]> Pileus Git - ~andy/linux/blob - drivers/mtd/nand/nandsim.c
Merge branch 'reiserfs/kill-bkl' of git://git.kernel.org/pub/scm/linux/kernel/git...
[~andy/linux] / drivers / mtd / nand / nandsim.c
1 /*
2  * NAND flash simulator.
3  *
4  * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5  *
6  * Copyright (C) 2004 Nokia Corporation
7  *
8  * Note: NS means "NAND Simulator".
9  * Note: Input means input TO flash chip, output means output FROM chip.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2, or (at your option) any later
14  * version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19  * Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24  */
25
26 #include <linux/init.h>
27 #include <linux/types.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/vmalloc.h>
31 #include <asm/div64.h>
32 #include <linux/slab.h>
33 #include <linux/errno.h>
34 #include <linux/string.h>
35 #include <linux/mtd/mtd.h>
36 #include <linux/mtd/nand.h>
37 #include <linux/mtd/partitions.h>
38 #include <linux/delay.h>
39 #include <linux/list.h>
40 #include <linux/random.h>
41 #include <linux/sched.h>
42 #include <linux/fs.h>
43 #include <linux/pagemap.h>
44
45 /* Default simulator parameters values */
46 #if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
47     !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
48     !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
49     !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
50 #define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
51 #define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
52 #define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
53 #define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
54 #endif
55
56 #ifndef CONFIG_NANDSIM_ACCESS_DELAY
57 #define CONFIG_NANDSIM_ACCESS_DELAY 25
58 #endif
59 #ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
60 #define CONFIG_NANDSIM_PROGRAMM_DELAY 200
61 #endif
62 #ifndef CONFIG_NANDSIM_ERASE_DELAY
63 #define CONFIG_NANDSIM_ERASE_DELAY 2
64 #endif
65 #ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
66 #define CONFIG_NANDSIM_OUTPUT_CYCLE 40
67 #endif
68 #ifndef CONFIG_NANDSIM_INPUT_CYCLE
69 #define CONFIG_NANDSIM_INPUT_CYCLE  50
70 #endif
71 #ifndef CONFIG_NANDSIM_BUS_WIDTH
72 #define CONFIG_NANDSIM_BUS_WIDTH  8
73 #endif
74 #ifndef CONFIG_NANDSIM_DO_DELAYS
75 #define CONFIG_NANDSIM_DO_DELAYS  0
76 #endif
77 #ifndef CONFIG_NANDSIM_LOG
78 #define CONFIG_NANDSIM_LOG        0
79 #endif
80 #ifndef CONFIG_NANDSIM_DBG
81 #define CONFIG_NANDSIM_DBG        0
82 #endif
83
84 static uint first_id_byte  = CONFIG_NANDSIM_FIRST_ID_BYTE;
85 static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
86 static uint third_id_byte  = CONFIG_NANDSIM_THIRD_ID_BYTE;
87 static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
88 static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
89 static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
90 static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
91 static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
92 static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
93 static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
94 static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
95 static uint log            = CONFIG_NANDSIM_LOG;
96 static uint dbg            = CONFIG_NANDSIM_DBG;
97 static unsigned long parts[MAX_MTD_DEVICES];
98 static unsigned int parts_num;
99 static char *badblocks = NULL;
100 static char *weakblocks = NULL;
101 static char *weakpages = NULL;
102 static unsigned int bitflips = 0;
103 static char *gravepages = NULL;
104 static unsigned int rptwear = 0;
105 static unsigned int overridesize = 0;
106 static char *cache_file = NULL;
107
108 module_param(first_id_byte,  uint, 0400);
109 module_param(second_id_byte, uint, 0400);
110 module_param(third_id_byte,  uint, 0400);
111 module_param(fourth_id_byte, uint, 0400);
112 module_param(access_delay,   uint, 0400);
113 module_param(programm_delay, uint, 0400);
114 module_param(erase_delay,    uint, 0400);
115 module_param(output_cycle,   uint, 0400);
116 module_param(input_cycle,    uint, 0400);
117 module_param(bus_width,      uint, 0400);
118 module_param(do_delays,      uint, 0400);
119 module_param(log,            uint, 0400);
120 module_param(dbg,            uint, 0400);
121 module_param_array(parts, ulong, &parts_num, 0400);
122 module_param(badblocks,      charp, 0400);
123 module_param(weakblocks,     charp, 0400);
124 module_param(weakpages,      charp, 0400);
125 module_param(bitflips,       uint, 0400);
126 module_param(gravepages,     charp, 0400);
127 module_param(rptwear,        uint, 0400);
128 module_param(overridesize,   uint, 0400);
129 module_param(cache_file,     charp, 0400);
130
131 MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
132 MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
133 MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command");
134 MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
135 MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
136 MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
137 MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
138 MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanodeconds)");
139 MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanodeconds)");
140 MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
141 MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
142 MODULE_PARM_DESC(log,            "Perform logging if not zero");
143 MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
144 MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
145 /* Page and erase block positions for the following parameters are independent of any partitions */
146 MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
147 MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
148                                  " separated by commas e.g. 113:2 means eb 113"
149                                  " can be erased only twice before failing");
150 MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
151                                  " separated by commas e.g. 1401:2 means page 1401"
152                                  " can be written only twice before failing");
153 MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
154 MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
155                                  " separated by commas e.g. 1401:2 means page 1401"
156                                  " can be read only twice before failing");
157 MODULE_PARM_DESC(rptwear,        "Number of erases inbetween reporting wear, if not zero");
158 MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
159                                  "The size is specified in erase blocks and as the exponent of a power of two"
160                                  " e.g. 5 means a size of 32 erase blocks");
161 MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
162
163 /* The largest possible page size */
164 #define NS_LARGEST_PAGE_SIZE    4096
165
166 /* The prefix for simulator output */
167 #define NS_OUTPUT_PREFIX "[nandsim]"
168
169 /* Simulator's output macros (logging, debugging, warning, error) */
170 #define NS_LOG(args...) \
171         do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
172 #define NS_DBG(args...) \
173         do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
174 #define NS_WARN(args...) \
175         do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
176 #define NS_ERR(args...) \
177         do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
178 #define NS_INFO(args...) \
179         do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
180
181 /* Busy-wait delay macros (microseconds, milliseconds) */
182 #define NS_UDELAY(us) \
183         do { if (do_delays) udelay(us); } while(0)
184 #define NS_MDELAY(us) \
185         do { if (do_delays) mdelay(us); } while(0)
186
187 /* Is the nandsim structure initialized ? */
188 #define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
189
190 /* Good operation completion status */
191 #define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
192
193 /* Operation failed completion status */
194 #define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
195
196 /* Calculate the page offset in flash RAM image by (row, column) address */
197 #define NS_RAW_OFFSET(ns) \
198         (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
199
200 /* Calculate the OOB offset in flash RAM image by (row, column) address */
201 #define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
202
203 /* After a command is input, the simulator goes to one of the following states */
204 #define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
205 #define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
206 #define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
207 #define STATE_CMD_PAGEPROG     0x00000004 /* start page programm */
208 #define STATE_CMD_READOOB      0x00000005 /* read OOB area */
209 #define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
210 #define STATE_CMD_STATUS       0x00000007 /* read status */
211 #define STATE_CMD_STATUS_M     0x00000008 /* read multi-plane status (isn't implemented) */
212 #define STATE_CMD_SEQIN        0x00000009 /* sequential data imput */
213 #define STATE_CMD_READID       0x0000000A /* read ID */
214 #define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
215 #define STATE_CMD_RESET        0x0000000C /* reset */
216 #define STATE_CMD_RNDOUT       0x0000000D /* random output command */
217 #define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
218 #define STATE_CMD_MASK         0x0000000F /* command states mask */
219
220 /* After an address is input, the simulator goes to one of these states */
221 #define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
222 #define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
223 #define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
224 #define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
225 #define STATE_ADDR_MASK        0x00000070 /* address states mask */
226
227 /* Durind data input/output the simulator is in these states */
228 #define STATE_DATAIN           0x00000100 /* waiting for data input */
229 #define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
230
231 #define STATE_DATAOUT          0x00001000 /* waiting for page data output */
232 #define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
233 #define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
234 #define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
235 #define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
236
237 /* Previous operation is done, ready to accept new requests */
238 #define STATE_READY            0x00000000
239
240 /* This state is used to mark that the next state isn't known yet */
241 #define STATE_UNKNOWN          0x10000000
242
243 /* Simulator's actions bit masks */
244 #define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
245 #define ACTION_PRGPAGE   0x00200000 /* programm the internal buffer to flash */
246 #define ACTION_SECERASE  0x00300000 /* erase sector */
247 #define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
248 #define ACTION_HALFOFF   0x00500000 /* add to address half of page */
249 #define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
250 #define ACTION_MASK      0x00700000 /* action mask */
251
252 #define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
253 #define NS_OPER_STATES   6  /* Maximum number of states in operation */
254
255 #define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
256 #define OPT_PAGE256      0x00000001 /* 256-byte  page chips */
257 #define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
258 #define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
259 #define OPT_SMARTMEDIA   0x00000010 /* SmartMedia technology chips */
260 #define OPT_AUTOINCR     0x00000020 /* page number auto inctimentation is possible */
261 #define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
262 #define OPT_PAGE4096     0x00000080 /* 4096-byte page chips */
263 #define OPT_LARGEPAGE    (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
264 #define OPT_SMALLPAGE    (OPT_PAGE256  | OPT_PAGE512)  /* 256 and 512-byte page chips */
265
266 /* Remove action bits ftom state */
267 #define NS_STATE(x) ((x) & ~ACTION_MASK)
268
269 /*
270  * Maximum previous states which need to be saved. Currently saving is
271  * only needed for page programm operation with preceeded read command
272  * (which is only valid for 512-byte pages).
