]> Pileus Git - ~andy/linux/blob - drivers/md/raid5.c
md/raid5: rearrange a test in fetch_block6.
[~andy/linux] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "raid5.h"
56 #include "raid0.h"
57 #include "bitmap.h"
58
59 /*
60  * Stripe cache
61  */
62
63 #define NR_STRIPES              256
64 #define STRIPE_SIZE             PAGE_SIZE
65 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
66 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
67 #define IO_THRESHOLD            1
68 #define BYPASS_THRESHOLD        1
69 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
70 #define HASH_MASK               (NR_HASH - 1)
71
72 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
73
74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
75  * order without overlap.  There may be several bio's per stripe+device, and
76  * a bio could span several devices.
77  * When walking this list for a particular stripe+device, we must never proceed
78  * beyond a bio that extends past this device, as the next bio might no longer
79  * be valid.
80  * This macro is used to determine the 'next' bio in the list, given the sector
81  * of the current stripe+device
82  */
83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
84 /*
85  * The following can be used to debug the driver
86  */
87 #define RAID5_PARANOIA  1
88 #if RAID5_PARANOIA && defined(CONFIG_SMP)
89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
90 #else
91 # define CHECK_DEVLOCK()
92 #endif
93
94 #ifdef DEBUG
95 #define inline
96 #define __inline__
97 #endif
98
99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
100
101 /*
102  * We maintain a biased count of active stripes in the bottom 16 bits of
103  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104  */
105 static inline int raid5_bi_phys_segments(struct bio *bio)
106 {
107         return bio->bi_phys_segments & 0xffff;
108 }
109
110 static inline int raid5_bi_hw_segments(struct bio *bio)
111 {
112         return (bio->bi_phys_segments >> 16) & 0xffff;
113 }
114
115 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
116 {
117         --bio->bi_phys_segments;
118         return raid5_bi_phys_segments(bio);
119 }
120
121 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
122 {
123         unsigned short val = raid5_bi_hw_segments(bio);
124
125         --val;
126         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127         return val;
128 }
129
130 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
131 {
132         bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
133 }
134
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head *sh)
137 {
138         if (sh->ddf_layout)
139                 /* ddf always start from first device */
140                 return 0;
141         /* md starts just after Q block */
142         if (sh->qd_idx == sh->disks - 1)
143                 return 0;
144         else
145                 return sh->qd_idx + 1;
146 }
147 static inline int raid6_next_disk(int disk, int raid_disks)
148 {
149         disk++;
150         return (disk < raid_disks) ? disk : 0;
151 }
152
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154  * We need to map each disk to a 'slot', where the data disks are slot
155  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156  * is raid_disks-1.  This help does that mapping.
157  */
158 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159                              int *count, int syndrome_disks)
160 {
161         int slot = *count;
162
163         if (sh->ddf_layout)
164                 (*count)++;
165         if (idx == sh->pd_idx)
166                 return syndrome_disks;
167         if (idx == sh->qd_idx)
168                 return syndrome_disks + 1;
169         if (!sh->ddf_layout)
170                 (*count)++;
171         return slot;
172 }
173
174 static void return_io(struct bio *return_bi)
175 {
176         struct bio *bi = return_bi;
177         while (bi) {
178
179                 return_bi = bi->bi_next;
180                 bi->bi_next = NULL;
181                 bi->bi_size = 0;
182                 bio_endio(bi, 0);
183                 bi = return_bi;
184         }
185 }
186
187 static void print_raid5_conf (raid5_conf_t *conf);
188
189 static int stripe_operations_active(struct stripe_head *sh)
190 {
191         return sh->check_state || sh->reconstruct_state ||
192                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
194 }
195
196 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
197 {
198         if (atomic_dec_and_test(&sh->count)) {
199                 BUG_ON(!list_empty(&sh->lru));
200                 BUG_ON(atomic_read(&conf->active_stripes)==0);
201                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
202                         if (test_bit(STRIPE_DELAYED, &sh->state))
203                                 list_add_tail(&sh->lru, &conf->delayed_list);
204                         else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
205                                    sh->bm_seq - conf->seq_write > 0)
206                                 list_add_tail(&sh->lru, &conf->bitmap_list);
207                         else {
208                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
209                                 list_add_tail(&sh->lru, &conf->handle_list);
210                         }
211                         md_wakeup_thread(conf->mddev->thread);
212                 } else {
213                         BUG_ON(stripe_operations_active(sh));
214                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
215                                 atomic_dec(&conf->preread_active_stripes);
216                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
217                                         md_wakeup_thread(conf->mddev->thread);
218                         }
219                         atomic_dec(&conf->active_stripes);
220                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
221                                 list_add_tail(&sh->lru, &conf->inactive_list);
222                                 wake_up(&conf->wait_for_stripe);
223                                 if (conf->retry_read_aligned)
224                                         md_wakeup_thread(conf->mddev->thread);
225                         }
226                 }
227         }
228 }
229
230 static void release_stripe(struct stripe_head *sh)
231 {
232         raid5_conf_t *conf = sh->raid_conf;
233         unsigned long flags;
234
235         spin_lock_irqsave(&conf->device_lock, flags);
236         __release_stripe(conf, sh);
237         spin_unlock_irqrestore(&conf->device_lock, flags);
238 }
239
240 static inline void remove_hash(struct stripe_head *sh)
241 {
242         pr_debug("remove_hash(), stripe %llu\n",
243                 (unsigned long long)sh->sector);
244
245         hlist_del_init(&sh->hash);
246 }
247
248 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
249 {
250         struct hlist_head *hp = stripe_hash(conf, sh->sector);
251
252         pr_debug("insert_hash(), stripe %llu\n",
253                 (unsigned long long)sh->sector);
254
255         CHECK_DEVLOCK();
256         hlist_add_head(&sh->hash, hp);
257 }
258
259
260 /* find an idle stripe, make sure it is unhashed, and return it. */
261 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
262 {
263         struct stripe_head *sh = NULL;
264         struct list_head *first;
265
266         CHECK_DEVLOCK();
267         if (list_empty(&conf->inactive_list))
268                 goto out;
269         first = conf->inactive_list.next;
270         sh = list_entry(first, struct stripe_head, lru);
271         list_del_init(first);
272         remove_hash(sh);
273         atomic_inc(&conf->active_stripes);
274 out:
275         return sh;
276 }
277
278 static void shrink_buffers(struct stripe_head *sh)
279 {
280         struct page *p;
281         int i;
282         int num = sh->raid_conf->pool_size;
283
284         for (i = 0; i < num ; i++) {
285                 p = sh->dev[i].page;
286                 if (!p)
287                         continue;
288                 sh->dev[i].page = NULL;
289                 put_page(p);
290         }
291 }
292
293 static int grow_buffers(struct stripe_head *sh)
294 {
295         int i;
296         int num = sh->raid_conf->pool_size;
297
298         for (i = 0; i < num; i++) {
299                 struct page *page;
300
301                 if (!(page = alloc_page(GFP_KERNEL))) {
302                         return 1;
303                 }
304                 sh->dev[i].page = page;
305         }
306         return 0;
307 }
308
309 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
310 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
311                             struct stripe_head *sh);
312
313 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
314 {
315         raid5_conf_t *conf = sh->raid_conf;
316         int i;
317
318         BUG_ON(atomic_read(&sh->count) != 0);
319         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
320         BUG_ON(stripe_operations_active(sh));
321
322         CHECK_DEVLOCK();
323         pr_debug("init_stripe called, stripe %llu\n",
324                 (unsigned long long)sh->sector);
325
326         remove_hash(sh);
327
328         sh->generation = conf->generation - previous;
329         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
330         sh->sector = sector;
331         stripe_set_idx(sector, conf, previous, sh);
332         sh->state = 0;
333
334
335         for (i = sh->disks; i--; ) {
336                 struct r5dev *dev = &sh->dev[i];
337
338                 if (dev->toread || dev->read || dev->towrite || dev->written ||
339                     test_bit(R5_LOCKED, &dev->flags)) {
340                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
341                                (unsigned long long)sh->sector, i, dev->toread,
342                                dev->read, dev->towrite, dev->written,
343                                test_bit(R5_LOCKED, &dev->flags));
344                         BUG();
345                 }
346                 dev->flags = 0;
347                 raid5_build_block(sh, i, previous);
348         }
349         insert_hash(conf, sh);
350 }
351
352 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
353                                          short generation)
354 {
355         struct stripe_head *sh;
356         struct hlist_node *hn;
357
358         CHECK_DEVLOCK();
359         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
360         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
361                 if (sh->sector == sector && sh->generation == generation)
362                         return sh;
363         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
364         return NULL;
365 }
366
367 /*
368  * Need to check if array has failed when deciding whether to:
369  *  - start an array
370  *  - remove non-faulty devices
371  *  - add a spare
372  *  - allow a reshape
373  * This determination is simple when no reshape is happening.
374  * However if there is a reshape, we need to carefully check
375  * both the before and after sections.
376  * This is because some failed devices may only affect one
377  * of the two sections, and some non-in_sync devices may
378  * be insync in the section most affected by failed devices.
379  */
380 static int has_failed(raid5_conf_t *conf)
381 {
382         int degraded;
383         int i;
384         if (conf->mddev->reshape_position == MaxSector)
385                 return conf->mddev->degraded > conf->max_degraded;
386
387         rcu_read_lock();
388         degraded = 0;
389         for (i = 0; i < conf->previous_raid_disks; i++) {
390                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
391                 if (!rdev || test_bit(Faulty, &rdev->flags))
392                         degraded++;
393                 else if (test_bit(In_sync, &rdev->flags))
394                         ;
395                 else
396                         /* not in-sync or faulty.
397                          * If the reshape increases the number of devices,
398                          * this is being recovered by the reshape, so
399                          * this 'previous' section is not in_sync.
400                          * If the number of devices is being reduced however,
401                          * the device can only be part of the array if
402                          * we are reverting a reshape, so this section will
403                          * be in-sync.
404                          */
405                         if (conf->raid_disks >= conf->previous_raid_disks)
406                                 degraded++;
407         }
408         rcu_read_unlock();
409         if (degraded > conf->max_degraded)
410                 return 1;
411         rcu_read_lock();
412         degraded = 0;
413         for (i = 0; i < conf->raid_disks; i++) {
414                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
415                 if (!rdev || test_bit(Faulty, &rdev->flags))
416                         degraded++;
417                 else if (test_bit(In_sync, &rdev->flags))
418                         ;
419                 else
420                         /* not in-sync or faulty.
421                          * If reshape increases the number of devices, this
422                          * section has already been recovered, else it
423                          * almost certainly hasn't.
