]> Pileus Git - ~andy/linux/blob - drivers/media/dvb/frontends/mb86a16.c
47c0d5739dd454d2bbb734ad55c8455d3590e1f7
[~andy/linux] / drivers / media / dvb / frontends / mb86a16.c
1 /*
2         Fujitsu MB86A16 DVB-S/DSS DC Receiver driver
3
4         Copyright (C) 2005, 2006 Manu Abraham (abraham.manu@gmail.com)
5
6         This program is free software; you can redistribute it and/or modify
7         it under the terms of the GNU General Public License as published by
8         the Free Software Foundation; either version 2 of the License, or
9         (at your option) any later version.
10
11         This program is distributed in the hope that it will be useful,
12         but WITHOUT ANY WARRANTY; without even the implied warranty of
13         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14         GNU General Public License for more details.
15
16         You should have received a copy of the GNU General Public License
17         along with this program; if not, write to the Free Software
18         Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25
26 #include "dvb_frontend.h"
27 #include "mb86a16.h"
28 #include "mb86a16_priv.h"
29
30 unsigned int verbose = 5;
31 module_param(verbose, int, 0644);
32
33 #define ABS(x)          ((x) < 0 ? (-x) : (x))
34
35 struct mb86a16_state {
36         struct i2c_adapter              *i2c_adap;
37         const struct mb86a16_config     *config;
38         struct dvb_frontend             frontend;
39         u8                              signal;
40
41         // tuning parameters
42         int                             frequency;
43         int                             srate;
44
45         // Internal stuff
46         int                             master_clk;
47         int                             deci;
48         int                             csel;
49         int                             rsel;
50 };
51
52 #define MB86A16_ERROR           0
53 #define MB86A16_NOTICE          1
54 #define MB86A16_INFO            2
55 #define MB86A16_DEBUG           3
56
57 #define dprintk(x, y, z, format, arg...) do {                                           \
58         if (z) {                                                                        \
59                 if      ((x > MB86A16_ERROR) && (x > y))                                \
60                         printk(KERN_ERR "%s: " format "\n", __func__, ##arg);           \
61                 else if ((x > MB86A16_NOTICE) && (x > y))                               \
62                         printk(KERN_NOTICE "%s: " format "\n", __func__, ##arg);        \
63                 else if ((x > MB86A16_INFO) && (x > y))                                 \
64                         printk(KERN_INFO "%s: " format "\n", __func__, ##arg);          \
65                 else if ((x > MB86A16_DEBUG) && (x > y))                                \
66                         printk(KERN_DEBUG "%s: " format "\n", __func__, ##arg);         \
67         } else {                                                                        \
68                 if (x > y)                                                              \
69                         printk(format, ##arg);                                          \
70         }                                                                               \
71 } while (0)
72
73 #define TRACE_IN        dprintk(verbose, MB86A16_DEBUG, 1, "-->()")
74 #define TRACE_OUT       dprintk(verbose, MB86A16_DEBUG, 1, "()-->")
75
76 static int mb86a16_write(struct mb86a16_state *state, u8 reg, u8 val)
77 {
78         int ret;
79         u8 buf[] = { reg, val };
80
81         struct i2c_msg msg = {
82                 .addr = state->config->demod_address,
83                 .flags = 0,
84                 .buf = buf,
85                 .len = 2
86         };
87
88         dprintk(verbose, MB86A16_DEBUG, 1,
89                 "writing to [0x%02x],Reg[0x%02x],Data[0x%02x]",
90                 state->config->demod_address, buf[0], buf[1]);
91
92         ret = i2c_transfer(state->i2c_adap, &msg, 1);
93
94         return (ret != 1) ? -EREMOTEIO : 0;
95 }
96
97 static int mb86a16_read(struct mb86a16_state *state, u8 reg, u8 *val)
98 {
99         int ret;
100         u8 b0[] = { reg };
101         u8 b1[] = { 0 };
102
103         struct i2c_msg msg[] = {
104                 {
105                         .addr = state->config->demod_address,
106                         .flags = 0,
107                         .buf = b0,
108                         .len = 1
109                 },{
110                         .addr = state->config->demod_address,
111                         .flags = I2C_M_RD,
112                         .buf = b1,
113                         .len = 1
114                 }
115         };
116         ret = i2c_transfer(state->i2c_adap, msg, 2);
117         if (ret != 2) {
118                 dprintk(verbose, MB86A16_ERROR, 1, "read error(reg=0x%02x, ret=0x%i)",
119                         reg, ret);
120
121                 return -EREMOTEIO;
122         }
123         *val = b1[0];
124
125         return ret;
126 }
127
128 static int CNTM_set(struct mb86a16_state *state,
129                     unsigned char timint1,
130                     unsigned char timint2,
131                     unsigned char cnext)
132 {
133         unsigned char val;
134
135         val = (timint1 << 4) | (timint2 << 2) | cnext;
136         if (mb86a16_write(state, MB86A16_CNTMR, val) < 0)
137                 goto err;
138
139         return 0;
140
141 err:
142         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
143         return -EREMOTEIO;
144 }
145
146 static int smrt_set(struct mb86a16_state *state, int rate)
147 {
148         int tmp ;
149         int m ;
150         unsigned char STOFS0, STOFS1;
151
152         m = 1 << state->deci;
153         tmp = (8192 * state->master_clk - 2 * m * rate * 8192 + state->master_clk / 2) / state->master_clk;
154
155         STOFS0 = tmp & 0x0ff;
156         STOFS1 = (tmp & 0xf00) >> 8;
157
158         if (mb86a16_write(state, MB86A16_SRATE1, (state->deci << 2) |
159                                        (state->csel << 1) |
160                                         state->rsel) < 0)
161                 goto err;
162         if (mb86a16_write(state, MB86A16_SRATE2, STOFS0) < 0)
163                 goto err;
164         if (mb86a16_write(state, MB86A16_SRATE3, STOFS1) < 0)
165                 goto err;
166
167         return 0;
168 err:
169         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
170         return -1;
171 }
172
173 static int srst(struct mb86a16_state *state)
174 {
175         if (mb86a16_write(state, MB86A16_RESET, 0x04) < 0)
176                 goto err;
177
178         return 0;
179 err:
180         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
181         return -EREMOTEIO;
182
183 }
184
185 static int afcex_data_set(struct mb86a16_state *state,
186                           unsigned char AFCEX_L,
187                           unsigned char AFCEX_H)
188 {
189         if (mb86a16_write(state, MB86A16_AFCEXL, AFCEX_L) < 0)
190                 goto err;
191         if (mb86a16_write(state, MB86A16_AFCEXH, AFCEX_H) < 0)
192                 goto err;
193
194         return 0;
195 err:
196         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
197
198         return -1;
199 }
200
201 static int afcofs_data_set(struct mb86a16_state *state,
202                            unsigned char AFCEX_L,
203                            unsigned char AFCEX_H)
204 {
205         if (mb86a16_write(state, 0x58, AFCEX_L) < 0)
206                 goto err;
207         if (mb86a16_write(state, 0x59, AFCEX_H) < 0)
208                 goto err;
209
210         return 0;
211 err:
212         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
213         return -EREMOTEIO;
214 }
215
216 static int stlp_set(struct mb86a16_state *state,
217                     unsigned char STRAS,
218                     unsigned char STRBS)
219 {
220         if (mb86a16_write(state, MB86A16_STRFILTCOEF1, (STRBS << 3) | (STRAS)) < 0)
221                 goto err;
222
223         return 0;
224 err:
225         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
226         return -EREMOTEIO;
227 }
228
229 static int Vi_set(struct mb86a16_state *state, unsigned char ETH, unsigned char VIA)
230 {
231         if (mb86a16_write(state, MB86A16_VISET2, 0x04) < 0)
232                 goto err;
233         if (mb86a16_write(state, MB86A16_VISET3, 0xf5) < 0)
234                 goto err;
235
236         return 0;
237 err:
238         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
239         return -EREMOTEIO;
240 }
241
242 static int initial_set(struct mb86a16_state *state)
243 {
244         if (stlp_set(state, 5, 7))
245                 goto err;
246
247         udelay(100);
248         if (afcex_data_set(state, 0, 0))
249                 goto err;
250
251         udelay(100);
252         if (afcofs_data_set(state, 0, 0))
253                 goto err;
254
255         udelay(100);
256         if (mb86a16_write(state, MB86A16_CRLFILTCOEF1, 0x16) < 0)
257                 goto err;
258         if (mb86a16_write(state, 0x2f, 0x21) < 0)
259                 goto err;
260         if (mb86a16_write(state, MB86A16_VIMAG, 0x38) < 0)
261                 goto err;
262         if (mb86a16_write(state, MB86A16_FAGCS1, 0x00) < 0)
