]> Pileus Git - ~andy/linux/blob - drivers/media/video/cx88/cx88-core.c
V4L/DVB (4681): Cx88: fix analog capture notch filter
[~andy/linux] / drivers / media / video / cx88 / cx88-core.c
1 /*
2  *
3  * device driver for Conexant 2388x based TV cards
4  * driver core
5  *
6  * (c) 2003 Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/init.h>
24 #include <linux/list.h>
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/kmod.h>
30 #include <linux/sound.h>
31 #include <linux/interrupt.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/videodev2.h>
35 #include <linux/mutex.h>
36
37 #include "cx88.h"
38 #include <media/v4l2-common.h>
39
40 MODULE_DESCRIPTION("v4l2 driver module for cx2388x based TV cards");
41 MODULE_AUTHOR("Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]");
42 MODULE_LICENSE("GPL");
43
44 /* ------------------------------------------------------------------ */
45
46 static unsigned int core_debug = 0;
47 module_param(core_debug,int,0644);
48 MODULE_PARM_DESC(core_debug,"enable debug messages [core]");
49
50 static unsigned int latency = UNSET;
51 module_param(latency,int,0444);
52 MODULE_PARM_DESC(latency,"pci latency timer");
53
54 static unsigned int tuner[] = {[0 ... (CX88_MAXBOARDS - 1)] = UNSET };
55 static unsigned int radio[] = {[0 ... (CX88_MAXBOARDS - 1)] = UNSET };
56 static unsigned int card[]  = {[0 ... (CX88_MAXBOARDS - 1)] = UNSET };
57
58 module_param_array(tuner, int, NULL, 0444);
59 module_param_array(radio, int, NULL, 0444);
60 module_param_array(card,  int, NULL, 0444);
61
62 MODULE_PARM_DESC(tuner,"tuner type");
63 MODULE_PARM_DESC(radio,"radio tuner type");
64 MODULE_PARM_DESC(card,"card type");
65
66 static unsigned int nicam = 0;
67 module_param(nicam,int,0644);
68 MODULE_PARM_DESC(nicam,"tv audio is nicam");
69
70 static unsigned int nocomb = 0;
71 module_param(nocomb,int,0644);
72 MODULE_PARM_DESC(nocomb,"disable comb filter");
73
74 #define dprintk(level,fmt, arg...)      if (core_debug >= level)        \
75         printk(KERN_DEBUG "%s: " fmt, core->name , ## arg)
76
77 static unsigned int cx88_devcount;
78 static LIST_HEAD(cx88_devlist);
79 static DEFINE_MUTEX(devlist);
80
81 #define NO_SYNC_LINE (-1U)
82
83 static u32* cx88_risc_field(u32 *rp, struct scatterlist *sglist,
84                             unsigned int offset, u32 sync_line,
85                             unsigned int bpl, unsigned int padding,
86                             unsigned int lines)
87 {
88         struct scatterlist *sg;
89         unsigned int line,todo;
90
91         /* sync instruction */
92         if (sync_line != NO_SYNC_LINE)
93                 *(rp++) = cpu_to_le32(RISC_RESYNC | sync_line);
94
95         /* scan lines */
96         sg = sglist;
97         for (line = 0; line < lines; line++) {
98                 while (offset && offset >= sg_dma_len(sg)) {
99                         offset -= sg_dma_len(sg);
100                         sg++;
101                 }
102                 if (bpl <= sg_dma_len(sg)-offset) {
103                         /* fits into current chunk */
104                         *(rp++)=cpu_to_le32(RISC_WRITE|RISC_SOL|RISC_EOL|bpl);
105                         *(rp++)=cpu_to_le32(sg_dma_address(sg)+offset);
106                         offset+=bpl;
107                 } else {
108                         /* scanline needs to be split */
109                         todo = bpl;
110                         *(rp++)=cpu_to_le32(RISC_WRITE|RISC_SOL|
111                                             (sg_dma_len(sg)-offset));
112                         *(rp++)=cpu_to_le32(sg_dma_address(sg)+offset);
113                         todo -= (sg_dma_len(sg)-offset);
114                         offset = 0;
115                         sg++;
116                         while (todo > sg_dma_len(sg)) {
117                                 *(rp++)=cpu_to_le32(RISC_WRITE|
118                                                     sg_dma_len(sg));
119                                 *(rp++)=cpu_to_le32(sg_dma_address(sg));
120                                 todo -= sg_dma_len(sg);
121                                 sg++;
122                         }
123                         *(rp++)=cpu_to_le32(RISC_WRITE|RISC_EOL|todo);
124                         *(rp++)=cpu_to_le32(sg_dma_address(sg));
125                         offset += todo;
126                 }
127                 offset += padding;
128         }
129
130         return rp;
131 }
132
133 int cx88_risc_buffer(struct pci_dev *pci, struct btcx_riscmem *risc,
134                      struct scatterlist *sglist,
135                      unsigned int top_offset, unsigned int bottom_offset,
136                      unsigned int bpl, unsigned int padding, unsigned int lines)
137 {
138         u32 instructions,fields;
139         u32 *rp;
140         int rc;
141
142         fields = 0;
143         if (UNSET != top_offset)
144                 fields++;
145         if (UNSET != bottom_offset)
146                 fields++;
147
148         /* estimate risc mem: worst case is one write per page border +
149            one write per scan line + syncs + jump (all 2 dwords).  Padding
150            can cause next bpl to start close to a page border.  First DMA
151            region may be smaller than PAGE_SIZE */
152         instructions  = fields * (1 + ((bpl + padding) * lines) / PAGE_SIZE + lines);
153         instructions += 2;
154         if ((rc = btcx_riscmem_alloc(pci,risc,instructions*8)) < 0)
155                 return rc;
156
157         /* write risc instructions */
158         rp = risc->cpu;
159         if (UNSET != top_offset)
160                 rp = cx88_risc_field(rp, sglist, top_offset, 0,
161                                      bpl, padding, lines);