424                          */
425                         if (conf->raid_disks <= conf->previous_raid_disks)
426                                 degraded++;
427         }
428         rcu_read_unlock();
429         if (degraded > conf->max_degraded)
430                 return 1;
431         return 0;
432 }
433
434 static struct stripe_head *
435 get_active_stripe(raid5_conf_t *conf, sector_t sector,
436                   int previous, int noblock, int noquiesce)
437 {
438         struct stripe_head *sh;
439
440         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
441
442         spin_lock_irq(&conf->device_lock);
443
444         do {
445                 wait_event_lock_irq(conf->wait_for_stripe,
446                                     conf->quiesce == 0 || noquiesce,
447                                     conf->device_lock, /* nothing */);
448                 sh = __find_stripe(conf, sector, conf->generation - previous);
449                 if (!sh) {
450                         if (!conf->inactive_blocked)
451                                 sh = get_free_stripe(conf);
452                         if (noblock && sh == NULL)
453                                 break;
454                         if (!sh) {
455                                 conf->inactive_blocked = 1;
456                                 wait_event_lock_irq(conf->wait_for_stripe,
457                                                     !list_empty(&conf->inactive_list) &&
458                                                     (atomic_read(&conf->active_stripes)
459                                                      < (conf->max_nr_stripes *3/4)
460                                                      || !conf->inactive_blocked),
461                                                     conf->device_lock,
462                                                     );
463                                 conf->inactive_blocked = 0;
464                         } else
465                                 init_stripe(sh, sector, previous);
466                 } else {
467                         if (atomic_read(&sh->count)) {
468                                 BUG_ON(!list_empty(&sh->lru)
469                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
470                         } else {
471                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
472                                         atomic_inc(&conf->active_stripes);
473                                 if (list_empty(&sh->lru) &&
474                                     !test_bit(STRIPE_EXPANDING, &sh->state))
475                                         BUG();
476                                 list_del_init(&sh->lru);
477                         }
478                 }
479         } while (sh == NULL);
480
481         if (sh)
482                 atomic_inc(&sh->count);
483
484         spin_unlock_irq(&conf->device_lock);
485         return sh;
486 }
487
488 static void
489 raid5_end_read_request(struct bio *bi, int error);
490 static void
491 raid5_end_write_request(struct bio *bi, int error);
492
493 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
494 {
495         raid5_conf_t *conf = sh->raid_conf;
496         int i, disks = sh->disks;
497
498         might_sleep();
499
500         for (i = disks; i--; ) {
501                 int rw;
502                 struct bio *bi;
503                 mdk_rdev_t *rdev;
504                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
505                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
506                                 rw = WRITE_FUA;
507                         else
508                                 rw = WRITE;
509                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
510                         rw = READ;
511                 else
512                         continue;
513
514                 bi = &sh->dev[i].req;
515
516                 bi->bi_rw = rw;
517                 if (rw & WRITE)
518                         bi->bi_end_io = raid5_end_write_request;
519                 else
520                         bi->bi_end_io = raid5_end_read_request;
521
522                 rcu_read_lock();
523                 rdev = rcu_dereference(conf->disks[i].rdev);
524                 if (rdev && test_bit(Faulty, &rdev->flags))
525                         rdev = NULL;
526                 if (rdev)
527                         atomic_inc(&rdev->nr_pending);
528                 rcu_read_unlock();
529
530                 if (rdev) {
531                         if (s->syncing || s->expanding || s->expanded)
532                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
533
534                         set_bit(STRIPE_IO_STARTED, &sh->state);
535
536                         bi->bi_bdev = rdev->bdev;
537                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
538                                 __func__, (unsigned long long)sh->sector,
539                                 bi->bi_rw, i);
540                         atomic_inc(&sh->count);
541                         bi->bi_sector = sh->sector + rdev->data_offset;
542                         bi->bi_flags = 1 << BIO_UPTODATE;
543                         bi->bi_vcnt = 1;
544                         bi->bi_max_vecs = 1;
545                         bi->bi_idx = 0;
546                         bi->bi_io_vec = &sh->dev[i].vec;
547                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
548                         bi->bi_io_vec[0].bv_offset = 0;
549                         bi->bi_size = STRIPE_SIZE;
550                         bi->bi_next = NULL;
551                         if ((rw & WRITE) &&
552                             test_bit(R5_ReWrite, &sh->dev[i].flags))
553                                 atomic_add(STRIPE_SECTORS,
554                                         &rdev->corrected_errors);
555                         generic_make_request(bi);
556                 } else {
557                         if (rw & WRITE)
558                                 set_bit(STRIPE_DEGRADED, &sh->state);
559                         pr_debug("skip op %ld on disc %d for sector %llu\n",
560                                 bi->bi_rw, i, (unsigned long long)sh->sector);
561                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
562                         set_bit(STRIPE_HANDLE, &sh->state);
563                 }
564         }
565 }
566
567 static struct dma_async_tx_descriptor *
568 async_copy_data(int frombio, struct bio *bio, struct page *page,
569         sector_t sector, struct dma_async_tx_descriptor *tx)
570 {
571         struct bio_vec *bvl;
572         struct page *bio_page;
573         int i;
574         int page_offset;
575         struct async_submit_ctl submit;
576         enum async_tx_flags flags = 0;
577
578         if (bio->bi_sector >= sector)
579                 page_offset = (signed)(bio->bi_sector - sector) * 512;
580         else
581                 page_offset = (signed)(sector - bio->bi_sector) * -512;
582
583         if (frombio)
584                 flags |= ASYNC_TX_FENCE;
585         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
586
587         bio_for_each_segment(bvl, bio, i) {
588                 int len = bvl->bv_len;
589                 int clen;
590                 int b_offset = 0;
591
592                 if (page_offset < 0) {
593                         b_offset = -page_offset;
594                         page_offset += b_offset;
595                         len -= b_offset;
596                 }
597
598                 if (len > 0 && page_offset + len > STRIPE_SIZE)
599                         clen = STRIPE_SIZE - page_offset;
600                 else
601                         clen = len;
602
603                 if (clen > 0) {
604                         b_offset += bvl->bv_offset;
605                         bio_page = bvl->bv_page;
606                         if (frombio)
607                                 tx = async_memcpy(page, bio_page, page_offset,
608                                                   b_offset, clen, &submit);
609                         else
610                                 tx = async_memcpy(bio_page, page, b_offset,
611                                                   page_offset, clen, &submit);
612                 }
613                 /* chain the operations */
614                 submit.depend_tx = tx;
615
616                 if (clen < len) /* hit end of page */
617                         break;
618                 page_offset +=  len;
619         }
620
621         return tx;
622 }
623
624 static void ops_complete_biofill(void *stripe_head_ref)
625 {
626         struct stripe_head *sh = stripe_head_ref;
627         struct bio *return_bi = NULL;
628         raid5_conf_t *conf = sh->raid_conf;
629         int i;
630
631         pr_debug("%s: stripe %llu\n", __func__,
632                 (unsigned long long)sh->sector);
633
634         /* clear completed biofills */
635         spin_lock_irq(&conf->device_lock);
636         for (i = sh->disks; i--; ) {
637                 struct r5dev *dev = &sh->dev[i];
638
639                 /* acknowledge completion of a biofill operation */
640                 /* and check if we need to reply to a read request,
641                  * new R5_Wantfill requests are held off until
642                  * !STRIPE_BIOFILL_RUN
643                  */
644                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
645                         struct bio *rbi, *rbi2;
646
647                         BUG_ON(!dev->read);
648                         rbi = dev->read;
649                         dev->read = NULL;
650                         while (rbi && rbi->bi_sector <
651                                 dev->sector + STRIPE_SECTORS) {
652                                 rbi2 = r5_next_bio(rbi, dev->sector);
653                                 if (!raid5_dec_bi_phys_segments(rbi)) {
654                                         rbi->bi_next = return_bi;
655                                         return_bi = rbi;
656                                 }
657                                 rbi = rbi2;
658                         }
659                 }
660         }
661         spin_unlock_irq(&conf->device_lock);
662         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
663
664         return_io(return_bi);
665
666         set_bit(STRIPE_HANDLE, &sh->state);
667         release_stripe(sh);
668 }
669
670 static void ops_run_biofill(struct stripe_head *sh)
671 {
672         struct dma_async_tx_descriptor *tx = NULL;
673         raid5_conf_t *conf = sh->raid_conf;
674         struct async_submit_ctl submit;
675         int i;
676
677         pr_debug("%s: stripe %llu\n", __func__,
678                 (unsigned long long)sh->sector);
679
680         for (i = sh->disks; i--; ) {
681                 struct r5dev *dev = &sh->dev[i];
682                 if (test_bit(R5_Wantfill, &dev->flags)) {
683                         struct bio *rbi;
684                         spin_lock_irq(&conf->device_lock);
685                         dev->read = rbi = dev->toread;
686                         dev->toread = NULL;
687                         spin_unlock_irq(&conf->device_lock);
688                         while (rbi && rbi->bi_sector <
689                                 dev->sector + STRIPE_SECTORS) {
690                                 tx = async_copy_data(0, rbi, dev->page,
691                                         dev->sector, tx);
692                                 rbi = r5_next_bio(rbi, dev->sector);
693                         }
694                 }
695         }
696
697         atomic_inc(&sh->count);
698         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
699         async_trigger_callback(&submit);
700 }
701
702 static void mark_target_uptodate(struct stripe_head *sh, int target)
703 {
704         struct r5dev *tgt;
705
706         if (target < 0)
707                 return;
708
709         tgt = &sh->dev[target];
710         set_bit(R5_UPTODATE, &tgt->flags);
711         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
712         clear_bit(R5_Wantcompute, &tgt->flags);
713 }
714
715 static void ops_complete_compute(void *stripe_head_ref)
716 {
717         struct stripe_head *sh = stripe_head_ref;
718
719         pr_debug("%s: stripe %llu\n", __func__,
720                 (unsigned long long)sh->sector);
721
722         /* mark the computed target(s) as uptodate */
723         mark_target_uptodate(sh, sh->ops.target);
724         mark_target_uptodate(sh, sh->ops.target2);
725
726         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
727         if (sh->check_state == check_state_compute_run)
728                 sh->check_state = check_state_compute_result;
729         set_bit(STRIPE_HANDLE, &sh->state);
730         release_stripe(sh);
731 }
732
733 /* return a pointer to the address conversion region of the scribble buffer */
734 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
735                                  struct raid5_percpu *percpu)
736 {
737         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
738 }
739
740 static struct dma_async_tx_descriptor *
741 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
742 {
743         int disks = sh->disks;
744         struct page **xor_srcs = percpu->scribble;
745         int target = sh->ops.target;
746         struct r5dev *tgt = &sh->dev[target];
747         struct page *xor_dest = tgt->page;
748         int count = 0;
749         struct dma_async_tx_descriptor *tx;
750         struct async_submit_ctl submit;
751         int i;
752
753         pr_debug("%s: stripe %llu block: %d\n",
754                 __func__, (unsigned long long)sh->sector, target);
755         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
756
757         for (i = disks; i--; )
758                 if (i != target)
759                         xor_srcs[count++] = sh->dev[i].page;
760
761         atomic_inc(&sh->count);
762
763         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
764                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
765         if (unlikely(count == 1))
766                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
767         else
768                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
769
770         return tx;
771 }
772
773 /* set_syndrome_sources - populate source buffers for gen_syndrome
774  * @srcs - (struct page *) array of size sh->disks
775  * @sh - stripe_head to parse
776  *
777  * Populates srcs in proper layout order for the stripe and returns the
778  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
779  * destination buffer is recorded in srcs[count] and the Q destination
780  * is recorded in srcs[count+1]].
781  */
782 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
783 {
784         int disks = sh->disks;
785         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
786         int d0_idx = raid6_d0(sh);
787         int count;
788         int i;
789
790         for (i = 0; i < disks; i++)
791                 srcs[i] = NULL;
792
793         count = 0;
794         i = d0_idx;
795         do {
796                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
797
798                 srcs[slot] = sh->dev[i].page;
799                 i = raid6_next_disk(i, disks);
800         } while (i != d0_idx);
801
802         return syndrome_disks;
803 }
804
805 static struct dma_async_tx_descriptor *
806 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
807 {
808         int disks = sh->disks;
809         struct page **blocks = percpu->scribble;
810         int target;
811         int qd_idx = sh->qd_idx;
812         struct dma_async_tx_descriptor *tx;
813         struct async_submit_ctl submit;
814         struct r5dev *tgt;
815         struct page *dest;
816         int i;
817         int count;
818
819         if (sh->ops.target < 0)
820                 target = sh->ops.target2;
821         else if (sh->ops.target2 < 0)
822                 target = sh->ops.target;
823         else
824                 /* we should only have one valid target */
825                 BUG();
826         BUG_ON(target < 0);
827         pr_debug("%s: stripe %llu block: %d\n",
828                 __func__, (unsigned long long)sh->sector, target);
829
830         tgt = &sh->dev[target];
831         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
832         dest = tgt->page;
833
834         atomic_inc(&sh->count);
835
836         if (target == qd_idx) {
837                 count = set_syndrome_sources(blocks, sh);
838                 blocks[count] = NULL; /* regenerating p is not necessary */
839                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
840                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
841                                   ops_complete_compute, sh,
842                                   to_addr_conv(sh, percpu));
843                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
844         } else {
845                 /* Compute any data- or p-drive using XOR */
846                 count = 0;
847                 for (i = disks; i-- ; ) {
848                         if (i == target || i == qd_idx)
849                                 continue;
850                         blocks[count++] = sh->dev[i].page;
851                 }
852
853                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
854                                   NULL, ops_complete_compute, sh,
855                                   to_addr_conv(sh, percpu));
856                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
857         }
858
859         return tx;
860 }
861
862 static struct dma_async_tx_descriptor *
863 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
864 {
865         int i, count, disks = sh->disks;
866         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
867         int d0_idx = raid6_d0(sh);
868         int faila = -1, failb = -1;
869         int target = sh->ops.target;
870         int target2 = sh->ops.target2;
871         struct r5dev *tgt = &sh->dev[target];
872         struct r5dev *tgt2 = &sh->dev[target2];
873         struct dma_async_tx_descriptor *tx;
874         struct page **blocks = percpu->scribble;
875         struct async_submit_ctl submit;
876
877         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
878                  __func__, (unsigned long long)sh->sector, target, target2);
879         BUG_ON(target < 0 || target2 < 0);
880         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
881         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
882
883         /* we need to open-code set_syndrome_sources to handle the
884          * slot number conversion for 'faila' and 'failb'
885          */
886         for (i = 0; i < disks ; i++)
887                 blocks[i] = NULL;
888         count = 0;
889         i = d0_idx;
890         do {
891                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
892
893                 blocks[slot] = sh->dev[i].page;
894
895                 if (i == target)
896                         faila = slot;
897                 if (i == target2)
898                         failb = slot;
899                 i = raid6_next_disk(i, disks);
900         } while (i != d0_idx);
901
902         BUG_ON(faila == failb);
903         if (failb < faila)
904                 swap(faila, failb);
905         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
906                  __func__, (unsigned long long)sh->sector, faila, failb);
907
908         atomic_inc(&sh->count);
909
910         if (failb == syndrome_disks+1) {
911                 /* Q disk is one of the missing disks */
912                 if (faila == syndrome_disks) {
913                         /* Missing P+Q, just recompute */
914                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
915                                           ops_complete_compute, sh,
916                                           to_addr_conv(sh, percpu));
917                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
918                                                   STRIPE_SIZE, &submit);
919                 } else {
920                         struct page *dest;
921                         int data_target;
922                         int qd_idx = sh->qd_idx;
923
924                         /* Missing D+Q: recompute D from P, then recompute Q */
925                         if (target == qd_idx)
926                                 data_target = target2;
927                         else
928                                 data_target = target;
929
930                         count = 0;
931                         for (i = disks; i-- ; ) {
932                                 if (i == data_target || i == qd_idx)
933                                         continue;
934                                 blocks[count++] = sh->dev[i].page;
935                         }
936                         dest = sh->dev[data_target].page;
937                         init_async_submit(&submit,
938                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
939                                           NULL, NULL, NULL,
940                                           to_addr_conv(sh, percpu));
941                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
942                                        &submit);
943
944                         count = set_syndrome_sources(blocks, sh);