263                 goto err;
264         if (mb86a16_write(state, MB86A16_FAGCS2, 0x1c) < 0)
265                 goto err;
266         if (mb86a16_write(state, MB86A16_FAGCS3, 0x20) < 0)
267                 goto err;
268         if (mb86a16_write(state, MB86A16_FAGCS4, 0x1e) < 0)
269                 goto err;
270         if (mb86a16_write(state, MB86A16_FAGCS5, 0x23) < 0)
271                 goto err;
272         if (mb86a16_write(state, 0x54, 0xff) < 0)
273                 goto err;
274         if (mb86a16_write(state, MB86A16_TSOUT, 0x00) < 0)
275                 goto err;
276
277         return 0;
278
279 err:
280         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
281         return -EREMOTEIO;
282 }
283
284 static int S01T_set(struct mb86a16_state *state,
285                     unsigned char s1t,
286                     unsigned s0t)
287 {
288         if (mb86a16_write(state, 0x33, (s1t << 3) | s0t) < 0)
289                 goto err;
290
291         return 0;
292 err:
293         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
294         return -EREMOTEIO;
295 }
296
297
298 static int EN_set(struct mb86a16_state *state,
299                   int cren,
300                   int afcen)
301 {
302         unsigned char val;
303
304         val = 0x7a | (cren << 7) | (afcen << 2);
305         if (mb86a16_write(state, 0x49, val) < 0)
306                 goto err;
307
308         return 0;
309 err:
310         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
311         return -EREMOTEIO;
312 }
313
314 static int AFCEXEN_set(struct mb86a16_state *state,
315                        int afcexen,
316                        int smrt)
317 {
318         unsigned char AFCA ;
319
320         if (smrt > 18875)
321                 AFCA = 4;
322         else if (smrt > 9375)
323                 AFCA = 3;
324         else if (smrt > 2250)
325                 AFCA = 2;
326         else
327                 AFCA = 1;
328
329         if (mb86a16_write(state, 0x2a, 0x02 | (afcexen << 5) | (AFCA << 2)) < 0)
330                 goto err;
331
332         return 0;
333
334 err:
335         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
336         return -EREMOTEIO;
337 }
338
339 static int DAGC_data_set(struct mb86a16_state *state,
340                          unsigned char DAGCA,
341                          unsigned char DAGCW)
342 {
343         if (mb86a16_write(state, 0x2d, (DAGCA << 3) | DAGCW) < 0)
344                 goto err;
345
346         return 0;
347
348 err:
349         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
350         return -EREMOTEIO;
351 }
352
353 static void smrt_info_get(struct mb86a16_state *state, int rate)
354 {
355         if (rate >= 37501) {
356                 state->deci = 0; state->csel = 0; state->rsel = 0;
357         } else if (rate >= 30001) {
358                 state->deci = 0; state->csel = 0; state->rsel = 1;
359         } else if (rate >= 26251) {
360                 state->deci = 0; state->csel = 1; state->rsel = 0;
361         } else if (rate >= 22501) {
362                 state->deci = 0; state->csel = 1; state->rsel = 1;
363         } else if (rate >= 18751) {
364                 state->deci = 1; state->csel = 0; state->rsel = 0;
365         } else if (rate >= 15001) {
366                 state->deci = 1; state->csel = 0; state->rsel = 1;
367         } else if (rate >= 13126) {
368                 state->deci = 1; state->csel = 1; state->rsel = 0;
369         } else if (rate >= 11251) {
370                 state->deci = 1; state->csel = 1; state->rsel = 1;
371         } else if (rate >= 9376) {
372                 state->deci = 2; state->csel = 0; state->rsel = 0;
373         } else if (rate >= 7501) {
374                 state->deci = 2; state->csel = 0; state->rsel = 1;
375         } else if (rate >= 6563) {
376                 state->deci = 2; state->csel = 1; state->rsel = 0;
377         } else if (rate >= 5626) {
378                 state->deci = 2; state->csel = 1; state->rsel = 1;
379         } else if (rate >= 4688) {
380                 state->deci = 3; state->csel = 0; state->rsel = 0;
381         } else if (rate >= 3751) {
382                 state->deci = 3; state->csel = 0; state->rsel = 1;
383         } else if (rate >= 3282) {
384                 state->deci = 3; state->csel = 1; state->rsel = 0;
385         } else if (rate >= 2814) {
386                 state->deci = 3; state->csel = 1; state->rsel = 1;
387         } else if (rate >= 2344) {
388                 state->deci = 4; state->csel = 0; state->rsel = 0;
389         } else if (rate >= 1876) {
390                 state->deci = 4; state->csel = 0; state->rsel = 1;
391         } else if (rate >= 1641) {
392                 state->deci = 4; state->csel = 1; state->rsel = 0;
393         } else if (rate >= 1407) {
394                 state->deci = 4; state->csel = 1; state->rsel = 1;
395         } else if (rate >= 1172) {
396                 state->deci = 5; state->csel = 0; state->rsel = 0;
397         } else if (rate >=  939) {
398                 state->deci = 5; state->csel = 0; state->rsel = 1;
399         } else if (rate >=  821) {
400                 state->deci = 5; state->csel = 1; state->rsel = 0;
401         } else {
402                 state->deci = 5; state->csel = 1; state->rsel = 1;
403         }
404
405         if (state->csel == 0)
406                 state->master_clk = 92000;
407         else
408                 state->master_clk = 61333;
409
410 }
411
412 static int signal_det(struct mb86a16_state *state,
413                       int smrt,
414                       unsigned char *SIG)
415 {
416
417         int ret ;
418         int smrtd ;
419         int wait_sym ;
420         int wait_t ;
421         unsigned char S[3] ;
422         int i ;
423
424         if (*SIG > 45) {
425                 if (CNTM_set(state, 2, 1, 2) < 0) {
426                         dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
427                         return -1;
428                 }
429                 wait_sym = 40000;
430         } else {
431                 if (CNTM_set(state, 3, 1, 2) < 0) {
432                         dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
433                         return -1;
434                 }
435                 wait_sym = 80000;
436         }
437         for (i = 0; i < 3; i++) {
438                 if (i == 0 )
439                         smrtd = smrt * 98 / 100;
440                 else if (i == 1)
441                         smrtd = smrt;
442                 else
443                         smrtd = smrt * 102 / 100;
444                 smrt_info_get(state, smrtd);
445                 smrt_set(state, smrtd);
446                 srst(state);
447                 wait_t = (wait_sym + 99 * smrtd / 100) / smrtd;
448                 if (wait_t == 0)
449                         wait_t = 1;
450                 msleep_interruptible(10);
451                 if (mb86a16_read(state, 0x37, &(S[i])) != 2) {
452                         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
453                         return -EREMOTEIO;
454                 }
455         }
456         if ((S[1] > S[0] * 112 / 100) &&
457             (S[1] > S[2] * 112 / 100)) {
458
459                 ret = 1;
460         } else {
461                 ret = 0;
462         }
463         *SIG = S[1];
464
465         if (CNTM_set(state, 0, 1, 2) < 0) {
466                 dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
467                 return -1;
468         }
469
470         return ret;
471 }
472
473 static int rf_val_set(struct mb86a16_state *state,
474                       int f,
475                       int smrt,
476                       unsigned char R)
477 {
478         unsigned char C, F, B;
479         int M;
480         unsigned char rf_val[5];
481         int ack = -1;
482
483         if (smrt > 37750 )
484                 C = 1;
485         else if (smrt > 18875)
486                 C = 2;
487         else if (smrt > 5500 )
488                 C = 3;
489         else
490                 C = 4;
491
492         if (smrt > 30500)
493                 F = 3;
494         else if (smrt > 9375)
495                 F = 1;
496         else if (smrt > 4625)
497                 F = 0;
498         else
499                 F = 2;
500
501         if (f < 1060)
502                 B = 0;
503         else if (f < 1175)
504                 B = 1;
505         else if (f < 1305)
506                 B = 2;
507         else if (f < 1435)
508                 B = 3;
509         else if (f < 1570)
510                 B = 4;
511         else if (f < 1715)
512                 B = 5;
513         else if (f < 1845)
514                 B = 6;
515         else if (f < 1980)
516                 B = 7;
517         else if (f < 2080)
518                 B = 8;
519         else
520                 B = 9;
521
522         M = f * (1 << R) / 2;
523
524         rf_val[0] = 0x01 | (C << 3) | (F << 1);
525         rf_val[1] = (R << 5) | ((M & 0x1f000) >> 12);
526         rf_val[2] = (M & 0x00ff0) >> 4;
527         rf_val[3] = ((M & 0x0000f) << 4) | B;
528
529         // Frequency Set
530         if (mb86a16_write(state, 0x21, rf_val[0]) < 0)
531                 ack = 0;
532         if (mb86a16_write(state, 0x22, rf_val[1]) < 0)
533                 ack = 0;
534         if (mb86a16_write(state, 0x23, rf_val[2]) < 0)
535                 ack = 0;
