]> Pileus Git - ~andy/linux/blob - drivers/mfd/db8500-prcmu.c
mfd: Refactor DB8500 PRCMU reg access
[~andy/linux] / drivers / mfd / db8500-prcmu.c
1 /*
2  * Copyright (C) STMicroelectronics 2009
3  * Copyright (C) ST-Ericsson SA 2010
4  *
5  * License Terms: GNU General Public License v2
6  * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
7  * Author: Sundar Iyer <sundar.iyer@stericsson.com>
8  * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
9  *
10  * U8500 PRCM Unit interface driver
11  *
12  */
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/delay.h>
16 #include <linux/errno.h>
17 #include <linux/err.h>
18 #include <linux/spinlock.h>
19 #include <linux/io.h>
20 #include <linux/slab.h>
21 #include <linux/mutex.h>
22 #include <linux/completion.h>
23 #include <linux/irq.h>
24 #include <linux/jiffies.h>
25 #include <linux/bitops.h>
26 #include <linux/fs.h>
27 #include <linux/platform_device.h>
28 #include <linux/uaccess.h>
29 #include <linux/mfd/core.h>
30 #include <linux/mfd/db8500-prcmu.h>
31 #include <linux/regulator/db8500-prcmu.h>
32 #include <linux/regulator/machine.h>
33 #include <mach/hardware.h>
34 #include <mach/irqs.h>
35 #include <mach/db8500-regs.h>
36 #include <mach/id.h>
37 #include "db8500-prcmu-regs.h"
38
39 /* Offset for the firmware version within the TCPM */
40 #define PRCMU_FW_VERSION_OFFSET 0xA4
41
42 /* PRCMU project numbers, defined by PRCMU FW */
43 #define PRCMU_PROJECT_ID_8500V1_0 1
44 #define PRCMU_PROJECT_ID_8500V2_0 2
45 #define PRCMU_PROJECT_ID_8400V2_0 3
46
47 /* Index of different voltages to be used when accessing AVSData */
48 #define PRCM_AVS_BASE           0x2FC
49 #define PRCM_AVS_VBB_RET        (PRCM_AVS_BASE + 0x0)
50 #define PRCM_AVS_VBB_MAX_OPP    (PRCM_AVS_BASE + 0x1)
51 #define PRCM_AVS_VBB_100_OPP    (PRCM_AVS_BASE + 0x2)
52 #define PRCM_AVS_VBB_50_OPP     (PRCM_AVS_BASE + 0x3)
53 #define PRCM_AVS_VARM_MAX_OPP   (PRCM_AVS_BASE + 0x4)
54 #define PRCM_AVS_VARM_100_OPP   (PRCM_AVS_BASE + 0x5)
55 #define PRCM_AVS_VARM_50_OPP    (PRCM_AVS_BASE + 0x6)
56 #define PRCM_AVS_VARM_RET       (PRCM_AVS_BASE + 0x7)
57 #define PRCM_AVS_VAPE_100_OPP   (PRCM_AVS_BASE + 0x8)
58 #define PRCM_AVS_VAPE_50_OPP    (PRCM_AVS_BASE + 0x9)
59 #define PRCM_AVS_VMOD_100_OPP   (PRCM_AVS_BASE + 0xA)
60 #define PRCM_AVS_VMOD_50_OPP    (PRCM_AVS_BASE + 0xB)
61 #define PRCM_AVS_VSAFE          (PRCM_AVS_BASE + 0xC)
62
63 #define PRCM_AVS_VOLTAGE                0
64 #define PRCM_AVS_VOLTAGE_MASK           0x3f
65 #define PRCM_AVS_ISSLOWSTARTUP          6
66 #define PRCM_AVS_ISSLOWSTARTUP_MASK     (1 << PRCM_AVS_ISSLOWSTARTUP)
67 #define PRCM_AVS_ISMODEENABLE           7
68 #define PRCM_AVS_ISMODEENABLE_MASK      (1 << PRCM_AVS_ISMODEENABLE)
69
70 #define PRCM_BOOT_STATUS        0xFFF
71 #define PRCM_ROMCODE_A2P        0xFFE
72 #define PRCM_ROMCODE_P2A        0xFFD
73 #define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
74
75 #define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
76
77 #define _PRCM_MBOX_HEADER               0xFE8 /* 16 bytes */
78 #define PRCM_MBOX_HEADER_REQ_MB0        (_PRCM_MBOX_HEADER + 0x0)
79 #define PRCM_MBOX_HEADER_REQ_MB1        (_PRCM_MBOX_HEADER + 0x1)
80 #define PRCM_MBOX_HEADER_REQ_MB2        (_PRCM_MBOX_HEADER + 0x2)
81 #define PRCM_MBOX_HEADER_REQ_MB3        (_PRCM_MBOX_HEADER + 0x3)
82 #define PRCM_MBOX_HEADER_REQ_MB4        (_PRCM_MBOX_HEADER + 0x4)
83 #define PRCM_MBOX_HEADER_REQ_MB5        (_PRCM_MBOX_HEADER + 0x5)
84 #define PRCM_MBOX_HEADER_ACK_MB0        (_PRCM_MBOX_HEADER + 0x8)
85
86 /* Req Mailboxes */
87 #define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
88 #define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
89 #define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
90 #define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
91 #define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
92 #define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
93
94 /* Ack Mailboxes */
95 #define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
96 #define PRCM_ACK_MB1 0xE04 /* 4 bytes */
97 #define PRCM_ACK_MB2 0xE00 /* 4 bytes */
98 #define PRCM_ACK_MB3 0xDFC /* 4 bytes */
99 #define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
100 #define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
101
102 /* Mailbox 0 headers */
103 #define MB0H_POWER_STATE_TRANS          0
104 #define MB0H_CONFIG_WAKEUPS_EXE         1
105 #define MB0H_READ_WAKEUP_ACK            3
106 #define MB0H_CONFIG_WAKEUPS_SLEEP       4
107
108 #define MB0H_WAKEUP_EXE 2
109 #define MB0H_WAKEUP_SLEEP 5
110
111 /* Mailbox 0 REQs */
112 #define PRCM_REQ_MB0_AP_POWER_STATE     (PRCM_REQ_MB0 + 0x0)
113 #define PRCM_REQ_MB0_AP_PLL_STATE       (PRCM_REQ_MB0 + 0x1)
114 #define PRCM_REQ_MB0_ULP_CLOCK_STATE    (PRCM_REQ_MB0 + 0x2)
115 #define PRCM_REQ_MB0_DO_NOT_WFI         (PRCM_REQ_MB0 + 0x3)
116 #define PRCM_REQ_MB0_WAKEUP_8500        (PRCM_REQ_MB0 + 0x4)
117 #define PRCM_REQ_MB0_WAKEUP_4500        (PRCM_REQ_MB0 + 0x8)
118
119 /* Mailbox 0 ACKs */
120 #define PRCM_ACK_MB0_AP_PWRSTTR_STATUS  (PRCM_ACK_MB0 + 0x0)
121 #define PRCM_ACK_MB0_READ_POINTER       (PRCM_ACK_MB0 + 0x1)
122 #define PRCM_ACK_MB0_WAKEUP_0_8500      (PRCM_ACK_MB0 + 0x4)
123 #define PRCM_ACK_MB0_WAKEUP_0_4500      (PRCM_ACK_MB0 + 0x8)
124 #define PRCM_ACK_MB0_WAKEUP_1_8500      (PRCM_ACK_MB0 + 0x1C)
125 #define PRCM_ACK_MB0_WAKEUP_1_4500      (PRCM_ACK_MB0 + 0x20)
126 #define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
127
128 /* Mailbox 1 headers */
129 #define MB1H_ARM_APE_OPP 0x0
130 #define MB1H_RESET_MODEM 0x2
131 #define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
132 #define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
133 #define MB1H_RELEASE_USB_WAKEUP 0x5
134
135 /* Mailbox 1 Requests */
136 #define PRCM_REQ_MB1_ARM_OPP                    (PRCM_REQ_MB1 + 0x0)
137 #define PRCM_REQ_MB1_APE_OPP                    (PRCM_REQ_MB1 + 0x1)
138 #define PRCM_REQ_MB1_APE_OPP_100_RESTORE        (PRCM_REQ_MB1 + 0x4)
139 #define PRCM_REQ_MB1_ARM_OPP_100_RESTORE        (PRCM_REQ_MB1 + 0x8)
140
141 /* Mailbox 1 ACKs */
142 #define PRCM_ACK_MB1_CURRENT_ARM_OPP    (PRCM_ACK_MB1 + 0x0)
143 #define PRCM_ACK_MB1_CURRENT_APE_OPP    (PRCM_ACK_MB1 + 0x1)
144 #define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
145 #define PRCM_ACK_MB1_DVFS_STATUS        (PRCM_ACK_MB1 + 0x3)
146
147 /* Mailbox 2 headers */
148 #define MB2H_DPS        0x0