945                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
946                                           ops_complete_compute, sh,
947                                           to_addr_conv(sh, percpu));
948                         return async_gen_syndrome(blocks, 0, count+2,
949                                                   STRIPE_SIZE, &submit);
950                 }
951         } else {
952                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
953                                   ops_complete_compute, sh,
954                                   to_addr_conv(sh, percpu));
955                 if (failb == syndrome_disks) {
956                         /* We're missing D+P. */
957                         return async_raid6_datap_recov(syndrome_disks+2,
958                                                        STRIPE_SIZE, faila,
959                                                        blocks, &submit);
960                 } else {
961                         /* We're missing D+D. */
962                         return async_raid6_2data_recov(syndrome_disks+2,
963                                                        STRIPE_SIZE, faila, failb,
964                                                        blocks, &submit);
965                 }
966         }
967 }
968
969
970 static void ops_complete_prexor(void *stripe_head_ref)
971 {
972         struct stripe_head *sh = stripe_head_ref;
973
974         pr_debug("%s: stripe %llu\n", __func__,
975                 (unsigned long long)sh->sector);
976 }
977
978 static struct dma_async_tx_descriptor *
979 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
980                struct dma_async_tx_descriptor *tx)
981 {
982         int disks = sh->disks;
983         struct page **xor_srcs = percpu->scribble;
984         int count = 0, pd_idx = sh->pd_idx, i;
985         struct async_submit_ctl submit;
986
987         /* existing parity data subtracted */
988         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
989
990         pr_debug("%s: stripe %llu\n", __func__,
991                 (unsigned long long)sh->sector);
992
993         for (i = disks; i--; ) {
994                 struct r5dev *dev = &sh->dev[i];
995                 /* Only process blocks that are known to be uptodate */
996                 if (test_bit(R5_Wantdrain, &dev->flags))
997                         xor_srcs[count++] = dev->page;
998         }
999
1000         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1001                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1002         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1003
1004         return tx;
1005 }
1006
1007 static struct dma_async_tx_descriptor *
1008 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1009 {
1010         int disks = sh->disks;
1011         int i;
1012
1013         pr_debug("%s: stripe %llu\n", __func__,
1014                 (unsigned long long)sh->sector);
1015
1016         for (i = disks; i--; ) {
1017                 struct r5dev *dev = &sh->dev[i];
1018                 struct bio *chosen;
1019
1020                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1021                         struct bio *wbi;
1022
1023                         spin_lock_irq(&sh->raid_conf->device_lock);
1024                         chosen = dev->towrite;
1025                         dev->towrite = NULL;
1026                         BUG_ON(dev->written);
1027                         wbi = dev->written = chosen;
1028                         spin_unlock_irq(&sh->raid_conf->device_lock);
1029
1030                         while (wbi && wbi->bi_sector <
1031                                 dev->sector + STRIPE_SECTORS) {
1032                                 if (wbi->bi_rw & REQ_FUA)
1033                                         set_bit(R5_WantFUA, &dev->flags);
1034                                 tx = async_copy_data(1, wbi, dev->page,
1035                                         dev->sector, tx);
1036                                 wbi = r5_next_bio(wbi, dev->sector);
1037                         }
1038                 }
1039         }
1040
1041         return tx;
1042 }
1043
1044 static void ops_complete_reconstruct(void *stripe_head_ref)
1045 {
1046         struct stripe_head *sh = stripe_head_ref;
1047         int disks = sh->disks;
1048         int pd_idx = sh->pd_idx;
1049         int qd_idx = sh->qd_idx;
1050         int i;
1051         bool fua = false;
1052
1053         pr_debug("%s: stripe %llu\n", __func__,
1054                 (unsigned long long)sh->sector);
1055
1056         for (i = disks; i--; )
1057                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1058
1059         for (i = disks; i--; ) {
1060                 struct r5dev *dev = &sh->dev[i];
1061
1062                 if (dev->written || i == pd_idx || i == qd_idx) {
1063                         set_bit(R5_UPTODATE, &dev->flags);
1064                         if (fua)
1065                                 set_bit(R5_WantFUA, &dev->flags);
1066                 }
1067         }
1068
1069         if (sh->reconstruct_state == reconstruct_state_drain_run)
1070                 sh->reconstruct_state = reconstruct_state_drain_result;
1071         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1072                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1073         else {
1074                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1075                 sh->reconstruct_state = reconstruct_state_result;
1076         }
1077
1078         set_bit(STRIPE_HANDLE, &sh->state);
1079         release_stripe(sh);
1080 }
1081
1082 static void
1083 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1084                      struct dma_async_tx_descriptor *tx)
1085 {
1086         int disks = sh->disks;
1087         struct page **xor_srcs = percpu->scribble;
1088         struct async_submit_ctl submit;
1089         int count = 0, pd_idx = sh->pd_idx, i;
1090         struct page *xor_dest;
1091         int prexor = 0;
1092         unsigned long flags;
1093
1094         pr_debug("%s: stripe %llu\n", __func__,
1095                 (unsigned long long)sh->sector);
1096
1097         /* check if prexor is active which means only process blocks
1098          * that are part of a read-modify-write (written)
1099          */
1100         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1101                 prexor = 1;
1102                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1103                 for (i = disks; i--; ) {
1104                         struct r5dev *dev = &sh->dev[i];
1105                         if (dev->written)
1106                                 xor_srcs[count++] = dev->page;
1107                 }
1108         } else {
1109                 xor_dest = sh->dev[pd_idx].page;
1110                 for (i = disks; i--; ) {
1111                         struct r5dev *dev = &sh->dev[i];
1112                         if (i != pd_idx)
1113                                 xor_srcs[count++] = dev->page;
1114                 }
1115         }
1116
1117         /* 1/ if we prexor'd then the dest is reused as a source
1118          * 2/ if we did not prexor then we are redoing the parity
1119          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1120          * for the synchronous xor case
1121          */
1122         flags = ASYNC_TX_ACK |
1123                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1124
1125         atomic_inc(&sh->count);
1126
1127         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1128                           to_addr_conv(sh, percpu));
1129         if (unlikely(count == 1))
1130                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1131         else
1132                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1133 }
1134
1135 static void
1136 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1137                      struct dma_async_tx_descriptor *tx)
1138 {
1139         struct async_submit_ctl submit;
1140         struct page **blocks = percpu->scribble;
1141         int count;
1142
1143         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1144
1145         count = set_syndrome_sources(blocks, sh);
1146
1147         atomic_inc(&sh->count);
1148
1149         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1150                           sh, to_addr_conv(sh, percpu));
1151         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1152 }
1153
1154 static void ops_complete_check(void *stripe_head_ref)
1155 {
1156         struct stripe_head *sh = stripe_head_ref;
1157
1158         pr_debug("%s: stripe %llu\n", __func__,
1159                 (unsigned long long)sh->sector);
1160
1161         sh->check_state = check_state_check_result;
1162         set_bit(STRIPE_HANDLE, &sh->state);
1163         release_stripe(sh);
1164 }
1165
1166 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1167 {
1168         int disks = sh->disks;
1169         int pd_idx = sh->pd_idx;
1170         int qd_idx = sh->qd_idx;
1171         struct page *xor_dest;
1172         struct page **xor_srcs = percpu->scribble;
1173         struct dma_async_tx_descriptor *tx;
1174         struct async_submit_ctl submit;
1175         int count;
1176         int i;
1177
1178         pr_debug("%s: stripe %llu\n", __func__,
1179                 (unsigned long long)sh->sector);
1180
1181         count = 0;
1182         xor_dest = sh->dev[pd_idx].page;
1183         xor_srcs[count++] = xor_dest;
1184         for (i = disks; i--; ) {
1185                 if (i == pd_idx || i == qd_idx)
1186                         continue;
1187                 xor_srcs[count++] = sh->dev[i].page;
1188         }
1189
1190         init_async_submit(&submit, 0, NULL, NULL, NULL,
1191                           to_addr_conv(sh, percpu));
1192         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1193                            &sh->ops.zero_sum_result, &submit);
1194
1195         atomic_inc(&sh->count);
1196         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1197         tx = async_trigger_callback(&submit);
1198 }
1199
1200 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1201 {
1202         struct page **srcs = percpu->scribble;
1203         struct async_submit_ctl submit;
1204         int count;
1205
1206         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1207                 (unsigned long long)sh->sector, checkp);
1208
1209         count = set_syndrome_sources(srcs, sh);
1210         if (!checkp)
1211                 srcs[count] = NULL;
1212
1213         atomic_inc(&sh->count);
1214         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1215                           sh, to_addr_conv(sh, percpu));
1216         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1217                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1218 }
1219
1220 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1221 {
1222         int overlap_clear = 0, i, disks = sh->disks;
1223         struct dma_async_tx_descriptor *tx = NULL;
1224         raid5_conf_t *conf = sh->raid_conf;
1225         int level = conf->level;
1226         struct raid5_percpu *percpu;
1227         unsigned long cpu;
1228
1229         cpu = get_cpu();
1230         percpu = per_cpu_ptr(conf->percpu, cpu);
1231         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1232                 ops_run_biofill(sh);
1233                 overlap_clear++;
1234         }
1235
1236         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1237                 if (level < 6)
1238                         tx = ops_run_compute5(sh, percpu);
1239                 else {
1240                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1241                                 tx = ops_run_compute6_1(sh, percpu);
1242                         else
1243                                 tx = ops_run_compute6_2(sh, percpu);
1244                 }
1245                 /* terminate the chain if reconstruct is not set to be run */
1246                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1247                         async_tx_ack(tx);
1248         }
1249
1250         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1251                 tx = ops_run_prexor(sh, percpu, tx);
1252
1253         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1254                 tx = ops_run_biodrain(sh, tx);
1255                 overlap_clear++;
1256         }
1257
1258         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1259                 if (level < 6)
1260                         ops_run_reconstruct5(sh, percpu, tx);
1261                 else
1262                         ops_run_reconstruct6(sh, percpu, tx);
1263         }
1264
1265         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1266                 if (sh->check_state == check_state_run)
1267                         ops_run_check_p(sh, percpu);
1268                 else if (sh->check_state == check_state_run_q)
1269                         ops_run_check_pq(sh, percpu, 0);
1270                 else if (sh->check_state == check_state_run_pq)
1271                         ops_run_check_pq(sh, percpu, 1);
1272                 else
1273                         BUG();
1274         }
1275
1276         if (overlap_clear)
1277                 for (i = disks; i--; ) {
1278                         struct r5dev *dev = &sh->dev[i];
1279                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1280                                 wake_up(&sh->raid_conf->wait_for_overlap);
1281                 }
1282         put_cpu();
1283 }
1284
1285 #ifdef CONFIG_MULTICORE_RAID456
1286 static void async_run_ops(void *param, async_cookie_t cookie)
1287 {
1288         struct stripe_head *sh = param;
1289         unsigned long ops_request = sh->ops.request;
1290
1291         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1292         wake_up(&sh->ops.wait_for_ops);
1293
1294         __raid_run_ops(sh, ops_request);
1295         release_stripe(sh);
1296 }
1297
1298 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1299 {
1300         /* since handle_stripe can be called outside of raid5d context
1301          * we need to ensure sh->ops.request is de-staged before another
1302          * request arrives
1303          */
1304         wait_event(sh->ops.wait_for_ops,
1305                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1306         sh->ops.request = ops_request;
1307
1308         atomic_inc(&sh->count);
1309         async_schedule(async_run_ops, sh);
1310 }
1311 #else
1312 #define raid_run_ops __raid_run_ops
1313 #endif
1314
1315 static int grow_one_stripe(raid5_conf_t *conf)
1316 {
1317         struct stripe_head *sh;
1318         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1319         if (!sh)
1320                 return 0;
1321
1322         sh->raid_conf = conf;
1323         #ifdef CONFIG_MULTICORE_RAID456
1324         init_waitqueue_head(&sh->ops.wait_for_ops);
1325         #endif
1326
1327         if (grow_buffers(sh)) {
1328                 shrink_buffers(sh);
1329                 kmem_cache_free(conf->slab_cache, sh);
1330                 return 0;
1331         }
1332         /* we just created an active stripe so... */
1333         atomic_set(&sh->count, 1);
1334         atomic_inc(&conf->active_stripes);
1335         INIT_LIST_HEAD(&sh->lru);
1336         release_stripe(sh);
1337         return 1;
1338 }
1339
1340 static int grow_stripes(raid5_conf_t *conf, int num)
1341 {
1342         struct kmem_cache *sc;
1343         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1344
1345         if (conf->mddev->gendisk)
1346                 sprintf(conf->cache_name[0],
1347                         "raid%d-%s", conf->level, mdname(conf->mddev));
1348         else
1349                 sprintf(conf->cache_name[0],
1350                         "raid%d-%p", conf->level, conf->mddev);
1351         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1352
1353         conf->active_name = 0;
1354         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1355                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1356                                0, 0, NULL);
1357         if (!sc)
1358                 return 1;
1359         conf->slab_cache = sc;
1360         conf->pool_size = devs;
1361         while (num--)
1362                 if (!grow_one_stripe(conf))
1363                         return 1;
1364         return 0;
1365 }
1366
1367 /**
1368  * scribble_len - return the required size of the scribble region
1369  * @num - total number of disks in the array
1370  *
1371  * The size must be enough to contain:
1372  * 1/ a struct page pointer for each device in the array +2
1373  * 2/ room to convert each entry in (1) to its corresponding dma
1374  *    (dma_map_page()) or page (page_address()) address.
1375  *
1376  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1377  * calculate over all devices (not just the data blocks), using zeros in place
1378  * of the P and Q blocks.
1379  */
1380 static size_t scribble_len(int num)
1381 {
1382         size_t len;
1383
1384         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1385
1386         return len;
1387 }
1388
1389 static int resize_stripes(raid5_conf_t *conf, int newsize)
1390 {
1391         /* Make all the stripes able to hold 'newsize' devices.
1392          * New slots in each stripe get 'page' set to a new page.
1393          *
1394          * This happens in stages:
1395          * 1/ create a new kmem_cache and allocate the required number of
1396          *    stripe_heads.
1397          * 2/ gather all the old stripe_heads and tranfer the pages across
1398          *    to the new stripe_heads.  This will have the side effect of
1399          *    freezing the array as once all stripe_heads have been collected,
1400          *    no IO will be possible.  Old stripe heads are freed once their
1401          *    pages have been transferred over, and the old kmem_cache is
1402          *    freed when all stripes are done.
1403          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1404          *    we simple return a failre status - no need to clean anything up.
1405          * 4/ allocate new pages for the new slots in the new stripe_heads.
1406          *    If this fails, we don't bother trying the shrink the
1407          *    stripe_heads down again, we just leave them as they are.
1408          *    As each stripe_head is processed the new one is released into
1409          *    active service.
1410          *
1411          * Once step2 is started, we cannot afford to wait for a write,
1412          * so we use GFP_NOIO allocations.
1413          */
1414         struct stripe_head *osh, *nsh;
1415         LIST_HEAD(newstripes);
1416         struct disk_info *ndisks;
1417         unsigned long cpu;
1418         int err;
1419         struct kmem_cache *sc;
1420         int i;
1421
1422         if (newsize <= conf->pool_size)
1423                 return 0; /* never bother to shrink */
1424
1425         err = md_allow_write(conf->mddev);
1426         if (err)
1427                 return err;
1428
1429         /* Step 1 */
1430         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1431                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1432                                0, 0, NULL);
1433         if (!sc)
1434                 return -ENOMEM;
1435
1436         for (i = conf->max_nr_stripes; i; i--) {
1437                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1438                 if (!nsh)
1439                         break;
1440
1441                 nsh->raid_conf = conf;
1442                 #ifdef CONFIG_MULTICORE_RAID456
1443                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1444                 #endif
1445
1446                 list_add(&nsh->lru, &newstripes);
1447         }
1448         if (i) {
1449                 /* didn't get enough, give up */
1450                 while (!list_empty(&newstripes)) {
1451                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1452                         list_del(&nsh->lru);
1453                         kmem_cache_free(sc, nsh);
1454                 }
1455                 kmem_cache_destroy(sc);
1456                 return -ENOMEM;
1457         }
1458         /* Step 2 - Must use GFP_NOIO now.
1459          * OK, we have enough stripes, start collecting inactive
1460          * stripes and copying them over
1461          */
1462         list_for_each_entry(nsh, &newstripes, lru) {
1463                 spin_lock_irq(&conf->device_lock);
1464                 wait_event_lock_irq(conf->wait_for_stripe,
1465                                     !list_empty(&conf->inactive_list),
1466                                     conf->device_lock,
1467                                     );
1468                 osh = get_free_stripe(conf);
1469                 spin_unlock_irq(&conf->device_lock);
1470                 atomic_set(&nsh->count, 1);
1471                 for(i=0; i<conf->pool_size; i++)
1472                         nsh->dev[i].page = osh->dev[i].page;
1473                 for( ; i<newsize; i++)
1474                         nsh->dev[i].page = NULL;
1475                 kmem_cache_free(conf->slab_cache, osh);
1476         }
1477         kmem_cache_destroy(conf->slab_cache);
1478
1479         /* Step 3.
