]> Pileus Git - ~andy/linux/blob - drivers/mfd/db8500-prcmu.c
mfd: Initialize DB8500 PRCMU regs
[~andy/linux] / drivers / mfd / db8500-prcmu.c
1 /*
2  * Copyright (C) STMicroelectronics 2009
3  * Copyright (C) ST-Ericsson SA 2010
4  *
5  * License Terms: GNU General Public License v2
6  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9  *
10  * U8500 PRCM Unit interface driver
11  *
12  */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/platform_device.h>
28 #include <linux/uaccess.h>
29 #include <linux/mfd/core.h>
30 #include <linux/mfd/db8500-prcmu.h>
31 #include <linux/regulator/db8500-prcmu.h>
32 #include <linux/regulator/machine.h>
33 #include <mach/hardware.h>
34 #include <mach/irqs.h>
35 #include <mach/db8500-regs.h>
36 #include <mach/id.h>
37 #include "db8500-prcmu-regs.h"
38
39 /* Offset for the firmware version within the TCPM */
40 #define PRCMU_FW_VERSION_OFFSET 0xA4
41
42 /* PRCMU project numbers, defined by PRCMU FW */
43 #define PRCMU_PROJECT_ID_8500V1_0 1
44 #define PRCMU_PROJECT_ID_8500V2_0 2
45 #define PRCMU_PROJECT_ID_8400V2_0 3
46
47 /* Index of different voltages to be used when accessing AVSData */
48 #define PRCM_AVS_BASE           0x2FC
49 #define PRCM_AVS_VBB_RET        (PRCM_AVS_BASE + 0x0)
50 #define PRCM_AVS_VBB_MAX_OPP    (PRCM_AVS_BASE + 0x1)
51 #define PRCM_AVS_VBB_100_OPP    (PRCM_AVS_BASE + 0x2)
52 #define PRCM_AVS_VBB_50_OPP     (PRCM_AVS_BASE + 0x3)
53 #define PRCM_AVS_VARM_MAX_OPP   (PRCM_AVS_BASE + 0x4)
54 #define PRCM_AVS_VARM_100_OPP   (PRCM_AVS_BASE + 0x5)
55 #define PRCM_AVS_VARM_50_OPP    (PRCM_AVS_BASE + 0x6)
56 #define PRCM_AVS_VARM_RET       (PRCM_AVS_BASE + 0x7)
57 #define PRCM_AVS_VAPE_100_OPP   (PRCM_AVS_BASE + 0x8)
58 #define PRCM_AVS_VAPE_50_OPP    (PRCM_AVS_BASE + 0x9)
59 #define PRCM_AVS_VMOD_100_OPP   (PRCM_AVS_BASE + 0xA)
60 #define PRCM_AVS_VMOD_50_OPP    (PRCM_AVS_BASE + 0xB)
61 #define PRCM_AVS_VSAFE          (PRCM_AVS_BASE + 0xC)
62
63 #define PRCM_AVS_VOLTAGE                0
64 #define PRCM_AVS_VOLTAGE_MASK           0x3f
65 #define PRCM_AVS_ISSLOWSTARTUP          6
66 #define PRCM_AVS_ISSLOWSTARTUP_MASK     (1 << PRCM_AVS_ISSLOWSTARTUP)
67 #define PRCM_AVS_ISMODEENABLE           7
68 #define PRCM_AVS_ISMODEENABLE_MASK      (1 << PRCM_AVS_ISMODEENABLE)
69
70 #define PRCM_BOOT_STATUS        0xFFF
71 #define PRCM_ROMCODE_A2P        0xFFE
72 #define PRCM_ROMCODE_P2A        0xFFD
73 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
74
75 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
76
77 #define _PRCM_MBOX_HEADER               0xFE8 /* 16 bytes */
78 #define PRCM_MBOX_HEADER_REQ_MB0        (_PRCM_MBOX_HEADER + 0x0)
79 #define PRCM_MBOX_HEADER_REQ_MB1        (_PRCM_MBOX_HEADER + 0x1)
80 #define PRCM_MBOX_HEADER_REQ_MB2        (_PRCM_MBOX_HEADER + 0x2)
81 #define PRCM_MBOX_HEADER_REQ_MB3        (_PRCM_MBOX_HEADER + 0x3)
82 #define PRCM_MBOX_HEADER_REQ_MB4        (_PRCM_MBOX_HEADER + 0x4)
83 #define PRCM_MBOX_HEADER_REQ_MB5        (_PRCM_MBOX_HEADER + 0x5)
84 #define PRCM_MBOX_HEADER_ACK_MB0        (_PRCM_MBOX_HEADER + 0x8)
85
86 /* Req Mailboxes */
87 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
88 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
89 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
90 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
91 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
92 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
93
94 /* Ack Mailboxes */
95 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
96 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
97 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
98 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
99 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
100 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
101
102 /* Mailbox 0 headers */
103 #define MB0H_POWER_STATE_TRANS          0
104 #define MB0H_CONFIG_WAKEUPS_EXE         1
105 #define MB0H_READ_WAKEUP_ACK            3
106 #define MB0H_CONFIG_WAKEUPS_SLEEP       4
107
108 #define MB0H_WAKEUP_EXE 2
109 #define MB0H_WAKEUP_SLEEP 5
110
111 /* Mailbox 0 REQs */
112 #define PRCM_REQ_MB0_AP_POWER_STATE     (PRCM_REQ_MB0 + 0x0)
113 #define PRCM_REQ_MB0_AP_PLL_STATE       (PRCM_REQ_MB0 + 0x1)
114 #define PRCM_REQ_MB0_ULP_CLOCK_STATE    (PRCM_REQ_MB0 + 0x2)
115 #define PRCM_REQ_MB0_DO_NOT_WFI         (PRCM_REQ_MB0 + 0x3)
116 #define PRCM_REQ_MB0_WAKEUP_8500        (PRCM_REQ_MB0 + 0x4)
117 #define PRCM_REQ_MB0_WAKEUP_4500        (PRCM_REQ_MB0 + 0x8)
118
119 /* Mailbox 0 ACKs */
120 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS  (PRCM_ACK_MB0 + 0x0)
121 #define PRCM_ACK_MB0_READ_POINTER       (PRCM_ACK_MB0 + 0x1)
122 #define PRCM_ACK_MB0_WAKEUP_0_8500      (PRCM_ACK_MB0 + 0x4)
123 #define PRCM_ACK_MB0_WAKEUP_0_4500      (PRCM_ACK_MB0 + 0x8)
124 #define PRCM_ACK_MB0_WAKEUP_1_8500      (PRCM_ACK_MB0 + 0x1C)
125 #define PRCM_ACK_MB0_WAKEUP_1_4500      (PRCM_ACK_MB0 + 0x20)
126 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
127
128 /* Mailbox 1 headers */
129 #define MB1H_ARM_APE_OPP 0x0
130 #define MB1H_RESET_MODEM 0x2
131 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
132 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
133 #define MB1H_RELEASE_USB_WAKEUP 0x5
134 #define MB1H_PLL_ON_OFF 0x6
135
136 /* Mailbox 1 Requests */
137 #define PRCM_REQ_MB1_ARM_OPP                    (PRCM_REQ_MB1 + 0x0)
138 #define PRCM_REQ_MB1_APE_OPP                    (PRCM_REQ_MB1 + 0x1)
139 #define PRCM_REQ_MB1_PLL_ON_OFF                 (PRCM_REQ_MB1 + 0x4)
140 #define PLL_SOC1_OFF    0x4
141 #define PLL_SOC1_ON     0x8
142
143 /* Mailbox 1 ACKs */
144 #define PRCM_ACK_MB1_CURRENT_ARM_OPP    (PRCM_ACK_MB1 + 0x0)
145 #define PRCM_ACK_MB1_CURRENT_APE_OPP    (PRCM_ACK_MB1 + 0x1)
146 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
147 #define PRCM_ACK_MB1_DVFS_STATUS        (PRCM_ACK_MB1 + 0x3)
148
149 /* Mailbox 2 headers */
150 #define MB2H_DPS        0x0
151 #define MB2H_AUTO_PWR   0x1
152
153 /* Mailbox 2 REQs */
154 #define PRCM_REQ_MB2_SVA_MMDSP          (PRCM_REQ_MB2 + 0x0)
155 #define PRCM_REQ_MB2_SVA_PIPE           (PRCM_REQ_MB2 + 0x1)
156 #define PRCM_REQ_MB2_SIA_MMDSP          (PRCM_REQ_MB2 + 0x2)
157 #define PRCM_REQ_MB2_SIA_PIPE           (PRCM_REQ_MB2 + 0x3)
158 #define PRCM_REQ_MB2_SGA                (PRCM_REQ_MB2 + 0x4)
159 #define PRCM_REQ_MB2_B2R2_MCDE          (PRCM_REQ_MB2 + 0x5)
160 #define PRCM_REQ_MB2_ESRAM12            (PRCM_REQ_MB2 + 0x6)