149 #define MB2H_AUTO_PWR   0x1
150
151 /* Mailbox 2 REQs */
152 #define PRCM_REQ_MB2_SVA_MMDSP          (PRCM_REQ_MB2 + 0x0)
153 #define PRCM_REQ_MB2_SVA_PIPE           (PRCM_REQ_MB2 + 0x1)
154 #define PRCM_REQ_MB2_SIA_MMDSP          (PRCM_REQ_MB2 + 0x2)
155 #define PRCM_REQ_MB2_SIA_PIPE           (PRCM_REQ_MB2 + 0x3)
156 #define PRCM_REQ_MB2_SGA                (PRCM_REQ_MB2 + 0x4)
157 #define PRCM_REQ_MB2_B2R2_MCDE          (PRCM_REQ_MB2 + 0x5)
158 #define PRCM_REQ_MB2_ESRAM12            (PRCM_REQ_MB2 + 0x6)
159 #define PRCM_REQ_MB2_ESRAM34            (PRCM_REQ_MB2 + 0x7)
160 #define PRCM_REQ_MB2_AUTO_PM_SLEEP      (PRCM_REQ_MB2 + 0x8)
161 #define PRCM_REQ_MB2_AUTO_PM_IDLE       (PRCM_REQ_MB2 + 0xC)
162
163 /* Mailbox 2 ACKs */
164 #define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
165 #define HWACC_PWR_ST_OK 0xFE
166
167 /* Mailbox 3 headers */
168 #define MB3H_ANC        0x0
169 #define MB3H_SIDETONE   0x1
170 #define MB3H_SYSCLK     0xE
171
172 /* Mailbox 3 Requests */
173 #define PRCM_REQ_MB3_ANC_FIR_COEFF      (PRCM_REQ_MB3 + 0x0)
174 #define PRCM_REQ_MB3_ANC_IIR_COEFF      (PRCM_REQ_MB3 + 0x20)
175 #define PRCM_REQ_MB3_ANC_SHIFTER        (PRCM_REQ_MB3 + 0x60)
176 #define PRCM_REQ_MB3_ANC_WARP           (PRCM_REQ_MB3 + 0x64)
177 #define PRCM_REQ_MB3_SIDETONE_FIR_GAIN  (PRCM_REQ_MB3 + 0x68)
178 #define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
179 #define PRCM_REQ_MB3_SYSCLK_MGT         (PRCM_REQ_MB3 + 0x16C)
180
181 /* Mailbox 4 headers */
182 #define MB4H_DDR_INIT   0x0
183 #define MB4H_MEM_ST     0x1
184 #define MB4H_HOTDOG     0x12
185 #define MB4H_HOTMON     0x13
186 #define MB4H_HOT_PERIOD 0x14
187
188 /* Mailbox 4 Requests */
189 #define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE       (PRCM_REQ_MB4 + 0x0)
190 #define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE        (PRCM_REQ_MB4 + 0x1)
191 #define PRCM_REQ_MB4_ESRAM0_ST                  (PRCM_REQ_MB4 + 0x3)
192 #define PRCM_REQ_MB4_HOTDOG_THRESHOLD           (PRCM_REQ_MB4 + 0x0)
193 #define PRCM_REQ_MB4_HOTMON_LOW                 (PRCM_REQ_MB4 + 0x0)
194 #define PRCM_REQ_MB4_HOTMON_HIGH                (PRCM_REQ_MB4 + 0x1)
195 #define PRCM_REQ_MB4_HOTMON_CONFIG              (PRCM_REQ_MB4 + 0x2)
196 #define PRCM_REQ_MB4_HOT_PERIOD                 (PRCM_REQ_MB4 + 0x0)
197 #define HOTMON_CONFIG_LOW                       BIT(0)
198 #define HOTMON_CONFIG_HIGH                      BIT(1)
199
200 /* Mailbox 5 Requests */
201 #define PRCM_REQ_MB5_I2C_SLAVE_OP       (PRCM_REQ_MB5 + 0x0)
202 #define PRCM_REQ_MB5_I2C_HW_BITS        (PRCM_REQ_MB5 + 0x1)
203 #define PRCM_REQ_MB5_I2C_REG            (PRCM_REQ_MB5 + 0x2)
204 #define PRCM_REQ_MB5_I2C_VAL            (PRCM_REQ_MB5 + 0x3)
205 #define PRCMU_I2C_WRITE(slave) \
206         (((slave) << 1) | (cpu_is_u8500v2() ? BIT(6) : 0))
207 #define PRCMU_I2C_READ(slave) \
208         (((slave) << 1) | BIT(0) | (cpu_is_u8500v2() ? BIT(6) : 0))
209 #define PRCMU_I2C_STOP_EN               BIT(3)
210
211 /* Mailbox 5 ACKs */
212 #define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
213 #define PRCM_ACK_MB5_I2C_VAL    (PRCM_ACK_MB5 + 0x3)
214 #define I2C_WR_OK 0x1
215 #define I2C_RD_OK 0x2
216
217 #define NUM_MB 8
218 #define MBOX_BIT BIT
219 #define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
220
221 /*
222  * Wakeups/IRQs
223  */
224
225 #define WAKEUP_BIT_RTC BIT(0)
226 #define WAKEUP_BIT_RTT0 BIT(1)
227 #define WAKEUP_BIT_RTT1 BIT(2)
228 #define WAKEUP_BIT_HSI0 BIT(3)
229 #define WAKEUP_BIT_HSI1 BIT(4)
230 #define WAKEUP_BIT_CA_WAKE BIT(5)
231 #define WAKEUP_BIT_USB BIT(6)
232 #define WAKEUP_BIT_ABB BIT(7)
233 #define WAKEUP_BIT_ABB_FIFO BIT(8)
234 #define WAKEUP_BIT_SYSCLK_OK BIT(9)
235 #define WAKEUP_BIT_CA_SLEEP BIT(10)
236 #define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
237 #define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
238 #define WAKEUP_BIT_ANC_OK BIT(13)
239 #define WAKEUP_BIT_SW_ERROR BIT(14)
240 #define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
241 #define WAKEUP_BIT_ARM BIT(17)
242 #define WAKEUP_BIT_HOTMON_LOW BIT(18)
243 #define WAKEUP_BIT_HOTMON_HIGH BIT(19)
244 #define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
245 #define WAKEUP_BIT_GPIO0 BIT(23)
246 #define WAKEUP_BIT_GPIO1 BIT(24)
247 #define WAKEUP_BIT_GPIO2 BIT(25)
248 #define WAKEUP_BIT_GPIO3 BIT(26)
249 #define WAKEUP_BIT_GPIO4 BIT(27)
250 #define WAKEUP_BIT_GPIO5 BIT(28)
251 #define WAKEUP_BIT_GPIO6 BIT(29)
252 #define WAKEUP_BIT_GPIO7 BIT(30)
253 #define WAKEUP_BIT_GPIO8 BIT(31)
254
255 /*
256  * This vector maps irq numbers to the bits in the bit field used in
257  * communication with the PRCMU firmware.
258  *
259  * The reason for having this is to keep the irq numbers contiguous even though
260  * the bits in the bit field are not. (The bits also have a tendency to move
261  * around, to further complicate matters.)
262  */
263 #define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name) - IRQ_PRCMU_BASE)
264 #define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
265 static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
266         IRQ_ENTRY(RTC),
267         IRQ_ENTRY(RTT0),
268         IRQ_ENTRY(RTT1),
269         IRQ_ENTRY(HSI0),
270         IRQ_ENTRY(HSI1),
271         IRQ_ENTRY(CA_WAKE),
272         IRQ_ENTRY(USB),
273         IRQ_ENTRY(ABB),
274         IRQ_ENTRY(ABB_FIFO),
275         IRQ_ENTRY(CA_SLEEP),
276         IRQ_ENTRY(ARM),
277         IRQ_ENTRY(HOTMON_LOW),
278         IRQ_ENTRY(HOTMON_HIGH),
279         IRQ_ENTRY(MODEM_SW_RESET_REQ),
280         IRQ_ENTRY(GPIO0),
281         IRQ_ENTRY(GPIO1),
282         IRQ_ENTRY(GPIO2),
283         IRQ_ENTRY(GPIO3),
284         IRQ_ENTRY(GPIO4),
285         IRQ_ENTRY(GPIO5),
286         IRQ_ENTRY(GPIO6),
287         IRQ_ENTRY(GPIO7),
288         IRQ_ENTRY(GPIO8)
289 };
290
291 #define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
292 #define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
293 static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
294         WAKEUP_ENTRY(RTC),
295         WAKEUP_ENTRY(RTT0),
296         WAKEUP_ENTRY(RTT1),
297         WAKEUP_ENTRY(HSI0),
298         WAKEUP_ENTRY(HSI1),
299         WAKEUP_ENTRY(USB),
300         WAKEUP_ENTRY(ABB),
301         WAKEUP_ENTRY(ABB_FIFO),
302         WAKEUP_ENTRY(ARM)
303 };
304
305 /*
306  * mb0_transfer - state needed for mailbox 0 communication.