1480          * At this point, we are holding all the stripes so the array
1481          * is completely stalled, so now is a good time to resize
1482          * conf->disks and the scribble region
1483          */
1484         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1485         if (ndisks) {
1486                 for (i=0; i<conf->raid_disks; i++)
1487                         ndisks[i] = conf->disks[i];
1488                 kfree(conf->disks);
1489                 conf->disks = ndisks;
1490         } else
1491                 err = -ENOMEM;
1492
1493         get_online_cpus();
1494         conf->scribble_len = scribble_len(newsize);
1495         for_each_present_cpu(cpu) {
1496                 struct raid5_percpu *percpu;
1497                 void *scribble;
1498
1499                 percpu = per_cpu_ptr(conf->percpu, cpu);
1500                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1501
1502                 if (scribble) {
1503                         kfree(percpu->scribble);
1504                         percpu->scribble = scribble;
1505                 } else {
1506                         err = -ENOMEM;
1507                         break;
1508                 }
1509         }
1510         put_online_cpus();
1511
1512         /* Step 4, return new stripes to service */
1513         while(!list_empty(&newstripes)) {
1514                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1515                 list_del_init(&nsh->lru);
1516
1517                 for (i=conf->raid_disks; i < newsize; i++)
1518                         if (nsh->dev[i].page == NULL) {
1519                                 struct page *p = alloc_page(GFP_NOIO);
1520                                 nsh->dev[i].page = p;
1521                                 if (!p)
1522                                         err = -ENOMEM;
1523                         }
1524                 release_stripe(nsh);
1525         }
1526         /* critical section pass, GFP_NOIO no longer needed */
1527
1528         conf->slab_cache = sc;
1529         conf->active_name = 1-conf->active_name;
1530         conf->pool_size = newsize;
1531         return err;
1532 }
1533
1534 static int drop_one_stripe(raid5_conf_t *conf)
1535 {
1536         struct stripe_head *sh;
1537
1538         spin_lock_irq(&conf->device_lock);
1539         sh = get_free_stripe(conf);
1540         spin_unlock_irq(&conf->device_lock);
1541         if (!sh)
1542                 return 0;
1543         BUG_ON(atomic_read(&sh->count));
1544         shrink_buffers(sh);
1545         kmem_cache_free(conf->slab_cache, sh);
1546         atomic_dec(&conf->active_stripes);
1547         return 1;
1548 }
1549
1550 static void shrink_stripes(raid5_conf_t *conf)
1551 {
1552         while (drop_one_stripe(conf))
1553                 ;
1554
1555         if (conf->slab_cache)
1556                 kmem_cache_destroy(conf->slab_cache);
1557         conf->slab_cache = NULL;
1558 }
1559
1560 static void raid5_end_read_request(struct bio * bi, int error)
1561 {
1562         struct stripe_head *sh = bi->bi_private;
1563         raid5_conf_t *conf = sh->raid_conf;
1564         int disks = sh->disks, i;
1565         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1566         char b[BDEVNAME_SIZE];
1567         mdk_rdev_t *rdev;
1568
1569
1570         for (i=0 ; i<disks; i++)
1571                 if (bi == &sh->dev[i].req)
1572                         break;
1573
1574         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1575                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1576                 uptodate);
1577         if (i == disks) {
1578                 BUG();
1579                 return;
1580         }
1581
1582         if (uptodate) {
1583                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1584                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1585                         rdev = conf->disks[i].rdev;
1586                         printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1587                                   " (%lu sectors at %llu on %s)\n",
1588                                   mdname(conf->mddev), STRIPE_SECTORS,
1589                                   (unsigned long long)(sh->sector
1590                                                        + rdev->data_offset),
1591                                   bdevname(rdev->bdev, b));
1592                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1593                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1594                 }
1595                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1596                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1597         } else {
1598                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1599                 int retry = 0;
1600                 rdev = conf->disks[i].rdev;
1601
1602                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1603                 atomic_inc(&rdev->read_errors);
1604                 if (conf->mddev->degraded >= conf->max_degraded)
1605                         printk_rl(KERN_WARNING
1606                                   "md/raid:%s: read error not correctable "
1607                                   "(sector %llu on %s).\n",
1608                                   mdname(conf->mddev),
1609                                   (unsigned long long)(sh->sector
1610                                                        + rdev->data_offset),
1611                                   bdn);
1612                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1613                         /* Oh, no!!! */
1614                         printk_rl(KERN_WARNING
1615                                   "md/raid:%s: read error NOT corrected!! "
1616                                   "(sector %llu on %s).\n",
1617                                   mdname(conf->mddev),
1618                                   (unsigned long long)(sh->sector
1619                                                        + rdev->data_offset),
1620                                   bdn);
1621                 else if (atomic_read(&rdev->read_errors)
1622                          > conf->max_nr_stripes)
1623                         printk(KERN_WARNING
1624                                "md/raid:%s: Too many read errors, failing device %s.\n",
1625                                mdname(conf->mddev), bdn);
1626                 else
1627                         retry = 1;
1628                 if (retry)
1629                         set_bit(R5_ReadError, &sh->dev[i].flags);
1630                 else {
1631                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1632                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1633                         md_error(conf->mddev, rdev);
1634                 }
1635         }
1636         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1637         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1638         set_bit(STRIPE_HANDLE, &sh->state);
1639         release_stripe(sh);
1640 }
1641
1642 static void raid5_end_write_request(struct bio *bi, int error)
1643 {
1644         struct stripe_head *sh = bi->bi_private;
1645         raid5_conf_t *conf = sh->raid_conf;
1646         int disks = sh->disks, i;
1647         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1648
1649         for (i=0 ; i<disks; i++)
1650                 if (bi == &sh->dev[i].req)
1651                         break;
1652
1653         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1654                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1655                 uptodate);
1656         if (i == disks) {
1657                 BUG();
1658                 return;
1659         }
1660
1661         if (!uptodate)
1662                 md_error(conf->mddev, conf->disks[i].rdev);
1663
1664         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1665         
1666         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1667         set_bit(STRIPE_HANDLE, &sh->state);
1668         release_stripe(sh);
1669 }
1670
1671
1672 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1673         
1674 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1675 {
1676         struct r5dev *dev = &sh->dev[i];
1677
1678         bio_init(&dev->req);
1679         dev->req.bi_io_vec = &dev->vec;
1680         dev->req.bi_vcnt++;
1681         dev->req.bi_max_vecs++;
1682         dev->vec.bv_page = dev->page;
1683         dev->vec.bv_len = STRIPE_SIZE;
1684         dev->vec.bv_offset = 0;
1685
1686         dev->req.bi_sector = sh->sector;
1687         dev->req.bi_private = sh;
1688
1689         dev->flags = 0;
1690         dev->sector = compute_blocknr(sh, i, previous);
1691 }
1692
1693 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1694 {
1695         char b[BDEVNAME_SIZE];
1696         raid5_conf_t *conf = mddev->private;
1697         pr_debug("raid456: error called\n");
1698
1699         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1700                 unsigned long flags;
1701                 spin_lock_irqsave(&conf->device_lock, flags);
1702                 mddev->degraded++;
1703                 spin_unlock_irqrestore(&conf->device_lock, flags);
1704                 /*
1705                  * if recovery was running, make sure it aborts.
1706                  */
1707                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1708         }
1709         set_bit(Faulty, &rdev->flags);
1710         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1711         printk(KERN_ALERT
1712                "md/raid:%s: Disk failure on %s, disabling device.\n"
1713                "md/raid:%s: Operation continuing on %d devices.\n",
1714                mdname(mddev),
1715                bdevname(rdev->bdev, b),
1716                mdname(mddev),
1717                conf->raid_disks - mddev->degraded);
1718 }
1719
1720 /*
1721  * Input: a 'big' sector number,
1722  * Output: index of the data and parity disk, and the sector # in them.
1723  */
1724 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1725                                      int previous, int *dd_idx,
1726                                      struct stripe_head *sh)
1727 {
1728         sector_t stripe, stripe2;
1729         sector_t chunk_number;
1730         unsigned int chunk_offset;
1731         int pd_idx, qd_idx;
1732         int ddf_layout = 0;
1733         sector_t new_sector;
1734         int algorithm = previous ? conf->prev_algo
1735                                  : conf->algorithm;
1736         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1737                                          : conf->chunk_sectors;
1738         int raid_disks = previous ? conf->previous_raid_disks
1739                                   : conf->raid_disks;
1740         int data_disks = raid_disks - conf->max_degraded;
1741
1742         /* First compute the information on this sector */
1743
1744         /*
1745          * Compute the chunk number and the sector offset inside the chunk
1746          */
1747         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1748         chunk_number = r_sector;
1749
1750         /*
1751          * Compute the stripe number
1752          */
1753         stripe = chunk_number;
1754         *dd_idx = sector_div(stripe, data_disks);
1755         stripe2 = stripe;
1756         /*
1757          * Select the parity disk based on the user selected algorithm.
1758          */
1759         pd_idx = qd_idx = ~0;
1760         switch(conf->level) {
1761         case 4:
1762                 pd_idx = data_disks;
1763                 break;
1764         case 5:
1765                 switch (algorithm) {
1766                 case ALGORITHM_LEFT_ASYMMETRIC:
1767                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1768                         if (*dd_idx >= pd_idx)
1769                                 (*dd_idx)++;
1770                         break;
1771                 case ALGORITHM_RIGHT_ASYMMETRIC:
1772                         pd_idx = sector_div(stripe2, raid_disks);
1773                         if (*dd_idx >= pd_idx)
1774                                 (*dd_idx)++;
1775                         break;
1776                 case ALGORITHM_LEFT_SYMMETRIC:
1777                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1778                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1779                         break;
1780                 case ALGORITHM_RIGHT_SYMMETRIC:
1781                         pd_idx = sector_div(stripe2, raid_disks);
1782                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1783                         break;
1784                 case ALGORITHM_PARITY_0:
1785                         pd_idx = 0;
1786                         (*dd_idx)++;
1787                         break;
1788                 case ALGORITHM_PARITY_N:
1789                         pd_idx = data_disks;
1790                         break;
1791                 default:
1792                         BUG();
1793                 }
1794                 break;
1795         case 6:
1796
1797                 switch (algorithm) {
1798                 case ALGORITHM_LEFT_ASYMMETRIC:
1799                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1800                         qd_idx = pd_idx + 1;
1801                         if (pd_idx == raid_disks-1) {
1802                                 (*dd_idx)++;    /* Q D D D P */
1803                                 qd_idx = 0;
1804                         } else if (*dd_idx >= pd_idx)
1805                                 (*dd_idx) += 2; /* D D P Q D */
1806                         break;
1807                 case ALGORITHM_RIGHT_ASYMMETRIC:
1808                         pd_idx = sector_div(stripe2, raid_disks);
1809                         qd_idx = pd_idx + 1;
1810                         if (pd_idx == raid_disks-1) {
1811                                 (*dd_idx)++;    /* Q D D D P */
1812                                 qd_idx = 0;
1813                         } else if (*dd_idx >= pd_idx)
1814                                 (*dd_idx) += 2; /* D D P Q D */
1815                         break;
1816                 case ALGORITHM_LEFT_SYMMETRIC:
1817                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1818                         qd_idx = (pd_idx + 1) % raid_disks;
1819                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1820                         break;
1821                 case ALGORITHM_RIGHT_SYMMETRIC:
1822                         pd_idx = sector_div(stripe2, raid_disks);
1823                         qd_idx = (pd_idx + 1) % raid_disks;
1824                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1825                         break;
1826
1827                 case ALGORITHM_PARITY_0:
1828                         pd_idx = 0;
1829                         qd_idx = 1;
1830                         (*dd_idx) += 2;
1831                         break;
1832                 case ALGORITHM_PARITY_N:
1833                         pd_idx = data_disks;
1834                         qd_idx = data_disks + 1;
1835                         break;
1836
1837                 case ALGORITHM_ROTATING_ZERO_RESTART:
1838                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1839                          * of blocks for computing Q is different.