536         if (mb86a16_write(state, 0x24, rf_val[3]) < 0)
537                 ack = 0;
538         if (mb86a16_write(state, 0x25, 0x01) < 0)
539                 ack = 0;
540         if (ack == 0) {
541                 dprintk(verbose, MB86A16_ERROR, 1, "RF Setup - I2C transfer error");
542                 return -EREMOTEIO;
543         }
544
545         return 0;
546 }
547
548 static int afcerr_chk(struct mb86a16_state *state)
549 {
550         unsigned char AFCM_L, AFCM_H ;
551         int AFCM ;
552         int afcm, afcerr ;
553
554         if (mb86a16_read(state, 0x0e, &AFCM_L) != 2)
555                 goto err;
556         if (mb86a16_read(state, 0x0f, &AFCM_H) != 2)
557                 goto err;
558
559         AFCM = (AFCM_H << 8) + AFCM_L;
560
561         if (AFCM > 2048)
562                 afcm = AFCM - 4096;
563         else
564                 afcm = AFCM;
565         afcerr = afcm * state->master_clk / 8192;
566
567         return afcerr;
568
569 err:
570         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
571         return -EREMOTEIO;
572 }
573
574 static int dagcm_val_get(struct mb86a16_state *state)
575 {
576         int DAGCM;
577         unsigned char DAGCM_H, DAGCM_L;
578
579         if (mb86a16_read(state, 0x45, &DAGCM_L) != 2)
580                 goto err;
581         if (mb86a16_read(state, 0x46, &DAGCM_H) != 2)
582                 goto err;
583
584         DAGCM = (DAGCM_H << 8) + DAGCM_L;
585
586         return DAGCM;
587
588 err:
589         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
590         return -EREMOTEIO;
591 }
592
593 static int mb86a16_read_status(struct dvb_frontend *fe, fe_status_t *status)
594 {
595         struct mb86a16_state *state = fe->demodulator_priv;
596
597         if (state->signal & 0x02)
598                 *status |= FE_HAS_VITERBI;
599         if (state->signal & 0x01)
600                 *status |= FE_HAS_SYNC;
601         if (state->signal & 0x03)
602                 *status |= FE_HAS_LOCK;
603
604         return 0;
605 }
606
607 static int sync_chk(struct mb86a16_state *state,
608                     unsigned char *VIRM)
609 {
610         unsigned char val;
611         int sync;
612
613         if (mb86a16_read(state, 0x0d, &val) != 2)
614                 goto err;
615
616         dprintk(verbose, MB86A16_INFO, 1, "Status = %02x,", val);
617         sync = val & 0x01;
618         *VIRM = (val & 0x1c) >> 2;
619
620         return sync;
621 err:
622         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
623         return -EREMOTEIO;
624
625 }
626
627 static int freqerr_chk(struct mb86a16_state *state,
628                        int fTP,
629                        int smrt,
630                        int unit)
631 {
632         unsigned char CRM, AFCML, AFCMH;
633         unsigned char temp1, temp2, temp3;
634         int crm, afcm, AFCM;
635         int crrerr, afcerr;             // [kHz]
636         int frqerr;                     // [MHz]
637         int afcen, afcexen = 0;
638         int R, M, fOSC, fOSC_OFS;
639
640         if (mb86a16_read(state, 0x43, &CRM) != 2)
641                 goto err;
642
643         if (CRM > 127)
644                 crm = CRM - 256;
645         else
646                 crm = CRM;
647
648         crrerr = smrt * crm / 256;
649         if (mb86a16_read(state, 0x49, &temp1) != 2)
650                 goto err;
651
652         afcen = (temp1 & 0x04) >> 2;
653         if (afcen == 0) {
654                 if (mb86a16_read(state, 0x2a, &temp1) != 2)
655                         goto err;
656                 afcexen = (temp1 & 0x20) >> 5;
657         }
658
659         if (afcen == 1) {
660                 if (mb86a16_read(state, 0x0e, &AFCML) != 2)
661                         goto err;
662                 if (mb86a16_read(state, 0x0f, &AFCMH) != 2)
663                         goto err;
664         } else if (afcexen == 1) {
665                 if (mb86a16_read(state, 0x2b, &AFCML) != 2)
666                         goto err;
667                 if (mb86a16_read(state, 0x2c, &AFCMH) != 2)
668                         goto err;
669         }
670         if ((afcen == 1) || (afcexen == 1)) {
671                 smrt_info_get(state, smrt);
672                 AFCM = ((AFCMH & 0x01) << 8) + AFCML;
673                 if (AFCM > 255)
674                         afcm = AFCM - 512;
675                 else
676                         afcm = AFCM;
677
678                 afcerr = afcm * state->master_clk / 8192;
679         } else
680                 afcerr = 0;
681
682         if (mb86a16_read(state, 0x22, &temp1) != 2)
683                 goto err;
684         if (mb86a16_read(state, 0x23, &temp2) != 2)
685                 goto err;
686         if (mb86a16_read(state, 0x24, &temp3) != 2)
687                 goto err;
688
689         R = (temp1 & 0xe0) >> 5;
690         M = ((temp1 & 0x1f) << 12) + (temp2 << 4) + (temp3 >> 4);
691         if (R == 0)
692                 fOSC = 2 * M;
693         else
694                 fOSC = M;
695
696         fOSC_OFS = fOSC - fTP;
697
698         if (unit == 0) {        //[MHz]
699                 if (crrerr + afcerr + fOSC_OFS * 1000 >= 0)
700                         frqerr = (crrerr + afcerr + fOSC_OFS * 1000 + 500) / 1000;
701                 else
702                         frqerr = (crrerr + afcerr + fOSC_OFS * 1000 - 500) / 1000;
703         } else {        //[kHz]
704                 frqerr = crrerr + afcerr + fOSC_OFS * 1000;
705         }
706
707         return frqerr;
708 err:
709         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
710         return -EREMOTEIO;
711 }
712
713 static unsigned char vco_dev_get(struct mb86a16_state *state, int smrt)
714 {
715         unsigned char R;
716
717         if (smrt > 9375)
718                 R = 0;
719         else
720                 R = 1;
721
722         return R;
723 }
724
725 static void swp_info_get(struct mb86a16_state *state,
726                          int fOSC_start,
727                          int smrt,
728                          int v, int R,
729                          int swp_ofs,
730                          int *fOSC,
731                          int *afcex_freq,
732                          unsigned char *AFCEX_L,
733                          unsigned char *AFCEX_H)
734 {
735         int AFCEX ;
736         int crnt_swp_freq ;
737
738         crnt_swp_freq = fOSC_start * 1000 + v * swp_ofs;
739
740         if (R == 0 )
741                 *fOSC = (crnt_swp_freq + 1000) / 2000 * 2;
742         else
743                 *fOSC = (crnt_swp_freq + 500) / 1000;
744
745         if (*fOSC >= crnt_swp_freq)
746                 *afcex_freq = *fOSC *1000 - crnt_swp_freq;
747         else
748                 *afcex_freq = crnt_swp_freq - *fOSC * 1000;
749
750         AFCEX = *afcex_freq * 8192 / state->master_clk;
751         *AFCEX_L =  AFCEX & 0x00ff;
752         *AFCEX_H = (AFCEX & 0x0f00) >> 8;
753 }
754
755
756 static int swp_freq_calcuation(struct mb86a16_state *state, int i, int v, int *V,  int vmax, int vmin,
757                                int SIGMIN, int fOSC, int afcex_freq, int swp_ofs, unsigned char *SIG1)
758 {
759         int swp_freq ;
760
761         if ((i % 2 == 1) && (v <= vmax)) {
762                 // positive v (case 1)
763                 if ((v - 1 == vmin)                             &&
764                     (*(V + 30 + v) >= 0)                        &&
765                     (*(V + 30 + v - 1) >= 0)                    &&
766                     (*(V + 30 + v - 1) > *(V + 30 + v))         &&
767                     (*(V + 30 + v - 1) > SIGMIN)) {
768
769                         swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
770                         *SIG1 = *(V + 30 + v - 1);
771                 } else if ((v == vmax)                          &&
772                            (*(V + 30 + v) >= 0)                 &&
773                            (*(V + 30 + v - 1) >= 0)             &&
774                            (*(V + 30 + v) > *(V + 30 + v - 1))  &&
775                            (*(V + 30 + v) > SIGMIN)) {
776                         // (case 2)
777                         swp_freq = fOSC * 1000 + afcex_freq;
778                         *SIG1 = *(V + 30 + v);
779                 } else if ((*(V + 30 + v) > 0)                  &&
780                            (*(V + 30 + v - 1) > 0)              &&
781                            (*(V + 30 + v - 2) > 0)              &&
782                            (*(V + 30 + v - 3) > 0)              &&
783                            (*(V + 30 + v - 1) > *(V + 30 + v))  &&
784                            (*(V + 30 + v - 2) > *(V + 30 + v - 3)) &&
785                            ((*(V + 30 + v - 1) > SIGMIN)        ||
786                            (*(V + 30 + v - 2) > SIGMIN))) {
787                         // (case 3)
788                         if (*(V + 30 + v - 1) >= *(V + 30 + v - 2)) {
789                                 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
790                                 *SIG1 = *(V + 30 + v - 1);
791                         } else {
792                                 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs * 2;
793                                 *SIG1 = *(V + 30 + v - 2);
794                         }
795                 } else if ((v == vmax)                          &&
796                            (*(V + 30 + v) >= 0)                 &&