161 #define PRCM_REQ_MB2_ESRAM34            (PRCM_REQ_MB2 + 0x7)
162 #define PRCM_REQ_MB2_AUTO_PM_SLEEP      (PRCM_REQ_MB2 + 0x8)
163 #define PRCM_REQ_MB2_AUTO_PM_IDLE       (PRCM_REQ_MB2 + 0xC)
164
165 /* Mailbox 2 ACKs */
166 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
167 #define HWACC_PWR_ST_OK 0xFE
168
169 /* Mailbox 3 headers */
170 #define MB3H_ANC        0x0
171 #define MB3H_SIDETONE   0x1
172 #define MB3H_SYSCLK     0xE
173
174 /* Mailbox 3 Requests */
175 #define PRCM_REQ_MB3_ANC_FIR_COEFF      (PRCM_REQ_MB3 + 0x0)
176 #define PRCM_REQ_MB3_ANC_IIR_COEFF      (PRCM_REQ_MB3 + 0x20)
177 #define PRCM_REQ_MB3_ANC_SHIFTER        (PRCM_REQ_MB3 + 0x60)
178 #define PRCM_REQ_MB3_ANC_WARP           (PRCM_REQ_MB3 + 0x64)
179 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN  (PRCM_REQ_MB3 + 0x68)
180 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
181 #define PRCM_REQ_MB3_SYSCLK_MGT         (PRCM_REQ_MB3 + 0x16C)
182
183 /* Mailbox 4 headers */
184 #define MB4H_DDR_INIT   0x0
185 #define MB4H_MEM_ST     0x1
186 #define MB4H_HOTDOG     0x12
187 #define MB4H_HOTMON     0x13
188 #define MB4H_HOT_PERIOD 0x14
189 #define MB4H_A9WDOG_CONF 0x16
190 #define MB4H_A9WDOG_EN   0x17
191 #define MB4H_A9WDOG_DIS  0x18
192 #define MB4H_A9WDOG_LOAD 0x19
193 #define MB4H_A9WDOG_KICK 0x20
194
195 /* Mailbox 4 Requests */
196 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE       (PRCM_REQ_MB4 + 0x0)
197 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE        (PRCM_REQ_MB4 + 0x1)
198 #define PRCM_REQ_MB4_ESRAM0_ST                  (PRCM_REQ_MB4 + 0x3)
199 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD           (PRCM_REQ_MB4 + 0x0)
200 #define PRCM_REQ_MB4_HOTMON_LOW                 (PRCM_REQ_MB4 + 0x0)
201 #define PRCM_REQ_MB4_HOTMON_HIGH                (PRCM_REQ_MB4 + 0x1)
202 #define PRCM_REQ_MB4_HOTMON_CONFIG              (PRCM_REQ_MB4 + 0x2)
203 #define PRCM_REQ_MB4_HOT_PERIOD                 (PRCM_REQ_MB4 + 0x0)
204 #define HOTMON_CONFIG_LOW                       BIT(0)
205 #define HOTMON_CONFIG_HIGH                      BIT(1)
206 #define PRCM_REQ_MB4_A9WDOG_0                   (PRCM_REQ_MB4 + 0x0)
207 #define PRCM_REQ_MB4_A9WDOG_1                   (PRCM_REQ_MB4 + 0x1)
208 #define PRCM_REQ_MB4_A9WDOG_2                   (PRCM_REQ_MB4 + 0x2)
209 #define PRCM_REQ_MB4_A9WDOG_3                   (PRCM_REQ_MB4 + 0x3)
210 #define A9WDOG_AUTO_OFF_EN                      BIT(7)
211 #define A9WDOG_AUTO_OFF_DIS                     0
212 #define A9WDOG_ID_MASK                          0xf
213
214 /* Mailbox 5 Requests */
215 #define PRCM_REQ_MB5_I2C_SLAVE_OP       (PRCM_REQ_MB5 + 0x0)
216 #define PRCM_REQ_MB5_I2C_HW_BITS        (PRCM_REQ_MB5 + 0x1)
217 #define PRCM_REQ_MB5_I2C_REG            (PRCM_REQ_MB5 + 0x2)
218 #define PRCM_REQ_MB5_I2C_VAL            (PRCM_REQ_MB5 + 0x3)
219 #define PRCMU_I2C_WRITE(slave) \
220         (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
221 #define PRCMU_I2C_READ(slave) \
222         (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
223 #define PRCMU_I2C_STOP_EN               BIT(3)
224
225 /* Mailbox 5 ACKs */
226 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
227 #define PRCM_ACK_MB5_I2C_VAL    (PRCM_ACK_MB5 + 0x3)
228 #define I2C_WR_OK 0x1
229 #define I2C_RD_OK 0x2
230
231 #define NUM_MB 8
232 #define MBOX_BIT BIT
233 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
234
235 /*
236  * Wakeups/IRQs
237  */
238
239 #define WAKEUP_BIT_RTC BIT(0)
240 #define WAKEUP_BIT_RTT0 BIT(1)
241 #define WAKEUP_BIT_RTT1 BIT(2)
242 #define WAKEUP_BIT_HSI0 BIT(3)
243 #define WAKEUP_BIT_HSI1 BIT(4)
244 #define WAKEUP_BIT_CA_WAKE BIT(5)
245 #define WAKEUP_BIT_USB BIT(6)
246 #define WAKEUP_BIT_ABB BIT(7)
247 #define WAKEUP_BIT_ABB_FIFO BIT(8)
248 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
249 #define WAKEUP_BIT_CA_SLEEP BIT(10)
250 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
251 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
252 #define WAKEUP_BIT_ANC_OK BIT(13)
253 #define WAKEUP_BIT_SW_ERROR BIT(14)
254 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
255 #define WAKEUP_BIT_ARM BIT(17)
256 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
257 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
258 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
259 #define WAKEUP_BIT_GPIO0 BIT(23)
260 #define WAKEUP_BIT_GPIO1 BIT(24)
261 #define WAKEUP_BIT_GPIO2 BIT(25)
262 #define WAKEUP_BIT_GPIO3 BIT(26)
263 #define WAKEUP_BIT_GPIO4 BIT(27)
264 #define WAKEUP_BIT_GPIO5 BIT(28)
265 #define WAKEUP_BIT_GPIO6 BIT(29)
266 #define WAKEUP_BIT_GPIO7 BIT(30)
267 #define WAKEUP_BIT_GPIO8 BIT(31)
268
269 /*
270  * This vector maps irq numbers to the bits in the bit field used in
271  * communication with the PRCMU firmware.
272  *
273  * The reason for having this is to keep the irq numbers contiguous even though
274  * the bits in the bit field are not. (The bits also have a tendency to move
275  * around, to further complicate matters.)
276  */
277 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
278 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
279 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
280         IRQ_ENTRY(RTC),
281         IRQ_ENTRY(RTT0),
282         IRQ_ENTRY(RTT1),
283         IRQ_ENTRY(HSI0),
284         IRQ_ENTRY(HSI1),
285         IRQ_ENTRY(CA_WAKE),
286         IRQ_ENTRY(USB),
287         IRQ_ENTRY(ABB),
288         IRQ_ENTRY(ABB_FIFO),
289         IRQ_ENTRY(CA_SLEEP),
290         IRQ_ENTRY(ARM),
291         IRQ_ENTRY(HOTMON_LOW),
292         IRQ_ENTRY(HOTMON_HIGH),
293         IRQ_ENTRY(MODEM_SW_RESET_REQ),
294         IRQ_ENTRY(GPIO0),
295         IRQ_ENTRY(GPIO1),
296         IRQ_ENTRY(GPIO2),
297         IRQ_ENTRY(GPIO3),
298         IRQ_ENTRY(GPIO4),
299         IRQ_ENTRY(GPIO5),
300         IRQ_ENTRY(GPIO6),
301         IRQ_ENTRY(GPIO7),
302         IRQ_ENTRY(GPIO8)
303 };
304
305 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
306 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
307 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
308         WAKEUP_ENTRY(RTC),
309         WAKEUP_ENTRY(RTT0),
310         WAKEUP_ENTRY(RTT1),
311         WAKEUP_ENTRY(HSI0),
312         WAKEUP_ENTRY(HSI1),
313         WAKEUP_ENTRY(USB),
314         WAKEUP_ENTRY(ABB),
315         WAKEUP_ENTRY(ABB_FIFO),
316         WAKEUP_ENTRY(ARM)
317 };
318
319 /*
320  * mb0_transfer - state needed for mailbox 0 communication.