307  * @lock:               The transaction lock.
308  * @dbb_events_lock:    A lock used to handle concurrent access to (parts of)
309  *                      the request data.
310  * @mask_work:          Work structure used for (un)masking wakeup interrupts.
311  * @req:                Request data that need to persist between requests.
312  */
313 static struct {
314         spinlock_t lock;
315         spinlock_t dbb_irqs_lock;
316         struct work_struct mask_work;
317         struct mutex ac_wake_lock;
318         struct completion ac_wake_work;
319         struct {
320                 u32 dbb_irqs;
321                 u32 dbb_wakeups;
322                 u32 abb_events;
323         } req;
324 } mb0_transfer;
325
326 /*
327  * mb1_transfer - state needed for mailbox 1 communication.
328  * @lock:       The transaction lock.
329  * @work:       The transaction completion structure.
330  * @ack:        Reply ("acknowledge") data.
331  */
332 static struct {
333         struct mutex lock;
334         struct completion work;
335         struct {
336                 u8 header;
337                 u8 arm_opp;
338                 u8 ape_opp;
339                 u8 ape_voltage_status;
340         } ack;
341 } mb1_transfer;
342
343 /*
344  * mb2_transfer - state needed for mailbox 2 communication.
345  * @lock:            The transaction lock.
346  * @work:            The transaction completion structure.
347  * @auto_pm_lock:    The autonomous power management configuration lock.
348  * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
349  * @req:             Request data that need to persist between requests.
350  * @ack:             Reply ("acknowledge") data.
351  */
352 static struct {
353         struct mutex lock;
354         struct completion work;
355         spinlock_t auto_pm_lock;
356         bool auto_pm_enabled;
357         struct {
358                 u8 status;
359         } ack;
360 } mb2_transfer;
361
362 /*
363  * mb3_transfer - state needed for mailbox 3 communication.
364  * @lock:               The request lock.
365  * @sysclk_lock:        A lock used to handle concurrent sysclk requests.
366  * @sysclk_work:        Work structure used for sysclk requests.
367  */
368 static struct {
369         spinlock_t lock;
370         struct mutex sysclk_lock;
371         struct completion sysclk_work;
372 } mb3_transfer;
373
374 /*
375  * mb4_transfer - state needed for mailbox 4 communication.
376  * @lock:       The transaction lock.
377  * @work:       The transaction completion structure.
378  */
379 static struct {
380         struct mutex lock;
381         struct completion work;
382 } mb4_transfer;
383
384 /*
385  * mb5_transfer - state needed for mailbox 5 communication.
386  * @lock:       The transaction lock.
387  * @work:       The transaction completion structure.
388  * @ack:        Reply ("acknowledge") data.
389  */
390 static struct {
391         struct mutex lock;
392         struct completion work;
393         struct {
394                 u8 status;
395                 u8 value;
396         } ack;
397 } mb5_transfer;
398
399 static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
400
401 /* Spinlocks */
402 static DEFINE_SPINLOCK(clkout_lock);
403 static DEFINE_SPINLOCK(gpiocr_lock);
404
405 /* Global var to runtime determine TCDM base for v2 or v1 */
406 static __iomem void *tcdm_base;
407
408 struct clk_mgt {
409         unsigned int offset;
410         u32 pllsw;
411 };
412
413 static DEFINE_SPINLOCK(clk_mgt_lock);
414
415 #define CLK_MGT_ENTRY(_name)[PRCMU_##_name] = { (PRCM_##_name##_MGT_OFF), 0 }
416 struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
417         CLK_MGT_ENTRY(SGACLK),
418         CLK_MGT_ENTRY(UARTCLK),
419         CLK_MGT_ENTRY(MSP02CLK),
420         CLK_MGT_ENTRY(MSP1CLK),
421         CLK_MGT_ENTRY(I2CCLK),
422         CLK_MGT_ENTRY(SDMMCCLK),
423         CLK_MGT_ENTRY(SLIMCLK),
424         CLK_MGT_ENTRY(PER1CLK),
425         CLK_MGT_ENTRY(PER2CLK),
426         CLK_MGT_ENTRY(PER3CLK),
427         CLK_MGT_ENTRY(PER5CLK),
428         CLK_MGT_ENTRY(PER6CLK),
429         CLK_MGT_ENTRY(PER7CLK),
430         CLK_MGT_ENTRY(LCDCLK),
431         CLK_MGT_ENTRY(BMLCLK),
432         CLK_MGT_ENTRY(HSITXCLK),
433         CLK_MGT_ENTRY(HSIRXCLK),
434         CLK_MGT_ENTRY(HDMICLK),
435         CLK_MGT_ENTRY(APEATCLK),
436         CLK_MGT_ENTRY(APETRACECLK),
437         CLK_MGT_ENTRY(MCDECLK),
438         CLK_MGT_ENTRY(IPI2CCLK),
439         CLK_MGT_ENTRY(DSIALTCLK),
440         CLK_MGT_ENTRY(DMACLK),
441         CLK_MGT_ENTRY(B2R2CLK),
442         CLK_MGT_ENTRY(TVCLK),
443         CLK_MGT_ENTRY(SSPCLK),
444         CLK_MGT_ENTRY(RNGCLK),
445         CLK_MGT_ENTRY(UICCCLK),
446 };
447
448 /*
449 * Used by MCDE to setup all necessary PRCMU registers
450 */
451 #define PRCMU_RESET_DSIPLL              0x00004000
452 #define PRCMU_UNCLAMP_DSIPLL            0x00400800
453
454 #define PRCMU_CLK_PLL_DIV_SHIFT         0
455 #define PRCMU_CLK_PLL_SW_SHIFT          5
456 #define PRCMU_CLK_38                    (1 << 9)
457 #define PRCMU_CLK_38_SRC                (1 << 10)
458 #define PRCMU_CLK_38_DIV                (1 << 11)
459
460 /* PLLDIV=12, PLLSW=4 (PLLDDR) */
461 #define PRCMU_DSI_CLOCK_SETTING         0x0000008C
462
463 /* PLLDIV=8, PLLSW=4 (PLLDDR) */
464 #define PRCMU_DSI_CLOCK_SETTING_U8400   0x00000088
465
466 /* DPI 50000000 Hz */
467 #define PRCMU_DPI_CLOCK_SETTING         ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
468                                           (16 << PRCMU_CLK_PLL_DIV_SHIFT))
469 #define PRCMU_DSI_LP_CLOCK_SETTING      0x00000E00
470
471 /* D=101, N=1, R=4, SELDIV2=0 */
472 #define PRCMU_PLLDSI_FREQ_SETTING       0x00040165
473
474 /* D=70, N=1, R=3, SELDIV2=0 */
475 #define PRCMU_PLLDSI_FREQ_SETTING_U8400 0x00030146
476
477 #define PRCMU_ENABLE_PLLDSI             0x00000001
478 #define PRCMU_DISABLE_PLLDSI            0x00000000
479 #define PRCMU_RELEASE_RESET_DSS         0x0000400C
480 #define PRCMU_DSI_PLLOUT_SEL_SETTING    0x00000202
481 /* ESC clk, div0=1, div1=1, div2=3 */
482 #define PRCMU_ENABLE_ESCAPE_CLOCK_DIV   0x07030101
483 #define PRCMU_DISABLE_ESCAPE_CLOCK_DIV  0x00030101
484 #define PRCMU_DSI_RESET_SW              0x00000007
485
486 #define PRCMU_PLLDSI_LOCKP_LOCKED       0x3
487
488 static struct {
489         u8 project_number;
490         u8 api_version;
491         u8 func_version;
492         u8 errata;
493 } prcmu_version;
494
495
496 int prcmu_enable_dsipll(void)
497 {
498         int i;
499         unsigned int plldsifreq;
500
501         /* Clear DSIPLL_RESETN */
502         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
503         /* Unclamp DSIPLL in/out */
504         writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
505
506         if (prcmu_is_u8400())
507                 plldsifreq = PRCMU_PLLDSI_FREQ_SETTING_U8400;
508         else
509                 plldsifreq = PRCMU_PLLDSI_FREQ_SETTING;
510         /* Set DSI PLL FREQ */
511         writel(plldsifreq, PRCM_PLLDSI_FREQ);
512         writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
513         /* Enable Escape clocks */
514         writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
515
516         /* Start DSI PLL */
517         writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
518         /* Reset DSI PLL */
519         writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
520         for (i = 0; i < 10; i++) {
521                 if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
522                                         == PRCMU_PLLDSI_LOCKP_LOCKED)
523                         break;
524                 udelay(100);
525         }
526         /* Set DSIPLL_RESETN */
527         writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
528         return 0;
529 }
530
531 int prcmu_disable_dsipll(void)
532 {
533         /* Disable dsi pll */
534         writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
535         /* Disable  escapeclock */
536         writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
537         return 0;
538 }
539
540 int prcmu_set_display_clocks(void)
541 {
542         unsigned long flags;
543         unsigned int dsiclk;
544
545         if (prcmu_is_u8400())
546                 dsiclk = PRCMU_DSI_CLOCK_SETTING_U8400;
547         else
548                 dsiclk = PRCMU_DSI_CLOCK_SETTING;
549
550         spin_lock_irqsave(&clk_mgt_lock, flags);
551
552         /* Grab the HW semaphore. */
553         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
554                 cpu_relax();
555
556         writel(dsiclk, PRCM_HDMICLK_MGT);
557         writel(PRCMU_DSI_LP_CLOCK_SETTING, PRCM_TVCLK_MGT);
558         writel(PRCMU_DPI_CLOCK_SETTING, PRCM_LCDCLK_MGT);
559
560         /* Release the HW semaphore. */
561         writel(0, PRCM_SEM);
562
563         spin_unlock_irqrestore(&clk_mgt_lock, flags);
564
565         return 0;
566 }
567
568 /**
569  * prcmu_enable_spi2 - Enables pin muxing for SPI2 on OtherAlternateC1.