1840                          */
1841                         pd_idx = sector_div(stripe2, raid_disks);
1842                         qd_idx = pd_idx + 1;
1843                         if (pd_idx == raid_disks-1) {
1844                                 (*dd_idx)++;    /* Q D D D P */
1845                                 qd_idx = 0;
1846                         } else if (*dd_idx >= pd_idx)
1847                                 (*dd_idx) += 2; /* D D P Q D */
1848                         ddf_layout = 1;
1849                         break;
1850
1851                 case ALGORITHM_ROTATING_N_RESTART:
1852                         /* Same a left_asymmetric, by first stripe is
1853                          * D D D P Q  rather than
1854                          * Q D D D P
1855                          */
1856                         stripe2 += 1;
1857                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1858                         qd_idx = pd_idx + 1;
1859                         if (pd_idx == raid_disks-1) {
1860                                 (*dd_idx)++;    /* Q D D D P */
1861                                 qd_idx = 0;
1862                         } else if (*dd_idx >= pd_idx)
1863                                 (*dd_idx) += 2; /* D D P Q D */
1864                         ddf_layout = 1;
1865                         break;
1866
1867                 case ALGORITHM_ROTATING_N_CONTINUE:
1868                         /* Same as left_symmetric but Q is before P */
1869                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1870                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1871                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1872                         ddf_layout = 1;
1873                         break;
1874
1875                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1876                         /* RAID5 left_asymmetric, with Q on last device */
1877                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1878                         if (*dd_idx >= pd_idx)
1879                                 (*dd_idx)++;
1880                         qd_idx = raid_disks - 1;
1881                         break;
1882
1883                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1884                         pd_idx = sector_div(stripe2, raid_disks-1);
1885                         if (*dd_idx >= pd_idx)
1886                                 (*dd_idx)++;
1887                         qd_idx = raid_disks - 1;
1888                         break;
1889
1890                 case ALGORITHM_LEFT_SYMMETRIC_6:
1891                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1892                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1893                         qd_idx = raid_disks - 1;
1894                         break;
1895
1896                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1897                         pd_idx = sector_div(stripe2, raid_disks-1);
1898                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1899                         qd_idx = raid_disks - 1;
1900                         break;
1901
1902                 case ALGORITHM_PARITY_0_6:
1903                         pd_idx = 0;
1904                         (*dd_idx)++;
1905                         qd_idx = raid_disks - 1;
1906                         break;
1907
1908                 default:
1909                         BUG();
1910                 }
1911                 break;
1912         }
1913
1914         if (sh) {
1915                 sh->pd_idx = pd_idx;
1916                 sh->qd_idx = qd_idx;
1917                 sh->ddf_layout = ddf_layout;
1918         }
1919         /*
1920          * Finally, compute the new sector number
1921          */
1922         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1923         return new_sector;
1924 }
1925
1926
1927 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1928 {
1929         raid5_conf_t *conf = sh->raid_conf;
1930         int raid_disks = sh->disks;
1931         int data_disks = raid_disks - conf->max_degraded;
1932         sector_t new_sector = sh->sector, check;
1933         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1934                                          : conf->chunk_sectors;
1935         int algorithm = previous ? conf->prev_algo
1936                                  : conf->algorithm;
1937         sector_t stripe;
1938         int chunk_offset;
1939         sector_t chunk_number;
1940         int dummy1, dd_idx = i;
1941         sector_t r_sector;
1942         struct stripe_head sh2;
1943
1944
1945         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1946         stripe = new_sector;
1947
1948         if (i == sh->pd_idx)
1949                 return 0;
1950         switch(conf->level) {
1951         case 4: break;
1952         case 5:
1953                 switch (algorithm) {
1954                 case ALGORITHM_LEFT_ASYMMETRIC:
1955                 case ALGORITHM_RIGHT_ASYMMETRIC:
1956                         if (i > sh->pd_idx)
1957                                 i--;
1958                         break;
1959                 case ALGORITHM_LEFT_SYMMETRIC:
1960                 case ALGORITHM_RIGHT_SYMMETRIC:
1961                         if (i < sh->pd_idx)
1962                                 i += raid_disks;
1963                         i -= (sh->pd_idx + 1);
1964                         break;
1965                 case ALGORITHM_PARITY_0:
1966                         i -= 1;
1967                         break;
1968                 case ALGORITHM_PARITY_N:
1969                         break;
1970                 default:
1971                         BUG();
1972                 }
1973                 break;
1974         case 6:
1975                 if (i == sh->qd_idx)
1976                         return 0; /* It is the Q disk */
1977                 switch (algorithm) {
1978                 case ALGORITHM_LEFT_ASYMMETRIC:
1979                 case ALGORITHM_RIGHT_ASYMMETRIC:
1980                 case ALGORITHM_ROTATING_ZERO_RESTART:
1981                 case ALGORITHM_ROTATING_N_RESTART:
1982                         if (sh->pd_idx == raid_disks-1)
1983                                 i--;    /* Q D D D P */
1984                         else if (i > sh->pd_idx)
1985                                 i -= 2; /* D D P Q D */
1986                         break;
1987                 case ALGORITHM_LEFT_SYMMETRIC:
1988                 case ALGORITHM_RIGHT_SYMMETRIC:
1989                         if (sh->pd_idx == raid_disks-1)
1990                                 i--; /* Q D D D P */
1991                         else {
1992                                 /* D D P Q D */
1993                                 if (i < sh->pd_idx)
1994                                         i += raid_disks;
1995                                 i -= (sh->pd_idx + 2);
1996                         }
1997                         break;
1998                 case ALGORITHM_PARITY_0:
1999                         i -= 2;
2000                         break;
2001                 case ALGORITHM_PARITY_N:
2002                         break;
2003                 case ALGORITHM_ROTATING_N_CONTINUE:
2004                         /* Like left_symmetric, but P is before Q */
2005                         if (sh->pd_idx == 0)
2006                                 i--;    /* P D D D Q */
2007                         else {
2008                                 /* D D Q P D */
2009                                 if (i < sh->pd_idx)
2010                                         i += raid_disks;
2011                                 i -= (sh->pd_idx + 1);
2012                         }
2013                         break;
2014                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2015                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2016                         if (i > sh->pd_idx)
2017                                 i--;
2018                         break;
2019                 case ALGORITHM_LEFT_SYMMETRIC_6:
2020                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2021                         if (i < sh->pd_idx)
2022                                 i += data_disks + 1;
2023                         i -= (sh->pd_idx + 1);
2024                         break;
2025                 case ALGORITHM_PARITY_0_6:
2026                         i -= 1;
2027                         break;
2028                 default:
2029                         BUG();
2030                 }
2031                 break;
2032         }
2033
2034         chunk_number = stripe * data_disks + i;
2035         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2036
2037         check = raid5_compute_sector(conf, r_sector,
2038                                      previous, &dummy1, &sh2);
2039         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2040                 || sh2.qd_idx != sh->qd_idx) {
2041                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2042                        mdname(conf->mddev));
2043                 return 0;
2044         }
2045         return r_sector;
2046 }
2047
2048
2049 static void
2050 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2051                          int rcw, int expand)
2052 {
2053         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2054         raid5_conf_t *conf = sh->raid_conf;
2055         int level = conf->level;
2056
2057         if (rcw) {
2058                 /* if we are not expanding this is a proper write request, and
2059                  * there will be bios with new data to be drained into the
2060                  * stripe cache
2061                  */
2062                 if (!expand) {
2063                         sh->reconstruct_state = reconstruct_state_drain_run;
2064                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2065                 } else
2066                         sh->reconstruct_state = reconstruct_state_run;
2067
2068                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2069
2070                 for (i = disks; i--; ) {
2071                         struct r5dev *dev = &sh->dev[i];
2072
2073                         if (dev->towrite) {
2074                                 set_bit(R5_LOCKED, &dev->flags);
2075                                 set_bit(R5_Wantdrain, &dev->flags);
2076                                 if (!expand)
2077                                         clear_bit(R5_UPTODATE, &dev->flags);
2078                                 s->locked++;
2079                         }
2080                 }
2081                 if (s->locked + conf->max_degraded == disks)
2082                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2083                                 atomic_inc(&conf->pending_full_writes);
2084         } else {
2085                 BUG_ON(level == 6);
2086                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2087                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2088
2089                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2090                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2091                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2092                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2093
2094                 for (i = disks; i--; ) {
2095                         struct r5dev *dev = &sh->dev[i];
2096                         if (i == pd_idx)
2097                                 continue;
2098
2099                         if (dev->towrite &&
2100                             (test_bit(R5_UPTODATE, &dev->flags) ||
2101                              test_bit(R5_Wantcompute, &dev->flags))) {
2102                                 set_bit(R5_Wantdrain, &dev->flags);
2103                                 set_bit(R5_LOCKED, &dev->flags);
2104                                 clear_bit(R5_UPTODATE, &dev->flags);
2105                                 s->locked++;
2106                         }
2107                 }
2108         }
2109
2110         /* keep the parity disk(s) locked while asynchronous operations
2111          * are in flight
2112          */
2113         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2114         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2115         s->locked++;
2116
2117         if (level == 6) {
2118                 int qd_idx = sh->qd_idx;
2119                 struct r5dev *dev = &sh->dev[qd_idx];
2120
2121                 set_bit(R5_LOCKED, &dev->flags);
2122                 clear_bit(R5_UPTODATE, &dev->flags);
2123                 s->locked++;
2124         }
2125
2126         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2127                 __func__, (unsigned long long)sh->sector,
2128                 s->locked, s->ops_request);
2129 }
2130
2131 /*
2132  * Each stripe/dev can have one or more bion attached.
2133  * toread/towrite point to the first in a chain.
2134  * The bi_next chain must be in order.
2135  */
2136 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2137 {
2138         struct bio **bip;
2139         raid5_conf_t *conf = sh->raid_conf;
2140         int firstwrite=0;
2141
2142         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2143                 (unsigned long long)bi->bi_sector,
2144                 (unsigned long long)sh->sector);
2145
2146
2147         spin_lock_irq(&conf->device_lock);
2148         if (forwrite) {
2149                 bip = &sh->dev[dd_idx].towrite;
2150                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2151                         firstwrite = 1;
2152         } else
2153                 bip = &sh->dev[dd_idx].toread;
2154         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2155                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2156                         goto overlap;
2157                 bip = & (*bip)->bi_next;
2158         }
2159         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2160                 goto overlap;
2161
2162         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2163         if (*bip)
2164                 bi->bi_next = *bip;
2165         *bip = bi;
2166         bi->bi_phys_segments++;
2167
2168         if (forwrite) {
2169                 /* check if page is covered */
2170                 sector_t sector = sh->dev[dd_idx].sector;
2171                 for (bi=sh->dev[dd_idx].towrite;
2172                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2173                              bi && bi->bi_sector <= sector;
2174                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2175                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2176                                 sector = bi->bi_sector + (bi->bi_size>>9);
2177                 }
2178                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2179                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2180         }
2181         spin_unlock_irq(&conf->device_lock);
2182
2183         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2184                 (unsigned long long)(*bip)->bi_sector,
2185                 (unsigned long long)sh->sector, dd_idx);
2186
2187         if (conf->mddev->bitmap && firstwrite) {
2188                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2189                                   STRIPE_SECTORS, 0);
2190                 sh->bm_seq = conf->seq_flush+1;
2191                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2192         }
2193         return 1;
2194
2195  overlap:
2196         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2197         spin_unlock_irq(&conf->device_lock);
2198         return 0;
2199 }
2200
2201 static void end_reshape(raid5_conf_t *conf);
2202
2203 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2204                             struct stripe_head *sh)
2205 {
2206         int sectors_per_chunk =
2207                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2208         int dd_idx;
2209         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2210         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2211
2212         raid5_compute_sector(conf,
2213                              stripe * (disks - conf->max_degraded)
2214                              *sectors_per_chunk + chunk_offset,
2215                              previous,
2216                              &dd_idx, sh);
2217 }
2218
2219 static void
2220 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2221                                 struct stripe_head_state *s, int disks,
2222                                 struct bio **return_bi)
2223 {
2224         int i;
2225         for (i = disks; i--; ) {
2226                 struct bio *bi;
2227                 int bitmap_end = 0;
2228
2229                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2230                         mdk_rdev_t *rdev;
2231                         rcu_read_lock();
2232                         rdev = rcu_dereference(conf->disks[i].rdev);
2233                         if (rdev && test_bit(In_sync, &rdev->flags))
2234                                 /* multiple read failures in one stripe */
2235                                 md_error(conf->mddev, rdev);
2236                         rcu_read_unlock();
2237                 }
2238                 spin_lock_irq(&conf->device_lock);
2239                 /* fail all writes first */
2240                 bi = sh->dev[i].towrite;
2241                 sh->dev[i].towrite = NULL;
2242                 if (bi) {
2243                         s->to_write--;
2244                         bitmap_end = 1;
2245                 }
2246
2247                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2248                         wake_up(&conf->wait_for_overlap);
2249
2250                 while (bi && bi->bi_sector <
2251                         sh->dev[i].sector + STRIPE_SECTORS) {
2252                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2253                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2254                         if (!raid5_dec_bi_phys_segments(bi)) {
2255                                 md_write_end(conf->mddev);
2256                                 bi->bi_next = *return_bi;
2257                                 *return_bi = bi;
2258                         }
2259                         bi = nextbi;
2260                 }
2261                 /* and fail all 'written' */
2262                 bi = sh->dev[i].written;
2263                 sh->dev[i].written = NULL;
2264                 if (bi) bitmap_end = 1;
2265                 while (bi && bi->bi_sector <
2266                        sh->dev[i].sector + STRIPE_SECTORS) {
2267                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2268                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2269                         if (!raid5_dec_bi_phys_segments(bi)) {
2270                                 md_write_end(conf->mddev);
2271                                 bi->bi_next = *return_bi;
2272                                 *return_bi = bi;
2273                         }
2274                         bi = bi2;
2275                 }
2276
2277                 /* fail any reads if this device is non-operational and
2278                  * the data has not reached the cache yet.
2279                  */
2280                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2281                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2282                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2283                         bi = sh->dev[i].toread;
2284                         sh->dev[i].toread = NULL;
2285                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2286                                 wake_up(&conf->wait_for_overlap);
2287                         if (bi) s->to_read--;
2288                         while (bi && bi->bi_sector <
2289                                sh->dev[i].sector + STRIPE_SECTORS) {
2290                                 struct bio *nextbi =
2291                                         r5_next_bio(bi, sh->dev[i].sector);
2292                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2293                                 if (!raid5_dec_bi_phys_segments(bi)) {
2294                                         bi->bi_next = *return_bi;
2295                                         *return_bi = bi;
2296                                 }
2297                                 bi = nextbi;
2298                         }
2299                 }
2300                 spin_unlock_irq(&conf->device_lock);
2301                 if (bitmap_end)
2302                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2303                                         STRIPE_SECTORS, 0, 0);
2304         }
2305
2306         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2307                 if (atomic_dec_and_test(&conf->pending_full_writes))
2308                         md_wakeup_thread(conf->mddev->thread);
2309 }
2310
2311 /* fetch_block5 - checks the given member device to see if its data needs
2312  * to be read or computed to satisfy a request.
2313  *
2314  * Returns 1 when no more member devices need to be checked, otherwise returns
2315  * 0 to tell the loop in handle_stripe_fill5 to continue
2316  */
2317 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2318                         int disk_idx, int disks)
2319 {
2320         struct r5dev *dev = &sh->dev[disk_idx];
2321         struct r5dev *failed_dev = &sh->dev[s->failed_num[0]];
2322
2323         /* is the data in this block needed, and can we get it? */
2324         if (!test_bit(R5_LOCKED, &dev->flags) &&
2325             !test_bit(R5_UPTODATE, &dev->flags) &&
2326             (dev->toread ||
2327              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2328              s->syncing || s->expanding ||
2329              (s->failed && failed_dev->toread) ||
2330              (s->failed && failed_dev->towrite &&
2331                 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2332                 /* We would like to get this block, possibly by computing it,
2333                  * otherwise read it if the backing disk is insync
2334                  */
2335                 if ((s->uptodate == disks - 1) &&
2336                     (s->failed && disk_idx == s->failed_num[0])) {
2337                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2338                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2339                         set_bit(R5_Wantcompute, &dev->flags);
2340                         sh->ops.target = disk_idx;
2341                         sh->ops.target2 = -1;
2342                         s->req_compute = 1;
2343                         /* Careful: from this point on 'uptodate' is in the eye
2344                          * of raid_run_ops which services 'compute' operations
2345                          * before writes. R5_Wantcompute flags a block that will
2346                          * be R5_UPTODATE by the time it is needed for a
2347                          * subsequent operation.
2348                          */
2349                         s->uptodate++;
2350                         return 1; /* uptodate + compute == disks */
2351                 } else if (test_bit(R5_Insync, &dev->flags)) {
2352                         set_bit(R5_LOCKED, &dev->flags);
2353                         set_bit(R5_Wantread, &dev->flags);
2354                         s->locked++;
2355                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2356                                 s->syncing);
2357                 }
2358         }
2359
2360         return 0;
2361 }
2362
2363 /**
2364  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2365  */
2366 static void handle_stripe_fill5(struct stripe_head *sh,
2367                         struct stripe_head_state *s, int disks)
2368 {
2369         int i;
2370
2371         /* look for blocks to read/compute, skip this if a compute
2372          * is already in flight, or if the stripe contents are in the
2373          * midst of changing due to a write
2374          */
2375         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2376             !sh->reconstruct_state)
2377                 for (i = disks; i--; )
2378                         if (fetch_block5(sh, s, i, disks))
2379                                 break;
2380         set_bit(STRIPE_HANDLE, &sh->state);
2381 }
2382
2383 /* fetch_block6 - checks the given member device to see if its data needs
2384  * to be read or computed to satisfy a request.