162         if (UNSET != bottom_offset)
163                 rp = cx88_risc_field(rp, sglist, bottom_offset, 0x200,
164                                      bpl, padding, lines);
165
166         /* save pointer to jmp instruction address */
167         risc->jmp = rp;
168         BUG_ON((risc->jmp - risc->cpu + 2) * sizeof (*risc->cpu) > risc->size);
169         return 0;
170 }
171
172 int cx88_risc_databuffer(struct pci_dev *pci, struct btcx_riscmem *risc,
173                          struct scatterlist *sglist, unsigned int bpl,
174                          unsigned int lines)
175 {
176         u32 instructions;
177         u32 *rp;
178         int rc;
179
180         /* estimate risc mem: worst case is one write per page border +
181            one write per scan line + syncs + jump (all 2 dwords).  Here
182            there is no padding and no sync.  First DMA region may be smaller
183            than PAGE_SIZE */
184         instructions  = 1 + (bpl * lines) / PAGE_SIZE + lines;
185         instructions += 1;
186         if ((rc = btcx_riscmem_alloc(pci,risc,instructions*8)) < 0)
187                 return rc;
188
189         /* write risc instructions */
190         rp = risc->cpu;
191         rp = cx88_risc_field(rp, sglist, 0, NO_SYNC_LINE, bpl, 0, lines);
192
193         /* save pointer to jmp instruction address */
194         risc->jmp = rp;
195         BUG_ON((risc->jmp - risc->cpu + 2) * sizeof (*risc->cpu) > risc->size);
196         return 0;
197 }
198
199 int cx88_risc_stopper(struct pci_dev *pci, struct btcx_riscmem *risc,
200                       u32 reg, u32 mask, u32 value)
201 {
202         u32 *rp;
203         int rc;
204
205         if ((rc = btcx_riscmem_alloc(pci, risc, 4*16)) < 0)
206                 return rc;
207
208         /* write risc instructions */
209         rp = risc->cpu;
210         *(rp++) = cpu_to_le32(RISC_WRITECR  | RISC_IRQ2 | RISC_IMM);
211         *(rp++) = cpu_to_le32(reg);
212         *(rp++) = cpu_to_le32(value);
213         *(rp++) = cpu_to_le32(mask);
214         *(rp++) = cpu_to_le32(RISC_JUMP);
215         *(rp++) = cpu_to_le32(risc->dma);
216         return 0;
217 }
218
219 void
220 cx88_free_buffer(struct videobuf_queue *q, struct cx88_buffer *buf)
221 {
222         BUG_ON(in_interrupt());
223         videobuf_waiton(&buf->vb,0,0);
224         videobuf_dma_unmap(q, &buf->vb.dma);
225         videobuf_dma_free(&buf->vb.dma);
226         btcx_riscmem_free((struct pci_dev *)q->dev, &buf->risc);
227         buf->vb.state = STATE_NEEDS_INIT;
228 }
229
230 /* ------------------------------------------------------------------ */
231 /* our SRAM memory layout                                             */
232
233 /* we are going to put all thr risc programs into host memory, so we
234  * can use the whole SDRAM for the DMA fifos.  To simplify things, we
235  * use a static memory layout.  That surely will waste memory in case
236  * we don't use all DMA channels at the same time (which will be the
237  * case most of the time).  But that still gives us enougth FIFO space
238  * to be able to deal with insane long pci latencies ...
239  *
240  * FIFO space allocations:
241  *    channel  21    (y video)  - 10.0k
242  *    channel  22    (u video)  -  2.0k
243  *    channel  23    (v video)  -  2.0k
244  *    channel  24    (vbi)      -  4.0k
245  *    channels 25+26 (audio)    -  4.0k
246  *    channel  28    (mpeg)     -  4.0k
247  *    TOTAL                     = 29.0k
248  *
249  * Every channel has 160 bytes control data (64 bytes instruction
250  * queue and 6 CDT entries), which is close to 2k total.
251  *
252  * Address layout:
253  *    0x0000 - 0x03ff    CMDs / reserved
254  *    0x0400 - 0x0bff    instruction queues + CDs
255  *    0x0c00 -           FIFOs
256  */
257
258 struct sram_channel cx88_sram_channels[] = {
259         [SRAM_CH21] = {
260                 .name       = "video y / packed",
261                 .cmds_start = 0x180040,
262                 .ctrl_start = 0x180400,
263                 .cdt        = 0x180400 + 64,
264                 .fifo_start = 0x180c00,
265                 .fifo_size  = 0x002800,
266                 .ptr1_reg   = MO_DMA21_PTR1,
267                 .ptr2_reg   = MO_DMA21_PTR2,
268                 .cnt1_reg   = MO_DMA21_CNT1,
269                 .cnt2_reg   = MO_DMA21_CNT2,
270         },
271         [SRAM_CH22] = {
272                 .name       = "video u",
273                 .cmds_start = 0x180080,
274                 .ctrl_start = 0x1804a0,
275                 .cdt        = 0x1804a0 + 64,
276                 .fifo_start = 0x183400,
277                 .fifo_size  = 0x000800,
278                 .ptr1_reg   = MO_DMA22_PTR1,
279                 .ptr2_reg   = MO_DMA22_PTR2,
280                 .cnt1_reg   = MO_DMA22_CNT1,
281                 .cnt2_reg   = MO_DMA22_CNT2,
282         },
283         [SRAM_CH23] = {
284                 .name       = "video v",
285                 .cmds_start = 0x1800c0,
286                 .ctrl_start = 0x180540,
287                 .cdt        = 0x180540 + 64,
288                 .fifo_start = 0x183c00,
289                 .fifo_size  = 0x000800,
290                 .ptr1_reg   = MO_DMA23_PTR1,
291                 .ptr2_reg   = MO_DMA23_PTR2,
292                 .cnt1_reg   = MO_DMA23_CNT1,
293                 .cnt2_reg   = MO_DMA23_CNT2,
294         },
295         [SRAM_CH24] = {
296                 .name       = "vbi",
297                 .cmds_start = 0x180100,
298                 .ctrl_start = 0x1805e0,
299                 .cdt        = 0x1805e0 + 64,
300                 .fifo_start = 0x184400,
301                 .fifo_size  = 0x001000,
302                 .ptr1_reg   = MO_DMA24_PTR1,
