]> Pileus Git - ~andy/linux/blob - drivers/memory/emif.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[~andy/linux] / drivers / memory / emif.c
1 /*
2  * EMIF driver
3  *
4  * Copyright (C) 2012 Texas Instruments, Inc.
5  *
6  * Aneesh V <aneesh@ti.com>
7  * Santosh Shilimkar <santosh.shilimkar@ti.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 #include <linux/kernel.h>
14 #include <linux/reboot.h>
15 #include <linux/platform_data/emif_plat.h>
16 #include <linux/io.h>
17 #include <linux/device.h>
18 #include <linux/platform_device.h>
19 #include <linux/interrupt.h>
20 #include <linux/slab.h>
21 #include <linux/of.h>
22 #include <linux/debugfs.h>
23 #include <linux/seq_file.h>
24 #include <linux/module.h>
25 #include <linux/list.h>
26 #include <linux/spinlock.h>
27 #include <memory/jedec_ddr.h>
28 #include "emif.h"
29 #include "of_memory.h"
30
31 /**
32  * struct emif_data - Per device static data for driver's use
33  * @duplicate:                  Whether the DDR devices attached to this EMIF
34  *                              instance are exactly same as that on EMIF1. In
35  *                              this case we can save some memory and processing
36  * @temperature_level:          Maximum temperature of LPDDR2 devices attached
37  *                              to this EMIF - read from MR4 register. If there
38  *                              are two devices attached to this EMIF, this
39  *                              value is the maximum of the two temperature
40  *                              levels.
41  * @node:                       node in the device list
42  * @base:                       base address of memory-mapped IO registers.
43  * @dev:                        device pointer.
44  * @addressing                  table with addressing information from the spec
45  * @regs_cache:                 An array of 'struct emif_regs' that stores
46  *                              calculated register values for different
47  *                              frequencies, to avoid re-calculating them on
48  *                              each DVFS transition.
49  * @curr_regs:                  The set of register values used in the last
50  *                              frequency change (i.e. corresponding to the
51  *                              frequency in effect at the moment)
52  * @plat_data:                  Pointer to saved platform data.
53  * @debugfs_root:               dentry to the root folder for EMIF in debugfs
54  * @np_ddr:                     Pointer to ddr device tree node
55  */
56 struct emif_data {
57         u8                              duplicate;
58         u8                              temperature_level;
59         u8                              lpmode;
60         struct list_head                node;
61         unsigned long                   irq_state;
62         void __iomem                    *base;
63         struct device                   *dev;
64         const struct lpddr2_addressing  *addressing;
65         struct emif_regs                *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
66         struct emif_regs                *curr_regs;
67         struct emif_platform_data       *plat_data;
68         struct dentry                   *debugfs_root;
69         struct device_node              *np_ddr;
70 };
71
72 static struct emif_data *emif1;
73 static spinlock_t       emif_lock;
74 static unsigned long    irq_state;
75 static u32              t_ck; /* DDR clock period in ps */
76 static LIST_HEAD(device_list);
77
78 #ifdef CONFIG_DEBUG_FS
79 static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
80         struct emif_regs *regs)
81 {
82         u32 type = emif->plat_data->device_info->type;
83         u32 ip_rev = emif->plat_data->ip_rev;
84
85         seq_printf(s, "EMIF register cache dump for %dMHz\n",
86                 regs->freq/1000000);
87
88         seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
89         seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
90         seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
91         seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
92
93         if (ip_rev == EMIF_4D) {
94                 seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
95                         regs->read_idle_ctrl_shdw_normal);
96                 seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
97                         regs->read_idle_ctrl_shdw_volt_ramp);
98         } else if (ip_rev == EMIF_4D5) {
99                 seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
100                         regs->dll_calib_ctrl_shdw_normal);
101                 seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
102                         regs->dll_calib_ctrl_shdw_volt_ramp);
103         }
104
105         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
106                 seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
107                         regs->ref_ctrl_shdw_derated);
108                 seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
109                         regs->sdram_tim1_shdw_derated);
110                 seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
111                         regs->sdram_tim3_shdw_derated);
112         }
113 }
114
115 static int emif_regdump_show(struct seq_file *s, void *unused)
116 {
117         struct emif_data        *emif   = s->private;
118         struct emif_regs        **regs_cache;
119         int                     i;
120
121         if (emif->duplicate)
122                 regs_cache = emif1->regs_cache;
123         else
124                 regs_cache = emif->regs_cache;
125
126         for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
127                 do_emif_regdump_show(s, emif, regs_cache[i]);
128                 seq_printf(s, "\n");
129         }
130
131         return 0;
132 }
133
134 static int emif_regdump_open(struct inode *inode, struct file *file)
135 {
136         return single_open(file, emif_regdump_show, inode->i_private);
137 }
138
139 static const struct file_operations emif_regdump_fops = {
140         .open                   = emif_regdump_open,
141         .read                   = seq_read,
142         .release                = single_release,
143 };
144
145 static int emif_mr4_show(struct seq_file *s, void *unused)
146 {
147         struct emif_data *emif = s->private;
148
149         seq_printf(s, "MR4=%d\n", emif->temperature_level);
150         return 0;
151 }
152
153 static int emif_mr4_open(struct inode *inode, struct file *file)
154 {
155         return single_open(file, emif_mr4_show, inode->i_private);
156 }
157
158 static const struct file_operations emif_mr4_fops = {
159         .open                   = emif_mr4_open,
160         .read                   = seq_read,
161         .release                = single_release,
162 };
163
164 static int __init_or_module emif_debugfs_init(struct emif_data *emif)
165 {
166         struct dentry   *dentry;
167         int             ret;
168
169         dentry = debugfs_create_dir(dev_name(emif->dev), NULL);
170         if (!dentry) {
171                 ret = -ENOMEM;
172                 goto err0;
173         }
174         emif->debugfs_root = dentry;
175
176         dentry = debugfs_create_file("regcache_dump", S_IRUGO,
177                         emif->debugfs_root, emif, &emif_regdump_fops);
178         if (!dentry) {
179                 ret = -ENOMEM;
180                 goto err1;
181         }
182
183         dentry = debugfs_create_file("mr4", S_IRUGO,
184                         emif->debugfs_root, emif, &emif_mr4_fops);
185         if (!dentry) {
186                 ret = -ENOMEM;
187                 goto err1;
188         }
189
190         return 0;
191 err1:
192         debugfs_remove_recursive(emif->debugfs_root);
193 err0:
194         return ret;
195 }
196
197 static void __exit emif_debugfs_exit(struct emif_data *emif)
198 {
199         debugfs_remove_recursive(emif->debugfs_root);
200         emif->debugfs_root = NULL;
201 }
202 #else
203 static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
204 {
205         return 0;
206 }
207
208 static inline void __exit emif_debugfs_exit(struct emif_data *emif)
209 {
210 }
211 #endif
212
213 /*
214  * Calculate the period of DDR clock from frequency value
215  */
216 static void set_ddr_clk_period(u32 freq)
217 {
218         /* Divide 10^12 by frequency to get period in ps */
219         t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
220 }
221
222 /*
223  * Get bus width used by EMIF. Note that this may be different from the
224  * bus width of the DDR devices used. For instance two 16-bit DDR devices
225  * may be connected to a given CS of EMIF. In this case bus width as far
226  * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
227  */
228 static u32 get_emif_bus_width(struct emif_data *emif)
229 {
230         u32             width;
231         void __iomem    *base = emif->base;
232
233         width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
234                         >> NARROW_MODE_SHIFT;
235         width = width == 0 ? 32 : 16;
236
237         return width;
238 }
239
240 /*
241  * Get the CL from SDRAM_CONFIG register
242  */
243 static u32 get_cl(struct emif_data *emif)
244 {
245         u32             cl;
246         void __iomem    *base = emif->base;
247
248         cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
249
250         return cl;
251 }
252
253 static void set_lpmode(struct emif_data *emif, u8 lpmode)
254 {
255         u32 temp;
256         void __iomem *base = emif->base;
257
258         temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
259         temp &= ~LP_MODE_MASK;
260         temp |= (lpmode << LP_MODE_SHIFT);
261         writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
262 }
263
264 static void do_freq_update(void)
265 {
266         struct emif_data *emif;
267
268         /*
269          * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
270          *
271          * i728 DESCRIPTION:
272          * The EMIF automatically puts the SDRAM into self-refresh mode
273          * after the EMIF has not performed accesses during
274          * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
275          * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
276          * to 0x2. If during a small window the following three events
277          * occur:
278          * - The SR_TIMING counter expires
279          * - And frequency change is requested
280          * - And OCP access is requested
281          * Then it causes instable clock on the DDR interface.