797                            (*(V + 30 + v - 1) >= 0)             &&
798                            (*(V + 30 + v - 2) >= 0)             &&
799                            (*(V + 30 + v) > *(V + 30 + v - 2))  &&
800                            (*(V + 30 + v - 1) > *(V + 30 + v - 2)) &&
801                            ((*(V + 30 + v) > SIGMIN)            ||
802                            (*(V + 30 + v - 1) > SIGMIN))) {
803                         // (case 4)
804                         if (*(V + 30 + v) >= *(V + 30 + v - 1)) {
805                                 swp_freq = fOSC * 1000 + afcex_freq;
806                                 *SIG1 = *(V + 30 + v);
807                         } else {
808                                 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
809                                 *SIG1 = *(V + 30 + v - 1);
810                         }
811                 } else  {
812                         swp_freq = -1 ;
813                 }
814         } else if ((i % 2 == 0) && (v >= vmin)) {
815                 // Negative v (case 1)
816                 if ((*(V + 30 + v) > 0)                         &&
817                     (*(V + 30 + v + 1) > 0)                     &&
818                     (*(V + 30 + v + 2) > 0)                     &&
819                     (*(V + 30 + v + 1) > *(V + 30 + v))         &&
820                     (*(V + 30 + v + 1) > *(V + 30 + v + 2))     &&
821                     (*(V + 30 + v + 1) > SIGMIN)) {
822
823                         swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
824                         *SIG1 = *(V + 30 + v + 1);
825                 } else if ((v + 1 == vmax)                      &&
826                            (*(V + 30 + v) >= 0)                 &&
827                            (*(V + 30 + v + 1) >= 0)             &&
828                            (*(V + 30 + v + 1) > *(V + 30 + v))  &&
829                            (*(V + 30 + v + 1) > SIGMIN)) {
830                         // (case 2)
831                         swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
832                         *SIG1 = *(V + 30 + v);
833                 } else if ((v == vmin)                          &&
834                            (*(V + 30 + v) > 0)                  &&
835                            (*(V + 30 + v + 1) > 0)              &&
836                            (*(V + 30 + v + 2) > 0)              &&
837                            (*(V + 30 + v) > *(V + 30 + v + 1))  &&
838                            (*(V + 30 + v) > *(V + 30 + v + 2))  &&
839                            (*(V + 30 + v) > SIGMIN)) {
840                         // (case 3)
841                         swp_freq = fOSC * 1000 + afcex_freq;
842                         *SIG1 = *(V + 30 + v);
843                 } else if ((*(V + 30 + v) >= 0)                 &&
844                            (*(V + 30 + v + 1) >= 0)             &&
845                            (*(V + 30 + v + 2) >= 0)             &&
846                            (*(V +30 + v + 3) >= 0)              &&
847                            (*(V + 30 + v + 1) > *(V + 30 + v))  &&
848                            (*(V + 30 + v + 2) > *(V + 30 + v + 3)) &&
849                            ((*(V + 30 + v + 1) > SIGMIN)        ||
850                             (*(V + 30 + v + 2) > SIGMIN))) {
851                         // (case 4)
852                         if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
853                                 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
854                                 *SIG1 = *(V + 30 + v + 1);
855                         } else {
856                                 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
857                                 *SIG1 = *(V + 30 + v + 2);
858                         }
859                 } else if ((*(V + 30 + v) >= 0)                 &&
860                            (*(V + 30 + v + 1) >= 0)             &&
861                            (*(V + 30 + v + 2) >= 0)             &&
862                            (*(V + 30 + v + 3) >= 0)             &&
863                            (*(V + 30 + v) > *(V + 30 + v + 2))  &&
864                            (*(V + 30 + v + 1) > *(V + 30 + v + 2)) &&
865                            (*(V + 30 + v) > *(V + 30 + v + 3))  &&
866                            (*(V + 30 + v + 1) > *(V + 30 + v + 3)) &&
867                            ((*(V + 30 + v) > SIGMIN)            ||
868                             (*(V + 30 + v + 1) > SIGMIN))) {
869                         // (case 5)
870                         if (*(V + 30 + v) >= *(V + 30 + v + 1)) {
871                                 swp_freq = fOSC * 1000 + afcex_freq;
872                                 *SIG1 = *(V + 30 + v);
873                         } else {
874                                 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
875                                 *SIG1 = *(V + 30 + v + 1);
876                         }
877                 } else if ((v + 2 == vmin)                      &&
878                            (*(V + 30 + v) >= 0)                 &&
879                            (*(V + 30 + v + 1) >= 0)             &&
880                            (*(V + 30 + v + 2) >= 0)             &&
881                            (*(V + 30 + v + 1) > *(V + 30 + v))  &&
882                            (*(V + 30 + v + 2) > *(V + 30 + v))  &&
883                            ((*(V + 30 + v + 1) > SIGMIN)        ||
884                             (*(V + 30 + v + 2) > SIGMIN))) {
885                         // (case 6)
886                         if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
887                                 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
888                                 *SIG1 = *(V + 30 + v + 1);
889                         } else {
890                                 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
891                                 *SIG1 = *(V + 30 + v + 2);
892                         }
893                 } else if ((vmax == 0) && (vmin == 0) && (*(V + 30 + v) > SIGMIN)) {
894                         swp_freq = fOSC * 1000;
895                         *SIG1 = *(V + 30 + v);
896                 } else swp_freq = -1;
897         } else swp_freq = -1;
898
899         return swp_freq;
900 }
901
902 static void swp_info_get2(struct mb86a16_state *state,
903                           int smrt,
904                           int R,
905                           int swp_freq,
906                           int *afcex_freq,
907                           int *fOSC,
908                           unsigned char *AFCEX_L,
909                           unsigned char *AFCEX_H)
910 {
911         int AFCEX ;
912
913         if (R == 0)
914                 *fOSC = (swp_freq + 1000) / 2000 * 2;
915         else
916                 *fOSC = (swp_freq + 500) / 1000;
917
918         if (*fOSC >= swp_freq)
919                 *afcex_freq = *fOSC * 1000 - swp_freq;
920         else
921                 *afcex_freq = swp_freq - *fOSC * 1000;
922
923         AFCEX = *afcex_freq * 8192 / state->master_clk;
924         *AFCEX_L =  AFCEX & 0x00ff;
925         *AFCEX_H = (AFCEX & 0x0f00) >> 8;
926 }
927
928 static void afcex_info_get(struct mb86a16_state *state,
929                            int afcex_freq,
930                            unsigned char *AFCEX_L,
931                            unsigned char *AFCEX_H)
932 {
933         int AFCEX ;
934
935         AFCEX = afcex_freq * 8192 / state->master_clk;
936         *AFCEX_L =  AFCEX & 0x00ff;
937         *AFCEX_H = (AFCEX & 0x0f00) >> 8;
938 }
939
940 static int SEQ_set(struct mb86a16_state *state, unsigned char loop)
941 {
942         // SLOCK0 = 0
943         if (mb86a16_write(state, 0x32, 0x02 | (loop << 2)) < 0) {
944                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
945                 return -EREMOTEIO;
946         }
947
948         return 0;
949 }
950
951 static int iq_vt_set(struct mb86a16_state *state, unsigned char IQINV)
952 {
953         // Viterbi Rate, IQ Settings
954         if (mb86a16_write(state, 0x06, 0xdf | (IQINV << 5)) < 0) {
955                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
956                 return -EREMOTEIO;
957         }
958
959         return 0;
960 }
961
962 static int FEC_srst(struct mb86a16_state *state)
963 {
964         if (mb86a16_write(state, MB86A16_RESET, 0x02) < 0) {
965                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
966                 return -EREMOTEIO;
967         }
968
969         return 0;
970 }
971
972 static int S2T_set(struct mb86a16_state *state, unsigned char S2T)
973 {
974         if (mb86a16_write(state, 0x34, 0x70 | S2T) < 0) {
975                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
976                 return -EREMOTEIO;
977         }
978
979         return 0;
980 }
981
982 static int S45T_set(struct mb86a16_state *state, unsigned char S4T, unsigned char S5T)
983 {
984         if (mb86a16_write(state, 0x35, 0x00 | (S5T << 4) | S4T) < 0) {
985                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
986                 return -EREMOTEIO;
987         }
988
989         return 0;
990 }
991
992
993 static int mb86a16_set_fe(struct mb86a16_state *state)
994 {
995         u8 agcval, cnmval;
996
997         int i, j;