321  * @lock:               The transaction lock.
322  * @dbb_events_lock:    A lock used to handle concurrent access to (parts of)
323  *                      the request data.
324  * @mask_work:          Work structure used for (un)masking wakeup interrupts.
325  * @req:                Request data that need to persist between requests.
326  */
327 static struct {
328         spinlock_t lock;
329         spinlock_t dbb_irqs_lock;
330         struct work_struct mask_work;
331         struct mutex ac_wake_lock;
332         struct completion ac_wake_work;
333         struct {
334                 u32 dbb_irqs;
335                 u32 dbb_wakeups;
336                 u32 abb_events;
337         } req;
338 } mb0_transfer;
339
340 /*
341  * mb1_transfer - state needed for mailbox 1 communication.
342  * @lock:       The transaction lock.
343  * @work:       The transaction completion structure.
344  * @ack:        Reply ("acknowledge") data.
345  */
346 static struct {
347         struct mutex lock;
348         struct completion work;
349         struct {
350                 u8 header;
351                 u8 arm_opp;
352                 u8 ape_opp;
353                 u8 ape_voltage_status;
354         } ack;
355 } mb1_transfer;
356
357 /*
358  * mb2_transfer - state needed for mailbox 2 communication.
359  * @lock:            The transaction lock.
360  * @work:            The transaction completion structure.
361  * @auto_pm_lock:    The autonomous power management configuration lock.
362  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
363  * @req:             Request data that need to persist between requests.
364  * @ack:             Reply ("acknowledge") data.
365  */
366 static struct {
367         struct mutex lock;
368         struct completion work;
369         spinlock_t auto_pm_lock;
370         bool auto_pm_enabled;
371         struct {
372                 u8 status;
373         } ack;
374 } mb2_transfer;
375
376 /*
377  * mb3_transfer - state needed for mailbox 3 communication.
378  * @lock:               The request lock.
379  * @sysclk_lock:        A lock used to handle concurrent sysclk requests.
380  * @sysclk_work:        Work structure used for sysclk requests.
381  */
382 static struct {
383         spinlock_t lock;
384         struct mutex sysclk_lock;
385         struct completion sysclk_work;
386 } mb3_transfer;
387
388 /*
389  * mb4_transfer - state needed for mailbox 4 communication.
390  * @lock:       The transaction lock.
391  * @work:       The transaction completion structure.
392  */
393 static struct {
394         struct mutex lock;
395         struct completion work;
396 } mb4_transfer;
397
398 /*
399  * mb5_transfer - state needed for mailbox 5 communication.
400  * @lock:       The transaction lock.
401  * @work:       The transaction completion structure.
402  * @ack:        Reply ("acknowledge") data.
403  */
404 static struct {
405         struct mutex lock;
406         struct completion work;
407         struct {
408                 u8 status;
409                 u8 value;
410         } ack;
411 } mb5_transfer;
412
413 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
414
415 /* Spinlocks */
416 static DEFINE_SPINLOCK(clkout_lock);
417 static DEFINE_SPINLOCK(gpiocr_lock);
418
419 /* Global var to runtime determine TCDM base for v2 or v1 */
420 static __iomem void *tcdm_base;
421
422 struct clk_mgt {
423         unsigned int offset;
424         u32 pllsw;
425 };
426
427 static DEFINE_SPINLOCK(clk_mgt_lock);
428
429 #define CLK_MGT_ENTRY(_name)[PRCMU_##_name] = { (PRCM_##_name##_MGT_OFF), 0 }
430 struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
431         CLK_MGT_ENTRY(SGACLK),
432         CLK_MGT_ENTRY(UARTCLK),
433         CLK_MGT_ENTRY(MSP02CLK),
434         CLK_MGT_ENTRY(MSP1CLK),
435         CLK_MGT_ENTRY(I2CCLK),
436         CLK_MGT_ENTRY(SDMMCCLK),
437         CLK_MGT_ENTRY(SLIMCLK),
438         CLK_MGT_ENTRY(PER1CLK),
439         CLK_MGT_ENTRY(PER2CLK),
440         CLK_MGT_ENTRY(PER3CLK),
441         CLK_MGT_ENTRY(PER5CLK),
442         CLK_MGT_ENTRY(PER6CLK),
443         CLK_MGT_ENTRY(PER7CLK),
444         CLK_MGT_ENTRY(LCDCLK),
445         CLK_MGT_ENTRY(BMLCLK),
446         CLK_MGT_ENTRY(HSITXCLK),
447         CLK_MGT_ENTRY(HSIRXCLK),
448         CLK_MGT_ENTRY(HDMICLK),
449         CLK_MGT_ENTRY(APEATCLK),
450         CLK_MGT_ENTRY(APETRACECLK),
451         CLK_MGT_ENTRY(MCDECLK),
452         CLK_MGT_ENTRY(IPI2CCLK),
453         CLK_MGT_ENTRY(DSIALTCLK),
454         CLK_MGT_ENTRY(DMACLK),
455         CLK_MGT_ENTRY(B2R2CLK),
456         CLK_MGT_ENTRY(TVCLK),
457         CLK_MGT_ENTRY(SSPCLK),
458         CLK_MGT_ENTRY(RNGCLK),
459         CLK_MGT_ENTRY(UICCCLK),
460 };
461
462 /*
463 * Used by MCDE to setup all necessary PRCMU registers
464 */
465 #define PRCMU_RESET_DSIPLL              0x00004000
466 #define PRCMU_UNCLAMP_DSIPLL            0x00400800
467
468 #define PRCMU_CLK_PLL_DIV_SHIFT         0
469 #define PRCMU_CLK_PLL_SW_SHIFT          5
470 #define PRCMU_CLK_38                    (1 << 9)
471 #define PRCMU_CLK_38_SRC                (1 << 10)
472 #define PRCMU_CLK_38_DIV                (1 << 11)
473
474 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
475 #define PRCMU_DSI_CLOCK_SETTING         0x0000008C
476
477 /* PLLDIV=8, PLLSW=4 (PLLDDR) */
478 #define PRCMU_DSI_CLOCK_SETTING_U8400   0x00000088
479
480 /* DPI 50000000 Hz */
481 #define PRCMU_DPI_CLOCK_SETTING         ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
482                                           (16 << PRCMU_CLK_PLL_DIV_SHIFT))
483 #define PRCMU_DSI_LP_CLOCK_SETTING      0x00000E00
484
485 /* D=101, N=1, R=4, SELDIV2=0 */
486 #define PRCMU_PLLDSI_FREQ_SETTING       0x00040165
487
488 /* D=70, N=1, R=3, SELDIV2=0 */
489 #define PRCMU_PLLDSI_FREQ_SETTING_U8400 0x00030146
490
491 #define PRCMU_ENABLE_PLLDSI             0x00000001
492 #define PRCMU_DISABLE_PLLDSI            0x00000000
493 #define PRCMU_RELEASE_RESET_DSS         0x0000400C
494 #define PRCMU_DSI_PLLOUT_SEL_SETTING    0x00000202
495 /* ESC clk, div0=1, div1=1, div2=3 */
496 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV   0x07030101
497 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV  0x00030101
498 #define PRCMU_DSI_RESET_SW              0x00000007
499
500 #define PRCMU_PLLDSI_LOCKP_LOCKED       0x3
501
502 static struct {
503         u8 project_number;
504         u8 api_version;
505         u8 func_version;
506         u8 errata;
507 } prcmu_version;
508
509
510 int prcmu_enable_dsipll(void)
511 {
512         int i;
513         unsigned int plldsifreq;
514
515         /* Clear DSIPLL_RESETN */
516         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
517         /* Unclamp DSIPLL in/out */
518         writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
519
520         if (prcmu_is_u8400())
521                 plldsifreq = PRCMU_PLLDSI_FREQ_SETTING_U8400;
522         else
523                 plldsifreq = PRCMU_PLLDSI_FREQ_SETTING;
524         /* Set DSI PLL FREQ */
525         writel(plldsifreq, PRCM_PLLDSI_FREQ);
526         writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
527         /* Enable Escape clocks */
528         writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
529
530         /* Start DSI PLL */
531         writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
532         /* Reset DSI PLL */
533         writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
534         for (i = 0; i < 10; i++) {
535                 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
536                                         == PRCMU_PLLDSI_LOCKP_LOCKED)
537                         break;
538                 udelay(100);
539         }
540         /* Set DSIPLL_RESETN */
541         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
542         return 0;
543 }
544
545 int prcmu_disable_dsipll(void)
546 {
547         /* Disable dsi pll */
548         writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
549         /* Disable  escapeclock */
550         writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
551         return 0;
552 }
553
554 int prcmu_set_display_clocks(void)
555 {
556         unsigned long flags;
557         unsigned int dsiclk;
558
559         if (prcmu_is_u8400())
560                 dsiclk = PRCMU_DSI_CLOCK_SETTING_U8400;
561         else
562                 dsiclk = PRCMU_DSI_CLOCK_SETTING;
563
564         spin_lock_irqsave(&clk_mgt_lock, flags);
565
566         /* Grab the HW semaphore. */
567         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
568                 cpu_relax();
569
570         writel(dsiclk, PRCM_HDMICLK_MGT);
571         writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
572         writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
573
574         /* Release the HW semaphore. */
575         writel(0, PRCM_SEM);
576
577         spin_unlock_irqrestore(&clk_mgt_lock, flags);
578
579         return 0;
580 }
581
582 /**
583  * prcmu_enable_spi2 - Enables pin muxing for SPI2 on OtherAlternateC1.