570  */
571 void prcmu_enable_spi2(void)
572 {
573         u32 reg;
574         unsigned long flags;
575
576         spin_lock_irqsave(&gpiocr_lock, flags);
577         reg = readl(PRCM_GPIOCR);
578         writel(reg | PRCM_GPIOCR_SPI2_SELECT, PRCM_GPIOCR);
579         spin_unlock_irqrestore(&gpiocr_lock, flags);
580 }
581
582 /**
583  * prcmu_disable_spi2 - Disables pin muxing for SPI2 on OtherAlternateC1.
584  */
585 void prcmu_disable_spi2(void)
586 {
587         u32 reg;
588         unsigned long flags;
589
590         spin_lock_irqsave(&gpiocr_lock, flags);
591         reg = readl(PRCM_GPIOCR);
592         writel(reg & ~PRCM_GPIOCR_SPI2_SELECT, PRCM_GPIOCR);
593         spin_unlock_irqrestore(&gpiocr_lock, flags);
594 }
595
596 bool prcmu_has_arm_maxopp(void)
597 {
598         return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
599                 PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
600 }
601
602 bool prcmu_is_u8400(void)
603 {
604         return prcmu_version.project_number == PRCMU_PROJECT_ID_8400V2_0;
605 }
606
607 /**
608  * prcmu_get_boot_status - PRCMU boot status checking
609  * Returns: the current PRCMU boot status
610  */
611 int prcmu_get_boot_status(void)
612 {
613         return readb(tcdm_base + PRCM_BOOT_STATUS);
614 }
615
616 /**
617  * prcmu_set_rc_a2p - This function is used to run few power state sequences
618  * @val: Value to be set, i.e. transition requested
619  * Returns: 0 on success, -EINVAL on invalid argument
620  *
621  * This function is used to run the following power state sequences -
622  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
623  */
624 int prcmu_set_rc_a2p(enum romcode_write val)
625 {
626         if (val < RDY_2_DS || val > RDY_2_XP70_RST)
627                 return -EINVAL;
628         writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
629         return 0;
630 }
631
632 /**
633  * prcmu_get_rc_p2a - This function is used to get power state sequences
634  * Returns: the power transition that has last happened
635  *
636  * This function can return the following transitions-
637  * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
638  */
639 enum romcode_read prcmu_get_rc_p2a(void)
640 {
641         return readb(tcdm_base + PRCM_ROMCODE_P2A);
642 }
643
644 /**
645  * prcmu_get_current_mode - Return the current XP70 power mode
646  * Returns: Returns the current AP(ARM) power mode: init,
647  * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
648  */
649 enum ap_pwrst prcmu_get_xp70_current_state(void)
650 {
651         return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
652 }
653
654 /**
655  * prcmu_config_clkout - Configure one of the programmable clock outputs.
656  * @clkout:     The CLKOUT number (0 or 1).
657  * @source:     The clock to be used (one of the PRCMU_CLKSRC_*).
658  * @div:        The divider to be applied.
659  *
660  * Configures one of the programmable clock outputs (CLKOUTs).
661  * @div should be in the range [1,63] to request a configuration, or 0 to
662  * inform that the configuration is no longer requested.
663  */
664 int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
665 {
666         static int requests[2];
667         int r = 0;
668         unsigned long flags;
669         u32 val;
670         u32 bits;
671         u32 mask;
672         u32 div_mask;
673
674         BUG_ON(clkout > 1);
675         BUG_ON(div > 63);
676         BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
677
678         if (!div && !requests[clkout])
679                 return -EINVAL;
680
681         switch (clkout) {
682         case 0:
683                 div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
684                 mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
685                 bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
686                         (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
687                 break;
688         case 1:
689                 div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
690                 mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
691                         PRCM_CLKOCR_CLK1TYPE);
692                 bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
693                         (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
694                 break;
695         }
696         bits &= mask;
697
698         spin_lock_irqsave(&clkout_lock, flags);
699
700         val = readl(PRCM_CLKOCR);
701         if (val & div_mask) {
702                 if (div) {
703                         if ((val & mask) != bits) {
704                                 r = -EBUSY;
705                                 goto unlock_and_return;
706                         }
707                 } else {
708                         if ((val & mask & ~div_mask) != bits) {
709                                 r = -EINVAL;
710                                 goto unlock_and_return;
711                         }
712                 }
713         }
714         writel((bits | (val & ~mask)), PRCM_CLKOCR);
715         requests[clkout] += (div ? 1 : -1);
716
717 unlock_and_return:
718         spin_unlock_irqrestore(&clkout_lock, flags);
719
720         return r;
721 }
722
723 int prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
724 {
725         unsigned long flags;
726
727         BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
728
729         spin_lock_irqsave(&mb0_transfer.lock, flags);
730
731         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
732                 cpu_relax();
733
734         writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
735         writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
736         writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
737         writeb((keep_ulp_clk ? 1 : 0),
738                 (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
739         writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
740         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
741
742         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
743
744         return 0;
745 }
746
747 /* This function should only be called while mb0_transfer.lock is held. */
748 static void config_wakeups(void)
749 {
750         const u8 header[2] = {
751                 MB0H_CONFIG_WAKEUPS_EXE,
752                 MB0H_CONFIG_WAKEUPS_SLEEP
753         };
754         static u32 last_dbb_events;
755         static u32 last_abb_events;
756         u32 dbb_events;
757         u32 abb_events;
758         unsigned int i;
759
760         dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
761         dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
762
763         abb_events = mb0_transfer.req.abb_events;
764
765         if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
766                 return;
767
768         for (i = 0; i < 2; i++) {
769                 while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
770                         cpu_relax();
771                 writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
772                 writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
773                 writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
774                 writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
775         }
776         last_dbb_events = dbb_events;
777         last_abb_events = abb_events;
778 }
779
780 void prcmu_enable_wakeups(u32 wakeups)
781 {
782         unsigned long flags;
783         u32 bits;
784         int i;
785
786         BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
787
788         for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
789                 if (wakeups & BIT(i))
790                         bits |= prcmu_wakeup_bit[i];
791         }
792
793         spin_lock_irqsave(&mb0_transfer.lock, flags);
794
795         mb0_transfer.req.dbb_wakeups = bits;
796         config_wakeups();
797
798         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
799 }
800
801 void prcmu_config_abb_event_readout(u32 abb_events)
802 {
803         unsigned long flags;
804
805         spin_lock_irqsave(&mb0_transfer.lock, flags);
806
807         mb0_transfer.req.abb_events = abb_events;
808         config_wakeups();
809
810         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
811 }
812
813 void prcmu_get_abb_event_buffer(void __iomem **buf)
814 {
815         if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
816                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
817         else
818                 *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
819 }
820
821 /**
822  * prcmu_set_arm_opp - set the appropriate ARM OPP
823  * @opp: The new ARM operating point to which transition is to be made
824  * Returns: 0 on success, non-zero on failure
825  *
826  * This function sets the the operating point of the ARM.