998         int fOSC = 0;
999         int fOSC_start = 0;
1000         int wait_t;
1001         int fcp;
1002         int swp_ofs;
1003         int V[60];
1004         u8 SIG1MIN;
1005
1006         unsigned char CREN, AFCEN, AFCEXEN;
1007         unsigned char SIG1;
1008         unsigned char TIMINT1, TIMINT2, TIMEXT;
1009         unsigned char S0T, S1T;
1010         unsigned char S2T;
1011 //      unsigned char S2T, S3T;
1012         unsigned char S4T, S5T;
1013         unsigned char AFCEX_L, AFCEX_H;
1014         unsigned char R;
1015         unsigned char VIRM;
1016         unsigned char ETH, VIA;
1017         unsigned char junk;
1018
1019         int loop;
1020         int ftemp;
1021         int v, vmax, vmin;
1022         int vmax_his, vmin_his;
1023         int swp_freq, prev_swp_freq[20];
1024         int prev_freq_num;
1025         int signal_dupl;
1026         int afcex_freq;
1027         int signal;
1028         int afcerr;
1029         int temp_freq, delta_freq;
1030         int dagcm[4];
1031         int smrt_d;
1032 //      int freq_err;
1033         int n;
1034         int ret = -1;
1035         int sync;
1036
1037         dprintk(verbose, MB86A16_INFO, 1, "freq=%d Mhz, symbrt=%d Ksps", state->frequency, state->srate);
1038
1039         fcp = 3000;
1040         swp_ofs = state->srate / 4;
1041
1042         for (i = 0; i < 60; i++)
1043                 V[i] = -1;
1044
1045         for (i = 0; i < 20; i++)
1046                 prev_swp_freq[i] = 0;
1047
1048         SIG1MIN = 25;
1049
1050         for (n = 0; ((n < 3) && (ret == -1)); n++) {
1051                 SEQ_set(state, 0);
1052                 iq_vt_set(state, 0);
1053
1054                 CREN = 0;
1055                 AFCEN = 0;
1056                 AFCEXEN = 1;
1057                 TIMINT1 = 0;
1058                 TIMINT2 = 1;
1059                 TIMEXT = 2;
1060                 S1T = 0;
1061                 S0T = 0;
1062
1063                 if (initial_set(state) < 0) {
1064                         dprintk(verbose, MB86A16_ERROR, 1, "initial set failed");
1065                         return -1;
1066                 }
1067                 if (DAGC_data_set(state, 3, 2) < 0) {
1068                         dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1069                         return -1;
1070                 }
1071                 if (EN_set(state, CREN, AFCEN) < 0) {
1072                         dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1073                         return -1; // (0, 0)
1074                 }
1075                 if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1076                         dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1077                         return -1; // (1, smrt) = (1, symbolrate)
1078                 }
1079                 if (CNTM_set(state, TIMINT1, TIMINT2, TIMEXT) < 0) {
1080                         dprintk(verbose, MB86A16_ERROR, 1, "CNTM set error");
1081                         return -1; // (0, 1, 2)
1082                 }
1083                 if (S01T_set(state, S1T, S0T) < 0) {
1084                         dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1085                         return -1; // (0, 0)
1086                 }
1087                 smrt_info_get(state, state->srate);
1088                 if (smrt_set(state, state->srate) < 0) {
1089                         dprintk(verbose, MB86A16_ERROR, 1, "smrt info get error");
1090                         return -1;
1091                 }
1092
1093                 R = vco_dev_get(state, state->srate);
1094                 if (R == 1)
1095                         fOSC_start = state->frequency;
1096
1097                 else if (R == 0) {
1098                         if (state->frequency % 2 == 0) {
1099                                 fOSC_start = state->frequency;
1100                         } else {
1101                                 fOSC_start = state->frequency + 1;
1102                                 if (fOSC_start > 2150)
1103                                         fOSC_start = state->frequency - 1;
1104                         }
1105                 }
1106                 loop = 1;
1107                 ftemp = fOSC_start * 1000;
1108                 vmax = 0 ;
1109                 while (loop == 1) {
1110                         ftemp = ftemp + swp_ofs;
1111                         vmax++;
1112
1113                         // Upper bound
1114                         if (ftemp > 2150000) {
1115                                 loop = 0;
1116                                 vmax--;
1117                         }
1118                         else if ((ftemp == 2150000) || (ftemp - state->frequency * 1000 >= fcp + state->srate / 4))
1119                                 loop = 0;
1120                 }
1121
1122                 loop = 1;
1123                 ftemp = fOSC_start * 1000;
1124                 vmin = 0 ;
1125                 while (loop == 1) {
1126                         ftemp = ftemp - swp_ofs;
1127                         vmin--;
1128
1129                         // Lower bound
1130                         if (ftemp < 950000) {
1131                                 loop = 0;
1132                                 vmin++;
1133                         }
1134                         else if ((ftemp == 950000) || (state->frequency * 1000 - ftemp >= fcp + state->srate / 4))
1135                                 loop = 0;
1136                 }
1137
1138                 wait_t = (8000 + state->srate / 2) / state->srate;
1139                 if (wait_t == 0)
1140                         wait_t = 1;
1141
1142                 i = 0;
1143                 j = 0;
1144                 prev_freq_num = 0;
1145                 loop = 1;
1146                 signal = 0;
1147                 vmax_his = 0;
1148                 vmin_his = 0;
1149                 v = 0;
1150
1151                 while (loop == 1) {
1152                         swp_info_get(state, fOSC_start, state->srate,
1153                                      v, R, swp_ofs, &fOSC,
1154                                      &afcex_freq, &AFCEX_L, &AFCEX_H);
1155
1156                         udelay(100);
1157                         if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1158                                 dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1159                                 return -1;
1160                         }
1161                         udelay(100);
1162                         if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1163                                 dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1164                                 return -1;
1165                         }
1166                         if (srst(state) < 0) {
1167                                 dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1168                                 return -1;
1169                         }
1170                         msleep_interruptible(wait_t);
1171
1172                         if (mb86a16_read(state, 0x37, &SIG1) != 2) {
1173                                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1174                                 return -1;
1175                         }
1176                         V[30 + v] = SIG1 ;
1177                         swp_freq = swp_freq_calcuation(state, i, v, V, vmax, vmin,
1178                                                       SIG1MIN, fOSC, afcex_freq,
1179                                                       swp_ofs, &SIG1);  //changed
1180
1181                         signal_dupl = 0;
1182                         for (j = 0; j < prev_freq_num; j++) {
1183                                 if ((ABS(prev_swp_freq[j] - swp_freq)) < (swp_ofs * 3 / 2)) {
1184                                         signal_dupl = 1;
1185                                         dprintk(verbose, MB86A16_INFO, 1, "Probably Duplicate Signal, j = %d", j);
1186                                 }
1187                         }
1188                         if ((signal_dupl == 0) && (swp_freq > 0) && (ABS(swp_freq - state->frequency * 1000) < fcp + state->srate / 6)) {
1189                                 dprintk(verbose, MB86A16_DEBUG, 1, "------ Signal detect ------ [swp_freq=[%07d, srate=%05d]]", swp_freq, state->srate);
1190                                 prev_swp_freq[prev_freq_num] = swp_freq;
1191                                 prev_freq_num++;
1192                                 swp_info_get2(state, state->srate, R, swp_freq,
1193                                               &afcex_freq, &fOSC,
1194                                               &AFCEX_L, &AFCEX_H);
1195
1196                                 if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1197                                         dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1198                                         return -1;
1199                                 }
1200                                 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1201                                         dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1202                                         return -1;
1203                                 }
1204                                 signal = signal_det(state, state->srate, &SIG1);
1205                                 if (signal == 1) {