303                 .ptr2_reg   = MO_DMA24_PTR2,
304                 .cnt1_reg   = MO_DMA24_CNT1,
305                 .cnt2_reg   = MO_DMA24_CNT2,
306         },
307         [SRAM_CH25] = {
308                 .name       = "audio from",
309                 .cmds_start = 0x180140,
310                 .ctrl_start = 0x180680,
311                 .cdt        = 0x180680 + 64,
312                 .fifo_start = 0x185400,
313                 .fifo_size  = 0x001000,
314                 .ptr1_reg   = MO_DMA25_PTR1,
315                 .ptr2_reg   = MO_DMA25_PTR2,
316                 .cnt1_reg   = MO_DMA25_CNT1,
317                 .cnt2_reg   = MO_DMA25_CNT2,
318         },
319         [SRAM_CH26] = {
320                 .name       = "audio to",
321                 .cmds_start = 0x180180,
322                 .ctrl_start = 0x180720,
323                 .cdt        = 0x180680 + 64,  /* same as audio IN */
324                 .fifo_start = 0x185400,       /* same as audio IN */
325                 .fifo_size  = 0x001000,       /* same as audio IN */
326                 .ptr1_reg   = MO_DMA26_PTR1,
327                 .ptr2_reg   = MO_DMA26_PTR2,
328                 .cnt1_reg   = MO_DMA26_CNT1,
329                 .cnt2_reg   = MO_DMA26_CNT2,
330         },
331         [SRAM_CH28] = {
332                 .name       = "mpeg",
333                 .cmds_start = 0x180200,
334                 .ctrl_start = 0x1807C0,
335                 .cdt        = 0x1807C0 + 64,
336                 .fifo_start = 0x186400,
337                 .fifo_size  = 0x001000,
338                 .ptr1_reg   = MO_DMA28_PTR1,
339                 .ptr2_reg   = MO_DMA28_PTR2,
340                 .cnt1_reg   = MO_DMA28_CNT1,
341                 .cnt2_reg   = MO_DMA28_CNT2,
342         },
343 };
344
345 int cx88_sram_channel_setup(struct cx88_core *core,
346                             struct sram_channel *ch,
347                             unsigned int bpl, u32 risc)
348 {
349         unsigned int i,lines;
350         u32 cdt;
351
352         bpl   = (bpl + 7) & ~7; /* alignment */
353         cdt   = ch->cdt;
354         lines = ch->fifo_size / bpl;
355         if (lines > 6)
356                 lines = 6;
357         BUG_ON(lines < 2);
358
359         /* write CDT */
360         for (i = 0; i < lines; i++)
361                 cx_write(cdt + 16*i, ch->fifo_start + bpl*i);
362
363         /* write CMDS */
364         cx_write(ch->cmds_start +  0, risc);
365         cx_write(ch->cmds_start +  4, cdt);
366         cx_write(ch->cmds_start +  8, (lines*16) >> 3);
367         cx_write(ch->cmds_start + 12, ch->ctrl_start);
368         cx_write(ch->cmds_start + 16, 64 >> 2);
369         for (i = 20; i < 64; i += 4)
370                 cx_write(ch->cmds_start + i, 0);
371
372         /* fill registers */
373         cx_write(ch->ptr1_reg, ch->fifo_start);
374         cx_write(ch->ptr2_reg, cdt);
375         cx_write(ch->cnt1_reg, (bpl >> 3) -1);
376         cx_write(ch->cnt2_reg, (lines*16) >> 3);
377
378         dprintk(2,"sram setup %s: bpl=%d lines=%d\n", ch->name, bpl, lines);
379         return 0;
380 }
381
382 /* ------------------------------------------------------------------ */
383 /* debug helper code                                                  */
384
385 static int cx88_risc_decode(u32 risc)
386 {
387         static char *instr[16] = {
388                 [ RISC_SYNC    >> 28 ] = "sync",
389                 [ RISC_WRITE   >> 28 ] = "write",
390                 [ RISC_WRITEC  >> 28 ] = "writec",
391                 [ RISC_READ    >> 28 ] = "read",
392                 [ RISC_READC   >> 28 ] = "readc",
393                 [ RISC_JUMP    >> 28 ] = "jump",
394                 [ RISC_SKIP    >> 28 ] = "skip",
395                 [ RISC_WRITERM >> 28 ] = "writerm",
396                 [ RISC_WRITECM >> 28 ] = "writecm",
397                 [ RISC_WRITECR >> 28 ] = "writecr",
398         };
399         static int incr[16] = {
400                 [ RISC_WRITE   >> 28 ] = 2,
401                 [ RISC_JUMP    >> 28 ] = 2,
402                 [ RISC_WRITERM >> 28 ] = 3,
403                 [ RISC_WRITECM >> 28 ] = 3,
404                 [ RISC_WRITECR >> 28 ] = 4,
405         };
406         static char *bits[] = {
407                 "12",   "13",   "14",   "resync",
408                 "cnt0", "cnt1", "18",   "19",
409                 "20",   "21",   "22",   "23",
410                 "irq1", "irq2", "eol",  "sol",
411         };
412         int i;
413
414         printk("0x%08x [ %s", risc,
415                instr[risc >> 28] ? instr[risc >> 28] : "INVALID");
416         for (i = ARRAY_SIZE(bits)-1; i >= 0; i--)
417                 if (risc & (1 << (i + 12)))
418                         printk(" %s",bits[i]);
419         printk(" count=%d ]\n", risc & 0xfff);
420         return incr[risc >> 28] ? incr[risc >> 28] : 1;
421 }
422
423
424 void cx88_sram_channel_dump(struct cx88_core *core,
425                             struct sram_channel *ch)
426 {
427         static char *name[] = {
428                 "initial risc",
429                 "cdt base",
430                 "cdt size",
431                 "iq base",
432                 "iq size",
433                 "risc pc",
434                 "iq wr ptr",
435                 "iq rd ptr",
436                 "cdt current",
437                 "pci target",
438                 "line / byte",
439         };
440         u32 risc;
441         unsigned int i,j,n;
442
443         printk("%s: %s - dma channel status dump\n",
444                core->name,ch->name);
445         for (i = 0; i < ARRAY_SIZE(name); i++)
446                 printk("%s:   cmds: %-12s: 0x%08x\n",
447                        core->name,name[i],
448                        cx_read(ch->cmds_start + 4*i));