273  */
274 #define NS_MAX_PREVSTATES 1
275
276 /* Maximum page cache pages needed to read or write a NAND page to the cache_file */
277 #define NS_MAX_HELD_PAGES 16
278
279 /*
280  * A union to represent flash memory contents and flash buffer.
281  */
282 union ns_mem {
283         u_char *byte;    /* for byte access */
284         uint16_t *word;  /* for 16-bit word access */
285 };
286
287 /*
288  * The structure which describes all the internal simulator data.
289  */
290 struct nandsim {
291         struct mtd_partition partitions[MAX_MTD_DEVICES];
292         unsigned int nbparts;
293
294         uint busw;              /* flash chip bus width (8 or 16) */
295         u_char ids[4];          /* chip's ID bytes */
296         uint32_t options;       /* chip's characteristic bits */
297         uint32_t state;         /* current chip state */
298         uint32_t nxstate;       /* next expected state */
299
300         uint32_t *op;           /* current operation, NULL operations isn't known yet  */
301         uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
302         uint16_t npstates;      /* number of previous states saved */
303         uint16_t stateidx;      /* current state index */
304
305         /* The simulated NAND flash pages array */
306         union ns_mem *pages;
307
308         /* Slab allocator for nand pages */
309         struct kmem_cache *nand_pages_slab;
310
311         /* Internal buffer of page + OOB size bytes */
312         union ns_mem buf;
313
314         /* NAND flash "geometry" */
315         struct nandsin_geometry {
316                 uint64_t totsz;     /* total flash size, bytes */
317                 uint32_t secsz;     /* flash sector (erase block) size, bytes */
318                 uint pgsz;          /* NAND flash page size, bytes */
319                 uint oobsz;         /* page OOB area size, bytes */
320                 uint64_t totszoob;  /* total flash size including OOB, bytes */
321                 uint pgszoob;       /* page size including OOB , bytes*/
322                 uint secszoob;      /* sector size including OOB, bytes */
323                 uint pgnum;         /* total number of pages */
324                 uint pgsec;         /* number of pages per sector */
325                 uint secshift;      /* bits number in sector size */
326                 uint pgshift;       /* bits number in page size */
327                 uint oobshift;      /* bits number in OOB size */
328                 uint pgaddrbytes;   /* bytes per page address */
329                 uint secaddrbytes;  /* bytes per sector address */
330                 uint idbytes;       /* the number ID bytes that this chip outputs */
331         } geom;
332
333         /* NAND flash internal registers */
334         struct nandsim_regs {
335                 unsigned command; /* the command register */
336                 u_char   status;  /* the status register */
337                 uint     row;     /* the page number */
338                 uint     column;  /* the offset within page */
339                 uint     count;   /* internal counter */
340                 uint     num;     /* number of bytes which must be processed */
341                 uint     off;     /* fixed page offset */
342         } regs;
343
344         /* NAND flash lines state */
345         struct ns_lines_status {
346                 int ce;  /* chip Enable */
347                 int cle; /* command Latch Enable */
348                 int ale; /* address Latch Enable */
349                 int wp;  /* write Protect */
350         } lines;
351
352         /* Fields needed when using a cache file */
353         struct file *cfile; /* Open file */
354         unsigned char *pages_written; /* Which pages have been written */
355         void *file_buf;
356         struct page *held_pages[NS_MAX_HELD_PAGES];
357         int held_cnt;
358 };
359
360 /*
361  * Operations array. To perform any operation the simulator must pass
362  * through the correspondent states chain.
363  */
364 static struct nandsim_operations {
365         uint32_t reqopts;  /* options which are required to perform the operation */
366         uint32_t states[NS_OPER_STATES]; /* operation's states */
367 } ops[NS_OPER_NUM] = {
368         /* Read page + OOB from the beginning */
369         {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
370                         STATE_DATAOUT, STATE_READY}},
371         /* Read page + OOB from the second half */
372         {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
373                         STATE_DATAOUT, STATE_READY}},
374         /* Read OOB */
375         {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
376                         STATE_DATAOUT, STATE_READY}},
377         /* Programm page starting from the beginning */
378         {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
379                         STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
380         /* Programm page starting from the beginning */
381         {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
382                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
383         /* Programm page starting from the second half */
384         {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
385                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
386         /* Programm OOB */
387         {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
388                               STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
389         /* Erase sector */
390         {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
391         /* Read status */
392         {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
393         /* Read multi-plane status */
394         {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
395         /* Read ID */
396         {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
397         /* Large page devices read page */
398         {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
399                                STATE_DATAOUT, STATE_READY}},
400         /* Large page devices random page read */
401         {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
402                                STATE_DATAOUT, STATE_READY}},
403 };
404
405 struct weak_block {
406         struct list_head list;
407         unsigned int erase_block_no;
408         unsigned int max_erases;
409         unsigned int erases_done;
410 };
411
412 static LIST_HEAD(weak_blocks);
413
414 struct weak_page {
415         struct list_head list;
416         unsigned int page_no;
417         unsigned int max_writes;
418         unsigned int writes_done;
419 };
420
421 static LIST_HEAD(weak_pages);
422
423 struct grave_page {
424         struct list_head list;
425         unsigned int page_no;
426         unsigned int max_reads;
427         unsigned int reads_done;
428 };
429
430 static LIST_HEAD(grave_pages);
431
432 static unsigned long *erase_block_wear = NULL;
433 static unsigned int wear_eb_count = 0;
434 static unsigned long total_wear = 0;
435 static unsigned int rptwear_cnt = 0;
436
437 /* MTD structure for NAND controller */
438 static struct mtd_info *nsmtd;
439
440 static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
441
442 /*
443  * Allocate array of page pointers, create slab allocation for an array
444  * and initialize the array by NULL pointers.
445  *
446  * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
447  */
448 static int alloc_device(struct nandsim *ns)
449 {
450         struct file *cfile;
451         int i, err;
452
453         if (cache_file) {
454                 cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
455                 if (IS_ERR(cfile))
456                         return PTR_ERR(cfile);
457                 if (!cfile->f_op || (!cfile->f_op->read && !cfile->f_op->aio_read)) {
458                         NS_ERR("alloc_device: cache file not readable\n");
459                         err = -EINVAL;
460                         goto err_close;
461                 }
462                 if (!cfile->f_op->write && !cfile->f_op->aio_write) {
463                         NS_ERR("alloc_device: cache file not writeable\n");
464                         err = -EINVAL;
465                         goto err_close;
466                 }
467                 ns->pages_written = vmalloc(ns->geom.pgnum);
468                 if (!ns->pages_written) {
469                         NS_ERR("alloc_device: unable to allocate pages written array\n");
470                         err = -ENOMEM;
471                         goto err_close;
472                 }
473                 ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
474                 if (!ns->file_buf) {
475                         NS_ERR("alloc_device: unable to allocate file buf\n");
476                         err = -ENOMEM;
477                         goto err_free;
478                 }
479                 ns->cfile = cfile;
480                 memset(ns->pages_written, 0, ns->geom.pgnum);
481                 return 0;
482         }
483
484         ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
485         if (!ns->pages) {
486                 NS_ERR("alloc_device: unable to allocate page array\n");
487                 return -ENOMEM;
488         }
489         for (i = 0; i < ns->geom.pgnum; i++) {
490                 ns->pages[i].byte = NULL;
491         }
492         ns->nand_pages_slab = kmem_cache_create("nandsim",
493                                                 ns->geom.pgszoob, 0, 0, NULL);
494         if (!ns->nand_pages_slab) {
495                 NS_ERR("cache_create: unable to create kmem_cache\n");
496                 return -ENOMEM;
497         }
498
499         return 0;
500
501 err_free:
502         vfree(ns->pages_written);
503 err_close:
504         filp_close(cfile, NULL);
505         return err;
506 }
507
508 /*
509  * Free any allocated pages, and free the array of page pointers.
510  */
511 static void free_device(struct nandsim *ns)
512 {
513         int i;
514
515         if (ns->cfile) {
516                 kfree(ns->file_buf);
517                 vfree(ns->pages_written);
518                 filp_close(ns->cfile, NULL);
519                 return;
520         }
521
522         if (ns->pages) {
523                 for (i = 0; i < ns->geom.pgnum; i++) {
524                         if (ns->pages[i].byte)
525                                 kmem_cache_free(ns->nand_pages_slab,
526                                                 ns->pages[i].byte);
527                 }
528                 kmem_cache_destroy(ns->nand_pages_slab);
529                 vfree(ns->pages);
530         }
531 }
532
533 static char *get_partition_name(int i)
534 {
535         char buf[64];
536         sprintf(buf, "NAND simulator partition %d", i);
537         return kstrdup(buf, GFP_KERNEL);
538 }
539
540 static uint64_t divide(uint64_t n, uint32_t d)
541 {
542         do_div(n, d);
543         return n;
544 }
545
546 /*
547  * Initialize the nandsim structure.
548  *
549  * RETURNS: 0 if success, -ERRNO if failure.