1206                                         dprintk(verbose, MB86A16_ERROR, 1, "***** Signal Found *****");
1207                                         loop = 0;
1208                                 } else {
1209                                         dprintk(verbose, MB86A16_ERROR, 1, "!!!!! No signal !!!!!, try again...");
1210                                         smrt_info_get(state, state->srate);
1211                                         if (smrt_set(state, state->srate) < 0) {
1212                                                 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1213                                                 return -1;
1214                                         }
1215                                 }
1216                         }
1217                         if (v > vmax)
1218                                 vmax_his = 1 ;
1219                         if (v < vmin)
1220                                 vmin_his = 1 ;
1221                         i++;
1222
1223                         if ((i % 2 == 1) && (vmax_his == 1))
1224                                 i++;
1225                         if ((i % 2 == 0) && (vmin_his == 1))
1226                                 i++;
1227
1228                         if (i % 2 == 1)
1229                                 v = (i + 1) / 2;
1230                         else
1231                                 v = -i / 2;
1232
1233                         if ((vmax_his == 1) && (vmin_his == 1))
1234                                 loop = 0 ;
1235                 }
1236
1237                 if (signal == 1) {
1238                         dprintk(verbose, MB86A16_INFO, 1, " Start Freq Error Check");
1239                         S1T = 7 ;
1240                         S0T = 1 ;
1241                         CREN = 0 ;
1242                         AFCEN = 1 ;
1243                         AFCEXEN = 0 ;
1244
1245                         if (S01T_set(state, S1T, S0T) < 0) {
1246                                 dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1247                                 return -1;
1248                         }
1249                         smrt_info_get(state, state->srate);
1250                         if (smrt_set(state, state->srate) < 0) {
1251                                 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1252                                 return -1;
1253                         }
1254                         if (EN_set(state, CREN, AFCEN) < 0) {
1255                                 dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1256                                 return -1;
1257                         }
1258                         if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1259                                 dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1260                                 return -1;
1261                         }
1262                         afcex_info_get(state, afcex_freq, &AFCEX_L, &AFCEX_H);
1263                         if (afcofs_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1264                                 dprintk(verbose, MB86A16_ERROR, 1, "AFCOFS data set error");
1265                                 return -1;
1266                         }
1267                         if (srst(state) < 0) {
1268                                 dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1269                                 return -1;
1270                         }
1271                         // delay 4~200
1272                         wait_t = 200000 / state->master_clk + 200000 / state->srate;
1273                         msleep(wait_t);
1274                         afcerr = afcerr_chk(state);
1275                         if (afcerr == -1)
1276                                 return -1;
1277
1278                         swp_freq = fOSC * 1000 + afcerr ;
1279                         AFCEXEN = 1 ;
1280                         if (state->srate >= 1500)
1281                                 smrt_d = state->srate / 3;
1282                         else
1283                                 smrt_d = state->srate / 2;
1284                         smrt_info_get(state, smrt_d);
1285                         if (smrt_set(state, smrt_d) < 0) {
1286                                 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1287                                 return -1;
1288                         }
1289                         if (AFCEXEN_set(state, AFCEXEN, smrt_d) < 0) {
1290                                 dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1291                                 return -1;
1292                         }
1293                         R = vco_dev_get(state, smrt_d);
1294                         if (DAGC_data_set(state, 2, 0) < 0) {
1295                                 dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1296                                 return -1;
1297                         }
1298                         for (i = 0; i < 3; i++) {
1299                                 temp_freq = swp_freq + (i - 1) * state->srate / 8;
1300                                 swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1301                                 if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1302                                         dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1303                                         return -1;
1304                                 }
1305                                 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1306                                         dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1307                                         return -1;
1308                                 }
1309                                 wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1310                                 msleep(wait_t);
1311                                 dagcm[i] = dagcm_val_get(state);
1312                         }
1313                         if ((dagcm[0] > dagcm[1]) &&
1314                             (dagcm[0] > dagcm[2]) &&
1315                             (dagcm[0] - dagcm[1] > 2 * (dagcm[2] - dagcm[1]))) {
1316
1317                                 temp_freq = swp_freq - 2 * state->srate / 8;
1318                                 swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1319                                 if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1320                                         dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1321                                         return -1;
1322                                 }
1323                                 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1324                                         dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
1325                                         return -1;
1326                                 }
1327                                 wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1328                                 msleep(wait_t);
1329                                 dagcm[3] = dagcm_val_get(state);
1330                                 if (dagcm[3] > dagcm[1])
1331                                         delta_freq = (dagcm[2] - dagcm[0] + dagcm[1] - dagcm[3]) * state->srate / 300;
1332                                 else
1333                                         delta_freq = 0;
1334                         } else if ((dagcm[2] > dagcm[1]) &&
1335                                    (dagcm[2] > dagcm[0]) &&
1336                                    (dagcm[2] - dagcm[1] > 2 * (dagcm[0] - dagcm[1]))) {
1337
1338                                 temp_freq = swp_freq + 2 * state->srate / 8;
1339                                 swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1340                                 if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1341                                         dprintk(verbose, MB86A16_ERROR, 1, "rf val set");
1342                                         return -1;
1343                                 }
1344                                 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1345                                         dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
1346                                         return -1;
1347                                 }
1348                                 wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1349                                 msleep(wait_t);
1350                                 dagcm[3] = dagcm_val_get(state);
1351                                 if (dagcm[3] > dagcm[1])
1352                                         delta_freq = (dagcm[2] - dagcm[0] + dagcm[3] - dagcm[1]) * state->srate / 300;
1353                                 else
1354                                         delta_freq = 0 ;
1355
1356                         } else {
1357                                 delta_freq = 0 ;
1358                         }
1359                         dprintk(verbose, MB86A16_INFO, 1, "SWEEP Frequency = %d", swp_freq);
1360                         swp_freq += delta_freq;
1361                         dprintk(verbose, MB86A16_INFO, 1, "Adjusting .., DELTA Freq = %d, SWEEP Freq=%d", delta_freq, swp_freq);
1362                         if (ABS(state->frequency * 1000 - swp_freq) > 3800) {
