]> Pileus Git - ~andy/linux/blob - drivers/mtd/nand/mxc_nand.c
Merge branches 'hidraw', 'magicmouse', 'multitouch', 'roccat', 'suspend-fixes' and...
[~andy/linux] / drivers / mtd / nand / mxc_nand.c
1 /*
2  * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17  * MA 02110-1301, USA.
18  */
19
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/nand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/completion.h>
35 #include <linux/of_device.h>
36 #include <linux/of_mtd.h>
37
38 #include <asm/mach/flash.h>
39 #include <mach/mxc_nand.h>
40 #include <mach/hardware.h>
41
42 #define DRIVER_NAME "mxc_nand"
43
44 #define nfc_is_v21()            (cpu_is_mx25() || cpu_is_mx35())
45 #define nfc_is_v1()             (cpu_is_mx31() || cpu_is_mx27() || cpu_is_mx21())
46 #define nfc_is_v3_2()           (cpu_is_mx51() || cpu_is_mx53())
47 #define nfc_is_v3()             nfc_is_v3_2()
48
49 /* Addresses for NFC registers */
50 #define NFC_V1_V2_BUF_SIZE              (host->regs + 0x00)
51 #define NFC_V1_V2_BUF_ADDR              (host->regs + 0x04)
52 #define NFC_V1_V2_FLASH_ADDR            (host->regs + 0x06)
53 #define NFC_V1_V2_FLASH_CMD             (host->regs + 0x08)
54 #define NFC_V1_V2_CONFIG                (host->regs + 0x0a)
55 #define NFC_V1_V2_ECC_STATUS_RESULT     (host->regs + 0x0c)
56 #define NFC_V1_V2_RSLTMAIN_AREA         (host->regs + 0x0e)
57 #define NFC_V1_V2_RSLTSPARE_AREA        (host->regs + 0x10)
58 #define NFC_V1_V2_WRPROT                (host->regs + 0x12)
59 #define NFC_V1_UNLOCKSTART_BLKADDR      (host->regs + 0x14)
60 #define NFC_V1_UNLOCKEND_BLKADDR        (host->regs + 0x16)
61 #define NFC_V21_UNLOCKSTART_BLKADDR0    (host->regs + 0x20)
62 #define NFC_V21_UNLOCKSTART_BLKADDR1    (host->regs + 0x24)
63 #define NFC_V21_UNLOCKSTART_BLKADDR2    (host->regs + 0x28)
64 #define NFC_V21_UNLOCKSTART_BLKADDR3    (host->regs + 0x2c)
65 #define NFC_V21_UNLOCKEND_BLKADDR0      (host->regs + 0x22)
66 #define NFC_V21_UNLOCKEND_BLKADDR1      (host->regs + 0x26)
67 #define NFC_V21_UNLOCKEND_BLKADDR2      (host->regs + 0x2a)
68 #define NFC_V21_UNLOCKEND_BLKADDR3      (host->regs + 0x2e)
69 #define NFC_V1_V2_NF_WRPRST             (host->regs + 0x18)
70 #define NFC_V1_V2_CONFIG1               (host->regs + 0x1a)
71 #define NFC_V1_V2_CONFIG2               (host->regs + 0x1c)
72
73 #define NFC_V2_CONFIG1_ECC_MODE_4       (1 << 0)
74 #define NFC_V1_V2_CONFIG1_SP_EN         (1 << 2)
75 #define NFC_V1_V2_CONFIG1_ECC_EN        (1 << 3)
76 #define NFC_V1_V2_CONFIG1_INT_MSK       (1 << 4)
77 #define NFC_V1_V2_CONFIG1_BIG           (1 << 5)
78 #define NFC_V1_V2_CONFIG1_RST           (1 << 6)
79 #define NFC_V1_V2_CONFIG1_CE            (1 << 7)
80 #define NFC_V2_CONFIG1_ONE_CYCLE        (1 << 8)
81 #define NFC_V2_CONFIG1_PPB(x)           (((x) & 0x3) << 9)
82 #define NFC_V2_CONFIG1_FP_INT           (1 << 11)
83
84 #define NFC_V1_V2_CONFIG2_INT           (1 << 15)
85
86 /*
87  * Operation modes for the NFC. Valid for v1, v2 and v3
88  * type controllers.
89  */
90 #define NFC_CMD                         (1 << 0)
91 #define NFC_ADDR                        (1 << 1)
92 #define NFC_INPUT                       (1 << 2)
93 #define NFC_OUTPUT                      (1 << 3)
94 #define NFC_ID                          (1 << 4)
95 #define NFC_STATUS                      (1 << 5)
96
97 #define NFC_V3_FLASH_CMD                (host->regs_axi + 0x00)
98 #define NFC_V3_FLASH_ADDR0              (host->regs_axi + 0x04)
99
100 #define NFC_V3_CONFIG1                  (host->regs_axi + 0x34)
101 #define NFC_V3_CONFIG1_SP_EN            (1 << 0)
102 #define NFC_V3_CONFIG1_RBA(x)           (((x) & 0x7 ) << 4)
103
104 #define NFC_V3_ECC_STATUS_RESULT        (host->regs_axi + 0x38)
105
106 #define NFC_V3_LAUNCH                   (host->regs_axi + 0x40)
107
108 #define NFC_V3_WRPROT                   (host->regs_ip + 0x0)
109 #define NFC_V3_WRPROT_LOCK_TIGHT        (1 << 0)
110 #define NFC_V3_WRPROT_LOCK              (1 << 1)
111 #define NFC_V3_WRPROT_UNLOCK            (1 << 2)
112 #define NFC_V3_WRPROT_BLS_UNLOCK        (2 << 6)
113
114 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0   (host->regs_ip + 0x04)
115
116 #define NFC_V3_CONFIG2                  (host->regs_ip + 0x24)
117 #define NFC_V3_CONFIG2_PS_512                   (0 << 0)
118 #define NFC_V3_CONFIG2_PS_2048                  (1 << 0)
119 #define NFC_V3_CONFIG2_PS_4096                  (2 << 0)
120 #define NFC_V3_CONFIG2_ONE_CYCLE                (1 << 2)
121 #define NFC_V3_CONFIG2_ECC_EN                   (1 << 3)
122 #define NFC_V3_CONFIG2_2CMD_PHASES              (1 << 4)
123 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0          (1 << 5)
124 #define NFC_V3_CONFIG2_ECC_MODE_8               (1 << 6)
125 #define NFC_V3_CONFIG2_PPB(x)                   (((x) & 0x3) << 7)
126 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x)       (((x) & 0x3) << 12)
127 #define NFC_V3_CONFIG2_INT_MSK                  (1 << 15)
128 #define NFC_V3_CONFIG2_ST_CMD(x)                (((x) & 0xff) << 24)
129 #define NFC_V3_CONFIG2_SPAS(x)                  (((x) & 0xff) << 16)
130
131 #define NFC_V3_CONFIG3                          (host->regs_ip + 0x28)
132 #define NFC_V3_CONFIG3_ADD_OP(x)                (((x) & 0x3) << 0)
133 #define NFC_V3_CONFIG3_FW8                      (1 << 3)
134 #define NFC_V3_CONFIG3_SBB(x)                   (((x) & 0x7) << 8)
135 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x)        (((x) & 0x7) << 12)
136 #define NFC_V3_CONFIG3_RBB_MODE                 (1 << 15)
137 #define NFC_V3_CONFIG3_NO_SDMA                  (1 << 20)
138
139 #define NFC_V3_IPC                      (host->regs_ip + 0x2C)
140 #define NFC_V3_IPC_CREQ                 (1 << 0)
141 #define NFC_V3_IPC_INT                  (1 << 31)
142
143 #define NFC_V3_DELAY_LINE               (host->regs_ip + 0x34)
144
145 struct mxc_nand_host;
146
147 struct mxc_nand_devtype_data {
148         void (*preset)(struct mtd_info *);
149         void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
150         void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
151         void (*send_page)(struct mtd_info *, unsigned int);
152         void (*send_read_id)(struct mxc_nand_host *);
153         uint16_t (*get_dev_status)(struct mxc_nand_host *);
154         int (*check_int)(struct mxc_nand_host *);
155         void (*irq_control)(struct mxc_nand_host *, int);
156         u32 (*get_ecc_status)(struct mxc_nand_host *);
157         struct nand_ecclayout *ecclayout_512, *ecclayout_2k, *ecclayout_4k;
158         void (*select_chip)(struct mtd_info *mtd, int chip);
159         int (*correct_data)(struct mtd_info *mtd, u_char *dat,
160                         u_char *read_ecc, u_char *calc_ecc);
161
162         /*
163          * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
164          * (CONFIG1:INT_MSK is set). To handle this the driver uses
165          * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