550  */
551 static int init_nandsim(struct mtd_info *mtd)
552 {
553         struct nand_chip *chip = (struct nand_chip *)mtd->priv;
554         struct nandsim   *ns   = (struct nandsim *)(chip->priv);
555         int i, ret = 0;
556         uint64_t remains;
557         uint64_t next_offset;
558
559         if (NS_IS_INITIALIZED(ns)) {
560                 NS_ERR("init_nandsim: nandsim is already initialized\n");
561                 return -EIO;
562         }
563
564         /* Force mtd to not do delays */
565         chip->chip_delay = 0;
566
567         /* Initialize the NAND flash parameters */
568         ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
569         ns->geom.totsz    = mtd->size;
570         ns->geom.pgsz     = mtd->writesize;
571         ns->geom.oobsz    = mtd->oobsize;
572         ns->geom.secsz    = mtd->erasesize;
573         ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
574         ns->geom.pgnum    = divide(ns->geom.totsz, ns->geom.pgsz);
575         ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
576         ns->geom.secshift = ffs(ns->geom.secsz) - 1;
577         ns->geom.pgshift  = chip->page_shift;
578         ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
579         ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
580         ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
581         ns->options = 0;
582
583         if (ns->geom.pgsz == 256) {
584                 ns->options |= OPT_PAGE256;
585         }
586         else if (ns->geom.pgsz == 512) {
587                 ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
588                 if (ns->busw == 8)
589                         ns->options |= OPT_PAGE512_8BIT;
590         } else if (ns->geom.pgsz == 2048) {
591                 ns->options |= OPT_PAGE2048;
592         } else if (ns->geom.pgsz == 4096) {
593                 ns->options |= OPT_PAGE4096;
594         } else {
595                 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
596                 return -EIO;
597         }
598
599         if (ns->options & OPT_SMALLPAGE) {
600                 if (ns->geom.totsz <= (32 << 20)) {
601                         ns->geom.pgaddrbytes  = 3;
602                         ns->geom.secaddrbytes = 2;
603                 } else {
604                         ns->geom.pgaddrbytes  = 4;
605                         ns->geom.secaddrbytes = 3;
606                 }
607         } else {
608                 if (ns->geom.totsz <= (128 << 20)) {
609                         ns->geom.pgaddrbytes  = 4;
610                         ns->geom.secaddrbytes = 2;
611                 } else {
612                         ns->geom.pgaddrbytes  = 5;
613                         ns->geom.secaddrbytes = 3;
614                 }
615         }
616
617         /* Fill the partition_info structure */
618         if (parts_num > ARRAY_SIZE(ns->partitions)) {
619                 NS_ERR("too many partitions.\n");
620                 ret = -EINVAL;
621                 goto error;
622         }
623         remains = ns->geom.totsz;
624         next_offset = 0;
625         for (i = 0; i < parts_num; ++i) {
626                 uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
627
628                 if (!part_sz || part_sz > remains) {
629                         NS_ERR("bad partition size.\n");
630                         ret = -EINVAL;
631                         goto error;
632                 }
633                 ns->partitions[i].name   = get_partition_name(i);
634                 ns->partitions[i].offset = next_offset;
635                 ns->partitions[i].size   = part_sz;
636                 next_offset += ns->partitions[i].size;
637                 remains -= ns->partitions[i].size;
638         }
639         ns->nbparts = parts_num;
640         if (remains) {
641                 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
642                         NS_ERR("too many partitions.\n");
643                         ret = -EINVAL;
644                         goto error;
645                 }
646                 ns->partitions[i].name   = get_partition_name(i);
647                 ns->partitions[i].offset = next_offset;
648                 ns->partitions[i].size   = remains;
649                 ns->nbparts += 1;
650         }
651
652         /* Detect how many ID bytes the NAND chip outputs */
653         for (i = 0; nand_flash_ids[i].name != NULL; i++) {
654                 if (second_id_byte != nand_flash_ids[i].id)
655                         continue;
656                 if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
657                         ns->options |= OPT_AUTOINCR;
658         }
659
660         if (ns->busw == 16)
661                 NS_WARN("16-bit flashes support wasn't tested\n");
662
663         printk("flash size: %llu MiB\n",
664                         (unsigned long long)ns->geom.totsz >> 20);
665         printk("page size: %u bytes\n",         ns->geom.pgsz);
666         printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
667         printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
668         printk("pages number: %u\n",            ns->geom.pgnum);
669         printk("pages per sector: %u\n",        ns->geom.pgsec);
670         printk("bus width: %u\n",               ns->busw);
671         printk("bits in sector size: %u\n",     ns->geom.secshift);
672         printk("bits in page size: %u\n",       ns->geom.pgshift);
673         printk("bits in OOB size: %u\n",        ns->geom.oobshift);
674         printk("flash size with OOB: %llu KiB\n",
675                         (unsigned long long)ns->geom.totszoob >> 10);
676         printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
677         printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
678         printk("options: %#x\n",                ns->options);
679
680         if ((ret = alloc_device(ns)) != 0)
681                 goto error;
682
683         /* Allocate / initialize the internal buffer */
684         ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
685         if (!ns->buf.byte) {
686                 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
687                         ns->geom.pgszoob);
688                 ret = -ENOMEM;
689                 goto error;
690         }
691         memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
692
693         return 0;
694
695 error:
696         free_device(ns);
697
698         return ret;
699 }
700
701 /*
702  * Free the nandsim structure.
703  */
704 static void free_nandsim(struct nandsim *ns)
705 {
706         kfree(ns->buf.byte);
707         free_device(ns);
708
709         return;
710 }
711
712 static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
713 {
714         char *w;
715         int zero_ok;
716         unsigned int erase_block_no;
717         loff_t offset;
718
719         if (!badblocks)
720                 return 0;
721         w = badblocks;
722         do {
723                 zero_ok = (*w == '0' ? 1 : 0);
724                 erase_block_no = simple_strtoul(w, &w, 0);
725                 if (!zero_ok && !erase_block_no) {
726                         NS_ERR("invalid badblocks.\n");
727                         return -EINVAL;
728                 }
729                 offset = erase_block_no * ns->geom.secsz;
730                 if (mtd->block_markbad(mtd, offset)) {
731                         NS_ERR("invalid badblocks.\n");
732                         return -EINVAL;
733                 }
734                 if (*w == ',')
735                         w += 1;
736         } while (*w);
737         return 0;
738 }
739
740 static int parse_weakblocks(void)
741 {
742         char *w;
743         int zero_ok;
744         unsigned int erase_block_no;
745         unsigned int max_erases;
746         struct weak_block *wb;
747
748         if (!weakblocks)
749                 return 0;
750         w = weakblocks;
751         do {
752                 zero_ok = (*w == '0' ? 1 : 0);
753                 erase_block_no = simple_strtoul(w, &w, 0);
754                 if (!zero_ok && !erase_block_no) {
755                         NS_ERR("invalid weakblocks.\n");
756                         return -EINVAL;
757                 }
758                 max_erases = 3;
759                 if (*w == ':') {
760                         w += 1;
761                         max_erases = simple_strtoul(w, &w, 0);
762                 }
763                 if (*w == ',')
764                         w += 1;
765                 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
766                 if (!wb) {
767                         NS_ERR("unable to allocate memory.\n");
768                         return -ENOMEM;
769                 }
770                 wb->erase_block_no = erase_block_no;
771                 wb->max_erases = max_erases;
772                 list_add(&wb->list, &weak_blocks);
773         } while (*w);
774         return 0;
775 }
776
777 static int erase_error(unsigned int erase_block_no)
778 {
779         struct weak_block *wb;
780
781         list_for_each_entry(wb, &weak_blocks, list)
782                 if (wb->erase_block_no == erase_block_no) {
783                         if (wb->erases_done >= wb->max_erases)
784                                 return 1;
785                         wb->erases_done += 1;
786                         return 0;
787                 }
788         return 0;
789 }
790
791 static int parse_weakpages(void)
792 {
793         char *w;
794         int zero_ok;
795         unsigned int page_no;
796         unsigned int max_writes;
797         struct weak_page *wp;
798
799         if (!weakpages)
800                 return 0;
801         w = weakpages;
802         do {
803                 zero_ok = (*w == '0' ? 1 : 0);
804                 page_no = simple_strtoul(w, &w, 0);
805                 if (!zero_ok && !page_no) {
806                         NS_ERR("invalid weakpagess.\n");
807                         return -EINVAL;
808                 }
809                 max_writes = 3;
810                 if (*w == ':') {
811                         w += 1;
812                         max_writes = simple_strtoul(w, &w, 0);
813                 }
814                 if (*w == ',')
815                         w += 1;
816                 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
817                 if (!wp) {
818                         NS_ERR("unable to allocate memory.\n");
819                         return -ENOMEM;
820                 }
821                 wp->page_no = page_no;
822                 wp->max_writes = max_writes;
823                 list_add(&wp->list, &weak_pages);
824         } while (*w);
825         return 0;
826 }
827
828 static int write_error(unsigned int page_no)
829 {
830         struct weak_page *wp;
831
832         list_for_each_entry(wp, &weak_pages, list)
833                 if (wp->page_no == page_no) {
834                         if (wp->writes_done >= wp->max_writes)
835                                 return 1;
836                         wp->writes_done += 1;