584  */
585 void prcmu_enable_spi2(void)
586 {
587         u32 reg;
588         unsigned long flags;
589
590         spin_lock_irqsave(&gpiocr_lock, flags);
591         reg = readl(PRCM_GPIOCR);
592         writel(reg | PRCM_GPIOCR_SPI2_SELECT, PRCM_GPIOCR);
593         spin_unlock_irqrestore(&gpiocr_lock, flags);
594 }
595
596 /**
597  * prcmu_disable_spi2 - Disables pin muxing for SPI2 on OtherAlternateC1.
598  */
599 void prcmu_disable_spi2(void)
600 {
601         u32 reg;
602         unsigned long flags;
603
604         spin_lock_irqsave(&gpiocr_lock, flags);
605         reg = readl(PRCM_GPIOCR);
606         writel(reg & ~PRCM_GPIOCR_SPI2_SELECT, PRCM_GPIOCR);
607         spin_unlock_irqrestore(&gpiocr_lock, flags);
608 }
609
610 bool prcmu_has_arm_maxopp(void)
611 {
612         return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
613                 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
614 }
615
616 bool prcmu_is_u8400(void)
617 {
618         return prcmu_version.project_number == PRCMU_PROJECT_ID_8400V2_0;
619 }
620
621 /**
622  * prcmu_get_boot_status - PRCMU boot status checking
623  * Returns: the current PRCMU boot status
624  */
625 int prcmu_get_boot_status(void)
626 {
627         return readb(tcdm_base + PRCM_BOOT_STATUS);
628 }
629
630 /**
631  * prcmu_set_rc_a2p - This function is used to run few power state sequences
632  * @val: Value to be set, i.e. transition requested
633  * Returns: 0 on success, -EINVAL on invalid argument
634  *
635  * This function is used to run the following power state sequences -
636  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
637  */
638 int prcmu_set_rc_a2p(enum romcode_write val)
639 {
640         if (val < RDY_2_DS || val > RDY_2_XP70_RST)
641                 return -EINVAL;
642         writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
643         return 0;
644 }
645
646 /**
647  * prcmu_get_rc_p2a - This function is used to get power state sequences
648  * Returns: the power transition that has last happened
649  *
650  * This function can return the following transitions-
651  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
652  */
653 enum romcode_read prcmu_get_rc_p2a(void)
654 {
655         return readb(tcdm_base + PRCM_ROMCODE_P2A);
656 }
657
658 /**
659  * prcmu_get_current_mode - Return the current XP70 power mode
660  * Returns: Returns the current AP(ARM) power mode: init,
661  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
662  */
663 enum ap_pwrst prcmu_get_xp70_current_state(void)
664 {
665         return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
666 }
667
668 /**
669  * prcmu_config_clkout - Configure one of the programmable clock outputs.
670  * @clkout:     The CLKOUT number (0 or 1).
671  * @source:     The clock to be used (one of the PRCMU_CLKSRC_*).
672  * @div:        The divider to be applied.
673  *
674  * Configures one of the programmable clock outputs (CLKOUTs).
675  * @div should be in the range [1,63] to request a configuration, or 0 to
676  * inform that the configuration is no longer requested.
677  */
678 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
679 {
680         static int requests[2];
681         int r = 0;
682         unsigned long flags;
683         u32 val;
684         u32 bits;
685         u32 mask;
686         u32 div_mask;
687
688         BUG_ON(clkout > 1);
689         BUG_ON(div > 63);
690         BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
691
692         if (!div && !requests[clkout])
693                 return -EINVAL;
694
695         switch (clkout) {
696         case 0:
697                 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
698                 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
699                 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
700                         (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
701                 break;
702         case 1:
703                 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
704                 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
705                         PRCM_CLKOCR_CLK1TYPE);
706                 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
707                         (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
708                 break;
709         }
710         bits &= mask;
711
712         spin_lock_irqsave(&clkout_lock, flags);
713
714         val = readl(PRCM_CLKOCR);
715         if (val & div_mask) {
716                 if (div) {
717                         if ((val & mask) != bits) {
718                                 r = -EBUSY;
719                                 goto unlock_and_return;
720                         }
721                 } else {
722                         if ((val & mask & ~div_mask) != bits) {
723                                 r = -EINVAL;
724                                 goto unlock_and_return;
725                         }
726                 }
727         }
728         writel((bits | (val & ~mask)), PRCM_CLKOCR);
729         requests[clkout] += (div ? 1 : -1);
730
731 unlock_and_return:
732         spin_unlock_irqrestore(&clkout_lock, flags);
733
734         return r;
735 }
736
737 int prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
738 {
739         unsigned long flags;
740
741         BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
742
743         spin_lock_irqsave(&mb0_transfer.lock, flags);
744
745         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
746                 cpu_relax();
747
748         writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
749         writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
750         writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
751         writeb((keep_ulp_clk ? 1 : 0),
752                 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
753         writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
754         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
755
756         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
757
758         return 0;
759 }
760
761 /* This function should only be called while mb0_transfer.lock is held. */
762 static void config_wakeups(void)
763 {
764         const u8 header[2] = {
765                 MB0H_CONFIG_WAKEUPS_EXE,
766                 MB0H_CONFIG_WAKEUPS_SLEEP
767         };
768         static u32 last_dbb_events;
769         static u32 last_abb_events;
770         u32 dbb_events;
771         u32 abb_events;
772         unsigned int i;
773
774         dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
775         dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
776
777         abb_events = mb0_transfer.req.abb_events;
778
779         if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
780                 return;
781
782         for (i = 0; i < 2; i++) {
783                 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
784                         cpu_relax();
785                 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
786                 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
787                 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
788                 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
789         }
790         last_dbb_events = dbb_events;
791         last_abb_events = abb_events;
792 }
793
794 void prcmu_enable_wakeups(u32 wakeups)
795 {
796         unsigned long flags;
797         u32 bits;
798         int i;
799
800         BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
801
802         for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
803                 if (wakeups & BIT(i))
804                         bits |= prcmu_wakeup_bit[i];
805         }
806
807         spin_lock_irqsave(&mb0_transfer.lock, flags);
808
809         mb0_transfer.req.dbb_wakeups = bits;
810         config_wakeups();
811
812         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
813 }
814
815 void prcmu_config_abb_event_readout(u32 abb_events)
816 {
817         unsigned long flags;
818
819         spin_lock_irqsave(&mb0_transfer.lock, flags);
820
821         mb0_transfer.req.abb_events = abb_events;
822         config_wakeups();
823
824         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
825 }
826
827 void prcmu_get_abb_event_buffer(void __iomem **buf)
828 {
829         if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
830                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
831         else
832                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
833 }
834
835 /**
836  * prcmu_set_arm_opp - set the appropriate ARM OPP
837  * @opp: The new ARM operating point to which transition is to be made
838  * Returns: 0 on success, non-zero on failure
839  *
840  * This function sets the the operating point of the ARM.