166          */
167         int irqpending_quirk;
168         int needs_ip;
169
170         size_t regs_offset;
171         size_t spare0_offset;
172         size_t axi_offset;
173
174         int spare_len;
175         int eccbytes;
176         int eccsize;
177 };
178
179 struct mxc_nand_host {
180         struct mtd_info         mtd;
181         struct nand_chip        nand;
182         struct device           *dev;
183
184         void __iomem            *spare0;
185         void __iomem            *main_area0;
186
187         void __iomem            *base;
188         void __iomem            *regs;
189         void __iomem            *regs_axi;
190         void __iomem            *regs_ip;
191         int                     status_request;
192         struct clk              *clk;
193         int                     clk_act;
194         int                     irq;
195         int                     eccsize;
196         int                     active_cs;
197
198         struct completion       op_completion;
199
200         uint8_t                 *data_buf;
201         unsigned int            buf_start;
202
203         const struct mxc_nand_devtype_data *devtype_data;
204         struct mxc_nand_platform_data pdata;
205 };
206
207 /* OOB placement block for use with hardware ecc generation */
208 static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
209         .eccbytes = 5,
210         .eccpos = {6, 7, 8, 9, 10},
211         .oobfree = {{0, 5}, {12, 4}, }
212 };
213
214 static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
215         .eccbytes = 20,
216         .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
217                    38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
218         .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
219 };
220
221 /* OOB description for 512 byte pages with 16 byte OOB */
222 static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
223         .eccbytes = 1 * 9,
224         .eccpos = {
225                  7,  8,  9, 10, 11, 12, 13, 14, 15
226         },
227         .oobfree = {
228                 {.offset = 0, .length = 5}
229         }
230 };
231
232 /* OOB description for 2048 byte pages with 64 byte OOB */
233 static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
234         .eccbytes = 4 * 9,
235         .eccpos = {
236                  7,  8,  9, 10, 11, 12, 13, 14, 15,
237                 23, 24, 25, 26, 27, 28, 29, 30, 31,
238                 39, 40, 41, 42, 43, 44, 45, 46, 47,
239                 55, 56, 57, 58, 59, 60, 61, 62, 63
240         },
241         .oobfree = {
242                 {.offset = 2, .length = 4},
243                 {.offset = 16, .length = 7},
244                 {.offset = 32, .length = 7},
245                 {.offset = 48, .length = 7}
246         }
247 };
248
249 /* OOB description for 4096 byte pages with 128 byte OOB */
250 static struct nand_ecclayout nandv2_hw_eccoob_4k = {
251         .eccbytes = 8 * 9,
252         .eccpos = {
253                 7,  8,  9, 10, 11, 12, 13, 14, 15,
254                 23, 24, 25, 26, 27, 28, 29, 30, 31,
255                 39, 40, 41, 42, 43, 44, 45, 46, 47,
256                 55, 56, 57, 58, 59, 60, 61, 62, 63,
257                 71, 72, 73, 74, 75, 76, 77, 78, 79,
258                 87, 88, 89, 90, 91, 92, 93, 94, 95,
259                 103, 104, 105, 106, 107, 108, 109, 110, 111,
260                 119, 120, 121, 122, 123, 124, 125, 126, 127,
261         },
262         .oobfree = {
263                 {.offset = 2, .length = 4},
264                 {.offset = 16, .length = 7},
265                 {.offset = 32, .length = 7},
266                 {.offset = 48, .length = 7},
267                 {.offset = 64, .length = 7},
268                 {.offset = 80, .length = 7},
269                 {.offset = 96, .length = 7},
270                 {.offset = 112, .length = 7},
271         }
272 };
273
274 static const char *part_probes[] = { "RedBoot", "cmdlinepart", "ofpart", NULL };
275
276 static void memcpy32_fromio(void *trg, const void __iomem  *src, size_t size)
277 {
278         int i;
279         u32 *t = trg;
280         const __iomem u32 *s = src;
281
282         for (i = 0; i < (size >> 2); i++)
283                 *t++ = __raw_readl(s++);
284 }
285
286 static void memcpy32_toio(void __iomem *trg, const void *src, int size)
287 {
288         int i;
289         u32 __iomem *t = trg;
290         const u32 *s = src;
291
292         for (i = 0; i < (size >> 2); i++)
293                 __raw_writel(*s++, t++);
294 }
295
296 static int check_int_v3(struct mxc_nand_host *host)
297 {
298         uint32_t tmp;
299
300         tmp = readl(NFC_V3_IPC);
301         if (!(tmp & NFC_V3_IPC_INT))
302                 return 0;
303
304         tmp &= ~NFC_V3_IPC_INT;
305         writel(tmp, NFC_V3_IPC);
306
307         return 1;
308 }
309
310 static int check_int_v1_v2(struct mxc_nand_host *host)
311 {
312         uint32_t tmp;
313
314         tmp = readw(NFC_V1_V2_CONFIG2);
315         if (!(tmp & NFC_V1_V2_CONFIG2_INT))
316                 return 0;
317
318         if (!host->devtype_data->irqpending_quirk)
319                 writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
320
321         return 1;
322 }
323
324 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
325 {
326         uint16_t tmp;
327
328         tmp = readw(NFC_V1_V2_CONFIG1);
329
330         if (activate)
331                 tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
332         else
333                 tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
334
335         writew(tmp, NFC_V1_V2_CONFIG1);
336 }
337
338 static void irq_control_v3(struct mxc_nand_host *host, int activate)
339 {
340         uint32_t tmp;
341
342         tmp = readl(NFC_V3_CONFIG2);
343
344         if (activate)
345                 tmp &= ~NFC_V3_CONFIG2_INT_MSK;
346         else
347                 tmp |= NFC_V3_CONFIG2_INT_MSK;
348
349         writel(tmp, NFC_V3_CONFIG2);
350 }
351
352 static void irq_control(struct mxc_nand_host *host, int activate)
353 {
354         if (host->devtype_data->irqpending_quirk) {
355                 if (activate)
356                         enable_irq(host->irq);
357                 else
358                         disable_irq_nosync(host->irq);
359         } else {
360                 host->devtype_data->irq_control(host, activate);
361         }
362 }
363
364 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
365 {
366         return readw(NFC_V1_V2_ECC_STATUS_RESULT);
367 }
368
369 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
370 {
371         return readl(NFC_V1_V2_ECC_STATUS_RESULT);
372 }
373
374 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
375 {
376         return readl(NFC_V3_ECC_STATUS_RESULT);
377 }
378
379 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
380 {
381         struct mxc_nand_host *host = dev_id;
382