837                         return 0;
838                 }
839         return 0;
840 }
841
842 static int parse_gravepages(void)
843 {
844         char *g;
845         int zero_ok;
846         unsigned int page_no;
847         unsigned int max_reads;
848         struct grave_page *gp;
849
850         if (!gravepages)
851                 return 0;
852         g = gravepages;
853         do {
854                 zero_ok = (*g == '0' ? 1 : 0);
855                 page_no = simple_strtoul(g, &g, 0);
856                 if (!zero_ok && !page_no) {
857                         NS_ERR("invalid gravepagess.\n");
858                         return -EINVAL;
859                 }
860                 max_reads = 3;
861                 if (*g == ':') {
862                         g += 1;
863                         max_reads = simple_strtoul(g, &g, 0);
864                 }
865                 if (*g == ',')
866                         g += 1;
867                 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
868                 if (!gp) {
869                         NS_ERR("unable to allocate memory.\n");
870                         return -ENOMEM;
871                 }
872                 gp->page_no = page_no;
873                 gp->max_reads = max_reads;
874                 list_add(&gp->list, &grave_pages);
875         } while (*g);
876         return 0;
877 }
878
879 static int read_error(unsigned int page_no)
880 {
881         struct grave_page *gp;
882
883         list_for_each_entry(gp, &grave_pages, list)
884                 if (gp->page_no == page_no) {
885                         if (gp->reads_done >= gp->max_reads)
886                                 return 1;
887                         gp->reads_done += 1;
888                         return 0;
889                 }
890         return 0;
891 }
892
893 static void free_lists(void)
894 {
895         struct list_head *pos, *n;
896         list_for_each_safe(pos, n, &weak_blocks) {
897                 list_del(pos);
898                 kfree(list_entry(pos, struct weak_block, list));
899         }
900         list_for_each_safe(pos, n, &weak_pages) {
901                 list_del(pos);
902                 kfree(list_entry(pos, struct weak_page, list));
903         }
904         list_for_each_safe(pos, n, &grave_pages) {
905                 list_del(pos);
906                 kfree(list_entry(pos, struct grave_page, list));
907         }
908         kfree(erase_block_wear);
909 }
910
911 static int setup_wear_reporting(struct mtd_info *mtd)
912 {
913         size_t mem;
914
915         if (!rptwear)
916                 return 0;
917         wear_eb_count = divide(mtd->size, mtd->erasesize);
918         mem = wear_eb_count * sizeof(unsigned long);
919         if (mem / sizeof(unsigned long) != wear_eb_count) {
920                 NS_ERR("Too many erase blocks for wear reporting\n");
921                 return -ENOMEM;
922         }
923         erase_block_wear = kzalloc(mem, GFP_KERNEL);
924         if (!erase_block_wear) {
925                 NS_ERR("Too many erase blocks for wear reporting\n");
926                 return -ENOMEM;
927         }
928         return 0;
929 }
930
931 static void update_wear(unsigned int erase_block_no)
932 {
933         unsigned long wmin = -1, wmax = 0, avg;
934         unsigned long deciles[10], decile_max[10], tot = 0;
935         unsigned int i;
936
937         if (!erase_block_wear)
938                 return;
939         total_wear += 1;
940         if (total_wear == 0)
941                 NS_ERR("Erase counter total overflow\n");
942         erase_block_wear[erase_block_no] += 1;
943         if (erase_block_wear[erase_block_no] == 0)
944                 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
945         rptwear_cnt += 1;
946         if (rptwear_cnt < rptwear)
947                 return;
948         rptwear_cnt = 0;
949         /* Calc wear stats */
950         for (i = 0; i < wear_eb_count; ++i) {
951                 unsigned long wear = erase_block_wear[i];
952                 if (wear < wmin)
953                         wmin = wear;
954                 if (wear > wmax)
955                         wmax = wear;
956                 tot += wear;
957         }
958         for (i = 0; i < 9; ++i) {
959                 deciles[i] = 0;
960                 decile_max[i] = (wmax * (i + 1) + 5) / 10;
961         }
962         deciles[9] = 0;
963         decile_max[9] = wmax;
964         for (i = 0; i < wear_eb_count; ++i) {
965                 int d;
966                 unsigned long wear = erase_block_wear[i];
967                 for (d = 0; d < 10; ++d)
968                         if (wear <= decile_max[d]) {
969                                 deciles[d] += 1;
970                                 break;
971                         }
972         }
973         avg = tot / wear_eb_count;
974         /* Output wear report */
975         NS_INFO("*** Wear Report ***\n");
976         NS_INFO("Total numbers of erases:  %lu\n", tot);
977         NS_INFO("Number of erase blocks:   %u\n", wear_eb_count);
978         NS_INFO("Average number of erases: %lu\n", avg);
979         NS_INFO("Maximum number of erases: %lu\n", wmax);
980         NS_INFO("Minimum number of erases: %lu\n", wmin);
981         for (i = 0; i < 10; ++i) {
982                 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
983                 if (from > decile_max[i])
984                         continue;
985                 NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
986                         from,
987                         decile_max[i],
988                         deciles[i]);
989         }
990         NS_INFO("*** End of Wear Report ***\n");
991 }
992
993 /*
994  * Returns the string representation of 'state' state.
995  */
996 static char *get_state_name(uint32_t state)
997 {
998         switch (NS_STATE(state)) {
999                 case STATE_CMD_READ0:
1000                         return "STATE_CMD_READ0";
1001                 case STATE_CMD_READ1:
1002                         return "STATE_CMD_READ1";
1003                 case STATE_CMD_PAGEPROG:
1004                         return "STATE_CMD_PAGEPROG";
1005                 case STATE_CMD_READOOB:
1006                         return "STATE_CMD_READOOB";
1007                 case STATE_CMD_READSTART:
1008                         return "STATE_CMD_READSTART";
1009                 case STATE_CMD_ERASE1:
1010                         return "STATE_CMD_ERASE1";
1011                 case STATE_CMD_STATUS:
1012                         return "STATE_CMD_STATUS";
1013                 case STATE_CMD_STATUS_M:
1014                         return "STATE_CMD_STATUS_M";
1015                 case STATE_CMD_SEQIN:
1016                         return "STATE_CMD_SEQIN";
1017                 case STATE_CMD_READID:
1018                         return "STATE_CMD_READID";
1019                 case STATE_CMD_ERASE2:
1020                         return "STATE_CMD_ERASE2";
1021                 case STATE_CMD_RESET:
1022                         return "STATE_CMD_RESET";
1023                 case STATE_CMD_RNDOUT:
1024                         return "STATE_CMD_RNDOUT";
1025                 case STATE_CMD_RNDOUTSTART:
1026                         return "STATE_CMD_RNDOUTSTART";
1027                 case STATE_ADDR_PAGE:
1028                         return "STATE_ADDR_PAGE";
1029                 case STATE_ADDR_SEC:
1030                         return "STATE_ADDR_SEC";
1031                 case STATE_ADDR_ZERO:
1032                         return "STATE_ADDR_ZERO";
1033                 case STATE_ADDR_COLUMN:
1034                         return "STATE_ADDR_COLUMN";
1035                 case STATE_DATAIN:
1036                         return "STATE_DATAIN";
1037                 case STATE_DATAOUT:
1038                         return "STATE_DATAOUT";
1039                 case STATE_DATAOUT_ID:
1040                         return "STATE_DATAOUT_ID";
1041                 case STATE_DATAOUT_STATUS:
1042                         return "STATE_DATAOUT_STATUS";
1043                 case STATE_DATAOUT_STATUS_M:
1044                         return "STATE_DATAOUT_STATUS_M";
1045                 case STATE_READY:
1046                         return "STATE_READY";
1047                 case STATE_UNKNOWN:
1048                         return "STATE_UNKNOWN";
1049         }
1050
1051         NS_ERR("get_state_name: unknown state, BUG\n");
1052         return NULL;
1053 }
1054
1055 /*
1056  * Check if command is valid.
1057  *
1058  * RETURNS: 1 if wrong command, 0 if right.
1059  */
1060 static int check_command(int cmd)
1061 {
1062         switch (cmd) {
1063
1064         case NAND_CMD_READ0:
1065         case NAND_CMD_READ1:
1066         case NAND_CMD_READSTART:
1067         case NAND_CMD_PAGEPROG:
1068         case NAND_CMD_READOOB:
1069         case NAND_CMD_ERASE1:
1070         case NAND_CMD_STATUS:
1071         case NAND_CMD_SEQIN:
1072         case NAND_CMD_READID:
1073         case NAND_CMD_ERASE2:
1074         case NAND_CMD_RESET:
1075         case NAND_CMD_RNDOUT:
1076         case NAND_CMD_RNDOUTSTART:
1077                 return 0;
1078
1079         case NAND_CMD_STATUS_MULTI:
1080         default:
1081                 return 1;
1082         }
1083 }
1084
1085 /*
1086  * Returns state after command is accepted by command number.
1087  */
1088 static uint32_t get_state_by_command(unsigned command)
1089 {
1090         switch (command) {
1091                 case NAND_CMD_READ0:
1092                         return STATE_CMD_READ0;
1093                 case NAND_CMD_READ1:
1094                         return STATE_CMD_READ1;
1095                 case NAND_CMD_PAGEPROG:
1096                         return STATE_CMD_PAGEPROG;
1097                 case NAND_CMD_READSTART:
1098                         return STATE_CMD_READSTART;
1099                 case NAND_CMD_READOOB:
1100                         return STATE_CMD_READOOB;
1101                 case NAND_CMD_ERASE1:
1102                         return STATE_CMD_ERASE1;
1103                 case NAND_CMD_STATUS:
1104                         return STATE_CMD_STATUS;
1105                 case NAND_CMD_STATUS_MULTI:
1106                         return STATE_CMD_STATUS_M;
1107                 case NAND_CMD_SEQIN:
1108                         return STATE_CMD_SEQIN;
1109                 case NAND_CMD_READID:
1110                         return STATE_CMD_READID;
1111                 case NAND_CMD_ERASE2:
1112                         return STATE_CMD_ERASE2;
1113                 case NAND_CMD_RESET:
1114                         return STATE_CMD_RESET;
1115                 case NAND_CMD_RNDOUT:
1116                         return STATE_CMD_RNDOUT;
1117                 case NAND_CMD_RNDOUTSTART:
1118                         return STATE_CMD_RNDOUTSTART;
1119         }
1120
1121         NS_ERR("get_state_by_command: unknown command, BUG\n");
1122         return 0;
1123 }
1124
1125 /*
1126  * Move an address byte to the correspondent internal register.