282          *
283          * WORKAROUND
284          * To avoid the occurrence of the three events, the workaround
285          * is to disable the self-refresh when requesting a frequency
286          * change. Before requesting a frequency change the software must
287          * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
288          * frequency change has been done, the software can reprogram
289          * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
290          */
291         list_for_each_entry(emif, &device_list, node) {
292                 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
293                         set_lpmode(emif, EMIF_LP_MODE_DISABLE);
294         }
295
296         /*
297          * TODO: Do FREQ_UPDATE here when an API
298          * is available for this as part of the new
299          * clock framework
300          */
301
302         list_for_each_entry(emif, &device_list, node) {
303                 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
304                         set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
305         }
306 }
307
308 /* Find addressing table entry based on the device's type and density */
309 static const struct lpddr2_addressing *get_addressing_table(
310         const struct ddr_device_info *device_info)
311 {
312         u32             index, type, density;
313
314         type = device_info->type;
315         density = device_info->density;
316
317         switch (type) {
318         case DDR_TYPE_LPDDR2_S4:
319                 index = density - 1;
320                 break;
321         case DDR_TYPE_LPDDR2_S2:
322                 switch (density) {
323                 case DDR_DENSITY_1Gb:
324                 case DDR_DENSITY_2Gb:
325                         index = density + 3;
326                         break;
327                 default:
328                         index = density - 1;
329                 }
330                 break;
331         default:
332                 return NULL;
333         }
334
335         return &lpddr2_jedec_addressing_table[index];
336 }
337
338 /*
339  * Find the the right timing table from the array of timing
340  * tables of the device using DDR clock frequency
341  */
342 static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
343                 u32 freq)
344 {
345         u32                             i, min, max, freq_nearest;
346         const struct lpddr2_timings     *timings = NULL;
347         const struct lpddr2_timings     *timings_arr = emif->plat_data->timings;
348         struct                          device *dev = emif->dev;
349
350         /* Start with a very high frequency - 1GHz */
351         freq_nearest = 1000000000;
352
353         /*
354          * Find the timings table such that:
355          *  1. the frequency range covers the required frequency(safe) AND
356          *  2. the max_freq is closest to the required frequency(optimal)
357          */
358         for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
359                 max = timings_arr[i].max_freq;
360                 min = timings_arr[i].min_freq;
361                 if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
362                         freq_nearest = max;
363                         timings = &timings_arr[i];
364                 }
365         }
366
367         if (!timings)
368                 dev_err(dev, "%s: couldn't find timings for - %dHz\n",
369                         __func__, freq);
370
371         dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
372                 __func__, freq, freq_nearest);
373
374         return timings;
375 }
376
377 static u32 get_sdram_ref_ctrl_shdw(u32 freq,
378                 const struct lpddr2_addressing *addressing)
379 {
380         u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
381
382         /* Scale down frequency and t_refi to avoid overflow */
383         freq_khz = freq / 1000;
384         t_refi = addressing->tREFI_ns / 100;
385
386         /*
387          * refresh rate to be set is 'tREFI(in us) * freq in MHz
388          * division by 10000 to account for change in units
389          */
390         val = t_refi * freq_khz / 10000;
391         ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
392
393         return ref_ctrl_shdw;
394 }
395
396 static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
397                 const struct lpddr2_min_tck *min_tck,
398                 const struct lpddr2_addressing *addressing)
399 {
400         u32 tim1 = 0, val = 0;
401
402         val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
403         tim1 |= val << T_WTR_SHIFT;
404
405         if (addressing->num_banks == B8)
406                 val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
407         else
408                 val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
409         tim1 |= (val - 1) << T_RRD_SHIFT;
410
411         val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
412         tim1 |= val << T_RC_SHIFT;
413
414         val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
415         tim1 |= (val - 1) << T_RAS_SHIFT;
416
417         val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
418         tim1 |= val << T_WR_SHIFT;
419
420         val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
421         tim1 |= val << T_RCD_SHIFT;
422
423         val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
424         tim1 |= val << T_RP_SHIFT;
425
426         return tim1;
427 }
428
429 static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
430                 const struct lpddr2_min_tck *min_tck,
431                 const struct lpddr2_addressing *addressing)
432 {
433         u32 tim1 = 0, val = 0;
434
435         val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
436         tim1 = val << T_WTR_SHIFT;
437
438         /*
439          * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
440          * to tFAW for de-rating
441          */
442         if (addressing->num_banks == B8) {
443                 val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
444         } else {
445                 val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
446                 val = max(min_tck->tRRD, val) - 1;
447         }
448         tim1 |= val << T_RRD_SHIFT;
449
450         val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
451         tim1 |= (val - 1) << T_RC_SHIFT;
452
453         val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
454         val = max(min_tck->tRASmin, val) - 1;
455         tim1 |= val << T_RAS_SHIFT;
456
457         val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
458         tim1 |= val << T_WR_SHIFT;
459
460         val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
461         tim1 |= (val - 1) << T_RCD_SHIFT;
462
463         val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
464         tim1 |= (val - 1) << T_RP_SHIFT;
465
466         return tim1;
467 }
468
469 static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
470                 const struct lpddr2_min_tck *min_tck,
471                 const struct lpddr2_addressing *addressing,
472                 u32 type)
473 {
474         u32 tim2 = 0, val = 0;
475
476         val = min_tck->tCKE - 1;
477         tim2 |= val << T_CKE_SHIFT;
478
479         val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
480         tim2 |= val << T_RTP_SHIFT;
481
482         /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
483         val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
484         tim2 |= val << T_XSNR_SHIFT;
485
486         /* XSRD same as XSNR for LPDDR2 */
487         tim2 |= val << T_XSRD_SHIFT;
488
489         val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
490         tim2 |= val << T_XP_SHIFT;
491
492         return tim2;
493 }
494
495 static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
496                 const struct lpddr2_min_tck *min_tck,
497                 const struct lpddr2_addressing *addressing,
498                 u32 type, u32 ip_rev, u32 derated)
499 {
500         u32 tim3 = 0, val = 0, t_dqsck;
501
502         val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
503         val = val > 0xF ? 0xF : val;
504         tim3 |= val << T_RAS_MAX_SHIFT;
505
506         val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
507         tim3 |= val << T_RFC_SHIFT;
508
509         t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
510                 timings->tDQSCK_max_derated : timings->tDQSCK_max;
511         if (ip_rev == EMIF_4D5)
512                 val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
513         else
514                 val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
515
516         tim3 |= val << T_TDQSCKMAX_SHIFT;
517
518         val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
519         tim3 |= val << ZQ_ZQCS_SHIFT;
520
521         val = DIV_ROUND_UP(timings->tCKESR, t_ck);
522         val = max(min_tck->tCKESR, val) - 1;
523         tim3 |= val << T_CKESR_SHIFT;
524
525         if (ip_rev == EMIF_4D5) {
526                 tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
527