383         if (!host->devtype_data->check_int(host))
384                 return IRQ_NONE;
385
386         irq_control(host, 0);
387
388         complete(&host->op_completion);
389
390         return IRQ_HANDLED;
391 }
392
393 /* This function polls the NANDFC to wait for the basic operation to
394  * complete by checking the INT bit of config2 register.
395  */
396 static void wait_op_done(struct mxc_nand_host *host, int useirq)
397 {
398         int max_retries = 8000;
399
400         if (useirq) {
401                 if (!host->devtype_data->check_int(host)) {
402                         INIT_COMPLETION(host->op_completion);
403                         irq_control(host, 1);
404                         wait_for_completion(&host->op_completion);
405                 }
406         } else {
407                 while (max_retries-- > 0) {
408                         if (host->devtype_data->check_int(host))
409                                 break;
410
411                         udelay(1);
412                 }
413                 if (max_retries < 0)
414                         pr_debug("%s: INT not set\n", __func__);
415         }
416 }
417
418 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
419 {
420         /* fill command */
421         writel(cmd, NFC_V3_FLASH_CMD);
422
423         /* send out command */
424         writel(NFC_CMD, NFC_V3_LAUNCH);
425
426         /* Wait for operation to complete */
427         wait_op_done(host, useirq);
428 }
429
430 /* This function issues the specified command to the NAND device and
431  * waits for completion. */
432 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
433 {
434         pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
435
436         writew(cmd, NFC_V1_V2_FLASH_CMD);
437         writew(NFC_CMD, NFC_V1_V2_CONFIG2);
438
439         if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
440                 int max_retries = 100;
441                 /* Reset completion is indicated by NFC_CONFIG2 */
442                 /* being set to 0 */
443                 while (max_retries-- > 0) {
444                         if (readw(NFC_V1_V2_CONFIG2) == 0) {
445                                 break;
446                         }
447                         udelay(1);
448                 }
449                 if (max_retries < 0)
450                         pr_debug("%s: RESET failed\n", __func__);
451         } else {
452                 /* Wait for operation to complete */
453                 wait_op_done(host, useirq);
454         }
455 }
456
457 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
458 {
459         /* fill address */
460         writel(addr, NFC_V3_FLASH_ADDR0);
461
462         /* send out address */
463         writel(NFC_ADDR, NFC_V3_LAUNCH);
464
465         wait_op_done(host, 0);
466 }
467
468 /* This function sends an address (or partial address) to the
469  * NAND device. The address is used to select the source/destination for
470  * a NAND command. */
471 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
472 {
473         pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
474
475         writew(addr, NFC_V1_V2_FLASH_ADDR);
476         writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
477
478         /* Wait for operation to complete */
479         wait_op_done(host, islast);
480 }
481
482 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
483 {
484         struct nand_chip *nand_chip = mtd->priv;
485         struct mxc_nand_host *host = nand_chip->priv;
486         uint32_t tmp;
487
488         tmp = readl(NFC_V3_CONFIG1);
489         tmp &= ~(7 << 4);
490         writel(tmp, NFC_V3_CONFIG1);
491
492         /* transfer data from NFC ram to nand */
493         writel(ops, NFC_V3_LAUNCH);
494
495         wait_op_done(host, false);
496 }
497
498 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
499 {
500         struct nand_chip *nand_chip = mtd->priv;
501         struct mxc_nand_host *host = nand_chip->priv;
502
503         /* NANDFC buffer 0 is used for page read/write */
504         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
505
506         writew(ops, NFC_V1_V2_CONFIG2);
507
508         /* Wait for operation to complete */
509         wait_op_done(host, true);
510 }
511
512 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
513 {
514         struct nand_chip *nand_chip = mtd->priv;
515         struct mxc_nand_host *host = nand_chip->priv;
516         int bufs, i;
517
518         if (mtd->writesize > 512)
519                 bufs = 4;
520         else
521                 bufs = 1;
522
523         for (i = 0; i < bufs; i++) {
524
525                 /* NANDFC buffer 0 is used for page read/write */
526                 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
527
528                 writew(ops, NFC_V1_V2_CONFIG2);
529
530                 /* Wait for operation to complete */
531                 wait_op_done(host, true);
532         }
533 }
534
535 static void send_read_id_v3(struct mxc_nand_host *host)
536 {
537         /* Read ID into main buffer */
538         writel(NFC_ID, NFC_V3_LAUNCH);
539
540         wait_op_done(host, true);
541
542         memcpy32_fromio(host->data_buf, host->main_area0, 16);
543 }
544
545 /* Request the NANDFC to perform a read of the NAND device ID. */
546 static void send_read_id_v1_v2(struct mxc_nand_host *host)
547 {
548         struct nand_chip *this = &host->nand;
549
550         /* NANDFC buffer 0 is used for device ID output */
551         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
552
553         writew(NFC_ID, NFC_V1_V2_CONFIG2);
554
555         /* Wait for operation to complete */
556         wait_op_done(host, true);
557
558         memcpy32_fromio(host->data_buf, host->main_area0, 16);
559
560         if (this->options & NAND_BUSWIDTH_16) {
561                 /* compress the ID info */
562                 host->data_buf[1] = host->data_buf[2];
563                 host->data_buf[2] = host->data_buf[4];
564                 host->data_buf[3] = host->data_buf[6];
565                 host->data_buf[4] = host->data_buf[8];
566                 host->data_buf[5] = host->data_buf[10];
567         }
568 }
569
570 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
571 {
572         writew(NFC_STATUS, NFC_V3_LAUNCH);
573         wait_op_done(host, true);
574
575         return readl(NFC_V3_CONFIG1) >> 16;
576 }
577
578 /* This function requests the NANDFC to perform a read of the
579  * NAND device status and returns the current status. */
580 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
581 {
582         void __iomem *main_buf = host->main_area0;
583         uint32_t store;
584         uint16_t ret;
585
586         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
587
588         /*
589          * The device status is stored in main_area0. To
590          * prevent corruption of the buffer save the value
591          * and restore it afterwards.