1127  */
1128 static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1129 {
1130         uint byte = (uint)bt;
1131
1132         if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1133                 ns->regs.column |= (byte << 8 * ns->regs.count);
1134         else {
1135                 ns->regs.row |= (byte << 8 * (ns->regs.count -
1136                                                 ns->geom.pgaddrbytes +
1137                                                 ns->geom.secaddrbytes));
1138         }
1139
1140         return;
1141 }
1142
1143 /*
1144  * Switch to STATE_READY state.
1145  */
1146 static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1147 {
1148         NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1149
1150         ns->state       = STATE_READY;
1151         ns->nxstate     = STATE_UNKNOWN;
1152         ns->op          = NULL;
1153         ns->npstates    = 0;
1154         ns->stateidx    = 0;
1155         ns->regs.num    = 0;
1156         ns->regs.count  = 0;
1157         ns->regs.off    = 0;
1158         ns->regs.row    = 0;
1159         ns->regs.column = 0;
1160         ns->regs.status = status;
1161 }
1162
1163 /*
1164  * If the operation isn't known yet, try to find it in the global array
1165  * of supported operations.
1166  *
1167  * Operation can be unknown because of the following.
1168  *   1. New command was accepted and this is the firs call to find the
1169  *      correspondent states chain. In this case ns->npstates = 0;
1170  *   2. There is several operations which begin with the same command(s)
1171  *      (for example program from the second half and read from the
1172  *      second half operations both begin with the READ1 command). In this
1173  *      case the ns->pstates[] array contains previous states.
1174  *
1175  * Thus, the function tries to find operation containing the following
1176  * states (if the 'flag' parameter is 0):
1177  *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1178  *
1179  * If (one and only one) matching operation is found, it is accepted (
1180  * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1181  * zeroed).
1182  *
1183  * If there are several maches, the current state is pushed to the
1184  * ns->pstates.
1185  *
1186  * The operation can be unknown only while commands are input to the chip.
1187  * As soon as address command is accepted, the operation must be known.
1188  * In such situation the function is called with 'flag' != 0, and the
1189  * operation is searched using the following pattern:
1190  *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1191  *
1192  * It is supposed that this pattern must either match one operation on
1193  * none. There can't be ambiguity in that case.
1194  *
1195  * If no matches found, the functions does the following:
1196  *   1. if there are saved states present, try to ignore them and search
1197  *      again only using the last command. If nothing was found, switch
1198  *      to the STATE_READY state.
1199  *   2. if there are no saved states, switch to the STATE_READY state.
1200  *
1201  * RETURNS: -2 - no matched operations found.
1202  *          -1 - several matches.
1203  *           0 - operation is found.
1204  */
1205 static int find_operation(struct nandsim *ns, uint32_t flag)
1206 {
1207         int opsfound = 0;
1208         int i, j, idx = 0;
1209
1210         for (i = 0; i < NS_OPER_NUM; i++) {
1211
1212                 int found = 1;
1213
1214                 if (!(ns->options & ops[i].reqopts))
1215                         /* Ignore operations we can't perform */
1216                         continue;
1217
1218                 if (flag) {
1219                         if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1220                                 continue;
1221                 } else {
1222                         if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1223                                 continue;
1224                 }
1225
1226                 for (j = 0; j < ns->npstates; j++)
1227                         if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1228                                 && (ns->options & ops[idx].reqopts)) {
1229                                 found = 0;
1230                                 break;
1231                         }
1232
1233                 if (found) {
1234                         idx = i;
1235                         opsfound += 1;
1236                 }
1237         }
1238
1239         if (opsfound == 1) {
1240                 /* Exact match */
1241                 ns->op = &ops[idx].states[0];
1242                 if (flag) {
1243                         /*
1244                          * In this case the find_operation function was
1245                          * called when address has just began input. But it isn't
1246                          * yet fully input and the current state must
1247                          * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1248                          * state must be the next state (ns->nxstate).
1249                          */
1250                         ns->stateidx = ns->npstates - 1;
1251                 } else {
1252                         ns->stateidx = ns->npstates;
1253                 }
1254                 ns->npstates = 0;
1255                 ns->state = ns->op[ns->stateidx];
1256                 ns->nxstate = ns->op[ns->stateidx + 1];
1257                 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1258                                 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1259                 return 0;
1260         }
1261
1262         if (opsfound == 0) {
1263                 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1264                 if (ns->npstates != 0) {
1265                         NS_DBG("find_operation: no operation found, try again with state %s\n",
1266                                         get_state_name(ns->state));
1267                         ns->npstates = 0;
1268                         return find_operation(ns, 0);
1269
1270                 }
1271                 NS_DBG("find_operation: no operations found\n");
1272                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1273                 return -2;
1274         }
1275
1276         if (flag) {
1277                 /* This shouldn't happen */
1278                 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1279                 return -2;
1280         }
1281
1282         NS_DBG("find_operation: there is still ambiguity\n");
1283
1284         ns->pstates[ns->npstates++] = ns->state;
1285
1286         return -1;
1287 }
1288
1289 static void put_pages(struct nandsim *ns)
1290 {
1291         int i;
1292
1293         for (i = 0; i < ns->held_cnt; i++)
1294                 page_cache_release(ns->held_pages[i]);
1295 }
1296
1297 /* Get page cache pages in advance to provide NOFS memory allocation */
1298 static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1299 {
1300         pgoff_t index, start_index, end_index;
1301         struct page *page;
1302         struct address_space *mapping = file->f_mapping;
1303
1304         start_index = pos >> PAGE_CACHE_SHIFT;
1305         end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1306         if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1307                 return -EINVAL;
1308         ns->held_cnt = 0;
1309         for (index = start_index; index <= end_index; index++) {
1310                 page = find_get_page(mapping, index);
1311                 if (page == NULL) {
1312                         page = find_or_create_page(mapping, index, GFP_NOFS);
1313                         if (page == NULL) {
1314                                 write_inode_now(mapping->host, 1);
1315                                 page = find_or_create_page(mapping, index, GFP_NOFS);
1316                         }
1317                         if (page == NULL) {
1318                                 put_pages(ns);
1319                                 return -ENOMEM;
1320                         }
1321                         unlock_page(page);
1322                 }
1323                 ns->held_pages[ns->held_cnt++] = page;
1324         }
1325         return 0;
1326 }
1327
1328 static int set_memalloc(void)
1329 {
1330         if (current->flags & PF_MEMALLOC)
1331                 return 0;
1332         current->flags |= PF_MEMALLOC;
1333         return 1;
1334 }
1335
1336 static void clear_memalloc(int memalloc)
1337 {
1338         if (memalloc)
1339                 current->flags &= ~PF_MEMALLOC;
1340 }
1341
1342 static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1343 {
1344         mm_segment_t old_fs;
1345         ssize_t tx;
1346         int err, memalloc;
1347
1348         err = get_pages(ns, file, count, *pos);
1349         if (err)
1350                 return err;
1351         old_fs = get_fs();
1352         set_fs(get_ds());
1353         memalloc = set_memalloc();
1354         tx = vfs_read(file, (char __user *)buf, count, pos);
1355         clear_memalloc(memalloc);
1356         set_fs(old_fs);
1357         put_pages(ns);
1358         return tx;
1359 }
1360
1361 static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1362 {
1363         mm_segment_t old_fs;
1364         ssize_t tx;
1365         int err, memalloc;
1366
1367         err = get_pages(ns, file, count, *pos);
1368         if (err)
1369                 return err;
1370         old_fs = get_fs();
1371         set_fs(get_ds());
1372         memalloc = set_memalloc();
1373         tx = vfs_write(file, (char __user *)buf, count, pos);
1374         clear_memalloc(memalloc);
1375         set_fs(old_fs);
1376         put_pages(ns);
1377         return tx;
1378 }
1379
1380 /*
1381  * Returns a pointer to the current page.
1382  */
1383 static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1384 {
1385         return &(ns->pages[ns->regs.row]);
1386 }
1387
1388 /*
1389  * Retuns a pointer to the current byte, within the current page.
1390  */
1391 static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1392 {
1393         return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1394 }
1395
1396 int do_read_error(struct nandsim *ns, int num)
1397 {
1398         unsigned int page_no = ns->regs.row;
1399
1400         if (read_error(page_no)) {
1401                 int i;
1402                 memset(ns->buf.byte, 0xFF, num);
1403                 for (i = 0; i < num; ++i)
1404                         ns->buf.byte[i] = random32();
1405                 NS_WARN("simulating read error in page %u\n", page_no);
1406                 return 1;
1407         }
1408         return 0;
1409 }
1410
1411 void do_bit_flips(struct nandsim *ns, int num)
1412 {
1413         if (bitflips && random32() < (1 << 22)) {
1414                 int flips = 1;
1415                 if (bitflips > 1)
1416                         flips = (random32() % (int) bitflips) + 1;
1417                 while (flips--) {
1418                         int pos = random32() % (num * 8);
1419                         ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1420                         NS_WARN("read_page: flipping bit %d in page %d "
1421                                 "reading from %d ecc: corrected=%u failed=%u\n",
1422                                 pos, ns->regs.row, ns->regs.column + ns->regs.off,
1423                                 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1424                 }
1425         }
1426 }
1427
1428 /*
1429  * Fill the NAND buffer with data read from the specified page.