827  */
828 int prcmu_set_arm_opp(u8 opp)
829 {
830         int r;
831
832         if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
833                 return -EINVAL;
834
835         r = 0;
836
837         mutex_lock(&mb1_transfer.lock);
838
839         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
840                 cpu_relax();
841
842         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
843         writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
844         writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
845
846         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
847         wait_for_completion(&mb1_transfer.work);
848
849         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
850                 (mb1_transfer.ack.arm_opp != opp))
851                 r = -EIO;
852
853         mutex_unlock(&mb1_transfer.lock);
854
855         return r;
856 }
857
858 /**
859  * prcmu_get_arm_opp - get the current ARM OPP
860  *
861  * Returns: the current ARM OPP
862  */
863 int prcmu_get_arm_opp(void)
864 {
865         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
866 }
867
868 /**
869  * prcmu_get_ddr_opp - get the current DDR OPP
870  *
871  * Returns: the current DDR OPP
872  */
873 int prcmu_get_ddr_opp(void)
874 {
875         return readb(PRCM_DDR_SUBSYS_APE_MINBW);
876 }
877
878 /**
879  * set_ddr_opp - set the appropriate DDR OPP
880  * @opp: The new DDR operating point to which transition is to be made
881  * Returns: 0 on success, non-zero on failure
882  *
883  * This function sets the operating point of the DDR.
884  */
885 int prcmu_set_ddr_opp(u8 opp)
886 {
887         if (opp < DDR_100_OPP || opp > DDR_25_OPP)
888                 return -EINVAL;
889         /* Changing the DDR OPP can hang the hardware pre-v21 */
890         if (cpu_is_u8500v20_or_later() && !cpu_is_u8500v20())
891                 writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
892
893         return 0;
894 }
895 /**
896  * set_ape_opp - set the appropriate APE OPP
897  * @opp: The new APE operating point to which transition is to be made
898  * Returns: 0 on success, non-zero on failure
899  *
900  * This function sets the operating point of the APE.
901  */
902 int prcmu_set_ape_opp(u8 opp)
903 {
904         int r = 0;
905
906         mutex_lock(&mb1_transfer.lock);
907
908         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
909                 cpu_relax();
910
911         writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
912         writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
913         writeb(opp, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
914
915         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
916         wait_for_completion(&mb1_transfer.work);
917
918         if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
919                 (mb1_transfer.ack.ape_opp != opp))
920                 r = -EIO;
921
922         mutex_unlock(&mb1_transfer.lock);
923
924         return r;
925 }
926
927 /**
928  * prcmu_get_ape_opp - get the current APE OPP
929  *
930  * Returns: the current APE OPP
931  */
932 int prcmu_get_ape_opp(void)
933 {
934         return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
935 }
936
937 /**
938  * prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
939  * @enable: true to request the higher voltage, false to drop a request.
940  *
941  * Calls to this function to enable and disable requests must be balanced.
942  */
943 int prcmu_request_ape_opp_100_voltage(bool enable)
944 {
945         int r = 0;
946         u8 header;
947         static unsigned int requests;
948
949         mutex_lock(&mb1_transfer.lock);
950
951         if (enable) {
952                 if (0 != requests++)
953                         goto unlock_and_return;
954                 header = MB1H_REQUEST_APE_OPP_100_VOLT;
955         } else {
956                 if (requests == 0) {
957                         r = -EIO;
958                         goto unlock_and_return;
959                 } else if (1 != requests--) {
960                         goto unlock_and_return;
961                 }
962                 header = MB1H_RELEASE_APE_OPP_100_VOLT;
963         }
964
965         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
966                 cpu_relax();
967
968         writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
969
970         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
971         wait_for_completion(&mb1_transfer.work);
972
973         if ((mb1_transfer.ack.header != header) ||
974                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
975                 r = -EIO;
976
977 unlock_and_return:
978         mutex_unlock(&mb1_transfer.lock);
979
980         return r;
981 }
982
983 /**
984  * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
985  *
986  * This function releases the power state requirements of a USB wakeup.
987  */
988 int prcmu_release_usb_wakeup_state(void)
989 {
990         int r = 0;
991
992         mutex_lock(&mb1_transfer.lock);
993
994         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
995                 cpu_relax();
996
997         writeb(MB1H_RELEASE_USB_WAKEUP,
998                 (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
999
1000         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1001         wait_for_completion(&mb1_transfer.work);
1002
1003         if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1004                 ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1005                 r = -EIO;
1006
1007         mutex_unlock(&mb1_transfer.lock);
1008
1009         return r;
1010 }
1011
1012 /**
1013  * prcmu_set_epod - set the state of a EPOD (power domain)
1014  * @epod_id: The EPOD to set
1015  * @epod_state: The new EPOD state
1016  *
1017  * This function sets the state of a EPOD (power domain). It may not be called
1018  * from interrupt context.
1019  */
1020 int prcmu_set_epod(u16 epod_id, u8 epod_state)
1021 {
1022         int r = 0;
1023         bool ram_retention = false;
1024         int i;
1025
1026         /* check argument */
1027         BUG_ON(epod_id >= NUM_EPOD_ID);
1028
1029         /* set flag if retention is possible */
1030         switch (epod_id) {
1031         case EPOD_ID_SVAMMDSP:
1032         case EPOD_ID_SIAMMDSP:
1033         case EPOD_ID_ESRAM12:
1034         case EPOD_ID_ESRAM34:
1035                 ram_retention = true;
1036                 break;
1037         }
1038
1039         /* check argument */
1040         BUG_ON(epod_state > EPOD_STATE_ON);
1041         BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1042
1043         /* get lock */
1044         mutex_lock(&mb2_transfer.lock);
1045
1046         /* wait for mailbox */
1047         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1048                 cpu_relax();
1049
1050         /* fill in mailbox */
1051         for (i = 0; i < NUM_EPOD_ID; i++)
1052                 writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1053         writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1054
1055         writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1056
1057         writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1058
1059         /*
1060          * The current firmware version does not handle errors correctly,
1061          * and we cannot recover if there is an error.
1062          * This is expected to change when the firmware is updated.
1063          */
1064         if (!wait_for_completion_timeout(&mb2_transfer.work,
1065                         msecs_to_jiffies(20000))) {
1066                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1067                         __func__);
1068                 r = -EIO;
1069                 goto unlock_and_return;
1070         }
1071
1072         if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1073                 r = -EIO;
1074
1075 unlock_and_return:
1076         mutex_unlock(&mb2_transfer.lock);
1077         return r;
1078 }
1079
1080 /**
1081  * prcmu_configure_auto_pm - Configure autonomous power management.
1082  * @sleep: Configuration for ApSleep.
1083  * @idle:  Configuration for ApIdle.
1084  */
1085 void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1086         struct prcmu_auto_pm_config *idle)
1087 {
1088         u32 sleep_cfg;
1089         u32 idle_cfg;
1090         unsigned long flags;
1091
1092         BUG_ON((sleep == NULL) || (idle == NULL));
1093
1094         sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1095         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1096         sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1097         sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1098         sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1099         sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1100
1101         idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1102         idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1103         idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1104         idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1105         idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1106         idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1107
1108         spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1109
1110         /*
1111          * The autonomous power management configuration is done through
1112          * fields in mailbox 2, but these fields are only used as shared
1113          * variables - i.e. there is no need to send a message.
1114          */
1115         writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1116         writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1117
1118         mb2_transfer.auto_pm_enabled =
1119                 ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1120                  (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1121                  (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1122                  (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1123
1124         spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1125 }
1126 EXPORT_SYMBOL(prcmu_configure_auto_pm);
1127
1128 bool prcmu_is_auto_pm_enabled(void)
1129 {
1130         return mb2_transfer.auto_pm_enabled;
1131 }
1132
1133 static int request_sysclk(bool enable)
1134 {
1135         int r;
1136         unsigned long flags;
1137
1138         r = 0;
1139
1140         mutex_lock(&mb3_transfer.sysclk_lock);
1141
1142         spin_lock_irqsave(&mb3_transfer.lock, flags);
1143
1144         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1145                 cpu_relax();
1146
1147         writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1148
1149         writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1150         writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1151
1152         spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1153
1154         /*
1155          * The firmware only sends an ACK if we want to enable the
1156          * SysClk, and it succeeds.