841  */
842 int prcmu_set_arm_opp(u8 opp)
843 {
844         int r;
845
846         if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
847                 return -EINVAL;
848
849         r = 0;
850
851         mutex_lock(&mb1_transfer.lock);
852
853         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
854                 cpu_relax();
855
856         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
857         writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
858         writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
859
860         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
861         wait_for_completion(&mb1_transfer.work);
862
863         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
864                 (mb1_transfer.ack.arm_opp != opp))
865                 r = -EIO;
866
867         mutex_unlock(&mb1_transfer.lock);
868
869         return r;
870 }
871
872 /**
873  * prcmu_get_arm_opp - get the current ARM OPP
874  *
875  * Returns: the current ARM OPP
876  */
877 int prcmu_get_arm_opp(void)
878 {
879         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
880 }
881
882 /**
883  * prcmu_get_ddr_opp - get the current DDR OPP
884  *
885  * Returns: the current DDR OPP
886  */
887 int prcmu_get_ddr_opp(void)
888 {
889         return readb(PRCM_DDR_SUBSYS_APE_MINBW);
890 }
891
892 /**
893  * set_ddr_opp - set the appropriate DDR OPP
894  * @opp: The new DDR operating point to which transition is to be made
895  * Returns: 0 on success, non-zero on failure
896  *
897  * This function sets the operating point of the DDR.
898  */
899 int prcmu_set_ddr_opp(u8 opp)
900 {
901         if (opp < DDR_100_OPP || opp > DDR_25_OPP)
902                 return -EINVAL;
903         /* Changing the DDR OPP can hang the hardware pre-v21 */
904         if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
905                 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
906
907         return 0;
908 }
909 /**
910  * set_ape_opp - set the appropriate APE OPP
911  * @opp: The new APE operating point to which transition is to be made
912  * Returns: 0 on success, non-zero on failure
913  *
914  * This function sets the operating point of the APE.
915  */
916 int prcmu_set_ape_opp(u8 opp)
917 {
918         int r = 0;
919
920         mutex_lock(&mb1_transfer.lock);
921
922         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
923                 cpu_relax();
924
925         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
926         writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
927         writeb(opp, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
928
929         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
930         wait_for_completion(&mb1_transfer.work);
931
932         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
933                 (mb1_transfer.ack.ape_opp != opp))
934                 r = -EIO;
935
936         mutex_unlock(&mb1_transfer.lock);
937
938         return r;
939 }
940
941 /**
942  * prcmu_get_ape_opp - get the current APE OPP
943  *
944  * Returns: the current APE OPP
945  */
946 int prcmu_get_ape_opp(void)
947 {
948         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
949 }
950
951 /**
952  * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
953  * @enable: true to request the higher voltage, false to drop a request.
954  *
955  * Calls to this function to enable and disable requests must be balanced.
956  */
957 int prcmu_request_ape_opp_100_voltage(bool enable)
958 {
959         int r = 0;
960         u8 header;
961         static unsigned int requests;
962
963         mutex_lock(&mb1_transfer.lock);
964
965         if (enable) {
966                 if (0 != requests++)
967                         goto unlock_and_return;
968                 header = MB1H_REQUEST_APE_OPP_100_VOLT;
969         } else {
970                 if (requests == 0) {
971                         r = -EIO;
972                         goto unlock_and_return;
973                 } else if (1 != requests--) {
974                         goto unlock_and_return;
975                 }
976                 header = MB1H_RELEASE_APE_OPP_100_VOLT;
977         }
978
979         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
980                 cpu_relax();
981
982         writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
983
984         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
985         wait_for_completion(&mb1_transfer.work);
986
987         if ((mb1_transfer.ack.header != header) ||
988                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
989                 r = -EIO;
990
991 unlock_and_return:
992         mutex_unlock(&mb1_transfer.lock);
993
994         return r;
995 }
996
997 /**
998  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
999  *
1000  * This function releases the power state requirements of a USB wakeup.
1001  */
1002 int prcmu_release_usb_wakeup_state(void)
1003 {
1004         int r = 0;
1005
1006         mutex_lock(&mb1_transfer.lock);
1007
1008         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1009                 cpu_relax();
1010
1011         writeb(MB1H_RELEASE_USB_WAKEUP,
1012                 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1013
1014         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1015         wait_for_completion(&mb1_transfer.work);
1016
1017         if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1018                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1019                 r = -EIO;
1020
1021         mutex_unlock(&mb1_transfer.lock);
1022
1023         return r;
1024 }
1025
1026 /**
1027  * prcmu_set_epod - set the state of a EPOD (power domain)
1028  * @epod_id: The EPOD to set
1029  * @epod_state: The new EPOD state
1030  *
1031  * This function sets the state of a EPOD (power domain). It may not be called
1032  * from interrupt context.
1033  */
1034 int prcmu_set_epod(u16 epod_id, u8 epod_state)
1035 {
1036         int r = 0;
1037         bool ram_retention = false;
1038         int i;
1039
1040         /* check argument */
1041         BUG_ON(epod_id >= NUM_EPOD_ID);
1042
1043         /* set flag if retention is possible */
1044         switch (epod_id) {
1045         case EPOD_ID_SVAMMDSP:
1046         case EPOD_ID_SIAMMDSP:
1047         case EPOD_ID_ESRAM12:
1048         case EPOD_ID_ESRAM34:
1049                 ram_retention = true;
1050                 break;
1051         }
1052
1053         /* check argument */
1054         BUG_ON(epod_state > EPOD_STATE_ON);
1055         BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1056
1057         /* get lock */
1058         mutex_lock(&mb2_transfer.lock);
1059
1060         /* wait for mailbox */
1061         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1062                 cpu_relax();
1063
1064         /* fill in mailbox */
1065         for (i = 0; i < NUM_EPOD_ID; i++)
1066                 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1067         writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1068
1069         writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1070
1071         writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1072
1073         /*
1074          * The current firmware version does not handle errors correctly,
1075          * and we cannot recover if there is an error.
1076          * This is expected to change when the firmware is updated.
1077          */
1078         if (!wait_for_completion_timeout(&mb2_transfer.work,
1079                         msecs_to_jiffies(20000))) {
1080                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1081                         __func__);
1082                 r = -EIO;
1083                 goto unlock_and_return;
1084         }
1085
1086         if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1087                 r = -EIO;
1088
1089 unlock_and_return:
1090         mutex_unlock(&mb2_transfer.lock);
1091         return r;
1092 }
1093
1094 /**
1095  * prcmu_configure_auto_pm - Configure autonomous power management.
1096  * @sleep: Configuration for ApSleep.
1097  * @idle:  Configuration for ApIdle.
1098  */
1099 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1100         struct prcmu_auto_pm_config *idle)
1101 {
1102         u32 sleep_cfg;
1103         u32 idle_cfg;
1104         unsigned long flags;
1105
1106         BUG_ON((sleep == NULL) || (idle == NULL));
1107
1108         sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1109         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1110         sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1111         sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1112         sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1113         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1114
1115         idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1116         idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1117         idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1118         idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1119         idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1120         idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1121
1122         spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1123
1124         /*
1125          * The autonomous power management configuration is done through
1126          * fields in mailbox 2, but these fields are only used as shared
1127          * variables - i.e. there is no need to send a message.
1128          */
1129         writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1130         writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1131
1132         mb2_transfer.auto_pm_enabled =
1133                 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1134                  (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1135                  (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1136                  (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1137
1138         spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1139 }
1140 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1141
1142 bool prcmu_is_auto_pm_enabled(void)
1143 {
1144         return mb2_transfer.auto_pm_enabled;
1145 }
1146
1147 static int request_sysclk(bool enable)
1148 {
1149         int r;
1150         unsigned long flags;
1151
1152         r = 0;
1153
1154         mutex_lock(&mb3_transfer.sysclk_lock);
1155
1156         spin_lock_irqsave(&mb3_transfer.lock, flags);
1157
1158         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1159                 cpu_relax();
1160
1161         writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1162
1163         writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1164         writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1165
1166         spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1167
1168         /*
1169          * The firmware only sends an ACK if we want to enable the
1170          * SysClk, and it succeeds.