592          */
593         store = readl(main_buf);
594
595         writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
596         wait_op_done(host, true);
597
598         ret = readw(main_buf);
599
600         writel(store, main_buf);
601
602         return ret;
603 }
604
605 /* This functions is used by upper layer to checks if device is ready */
606 static int mxc_nand_dev_ready(struct mtd_info *mtd)
607 {
608         /*
609          * NFC handles R/B internally. Therefore, this function
610          * always returns status as ready.
611          */
612         return 1;
613 }
614
615 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
616 {
617         /*
618          * If HW ECC is enabled, we turn it on during init. There is
619          * no need to enable again here.
620          */
621 }
622
623 static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
624                                  u_char *read_ecc, u_char *calc_ecc)
625 {
626         struct nand_chip *nand_chip = mtd->priv;
627         struct mxc_nand_host *host = nand_chip->priv;
628
629         /*
630          * 1-Bit errors are automatically corrected in HW.  No need for
631          * additional correction.  2-Bit errors cannot be corrected by
632          * HW ECC, so we need to return failure
633          */
634         uint16_t ecc_status = get_ecc_status_v1(host);
635
636         if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
637                 pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
638                 return -1;
639         }
640
641         return 0;
642 }
643
644 static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
645                                  u_char *read_ecc, u_char *calc_ecc)
646 {
647         struct nand_chip *nand_chip = mtd->priv;
648         struct mxc_nand_host *host = nand_chip->priv;
649         u32 ecc_stat, err;
650         int no_subpages = 1;
651         int ret = 0;
652         u8 ecc_bit_mask, err_limit;
653
654         ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
655         err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
656
657         no_subpages = mtd->writesize >> 9;
658
659         ecc_stat = host->devtype_data->get_ecc_status(host);
660
661         do {
662                 err = ecc_stat & ecc_bit_mask;
663                 if (err > err_limit) {
664                         printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
665                         return -1;
666                 } else {
667                         ret += err;
668                 }
669                 ecc_stat >>= 4;
670         } while (--no_subpages);
671
672         mtd->ecc_stats.corrected += ret;
673         pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
674
675         return ret;
676 }
677
678 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
679                                   u_char *ecc_code)
680 {
681         return 0;
682 }
683
684 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
685 {
686         struct nand_chip *nand_chip = mtd->priv;
687         struct mxc_nand_host *host = nand_chip->priv;
688         uint8_t ret;
689
690         /* Check for status request */
691         if (host->status_request)
692                 return host->devtype_data->get_dev_status(host) & 0xFF;
693
694         ret = *(uint8_t *)(host->data_buf + host->buf_start);
695         host->buf_start++;
696
697         return ret;
698 }
699
700 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
701 {
702         struct nand_chip *nand_chip = mtd->priv;
703         struct mxc_nand_host *host = nand_chip->priv;
704         uint16_t ret;
705
706         ret = *(uint16_t *)(host->data_buf + host->buf_start);
707         host->buf_start += 2;
708
709         return ret;
710 }
711
712 /* Write data of length len to buffer buf. The data to be
713  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
714  * Operation by the NFC, the data is written to NAND Flash */
715 static void mxc_nand_write_buf(struct mtd_info *mtd,
716                                 const u_char *buf, int len)
717 {
718         struct nand_chip *nand_chip = mtd->priv;
719         struct mxc_nand_host *host = nand_chip->priv;
720         u16 col = host->buf_start;
721         int n = mtd->oobsize + mtd->writesize - col;
722
723         n = min(n, len);
724
725         memcpy(host->data_buf + col, buf, n);
726
727         host->buf_start += n;
728 }
729
730 /* Read the data buffer from the NAND Flash. To read the data from NAND
731  * Flash first the data output cycle is initiated by the NFC, which copies
732  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
733  */
734 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
735 {
736         struct nand_chip *nand_chip = mtd->priv;
737         struct mxc_nand_host *host = nand_chip->priv;
738         u16 col = host->buf_start;
739         int n = mtd->oobsize + mtd->writesize - col;
740
741         n = min(n, len);
742
743         memcpy(buf, host->data_buf + col, n);
744
745         host->buf_start += n;
746 }
747
748 /* Used by the upper layer to verify the data in NAND Flash
749  * with the data in the buf. */
750 static int mxc_nand_verify_buf(struct mtd_info *mtd,
751                                 const u_char *buf, int len)
752 {
753         return -EFAULT;
754 }
755
756 /* This function is used by upper layer for select and
757  * deselect of the NAND chip */
758 static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
759 {
760         struct nand_chip *nand_chip = mtd->priv;
761         struct mxc_nand_host *host = nand_chip->priv;
762
763         if (chip == -1) {
764                 /* Disable the NFC clock */
765                 if (host->clk_act) {
766                         clk_disable_unprepare(host->clk);
767                         host->clk_act = 0;
768                 }
769                 return;
770         }
771
772         if (!host->clk_act) {
773                 /* Enable the NFC clock */
774                 clk_prepare_enable(host->clk);
775                 host->clk_act = 1;
776         }
777 }
778
779 static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
780 {
781         struct nand_chip *nand_chip = mtd->priv;
782         struct mxc_nand_host *host = nand_chip->priv;
783
784         if (chip == -1) {
785                 /* Disable the NFC clock */
786                 if (host->clk_act) {
787                         clk_disable(host->clk);
788                         host->clk_act = 0;
789                 }
790                 return;
791         }
792
793         if (!host->clk_act) {
794                 /* Enable the NFC clock */
795                 clk_enable(host->clk);
796                 host->clk_act = 1;
797         }
798
799         host->active_cs = chip;
800         writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
801 }
802
803 /*
804  * Function to transfer data to/from spare area.