449         for (i = 0; i < 4; i++) {
450                 risc = cx_read(ch->cmds_start + 4 * (i+11));
451                 printk("%s:   risc%d: ", core->name, i);
452                 cx88_risc_decode(risc);
453         }
454         for (i = 0; i < 16; i += n) {
455                 risc = cx_read(ch->ctrl_start + 4 * i);
456                 printk("%s:   iq %x: ", core->name, i);
457                 n = cx88_risc_decode(risc);
458                 for (j = 1; j < n; j++) {
459                         risc = cx_read(ch->ctrl_start + 4 * (i+j));
460                         printk("%s:   iq %x: 0x%08x [ arg #%d ]\n",
461                                core->name, i+j, risc, j);
462                 }
463         }
464
465         printk("%s: fifo: 0x%08x -> 0x%x\n",
466                core->name, ch->fifo_start, ch->fifo_start+ch->fifo_size);
467         printk("%s: ctrl: 0x%08x -> 0x%x\n",
468                core->name, ch->ctrl_start, ch->ctrl_start+6*16);
469         printk("%s:   ptr1_reg: 0x%08x\n",
470                core->name,cx_read(ch->ptr1_reg));
471         printk("%s:   ptr2_reg: 0x%08x\n",
472                core->name,cx_read(ch->ptr2_reg));
473         printk("%s:   cnt1_reg: 0x%08x\n",
474                core->name,cx_read(ch->cnt1_reg));
475         printk("%s:   cnt2_reg: 0x%08x\n",
476                core->name,cx_read(ch->cnt2_reg));
477 }
478
479 static char *cx88_pci_irqs[32] = {
480         "vid", "aud", "ts", "vip", "hst", "5", "6", "tm1",
481         "src_dma", "dst_dma", "risc_rd_err", "risc_wr_err",
482         "brdg_err", "src_dma_err", "dst_dma_err", "ipb_dma_err",
483         "i2c", "i2c_rack", "ir_smp", "gpio0", "gpio1"
484 };
485
486 void cx88_print_irqbits(char *name, char *tag, char **strings,
487                         u32 bits, u32 mask)
488 {
489         unsigned int i;
490
491         printk(KERN_DEBUG "%s: %s [0x%x]", name, tag, bits);
492         for (i = 0; i < 32; i++) {
493                 if (!(bits & (1 << i)))
494                         continue;
495                 if (strings[i])
496                         printk(" %s", strings[i]);
497                 else
498                         printk(" %d", i);
499                 if (!(mask & (1 << i)))
500                         continue;
501                 printk("*");
502         }
503         printk("\n");
504 }
505
506 /* ------------------------------------------------------------------ */
507
508 int cx88_core_irq(struct cx88_core *core, u32 status)
509 {
510         int handled = 0;
511
512         if (status & (1<<18)) {
513                 cx88_ir_irq(core);
514                 handled++;
515         }
516         if (!handled)
517                 cx88_print_irqbits(core->name, "irq pci",
518                                    cx88_pci_irqs, status,
519                                    core->pci_irqmask);
520         return handled;
521 }
522
523 void cx88_wakeup(struct cx88_core *core,
524                  struct cx88_dmaqueue *q, u32 count)
525 {
526         struct cx88_buffer *buf;
527         int bc;
528
529         for (bc = 0;; bc++) {
530                 if (list_empty(&q->active))
531                         break;
532                 buf = list_entry(q->active.next,
533                                  struct cx88_buffer, vb.queue);
534                 /* count comes from the hw and is is 16bit wide --
535                  * this trick handles wrap-arounds correctly for
536                  * up to 32767 buffers in flight... */
537                 if ((s16) (count - buf->count) < 0)
538                         break;
539                 do_gettimeofday(&buf->vb.ts);
540                 dprintk(2,"[%p/%d] wakeup reg=%d buf=%d\n",buf,buf->vb.i,
541                         count, buf->count);
542                 buf->vb.state = STATE_DONE;
543                 list_del(&buf->vb.queue);
544                 wake_up(&buf->vb.done);
545         }
546         if (list_empty(&q->active)) {
547                 del_timer(&q->timeout);
548         } else {
549                 mod_timer(&q->timeout, jiffies+BUFFER_TIMEOUT);
550         }
551         if (bc != 1)
552                 printk("%s: %d buffers handled (should be 1)\n",__FUNCTION__,bc);
553 }
554
555 void cx88_shutdown(struct cx88_core *core)
556 {
557         /* disable RISC controller + IRQs */
558         cx_write(MO_DEV_CNTRL2, 0);
559
560         /* stop dma transfers */
561         cx_write(MO_VID_DMACNTRL, 0x0);
562         cx_write(MO_AUD_DMACNTRL, 0x0);
563         cx_write(MO_TS_DMACNTRL, 0x0);
564         cx_write(MO_VIP_DMACNTRL, 0x0);
565         cx_write(MO_GPHST_DMACNTRL, 0x0);
566
567         /* stop interrupts */
568         cx_write(MO_PCI_INTMSK, 0x0);
569         cx_write(MO_VID_INTMSK, 0x0);
570         cx_write(MO_AUD_INTMSK, 0x0);
571         cx_write(MO_TS_INTMSK, 0x0);
572         cx_write(MO_VIP_INTMSK, 0x0);
573         cx_write(MO_GPHST_INTMSK, 0x0);
574
575         /* stop capturing */
576         cx_write(VID_CAPTURE_CONTROL, 0);
577 }
578
579 int cx88_reset(struct cx88_core *core)
580 {
581         dprintk(1,"%s\n",__FUNCTION__);
582         cx88_shutdown(core);
583
584         /* clear irq status */
585         cx_write(MO_VID_INTSTAT, 0xFFFFFFFF); // Clear PIV int
586         cx_write(MO_PCI_INTSTAT, 0xFFFFFFFF); // Clear PCI int
587         cx_write(MO_INT1_STAT,   0xFFFFFFFF); // Clear RISC int
588
589         /* wait a bit */
590         msleep(100);
591
592         /* init sram */
593         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH21], 720*4, 0);
594         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH22], 128, 0);
595         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH23], 128, 0);