1171          */
1172         if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1173                         msecs_to_jiffies(20000))) {
1174                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1175                         __func__);
1176                 r = -EIO;
1177         }
1178
1179         mutex_unlock(&mb3_transfer.sysclk_lock);
1180
1181         return r;
1182 }
1183
1184 static int request_timclk(bool enable)
1185 {
1186         u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1187
1188         if (!enable)
1189                 val |= PRCM_TCR_STOP_TIMERS;
1190         writel(val, PRCM_TCR);
1191
1192         return 0;
1193 }
1194
1195 static int request_reg_clock(u8 clock, bool enable)
1196 {
1197         u32 val;
1198         unsigned long flags;
1199
1200         spin_lock_irqsave(&clk_mgt_lock, flags);
1201
1202         /* Grab the HW semaphore. */
1203         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1204                 cpu_relax();
1205
1206         val = readl(_PRCMU_BASE + clk_mgt[clock].offset);
1207         if (enable) {
1208                 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1209         } else {
1210                 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1211                 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1212         }
1213         writel(val, (_PRCMU_BASE + clk_mgt[clock].offset));
1214
1215         /* Release the HW semaphore. */
1216         writel(0, PRCM_SEM);
1217
1218         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1219
1220         return 0;
1221 }
1222
1223 /**
1224  * prcmu_request_clock() - Request for a clock to be enabled or disabled.
1225  * @clock:      The clock for which the request is made.
1226  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1227  *
1228  * This function should only be used by the clock implementation.
1229  * Do not use it from any other place!
1230  */
1231 int prcmu_request_clock(u8 clock, bool enable)
1232 {
1233         if (clock < PRCMU_NUM_REG_CLOCKS)
1234                 return request_reg_clock(clock, enable);
1235         else if (clock == PRCMU_TIMCLK)
1236                 return request_timclk(enable);
1237         else if (clock == PRCMU_SYSCLK)
1238                 return request_sysclk(enable);
1239         else
1240                 return -EINVAL;
1241 }
1242
1243 int prcmu_config_esram0_deep_sleep(u8 state)
1244 {
1245         if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1246             (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1247                 return -EINVAL;
1248
1249         mutex_lock(&mb4_transfer.lock);
1250
1251         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1252                 cpu_relax();
1253
1254         writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1255         writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1256                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1257         writeb(DDR_PWR_STATE_ON,
1258                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1259         writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1260
1261         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1262         wait_for_completion(&mb4_transfer.work);
1263
1264         mutex_unlock(&mb4_transfer.lock);
1265
1266         return 0;
1267 }
1268
1269 int prcmu_config_hotdog(u8 threshold)
1270 {
1271         mutex_lock(&mb4_transfer.lock);
1272
1273         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1274                 cpu_relax();
1275
1276         writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1277         writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1278
1279         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1280         wait_for_completion(&mb4_transfer.work);
1281
1282         mutex_unlock(&mb4_transfer.lock);
1283
1284         return 0;
1285 }
1286
1287 int prcmu_config_hotmon(u8 low, u8 high)
1288 {
1289         mutex_lock(&mb4_transfer.lock);
1290
1291         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1292                 cpu_relax();
1293
1294         writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
1295         writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
1296         writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
1297                 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
1298         writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1299
1300         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1301         wait_for_completion(&mb4_transfer.work);
1302
1303         mutex_unlock(&mb4_transfer.lock);
1304
1305         return 0;
1306 }
1307
1308 static int config_hot_period(u16 val)
1309 {
1310         mutex_lock(&mb4_transfer.lock);
1311
1312         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1313                 cpu_relax();
1314
1315         writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
1316         writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1317
1318         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1319         wait_for_completion(&mb4_transfer.work);
1320
1321         mutex_unlock(&mb4_transfer.lock);
1322
1323         return 0;
1324 }
1325
1326 int prcmu_start_temp_sense(u16 cycles32k)
1327 {
1328         if (cycles32k == 0xFFFF)
1329                 return -EINVAL;
1330
1331         return config_hot_period(cycles32k);
1332 }
1333
1334 int prcmu_stop_temp_sense(void)
1335 {
1336         return config_hot_period(0xFFFF);
1337 }
1338
1339 /**
1340  * prcmu_set_clock_divider() - Configure the clock divider.
1341  * @clock:      The clock for which the request is made.
1342  * @divider:    The clock divider. (< 32)
1343  *
1344  * This function should only be used by the clock implementation.
1345  * Do not use it from any other place!
1346  */
1347 int prcmu_set_clock_divider(u8 clock, u8 divider)
1348 {
1349         u32 val;
1350         unsigned long flags;
1351
1352         if ((clock >= PRCMU_NUM_REG_CLOCKS) || (divider < 1) || (31 < divider))
1353                 return -EINVAL;
1354
1355         spin_lock_irqsave(&clk_mgt_lock, flags);
1356
1357         /* Grab the HW semaphore. */
1358         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1359                 cpu_relax();
1360
1361         val = readl(_PRCMU_BASE + clk_mgt[clock].offset);
1362         val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK);
1363         val |= (u32)divider;
1364         writel(val, (_PRCMU_BASE + clk_mgt[clock].offset));
1365
1366         /* Release the HW semaphore. */
1367         writel(0, PRCM_SEM);
1368
1369         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1370
1371         return 0;
1372 }
1373
1374 /**
1375  * prcmu_abb_read() - Read register value(s) from the ABB.
1376  * @slave:      The I2C slave address.
1377  * @reg:        The (start) register address.
1378  * @value:      The read out value(s).
1379  * @size:       The number of registers to read.
1380  *
1381  * Reads register value(s) from the ABB.
1382  * @size has to be 1 for the current firmware version.
1383  */
1384 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
1385 {
1386         int r;
1387
1388         if (size != 1)
1389                 return -EINVAL;
1390
1391         mutex_lock(&mb5_transfer.lock);
1392
1393         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
1394                 cpu_relax();
1395
1396         writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
1397         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
1398         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
1399         writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
1400
1401         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
1402
1403         if (!wait_for_completion_timeout(&mb5_transfer.work,
1404                                 msecs_to_jiffies(20000))) {
1405                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1406                         __func__);
1407                 r = -EIO;
1408         } else {
1409                 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
1410         }
1411
1412         if (!r)
1413                 *value = mb5_transfer.ack.value;
1414
1415         mutex_unlock(&mb5_transfer.lock);
1416
1417         return r;
1418 }
1419
1420 /**
1421  * prcmu_abb_write() - Write register value(s) to the ABB.
1422  * @slave:      The I2C slave address.
1423  * @reg:        The (start) register address.
1424  * @value:      The value(s) to write.
1425  * @size:       The number of registers to write.
1426  *
1427  * Reads register value(s) from the ABB.
1428  * @size has to be 1 for the current firmware version.