2385  *
2386  * Returns 1 when no more member devices need to be checked, otherwise returns
2387  * 0 to tell the loop in handle_stripe_fill6 to continue
2388  */
2389 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2390                         int disk_idx, int disks)
2391 {
2392         struct r5dev *dev = &sh->dev[disk_idx];
2393         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2394                                   &sh->dev[s->failed_num[1]] };
2395
2396         if (!test_bit(R5_LOCKED, &dev->flags) &&
2397             !test_bit(R5_UPTODATE, &dev->flags) &&
2398             (dev->toread ||
2399              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2400              s->syncing || s->expanding ||
2401              (s->failed >= 1 && fdev[0]->toread) ||
2402              (s->failed >= 2 && fdev[1]->toread) ||
2403              (s->failed && s->to_write)) {
2404                 /* we would like to get this block, possibly by computing it,
2405                  * otherwise read it if the backing disk is insync
2406                  */
2407                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2408                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2409                 if ((s->uptodate == disks - 1) &&
2410                     (s->failed && (disk_idx == s->failed_num[0] ||
2411                                    disk_idx == s->failed_num[1]))) {
2412                         /* have disk failed, and we're requested to fetch it;
2413                          * do compute it
2414                          */
2415                         pr_debug("Computing stripe %llu block %d\n",
2416                                (unsigned long long)sh->sector, disk_idx);
2417                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2418                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2419                         set_bit(R5_Wantcompute, &dev->flags);
2420                         sh->ops.target = disk_idx;
2421                         sh->ops.target2 = -1; /* no 2nd target */
2422                         s->req_compute = 1;
2423                         s->uptodate++;
2424                         return 1;
2425                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2426                         /* Computing 2-failure is *very* expensive; only
2427                          * do it if failed >= 2
2428                          */
2429                         int other;
2430                         for (other = disks; other--; ) {
2431                                 if (other == disk_idx)
2432                                         continue;
2433                                 if (!test_bit(R5_UPTODATE,
2434                                       &sh->dev[other].flags))
2435                                         break;
2436                         }
2437                         BUG_ON(other < 0);
2438                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2439                                (unsigned long long)sh->sector,
2440                                disk_idx, other);
2441                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2442                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2443                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2444                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2445                         sh->ops.target = disk_idx;
2446                         sh->ops.target2 = other;
2447                         s->uptodate += 2;
2448                         s->req_compute = 1;
2449                         return 1;
2450                 } else if (test_bit(R5_Insync, &dev->flags)) {
2451                         set_bit(R5_LOCKED, &dev->flags);
2452                         set_bit(R5_Wantread, &dev->flags);
2453                         s->locked++;
2454                         pr_debug("Reading block %d (sync=%d)\n",
2455                                 disk_idx, s->syncing);
2456                 }
2457         }
2458
2459         return 0;
2460 }
2461
2462 /**
2463  * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2464  */
2465 static void handle_stripe_fill6(struct stripe_head *sh,
2466                         struct stripe_head_state *s,
2467                         int disks)
2468 {
2469         int i;
2470
2471         /* look for blocks to read/compute, skip this if a compute
2472          * is already in flight, or if the stripe contents are in the
2473          * midst of changing due to a write
2474          */
2475         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2476             !sh->reconstruct_state)
2477                 for (i = disks; i--; )
2478                         if (fetch_block6(sh, s, i, disks))
2479                                 break;
2480         set_bit(STRIPE_HANDLE, &sh->state);
2481 }
2482
2483
2484 /* handle_stripe_clean_event
2485  * any written block on an uptodate or failed drive can be returned.
2486  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2487  * never LOCKED, so we don't need to test 'failed' directly.
2488  */
2489 static void handle_stripe_clean_event(raid5_conf_t *conf,
2490         struct stripe_head *sh, int disks, struct bio **return_bi)
2491 {
2492         int i;
2493         struct r5dev *dev;
2494
2495         for (i = disks; i--; )
2496                 if (sh->dev[i].written) {
2497                         dev = &sh->dev[i];
2498                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2499                                 test_bit(R5_UPTODATE, &dev->flags)) {
2500                                 /* We can return any write requests */
2501                                 struct bio *wbi, *wbi2;
2502                                 int bitmap_end = 0;
2503                                 pr_debug("Return write for disc %d\n", i);
2504                                 spin_lock_irq(&conf->device_lock);
2505                                 wbi = dev->written;
2506                                 dev->written = NULL;
2507                                 while (wbi && wbi->bi_sector <
2508                                         dev->sector + STRIPE_SECTORS) {
2509                                         wbi2 = r5_next_bio(wbi, dev->sector);
2510                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2511                                                 md_write_end(conf->mddev);
2512                                                 wbi->bi_next = *return_bi;
2513                                                 *return_bi = wbi;
2514                                         }
2515                                         wbi = wbi2;
2516                                 }
2517                                 if (dev->towrite == NULL)
2518                                         bitmap_end = 1;
2519                                 spin_unlock_irq(&conf->device_lock);
2520                                 if (bitmap_end)
2521                                         bitmap_endwrite(conf->mddev->bitmap,
2522                                                         sh->sector,
2523                                                         STRIPE_SECTORS,
2524                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2525                                                         0);
2526                         }
2527                 }
2528
2529         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2530                 if (atomic_dec_and_test(&conf->pending_full_writes))
2531                         md_wakeup_thread(conf->mddev->thread);
2532 }
2533
2534 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2535                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2536 {
2537         int rmw = 0, rcw = 0, i;
2538         for (i = disks; i--; ) {
2539                 /* would I have to read this buffer for read_modify_write */
2540                 struct r5dev *dev = &sh->dev[i];
2541                 if ((dev->towrite || i == sh->pd_idx) &&
2542                     !test_bit(R5_LOCKED, &dev->flags) &&
2543                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2544                       test_bit(R5_Wantcompute, &dev->flags))) {
2545                         if (test_bit(R5_Insync, &dev->flags))
2546                                 rmw++;
2547                         else
2548                                 rmw += 2*disks;  /* cannot read it */
2549                 }
2550                 /* Would I have to read this buffer for reconstruct_write */
2551                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2552                     !test_bit(R5_LOCKED, &dev->flags) &&
2553                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2554                     test_bit(R5_Wantcompute, &dev->flags))) {
2555                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2556                         else
2557                                 rcw += 2*disks;
2558                 }
2559         }
2560         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2561                 (unsigned long long)sh->sector, rmw, rcw);
2562         set_bit(STRIPE_HANDLE, &sh->state);
2563         if (rmw < rcw && rmw > 0)
2564                 /* prefer read-modify-write, but need to get some data */
2565                 for (i = disks; i--; ) {
2566                         struct r5dev *dev = &sh->dev[i];
2567                         if ((dev->towrite || i == sh->pd_idx) &&
2568                             !test_bit(R5_LOCKED, &dev->flags) &&
2569                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2570                             test_bit(R5_Wantcompute, &dev->flags)) &&
2571                             test_bit(R5_Insync, &dev->flags)) {
2572                                 if (
2573                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2574                                         pr_debug("Read_old block "
2575                                                 "%d for r-m-w\n", i);
2576                                         set_bit(R5_LOCKED, &dev->flags);
2577                                         set_bit(R5_Wantread, &dev->flags);
2578                                         s->locked++;
2579                                 } else {
2580                                         set_bit(STRIPE_DELAYED, &sh->state);
2581                                         set_bit(STRIPE_HANDLE, &sh->state);
2582                                 }
2583                         }
2584                 }
2585         if (rcw <= rmw && rcw > 0)
2586                 /* want reconstruct write, but need to get some data */
2587                 for (i = disks; i--; ) {
2588                         struct r5dev *dev = &sh->dev[i];
2589                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2590                             i != sh->pd_idx &&
2591                             !test_bit(R5_LOCKED, &dev->flags) &&
2592                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2593                             test_bit(R5_Wantcompute, &dev->flags)) &&
2594                             test_bit(R5_Insync, &dev->flags)) {
2595                                 if (
2596                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2597                                         pr_debug("Read_old block "
2598                                                 "%d for Reconstruct\n", i);
2599                                         set_bit(R5_LOCKED, &dev->flags);
2600                                         set_bit(R5_Wantread, &dev->flags);
2601                                         s->locked++;
2602                                 } else {
2603                                         set_bit(STRIPE_DELAYED, &sh->state);
2604                                         set_bit(STRIPE_HANDLE, &sh->state);
2605                                 }
2606                         }
2607                 }
2608         /* now if nothing is locked, and if we have enough data,
2609          * we can start a write request
2610          */
2611         /* since handle_stripe can be called at any time we need to handle the
2612          * case where a compute block operation has been submitted and then a
2613          * subsequent call wants to start a write request.  raid_run_ops only
2614          * handles the case where compute block and reconstruct are requested
2615          * simultaneously.  If this is not the case then new writes need to be
2616          * held off until the compute completes.
2617          */
2618         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2619             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2620             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2621                 schedule_reconstruction(sh, s, rcw == 0, 0);
2622 }
2623
2624 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2625                 struct stripe_head *sh, struct stripe_head_state *s,
2626                 int disks)
2627 {
2628         int rcw = 0, pd_idx = sh->pd_idx, i;
2629         int qd_idx = sh->qd_idx;
2630
2631         set_bit(STRIPE_HANDLE, &sh->state);
2632         for (i = disks; i--; ) {
2633                 struct r5dev *dev = &sh->dev[i];
2634                 /* check if we haven't enough data */
2635                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2636                     i != pd_idx && i != qd_idx &&
2637                     !test_bit(R5_LOCKED, &dev->flags) &&
2638                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2639                       test_bit(R5_Wantcompute, &dev->flags))) {
2640                         rcw++;
2641                         if (!test_bit(R5_Insync, &dev->flags))
2642                                 continue; /* it's a failed drive */
2643
2644                         if (
2645                           test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2646                                 pr_debug("Read_old stripe %llu "
2647                                         "block %d for Reconstruct\n",
2648                                      (unsigned long long)sh->sector, i);
2649                                 set_bit(R5_LOCKED, &dev->flags);
2650                                 set_bit(R5_Wantread, &dev->flags);
2651                                 s->locked++;
2652                         } else {
2653                                 pr_debug("Request delayed stripe %llu "
2654                                         "block %d for Reconstruct\n",
2655                                      (unsigned long long)sh->sector, i);
2656                                 set_bit(STRIPE_DELAYED, &sh->state);
2657                                 set_bit(STRIPE_HANDLE, &sh->state);
2658                         }
2659                 }
2660         }
2661         /* now if nothing is locked, and if we have enough data, we can start a
2662          * write request
2663          */
2664         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2665             s->locked == 0 && rcw == 0 &&
2666             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2667                 schedule_reconstruction(sh, s, 1, 0);
2668         }
2669 }
2670
2671 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2672                                 struct stripe_head_state *s, int disks)
2673 {
2674         struct r5dev *dev = NULL;
2675
2676         set_bit(STRIPE_HANDLE, &sh->state);
2677
2678         switch (sh->check_state) {
2679         case check_state_idle:
2680                 /* start a new check operation if there are no failures */
2681                 if (s->failed == 0) {
2682                         BUG_ON(s->uptodate != disks);
2683                         sh->check_state = check_state_run;
2684                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2685                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2686                         s->uptodate--;
2687                         break;
2688                 }
2689                 dev = &sh->dev[s->failed_num[0]];
2690                 /* fall through */
2691         case check_state_compute_result:
2692                 sh->check_state = check_state_idle;
2693                 if (!dev)
2694                         dev = &sh->dev[sh->pd_idx];
2695
2696                 /* check that a write has not made the stripe insync */
2697                 if (test_bit(STRIPE_INSYNC, &sh->state))
2698                         break;
2699
2700                 /* either failed parity check, or recovery is happening */
2701                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2702                 BUG_ON(s->uptodate != disks);
2703
2704                 set_bit(R5_LOCKED, &dev->flags);
2705                 s->locked++;
2706                 set_bit(R5_Wantwrite, &dev->flags);
2707
2708                 clear_bit(STRIPE_DEGRADED, &sh->state);
2709                 set_bit(STRIPE_INSYNC, &sh->state);
2710                 break;
2711         case check_state_run:
2712                 break; /* we will be called again upon completion */
2713         case check_state_check_result:
2714                 sh->check_state = check_state_idle;
2715
2716                 /* if a failure occurred during the check operation, leave
2717                  * STRIPE_INSYNC not set and let the stripe be handled again
2718                  */
2719                 if (s->failed)
2720                         break;
2721
2722                 /* handle a successful check operation, if parity is correct
2723                  * we are done.  Otherwise update the mismatch count and repair
2724                  * parity if !MD_RECOVERY_CHECK
2725                  */
2726                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2727                         /* parity is correct (on disc,
2728                          * not in buffer any more)
2729                          */
2730                         set_bit(STRIPE_INSYNC, &sh->state);
2731                 else {
2732                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2733                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2734                                 /* don't try to repair!! */
2735                                 set_bit(STRIPE_INSYNC, &sh->state);
2736                         else {
2737                                 sh->check_state = check_state_compute_run;
2738                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2739                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2740                                 set_bit(R5_Wantcompute,
2741                                         &sh->dev[sh->pd_idx].flags);
2742                                 sh->ops.target = sh->pd_idx;
2743                                 sh->ops.target2 = -1;
2744                                 s->uptodate++;
2745                         }
2746                 }
2747                 break;
2748         case check_state_compute_run:
2749                 break;
2750         default:
2751                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2752                        __func__, sh->check_state,
2753                        (unsigned long long) sh->sector);
2754                 BUG();
2755         }
2756 }
2757
2758
2759 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2760                                   struct stripe_head_state *s,
2761                                   int disks)
2762 {
2763         int pd_idx = sh->pd_idx;
2764         int qd_idx = sh->qd_idx;
2765         struct r5dev *dev;
2766
2767         set_bit(STRIPE_HANDLE, &sh->state);
2768
2769         BUG_ON(s->failed > 2);
2770
2771         /* Want to check and possibly repair P and Q.
2772          * However there could be one 'failed' device, in which
2773          * case we can only check one of them, possibly using the
2774          * other to generate missing data
2775          */
2776
2777         switch (sh->check_state) {
2778         case check_state_idle:
2779                 /* start a new check operation if there are < 2 failures */
2780                 if (s->failed == s->q_failed) {
2781                         /* The only possible failed device holds Q, so it
2782                          * makes sense to check P (If anything else were failed,
2783                          * we would have used P to recreate it).