1430  */
1431 static void read_page(struct nandsim *ns, int num)
1432 {
1433         union ns_mem *mypage;
1434
1435         if (ns->cfile) {
1436                 if (!ns->pages_written[ns->regs.row]) {
1437                         NS_DBG("read_page: page %d not written\n", ns->regs.row);
1438                         memset(ns->buf.byte, 0xFF, num);
1439                 } else {
1440                         loff_t pos;
1441                         ssize_t tx;
1442
1443                         NS_DBG("read_page: page %d written, reading from %d\n",
1444                                 ns->regs.row, ns->regs.column + ns->regs.off);
1445                         if (do_read_error(ns, num))
1446                                 return;
1447                         pos = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1448                         tx = read_file(ns, ns->cfile, ns->buf.byte, num, &pos);
1449                         if (tx != num) {
1450                                 NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1451                                 return;
1452                         }
1453                         do_bit_flips(ns, num);
1454                 }
1455                 return;
1456         }
1457
1458         mypage = NS_GET_PAGE(ns);
1459         if (mypage->byte == NULL) {
1460                 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1461                 memset(ns->buf.byte, 0xFF, num);
1462         } else {
1463                 NS_DBG("read_page: page %d allocated, reading from %d\n",
1464                         ns->regs.row, ns->regs.column + ns->regs.off);
1465                 if (do_read_error(ns, num))
1466                         return;
1467                 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1468                 do_bit_flips(ns, num);
1469         }
1470 }
1471
1472 /*
1473  * Erase all pages in the specified sector.
1474  */
1475 static void erase_sector(struct nandsim *ns)
1476 {
1477         union ns_mem *mypage;
1478         int i;
1479
1480         if (ns->cfile) {
1481                 for (i = 0; i < ns->geom.pgsec; i++)
1482                         if (ns->pages_written[ns->regs.row + i]) {
1483                                 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1484                                 ns->pages_written[ns->regs.row + i] = 0;
1485                         }
1486                 return;
1487         }
1488
1489         mypage = NS_GET_PAGE(ns);
1490         for (i = 0; i < ns->geom.pgsec; i++) {
1491                 if (mypage->byte != NULL) {
1492                         NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1493                         kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1494                         mypage->byte = NULL;
1495                 }
1496                 mypage++;
1497         }
1498 }
1499
1500 /*
1501  * Program the specified page with the contents from the NAND buffer.
1502  */
1503 static int prog_page(struct nandsim *ns, int num)
1504 {
1505         int i;
1506         union ns_mem *mypage;
1507         u_char *pg_off;
1508
1509         if (ns->cfile) {
1510                 loff_t off, pos;
1511                 ssize_t tx;
1512                 int all;
1513
1514                 NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1515                 pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1516                 off = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1517                 if (!ns->pages_written[ns->regs.row]) {
1518                         all = 1;
1519                         memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1520                 } else {
1521                         all = 0;
1522                         pos = off;
1523                         tx = read_file(ns, ns->cfile, pg_off, num, &pos);
1524                         if (tx != num) {
1525                                 NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1526                                 return -1;
1527                         }
1528                 }
1529                 for (i = 0; i < num; i++)
1530                         pg_off[i] &= ns->buf.byte[i];
1531                 if (all) {
1532                         pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1533                         tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, &pos);
1534                         if (tx != ns->geom.pgszoob) {
1535                                 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1536                                 return -1;
1537                         }
1538                         ns->pages_written[ns->regs.row] = 1;
1539                 } else {
1540                         pos = off;
1541                         tx = write_file(ns, ns->cfile, pg_off, num, &pos);
1542                         if (tx != num) {
1543                                 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1544                                 return -1;
1545                         }
1546                 }
1547                 return 0;
1548         }
1549
1550         mypage = NS_GET_PAGE(ns);
1551         if (mypage->byte == NULL) {
1552                 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1553                 /*
1554                  * We allocate memory with GFP_NOFS because a flash FS may
1555                  * utilize this. If it is holding an FS lock, then gets here,
1556                  * then kernel memory alloc runs writeback which goes to the FS
1557                  * again and deadlocks. This was seen in practice.
1558                  */
1559                 mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1560                 if (mypage->byte == NULL) {
1561                         NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1562                         return -1;
1563                 }
1564                 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1565         }
1566
1567         pg_off = NS_PAGE_BYTE_OFF(ns);
1568         for (i = 0; i < num; i++)
1569                 pg_off[i] &= ns->buf.byte[i];
1570
1571         return 0;
1572 }
1573
1574 /*
1575  * If state has any action bit, perform this action.
1576  *
1577  * RETURNS: 0 if success, -1 if error.
1578  */
1579 static int do_state_action(struct nandsim *ns, uint32_t action)
1580 {
1581         int num;
1582         int busdiv = ns->busw == 8 ? 1 : 2;
1583         unsigned int erase_block_no, page_no;
1584
1585         action &= ACTION_MASK;
1586
1587         /* Check that page address input is correct */
1588         if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1589                 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1590                 return -1;
1591         }
1592
1593         switch (action) {
1594
1595         case ACTION_CPY:
1596                 /*
1597                  * Copy page data to the internal buffer.
1598                  */
1599
1600                 /* Column shouldn't be very large */
1601                 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1602                         NS_ERR("do_state_action: column number is too large\n");
1603                         break;
1604                 }
1605                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1606                 read_page(ns, num);
1607
1608                 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1609                         num, NS_RAW_OFFSET(ns) + ns->regs.off);
1610
1611                 if (ns->regs.off == 0)
1612                         NS_LOG("read page %d\n", ns->regs.row);
1613                 else if (ns->regs.off < ns->geom.pgsz)
1614                         NS_LOG("read page %d (second half)\n", ns->regs.row);
1615                 else
1616                         NS_LOG("read OOB of page %d\n", ns->regs.row);
1617
1618                 NS_UDELAY(access_delay);
1619                 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1620
1621                 break;
1622
1623         case ACTION_SECERASE:
1624                 /*
1625                  * Erase sector.
1626                  */
1627
1628                 if (ns->lines.wp) {
1629                         NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1630                         return -1;
1631                 }
1632
1633                 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1634                         || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1635                         NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1636                         return -1;
1637                 }
1638
1639                 ns->regs.row = (ns->regs.row <<
1640                                 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1641                 ns->regs.column = 0;
1642
1643                 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1644
1645                 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1646                                 ns->regs.row, NS_RAW_OFFSET(ns));
1647                 NS_LOG("erase sector %u\n", erase_block_no);
1648
1649                 erase_sector(ns);
1650
1651                 NS_MDELAY(erase_delay);
1652
1653                 if (erase_block_wear)
1654                         update_wear(erase_block_no);
1655
1656                 if (erase_error(erase_block_no)) {
1657                         NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1658                         return -1;
1659                 }
1660
1661                 break;
1662
1663         case ACTION_PRGPAGE:
1664                 /*
1665                  * Programm page - move internal buffer data to the page.
1666                  */
1667
1668                 if (ns->lines.wp) {
1669                         NS_WARN("do_state_action: device is write-protected, programm\n");
1670                         return -1;
1671                 }
1672
1673                 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1674                 if (num != ns->regs.count) {
1675                         NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1676                                         ns->regs.count, num);
1677                         return -1;
1678                 }
1679
1680                 if (prog_page(ns, num) == -1)
1681                         return -1;
1682
1683                 page_no = ns->regs.row;
1684
1685                 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1686                         num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1687                 NS_LOG("programm page %d\n", ns->regs.row);
1688
1689                 NS_UDELAY(programm_delay);
1690                 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1691
1692                 if (write_error(page_no)) {
1693                         NS_WARN("simulating write failure in page %u\n", page_no);
1694                         return -1;
1695                 }
1696
1697                 break;
1698
1699         case ACTION_ZEROOFF:
1700                 NS_DBG("do_state_action: set internal offset to 0\n");
1701                 ns->regs.off = 0;
1702                 break;
1703
1704         case ACTION_HALFOFF:
1705                 if (!(ns->options & OPT_PAGE512_8BIT)) {
1706                         NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1707                                 "byte page size 8x chips\n");
1708                         return -1;
1709                 }
1710                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1711                 ns->regs.off = ns->geom.pgsz/2;
1712                 break;
1713
1714         case ACTION_OOBOFF:
1715                 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1716                 ns->regs.off = ns->geom.pgsz;
1717                 break;
1718
1719         default:
1720                 NS_DBG("do_state_action: BUG! unknown action\n");
1721         }
1722
1723         return 0;
1724 }
1725
1726 /*
1727  * Switch simulator's state.
1728  */
1729 static void switch_state(struct nandsim *ns)
1730 {
1731         if (ns->op) {
1732                 /*
1733                  * The current operation have already been identified.
1734                  * Just follow the states chain.