596         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH24], 128, 0);
597         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], 128, 0);
598         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], 128, 0);
599         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH28], 188*4, 0);
600
601         /* misc init ... */
602         cx_write(MO_INPUT_FORMAT, ((1 << 13) |   // agc enable
603                                    (1 << 12) |   // agc gain
604                                    (1 << 11) |   // adaptibe agc
605                                    (0 << 10) |   // chroma agc
606                                    (0 <<  9) |   // ckillen
607                                    (7)));
608
609         /* setup image format */
610         cx_andor(MO_COLOR_CTRL, 0x4000, 0x4000);
611
612         /* setup FIFO Threshholds */
613         cx_write(MO_PDMA_STHRSH,   0x0807);
614         cx_write(MO_PDMA_DTHRSH,   0x0807);
615
616         /* fixes flashing of image */
617         cx_write(MO_AGC_SYNC_TIP1, 0x0380000F);
618         cx_write(MO_AGC_BACK_VBI,  0x00E00555);
619
620         cx_write(MO_VID_INTSTAT,   0xFFFFFFFF); // Clear PIV int
621         cx_write(MO_PCI_INTSTAT,   0xFFFFFFFF); // Clear PCI int
622         cx_write(MO_INT1_STAT,     0xFFFFFFFF); // Clear RISC int
623
624         /* Reset on-board parts */
625         cx_write(MO_SRST_IO, 0);
626         msleep(10);
627         cx_write(MO_SRST_IO, 1);
628
629         return 0;
630 }
631
632 /* ------------------------------------------------------------------ */
633
634 static unsigned int inline norm_swidth(struct cx88_tvnorm *norm)
635 {
636         return (norm->id & V4L2_STD_625_50) ? 922 : 754;
637 }
638
639 static unsigned int inline norm_hdelay(struct cx88_tvnorm *norm)
640 {
641         return (norm->id & V4L2_STD_625_50) ? 186 : 135;
642 }
643
644 static unsigned int inline norm_vdelay(struct cx88_tvnorm *norm)
645 {
646         return (norm->id & V4L2_STD_625_50) ? 0x24 : 0x18;
647 }
648
649 static unsigned int inline norm_fsc8(struct cx88_tvnorm *norm)
650 {
651         static const unsigned int ntsc = 28636360;
652         static const unsigned int pal  = 35468950;
653         static const unsigned int palm  = 28604892;
654
655         if (norm->id & V4L2_STD_PAL_M)
656                 return palm;
657
658         return (norm->id & V4L2_STD_625_50) ? pal : ntsc;
659 }
660
661 static unsigned int inline norm_notchfilter(struct cx88_tvnorm *norm)
662 {
663         return HLNotchFilter4xFsc;
664 }
665
666 static unsigned int inline norm_htotal(struct cx88_tvnorm *norm)
667 {
668         /* Should always be Line Draw Time / (4*FSC) */
669
670         if (norm->id & V4L2_STD_PAL_M)
671                 return 909;
672
673         return (norm->id & V4L2_STD_625_50) ? 1135 : 910;
674 }
675
676 static unsigned int inline norm_vbipack(struct cx88_tvnorm *norm)
677 {
678         return (norm->id & V4L2_STD_625_50) ? 511 : 400;
679 }
680
681 int cx88_set_scale(struct cx88_core *core, unsigned int width, unsigned int height,
682                    enum v4l2_field field)
683 {
684         unsigned int swidth  = norm_swidth(core->tvnorm);
685         unsigned int sheight = norm_maxh(core->tvnorm);
686         u32 value;
687
688         dprintk(1,"set_scale: %dx%d [%s%s,%s]\n", width, height,
689                 V4L2_FIELD_HAS_TOP(field)    ? "T" : "",
690                 V4L2_FIELD_HAS_BOTTOM(field) ? "B" : "",
691                 core->tvnorm->name);
692         if (!V4L2_FIELD_HAS_BOTH(field))
693                 height *= 2;
694
695         // recalc H delay and scale registers
696         value = (width * norm_hdelay(core->tvnorm)) / swidth;
697         value &= 0x3fe;
698         cx_write(MO_HDELAY_EVEN,  value);
699         cx_write(MO_HDELAY_ODD,   value);
700         dprintk(1,"set_scale: hdelay  0x%04x\n", value);
701
702         value = (swidth * 4096 / width) - 4096;
703         cx_write(MO_HSCALE_EVEN,  value);
704         cx_write(MO_HSCALE_ODD,   value);
705         dprintk(1,"set_scale: hscale  0x%04x\n", value);
706
707         cx_write(MO_HACTIVE_EVEN, width);
708         cx_write(MO_HACTIVE_ODD,  width);
709         dprintk(1,"set_scale: hactive 0x%04x\n", width);
710
711         // recalc V scale Register (delay is constant)
712         cx_write(MO_VDELAY_EVEN, norm_vdelay(core->tvnorm));
713         cx_write(MO_VDELAY_ODD,  norm_vdelay(core->tvnorm));
714         dprintk(1,"set_scale: vdelay  0x%04x\n", norm_vdelay(core->tvnorm));
715
716         value = (0x10000 - (sheight * 512 / height - 512)) & 0x1fff;
717         cx_write(MO_VSCALE_EVEN,  value);
718         cx_write(MO_VSCALE_ODD,   value);
719         dprintk(1,"set_scale: vscale  0x%04x\n", value);
720
721         cx_write(MO_VACTIVE_EVEN, sheight);
722         cx_write(MO_VACTIVE_ODD,  sheight);
723         dprintk(1,"set_scale: vactive 0x%04x\n", sheight);
724
725         // setup filters
726         value = 0;
727         value |= (1 << 19);        // CFILT (default)
728         if (core->tvnorm->id & V4L2_STD_SECAM) {
729                 value |= (1 << 15);
730                 value |= (1 << 16);
731         }
732         if (INPUT(core->input)->type == CX88_VMUX_SVIDEO)
733                 value |= (1 << 13) | (1 << 5);
734         if (V4L2_FIELD_INTERLACED == field)
735                 value |= (1 << 3); // VINT (interlaced vertical scaling)
736         if (width < 385)
737                 value |= (1 << 0); // 3-tap interpolation
738         if (width < 193)
739                 value |= (1 << 1); // 5-tap interpolation
740         if (nocomb)
741                 value |= (3 << 5); // disable comb filter
742
743         cx_write(MO_FILTER_EVEN,  value);