2784                          */
2785                         sh->check_state = check_state_run;
2786                 }
2787                 if (!s->q_failed && s->failed < 2) {
2788                         /* Q is not failed, and we didn't use it to generate
2789                          * anything, so it makes sense to check it
2790                          */
2791                         if (sh->check_state == check_state_run)
2792                                 sh->check_state = check_state_run_pq;
2793                         else
2794                                 sh->check_state = check_state_run_q;
2795                 }
2796
2797                 /* discard potentially stale zero_sum_result */
2798                 sh->ops.zero_sum_result = 0;
2799
2800                 if (sh->check_state == check_state_run) {
2801                         /* async_xor_zero_sum destroys the contents of P */
2802                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2803                         s->uptodate--;
2804                 }
2805                 if (sh->check_state >= check_state_run &&
2806                     sh->check_state <= check_state_run_pq) {
2807                         /* async_syndrome_zero_sum preserves P and Q, so
2808                          * no need to mark them !uptodate here
2809                          */
2810                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2811                         break;
2812                 }
2813
2814                 /* we have 2-disk failure */
2815                 BUG_ON(s->failed != 2);
2816                 /* fall through */
2817         case check_state_compute_result:
2818                 sh->check_state = check_state_idle;
2819
2820                 /* check that a write has not made the stripe insync */
2821                 if (test_bit(STRIPE_INSYNC, &sh->state))
2822                         break;
2823
2824                 /* now write out any block on a failed drive,
2825                  * or P or Q if they were recomputed
2826                  */
2827                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2828                 if (s->failed == 2) {
2829                         dev = &sh->dev[s->failed_num[1]];
2830                         s->locked++;
2831                         set_bit(R5_LOCKED, &dev->flags);
2832                         set_bit(R5_Wantwrite, &dev->flags);
2833                 }
2834                 if (s->failed >= 1) {
2835                         dev = &sh->dev[s->failed_num[0]];
2836                         s->locked++;
2837                         set_bit(R5_LOCKED, &dev->flags);
2838                         set_bit(R5_Wantwrite, &dev->flags);
2839                 }
2840                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2841                         dev = &sh->dev[pd_idx];
2842                         s->locked++;
2843                         set_bit(R5_LOCKED, &dev->flags);
2844                         set_bit(R5_Wantwrite, &dev->flags);
2845                 }
2846                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2847                         dev = &sh->dev[qd_idx];
2848                         s->locked++;
2849                         set_bit(R5_LOCKED, &dev->flags);
2850                         set_bit(R5_Wantwrite, &dev->flags);
2851                 }
2852                 clear_bit(STRIPE_DEGRADED, &sh->state);
2853
2854                 set_bit(STRIPE_INSYNC, &sh->state);
2855                 break;
2856         case check_state_run:
2857         case check_state_run_q:
2858         case check_state_run_pq:
2859                 break; /* we will be called again upon completion */
2860         case check_state_check_result:
2861                 sh->check_state = check_state_idle;
2862
2863                 /* handle a successful check operation, if parity is correct
2864                  * we are done.  Otherwise update the mismatch count and repair
2865                  * parity if !MD_RECOVERY_CHECK
2866                  */
2867                 if (sh->ops.zero_sum_result == 0) {
2868                         /* both parities are correct */
2869                         if (!s->failed)
2870                                 set_bit(STRIPE_INSYNC, &sh->state);
2871                         else {
2872                                 /* in contrast to the raid5 case we can validate
2873                                  * parity, but still have a failure to write
2874                                  * back
2875                                  */
2876                                 sh->check_state = check_state_compute_result;
2877                                 /* Returning at this point means that we may go
2878                                  * off and bring p and/or q uptodate again so
2879                                  * we make sure to check zero_sum_result again
2880                                  * to verify if p or q need writeback
2881                                  */
2882                         }
2883                 } else {
2884                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2885                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2886                                 /* don't try to repair!! */
2887                                 set_bit(STRIPE_INSYNC, &sh->state);
2888                         else {
2889                                 int *target = &sh->ops.target;
2890
2891                                 sh->ops.target = -1;
2892                                 sh->ops.target2 = -1;
2893                                 sh->check_state = check_state_compute_run;
2894                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2895                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2896                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2897                                         set_bit(R5_Wantcompute,
2898                                                 &sh->dev[pd_idx].flags);
2899                                         *target = pd_idx;
2900                                         target = &sh->ops.target2;
2901                                         s->uptodate++;
2902                                 }
2903                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2904                                         set_bit(R5_Wantcompute,
2905                                                 &sh->dev[qd_idx].flags);
2906                                         *target = qd_idx;
2907                                         s->uptodate++;
2908                                 }
2909                         }
2910                 }
2911                 break;
2912         case check_state_compute_run:
2913                 break;
2914         default:
2915                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2916                        __func__, sh->check_state,
2917                        (unsigned long long) sh->sector);
2918                 BUG();
2919         }
2920 }
2921
2922 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh)
2923 {
2924         int i;
2925
2926         /* We have read all the blocks in this stripe and now we need to
2927          * copy some of them into a target stripe for expand.
2928          */
2929         struct dma_async_tx_descriptor *tx = NULL;
2930         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2931         for (i = 0; i < sh->disks; i++)
2932                 if (i != sh->pd_idx && i != sh->qd_idx) {
2933                         int dd_idx, j;
2934                         struct stripe_head *sh2;
2935                         struct async_submit_ctl submit;
2936
2937                         sector_t bn = compute_blocknr(sh, i, 1);
2938                         sector_t s = raid5_compute_sector(conf, bn, 0,
2939                                                           &dd_idx, NULL);
2940                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
2941                         if (sh2 == NULL)
2942                                 /* so far only the early blocks of this stripe
2943                                  * have been requested.  When later blocks
2944                                  * get requested, we will try again
2945                                  */
2946                                 continue;
2947                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2948                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2949                                 /* must have already done this block */
2950                                 release_stripe(sh2);
2951                                 continue;
2952                         }
2953
2954                         /* place all the copies on one channel */
2955                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2956                         tx = async_memcpy(sh2->dev[dd_idx].page,
2957                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
2958                                           &submit);
2959
2960                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2961                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2962                         for (j = 0; j < conf->raid_disks; j++)
2963                                 if (j != sh2->pd_idx &&
2964                                     j != sh2->qd_idx &&
2965                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2966                                         break;
2967                         if (j == conf->raid_disks) {
2968                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2969                                 set_bit(STRIPE_HANDLE, &sh2->state);
2970                         }
2971                         release_stripe(sh2);
2972
2973                 }
2974         /* done submitting copies, wait for them to complete */
2975         if (tx) {
2976                 async_tx_ack(tx);
2977                 dma_wait_for_async_tx(tx);
2978         }
2979 }
2980
2981
2982 /*
2983  * handle_stripe - do things to a stripe.
2984  *
2985  * We lock the stripe and then examine the state of various bits
2986  * to see what needs to be done.
2987  * Possible results:
2988  *    return some read request which now have data
2989  *    return some write requests which are safely on disc
2990  *    schedule a read on some buffers
2991  *    schedule a write of some buffers
2992  *    return confirmation of parity correctness
2993  *
2994  * buffers are taken off read_list or write_list, and bh_cache buffers
2995  * get BH_Lock set before the stripe lock is released.
2996  *
2997  */
2998
2999 static int handle_stripe5(struct stripe_head *sh, struct stripe_head_state *s)
3000 {
3001         raid5_conf_t *conf = sh->raid_conf;
3002         int disks = sh->disks, i;
3003         struct r5dev *dev;
3004         int prexor;
3005
3006         /* Now to look around and see what can be done */
3007         rcu_read_lock();
3008         spin_lock_irq(&conf->device_lock);
3009         for (i=disks; i--; ) {
3010                 mdk_rdev_t *rdev;
3011
3012                 dev = &sh->dev[i];
3013
3014                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
3015                         "written %p\n", i, dev->flags, dev->toread, dev->read,
3016                         dev->towrite, dev->written);
3017
3018                 /* maybe we can request a biofill operation
3019                  *
3020                  * new wantfill requests are only permitted while
3021                  * ops_complete_biofill is guaranteed to be inactive
3022                  */
3023                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3024                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3025                         set_bit(R5_Wantfill, &dev->flags);
3026
3027                 /* now count some things */
3028                 if (test_bit(R5_LOCKED, &dev->flags))
3029                         s->locked++;
3030                 if (test_bit(R5_UPTODATE, &dev->flags))
3031                         s->uptodate++;
3032                 if (test_bit(R5_Wantcompute, &dev->flags))
3033                         s->compute++;
3034
3035                 if (test_bit(R5_Wantfill, &dev->flags))
3036                         s->to_fill++;
3037                 else if (dev->toread)
3038                         s->to_read++;
3039                 if (dev->towrite) {
3040                         s->to_write++;
3041                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3042                                 s->non_overwrite++;
3043                 }
3044                 if (dev->written)
3045                         s->written++;
3046                 rdev = rcu_dereference(conf->disks[i].rdev);
3047                 if (s->blocked_rdev == NULL &&
3048                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3049                         s->blocked_rdev = rdev;
3050                         atomic_inc(&rdev->nr_pending);
3051                 }
3052                 clear_bit(R5_Insync, &dev->flags);
3053                 if (!rdev)
3054                         /* Not in-sync */;
3055                 else if (test_bit(In_sync, &rdev->flags))
3056                         set_bit(R5_Insync, &dev->flags);
3057                 else {
3058                         /* could be in-sync depending on recovery/reshape status */
3059                         if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3060                                 set_bit(R5_Insync, &dev->flags);
3061                 }
3062                 if (!test_bit(R5_Insync, &dev->flags)) {
3063                         /* The ReadError flag will just be confusing now */
3064                         clear_bit(R5_ReadError, &dev->flags);
3065                         clear_bit(R5_ReWrite, &dev->flags);
3066                 }
3067                 if (test_bit(R5_ReadError, &dev->flags))
3068                         clear_bit(R5_Insync, &dev->flags);
3069                 if (!test_bit(R5_Insync, &dev->flags)) {
3070                         s->failed++;
3071                         s->failed_num[0] = i;
3072                 }
3073         }
3074         spin_unlock_irq(&conf->device_lock);
3075         rcu_read_unlock();
3076
3077         if (unlikely(s->blocked_rdev)) {
3078                 if (s->syncing || s->expanding || s->expanded ||
3079                     s->to_write || s->written) {
3080                         set_bit(STRIPE_HANDLE, &sh->state);
3081                         return 1;
3082                 }
3083                 /* There is nothing for the blocked_rdev to block */
3084                 rdev_dec_pending(s->blocked_rdev, conf->mddev);
3085                 s->blocked_rdev = NULL;
3086         }
3087
3088         if (s->to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3089                 set_bit(STRIPE_OP_BIOFILL, &s->ops_request);
3090                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3091         }
3092
3093         pr_debug("locked=%d uptodate=%d to_read=%d"
3094                 " to_write=%d failed=%d failed_num=%d\n",
3095                 s->locked, s->uptodate, s->to_read, s->to_write,
3096                 s->failed, s->failed_num[0]);
3097         /* check if the array has lost two devices and, if so, some requests might
3098          * need to be failed
3099          */
3100         if (s->failed > 1 && s->to_read+s->to_write+s->written)
3101                 handle_failed_stripe(conf, sh, s, disks, &s->return_bi);
3102         if (s->failed > 1 && s->syncing) {
3103                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3104                 clear_bit(STRIPE_SYNCING, &sh->state);
3105                 s->syncing = 0;
3106         }
3107
3108         /* might be able to return some write requests if the parity block
3109          * is safe, or on a failed drive
3110          */
3111         dev = &sh->dev[sh->pd_idx];
3112         if (s->written &&
3113             ((test_bit(R5_Insync, &dev->flags) &&
3114               !test_bit(R5_LOCKED, &dev->flags) &&
3115               test_bit(R5_UPTODATE, &dev->flags)) ||
3116              (s->failed == 1 && s->failed_num[0] == sh->pd_idx)))
3117                 handle_stripe_clean_event(conf, sh, disks, &s->return_bi);
3118
3119         /* Now we might consider reading some blocks, either to check/generate
3120          * parity, or to satisfy requests
3121          * or to load a block that is being partially written.
3122          */
3123         if (s->to_read || s->non_overwrite ||
3124             (s->syncing && (s->uptodate + s->compute < disks)) || s->expanding)
3125                 handle_stripe_fill5(sh, s, disks);
3126
3127         /* Now we check to see if any write operations have recently
3128          * completed
3129          */
3130         prexor = 0;
3131         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3132                 prexor = 1;
3133         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3134             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3135                 sh->reconstruct_state = reconstruct_state_idle;
3136
3137                 /* All the 'written' buffers and the parity block are ready to
3138                  * be written back to disk
3139                  */
3140                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3141                 for (i = disks; i--; ) {
3142                         dev = &sh->dev[i];
3143                         if (test_bit(R5_LOCKED, &dev->flags) &&
3144                                 (i == sh->pd_idx || dev->written)) {
3145                                 pr_debug("Writing block %d\n", i);
3146                                 set_bit(R5_Wantwrite, &dev->flags);
3147                                 if (prexor)
3148                                         continue;
3149                                 if (!test_bit(R5_Insync, &dev->flags) ||
3150                                     (i == sh->pd_idx && s->failed == 0))
3151                                         set_bit(STRIPE_INSYNC, &sh->state);
3152                         }
3153                 }
3154                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3155                         s->dec_preread_active = 1;
3156         }
3157
3158         /* Now to consider new write requests and what else, if anything
3159          * should be read.  We do not handle new writes when:
3160          * 1/ A 'write' operation (copy+xor) is already in flight.
3161          * 2/ A 'check' operation is in flight, as it may clobber the parity
3162          *    block.
3163          */
3164         if (s->to_write && !sh->reconstruct_state && !sh->check_state)
3165                 handle_stripe_dirtying5(conf, sh, s, disks);
3166
3167         /* maybe we need to check and possibly fix the parity for this stripe
3168          * Any reads will already have been scheduled, so we just see if enough
3169          * data is available.  The parity check is held off while parity
3170          * dependent operations are in flight.