1735                  */
1736
1737                 ns->stateidx += 1;
1738                 ns->state = ns->nxstate;
1739                 ns->nxstate = ns->op[ns->stateidx + 1];
1740
1741                 NS_DBG("switch_state: operation is known, switch to the next state, "
1742                         "state: %s, nxstate: %s\n",
1743                         get_state_name(ns->state), get_state_name(ns->nxstate));
1744
1745                 /* See, whether we need to do some action */
1746                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1747                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1748                         return;
1749                 }
1750
1751         } else {
1752                 /*
1753                  * We don't yet know which operation we perform.
1754                  * Try to identify it.
1755                  */
1756
1757                 /*
1758                  *  The only event causing the switch_state function to
1759                  *  be called with yet unknown operation is new command.
1760                  */
1761                 ns->state = get_state_by_command(ns->regs.command);
1762
1763                 NS_DBG("switch_state: operation is unknown, try to find it\n");
1764
1765                 if (find_operation(ns, 0) != 0)
1766                         return;
1767
1768                 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1769                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1770                         return;
1771                 }
1772         }
1773
1774         /* For 16x devices column means the page offset in words */
1775         if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1776                 NS_DBG("switch_state: double the column number for 16x device\n");
1777                 ns->regs.column <<= 1;
1778         }
1779
1780         if (NS_STATE(ns->nxstate) == STATE_READY) {
1781                 /*
1782                  * The current state is the last. Return to STATE_READY
1783                  */
1784
1785                 u_char status = NS_STATUS_OK(ns);
1786
1787                 /* In case of data states, see if all bytes were input/output */
1788                 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1789                         && ns->regs.count != ns->regs.num) {
1790                         NS_WARN("switch_state: not all bytes were processed, %d left\n",
1791                                         ns->regs.num - ns->regs.count);
1792                         status = NS_STATUS_FAILED(ns);
1793                 }
1794
1795                 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1796
1797                 switch_to_ready_state(ns, status);
1798
1799                 return;
1800         } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1801                 /*
1802                  * If the next state is data input/output, switch to it now
1803                  */
1804
1805                 ns->state      = ns->nxstate;
1806                 ns->nxstate    = ns->op[++ns->stateidx + 1];
1807                 ns->regs.num   = ns->regs.count = 0;
1808
1809                 NS_DBG("switch_state: the next state is data I/O, switch, "
1810                         "state: %s, nxstate: %s\n",
1811                         get_state_name(ns->state), get_state_name(ns->nxstate));
1812
1813                 /*
1814                  * Set the internal register to the count of bytes which
1815                  * are expected to be input or output
1816                  */
1817                 switch (NS_STATE(ns->state)) {
1818                         case STATE_DATAIN:
1819                         case STATE_DATAOUT:
1820                                 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1821                                 break;
1822
1823                         case STATE_DATAOUT_ID:
1824                                 ns->regs.num = ns->geom.idbytes;
1825                                 break;
1826
1827                         case STATE_DATAOUT_STATUS:
1828                         case STATE_DATAOUT_STATUS_M:
1829                                 ns->regs.count = ns->regs.num = 0;
1830                                 break;
1831
1832                         default:
1833                                 NS_ERR("switch_state: BUG! unknown data state\n");
1834                 }
1835
1836         } else if (ns->nxstate & STATE_ADDR_MASK) {
1837                 /*
1838                  * If the next state is address input, set the internal
1839                  * register to the number of expected address bytes
1840                  */
1841
1842                 ns->regs.count = 0;
1843
1844                 switch (NS_STATE(ns->nxstate)) {
1845                         case STATE_ADDR_PAGE:
1846                                 ns->regs.num = ns->geom.pgaddrbytes;
1847
1848                                 break;
1849                         case STATE_ADDR_SEC:
1850                                 ns->regs.num = ns->geom.secaddrbytes;
1851                                 break;
1852
1853                         case STATE_ADDR_ZERO:
1854                                 ns->regs.num = 1;
1855                                 break;
1856
1857                         case STATE_ADDR_COLUMN:
1858                                 /* Column address is always 2 bytes */
1859                                 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1860                                 break;
1861
1862                         default:
1863                                 NS_ERR("switch_state: BUG! unknown address state\n");
1864                 }
1865         } else {
1866                 /*
1867                  * Just reset internal counters.
1868                  */
1869
1870                 ns->regs.num = 0;
1871                 ns->regs.count = 0;
1872         }
1873 }
1874
1875 static u_char ns_nand_read_byte(struct mtd_info *mtd)
1876 {
1877         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1878         u_char outb = 0x00;
1879
1880         /* Sanity and correctness checks */
1881         if (!ns->lines.ce) {
1882                 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1883                 return outb;
1884         }
1885         if (ns->lines.ale || ns->lines.cle) {
1886                 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1887                 return outb;
1888         }
1889         if (!(ns->state & STATE_DATAOUT_MASK)) {
1890                 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1891                         "return %#x\n", get_state_name(ns->state), (uint)outb);
1892                 return outb;
1893         }
1894
1895         /* Status register may be read as many times as it is wanted */
1896         if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1897                 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1898                 return ns->regs.status;
1899         }
1900
1901         /* Check if there is any data in the internal buffer which may be read */
1902         if (ns->regs.count == ns->regs.num) {
1903                 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1904                 return outb;
1905         }
1906
1907         switch (NS_STATE(ns->state)) {
1908                 case STATE_DATAOUT:
1909                         if (ns->busw == 8) {
1910                                 outb = ns->buf.byte[ns->regs.count];
1911                                 ns->regs.count += 1;
1912                         } else {
1913                                 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1914                                 ns->regs.count += 2;
1915                         }
1916                         break;
1917                 case STATE_DATAOUT_ID:
1918                         NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1919                         outb = ns->ids[ns->regs.count];
1920                         ns->regs.count += 1;
1921                         break;
1922                 default:
1923                         BUG();
1924         }
1925
1926         if (ns->regs.count == ns->regs.num) {
1927                 NS_DBG("read_byte: all bytes were read\n");
1928
1929                 /*
1930                  * The OPT_AUTOINCR allows to read next conseqitive pages without
1931                  * new read operation cycle.
1932                  */
1933                 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1934                         ns->regs.count = 0;
1935                         if (ns->regs.row + 1 < ns->geom.pgnum)
1936                                 ns->regs.row += 1;
1937                         NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
1938                         do_state_action(ns, ACTION_CPY);
1939                 }
1940                 else if (NS_STATE(ns->nxstate) == STATE_READY)
1941                         switch_state(ns);
1942
1943         }
1944
1945         return outb;
1946 }
1947
1948 static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1949 {
1950         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1951
1952         /* Sanity and correctness checks */
1953         if (!ns->lines.ce) {
1954                 NS_ERR("write_byte: chip is disabled, ignore write\n");
1955                 return;
1956         }
1957         if (ns->lines.ale && ns->lines.cle) {
1958                 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1959                 return;
1960         }
1961
1962         if (ns->lines.cle == 1) {
1963                 /*
1964                  * The byte written is a command.
1965                  */
1966
1967                 if (byte == NAND_CMD_RESET) {
1968                         NS_LOG("reset chip\n");
1969                         switch_to_ready_state(ns, NS_STATUS_OK(ns));
1970                         return;
1971                 }
1972
1973                 /* Check that the command byte is correct */
1974                 if (check_command(byte)) {
1975                         NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1976                         return;
1977                 }
1978
1979                 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1980                         || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1981                         || NS_STATE(ns->state) == STATE_DATAOUT) {
1982                         int row = ns->regs.row;
1983
1984                         switch_state(ns);
1985                         if (byte == NAND_CMD_RNDOUT)
1986                                 ns->regs.row = row;
1987                 }
1988
1989                 /* Check if chip is expecting command */
1990                 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1991                         /* Do not warn if only 2 id bytes are read */
1992                         if (!(ns->regs.command == NAND_CMD_READID &&
1993                             NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
1994                                 /*
1995                                  * We are in situation when something else (not command)
1996                                  * was expected but command was input. In this case ignore
1997                                  * previous command(s)/state(s) and accept the last one.
1998                                  */
1999                                 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
2000                                         "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
2001                         }
2002                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2003                 }
2004
2005                 NS_DBG("command byte corresponding to %s state accepted\n",
2006                         get_state_name(get_state_by_command(byte)));
2007                 ns->regs.command = byte;
2008                 switch_state(ns);
2009
2010         } else if (ns->lines.ale == 1) {
2011                 /*
2012                  * The byte written is an address.
2013                  */
2014
2015                 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2016
2017                         NS_DBG("write_byte: operation isn't known yet, identify it\n");
2018
2019                         if (find_operation(ns, 1) < 0)
2020                                 return;
2021
2022                         if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2023                                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2024                                 return;
2025                         }
2026
2027                         ns->regs.count = 0;
2028                         switch (NS_STATE(ns->nxstate)) {
2029                                 case STATE_ADDR_PAGE:
2030                                         ns->regs.num = ns->geom.pgaddrbytes;
2031                                         break;
2032                                 case STATE_ADDR_SEC:
2033                                         ns->regs.num = ns->geom.secaddrbytes;
2034                                         break;
2035                                 case STATE_ADDR_ZERO:
2036                                         ns->regs.num = 1;
2037                                         break;
2038                                 default:
2039                                         BUG();
2040                         }
2041                 }
2042
2043                 /* Check that chip is expecting address */
2044                 if (!(ns->nxstate & STATE_ADDR_MASK)) {
2045                         NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2046                                 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2047                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2048                         return;
2049                 }
2050
2051                 /* Check if this is expected byte */
2052                 if (ns->regs.count == ns->regs.num) {
2053                         NS_ERR("write_byte: no more address bytes expected\n");
2054                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2055                         return;
2056                 }
2057
2058                 accept_addr_byte(ns, byte);
2059
2060                 ns->regs.count += 1;
2061
2062                 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2063                                 (uint)byte, ns->regs.count, ns->regs.num);
2064
2065                 if (ns->regs.count == ns->regs.num) {
2066                         NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2067                         switch_state(ns);
2068                 }
2069
2070         } else {
2071                 /*
2072                  * The byte written is an input data.