1157          */
1158         if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1159                         msecs_to_jiffies(20000))) {
1160                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1161                         __func__);
1162                 r = -EIO;
1163         }
1164
1165         mutex_unlock(&mb3_transfer.sysclk_lock);
1166
1167         return r;
1168 }
1169
1170 static int request_timclk(bool enable)
1171 {
1172         u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1173
1174         if (!enable)
1175                 val |= PRCM_TCR_STOP_TIMERS;
1176         writel(val, PRCM_TCR);
1177
1178         return 0;
1179 }
1180
1181 static int request_reg_clock(u8 clock, bool enable)
1182 {
1183         u32 val;
1184         unsigned long flags;
1185
1186         spin_lock_irqsave(&clk_mgt_lock, flags);
1187
1188         /* Grab the HW semaphore. */
1189         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1190                 cpu_relax();
1191
1192         val = readl(_PRCMU_BASE + clk_mgt[clock].offset);
1193         if (enable) {
1194                 val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1195         } else {
1196                 clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1197                 val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1198         }
1199         writel(val, (_PRCMU_BASE + clk_mgt[clock].offset));
1200
1201         /* Release the HW semaphore. */
1202         writel(0, PRCM_SEM);
1203
1204         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1205
1206         return 0;
1207 }
1208
1209 /**
1210  * prcmu_request_clock() - Request for a clock to be enabled or disabled.
1211  * @clock:      The clock for which the request is made.
1212  * @enable:     Whether the clock should be enabled (true) or disabled (false).
1213  *
1214  * This function should only be used by the clock implementation.
1215  * Do not use it from any other place!
1216  */
1217 int prcmu_request_clock(u8 clock, bool enable)
1218 {
1219         if (clock < PRCMU_NUM_REG_CLOCKS)
1220                 return request_reg_clock(clock, enable);
1221         else if (clock == PRCMU_TIMCLK)
1222                 return request_timclk(enable);
1223         else if (clock == PRCMU_SYSCLK)
1224                 return request_sysclk(enable);
1225         else
1226                 return -EINVAL;
1227 }
1228
1229 int prcmu_config_esram0_deep_sleep(u8 state)
1230 {
1231         if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1232             (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1233                 return -EINVAL;
1234
1235         mutex_lock(&mb4_transfer.lock);
1236
1237         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1238                 cpu_relax();
1239
1240         writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1241         writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
1242                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
1243         writeb(DDR_PWR_STATE_ON,
1244                (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
1245         writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
1246
1247         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1248         wait_for_completion(&mb4_transfer.work);
1249
1250         mutex_unlock(&mb4_transfer.lock);
1251
1252         return 0;
1253 }
1254
1255 int prcmu_config_hotdog(u8 threshold)
1256 {
1257         mutex_lock(&mb4_transfer.lock);
1258
1259         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1260                 cpu_relax();
1261
1262         writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
1263         writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1264
1265         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1266         wait_for_completion(&mb4_transfer.work);
1267
1268         mutex_unlock(&mb4_transfer.lock);
1269
1270         return 0;
1271 }
1272
1273 int prcmu_config_hotmon(u8 low, u8 high)
1274 {
1275         mutex_lock(&mb4_transfer.lock);
1276
1277         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1278                 cpu_relax();
1279
1280         writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
1281         writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
1282         writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
1283                 (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
1284         writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1285
1286         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1287         wait_for_completion(&mb4_transfer.work);
1288
1289         mutex_unlock(&mb4_transfer.lock);
1290
1291         return 0;
1292 }
1293
1294 static int config_hot_period(u16 val)
1295 {
1296         mutex_lock(&mb4_transfer.lock);
1297
1298         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1299                 cpu_relax();
1300
1301         writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
1302         writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1303
1304         writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
1305         wait_for_completion(&mb4_transfer.work);
1306
1307         mutex_unlock(&mb4_transfer.lock);
1308
1309         return 0;
1310 }
1311
1312 int prcmu_start_temp_sense(u16 cycles32k)
1313 {
1314         if (cycles32k == 0xFFFF)
1315                 return -EINVAL;
1316
1317         return config_hot_period(cycles32k);
1318 }
1319
1320 int prcmu_stop_temp_sense(void)
1321 {
1322         return config_hot_period(0xFFFF);
1323 }
1324
1325 /**
1326  * prcmu_set_clock_divider() - Configure the clock divider.
1327  * @clock:      The clock for which the request is made.
1328  * @divider:    The clock divider. (< 32)
1329  *
1330  * This function should only be used by the clock implementation.
1331  * Do not use it from any other place!
1332  */
1333 int prcmu_set_clock_divider(u8 clock, u8 divider)
1334 {
1335         u32 val;
1336         unsigned long flags;
1337
1338         if ((clock >= PRCMU_NUM_REG_CLOCKS) || (divider < 1) || (31 < divider))
1339                 return -EINVAL;
1340
1341         spin_lock_irqsave(&clk_mgt_lock, flags);
1342
1343         /* Grab the HW semaphore. */
1344         while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1345                 cpu_relax();
1346
1347         val = readl(_PRCMU_BASE + clk_mgt[clock].offset);
1348         val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK);
1349         val |= (u32)divider;
1350         writel(val, (_PRCMU_BASE + clk_mgt[clock].offset));
1351
1352         /* Release the HW semaphore. */
1353         writel(0, PRCM_SEM);
1354
1355         spin_unlock_irqrestore(&clk_mgt_lock, flags);
1356
1357         return 0;
1358 }
1359
1360 /**
1361  * prcmu_abb_read() - Read register value(s) from the ABB.
1362  * @slave:      The I2C slave address.
1363  * @reg:        The (start) register address.
1364  * @value:      The read out value(s).
1365  * @size:       The number of registers to read.
1366  *
1367  * Reads register value(s) from the ABB.
1368  * @size has to be 1 for the current firmware version.
1369  */
1370 int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
1371 {
1372         int r;
1373
1374         if (size != 1)
1375                 return -EINVAL;
1376
1377         mutex_lock(&mb5_transfer.lock);
1378
1379         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
1380                 cpu_relax();
1381
1382         writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
1383         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
1384         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
1385         writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
1386
1387         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
1388
1389         if (!wait_for_completion_timeout(&mb5_transfer.work,
1390                                 msecs_to_jiffies(20000))) {
1391                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1392                         __func__);
1393                 r = -EIO;
1394         } else {
1395                 r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
1396         }
1397
1398         if (!r)
1399                 *value = mb5_transfer.ack.value;
1400
1401         mutex_unlock(&mb5_transfer.lock);
1402
1403         return r;
1404 }
1405
1406 /**
1407  * prcmu_abb_write() - Write register value(s) to the ABB.
1408  * @slave:      The I2C slave address.
1409  * @reg:        The (start) register address.
1410  * @value:      The value(s) to write.
1411  * @size:       The number of registers to write.
1412  *
1413  * Reads register value(s) from the ABB.
1414  * @size has to be 1 for the current firmware version.