1429  */
1430 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
1431 {
1432         int r;
1433
1434         if (size != 1)
1435                 return -EINVAL;
1436
1437         mutex_lock(&mb5_transfer.lock);
1438
1439         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
1440                 cpu_relax();
1441
1442         writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
1443         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
1444         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
1445         writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
1446
1447         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
1448
1449         if (!wait_for_completion_timeout(&mb5_transfer.work,
1450                                 msecs_to_jiffies(20000))) {
1451                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1452                         __func__);
1453                 r = -EIO;
1454         } else {
1455                 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
1456         }
1457
1458         mutex_unlock(&mb5_transfer.lock);
1459
1460         return r;
1461 }
1462
1463 /**
1464  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
1465  */
1466 void prcmu_ac_wake_req(void)
1467 {
1468         u32 val;
1469
1470         mutex_lock(&mb0_transfer.ac_wake_lock);
1471
1472         val = readl(PRCM_HOSTACCESS_REQ);
1473         if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
1474                 goto unlock_and_return;
1475
1476         atomic_set(&ac_wake_req_state, 1);
1477
1478         writel((val | PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), PRCM_HOSTACCESS_REQ);
1479
1480         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
1481                         msecs_to_jiffies(20000))) {
1482                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1483                         __func__);
1484         }
1485
1486 unlock_and_return:
1487         mutex_unlock(&mb0_transfer.ac_wake_lock);
1488 }
1489
1490 /**
1491  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
1492  */
1493 void prcmu_ac_sleep_req()
1494 {
1495         u32 val;
1496
1497         mutex_lock(&mb0_transfer.ac_wake_lock);
1498
1499         val = readl(PRCM_HOSTACCESS_REQ);
1500         if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
1501                 goto unlock_and_return;
1502
1503         writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
1504                 PRCM_HOSTACCESS_REQ);
1505
1506         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
1507                         msecs_to_jiffies(20000))) {
1508                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1509                         __func__);
1510         }
1511
1512         atomic_set(&ac_wake_req_state, 0);
1513
1514 unlock_and_return:
1515         mutex_unlock(&mb0_transfer.ac_wake_lock);
1516 }
1517
1518 bool prcmu_is_ac_wake_requested(void)
1519 {
1520         return (atomic_read(&ac_wake_req_state) != 0);
1521 }
1522
1523 /**
1524  * prcmu_system_reset - System reset
1525  *
1526  * Saves the reset reason code and then sets the APE_SOFRST register which
1527  * fires interrupt to fw
1528  */
1529 void prcmu_system_reset(u16 reset_code)
1530 {
1531         writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
1532         writel(1, PRCM_APE_SOFTRST);
1533 }
1534
1535 /**
1536  * prcmu_reset_modem - ask the PRCMU to reset modem
1537  */
1538 void prcmu_modem_reset(void)
1539 {
1540         mutex_lock(&mb1_transfer.lock);
1541
1542         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1543                 cpu_relax();
1544
1545         writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1546         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1547         wait_for_completion(&mb1_transfer.work);
1548
1549         /*
1550          * No need to check return from PRCMU as modem should go in reset state
1551          * This state is already managed by upper layer
1552          */
1553
1554         mutex_unlock(&mb1_transfer.lock);
1555 }
1556
1557 static void ack_dbb_wakeup(void)
1558 {
1559         unsigned long flags;
1560
1561         spin_lock_irqsave(&mb0_transfer.lock, flags);
1562
1563         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
1564                 cpu_relax();
1565
1566         writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
1567         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
1568
1569         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
1570 }
1571
1572 static inline void print_unknown_header_warning(u8 n, u8 header)
1573 {
1574         pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
1575                 header, n);
1576 }
1577
1578 static bool read_mailbox_0(void)
1579 {
1580         bool r;
1581         u32 ev;
1582         unsigned int n;
1583         u8 header;
1584
1585         header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
1586         switch (header) {
1587         case MB0H_WAKEUP_EXE:
1588         case MB0H_WAKEUP_SLEEP:
1589                 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
1590                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
1591                 else
1592                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
1593
1594                 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
1595                         complete(&mb0_transfer.ac_wake_work);
1596                 if (ev & WAKEUP_BIT_SYSCLK_OK)
1597                         complete(&mb3_transfer.sysclk_work);
1598
1599                 ev &= mb0_transfer.req.dbb_irqs;
1600
1601                 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
1602                         if (ev & prcmu_irq_bit[n])
1603                                 generic_handle_irq(IRQ_PRCMU_BASE + n);
1604                 }
1605                 r = true;
1606                 break;
1607         default:
1608                 print_unknown_header_warning(0, header);
1609                 r = false;
1610                 break;
1611         }
1612         writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
1613         return r;
1614 }
1615
1616 static bool read_mailbox_1(void)
1617 {
1618         mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
1619         mb1_transfer.ack.arm_opp = readb(tcdm_base +
1620                 PRCM_ACK_MB1_CURRENT_ARM_OPP);
1621         mb1_transfer.ack.ape_opp = readb(tcdm_base +
1622                 PRCM_ACK_MB1_CURRENT_APE_OPP);
1623         mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
1624                 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
1625         writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
1626         complete(&mb1_transfer.work);
1627         return false;
1628 }
1629
1630 static bool read_mailbox_2(void)
1631 {
1632         mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
1633         writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
1634         complete(&mb2_transfer.work);
1635         return false;
1636 }
1637
1638 static bool read_mailbox_3(void)
1639 {
1640         writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
1641         return false;
1642 }
1643
1644 static bool read_mailbox_4(void)
1645 {
1646         u8 header;
1647         bool do_complete = true;
1648
1649         header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
1650         switch (header) {
1651         case MB4H_MEM_ST:
1652         case MB4H_HOTDOG:
1653         case MB4H_HOTMON:
1654         case MB4H_HOT_PERIOD:
1655         case MB4H_A9WDOG_CONF:
1656         case MB4H_A9WDOG_EN:
1657         case MB4H_A9WDOG_DIS:
1658         case MB4H_A9WDOG_LOAD:
1659         case MB4H_A9WDOG_KICK:
1660                 break;
1661         default:
1662                 print_unknown_header_warning(4, header);
1663                 do_complete = false;
1664                 break;
1665         }
1666
1667         writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
1668
1669         if (do_complete)
1670                 complete(&mb4_transfer.work);
1671
1672         return false;
1673 }
1674
1675 static bool read_mailbox_5(void)
1676 {
1677         mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
1678         mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
1679         writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
1680         complete(&mb5_transfer.work);
1681         return false;
1682 }
1683
1684 static bool read_mailbox_6(void)
1685 {
1686         writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
1687         return false;
1688 }
1689
1690 static bool read_mailbox_7(void)
1691 {
1692         writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
1693         return false;
1694 }
1695
1696 static bool (* const read_mailbox[NUM_MB])(void) = {
1697         read_mailbox_0,
1698         read_mailbox_1,
1699         read_mailbox_2,
1700         read_mailbox_3,
1701         read_mailbox_4,
1702         read_mailbox_5,
1703         read_mailbox_6,
1704         read_mailbox_7
1705 };
1706
1707 static irqreturn_t prcmu_irq_handler(int irq, void *data)
1708 {
1709         u32 bits;
1710         u8 n;
1711         irqreturn_t r;
1712
1713         bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
1714         if (unlikely(!bits))
1715                 return IRQ_NONE;
1716
1717         r = IRQ_HANDLED;
1718         for (n = 0; bits; n++) {
1719                 if (bits & MBOX_BIT(n)) {
1720                         bits -= MBOX_BIT(n);
1721                         if (read_mailbox[n]())
1722                                 r = IRQ_WAKE_THREAD;
1723                 }
1724         }
1725         return r;
1726 }
1727
1728 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
1729 {
1730         ack_dbb_wakeup();
1731         return IRQ_HANDLED;
1732 }
1733
1734 static void prcmu_mask_work(struct work_struct *work)
1735 {
1736         unsigned long flags;
1737
1738         spin_lock_irqsave(&mb0_transfer.lock, flags);
1739
1740         config_wakeups();
1741
1742         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
1743 }
1744
1745 static void prcmu_irq_mask(struct irq_data *d)
1746 {
1747         unsigned long flags;
1748
1749         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
1750
1751         mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
1752
1753         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
1754
1755         if (d->irq != IRQ_PRCMU_CA_SLEEP)
1756                 schedule_work(&mb0_transfer.mask_work);
1757 }
1758
1759 static void prcmu_irq_unmask(struct irq_data *d)
1760 {
1761         unsigned long flags;
1762
1763         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
1764
1765         mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
1766
1767         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
1768
1769         if (d->irq != IRQ_PRCMU_CA_SLEEP)
1770                 schedule_work(&mb0_transfer.mask_work);
1771 }
1772
1773 static void noop(struct irq_data *d)
1774 {
1775 }
1776
1777 static struct irq_chip prcmu_irq_chip = {
1778         .name           = "prcmu",
1779         .irq_disable    = prcmu_irq_mask,
1780         .irq_ack        = noop,
1781         .irq_mask       = prcmu_irq_mask,
1782         .irq_unmask     = prcmu_irq_unmask,
1783 };
1784
1785 void __init prcmu_early_init(void)
1786 {
1787         unsigned int i;
1788
1789         if (cpu_is_u8500v1()) {
1790                 tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE_V1);
1791         } else if (cpu_is_u8500v2()) {
1792                 void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
1793
1794                 if (tcpm_base != NULL) {
1795                         int version;
1796                         version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
1797                         prcmu_version.project_number = version & 0xFF;
1798                         prcmu_version.api_version = (version >> 8) & 0xFF;
1799                         prcmu_version.func_version = (version >> 16) & 0xFF;
1800                         prcmu_version.errata = (version >> 24) & 0xFF;
1801                         pr_info("PRCMU firmware version %d.%d.%d\n",