1363                                 dprintk(verbose, MB86A16_INFO, 1, "NO  --  SIGNAL !");
1364                         } else {
1365
1366                                 S1T = 0;
1367                                 S0T = 3;
1368                                 CREN = 1;
1369                                 AFCEN = 0;
1370                                 AFCEXEN = 1;
1371
1372                                 if (S01T_set(state, S1T, S0T) < 0) {
1373                                         dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1374                                         return -1;
1375                                 }
1376                                 if (DAGC_data_set(state, 0, 0) < 0) {
1377                                         dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1378                                         return -1;
1379                                 }
1380                                 R = vco_dev_get(state, state->srate);
1381                                 smrt_info_get(state, state->srate);
1382                                 if (smrt_set(state, state->srate) < 0) {
1383                                         dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1384                                         return -1;
1385                                 }
1386                                 if (EN_set(state, CREN, AFCEN) < 0) {
1387                                         dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1388                                         return -1;
1389                                 }
1390                                 if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1391                                         dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1392                                         return -1;
1393                                 }
1394                                 swp_info_get2(state, state->srate, R, swp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1395                                 if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1396                                         dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1397                                         return -1;
1398                                 }
1399                                 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1400                                         dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1401                                         return -1;
1402                                 }
1403                                 if (srst(state) < 0) {
1404                                         dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1405                                         return -1;
1406                                 }
1407                                 wait_t = 7 + (10000 + state->srate / 2) / state->srate;
1408                                 if (wait_t == 0)
1409                                         wait_t = 1;
1410                                 msleep_interruptible(wait_t);
1411                                 if (mb86a16_read(state, 0x37, &SIG1) != 2) {
1412                                         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1413                                         return -EREMOTEIO;
1414                                 }
1415
1416                                 if (SIG1 > 110) {
1417                                         S2T = 4; S4T = 1; S5T = 6; ETH = 4; VIA = 6;
1418                                         wait_t = 7 + (917504 + state->srate / 2) / state->srate;
1419                                 } else if (SIG1 > 105) {
1420                                         S2T = 4; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1421                                         wait_t = 7 + (1048576 + state->srate / 2) / state->srate;
1422                                 } else if (SIG1 > 85) {
1423                                         S2T = 5; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1424                                         wait_t = 7 + (1310720 + state->srate / 2) / state->srate;
1425                                 } else if (SIG1 > 65) {
1426                                         S2T = 6; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1427                                         wait_t = 7 + (1572864 + state->srate / 2) / state->srate;
1428                                 } else {
1429                                         S2T = 7; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1430                                         wait_t = 7 + (2097152 + state->srate / 2) / state->srate;
1431                                 }
1432                                 S2T_set(state, S2T);
1433                                 S45T_set(state, S4T, S5T);
1434                                 Vi_set(state, ETH, VIA);
1435                                 srst(state);
1436                                 msleep_interruptible(wait_t);
1437                                 sync = sync_chk(state, &VIRM);
1438                                 dprintk(verbose, MB86A16_INFO, 1, "-------- Viterbi=[%d] SYNC=[%d] ---------", VIRM, sync);
1439                                 if (mb86a16_read(state, 0x0d, &state->signal) != 2) {
1440                                         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1441                                         return -EREMOTEIO;
1442                                 }
1443                                 if (VIRM) {
1444                                         if (VIRM == 4) { // 5/6
1445                                                 if (SIG1 > 110)
1446                                                         wait_t = ( 786432 + state->srate / 2) / state->srate;
1447                                                 else
1448                                                         wait_t = (1572864 + state->srate / 2) / state->srate;
1449                                                 if (state->srate < 5000)
1450                                                         // FIXME ! , should be a long wait !
1451                                                         msleep_interruptible(wait_t);
1452                                                 else
1453                                                         msleep_interruptible(wait_t);
1454
1455                                                 if (sync_chk(state, &junk) == 0) {
1456                                                         iq_vt_set(state, 1);
1457                                                         FEC_srst(state);
1458                                                 }
1459                                                 if (SIG1 > 110)
1460                                                         wait_t = ( 786432 + state->srate / 2) / state->srate;
1461                                                 else
1462                                                         wait_t = (1572864 + state->srate / 2) / state->srate;
1463
1464                                                 msleep_interruptible(wait_t);
1465                                                 SEQ_set(state, 1);
1466                                         } else { // 1/2, 2/3, 3/4, 7/8
1467                                                 if (SIG1 > 110)
1468                                                         wait_t = ( 786432 + state->srate / 2) / state->srate;
1469                                                 else
1470                                                         wait_t = (1572864 + state->srate / 2) / state->srate;
1471
1472                                                 msleep_interruptible(wait_t);
1473                                                 SEQ_set(state, 1);
1474                                         }
1475                                 } else {
1476                                         dprintk(verbose, MB86A16_INFO, 1, "NO  -- SIGNAL");
1477                                         SEQ_set(state, 1);
1478                                 }
1479                         }
1480                 } else {
1481                         dprintk (verbose, MB86A16_INFO, 1, "NO  -- SIGNAL");
1482                 }
1483
1484                 sync = sync_chk(state, &junk);
1485                 if (sync) {
1486                         dprintk(verbose, MB86A16_INFO, 1, "******* SYNC *******");
1487                         freqerr_chk(state, state->frequency, state->srate, 1);
1488                 }
1489         }
1490
1491         mb86a16_read(state, 0x15, &agcval);
1492         mb86a16_read(state, 0x26, &cnmval);
1493         dprintk(verbose, MB86A16_INFO, 1, "AGC = %02x CNM = %02x", agcval, cnmval);
1494
1495         return ret;
1496 }
1497
1498 static int mb86a16_send_diseqc_msg(struct dvb_frontend *fe,
1499                                    struct dvb_diseqc_master_cmd *cmd)
1500 {
1501         struct mb86a16_state *state = fe->demodulator_priv;
1502         int i;
1503         u8 regs;
1504
1505         if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
1506                 goto err;
1507         if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
1508                 goto err;
1509         if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
1510                 goto err;
1511
1512         regs = 0x18;