528                 val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
529                 tim3 |= val << T_PDLL_UL_SHIFT;
530         }
531
532         return tim3;
533 }
534
535 static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
536                 bool cs1_used, bool cal_resistors_per_cs)
537 {
538         u32 zq = 0, val = 0;
539
540         val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
541         zq |= val << ZQ_REFINTERVAL_SHIFT;
542
543         val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
544         zq |= val << ZQ_ZQCL_MULT_SHIFT;
545
546         val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
547         zq |= val << ZQ_ZQINIT_MULT_SHIFT;
548
549         zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
550
551         if (cal_resistors_per_cs)
552                 zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
553         else
554                 zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
555
556         zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
557
558         val = cs1_used ? 1 : 0;
559         zq |= val << ZQ_CS1EN_SHIFT;
560
561         return zq;
562 }
563
564 static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
565                 const struct emif_custom_configs *custom_configs, bool cs1_used,
566                 u32 sdram_io_width, u32 emif_bus_width)
567 {
568         u32 alert = 0, interval, devcnt;
569
570         if (custom_configs && (custom_configs->mask &
571                                 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
572                 interval = custom_configs->temp_alert_poll_interval_ms;
573         else
574                 interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
575
576         interval *= 1000000;                    /* Convert to ns */
577         interval /= addressing->tREFI_ns;       /* Convert to refresh cycles */
578         alert |= (interval << TA_REFINTERVAL_SHIFT);
579
580         /*
581          * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
582          * also to this form and subtract to get TA_DEVCNT, which is
583          * in log2(x) form.
584          */
585         emif_bus_width = __fls(emif_bus_width) - 1;
586         devcnt = emif_bus_width - sdram_io_width;
587         alert |= devcnt << TA_DEVCNT_SHIFT;
588
589         /* DEVWDT is in 'log2(x) - 3' form */
590         alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
591
592         alert |= 1 << TA_SFEXITEN_SHIFT;
593         alert |= 1 << TA_CS0EN_SHIFT;
594         alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
595
596         return alert;
597 }
598
599 static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
600 {
601         u32 idle = 0, val = 0;
602
603         /*
604          * Maximum value in normal conditions and increased frequency
605          * when voltage is ramping
606          */
607         if (volt_ramp)
608                 val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
609         else
610                 val = 0x1FF;
611
612         /*
613          * READ_IDLE_CTRL register in EMIF4D has same offset and fields
614          * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
615          */
616         idle |= val << DLL_CALIB_INTERVAL_SHIFT;
617         idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
618
619         return idle;
620 }
621
622 static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
623 {
624         u32 calib = 0, val = 0;
625
626         if (volt_ramp == DDR_VOLTAGE_RAMPING)
627                 val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
628         else
629                 val = 0; /* Disabled when voltage is stable */
630
631         calib |= val << DLL_CALIB_INTERVAL_SHIFT;
632         calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
633
634         return calib;
635 }
636
637 static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
638         u32 freq, u8 RL)
639 {
640         u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
641
642         val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
643         phy |= val << READ_LATENCY_SHIFT_4D;
644
645         if (freq <= 100000000)
646                 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
647         else if (freq <= 200000000)
648                 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
649         else
650                 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
651
652         phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
653
654         return phy;
655 }
656
657 static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
658 {
659         u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
660
661         /*
662          * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
663          * half-delay is not needed else set half-delay
664          */
665         if (freq >= 265000000 && freq < 267000000)
666                 half_delay = 0;
667         else
668                 half_delay = 1;
669
670         phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
671         phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
672                         t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
673
674         return phy;
675 }
676
677 static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
678 {
679         u32 fifo_we_slave_ratio;
680
681         fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
682                 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
683
684         return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
685                 fifo_we_slave_ratio << 22;
686 }
687
688 static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
689 {
690         u32 fifo_we_slave_ratio;
691
692         fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
693                 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
694
695         return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
696                 fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
697 }
698
699 static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
700 {
701         u32 fifo_we_slave_ratio;
702
703         fifo_we_slave_ratio =  DIV_ROUND_CLOSEST(
704                 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
705
706         return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
707                 fifo_we_slave_ratio << 13;
708 }
709
710 static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
711 {
712         u32 pwr_mgmt_ctrl       = 0, timeout;
713         u32 lpmode              = EMIF_LP_MODE_SELF_REFRESH;
714         u32 timeout_perf        = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
715         u32 timeout_pwr         = EMIF_LP_MODE_TIMEOUT_POWER;
716         u32 freq_threshold      = EMIF_LP_MODE_FREQ_THRESHOLD;
717
718         struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
719
720         if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
721                 lpmode          = cust_cfgs->lpmode;
722                 timeout_perf    = cust_cfgs->lpmode_timeout_performance;
723                 timeout_pwr     = cust_cfgs->lpmode_timeout_power;
724                 freq_threshold  = cust_cfgs->lpmode_freq_threshold;
725         }
726
727         /* Timeout based on DDR frequency */
728         timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
729
730         /* The value to be set in register is "log2(timeout) - 3" */
731         if (timeout < 16) {
732                 timeout = 0;
733         } else {
734                 timeout = __fls(timeout) - 3;
735                 if (timeout & (timeout - 1))
736                         timeout++;
737         }
738
739         switch (lpmode) {
740         case EMIF_LP_MODE_CLOCK_STOP:
741                 pwr_mgmt_ctrl = (timeout << CS_TIM_SHIFT) |
742                                         SR_TIM_MASK | PD_TIM_MASK;
743                 break;
744         case EMIF_LP_MODE_SELF_REFRESH:
745                 /* Workaround for errata i735 */
746                 if (timeout < 6)
747                         timeout = 6;
748
749                 pwr_mgmt_ctrl = (timeout << SR_TIM_SHIFT) |
750                                         CS_TIM_MASK | PD_TIM_MASK;
751                 break;
752         case EMIF_LP_MODE_PWR_DN:
753                 pwr_mgmt_ctrl = (timeout << PD_TIM_SHIFT) |
754                                         CS_TIM_MASK | SR_TIM_MASK;
755                 break;
756         case EMIF_LP_MODE_DISABLE:
757         default:
758                 pwr_mgmt_ctrl = CS_TIM_MASK |
759                                         PD_TIM_MASK | SR_TIM_MASK;
760         }
761
762         /* No CS_TIM in EMIF_4D5 */
763         if (ip_rev == EMIF_4D5)
764                 pwr_mgmt_ctrl &= ~CS_TIM_MASK;
765
766         pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
767
768         return pwr_mgmt_ctrl;
769 }
770
771 /*
772  * Get the temperature level of the EMIF instance:
773  * Reads the MR4 register of attached SDRAM parts to find out the temperature
774  * level. If there are two parts attached(one on each CS), then the temperature
775  * level for the EMIF instance is the higher of the two temperatures.