805  */
806 static void copy_spare(struct mtd_info *mtd, bool bfrom)
807 {
808         struct nand_chip *this = mtd->priv;
809         struct mxc_nand_host *host = this->priv;
810         u16 i, j;
811         u16 n = mtd->writesize >> 9;
812         u8 *d = host->data_buf + mtd->writesize;
813         u8 __iomem *s = host->spare0;
814         u16 t = host->devtype_data->spare_len;
815
816         j = (mtd->oobsize / n >> 1) << 1;
817
818         if (bfrom) {
819                 for (i = 0; i < n - 1; i++)
820                         memcpy32_fromio(d + i * j, s + i * t, j);
821
822                 /* the last section */
823                 memcpy32_fromio(d + i * j, s + i * t, mtd->oobsize - i * j);
824         } else {
825                 for (i = 0; i < n - 1; i++)
826                         memcpy32_toio(&s[i * t], &d[i * j], j);
827
828                 /* the last section */
829                 memcpy32_toio(&s[i * t], &d[i * j], mtd->oobsize - i * j);
830         }
831 }
832
833 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
834 {
835         struct nand_chip *nand_chip = mtd->priv;
836         struct mxc_nand_host *host = nand_chip->priv;
837
838         /* Write out column address, if necessary */
839         if (column != -1) {
840                 /*
841                  * MXC NANDFC can only perform full page+spare or
842                  * spare-only read/write.  When the upper layers
843                  * perform a read/write buf operation, the saved column
844                   * address is used to index into the full page.
845                  */
846                 host->devtype_data->send_addr(host, 0, page_addr == -1);
847                 if (mtd->writesize > 512)
848                         /* another col addr cycle for 2k page */
849                         host->devtype_data->send_addr(host, 0, false);
850         }
851
852         /* Write out page address, if necessary */
853         if (page_addr != -1) {
854                 /* paddr_0 - p_addr_7 */
855                 host->devtype_data->send_addr(host, (page_addr & 0xff), false);
856
857                 if (mtd->writesize > 512) {
858                         if (mtd->size >= 0x10000000) {
859                                 /* paddr_8 - paddr_15 */
860                                 host->devtype_data->send_addr(host,
861                                                 (page_addr >> 8) & 0xff,
862                                                 false);
863                                 host->devtype_data->send_addr(host,
864                                                 (page_addr >> 16) & 0xff,
865                                                 true);
866                         } else
867                                 /* paddr_8 - paddr_15 */
868                                 host->devtype_data->send_addr(host,
869                                                 (page_addr >> 8) & 0xff, true);
870                 } else {
871                         /* One more address cycle for higher density devices */
872                         if (mtd->size >= 0x4000000) {
873                                 /* paddr_8 - paddr_15 */
874                                 host->devtype_data->send_addr(host,
875                                                 (page_addr >> 8) & 0xff,
876                                                 false);
877                                 host->devtype_data->send_addr(host,
878                                                 (page_addr >> 16) & 0xff,
879                                                 true);
880                         } else
881                                 /* paddr_8 - paddr_15 */
882                                 host->devtype_data->send_addr(host,
883                                                 (page_addr >> 8) & 0xff, true);
884                 }
885         }
886 }
887
888 /*
889  * v2 and v3 type controllers can do 4bit or 8bit ecc depending
890  * on how much oob the nand chip has. For 8bit ecc we need at least
891  * 26 bytes of oob data per 512 byte block.
892  */
893 static int get_eccsize(struct mtd_info *mtd)
894 {
895         int oobbytes_per_512 = 0;
896
897         oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
898
899         if (oobbytes_per_512 < 26)
900                 return 4;
901         else
902                 return 8;
903 }
904
905 static void preset_v1(struct mtd_info *mtd)
906 {
907         struct nand_chip *nand_chip = mtd->priv;
908         struct mxc_nand_host *host = nand_chip->priv;
909         uint16_t config1 = 0;
910
911         if (nand_chip->ecc.mode == NAND_ECC_HW)
912                 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
913
914         if (!host->devtype_data->irqpending_quirk)
915                 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
916
917         host->eccsize = 1;
918
919         writew(config1, NFC_V1_V2_CONFIG1);
920         /* preset operation */
921
922         /* Unlock the internal RAM Buffer */
923         writew(0x2, NFC_V1_V2_CONFIG);
924
925         /* Blocks to be unlocked */
926         writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
927         writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
928
929         /* Unlock Block Command for given address range */
930         writew(0x4, NFC_V1_V2_WRPROT);
931 }
932
933 static void preset_v2(struct mtd_info *mtd)
934 {
935         struct nand_chip *nand_chip = mtd->priv;
936         struct mxc_nand_host *host = nand_chip->priv;
937         uint16_t config1 = 0;
938
939         if (nand_chip->ecc.mode == NAND_ECC_HW)
940                 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
941
942         config1 |= NFC_V2_CONFIG1_FP_INT;
943
944         if (!host->devtype_data->irqpending_quirk)
945                 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
946
947         if (mtd->writesize) {
948                 uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
949
950                 host->eccsize = get_eccsize(mtd);
951                 if (host->eccsize == 4)
952                         config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
953
954                 config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
955         } else {
956                 host->eccsize = 1;
957         }
958
959         writew(config1, NFC_V1_V2_CONFIG1);
960         /* preset operation */
961
962         /* Unlock the internal RAM Buffer */
963         writew(0x2, NFC_V1_V2_CONFIG);
964
965         /* Blocks to be unlocked */
966         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
967         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
968         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
969         writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
970         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
971         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
972         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
973         writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
974
975         /* Unlock Block Command for given address range */
976         writew(0x4, NFC_V1_V2_WRPROT);
977 }
978
979 static void preset_v3(struct mtd_info *mtd)
980 {
981         struct nand_chip *chip = mtd->priv;
982         struct mxc_nand_host *host = chip->priv;