744         cx_write(MO_FILTER_ODD,   value);
745         dprintk(1,"set_scale: filter  0x%04x\n", value);
746
747         return 0;
748 }
749
750 static const u32 xtal = 28636363;
751
752 static int set_pll(struct cx88_core *core, int prescale, u32 ofreq)
753 {
754         static u32 pre[] = { 0, 0, 0, 3, 2, 1 };
755         u64 pll;
756         u32 reg;
757         int i;
758
759         if (prescale < 2)
760                 prescale = 2;
761         if (prescale > 5)
762                 prescale = 5;
763
764         pll = ofreq * 8 * prescale * (u64)(1 << 20);
765         do_div(pll,xtal);
766         reg = (pll & 0x3ffffff) | (pre[prescale] << 26);
767         if (((reg >> 20) & 0x3f) < 14) {
768                 printk("%s/0: pll out of range\n",core->name);
769                 return -1;
770         }
771
772         dprintk(1,"set_pll:    MO_PLL_REG       0x%08x [old=0x%08x,freq=%d]\n",
773                 reg, cx_read(MO_PLL_REG), ofreq);
774         cx_write(MO_PLL_REG, reg);
775         for (i = 0; i < 100; i++) {
776                 reg = cx_read(MO_DEVICE_STATUS);
777                 if (reg & (1<<2)) {
778                         dprintk(1,"pll locked [pre=%d,ofreq=%d]\n",
779                                 prescale,ofreq);
780                         return 0;
781                 }
782                 dprintk(1,"pll not locked yet, waiting ...\n");
783                 msleep(10);
784         }
785         dprintk(1,"pll NOT locked [pre=%d,ofreq=%d]\n",prescale,ofreq);
786         return -1;
787 }
788
789 int cx88_start_audio_dma(struct cx88_core *core)
790 {
791         /* constant 128 made buzz in analog Nicam-stereo for bigger fifo_size */
792         int bpl = cx88_sram_channels[SRAM_CH25].fifo_size/4;
793
794         /* If downstream RISC is enabled, bail out; ALSA is managing DMA */
795         if (cx_read(MO_AUD_DMACNTRL) & 0x10)
796                 return 0;
797
798         /* setup fifo + format */
799         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], bpl, 0);
800         cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], bpl, 0);
801
802         cx_write(MO_AUDD_LNGTH, bpl); /* fifo bpl size */
803         cx_write(MO_AUDR_LNGTH, bpl); /* fifo bpl size */
804
805         /* start dma */
806         cx_write(MO_AUD_DMACNTRL, 0x0003); /* Up and Down fifo enable */
807
808         return 0;
809 }
810
811 int cx88_stop_audio_dma(struct cx88_core *core)
812 {
813         /* If downstream RISC is enabled, bail out; ALSA is managing DMA */
814         if (cx_read(MO_AUD_DMACNTRL) & 0x10)
815                 return 0;
816
817         /* stop dma */
818         cx_write(MO_AUD_DMACNTRL, 0x0000);
819
820         return 0;
821 }
822
823 static int set_tvaudio(struct cx88_core *core)
824 {
825         struct cx88_tvnorm *norm = core->tvnorm;
826
827         if (CX88_VMUX_TELEVISION != INPUT(core->input)->type)
828                 return 0;
829
830         if (V4L2_STD_PAL_BG & norm->id) {
831                 core->tvaudio = WW_BG;
832
833         } else if (V4L2_STD_PAL_DK & norm->id) {
834                 core->tvaudio = WW_DK;
835
836         } else if (V4L2_STD_PAL_I & norm->id) {
837                 core->tvaudio = WW_I;
838
839         } else if (V4L2_STD_SECAM_L & norm->id) {
840                 core->tvaudio = WW_L;
841
842         } else if (V4L2_STD_SECAM_DK & norm->id) {
843                 core->tvaudio = WW_DK;
844
845         } else if ((V4L2_STD_NTSC_M & norm->id) ||
846                    (V4L2_STD_PAL_M  & norm->id)) {
847                 core->tvaudio = WW_BTSC;
848
849         } else if (V4L2_STD_NTSC_M_JP & norm->id) {
850                 core->tvaudio = WW_EIAJ;
851
852         } else {
853                 printk("%s/0: tvaudio support needs work for this tv norm [%s], sorry\n",
854                        core->name, norm->name);
855                 core->tvaudio = 0;
856                 return 0;
857         }
858
859         cx_andor(MO_AFECFG_IO, 0x1f, 0x0);
860         cx88_set_tvaudio(core);
861         /* cx88_set_stereo(dev,V4L2_TUNER_MODE_STEREO); */
862
863 /*
864    This should be needed only on cx88-alsa. It seems that some cx88 chips have
865    bugs and does require DMA enabled for it to work.
866  */
867         cx88_start_audio_dma(core);
868         return 0;
869 }
870
871
872
873 int cx88_set_tvnorm(struct cx88_core *core, struct cx88_tvnorm *norm)
874 {
875         u32 fsc8;
876         u32 adc_clock;
877         u32 vdec_clock;
878         u32 step_db,step_dr;
879         u64 tmp64;
880         u32 bdelay,agcdelay,htotal;
881
882         core->tvnorm = norm;
883         fsc8       = norm_fsc8(norm);
884         adc_clock  = xtal;
885         vdec_clock = fsc8;
886         step_db    = fsc8;
887         step_dr    = fsc8;
888
889         if (norm->id & V4L2_STD_SECAM) {
890                 step_db = 4250000 * 8;
891                 step_dr = 4406250 * 8;
892         }
893
894         dprintk(1,"set_tvnorm: \"%s\" fsc8=%d adc=%d vdec=%d db/dr=%d/%d\n",
895                 norm->name, fsc8, adc_clock, vdec_clock, step_db, step_dr);
896         set_pll(core,2,vdec_clock);
897
898         dprintk(1,"set_tvnorm: MO_INPUT_FORMAT  0x%08x [old=0x%08x]\n",
899                 norm->cxiformat, cx_read(MO_INPUT_FORMAT) & 0x0f);
900         cx_andor(MO_INPUT_FORMAT, 0xf, norm->cxiformat);
901
902         // FIXME: as-is from DScaler
903         dprintk(1,"set_tvnorm: MO_OUTPUT_FORMAT 0x%08x [old=0x%08x]\n",
904                 norm->cxoformat, cx_read(MO_OUTPUT_FORMAT));
905         cx_write(MO_OUTPUT_FORMAT, norm->cxoformat);
906
907         // MO_SCONV_REG = adc clock / video dec clock * 2^17
908         tmp64  = adc_clock * (u64)(1 << 17);
909         do_div(tmp64, vdec_clock);