776  */
777 static void get_temperature_level(struct emif_data *emif)
778 {
779         u32             temp, temperature_level;
780         void __iomem    *base;
781
782         base = emif->base;
783
784         /* Read mode register 4 */
785         writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
786         temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
787         temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
788                                 MR4_SDRAM_REF_RATE_SHIFT;
789
790         if (emif->plat_data->device_info->cs1_used) {
791                 writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
792                 temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
793                 temp = (temp & MR4_SDRAM_REF_RATE_MASK)
794                                 >> MR4_SDRAM_REF_RATE_SHIFT;
795                 temperature_level = max(temp, temperature_level);
796         }
797
798         /* treat everything less than nominal(3) in MR4 as nominal */
799         if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
800                 temperature_level = SDRAM_TEMP_NOMINAL;
801
802         /* if we get reserved value in MR4 persist with the existing value */
803         if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
804                 emif->temperature_level = temperature_level;
805 }
806
807 /*
808  * Program EMIF shadow registers that are not dependent on temperature
809  * or voltage
810  */
811 static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
812 {
813         void __iomem    *base = emif->base;
814
815         writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
816         writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
817
818         /* Settings specific for EMIF4D5 */
819         if (emif->plat_data->ip_rev != EMIF_4D5)
820                 return;
821         writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
822         writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
823         writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
824 }
825
826 /*
827  * When voltage ramps dll calibration and forced read idle should
828  * happen more often
829  */
830 static void setup_volt_sensitive_regs(struct emif_data *emif,
831                 struct emif_regs *regs, u32 volt_state)
832 {
833         u32             calib_ctrl;
834         void __iomem    *base = emif->base;
835
836         /*
837          * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
838          * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
839          * is an alias of the respective read_idle_ctrl_shdw_* (members of
840          * a union). So, the below code takes care of both cases
841          */
842         if (volt_state == DDR_VOLTAGE_RAMPING)
843                 calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
844         else
845                 calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
846
847         writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
848 }
849
850 /*
851  * setup_temperature_sensitive_regs() - set the timings for temperature
852  * sensitive registers. This happens once at initialisation time based
853  * on the temperature at boot time and subsequently based on the temperature
854  * alert interrupt. Temperature alert can happen when the temperature
855  * increases or drops. So this function can have the effect of either
856  * derating the timings or going back to nominal values.
857  */
858 static void setup_temperature_sensitive_regs(struct emif_data *emif,
859                 struct emif_regs *regs)
860 {
861         u32             tim1, tim3, ref_ctrl, type;
862         void __iomem    *base = emif->base;
863         u32             temperature;
864
865         type = emif->plat_data->device_info->type;
866
867         tim1 = regs->sdram_tim1_shdw;
868         tim3 = regs->sdram_tim3_shdw;
869         ref_ctrl = regs->ref_ctrl_shdw;
870
871         /* No de-rating for non-lpddr2 devices */
872         if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
873                 goto out;
874
875         temperature = emif->temperature_level;
876         if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
877                 ref_ctrl = regs->ref_ctrl_shdw_derated;
878         } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
879                 tim1 = regs->sdram_tim1_shdw_derated;
880                 tim3 = regs->sdram_tim3_shdw_derated;
881                 ref_ctrl = regs->ref_ctrl_shdw_derated;
882         }
883
884 out:
885         writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
886         writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
887         writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
888 }
889
890 static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
891 {
892         u32             old_temp_level;
893         irqreturn_t     ret = IRQ_HANDLED;
894
895         spin_lock_irqsave(&emif_lock, irq_state);
896         old_temp_level = emif->temperature_level;
897         get_temperature_level(emif);
898
899         if (unlikely(emif->temperature_level == old_temp_level)) {
900                 goto out;
901         } else if (!emif->curr_regs) {
902                 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
903                 goto out;
904         }
905
906         if (emif->temperature_level < old_temp_level ||
907                 emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
908                 /*
909                  * Temperature coming down - defer handling to thread OR
910                  * Temperature far too high - do kernel_power_off() from
911                  * thread context
912                  */
913                 ret = IRQ_WAKE_THREAD;
914         } else {
915                 /* Temperature is going up - handle immediately */
916                 setup_temperature_sensitive_regs(emif, emif->curr_regs);
917                 do_freq_update();
918         }
919
920 out:
921         spin_unlock_irqrestore(&emif_lock, irq_state);
922         return ret;
923 }
924
925 static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
926 {
927         u32                     interrupts;
928         struct emif_data        *emif = dev_id;
929         void __iomem            *base = emif->base;
930         struct device           *dev = emif->dev;
931         irqreturn_t             ret = IRQ_HANDLED;
932
933         /* Save the status and clear it */
934         interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
935         writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
936
937         /*
938          * Handle temperature alert
939          * Temperature alert should be same for all ports
940          * So, it's enough to process it only for one of the ports
941          */
942         if (interrupts & TA_SYS_MASK)
943                 ret = handle_temp_alert(base, emif);
944
945         if (interrupts & ERR_SYS_MASK)
946                 dev_err(dev, "Access error from SYS port - %x\n", interrupts);
947
948         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
949                 /* Save the status and clear it */
950                 interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
951                 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
952
953                 if (interrupts & ERR_LL_MASK)
954                         dev_err(dev, "Access error from LL port - %x\n",
955                                 interrupts);
956         }
957
958         return ret;
959 }
960
961 static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
962 {
963         struct emif_data        *emif = dev_id;
964
965         if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
966                 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
967                 kernel_power_off();
968                 return IRQ_HANDLED;
969         }
970
971         spin_lock_irqsave(&emif_lock, irq_state);
972
973         if (emif->curr_regs) {
974                 setup_temperature_sensitive_regs(emif, emif->curr_regs);
975                 do_freq_update();
976         } else {
977                 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
978         }
979
980         spin_unlock_irqrestore(&emif_lock, irq_state);
981
982         return IRQ_HANDLED;
983 }
984
985 static void clear_all_interrupts(struct emif_data *emif)