1415  */
1416 int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
1417 {
1418         int r;
1419
1420         if (size != 1)
1421                 return -EINVAL;
1422
1423         mutex_lock(&mb5_transfer.lock);
1424
1425         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
1426                 cpu_relax();
1427
1428         writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
1429         writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
1430         writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
1431         writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
1432
1433         writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
1434
1435         if (!wait_for_completion_timeout(&mb5_transfer.work,
1436                                 msecs_to_jiffies(20000))) {
1437                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1438                         __func__);
1439                 r = -EIO;
1440         } else {
1441                 r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
1442         }
1443
1444         mutex_unlock(&mb5_transfer.lock);
1445
1446         return r;
1447 }
1448
1449 /**
1450  * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
1451  */
1452 void prcmu_ac_wake_req(void)
1453 {
1454         u32 val;
1455
1456         mutex_lock(&mb0_transfer.ac_wake_lock);
1457
1458         val = readl(PRCM_HOSTACCESS_REQ);
1459         if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
1460                 goto unlock_and_return;
1461
1462         atomic_set(&ac_wake_req_state, 1);
1463
1464         writel((val | PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ), PRCM_HOSTACCESS_REQ);
1465
1466         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
1467                         msecs_to_jiffies(20000))) {
1468                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1469                         __func__);
1470         }
1471
1472 unlock_and_return:
1473         mutex_unlock(&mb0_transfer.ac_wake_lock);
1474 }
1475
1476 /**
1477  * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
1478  */
1479 void prcmu_ac_sleep_req()
1480 {
1481         u32 val;
1482
1483         mutex_lock(&mb0_transfer.ac_wake_lock);
1484
1485         val = readl(PRCM_HOSTACCESS_REQ);
1486         if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
1487                 goto unlock_and_return;
1488
1489         writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
1490                 PRCM_HOSTACCESS_REQ);
1491
1492         if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
1493                         msecs_to_jiffies(20000))) {
1494                 pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1495                         __func__);
1496         }
1497
1498         atomic_set(&ac_wake_req_state, 0);
1499
1500 unlock_and_return:
1501         mutex_unlock(&mb0_transfer.ac_wake_lock);
1502 }
1503
1504 bool prcmu_is_ac_wake_requested(void)
1505 {
1506         return (atomic_read(&ac_wake_req_state) != 0);
1507 }
1508
1509 /**
1510  * prcmu_system_reset - System reset
1511  *
1512  * Saves the reset reason code and then sets the APE_SOFRST register which
1513  * fires interrupt to fw
1514  */
1515 void prcmu_system_reset(u16 reset_code)
1516 {
1517         writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
1518         writel(1, PRCM_APE_SOFTRST);
1519 }
1520
1521 /**
1522  * prcmu_reset_modem - ask the PRCMU to reset modem
1523  */
1524 void prcmu_modem_reset(void)
1525 {
1526         mutex_lock(&mb1_transfer.lock);
1527
1528         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1529                 cpu_relax();
1530
1531         writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1532         writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1533         wait_for_completion(&mb1_transfer.work);
1534
1535         /*
1536          * No need to check return from PRCMU as modem should go in reset state
1537          * This state is already managed by upper layer
1538          */
1539
1540         mutex_unlock(&mb1_transfer.lock);
1541 }
1542
1543 static void ack_dbb_wakeup(void)
1544 {
1545         unsigned long flags;
1546
1547         spin_lock_irqsave(&mb0_transfer.lock, flags);
1548
1549         while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
1550                 cpu_relax();
1551
1552         writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
1553         writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
1554
1555         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
1556 }
1557
1558 static inline void print_unknown_header_warning(u8 n, u8 header)
1559 {
1560         pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
1561                 header, n);
1562 }
1563
1564 static bool read_mailbox_0(void)
1565 {
1566         bool r;
1567         u32 ev;
1568         unsigned int n;
1569         u8 header;
1570
1571         header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
1572         switch (header) {
1573         case MB0H_WAKEUP_EXE:
1574         case MB0H_WAKEUP_SLEEP:
1575                 if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
1576                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
1577                 else
1578                         ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
1579
1580                 if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
1581                         complete(&mb0_transfer.ac_wake_work);
1582                 if (ev & WAKEUP_BIT_SYSCLK_OK)
1583                         complete(&mb3_transfer.sysclk_work);
1584
1585                 ev &= mb0_transfer.req.dbb_irqs;
1586
1587                 for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
1588                         if (ev & prcmu_irq_bit[n])
1589                                 generic_handle_irq(IRQ_PRCMU_BASE + n);
1590                 }
1591                 r = true;
1592                 break;
1593         default:
1594                 print_unknown_header_warning(0, header);
1595                 r = false;
1596                 break;
1597         }
1598         writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
1599         return r;
1600 }
1601
1602 static bool read_mailbox_1(void)
1603 {
1604         mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
1605         mb1_transfer.ack.arm_opp = readb(tcdm_base +
1606                 PRCM_ACK_MB1_CURRENT_ARM_OPP);
1607         mb1_transfer.ack.ape_opp = readb(tcdm_base +
1608                 PRCM_ACK_MB1_CURRENT_APE_OPP);
1609         mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
1610                 PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
1611         writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
1612         complete(&mb1_transfer.work);
1613         return false;
1614 }
1615
1616 static bool read_mailbox_2(void)
1617 {
1618         mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
1619         writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
1620         complete(&mb2_transfer.work);
1621         return false;
1622 }
1623
1624 static bool read_mailbox_3(void)
1625 {
1626         writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
1627         return false;
1628 }
1629
1630 static bool read_mailbox_4(void)
1631 {
1632         u8 header;
1633         bool do_complete = true;
1634
1635         header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
1636         switch (header) {
1637         case MB4H_MEM_ST:
1638         case MB4H_HOTDOG:
1639         case MB4H_HOTMON:
1640         case MB4H_HOT_PERIOD:
1641                 break;
1642         default:
1643                 print_unknown_header_warning(4, header);
1644                 do_complete = false;
1645                 break;
1646         }
1647
1648         writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
1649
1650         if (do_complete)
1651                 complete(&mb4_transfer.work);
1652
1653         return false;
1654 }
1655
1656 static bool read_mailbox_5(void)
1657 {
1658         mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
1659         mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
1660         writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
1661         complete(&mb5_transfer.work);
1662         return false;
1663 }
1664
1665 static bool read_mailbox_6(void)
1666 {
1667         writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
1668         return false;
1669 }
1670
1671 static bool read_mailbox_7(void)
1672 {
1673         writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
1674         return false;
1675 }
1676
1677 static bool (* const read_mailbox[NUM_MB])(void) = {
1678         read_mailbox_0,
1679         read_mailbox_1,
1680         read_mailbox_2,
1681         read_mailbox_3,
1682         read_mailbox_4,
1683         read_mailbox_5,
1684         read_mailbox_6,
1685         read_mailbox_7
1686 };
1687
1688 static irqreturn_t prcmu_irq_handler(int irq, void *data)
1689 {
1690         u32 bits;
1691         u8 n;
1692         irqreturn_t r;
1693
1694         bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
1695         if (unlikely(!bits))
1696                 return IRQ_NONE;
1697
1698         r = IRQ_HANDLED;
1699         for (n = 0; bits; n++) {
1700                 if (bits & MBOX_BIT(n)) {
1701                         bits -= MBOX_BIT(n);
1702                         if (read_mailbox[n]())
1703                                 r = IRQ_WAKE_THREAD;
1704                 }
1705         }
1706         return r;
1707 }
1708
1709 static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
1710 {
1711         ack_dbb_wakeup();
1712         return IRQ_HANDLED;
1713 }
1714
1715 static void prcmu_mask_work(struct work_struct *work)
1716 {
1717         unsigned long flags;
1718
1719         spin_lock_irqsave(&mb0_transfer.lock, flags);
1720
1721         config_wakeups();
1722
1723         spin_unlock_irqrestore(&mb0_transfer.lock, flags);
1724 }
1725
1726 static void prcmu_irq_mask(struct irq_data *d)
1727 {
1728         unsigned long flags;
1729
1730         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
1731
1732         mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
1733
1734         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
1735
1736         if (d->irq != IRQ_PRCMU_CA_SLEEP)
1737                 schedule_work(&mb0_transfer.mask_work);
1738 }
1739
1740 static void prcmu_irq_unmask(struct irq_data *d)
1741 {
1742         unsigned long flags;
1743
1744         spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
1745
1746         mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->irq - IRQ_PRCMU_BASE];
1747
1748         spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
1749
1750         if (d->irq != IRQ_PRCMU_CA_SLEEP)
1751                 schedule_work(&mb0_transfer.mask_work);
1752 }
1753
1754 static void noop(struct irq_data *d)
1755 {
1756 }
1757
1758 static struct irq_chip prcmu_irq_chip = {
1759         .name           = "prcmu",
1760         .irq_disable    = prcmu_irq_mask,
1761         .irq_ack        = noop,
1762         .irq_mask       = prcmu_irq_mask,
1763         .irq_unmask     = prcmu_irq_unmask,
1764 };
1765
1766 void __init prcmu_early_init(void)
1767 {
1768         unsigned int i;
1769
1770         if (cpu_is_u8500v1()) {
1771                 tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE_V1);
1772         } else if (cpu_is_u8500v2()) {
1773                 void *tcpm_base = ioremap_nocache(U8500_PRCMU_TCPM_BASE, SZ_4K);
1774
1775                 if (tcpm_base != NULL) {
1776                         int version;
1777                         version = readl(tcpm_base + PRCMU_FW_VERSION_OFFSET);
1778                         prcmu_version.project_number = version & 0xFF;
1779                         prcmu_version.api_version = (version >> 8) & 0xFF;
1780                         prcmu_version.func_version = (version >> 16) & 0xFF;