910         dprintk(1,"set_tvnorm: MO_SCONV_REG     0x%08x [old=0x%08x]\n",
911                 (u32)tmp64, cx_read(MO_SCONV_REG));
912         cx_write(MO_SCONV_REG, (u32)tmp64);
913
914         // MO_SUB_STEP = 8 * fsc / video dec clock * 2^22
915         tmp64  = step_db * (u64)(1 << 22);
916         do_div(tmp64, vdec_clock);
917         dprintk(1,"set_tvnorm: MO_SUB_STEP      0x%08x [old=0x%08x]\n",
918                 (u32)tmp64, cx_read(MO_SUB_STEP));
919         cx_write(MO_SUB_STEP, (u32)tmp64);
920
921         // MO_SUB_STEP_DR = 8 * 4406250 / video dec clock * 2^22
922         tmp64  = step_dr * (u64)(1 << 22);
923         do_div(tmp64, vdec_clock);
924         dprintk(1,"set_tvnorm: MO_SUB_STEP_DR   0x%08x [old=0x%08x]\n",
925                 (u32)tmp64, cx_read(MO_SUB_STEP_DR));
926         cx_write(MO_SUB_STEP_DR, (u32)tmp64);
927
928         // bdelay + agcdelay
929         bdelay   = vdec_clock * 65 / 20000000 + 21;
930         agcdelay = vdec_clock * 68 / 20000000 + 15;
931         dprintk(1,"set_tvnorm: MO_AGC_BURST     0x%08x [old=0x%08x,bdelay=%d,agcdelay=%d]\n",
932                 (bdelay << 8) | agcdelay, cx_read(MO_AGC_BURST), bdelay, agcdelay);
933         cx_write(MO_AGC_BURST, (bdelay << 8) | agcdelay);
934
935         // htotal
936         tmp64 = norm_htotal(norm) * (u64)vdec_clock;
937         do_div(tmp64, fsc8);
938         htotal = (u32)tmp64 | (norm_notchfilter(norm) << 11);
939         dprintk(1,"set_tvnorm: MO_HTOTAL        0x%08x [old=0x%08x,htotal=%d]\n",
940                 htotal, cx_read(MO_HTOTAL), (u32)tmp64);
941         cx_write(MO_HTOTAL, htotal);
942
943         // vbi stuff, set vbi offset to 10 (for 20 Clk*2 pixels), this makes
944         // the effective vbi offset ~244 samples, the same as the Bt8x8
945         cx_write(MO_VBI_PACKET, (10<<11) | norm_vbipack(norm));
946
947         // this is needed as well to set all tvnorm parameter
948         cx88_set_scale(core, 320, 240, V4L2_FIELD_INTERLACED);
949
950         // audio
951         set_tvaudio(core);
952
953         // tell i2c chips
954         cx88_call_i2c_clients(core,VIDIOC_S_STD,&norm->id);
955
956         // done
957         return 0;
958 }
959
960 /* ------------------------------------------------------------------ */
961
962 static int cx88_pci_quirks(char *name, struct pci_dev *pci)
963 {
964         unsigned int lat = UNSET;
965         u8 ctrl = 0;
966         u8 value;
967
968         /* check pci quirks */
969         if (pci_pci_problems & PCIPCI_TRITON) {
970                 printk(KERN_INFO "%s: quirk: PCIPCI_TRITON -- set TBFX\n",
971                        name);
972                 ctrl |= CX88X_EN_TBFX;
973         }
974         if (pci_pci_problems & PCIPCI_NATOMA) {
975                 printk(KERN_INFO "%s: quirk: PCIPCI_NATOMA -- set TBFX\n",
976                        name);
977                 ctrl |= CX88X_EN_TBFX;
978         }
979         if (pci_pci_problems & PCIPCI_VIAETBF) {
980                 printk(KERN_INFO "%s: quirk: PCIPCI_VIAETBF -- set TBFX\n",
981                        name);
982                 ctrl |= CX88X_EN_TBFX;
983         }
984         if (pci_pci_problems & PCIPCI_VSFX) {
985                 printk(KERN_INFO "%s: quirk: PCIPCI_VSFX -- set VSFX\n",
986                        name);
987                 ctrl |= CX88X_EN_VSFX;
988         }
989 #ifdef PCIPCI_ALIMAGIK
990         if (pci_pci_problems & PCIPCI_ALIMAGIK) {
991                 printk(KERN_INFO "%s: quirk: PCIPCI_ALIMAGIK -- latency fixup\n",
992                        name);
993                 lat = 0x0A;
994         }
995 #endif
996
997         /* check insmod options */
998         if (UNSET != latency)
999                 lat = latency;
1000
1001         /* apply stuff */
1002         if (ctrl) {
1003                 pci_read_config_byte(pci, CX88X_DEVCTRL, &value);
1004                 value |= ctrl;
1005                 pci_write_config_byte(pci, CX88X_DEVCTRL, value);
1006         }
1007         if (UNSET != lat) {
1008                 printk(KERN_INFO "%s: setting pci latency timer to %d\n",
1009                        name, latency);
1010                 pci_write_config_byte(pci, PCI_LATENCY_TIMER, latency);
1011         }
1012         return 0;
1013 }
1014
1015 /* ------------------------------------------------------------------ */
1016
1017 struct video_device *cx88_vdev_init(struct cx88_core *core,
1018                                     struct pci_dev *pci,
1019                                     struct video_device *template,
1020                                     char *type)
1021 {
1022         struct video_device *vfd;
1023
1024         vfd = video_device_alloc();
1025         if (NULL == vfd)
1026                 return NULL;
1027         *vfd = *template;
1028         vfd->minor   = -1;
1029         vfd->dev     = &pci->dev;
1030         vfd->release = video_device_release;
1031         snprintf(vfd->name, sizeof(vfd->name), "%s %s (%s)",
1032                  core->name, type, cx88_boards[core->board].name);
1033         return vfd;
1034 }
1035
1036 static int get_ressources(struct cx88_core *core, struct pci_dev *pci)
1037 {
1038         if (request_mem_region(pci_resource_start(pci,0),
1039                                pci_resource_len(pci,0),
1040                                core->name))
1041                 return 0;
1042         printk(KERN_ERR "%s: can't get MMIO memory @ 0x%llx\n",
1043                core->name,(unsigned long long)pci_resource_start(pci,0));
1044         return -EBUSY;
1045 }
1046
1047 struct cx88_core* cx88_core_get(struct pci_dev *pci)
1048 {
1049         struct cx88_core *core;
1050         struct list_head *item;
1051         int i;
1052
1053         mutex_lock(&devlist);