986 {
987         void __iomem    *base = emif->base;
988
989         writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
990                 base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
991         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
992                 writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
993                         base + EMIF_LL_OCP_INTERRUPT_STATUS);
994 }
995
996 static void disable_and_clear_all_interrupts(struct emif_data *emif)
997 {
998         void __iomem            *base = emif->base;
999
1000         /* Disable all interrupts */
1001         writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
1002                 base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
1003         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1004                 writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
1005                         base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
1006
1007         /* Clear all interrupts */
1008         clear_all_interrupts(emif);
1009 }
1010
1011 static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
1012 {
1013         u32             interrupts, type;
1014         void __iomem    *base = emif->base;
1015
1016         type = emif->plat_data->device_info->type;
1017
1018         clear_all_interrupts(emif);
1019
1020         /* Enable interrupts for SYS interface */
1021         interrupts = EN_ERR_SYS_MASK;
1022         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1023                 interrupts |= EN_TA_SYS_MASK;
1024         writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1025
1026         /* Enable interrupts for LL interface */
1027         if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1028                 /* TA need not be enabled for LL */
1029                 interrupts = EN_ERR_LL_MASK;
1030                 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1031         }
1032
1033         /* setup IRQ handlers */
1034         return devm_request_threaded_irq(emif->dev, irq,
1035                                     emif_interrupt_handler,
1036                                     emif_threaded_isr,
1037                                     0, dev_name(emif->dev),
1038                                     emif);
1039
1040 }
1041
1042 static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1043 {
1044         u32                             pwr_mgmt_ctrl, zq, temp_alert_cfg;
1045         void __iomem                    *base = emif->base;
1046         const struct lpddr2_addressing  *addressing;
1047         const struct ddr_device_info    *device_info;
1048
1049         device_info = emif->plat_data->device_info;
1050         addressing = get_addressing_table(device_info);
1051
1052         /*
1053          * Init power management settings
1054          * We don't know the frequency yet. Use a high frequency
1055          * value for a conservative timeout setting
1056          */
1057         pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1058                         emif->plat_data->ip_rev);
1059         emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1060         writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1061
1062         /* Init ZQ calibration settings */
1063         zq = get_zq_config_reg(addressing, device_info->cs1_used,
1064                 device_info->cal_resistors_per_cs);
1065         writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
1066
1067         /* Check temperature level temperature level*/
1068         get_temperature_level(emif);
1069         if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
1070                 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1071
1072         /* Init temperature polling */
1073         temp_alert_cfg = get_temp_alert_config(addressing,
1074                 emif->plat_data->custom_configs, device_info->cs1_used,
1075                 device_info->io_width, get_emif_bus_width(emif));
1076         writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1077
1078         /*
1079          * Program external PHY control registers that are not frequency
1080          * dependent
1081          */
1082         if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1083                 return;
1084         writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
1085         writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
1086         writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
1087         writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
1088         writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
1089         writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
1090         writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
1091         writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
1092         writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
1093         writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
1094         writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
1095         writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
1096         writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
1097         writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
1098         writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
1099         writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
1100         writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
1101         writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
1102         writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
1103         writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
1104         writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
1105 }
1106
1107 static void get_default_timings(struct emif_data *emif)
1108 {
1109         struct emif_platform_data *pd = emif->plat_data;
1110
1111         pd->timings             = lpddr2_jedec_timings;
1112         pd->timings_arr_size    = ARRAY_SIZE(lpddr2_jedec_timings);
1113
1114         dev_warn(emif->dev, "%s: using default timings\n", __func__);
1115 }
1116
1117 static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1118                 u32 ip_rev, struct device *dev)
1119 {
1120         int valid;
1121
1122         valid = (type == DDR_TYPE_LPDDR2_S4 ||
1123                         type == DDR_TYPE_LPDDR2_S2)
1124                 && (density >= DDR_DENSITY_64Mb
1125                         && density <= DDR_DENSITY_8Gb)
1126                 && (io_width >= DDR_IO_WIDTH_8
1127                         && io_width <= DDR_IO_WIDTH_32);
1128
1129         /* Combinations of EMIF and PHY revisions that we support today */
1130         switch (ip_rev) {
1131         case EMIF_4D:
1132                 valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1133                 break;
1134         case EMIF_4D5:
1135                 valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1136                 break;
1137         default:
1138                 valid = 0;
1139         }
1140
1141         if (!valid)
1142                 dev_err(dev, "%s: invalid DDR details\n", __func__);
1143         return valid;
1144 }
1145
1146 static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1147                 struct device *dev)
1148 {
1149         int valid = 1;
1150
1151         if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1152                 (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1153                 valid = cust_cfgs->lpmode_freq_threshold &&
1154                         cust_cfgs->lpmode_timeout_performance &&
1155                         cust_cfgs->lpmode_timeout_power;
1156
1157         if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
1158                 valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1159
1160         if (!valid)
1161                 dev_warn(dev, "%s: invalid custom configs\n", __func__);
1162
1163         return valid;
1164 }
1165
1166 #if defined(CONFIG_OF)
1167 static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
1168                 struct emif_data *emif)
1169 {
1170         struct emif_custom_configs      *cust_cfgs = NULL;
1171         int                             len;
1172         const int                       *lpmode, *poll_intvl;