983         uint32_t config2, config3;
984         int i, addr_phases;
985
986         writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
987         writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
988
989         /* Unlock the internal RAM Buffer */
990         writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
991                         NFC_V3_WRPROT);
992
993         /* Blocks to be unlocked */
994         for (i = 0; i < NAND_MAX_CHIPS; i++)
995                 writel(0x0 |    (0xffff << 16),
996                                 NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
997
998         writel(0, NFC_V3_IPC);
999
1000         config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1001                 NFC_V3_CONFIG2_2CMD_PHASES |
1002                 NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1003                 NFC_V3_CONFIG2_ST_CMD(0x70) |
1004                 NFC_V3_CONFIG2_INT_MSK |
1005                 NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1006
1007         if (chip->ecc.mode == NAND_ECC_HW)
1008                 config2 |= NFC_V3_CONFIG2_ECC_EN;
1009
1010         addr_phases = fls(chip->pagemask) >> 3;
1011
1012         if (mtd->writesize == 2048) {
1013                 config2 |= NFC_V3_CONFIG2_PS_2048;
1014                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1015         } else if (mtd->writesize == 4096) {
1016                 config2 |= NFC_V3_CONFIG2_PS_4096;
1017                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1018         } else {
1019                 config2 |= NFC_V3_CONFIG2_PS_512;
1020                 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1021         }
1022
1023         if (mtd->writesize) {
1024                 config2 |= NFC_V3_CONFIG2_PPB(ffs(mtd->erasesize / mtd->writesize) - 6);
1025                 host->eccsize = get_eccsize(mtd);
1026                 if (host->eccsize == 8)
1027                         config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1028         }
1029
1030         writel(config2, NFC_V3_CONFIG2);
1031
1032         config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1033                         NFC_V3_CONFIG3_NO_SDMA |
1034                         NFC_V3_CONFIG3_RBB_MODE |
1035                         NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1036                         NFC_V3_CONFIG3_ADD_OP(0);
1037
1038         if (!(chip->options & NAND_BUSWIDTH_16))
1039                 config3 |= NFC_V3_CONFIG3_FW8;
1040
1041         writel(config3, NFC_V3_CONFIG3);
1042
1043         writel(0, NFC_V3_DELAY_LINE);
1044 }
1045
1046 /* Used by the upper layer to write command to NAND Flash for
1047  * different operations to be carried out on NAND Flash */
1048 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
1049                                 int column, int page_addr)
1050 {
1051         struct nand_chip *nand_chip = mtd->priv;
1052         struct mxc_nand_host *host = nand_chip->priv;
1053
1054         pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1055               command, column, page_addr);
1056
1057         /* Reset command state information */
1058         host->status_request = false;
1059
1060         /* Command pre-processing step */
1061         switch (command) {
1062         case NAND_CMD_RESET:
1063                 host->devtype_data->preset(mtd);
1064                 host->devtype_data->send_cmd(host, command, false);
1065                 break;
1066
1067         case NAND_CMD_STATUS:
1068                 host->buf_start = 0;
1069                 host->status_request = true;
1070
1071                 host->devtype_data->send_cmd(host, command, true);
1072                 mxc_do_addr_cycle(mtd, column, page_addr);
1073                 break;
1074
1075         case NAND_CMD_READ0:
1076         case NAND_CMD_READOOB:
1077                 if (command == NAND_CMD_READ0)
1078                         host->buf_start = column;
1079                 else
1080                         host->buf_start = column + mtd->writesize;
1081
1082                 command = NAND_CMD_READ0; /* only READ0 is valid */
1083
1084                 host->devtype_data->send_cmd(host, command, false);
1085                 mxc_do_addr_cycle(mtd, column, page_addr);
1086
1087                 if (mtd->writesize > 512)
1088                         host->devtype_data->send_cmd(host,
1089                                         NAND_CMD_READSTART, true);
1090
1091                 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1092
1093                 memcpy32_fromio(host->data_buf, host->main_area0,
1094                                 mtd->writesize);
1095                 copy_spare(mtd, true);
1096                 break;
1097
1098         case NAND_CMD_SEQIN:
1099                 if (column >= mtd->writesize)
1100                         /* call ourself to read a page */
1101                         mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
1102
1103                 host->buf_start = column;
1104
1105                 host->devtype_data->send_cmd(host, command, false);
1106                 mxc_do_addr_cycle(mtd, column, page_addr);
1107                 break;
1108
1109         case NAND_CMD_PAGEPROG:
1110                 memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1111                 copy_spare(mtd, false);
1112                 host->devtype_data->send_page(mtd, NFC_INPUT);
1113                 host->devtype_data->send_cmd(host, command, true);
1114                 mxc_do_addr_cycle(mtd, column, page_addr);
1115                 break;
1116
1117         case NAND_CMD_READID:
1118                 host->devtype_data->send_cmd(host, command, true);
1119                 mxc_do_addr_cycle(mtd, column, page_addr);
1120                 host->devtype_data->send_read_id(host);
1121                 host->buf_start = column;
1122                 break;
1123
1124         case NAND_CMD_ERASE1:
1125         case NAND_CMD_ERASE2:
1126                 host->devtype_data->send_cmd(host, command, false);
1127                 mxc_do_addr_cycle(mtd, column, page_addr);
1128
1129                 break;
1130         }
1131 }
1132
1133 /*
1134  * The generic flash bbt decriptors overlap with our ecc
1135  * hardware, so define some i.MX specific ones.
1136  */
1137 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1138 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1139
1140 static struct nand_bbt_descr bbt_main_descr = {
1141         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1142             | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1143         .offs = 0,
1144         .len = 4,
1145         .veroffs = 4,
1146         .maxblocks = 4,
1147         .pattern = bbt_pattern,
1148 };
1149
1150 static struct nand_bbt_descr bbt_mirror_descr = {
1151         .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1152             | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1153         .offs = 0,
1154         .len = 4,
1155         .veroffs = 4,
1156         .maxblocks = 4,
1157         .pattern = mirror_pattern,
1158 };
1159
1160 /* v1 + irqpending_quirk: i.MX21 */
1161 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1162         .preset = preset_v1,
1163         .send_cmd = send_cmd_v1_v2,