1802                                 (version >> 8) & 0xFF, (version >> 16) & 0xFF,
1803                                 (version >> 24) & 0xFF);
1804                         iounmap(tcpm_base);
1805                 }
1806
1807                 tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
1808         } else {
1809                 pr_err("prcmu: Unsupported chip version\n");
1810                 BUG();
1811         }
1812
1813         spin_lock_init(&mb0_transfer.lock);
1814         spin_lock_init(&mb0_transfer.dbb_irqs_lock);
1815         mutex_init(&mb0_transfer.ac_wake_lock);
1816         init_completion(&mb0_transfer.ac_wake_work);
1817         mutex_init(&mb1_transfer.lock);
1818         init_completion(&mb1_transfer.work);
1819         mutex_init(&mb2_transfer.lock);
1820         init_completion(&mb2_transfer.work);
1821         spin_lock_init(&mb2_transfer.auto_pm_lock);
1822         spin_lock_init(&mb3_transfer.lock);
1823         mutex_init(&mb3_transfer.sysclk_lock);
1824         init_completion(&mb3_transfer.sysclk_work);
1825         mutex_init(&mb4_transfer.lock);
1826         init_completion(&mb4_transfer.work);
1827         mutex_init(&mb5_transfer.lock);
1828         init_completion(&mb5_transfer.work);
1829
1830         INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
1831
1832         /* Initalize irqs. */
1833         for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
1834                 unsigned int irq;
1835
1836                 irq = IRQ_PRCMU_BASE + i;
1837                 irq_set_chip_and_handler(irq, &prcmu_irq_chip,
1838                                          handle_simple_irq);
1839                 set_irq_flags(irq, IRQF_VALID);
1840         }
1841 }
1842
1843 static void __init init_prcm_registers(void)
1844 {
1845         u32 val;
1846
1847         val = readl(PRCM_A9PL_FORCE_CLKEN);
1848         val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
1849                 PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
1850         writel(val, (PRCM_A9PL_FORCE_CLKEN));
1851 }
1852
1853 /*
1854  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
1855  */
1856 static struct regulator_consumer_supply db8500_vape_consumers[] = {
1857         REGULATOR_SUPPLY("v-ape", NULL),
1858         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
1859         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
1860         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
1861         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
1862         /* "v-mmc" changed to "vcore" in the mainline kernel */
1863         REGULATOR_SUPPLY("vcore", "sdi0"),
1864         REGULATOR_SUPPLY("vcore", "sdi1"),
1865         REGULATOR_SUPPLY("vcore", "sdi2"),
1866         REGULATOR_SUPPLY("vcore", "sdi3"),
1867         REGULATOR_SUPPLY("vcore", "sdi4"),
1868         REGULATOR_SUPPLY("v-dma", "dma40.0"),
1869         REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
1870         /* "v-uart" changed to "vcore" in the mainline kernel */
1871         REGULATOR_SUPPLY("vcore", "uart0"),
1872         REGULATOR_SUPPLY("vcore", "uart1"),
1873         REGULATOR_SUPPLY("vcore", "uart2"),
1874         REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
1875 };
1876
1877 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
1878         /* CG2900 and CW1200 power to off-chip peripherals */
1879         REGULATOR_SUPPLY("gbf_1v8", "cg2900-uart.0"),
1880         REGULATOR_SUPPLY("wlan_1v8", "cw1200.0"),
1881         REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
1882         /* AV8100 regulator */
1883         REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
1884 };
1885
1886 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
1887         REGULATOR_SUPPLY("vsupply", "b2r2.0"),
1888         REGULATOR_SUPPLY("vsupply", "mcde.0"),
1889 };
1890
1891 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
1892         [DB8500_REGULATOR_VAPE] = {
1893                 .constraints = {
1894                         .name = "db8500-vape",
1895                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1896                 },
1897                 .consumer_supplies = db8500_vape_consumers,
1898                 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
1899         },
1900         [DB8500_REGULATOR_VARM] = {
1901                 .constraints = {
1902                         .name = "db8500-varm",
1903                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1904                 },
1905         },
1906         [DB8500_REGULATOR_VMODEM] = {
1907                 .constraints = {
1908                         .name = "db8500-vmodem",
1909                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1910                 },
1911         },
1912         [DB8500_REGULATOR_VPLL] = {
1913                 .constraints = {
1914                         .name = "db8500-vpll",
1915                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1916                 },
1917         },
1918         [DB8500_REGULATOR_VSMPS1] = {
1919                 .constraints = {
1920                         .name = "db8500-vsmps1",
1921                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1922                 },
1923         },
1924         [DB8500_REGULATOR_VSMPS2] = {
1925                 .constraints = {
1926                         .name = "db8500-vsmps2",
1927                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1928                 },
1929                 .consumer_supplies = db8500_vsmps2_consumers,
1930                 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
1931         },
1932         [DB8500_REGULATOR_VSMPS3] = {
1933                 .constraints = {
1934                         .name = "db8500-vsmps3",
1935                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1936                 },
1937         },
1938         [DB8500_REGULATOR_VRF1] = {
1939                 .constraints = {
1940                         .name = "db8500-vrf1",
1941                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1942                 },
1943         },
1944         [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
1945                 .supply_regulator = "db8500-vape",
1946                 .constraints = {
1947                         .name = "db8500-sva-mmdsp",
1948                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1949                 },
1950         },
1951         [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
1952                 .constraints = {
1953                         /* "ret" means "retention" */
1954                         .name = "db8500-sva-mmdsp-ret",
1955                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1956                 },
1957         },
1958         [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
1959                 .supply_regulator = "db8500-vape",
1960                 .constraints = {
1961                         .name = "db8500-sva-pipe",
1962                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1963                 },
1964         },
1965         [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
1966                 .supply_regulator = "db8500-vape",
1967                 .constraints = {
1968                         .name = "db8500-sia-mmdsp",
1969                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1970                 },
1971         },
1972         [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
1973                 .constraints = {
1974                         .name = "db8500-sia-mmdsp-ret",
1975                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1976                 },
1977         },
1978         [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
1979                 .supply_regulator = "db8500-vape",
1980                 .constraints = {
1981                         .name = "db8500-sia-pipe",
1982                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1983                 },
1984         },
1985         [DB8500_REGULATOR_SWITCH_SGA] = {
1986                 .supply_regulator = "db8500-vape",
1987                 .constraints = {
1988                         .name = "db8500-sga",
1989                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1990                 },
1991         },
1992         [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
1993                 .supply_regulator = "db8500-vape",
1994                 .constraints = {
1995                         .name = "db8500-b2r2-mcde",
1996                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1997                 },
1998                 .consumer_supplies = db8500_b2r2_mcde_consumers,
1999                 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2000         },
2001         [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2002                 .supply_regulator = "db8500-vape",
2003                 .constraints = {
2004                         .name = "db8500-esram12",
2005                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2006                 },
2007         },
2008         [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2009                 .constraints = {
2010                         .name = "db8500-esram12-ret",
2011                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2012                 },
2013         },
2014         [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2015                 .supply_regulator = "db8500-vape",
2016                 .constraints = {
2017                         .name = "db8500-esram34",
2018                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2019                 },
2020         },
2021         [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2022                 .constraints = {
2023                         .name = "db8500-esram34-ret",
2024                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2025                 },
2026         },
2027 };
2028
2029 static struct mfd_cell db8500_prcmu_devs[] = {
2030         {
2031                 .name = "db8500-prcmu-regulators",
2032                 .platform_data = &db8500_regulators,
2033                 .pdata_size = sizeof(db8500_regulators),
2034         },
2035         {
2036                 .name = "cpufreq-u8500",
2037         },
2038 };
2039
2040 /**
2041  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
2042  *
2043  */
2044 static int __init db8500_prcmu_probe(struct platform_device *pdev)
2045 {
2046         int err = 0;
2047
2048         if (ux500_is_svp())
2049                 return -ENODEV;
2050
2051         init_prcm_registers();
2052
2053         /* Clean up the mailbox interrupts after pre-kernel code. */
2054         writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
2055
2056         err = request_threaded_irq(IRQ_DB8500_PRCMU1, prcmu_irq_handler,
2057                 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
2058         if (err < 0) {
2059                 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
2060                 err = -EBUSY;
2061                 goto no_irq_return;
2062         }
2063
2064         if (cpu_is_u8500v20_or_later())
2065                 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
2066
2067         err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
2068                               ARRAY_SIZE(db8500_prcmu_devs), NULL,
2069                               0);
2070
2071         if (err)
2072                 pr_err("prcmu: Failed to add subdevices\n");
2073         else
2074                 pr_info("DB8500 PRCMU initialized\n");
2075
2076 no_irq_return:
2077         return err;
2078 }
2079
2080 static struct platform_driver db8500_prcmu_driver = {
2081         .driver = {
2082                 .name = "db8500-prcmu",
2083                 .owner = THIS_MODULE,
2084         },
2085 };
2086
2087 static int __init db8500_prcmu_init(void)
2088 {
2089         return platform_driver_probe(&db8500_prcmu_driver, db8500_prcmu_probe);
2090 }
2091
2092 arch_initcall(db8500_prcmu_init);
2093
2094 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
2095 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
2096 MODULE_LICENSE("GPL v2");