1513
1514         if (cmd->msg_len > 5 || cmd->msg_len < 4)
1515                 return -EINVAL;
1516
1517         for (i = 0; i < cmd->msg_len; i++) {
1518                 if (mb86a16_write(state, regs, cmd->msg[i]) < 0)
1519                         goto err;
1520
1521                 regs++;
1522         }
1523         i += 0x90;
1524
1525         msleep_interruptible(10);
1526
1527         if (mb86a16_write(state, MB86A16_DCC1, i) < 0)
1528                 goto err;
1529         if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1530                 goto err;
1531
1532         return 0;
1533
1534 err:
1535         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1536         return -EREMOTEIO;
1537 }
1538
1539 static int mb86a16_send_diseqc_burst(struct dvb_frontend *fe, fe_sec_mini_cmd_t burst)
1540 {
1541         struct mb86a16_state *state = fe->demodulator_priv;
1542
1543         switch (burst) {
1544         case SEC_MINI_A:
1545                 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1546                                                        MB86A16_DCC1_TBEN  |
1547                                                        MB86A16_DCC1_TBO) < 0)
1548                         goto err;
1549                 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1550                         goto err;
1551                 break;
1552         case SEC_MINI_B:
1553                 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1554                                                        MB86A16_DCC1_TBEN) < 0)
1555                         goto err;
1556                 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1557                         goto err;
1558                 break;
1559         }
1560
1561         return 0;
1562 err:
1563         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1564         return -EREMOTEIO;
1565 }
1566
1567 static int mb86a16_set_tone(struct dvb_frontend *fe, fe_sec_tone_mode_t tone)
1568 {
1569         struct mb86a16_state *state = fe->demodulator_priv;
1570
1571         switch (tone) {
1572         case SEC_TONE_ON:
1573                 if (mb86a16_write(state, MB86A16_TONEOUT2, 0x00) < 0)
1574                         goto err;
1575                 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1576                                                        MB86A16_DCC1_CTOE) < 0)
1577
1578                         goto err;
1579                 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1580                         goto err;
1581                 break;
1582         case SEC_TONE_OFF:
1583                 if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
1584                         goto err;
1585                 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
1586                         goto err;
1587                 if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
1588                         goto err;
1589                 break;
1590         default:
1591                 return -EINVAL;
1592         }
1593         return 0;
1594
1595 err:
1596         dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1597         return -EREMOTEIO;
1598 }
1599
1600 #define MB86A16_FE_ALGO         1
1601
1602 static int mb86a16_frontend_algo(struct dvb_frontend *fe)
1603 {
1604         return MB86A16_FE_ALGO;
1605 }
1606
1607 static int mb86a16_set_frontend(struct dvb_frontend *fe,
1608                                 struct dvb_frontend_parameters *p,
1609                                 unsigned int mode_flags,
1610                                 int *delay,
1611                                 fe_status_t *status)
1612 {
1613         int ret = 0;
1614         struct mb86a16_state *state = fe->demodulator_priv;
1615
1616         if (p != NULL) {
1617                 state->frequency = p->frequency / 1000;
1618                 state->srate = p->u.qpsk.symbol_rate / 1000;
1619                 ret = mb86a16_set_fe(state);
1620         }
1621         if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
1622                 mb86a16_read_status(fe, status);
1623
1624         *delay = HZ/3000;
1625
1626         return ret;
1627 }
1628
1629 static void mb86a16_release(struct dvb_frontend *fe)
1630 {
1631         struct mb86a16_state *state = fe->demodulator_priv;
1632         kfree(state);
1633 }
1634
1635 static int mb86a16_init(struct dvb_frontend *fe)
1636 {
1637         return 0;
1638 }
1639
1640 static int mb86a16_sleep(struct dvb_frontend *fe)
1641 {
1642         return 0;
1643 }
1644
1645 static int mb86a16_read_ber(struct dvb_frontend *fe, u32 *ber)
1646 {
1647         return 0;
1648 }
1649
1650 static int mb86a16_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
1651 {
1652         *strength = 0;
1653
1654         return 0;
1655 }
1656
1657 struct cnr {
1658         u8 cn_reg;
1659         u8 cn_val;
1660 };
1661
1662 static const struct cnr cnr_tab[] = {
1663         {  35,  2 },
1664         {  40,  3 },
1665         {  50,  4 },
1666         {  60,  5 },
1667         {  70,  6 },
1668         {  80,  7 },
1669         {  92,  8 },
1670         { 103,  9 },
1671         { 115, 10 },
1672         { 138, 12 },
1673         { 162, 15 },
1674         { 180, 18 },
1675         { 185, 19 },
1676         { 189, 20 },
1677         { 195, 22 },
1678         { 199, 24 },
1679         { 201, 25 },
1680         { 202, 26 },
1681         { 203, 27 },
1682         { 205, 28 },
1683         { 208, 30 }
1684 };
1685
1686 static int mb86a16_read_snr(struct dvb_frontend *fe, u16 *snr)
1687 {
1688         struct mb86a16_state *state = fe->demodulator_priv;
1689         int i = 0;
1690         int low_tide = 2, high_tide = 30, q_level;
1691         u8  cn;
1692
1693         if (mb86a16_read(state, 0x26, &cn) != 2) {
1694                 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1695                 return -EREMOTEIO;
1696         }
1697
1698         for (i = 0; i < ARRAY_SIZE(cnr_tab); i++) {
1699                 if (cn < cnr_tab[i].cn_reg) {
1700                         *snr = cnr_tab[i].cn_val;
1701                         break;
1702                 }
1703         }
1704         q_level = (*snr * 100) / (high_tide - low_tide);
1705         dprintk(verbose, MB86A16_ERROR, 1, "SNR (Quality) = [%d dB], Level=%d %%", *snr, q_level);
1706
1707         return 0;
1708 }
1709
1710 static int mb86a16_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
1711 {
1712         return 0;
1713 }
1714
1715 static struct dvb_frontend_ops mb86a16_ops = {
1716         .info = {
1717                 .name                   = "Fujitsu MB86A16 DVB-S",
1718                 .type                   = FE_QPSK,
1719                 .frequency_min          = 950000,
1720                 .frequency_max          = 2150000,
1721                 .frequency_stepsize     = 125,
1722                 .frequency_tolerance    = 0,
1723                 .symbol_rate_min        = 1000000,
1724                 .symbol_rate_max        = 45000000,
1725                 .symbol_rate_tolerance  = 500,
1726                 .caps                   = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
1727                                           FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 |
1728                                           FE_CAN_FEC_7_8 | FE_CAN_QPSK    |
1729                                           FE_CAN_FEC_AUTO
1730         },
1731         .release                        = mb86a16_release,
1732         .tune                           = mb86a16_set_frontend,
1733         .read_status                    = mb86a16_read_status,
1734         .get_frontend_algo              = mb86a16_frontend_algo,
1735         .init                           = mb86a16_init,
1736         .sleep                          = mb86a16_sleep,
1737         .read_status                    = mb86a16_read_status,
1738
1739         .read_ber                       = mb86a16_read_ber,
1740         .read_signal_strength           = mb86a16_read_signal_strength,
1741         .read_snr                       = mb86a16_read_snr,
1742         .read_ucblocks                  = mb86a16_read_ucblocks,
1743
1744         .diseqc_send_master_cmd         = mb86a16_send_diseqc_msg,
1745         .diseqc_send_burst              = mb86a16_send_diseqc_burst,
1746         .set_tone                       = mb86a16_set_tone,
1747 };
1748
1749 struct dvb_frontend *mb86a16_attach(const struct mb86a16_config *config,
1750                                     struct i2c_adapter *i2c_adap)
1751 {
1752         u8 dev_id = 0;
1753         struct mb86a16_state *state = NULL;
1754
1755         state = kmalloc(sizeof (struct mb86a16_state), GFP_KERNEL);
1756         if (state == NULL)
1757                 goto error;
1758
1759         state->config = config;
1760         state->i2c_adap = i2c_adap;
1761
1762         mb86a16_read(state, 0x7f, &dev_id);
1763         if (dev_id != 0xfe)
1764                 goto error;
1765
1766         memcpy(&state->frontend.ops, &mb86a16_ops, sizeof (struct dvb_frontend_ops));
1767         state->frontend.demodulator_priv = state;
1768         state->frontend.ops.set_voltage = state->config->set_voltage;
1769
1770         return &state->frontend;
1771 error:
1772         kfree(state);
1773         return NULL;
1774 }
1775 EXPORT_SYMBOL(mb86a16_attach);
1776 MODULE_LICENSE("GPL");
1777 MODULE_AUTHOR("Manu Abraham");