1164         .send_addr = send_addr_v1_v2,
1165         .send_page = send_page_v1,
1166         .send_read_id = send_read_id_v1_v2,
1167         .get_dev_status = get_dev_status_v1_v2,
1168         .check_int = check_int_v1_v2,
1169         .irq_control = irq_control_v1_v2,
1170         .get_ecc_status = get_ecc_status_v1,
1171         .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1172         .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1173         .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1174         .select_chip = mxc_nand_select_chip_v1_v3,
1175         .correct_data = mxc_nand_correct_data_v1,
1176         .irqpending_quirk = 1,
1177         .needs_ip = 0,
1178         .regs_offset = 0xe00,
1179         .spare0_offset = 0x800,
1180         .spare_len = 16,
1181         .eccbytes = 3,
1182         .eccsize = 1,
1183 };
1184
1185 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1186 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1187         .preset = preset_v1,
1188         .send_cmd = send_cmd_v1_v2,
1189         .send_addr = send_addr_v1_v2,
1190         .send_page = send_page_v1,
1191         .send_read_id = send_read_id_v1_v2,
1192         .get_dev_status = get_dev_status_v1_v2,
1193         .check_int = check_int_v1_v2,
1194         .irq_control = irq_control_v1_v2,
1195         .get_ecc_status = get_ecc_status_v1,
1196         .ecclayout_512 = &nandv1_hw_eccoob_smallpage,
1197         .ecclayout_2k = &nandv1_hw_eccoob_largepage,
1198         .ecclayout_4k = &nandv1_hw_eccoob_smallpage, /* XXX: needs fix */
1199         .select_chip = mxc_nand_select_chip_v1_v3,
1200         .correct_data = mxc_nand_correct_data_v1,
1201         .irqpending_quirk = 0,
1202         .needs_ip = 0,
1203         .regs_offset = 0xe00,
1204         .spare0_offset = 0x800,
1205         .axi_offset = 0,
1206         .spare_len = 16,
1207         .eccbytes = 3,
1208         .eccsize = 1,
1209 };
1210
1211 /* v21: i.MX25, i.MX35 */
1212 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1213         .preset = preset_v2,
1214         .send_cmd = send_cmd_v1_v2,
1215         .send_addr = send_addr_v1_v2,
1216         .send_page = send_page_v2,
1217         .send_read_id = send_read_id_v1_v2,
1218         .get_dev_status = get_dev_status_v1_v2,
1219         .check_int = check_int_v1_v2,
1220         .irq_control = irq_control_v1_v2,
1221         .get_ecc_status = get_ecc_status_v2,
1222         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1223         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1224         .ecclayout_4k = &nandv2_hw_eccoob_4k,
1225         .select_chip = mxc_nand_select_chip_v2,
1226         .correct_data = mxc_nand_correct_data_v2_v3,
1227         .irqpending_quirk = 0,
1228         .needs_ip = 0,
1229         .regs_offset = 0x1e00,
1230         .spare0_offset = 0x1000,
1231         .axi_offset = 0,
1232         .spare_len = 64,
1233         .eccbytes = 9,
1234         .eccsize = 0,
1235 };
1236
1237 /* v3: i.MX51, i.MX53 */
1238 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1239         .preset = preset_v3,
1240         .send_cmd = send_cmd_v3,
1241         .send_addr = send_addr_v3,
1242         .send_page = send_page_v3,
1243         .send_read_id = send_read_id_v3,
1244         .get_dev_status = get_dev_status_v3,
1245         .check_int = check_int_v3,
1246         .irq_control = irq_control_v3,
1247         .get_ecc_status = get_ecc_status_v3,
1248         .ecclayout_512 = &nandv2_hw_eccoob_smallpage,
1249         .ecclayout_2k = &nandv2_hw_eccoob_largepage,
1250         .ecclayout_4k = &nandv2_hw_eccoob_smallpage, /* XXX: needs fix */
1251         .select_chip = mxc_nand_select_chip_v1_v3,
1252         .correct_data = mxc_nand_correct_data_v2_v3,
1253         .irqpending_quirk = 0,
1254         .needs_ip = 1,
1255         .regs_offset = 0,
1256         .spare0_offset = 0x1000,
1257         .axi_offset = 0x1e00,
1258         .spare_len = 64,
1259         .eccbytes = 0,
1260         .eccsize = 0,
1261 };
1262
1263 #ifdef CONFIG_OF_MTD
1264 static const struct of_device_id mxcnd_dt_ids[] = {
1265         {
1266                 .compatible = "fsl,imx21-nand",
1267                 .data = &imx21_nand_devtype_data,
1268         }, {
1269                 .compatible = "fsl,imx27-nand",
1270                 .data = &imx27_nand_devtype_data,
1271         }, {
1272                 .compatible = "fsl,imx25-nand",
1273                 .data = &imx25_nand_devtype_data,
1274         }, {
1275                 .compatible = "fsl,imx51-nand",
1276                 .data = &imx51_nand_devtype_data,
1277         },
1278         { /* sentinel */ }
1279 };
1280
1281 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1282 {
1283         struct device_node *np = host->dev->of_node;
1284         struct mxc_nand_platform_data *pdata = &host->pdata;
1285         const struct of_device_id *of_id =
1286                 of_match_device(mxcnd_dt_ids, host->dev);
1287         int buswidth;
1288
1289         if (!np)
1290                 return 1;
1291
1292         if (of_get_nand_ecc_mode(np) >= 0)
1293                 pdata->hw_ecc = 1;
1294
1295         pdata->flash_bbt = of_get_nand_on_flash_bbt(np);
1296
1297         buswidth = of_get_nand_bus_width(np);
1298         if (buswidth < 0)
1299                 return buswidth;
1300
1301         pdata->width = buswidth / 8;
1302
1303         host->devtype_data = of_id->data;
1304
1305         return 0;
1306 }
1307 #else
1308 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1309 {
1310         return 1;
1311 }
1312 #endif
1313
1314 static int __init mxcnd_probe_pdata(struct mxc_nand_host *host)
1315 {
1316         struct mxc_nand_platform_data *pdata = host->dev->platform_data;
1317
1318         if (!pdata)
1319                 return -ENODEV;
1320
1321         host->pdata = *pdata;
1322
1323         if (nfc_is_v1()) {
1324                 if (cpu_is_mx21())
1325                         host->devtype_data = &imx21_nand_devtype_data;
1326                 else
1327                         host->devtype_data = &imx27_nand_devtype_data;
1328         } else if (nfc_is_v21()) {
1329                 host->devtype_data = &imx25_nand_devtype_data;
1330         } else if (nfc_is_v3_2()) {
1331                 host->devtype_data = &imx51_nand_devtype_data;
1332         } else
1333                 BUG();
1334
1335         return 0;
1336 }
1337
1338 static int __init mxcnd_probe(struct platform_device *pdev)
1339 {
1340         struct nand_chip *this;
1341         struct mtd_info *mtd;
1342         struct mxc_nand_host *host;
1343         struct resource *res;
1344         int err = 0;
1345
1346         /* Allocate memory for MTD device structure and private data */
1347         host = kzalloc(sizeof(struct mxc_nand_host) + NAND_MAX_PAGESIZE +
1348                         NAND_MAX_OOBSIZE, GFP_KERNEL);
1349         if (!host)
1350                 return -ENOMEM;
1351
1352         host->data_buf = (uint8_t *)(host + 1);
1353
1354         host->dev = &pdev->dev;
1355         /* structures must be linked */
1356         this = &host->nand;
1357         mtd = &host->mtd;
1358         mtd->priv = this;
1359         mtd->owner = THIS_MODULE;
1360         mtd->dev.parent = &pdev->dev;
1361         mtd->name = DRIVER_NAME;
1362
1363         /* 50 us command delay time */