1781                         prcmu_version.errata = (version >> 24) & 0xFF;
1782                         pr_info("PRCMU firmware version %d.%d.%d\n",
1783                                 (version >> 8) & 0xFF, (version >> 16) & 0xFF,
1784                                 (version >> 24) & 0xFF);
1785                         iounmap(tcpm_base);
1786                 }
1787
1788                 tcdm_base = __io_address(U8500_PRCMU_TCDM_BASE);
1789         } else {
1790                 pr_err("prcmu: Unsupported chip version\n");
1791                 BUG();
1792         }
1793
1794         spin_lock_init(&mb0_transfer.lock);
1795         spin_lock_init(&mb0_transfer.dbb_irqs_lock);
1796         mutex_init(&mb0_transfer.ac_wake_lock);
1797         init_completion(&mb0_transfer.ac_wake_work);
1798         mutex_init(&mb1_transfer.lock);
1799         init_completion(&mb1_transfer.work);
1800         mutex_init(&mb2_transfer.lock);
1801         init_completion(&mb2_transfer.work);
1802         spin_lock_init(&mb2_transfer.auto_pm_lock);
1803         spin_lock_init(&mb3_transfer.lock);
1804         mutex_init(&mb3_transfer.sysclk_lock);
1805         init_completion(&mb3_transfer.sysclk_work);
1806         mutex_init(&mb4_transfer.lock);
1807         init_completion(&mb4_transfer.work);
1808         mutex_init(&mb5_transfer.lock);
1809         init_completion(&mb5_transfer.work);
1810
1811         INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
1812
1813         /* Initalize irqs. */
1814         for (i = 0; i < NUM_PRCMU_WAKEUPS; i++) {
1815                 unsigned int irq;
1816
1817                 irq = IRQ_PRCMU_BASE + i;
1818                 irq_set_chip_and_handler(irq, &prcmu_irq_chip,
1819                                          handle_simple_irq);
1820                 set_irq_flags(irq, IRQF_VALID);
1821         }
1822 }
1823
1824 /*
1825  * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
1826  */
1827 static struct regulator_consumer_supply db8500_vape_consumers[] = {
1828         REGULATOR_SUPPLY("v-ape", NULL),
1829         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
1830         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
1831         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
1832         REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
1833         /* "v-mmc" changed to "vcore" in the mainline kernel */
1834         REGULATOR_SUPPLY("vcore", "sdi0"),
1835         REGULATOR_SUPPLY("vcore", "sdi1"),
1836         REGULATOR_SUPPLY("vcore", "sdi2"),
1837         REGULATOR_SUPPLY("vcore", "sdi3"),
1838         REGULATOR_SUPPLY("vcore", "sdi4"),
1839         REGULATOR_SUPPLY("v-dma", "dma40.0"),
1840         REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
1841         /* "v-uart" changed to "vcore" in the mainline kernel */
1842         REGULATOR_SUPPLY("vcore", "uart0"),
1843         REGULATOR_SUPPLY("vcore", "uart1"),
1844         REGULATOR_SUPPLY("vcore", "uart2"),
1845         REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
1846 };
1847
1848 static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
1849         /* CG2900 and CW1200 power to off-chip peripherals */
1850         REGULATOR_SUPPLY("gbf_1v8", "cg2900-uart.0"),
1851         REGULATOR_SUPPLY("wlan_1v8", "cw1200.0"),
1852         REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
1853         /* AV8100 regulator */
1854         REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
1855 };
1856
1857 static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
1858         REGULATOR_SUPPLY("vsupply", "b2r2.0"),
1859         REGULATOR_SUPPLY("vsupply", "mcde.0"),
1860 };
1861
1862 static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
1863         [DB8500_REGULATOR_VAPE] = {
1864                 .constraints = {
1865                         .name = "db8500-vape",
1866                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1867                 },
1868                 .consumer_supplies = db8500_vape_consumers,
1869                 .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
1870         },
1871         [DB8500_REGULATOR_VARM] = {
1872                 .constraints = {
1873                         .name = "db8500-varm",
1874                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1875                 },
1876         },
1877         [DB8500_REGULATOR_VMODEM] = {
1878                 .constraints = {
1879                         .name = "db8500-vmodem",
1880                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1881                 },
1882         },
1883         [DB8500_REGULATOR_VPLL] = {
1884                 .constraints = {
1885                         .name = "db8500-vpll",
1886                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1887                 },
1888         },
1889         [DB8500_REGULATOR_VSMPS1] = {
1890                 .constraints = {
1891                         .name = "db8500-vsmps1",
1892                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1893                 },
1894         },
1895         [DB8500_REGULATOR_VSMPS2] = {
1896                 .constraints = {
1897                         .name = "db8500-vsmps2",
1898                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1899                 },
1900                 .consumer_supplies = db8500_vsmps2_consumers,
1901                 .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
1902         },
1903         [DB8500_REGULATOR_VSMPS3] = {
1904                 .constraints = {
1905                         .name = "db8500-vsmps3",
1906                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1907                 },
1908         },
1909         [DB8500_REGULATOR_VRF1] = {
1910                 .constraints = {
1911                         .name = "db8500-vrf1",
1912                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1913                 },
1914         },
1915         [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
1916                 .supply_regulator = "db8500-vape",
1917                 .constraints = {
1918                         .name = "db8500-sva-mmdsp",
1919                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1920                 },
1921         },
1922         [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
1923                 .constraints = {
1924                         /* "ret" means "retention" */
1925                         .name = "db8500-sva-mmdsp-ret",
1926                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1927                 },
1928         },
1929         [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
1930                 .supply_regulator = "db8500-vape",
1931                 .constraints = {
1932                         .name = "db8500-sva-pipe",
1933                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1934                 },
1935         },
1936         [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
1937                 .supply_regulator = "db8500-vape",
1938                 .constraints = {
1939                         .name = "db8500-sia-mmdsp",
1940                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1941                 },
1942         },
1943         [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
1944                 .constraints = {
1945                         .name = "db8500-sia-mmdsp-ret",
1946                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1947                 },
1948         },
1949         [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
1950                 .supply_regulator = "db8500-vape",
1951                 .constraints = {
1952                         .name = "db8500-sia-pipe",
1953                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1954                 },
1955         },
1956         [DB8500_REGULATOR_SWITCH_SGA] = {
1957                 .supply_regulator = "db8500-vape",
1958                 .constraints = {
1959                         .name = "db8500-sga",
1960                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1961                 },
1962         },
1963         [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
1964                 .supply_regulator = "db8500-vape",
1965                 .constraints = {
1966                         .name = "db8500-b2r2-mcde",
1967                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1968                 },
1969                 .consumer_supplies = db8500_b2r2_mcde_consumers,
1970                 .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
1971         },
1972         [DB8500_REGULATOR_SWITCH_ESRAM12] = {
1973                 .supply_regulator = "db8500-vape",
1974                 .constraints = {
1975                         .name = "db8500-esram12",
1976                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1977                 },
1978         },
1979         [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
1980                 .constraints = {
1981                         .name = "db8500-esram12-ret",
1982                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1983                 },
1984         },
1985         [DB8500_REGULATOR_SWITCH_ESRAM34] = {
1986                 .supply_regulator = "db8500-vape",
1987                 .constraints = {
1988                         .name = "db8500-esram34",
1989                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1990                 },
1991         },
1992         [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
1993                 .constraints = {
1994                         .name = "db8500-esram34-ret",
1995                         .valid_ops_mask = REGULATOR_CHANGE_STATUS,
1996                 },
1997         },
1998 };
1999
2000 static struct mfd_cell db8500_prcmu_devs[] = {
2001         {
2002                 .name = "db8500-prcmu-regulators",
2003                 .platform_data = &db8500_regulators,
2004                 .pdata_size = sizeof(db8500_regulators),
2005         },
2006         {
2007                 .name = "cpufreq-u8500",
2008         },
2009 };
2010
2011 /**
2012  * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
2013  *
2014  */
2015 static int __init db8500_prcmu_probe(struct platform_device *pdev)
2016 {
2017         int err = 0;
2018
2019         if (ux500_is_svp())
2020                 return -ENODEV;
2021
2022         /* Clean up the mailbox interrupts after pre-kernel code. */
2023         writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
2024
2025         err = request_threaded_irq(IRQ_DB8500_PRCMU1, prcmu_irq_handler,
2026                 prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
2027         if (err < 0) {
2028                 pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
2029                 err = -EBUSY;
2030                 goto no_irq_return;
2031         }
2032
2033         if (cpu_is_u8500v20_or_later())
2034                 prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
2035
2036         err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
2037                               ARRAY_SIZE(db8500_prcmu_devs), NULL,
2038                               0);
2039
2040         if (err)
2041                 pr_err("prcmu: Failed to add subdevices\n");
2042         else
2043                 pr_info("DB8500 PRCMU initialized\n");
2044
2045 no_irq_return:
2046         return err;
2047 }
2048
2049 static struct platform_driver db8500_prcmu_driver = {
2050         .driver = {
2051                 .name = "db8500-prcmu",
2052                 .owner = THIS_MODULE,
2053         },
2054 };
2055
2056 static int __init db8500_prcmu_init(void)
2057 {
2058         return platform_driver_probe(&db8500_prcmu_driver, db8500_prcmu_probe);
2059 }
2060
2061 arch_initcall(db8500_prcmu_init);
2062
2063 MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
2064 MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
2065 MODULE_LICENSE("GPL v2");