1173
1174         lpmode = of_get_property(np_emif, "low-power-mode", &len);
1175         poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
1176
1177         if (lpmode || poll_intvl)
1178                 cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
1179                         GFP_KERNEL);
1180
1181         if (!cust_cfgs)
1182                 return;
1183
1184         if (lpmode) {
1185                 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
1186                 cust_cfgs->lpmode = *lpmode;
1187                 of_property_read_u32(np_emif,
1188                                 "low-power-mode-timeout-performance",
1189                                 &cust_cfgs->lpmode_timeout_performance);
1190                 of_property_read_u32(np_emif,
1191                                 "low-power-mode-timeout-power",
1192                                 &cust_cfgs->lpmode_timeout_power);
1193                 of_property_read_u32(np_emif,
1194                                 "low-power-mode-freq-threshold",
1195                                 &cust_cfgs->lpmode_freq_threshold);
1196         }
1197
1198         if (poll_intvl) {
1199                 cust_cfgs->mask |=
1200                                 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
1201                 cust_cfgs->temp_alert_poll_interval_ms = *poll_intvl;
1202         }
1203
1204         if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
1205                 devm_kfree(emif->dev, cust_cfgs);
1206                 return;
1207         }
1208
1209         emif->plat_data->custom_configs = cust_cfgs;
1210 }
1211
1212 static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
1213                 struct device_node *np_ddr,
1214                 struct ddr_device_info *dev_info)
1215 {
1216         u32 density = 0, io_width = 0;
1217         int len;
1218
1219         if (of_find_property(np_emif, "cs1-used", &len))
1220                 dev_info->cs1_used = true;
1221
1222         if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
1223                 dev_info->cal_resistors_per_cs = true;
1224
1225         if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s4"))
1226                 dev_info->type = DDR_TYPE_LPDDR2_S4;
1227         else if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s2"))
1228                 dev_info->type = DDR_TYPE_LPDDR2_S2;
1229
1230         of_property_read_u32(np_ddr, "density", &density);
1231         of_property_read_u32(np_ddr, "io-width", &io_width);
1232
1233         /* Convert from density in Mb to the density encoding in jedc_ddr.h */
1234         if (density & (density - 1))
1235                 dev_info->density = 0;
1236         else
1237                 dev_info->density = __fls(density) - 5;
1238
1239         /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
1240         if (io_width & (io_width - 1))
1241                 dev_info->io_width = 0;
1242         else
1243                 dev_info->io_width = __fls(io_width) - 1;
1244 }
1245
1246 static struct emif_data * __init_or_module of_get_memory_device_details(
1247                 struct device_node *np_emif, struct device *dev)
1248 {
1249         struct emif_data                *emif = NULL;
1250         struct ddr_device_info          *dev_info = NULL;
1251         struct emif_platform_data       *pd = NULL;
1252         struct device_node              *np_ddr;
1253         int                             len;
1254
1255         np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
1256         if (!np_ddr)
1257                 goto error;
1258         emif    = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
1259         pd      = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1260         dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1261
1262         if (!emif || !pd || !dev_info) {
1263                 dev_err(dev, "%s: Out of memory!!\n",
1264                         __func__);
1265                 goto error;
1266         }
1267
1268         emif->plat_data         = pd;
1269         pd->device_info         = dev_info;
1270         emif->dev               = dev;
1271         emif->np_ddr            = np_ddr;
1272         emif->temperature_level = SDRAM_TEMP_NOMINAL;
1273
1274         if (of_device_is_compatible(np_emif, "ti,emif-4d"))
1275                 emif->plat_data->ip_rev = EMIF_4D;
1276         else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
1277                 emif->plat_data->ip_rev = EMIF_4D5;
1278
1279         of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
1280
1281         if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
1282                 pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
1283
1284         of_get_ddr_info(np_emif, np_ddr, dev_info);
1285         if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
1286                         pd->device_info->io_width, pd->phy_type, pd->ip_rev,
1287                         emif->dev)) {
1288                 dev_err(dev, "%s: invalid device data!!\n", __func__);
1289                 goto error;
1290         }
1291         /*
1292          * For EMIF instances other than EMIF1 see if the devices connected
1293          * are exactly same as on EMIF1(which is typically the case). If so,
1294          * mark it as a duplicate of EMIF1. This will save some memory and
1295          * computation.
1296          */
1297         if (emif1 && emif1->np_ddr == np_ddr) {
1298                 emif->duplicate = true;
1299                 goto out;
1300         } else if (emif1) {
1301                 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1302                         __func__);
1303         }
1304
1305         of_get_custom_configs(np_emif, emif);
1306         emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
1307                                         emif->plat_data->device_info->type,
1308                                         &emif->plat_data->timings_arr_size);
1309
1310         emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
1311         goto out;
1312
1313 error:
1314         return NULL;
1315 out:
1316         return emif;
1317 }
1318
1319 #else
1320
1321 static struct emif_data * __init_or_module of_get_memory_device_details(
1322                 struct device_node *np_emif, struct device *dev)
1323 {
1324         return NULL;
1325 }
1326 #endif
1327
1328 static struct emif_data *__init_or_module get_device_details(
1329                 struct platform_device *pdev)
1330 {
1331         u32                             size;
1332         struct emif_data                *emif = NULL;
1333         struct ddr_device_info          *dev_info;
1334         struct emif_custom_configs      *cust_cfgs;
1335         struct emif_platform_data       *pd;
1336         struct device                   *dev;
1337         void                            *temp;
1338
1339         pd = pdev->dev.platform_data;
1340         dev = &pdev->dev;
1341
1342         if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1343                         pd->device_info->density, pd->device_info->io_width,
1344                         pd->phy_type, pd->ip_rev, dev))) {
1345                 dev_err(dev, "%s: invalid device data\n", __func__);
1346                 goto error;
1347         }
1348
1349         emif    = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1350         temp    = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1351         dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1352
1353         if (!emif || !pd || !dev_info) {
1354                 dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1355                 goto error;
1356         }
1357
1358         memcpy(temp, pd, sizeof(*pd));
1359         pd = temp;
1360         memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1361
1362         pd->device_info         = dev_info;
1363         emif->plat_data         = pd;
1364         emif->dev               = dev;
1365         emif->temperature_level = SDRAM_TEMP_NOMINAL;
1366
1367         /*
1368          * For EMIF instances other than EMIF1 see if the devices connected
1369          * are exactly same as on EMIF1(which is typically the case). If so,
1370          * mark it as a duplicate of EMIF1 and skip copying timings data.
1371          * This will save some memory and some computation later.