1364         this->chip_delay = 5;
1365
1366         this->priv = host;
1367         this->dev_ready = mxc_nand_dev_ready;
1368         this->cmdfunc = mxc_nand_command;
1369         this->read_byte = mxc_nand_read_byte;
1370         this->read_word = mxc_nand_read_word;
1371         this->write_buf = mxc_nand_write_buf;
1372         this->read_buf = mxc_nand_read_buf;
1373         this->verify_buf = mxc_nand_verify_buf;
1374
1375         host->clk = clk_get(&pdev->dev, "nfc");
1376         if (IS_ERR(host->clk)) {
1377                 err = PTR_ERR(host->clk);
1378                 goto eclk;
1379         }
1380
1381         clk_prepare_enable(host->clk);
1382         host->clk_act = 1;
1383
1384         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1385         if (!res) {
1386                 err = -ENODEV;
1387                 goto eres;
1388         }
1389
1390         host->base = ioremap(res->start, resource_size(res));
1391         if (!host->base) {
1392                 err = -ENOMEM;
1393                 goto eres;
1394         }
1395
1396         host->main_area0 = host->base;
1397
1398         err = mxcnd_probe_dt(host);
1399         if (err > 0)
1400                 err = mxcnd_probe_pdata(host);
1401         if (err < 0)
1402                 goto eirq;
1403
1404         if (host->devtype_data->regs_offset)
1405                 host->regs = host->base + host->devtype_data->regs_offset;
1406         host->spare0 = host->base + host->devtype_data->spare0_offset;
1407         if (host->devtype_data->axi_offset)
1408                 host->regs_axi = host->base + host->devtype_data->axi_offset;
1409
1410         this->ecc.bytes = host->devtype_data->eccbytes;
1411         host->eccsize = host->devtype_data->eccsize;
1412
1413         this->select_chip = host->devtype_data->select_chip;
1414         this->ecc.size = 512;
1415         this->ecc.layout = host->devtype_data->ecclayout_512;
1416
1417         if (host->devtype_data->needs_ip) {
1418                 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1419                 if (!res) {
1420                         err = -ENODEV;
1421                         goto eirq;
1422                 }
1423                 host->regs_ip = ioremap(res->start, resource_size(res));
1424                 if (!host->regs_ip) {
1425                         err = -ENOMEM;
1426                         goto eirq;
1427                 }
1428         }
1429
1430         if (host->pdata.hw_ecc) {
1431                 this->ecc.calculate = mxc_nand_calculate_ecc;
1432                 this->ecc.hwctl = mxc_nand_enable_hwecc;
1433                 this->ecc.correct = host->devtype_data->correct_data;
1434                 this->ecc.mode = NAND_ECC_HW;
1435         } else {
1436                 this->ecc.mode = NAND_ECC_SOFT;
1437         }
1438
1439         /* NAND bus width determines access functions used by upper layer */
1440         if (host->pdata.width == 2)
1441                 this->options |= NAND_BUSWIDTH_16;
1442
1443         if (host->pdata.flash_bbt) {
1444                 this->bbt_td = &bbt_main_descr;
1445                 this->bbt_md = &bbt_mirror_descr;
1446                 /* update flash based bbt */
1447                 this->bbt_options |= NAND_BBT_USE_FLASH;
1448         }
1449
1450         init_completion(&host->op_completion);
1451
1452         host->irq = platform_get_irq(pdev, 0);
1453
1454         /*
1455          * Use host->devtype_data->irq_control() here instead of irq_control()
1456          * because we must not disable_irq_nosync without having requested the
1457          * irq.
1458          */
1459         host->devtype_data->irq_control(host, 0);
1460
1461         err = request_irq(host->irq, mxc_nfc_irq, IRQF_DISABLED, DRIVER_NAME, host);
1462         if (err)
1463                 goto eirq;
1464
1465         /*
1466          * Now that we "own" the interrupt make sure the interrupt mask bit is
1467          * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1468          * on this machine.
1469          */
1470         if (host->devtype_data->irqpending_quirk) {
1471                 disable_irq_nosync(host->irq);
1472                 host->devtype_data->irq_control(host, 1);
1473         }
1474
1475         /* first scan to find the device and get the page size */
1476         if (nand_scan_ident(mtd, nfc_is_v21() ? 4 : 1, NULL)) {
1477                 err = -ENXIO;
1478                 goto escan;
1479         }
1480
1481         /* Call preset again, with correct writesize this time */
1482         host->devtype_data->preset(mtd);
1483
1484         if (mtd->writesize == 2048)
1485                 this->ecc.layout = host->devtype_data->ecclayout_2k;
1486         else if (mtd->writesize == 4096)
1487                 this->ecc.layout = host->devtype_data->ecclayout_4k;
1488
1489         if (this->ecc.mode == NAND_ECC_HW) {
1490                 if (nfc_is_v1())
1491                         this->ecc.strength = 1;
1492                 else
1493                         this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1494         }
1495
1496         /* second phase scan */
1497         if (nand_scan_tail(mtd)) {
1498                 err = -ENXIO;
1499                 goto escan;
1500         }
1501
1502         /* Register the partitions */
1503         mtd_device_parse_register(mtd, part_probes,
1504                         &(struct mtd_part_parser_data){
1505                                 .of_node = pdev->dev.of_node,
1506                         },
1507                         host->pdata.parts,
1508                         host->pdata.nr_parts);
1509
1510         platform_set_drvdata(pdev, host);
1511
1512         return 0;
1513
1514 escan:
1515         free_irq(host->irq, host);
1516 eirq:
1517         if (host->regs_ip)
1518                 iounmap(host->regs_ip);
1519         iounmap(host->base);
1520 eres:
1521         clk_put(host->clk);
1522 eclk:
1523         kfree(host);
1524
1525         return err;
1526 }
1527
1528 static int __devexit mxcnd_remove(struct platform_device *pdev)
1529 {
1530         struct mxc_nand_host *host = platform_get_drvdata(pdev);
1531
1532         clk_put(host->clk);
1533
1534         platform_set_drvdata(pdev, NULL);
1535
1536         nand_release(&host->mtd);
1537         free_irq(host->irq, host);
1538         if (host->regs_ip)
1539                 iounmap(host->regs_ip);
1540         iounmap(host->base);
1541         kfree(host);
1542
1543         return 0;
1544 }
1545
1546 static struct platform_driver mxcnd_driver = {
1547         .driver = {
1548                    .name = DRIVER_NAME,
1549                    .owner = THIS_MODULE,
1550                    .of_match_table = of_match_ptr(mxcnd_dt_ids),
1551         },
1552         .remove = __devexit_p(mxcnd_remove),
1553 };
1554
1555 static int __init mxc_nd_init(void)
1556 {
1557         return platform_driver_probe(&mxcnd_driver, mxcnd_probe);
1558 }
1559
1560 static void __exit mxc_nd_cleanup(void)
1561 {
1562         /* Unregister the device structure */
1563         platform_driver_unregister(&mxcnd_driver);
1564 }
1565
1566 module_init(mxc_nd_init);
1567 module_exit(mxc_nd_cleanup);
1568
1569 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1570 MODULE_DESCRIPTION("MXC NAND MTD driver");
1571 MODULE_LICENSE("GPL");