                         e1000_gstrings_stats[i].stat_offset;
1853                         break;
1854                 }
1855
1856                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1857                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1858         }
1859 /*      BUG_ON(i != E1000_STATS_LEN); */
1860 }
1861
1862 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1863                               u8 *data)
1864 {
1865         u8 *p = data;
1866         int i;
1867
1868         switch (stringset) {
1869         case ETH_SS_TEST:
1870                 memcpy(data, *e1000_gstrings_test,
1871                         sizeof(e1000_gstrings_test));
1872                 break;
1873         case ETH_SS_STATS:
1874                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1875                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1876                                ETH_GSTRING_LEN);
1877                         p += ETH_GSTRING_LEN;
1878                 }
1879 /*              BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1880                 break;
1881         }
1882 }
1883
1884 static const struct ethtool_ops e1000_ethtool_ops = {
1885         .get_settings           = e1000_get_settings,
1886         .set_settings           = e1000_set_settings,
1887         .get_drvinfo            = e1000_get_drvinfo,
1888         .get_regs_len           = e1000_get_regs_len,
1889         .get_regs               = e1000_get_regs,
1890         .get_wol                = e1000_get_wol,
1891         .set_wol                = e1000_set_wol,
1892         .get_msglevel           = e1000_get_msglevel,
1893         .set_msglevel           = e1000_set_msglevel,
1894         .nway_reset             = e1000_nway_reset,
1895         .get_link               = ethtool_op_get_link,
1896         .get_eeprom_len         = e1000_get_eeprom_len,
1897         .get_eeprom             = e1000_get_eeprom,
1898         .set_eeprom             = e1000_set_eeprom,
1899         .get_ringparam          = e1000_get_ringparam,
1900         .set_ringparam          = e1000_set_ringparam,
1901         .get_pauseparam         = e1000_get_pauseparam,
1902         .set_pauseparam         = e1000_set_pauseparam,
1903         .get_rx_csum            = e1000_get_rx_csum,
1904         .set_rx_csum            = e1000_set_rx_csum,
1905         .get_tx_csum            = e1000_get_tx_csum,
1906         .set_tx_csum            = e1000_set_tx_csum,
1907         .set_sg                 = ethtool_op_set_sg,
1908         .set_tso                = e1000_set_tso,
1909         .self_test              = e1000_diag_test,
1910         .get_strings            = e1000_get_strings,
1911         .phys_id                = e1000_phys_id,
1912         .get_ethtool_stats      = e1000_get_ethtool_stats,
1913         .get_sset_count         = e1000_get_sset_count,
1914         .get_coalesce           = e1000_get_coalesce,
1915         .set_coalesce           = e1000_set_coalesce,
1916 };
1917
1918 void e1000_set_ethtool_ops(struct net_device *netdev)
1919 {
1920         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1921 }