1372          */
1373         emif->duplicate = emif1 && (memcmp(dev_info,
1374                 emif1->plat_data->device_info,
1375                 sizeof(struct ddr_device_info)) == 0);
1376
1377         if (emif->duplicate) {
1378                 pd->timings = NULL;
1379                 pd->min_tck = NULL;
1380                 goto out;
1381         } else if (emif1) {
1382                 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1383                         __func__);
1384         }
1385
1386         /*
1387          * Copy custom configs - ignore allocation error, if any, as
1388          * custom_configs is not very critical
1389          */
1390         cust_cfgs = pd->custom_configs;
1391         if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1392                 temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1393                 if (temp)
1394                         memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1395                 else
1396                         dev_warn(dev, "%s:%d: allocation error\n", __func__,
1397                                 __LINE__);
1398                 pd->custom_configs = temp;
1399         }
1400
1401         /*
1402          * Copy timings and min-tck values from platform data. If it is not
1403          * available or if memory allocation fails, use JEDEC defaults
1404          */
1405         size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1406         if (pd->timings) {
1407                 temp = devm_kzalloc(dev, size, GFP_KERNEL);
1408                 if (temp) {
1409                         memcpy(temp, pd->timings, sizeof(*pd->timings));
1410                         pd->timings = temp;
1411                 } else {
1412                         dev_warn(dev, "%s:%d: allocation error\n", __func__,
1413                                 __LINE__);
1414                         get_default_timings(emif);
1415                 }
1416         } else {
1417                 get_default_timings(emif);
1418         }
1419
1420         if (pd->min_tck) {
1421                 temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1422                 if (temp) {
1423                         memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1424                         pd->min_tck = temp;
1425                 } else {
1426                         dev_warn(dev, "%s:%d: allocation error\n", __func__,
1427                                 __LINE__);
1428                         pd->min_tck = &lpddr2_jedec_min_tck;
1429                 }
1430         } else {
1431                 pd->min_tck = &lpddr2_jedec_min_tck;
1432         }
1433
1434 out:
1435         return emif;
1436
1437 error:
1438         return NULL;
1439 }
1440
1441 static int __init_or_module emif_probe(struct platform_device *pdev)
1442 {
1443         struct emif_data        *emif;
1444         struct resource         *res;
1445         int                     irq;
1446
1447         if (pdev->dev.of_node)
1448                 emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1449         else
1450                 emif = get_device_details(pdev);
1451
1452         if (!emif) {
1453                 pr_err("%s: error getting device data\n", __func__);
1454                 goto error;
1455         }
1456
1457         list_add(&emif->node, &device_list);
1458         emif->addressing = get_addressing_table(emif->plat_data->device_info);
1459
1460         /* Save pointers to each other in emif and device structures */
1461         emif->dev = &pdev->dev;
1462         platform_set_drvdata(pdev, emif);
1463
1464         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1465         if (!res) {
1466                 dev_err(emif->dev, "%s: error getting memory resource\n",
1467                         __func__);
1468                 goto error;
1469         }
1470
1471         emif->base = devm_request_and_ioremap(emif->dev, res);
1472         if (!emif->base) {
1473                 dev_err(emif->dev, "%s: devm_request_and_ioremap() failed\n",
1474                         __func__);
1475                 goto error;
1476         }
1477
1478         irq = platform_get_irq(pdev, 0);
1479         if (irq < 0) {
1480                 dev_err(emif->dev, "%s: error getting IRQ resource - %d\n",
1481                         __func__, irq);
1482                 goto error;
1483         }
1484
1485         emif_onetime_settings(emif);
1486         emif_debugfs_init(emif);
1487         disable_and_clear_all_interrupts(emif);
1488         setup_interrupts(emif, irq);
1489
1490         /* One-time actions taken on probing the first device */
1491         if (!emif1) {
1492                 emif1 = emif;
1493                 spin_lock_init(&emif_lock);
1494
1495                 /*
1496                  * TODO: register notifiers for frequency and voltage
1497                  * change here once the respective frameworks are
1498                  * available
1499                  */
1500         }
1501
1502         dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1503                 __func__, emif->base, irq);
1504
1505         return 0;
1506 error:
1507         return -ENODEV;
1508 }
1509
1510 static int __exit emif_remove(struct platform_device *pdev)
1511 {
1512         struct emif_data *emif = platform_get_drvdata(pdev);
1513
1514         emif_debugfs_exit(emif);
1515
1516         return 0;
1517 }
1518
1519 static void emif_shutdown(struct platform_device *pdev)
1520 {
1521         struct emif_data        *emif = platform_get_drvdata(pdev);
1522
1523         disable_and_clear_all_interrupts(emif);
1524 }
1525
1526 static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1527                 struct emif_regs *regs)
1528 {
1529         u32                             cs1_used, ip_rev, phy_type;
1530         u32                             cl, type;
1531         const struct lpddr2_timings     *timings;
1532         const struct lpddr2_min_tck     *min_tck;
1533         const struct ddr_device_info    *device_info;
1534         const struct lpddr2_addressing  *addressing;
1535         struct emif_data                *emif_for_calc;
1536         struct device                   *dev;
1537         const struct emif_custom_configs *custom_configs;
1538
1539         dev = emif->dev;
1540         /*
1541          * If the devices on this EMIF instance is duplicate of EMIF1,
1542          * use EMIF1 details for the calculation
1543          */
1544         emif_for_calc   = emif->duplicate ? emif1 : emif;
1545         timings         = get_timings_table(emif_for_calc, freq);
1546         addressing      = emif_for_calc->addressing;
1547         if (!timings || !addressing) {
1548                 dev_err(dev, "%s: not enough data available for %dHz",
1549                         __func__, freq);
1550                 return -1;
1551         }
1552
1553         device_info     = emif_for_calc->plat_data->device_info;
1554         type            = device_info->type;
1555         cs1_used        = device_info->cs1_used;
1556         ip_rev          = emif_for_calc->plat_data->ip_rev;
1557         phy_type        = emif_for_calc->plat_data->phy_type;
1558
1559         min_tck         = emif_for_calc->plat_data->min_tck;
1560         custom_configs  = emif_for_calc->plat_data->custom_configs;
1561
1562         set_ddr_clk_period(freq);
1563
1564         regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1565         regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1566                         addressing);
1567         regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1568                         addressing, type);
1569         regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1570                 addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1571
1572         cl = get_cl(emif);
1573
1574         if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1575                 regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1576                         timings, freq, cl);
1577         } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1578                 regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1579                 regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1580                 regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1581                 regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1582         } else {
1583                 return -1;
1584         }
1585
1586         /* Only timeout values in pwr_mgmt_ctrl_shdw register */
1587         regs->pwr_mgmt_ctrl_shdw =
1588                 get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1589                 (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
1590
1591         if (ip_rev & EMIF_4D) {
1592                 regs->read_idle_ctrl_shdw_normal =
1593                         get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1594
1595                 regs->read_idle_ctrl_shdw_volt_ramp =
1596                         get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1597         } else if (ip_rev & EMIF_4D5) {
1598                 regs->dll_calib_ctrl_shdw_normal =
1599                         get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1600
1601                 regs->dll_calib_ctrl_shdw_volt_ramp =
1602                         get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1603         }
1604
1605         if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1606                 regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1607                         addressing);
1608
1609                 regs->sdram_tim1_shdw_derated =
1610                         get_sdram_tim_1_shdw_derated(timings, min_tck,
1611                                 addressing);
1612
1613                 regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1614                         min_tck, addressing, type, ip_rev,
1615                         EMIF_DERATED_TIMINGS);
1616         }
1617
1618         regs->freq = freq;
1619
1620         return 0;
1621 }
1622
1623 /*
1624  * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1625  * given frequency(freq):
1626  *
1627  * As an optimisation, every EMIF instance other than EMIF1 shares the
1628  * register cache with EMIF1 if the devices connected on this instance
1629  * are same as that on EMIF1(indicated by the duplicate flag)
1630  *
1631  * If we do not have an entry corresponding to the frequency given, we
1632  * allocate a new entry and calculate the values
1633  *
1634  * Upon finding the right reg dump, save it in curr_regs. It can be
1635  * directly used for thermal de-rating and voltage ramping changes.