1054         list_for_each(item,&cx88_devlist) {
1055                 core = list_entry(item, struct cx88_core, devlist);
1056                 if (pci->bus->number != core->pci_bus)
1057                         continue;
1058                 if (PCI_SLOT(pci->devfn) != core->pci_slot)
1059                         continue;
1060
1061                 if (0 != get_ressources(core,pci))
1062                         goto fail_unlock;
1063                 atomic_inc(&core->refcount);
1064                 mutex_unlock(&devlist);
1065                 return core;
1066         }
1067         core = kzalloc(sizeof(*core),GFP_KERNEL);
1068         if (NULL == core)
1069                 goto fail_unlock;
1070
1071         atomic_inc(&core->refcount);
1072         core->pci_bus  = pci->bus->number;
1073         core->pci_slot = PCI_SLOT(pci->devfn);
1074         core->pci_irqmask = 0x00fc00;
1075         mutex_init(&core->lock);
1076
1077         core->nr = cx88_devcount++;
1078         sprintf(core->name,"cx88[%d]",core->nr);
1079         if (0 != get_ressources(core,pci)) {
1080                 printk(KERN_ERR "CORE %s No more PCI ressources for "
1081                         "subsystem: %04x:%04x, board: %s\n",
1082                         core->name,pci->subsystem_vendor,
1083                         pci->subsystem_device,
1084                         cx88_boards[core->board].name);
1085
1086                 cx88_devcount--;
1087                 goto fail_free;
1088         }
1089         list_add_tail(&core->devlist,&cx88_devlist);
1090
1091         /* PCI stuff */
1092         cx88_pci_quirks(core->name, pci);
1093         core->lmmio = ioremap(pci_resource_start(pci,0),
1094                               pci_resource_len(pci,0));
1095         core->bmmio = (u8 __iomem *)core->lmmio;
1096
1097         /* board config */
1098         core->board = UNSET;
1099         if (card[core->nr] < cx88_bcount)
1100                 core->board = card[core->nr];
1101         for (i = 0; UNSET == core->board  &&  i < cx88_idcount; i++)
1102                 if (pci->subsystem_vendor == cx88_subids[i].subvendor &&
1103                     pci->subsystem_device == cx88_subids[i].subdevice)
1104                         core->board = cx88_subids[i].card;
1105         if (UNSET == core->board) {
1106                 core->board = CX88_BOARD_UNKNOWN;
1107                 cx88_card_list(core,pci);
1108         }
1109         printk(KERN_INFO "CORE %s: subsystem: %04x:%04x, board: %s [card=%d,%s]\n",
1110                 core->name,pci->subsystem_vendor,
1111                 pci->subsystem_device,cx88_boards[core->board].name,
1112                 core->board, card[core->nr] == core->board ?
1113                 "insmod option" : "autodetected");
1114
1115         core->tuner_type = tuner[core->nr];
1116         core->radio_type = radio[core->nr];
1117         if (UNSET == core->tuner_type)
1118                 core->tuner_type = cx88_boards[core->board].tuner_type;
1119         if (UNSET == core->radio_type)
1120                 core->radio_type = cx88_boards[core->board].radio_type;
1121         if (!core->tuner_addr)
1122                 core->tuner_addr = cx88_boards[core->board].tuner_addr;
1123         if (!core->radio_addr)
1124                 core->radio_addr = cx88_boards[core->board].radio_addr;
1125
1126         printk(KERN_INFO "TV tuner %d at 0x%02x, Radio tuner %d at 0x%02x\n",
1127                 core->tuner_type, core->tuner_addr<<1,
1128                 core->radio_type, core->radio_addr<<1);
1129
1130         core->tda9887_conf = cx88_boards[core->board].tda9887_conf;
1131
1132         /* init hardware */
1133         cx88_reset(core);
1134         cx88_card_setup_pre_i2c(core);
1135         cx88_i2c_init(core,pci);
1136         cx88_call_i2c_clients (core, TUNER_SET_STANDBY, NULL);
1137         cx88_card_setup(core);
1138         cx88_ir_init(core,pci);
1139
1140         mutex_unlock(&devlist);
1141         return core;
1142
1143 fail_free:
1144         kfree(core);
1145 fail_unlock:
1146         mutex_unlock(&devlist);
1147         return NULL;
1148 }
1149
1150 void cx88_core_put(struct cx88_core *core, struct pci_dev *pci)
1151 {
1152         release_mem_region(pci_resource_start(pci,0),
1153                            pci_resource_len(pci,0));
1154
1155         if (!atomic_dec_and_test(&core->refcount))
1156                 return;
1157
1158         mutex_lock(&devlist);
1159         cx88_ir_fini(core);
1160         if (0 == core->i2c_rc)
1161                 i2c_bit_del_bus(&core->i2c_adap);
1162         list_del(&core->devlist);
1163         iounmap(core->lmmio);
1164         cx88_devcount--;
1165         mutex_unlock(&devlist);
1166         kfree(core);
1167 }
1168
1169 /* ------------------------------------------------------------------ */
1170
1171 EXPORT_SYMBOL(cx88_print_irqbits);
1172
1173 EXPORT_SYMBOL(cx88_core_irq);
1174 EXPORT_SYMBOL(cx88_wakeup);
1175 EXPORT_SYMBOL(cx88_reset);
1176 EXPORT_SYMBOL(cx88_shutdown);
1177
1178 EXPORT_SYMBOL(cx88_risc_buffer);
1179 EXPORT_SYMBOL(cx88_risc_databuffer);
1180 EXPORT_SYMBOL(cx88_risc_stopper);
1181 EXPORT_SYMBOL(cx88_free_buffer);
1182
1183 EXPORT_SYMBOL(cx88_sram_channels);
1184 EXPORT_SYMBOL(cx88_sram_channel_setup);
1185 EXPORT_SYMBOL(cx88_sram_channel_dump);
1186
1187 EXPORT_SYMBOL(cx88_set_tvnorm);
1188 EXPORT_SYMBOL(cx88_set_scale);
1189
1190 EXPORT_SYMBOL(cx88_vdev_init);
1191 EXPORT_SYMBOL(cx88_core_get);
1192 EXPORT_SYMBOL(cx88_core_put);
1193
1194 /*
1195  * Local variables:
1196  * c-basic-offset: 8
1197  * End:
1198  * kate: eol "unix"; indent-width 3; remove-trailing-space on; replace-trailing-space-save on; tab-width 8; replace-tabs off; space-indent off; mixed-indent off
1199  */