2073                  */
2074
2075                 /* Check that chip is expecting data input */
2076                 if (!(ns->state & STATE_DATAIN_MASK)) {
2077                         NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2078                                 "switch to %s\n", (uint)byte,
2079                                 get_state_name(ns->state), get_state_name(STATE_READY));
2080                         switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2081                         return;
2082                 }
2083
2084                 /* Check if this is expected byte */
2085                 if (ns->regs.count == ns->regs.num) {
2086                         NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2087                                         ns->regs.num);
2088                         return;
2089                 }
2090
2091                 if (ns->busw == 8) {
2092                         ns->buf.byte[ns->regs.count] = byte;
2093                         ns->regs.count += 1;
2094                 } else {
2095                         ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2096                         ns->regs.count += 2;
2097                 }
2098         }
2099
2100         return;
2101 }
2102
2103 static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2104 {
2105         struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2106
2107         ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2108         ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2109         ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2110
2111         if (cmd != NAND_CMD_NONE)
2112                 ns_nand_write_byte(mtd, cmd);
2113 }
2114
2115 static int ns_device_ready(struct mtd_info *mtd)
2116 {
2117         NS_DBG("device_ready\n");
2118         return 1;
2119 }
2120
2121 static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2122 {
2123         struct nand_chip *chip = (struct nand_chip *)mtd->priv;
2124
2125         NS_DBG("read_word\n");
2126
2127         return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2128 }
2129
2130 static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2131 {
2132         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
2133
2134         /* Check that chip is expecting data input */
2135         if (!(ns->state & STATE_DATAIN_MASK)) {
2136                 NS_ERR("write_buf: data input isn't expected, state is %s, "
2137                         "switch to STATE_READY\n", get_state_name(ns->state));
2138                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2139                 return;
2140         }
2141
2142         /* Check if these are expected bytes */
2143         if (ns->regs.count + len > ns->regs.num) {
2144                 NS_ERR("write_buf: too many input bytes\n");
2145                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2146                 return;
2147         }
2148
2149         memcpy(ns->buf.byte + ns->regs.count, buf, len);
2150         ns->regs.count += len;
2151
2152         if (ns->regs.count == ns->regs.num) {
2153                 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2154         }
2155 }
2156
2157 static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2158 {
2159         struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
2160
2161         /* Sanity and correctness checks */
2162         if (!ns->lines.ce) {
2163                 NS_ERR("read_buf: chip is disabled\n");
2164                 return;
2165         }
2166         if (ns->lines.ale || ns->lines.cle) {
2167                 NS_ERR("read_buf: ALE or CLE pin is high\n");
2168                 return;
2169         }
2170         if (!(ns->state & STATE_DATAOUT_MASK)) {
2171                 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2172                         get_state_name(ns->state));
2173                 return;
2174         }
2175
2176         if (NS_STATE(ns->state) != STATE_DATAOUT) {
2177                 int i;
2178
2179                 for (i = 0; i < len; i++)
2180                         buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
2181
2182                 return;
2183         }
2184
2185         /* Check if these are expected bytes */
2186         if (ns->regs.count + len > ns->regs.num) {
2187                 NS_ERR("read_buf: too many bytes to read\n");
2188                 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2189                 return;
2190         }
2191
2192         memcpy(buf, ns->buf.byte + ns->regs.count, len);
2193         ns->regs.count += len;
2194
2195         if (ns->regs.count == ns->regs.num) {
2196                 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
2197                         ns->regs.count = 0;
2198                         if (ns->regs.row + 1 < ns->geom.pgnum)
2199                                 ns->regs.row += 1;
2200                         NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
2201                         do_state_action(ns, ACTION_CPY);
2202                 }
2203                 else if (NS_STATE(ns->nxstate) == STATE_READY)
2204                         switch_state(ns);
2205         }
2206
2207         return;
2208 }
2209
2210 static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
2211 {
2212         ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
2213
2214         if (!memcmp(buf, &ns_verify_buf[0], len)) {
2215                 NS_DBG("verify_buf: the buffer is OK\n");
2216                 return 0;
2217         } else {
2218                 NS_DBG("verify_buf: the buffer is wrong\n");
2219                 return -EFAULT;
2220         }
2221 }
2222
2223 /*
2224  * Module initialization function
2225  */
2226 static int __init ns_init_module(void)
2227 {
2228         struct nand_chip *chip;
2229         struct nandsim *nand;
2230         int retval = -ENOMEM, i;
2231
2232         if (bus_width != 8 && bus_width != 16) {
2233                 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2234                 return -EINVAL;
2235         }
2236
2237         /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2238         nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
2239                                 + sizeof(struct nandsim), GFP_KERNEL);
2240         if (!nsmtd) {
2241                 NS_ERR("unable to allocate core structures.\n");
2242                 return -ENOMEM;
2243         }
2244         chip        = (struct nand_chip *)(nsmtd + 1);
2245         nsmtd->priv = (void *)chip;
2246         nand        = (struct nandsim *)(chip + 1);
2247         chip->priv  = (void *)nand;
2248
2249         /*
2250          * Register simulator's callbacks.
2251          */
2252         chip->cmd_ctrl   = ns_hwcontrol;
2253         chip->read_byte  = ns_nand_read_byte;
2254         chip->dev_ready  = ns_device_ready;
2255         chip->write_buf  = ns_nand_write_buf;
2256         chip->read_buf   = ns_nand_read_buf;
2257         chip->verify_buf = ns_nand_verify_buf;
2258         chip->read_word  = ns_nand_read_word;
2259         chip->ecc.mode   = NAND_ECC_SOFT;
2260         /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2261         /* and 'badblocks' parameters to work */
2262         chip->options   |= NAND_SKIP_BBTSCAN;
2263
2264         /*
2265          * Perform minimum nandsim structure initialization to handle
2266          * the initial ID read command correctly
2267          */
2268         if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
2269                 nand->geom.idbytes = 4;
2270         else
2271                 nand->geom.idbytes = 2;
2272         nand->regs.status = NS_STATUS_OK(nand);
2273         nand->nxstate = STATE_UNKNOWN;
2274         nand->options |= OPT_PAGE256; /* temporary value */
2275         nand->ids[0] = first_id_byte;
2276         nand->ids[1] = second_id_byte;
2277         nand->ids[2] = third_id_byte;
2278         nand->ids[3] = fourth_id_byte;
2279         if (bus_width == 16) {
2280                 nand->busw = 16;
2281                 chip->options |= NAND_BUSWIDTH_16;
2282         }
2283
2284         nsmtd->owner = THIS_MODULE;
2285
2286         if ((retval = parse_weakblocks()) != 0)
2287                 goto error;
2288
2289         if ((retval = parse_weakpages()) != 0)
2290                 goto error;
2291
2292         if ((retval = parse_gravepages()) != 0)
2293                 goto error;
2294
2295         if ((retval = nand_scan(nsmtd, 1)) != 0) {
2296                 NS_ERR("can't register NAND Simulator\n");
2297                 if (retval > 0)
2298                         retval = -ENXIO;
2299                 goto error;
2300         }
2301
2302         if (overridesize) {
2303                 uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2304                 if (new_size >> overridesize != nsmtd->erasesize) {
2305                         NS_ERR("overridesize is too big\n");
2306                         goto err_exit;
2307                 }
2308                 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2309                 nsmtd->size = new_size;
2310                 chip->chipsize = new_size;
2311                 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2312                 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2313         }
2314
2315         if ((retval = setup_wear_reporting(nsmtd)) != 0)
2316                 goto err_exit;
2317
2318         if ((retval = init_nandsim(nsmtd)) != 0)
2319                 goto err_exit;
2320
2321         if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2322                 goto err_exit;
2323
2324         if ((retval = nand_default_bbt(nsmtd)) != 0)
2325                 goto err_exit;
2326
2327         /* Register NAND partitions */
2328         if ((retval = add_mtd_partitions(nsmtd, &nand->partitions[0], nand->nbparts)) != 0)
2329                 goto err_exit;
2330
2331         return 0;
2332
2333 err_exit:
2334         free_nandsim(nand);
2335         nand_release(nsmtd);
2336         for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2337                 kfree(nand->partitions[i].name);
2338 error:
2339         kfree(nsmtd);
2340         free_lists();
2341
2342         return retval;
2343 }
2344
2345 module_init(ns_init_module);
2346
2347 /*
2348  * Module clean-up function
2349  */
2350 static void __exit ns_cleanup_module(void)
2351 {
2352         struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv);
2353         int i;
2354
2355         free_nandsim(ns);    /* Free nandsim private resources */
2356         nand_release(nsmtd); /* Unregister driver */
2357         for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2358                 kfree(ns->partitions[i].name);
2359         kfree(nsmtd);        /* Free other structures */
2360         free_lists();
2361 }
2362
2363 module_exit(ns_cleanup_module);
2364
2365 MODULE_LICENSE ("GPL");
2366 MODULE_AUTHOR ("Artem B. Bityuckiy");
2367 MODULE_DESCRIPTION ("The NAND flash simulator");