1636  */
1637 static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1638 {
1639         int                     i;
1640         struct emif_regs        **regs_cache;
1641         struct emif_regs        *regs = NULL;
1642         struct device           *dev;
1643
1644         dev = emif->dev;
1645         if (emif->curr_regs && emif->curr_regs->freq == freq) {
1646                 dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1647                 return emif->curr_regs;
1648         }
1649
1650         if (emif->duplicate)
1651                 regs_cache = emif1->regs_cache;
1652         else
1653                 regs_cache = emif->regs_cache;
1654
1655         for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1656                 if (regs_cache[i]->freq == freq) {
1657                         regs = regs_cache[i];
1658                         dev_dbg(dev,
1659                                 "%s: reg dump found in reg cache for %u Hz\n",
1660                                 __func__, freq);
1661                         break;
1662                 }
1663         }
1664
1665         /*
1666          * If we don't have an entry for this frequency in the cache create one
1667          * and calculate the values
1668          */
1669         if (!regs) {
1670                 regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1671                 if (!regs)
1672                         return NULL;
1673
1674                 if (get_emif_reg_values(emif, freq, regs)) {
1675                         devm_kfree(emif->dev, regs);
1676                         return NULL;
1677                 }
1678
1679                 /*
1680                  * Now look for an un-used entry in the cache and save the
1681                  * newly created struct. If there are no free entries
1682                  * over-write the last entry
1683                  */
1684                 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1685                         ;
1686
1687                 if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1688                         dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1689                                 __func__);
1690                         i = EMIF_MAX_NUM_FREQUENCIES - 1;
1691                         devm_kfree(emif->dev, regs_cache[i]);
1692                 }
1693                 regs_cache[i] = regs;
1694         }
1695
1696         return regs;
1697 }
1698
1699 static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1700 {
1701         dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1702                 volt_state);
1703
1704         if (!emif->curr_regs) {
1705                 dev_err(emif->dev,
1706                         "%s: volt-notify before registers are ready: %d\n",
1707                         __func__, volt_state);
1708                 return;
1709         }
1710
1711         setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1712 }
1713
1714 /*
1715  * TODO: voltage notify handling should be hooked up to
1716  * regulator framework as soon as the necessary support
1717  * is available in mainline kernel. This function is un-used
1718  * right now.
1719  */
1720 static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1721 {
1722         struct emif_data *emif;
1723
1724         spin_lock_irqsave(&emif_lock, irq_state);
1725
1726         list_for_each_entry(emif, &device_list, node)
1727                 do_volt_notify_handling(emif, volt_state);
1728         do_freq_update();
1729
1730         spin_unlock_irqrestore(&emif_lock, irq_state);
1731 }
1732
1733 static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1734 {
1735         struct emif_regs *regs;
1736
1737         regs = get_regs(emif, new_freq);
1738         if (!regs)
1739                 return;
1740
1741         emif->curr_regs = regs;
1742
1743         /*
1744          * Update the shadow registers:
1745          * Temperature and voltage-ramp sensitive settings are also configured
1746          * in terms of DDR cycles. So, we need to update them too when there
1747          * is a freq change
1748          */
1749         dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1750                 __func__, new_freq);
1751         setup_registers(emif, regs);
1752         setup_temperature_sensitive_regs(emif, regs);
1753         setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1754
1755         /*
1756          * Part of workaround for errata i728. See do_freq_update()
1757          * for more details
1758          */
1759         if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1760                 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1761 }
1762
1763 /*
1764  * TODO: frequency notify handling should be hooked up to
1765  * clock framework as soon as the necessary support is
1766  * available in mainline kernel. This function is un-used
1767  * right now.
1768  */
1769 static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1770 {
1771         struct emif_data *emif;
1772
1773         /*
1774          * NOTE: we are taking the spin-lock here and releases it
1775          * only in post-notifier. This doesn't look good and
1776          * Sparse complains about it, but this seems to be
1777          * un-avoidable. We need to lock a sequence of events
1778          * that is split between EMIF and clock framework.
1779          *
1780          * 1. EMIF driver updates EMIF timings in shadow registers in the
1781          *    frequency pre-notify callback from clock framework
1782          * 2. clock framework sets up the registers for the new frequency
1783          * 3. clock framework initiates a hw-sequence that updates
1784          *    the frequency EMIF timings synchronously.
1785          *
1786          * All these 3 steps should be performed as an atomic operation
1787          * vis-a-vis similar sequence in the EMIF interrupt handler
1788          * for temperature events. Otherwise, there could be race
1789          * conditions that could result in incorrect EMIF timings for
1790          * a given frequency
1791          */
1792         spin_lock_irqsave(&emif_lock, irq_state);
1793
1794         list_for_each_entry(emif, &device_list, node)
1795                 do_freq_pre_notify_handling(emif, new_freq);
1796 }
1797
1798 static void do_freq_post_notify_handling(struct emif_data *emif)
1799 {
1800         /*
1801          * Part of workaround for errata i728. See do_freq_update()
1802          * for more details
1803          */
1804         if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1805                 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1806 }
1807
1808 /*
1809  * TODO: frequency notify handling should be hooked up to
1810  * clock framework as soon as the necessary support is
1811  * available in mainline kernel. This function is un-used
1812  * right now.
1813  */
1814 static void __attribute__((unused)) freq_post_notify_handling(void)
1815 {
1816         struct emif_data *emif;
1817
1818         list_for_each_entry(emif, &device_list, node)
1819                 do_freq_post_notify_handling(emif);
1820
1821         /*
1822          * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1823          * for more details
1824          */
1825         spin_unlock_irqrestore(&emif_lock, irq_state);
1826 }
1827
1828 #if defined(CONFIG_OF)
1829 static const struct of_device_id emif_of_match[] = {
1830                 { .compatible = "ti,emif-4d" },
1831                 { .compatible = "ti,emif-4d5" },
1832                 {},
1833 };
1834 MODULE_DEVICE_TABLE(of, emif_of_match);
1835 #endif
1836
1837 static struct platform_driver emif_driver = {
1838         .remove         = __exit_p(emif_remove),
1839         .shutdown       = emif_shutdown,
1840         .driver = {
1841                 .name = "emif",
1842                 .of_match_table = of_match_ptr(emif_of_match),
1843         },
1844 };
1845
1846 static int __init_or_module emif_register(void)
1847 {
1848         return platform_driver_probe(&emif_driver, emif_probe);
1849 }
1850
1851 static void __exit emif_unregister(void)
1852 {
1853         platform_driver_unregister(&emif_driver);
1854 }
1855
1856 module_init(emif_register);
1857 module_exit(emif_unregister);
1858 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1859 MODULE_LICENSE("GPL");
1860 MODULE_ALIAS("platform:emif");
1861 MODULE_AUTHOR("Texas Instruments Inc");