3171          */
3172         if (sh->check_state ||
3173             (s->syncing && s->locked == 0 &&
3174              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3175              !test_bit(STRIPE_INSYNC, &sh->state)))
3176                 handle_parity_checks5(conf, sh, s, disks);
3177         return 0;
3178 }
3179
3180 static int handle_stripe6(struct stripe_head *sh, struct stripe_head_state *s)
3181 {
3182         raid5_conf_t *conf = sh->raid_conf;
3183         int disks = sh->disks;
3184         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3185         struct r5dev *dev, *pdev, *qdev;
3186
3187         /* Now to look around and see what can be done */
3188
3189         rcu_read_lock();
3190         spin_lock_irq(&conf->device_lock);
3191         for (i=disks; i--; ) {
3192                 mdk_rdev_t *rdev;
3193                 dev = &sh->dev[i];
3194
3195                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3196                         i, dev->flags, dev->toread, dev->towrite, dev->written);
3197                 /* maybe we can reply to a read
3198                  *
3199                  * new wantfill requests are only permitted while
3200                  * ops_complete_biofill is guaranteed to be inactive
3201                  */
3202                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3203                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3204                         set_bit(R5_Wantfill, &dev->flags);
3205
3206                 /* now count some things */
3207                 if (test_bit(R5_LOCKED, &dev->flags))
3208                         s->locked++;
3209                 if (test_bit(R5_UPTODATE, &dev->flags))
3210                         s->uptodate++;
3211                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3212                         s->compute++;
3213                         BUG_ON(s->compute > 2);
3214                 }
3215
3216                 if (test_bit(R5_Wantfill, &dev->flags)) {
3217                         s->to_fill++;
3218                 } else if (dev->toread)
3219                         s->to_read++;
3220                 if (dev->towrite) {
3221                         s->to_write++;
3222                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3223                                 s->non_overwrite++;
3224                 }
3225                 if (dev->written)
3226                         s->written++;
3227                 rdev = rcu_dereference(conf->disks[i].rdev);
3228                 if (s->blocked_rdev == NULL &&
3229                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3230                         s->blocked_rdev = rdev;
3231                         atomic_inc(&rdev->nr_pending);
3232                 }
3233                 clear_bit(R5_Insync, &dev->flags);
3234                 if (!rdev)
3235                         /* Not in-sync */;
3236                 else if (test_bit(In_sync, &rdev->flags))
3237                         set_bit(R5_Insync, &dev->flags);
3238                 else {
3239                         /* in sync if before recovery_offset */
3240                         if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3241                                 set_bit(R5_Insync, &dev->flags);
3242                 }
3243                 if (!test_bit(R5_Insync, &dev->flags)) {
3244                         /* The ReadError flag will just be confusing now */
3245                         clear_bit(R5_ReadError, &dev->flags);
3246                         clear_bit(R5_ReWrite, &dev->flags);
3247                 }
3248                 if (test_bit(R5_ReadError, &dev->flags))
3249                         clear_bit(R5_Insync, &dev->flags);
3250                 if (!test_bit(R5_Insync, &dev->flags)) {
3251                         if (s->failed < 2)
3252                                 s->failed_num[s->failed] = i;
3253                         s->failed++;
3254                 }
3255         }
3256         spin_unlock_irq(&conf->device_lock);
3257         rcu_read_unlock();
3258
3259         if (unlikely(s->blocked_rdev)) {
3260                 if (s->syncing || s->expanding || s->expanded ||
3261                     s->to_write || s->written) {
3262                         set_bit(STRIPE_HANDLE, &sh->state);
3263                         return 1;
3264                 }
3265                 /* There is nothing for the blocked_rdev to block */
3266                 rdev_dec_pending(s->blocked_rdev, conf->mddev);
3267                 s->blocked_rdev = NULL;
3268         }
3269
3270         if (s->to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3271                 set_bit(STRIPE_OP_BIOFILL, &s->ops_request);
3272                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3273         }
3274
3275         pr_debug("locked=%d uptodate=%d to_read=%d"
3276                " to_write=%d failed=%d failed_num=%d,%d\n",
3277                s->locked, s->uptodate, s->to_read, s->to_write, s->failed,
3278                s->failed_num[0], s->failed_num[1]);
3279         /* check if the array has lost >2 devices and, if so, some requests
3280          * might need to be failed
3281          */
3282         if (s->failed > 2 && s->to_read+s->to_write+s->written)
3283                 handle_failed_stripe(conf, sh, s, disks, &s->return_bi);
3284         if (s->failed > 2 && s->syncing) {
3285                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3286                 clear_bit(STRIPE_SYNCING, &sh->state);
3287                 s->syncing = 0;
3288         }
3289
3290         /*
3291          * might be able to return some write requests if the parity blocks
3292          * are safe, or on a failed drive
3293          */
3294         pdev = &sh->dev[pd_idx];
3295         s->p_failed = (s->failed >= 1 && s->failed_num[0] == pd_idx)
3296                 || (s->failed >= 2 && s->failed_num[1] == pd_idx);
3297         qdev = &sh->dev[qd_idx];
3298         s->q_failed = (s->failed >= 1 && s->failed_num[0] == qd_idx)
3299                 || (s->failed >= 2 && s->failed_num[1] == qd_idx);
3300
3301         if (s->written &&
3302             (s->p_failed || ((test_bit(R5_Insync, &pdev->flags)
3303                              && !test_bit(R5_LOCKED, &pdev->flags)
3304                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3305             (s->q_failed || ((test_bit(R5_Insync, &qdev->flags)
3306                              && !test_bit(R5_LOCKED, &qdev->flags)
3307                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3308                 handle_stripe_clean_event(conf, sh, disks, &s->return_bi);
3309
3310         /* Now we might consider reading some blocks, either to check/generate
3311          * parity, or to satisfy requests
3312          * or to load a block that is being partially written.
3313          */
3314         if (s->to_read || s->non_overwrite || (s->to_write && s->failed) ||
3315             (s->syncing && (s->uptodate + s->compute < disks)) || s->expanding)
3316                 handle_stripe_fill6(sh, s, disks);
3317
3318         /* Now we check to see if any write operations have recently
3319          * completed
3320          */
3321         if (sh->reconstruct_state == reconstruct_state_drain_result) {
3322
3323                 sh->reconstruct_state = reconstruct_state_idle;
3324                 /* All the 'written' buffers and the parity blocks are ready to
3325                  * be written back to disk
3326                  */
3327                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3328                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3329                 for (i = disks; i--; ) {
3330                         dev = &sh->dev[i];
3331                         if (test_bit(R5_LOCKED, &dev->flags) &&
3332                             (i == sh->pd_idx || i == qd_idx ||
3333                              dev->written)) {
3334                                 pr_debug("Writing block %d\n", i);
3335                                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3336                                 set_bit(R5_Wantwrite, &dev->flags);
3337                                 if (!test_bit(R5_Insync, &dev->flags) ||
3338                                     ((i == sh->pd_idx || i == qd_idx) &&
3339                                       s->failed == 0))
3340                                         set_bit(STRIPE_INSYNC, &sh->state);
3341                         }
3342                 }
3343                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3344                         s->dec_preread_active = 1;
3345         }
3346
3347         /* Now to consider new write requests and what else, if anything
3348          * should be read.  We do not handle new writes when:
3349          * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3350          * 2/ A 'check' operation is in flight, as it may clobber the parity
3351          *    block.
3352          */
3353         if (s->to_write && !sh->reconstruct_state && !sh->check_state)
3354                 handle_stripe_dirtying6(conf, sh, s, disks);
3355
3356         /* maybe we need to check and possibly fix the parity for this stripe
3357          * Any reads will already have been scheduled, so we just see if enough
3358          * data is available.  The parity check is held off while parity
3359          * dependent operations are in flight.
3360          */
3361         if (sh->check_state ||
3362             (s->syncing && s->locked == 0 &&
3363              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3364              !test_bit(STRIPE_INSYNC, &sh->state)))
3365                 handle_parity_checks6(conf, sh, s, disks);
3366         return 0;
3367 }
3368
3369 static void handle_stripe(struct stripe_head *sh)
3370 {
3371         struct stripe_head_state s;
3372         int done;
3373         int i;
3374         raid5_conf_t *conf = sh->raid_conf;
3375
3376         clear_bit(STRIPE_HANDLE, &sh->state);
3377         if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
3378                 /* already being handled, ensure it gets handled
3379                  * again when current action finishes */
3380                 set_bit(STRIPE_HANDLE, &sh->state);
3381                 return;
3382         }
3383
3384         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3385                 set_bit(STRIPE_SYNCING, &sh->state);
3386                 clear_bit(STRIPE_INSYNC, &sh->state);
3387         }
3388         clear_bit(STRIPE_DELAYED, &sh->state);
3389
3390         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3391                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3392                (unsigned long long)sh->sector, sh->state,
3393                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3394                sh->check_state, sh->reconstruct_state);
3395         memset(&s, 0, sizeof(s));
3396
3397         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3398         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3399         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3400
3401         if (conf->level == 6)
3402                 done = handle_stripe6(sh, &s);
3403         else
3404                 done = handle_stripe5(sh, &s);
3405
3406         if (done)
3407                 goto finish;
3408
3409
3410         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3411                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3412                 clear_bit(STRIPE_SYNCING, &sh->state);
3413         }
3414
3415         /* If the failed drives are just a ReadError, then we might need
3416          * to progress the repair/check process
3417          */
3418         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3419                 for (i = 0; i < s.failed; i++) {
3420                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3421                         if (test_bit(R5_ReadError, &dev->flags)
3422                             && !test_bit(R5_LOCKED, &dev->flags)
3423                             && test_bit(R5_UPTODATE, &dev->flags)
3424                                 ) {
3425                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3426                                         set_bit(R5_Wantwrite, &dev->flags);
3427                                         set_bit(R5_ReWrite, &dev->flags);
3428                                         set_bit(R5_LOCKED, &dev->flags);
3429                                         s.locked++;
3430                                 } else {
3431                                         /* let's read it back */
3432                                         set_bit(R5_Wantread, &dev->flags);
3433                                         set_bit(R5_LOCKED, &dev->flags);
3434                                         s.locked++;
3435                                 }
3436                         }
3437                 }
3438
3439
3440         /* Finish reconstruct operations initiated by the expansion process */
3441         if (sh->reconstruct_state == reconstruct_state_result) {
3442                 struct stripe_head *sh_src
3443                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3444                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3445                         /* sh cannot be written until sh_src has been read.
3446                          * so arrange for sh to be delayed a little
3447                          */
3448                         set_bit(STRIPE_DELAYED, &sh->state);
3449                         set_bit(STRIPE_HANDLE, &sh->state);
3450                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3451                                               &sh_src->state))
3452                                 atomic_inc(&conf->preread_active_stripes);
3453                         release_stripe(sh_src);
3454                         goto finish;
3455                 }
3456                 if (sh_src)
3457                         release_stripe(sh_src);
3458
3459                 sh->reconstruct_state = reconstruct_state_idle;
3460                 clear_bit(STRIPE_EXPANDING, &sh->state);
3461                 for (i = conf->raid_disks; i--; ) {
3462                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3463                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3464                         s.locked++;
3465                 }
3466         }
3467
3468         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3469             !sh->reconstruct_state) {
3470                 /* Need to write out all blocks after computing parity */
3471                 sh->disks = conf->raid_disks;
3472                 stripe_set_idx(sh->sector, conf, 0, sh);
3473                 schedule_reconstruction(sh, &s, 1, 1);
3474         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3475                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3476                 atomic_dec(&conf->reshape_stripes);
3477                 wake_up(&conf->wait_for_overlap);
3478                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3479         }
3480
3481         if (s.expanding && s.locked == 0 &&
3482             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3483                 handle_stripe_expansion(conf, sh);
3484
3485 finish:
3486         /* wait for this device to become unblocked */
3487         if (unlikely(s.blocked_rdev))
3488                 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3489
3490         if (s.ops_request)
3491                 raid_run_ops(sh, s.ops_request);
3492
3493         ops_run_io(sh, &s);
3494
3495
3496         if (s.dec_preread_active) {
3497                 /* We delay this until after ops_run_io so that if make_request
3498                  * is waiting on a flush, it won't continue until the writes
3499                  * have actually been submitted.
3500                  */
3501                 atomic_dec(&conf->preread_active_stripes);
3502                 if (atomic_read(&conf->preread_active_stripes) <
3503                     IO_THRESHOLD)
3504                         md_wakeup_thread(conf->mddev->thread);
3505         }
3506
3507         return_io(s.return_bi);
3508
3509         clear_bit(STRIPE_ACTIVE, &sh->state);
3510 }
3511
3512 static void raid5_activate_delayed(raid5_conf_t *conf)
3513 {
3514         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3515                 while (!list_empty(&conf->delayed_list)) {
3516                         struct list_head *l = conf->delayed_list.next;
3517                         struct stripe_head *sh;
3518                         sh = list_entry(l, struct stripe_head, lru);
3519                         list_del_init(l);
3520                         clear_bit(STRIPE_DELAYED, &sh->state);
3521                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3522                                 atomic_inc(&conf->preread_active_stripes);
3523                         list_add_tail(&sh->lru, &conf->hold_list);
3524                 }
3525         }
3526 }
3527
3528 static void activate_bit_delay(raid5_conf_t *conf)
3529 {
3530         /* device_lock is held */
3531         struct list_head head;
3532         list_add(&head, &conf->bitmap_list);
3533         list_del_init(&conf->bitmap_list);
3534         while (!list_empty(&head)) {
3535                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3536                 list_del_init(&sh->lru);
3537                 atomic_inc(&sh->count);
3538                 __release_stripe(conf, sh);
3539         }
3540 }
3541
3542 int md_raid5_congested(mddev_t *mddev, int bits)
3543 {
3544         raid5_conf_t *conf = mddev->private;
3545
3546         /* No difference between reads and writes.  Just check
3547          * how busy the stripe_cache is
3548          */
3549
3550         if (conf->inactive_blocked)
3551                 return 1;
3552         if (conf->quiesce)
3553                 return 1;
3554         if (list_empty_careful(&conf->inactive_list))
3555                 return 1;
3556
3557         return 0;
3558 }
3559 EXPORT_SYMBOL_GPL(md_raid5_congested);
3560
3561 static int raid5_congested(void *data, int bits)
3562 {
3563         mddev_t *mddev = data;
3564
3565         return mddev_congested(mddev, bits) ||
3566                 md_raid5_congested(mddev, bits);
3567 }
3568
3569 /* We want read requests to align with chunks where possible,
3570  * but write requests don't need to.
3571  */
3572 static int raid5_mergeable_bvec(struct request_queue *q,
3573                                 struct bvec_merge_data *bvm,
3574                                 struct bio_vec *biovec)
3575 {
3576         mddev_t *mddev = q->queuedata;
3577         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3578         int max;
3579         unsigned int chunk_sectors = mddev->chunk_sectors;
3580         unsigned int bio_sectors = bvm->bi_size >> 9;
3581
3582         if ((bvm->bi_rw & 1) == WRITE)
3583                 return biovec->bv_len; /* always allow writes to be mergeable */
3584
3585         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3586                 chunk_sectors = mddev->new_chunk_sectors;
3587         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3588         if (max < 0) max = 0;
3589         if (max <= biovec->bv_len && bio_sectors == 0)
3590                 return biovec->bv_len;
3591         else
3592                 return max;
3593 }
3594
3595
3596 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3597 {
3598         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3599         unsigned int chunk_sectors = mddev->chunk_sectors;
3600         unsigned int bio_sectors = bio->bi_size >> 9;
3601
3602         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3603                 chunk_sectors = mddev->new_chunk_sectors;
3604         return  chunk_sectors >=
3605                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3606 }
3607
3608 /*
3609  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3610  *  later sampled by raid5d.
3611  */
3612 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3613 {
3614         unsigned long flags;
3615
3616         spin_lock_irqsave(&conf->device_lock, flags);
3617
3618         bi->bi_next = conf->retry_read_aligned_list;
3619         conf->retry_read_aligned_list = bi;
3620
3621         spin_unlock_irqrestore(&conf->device_lock, flags);
3622         md_wakeup_thread(conf->mddev->thread);
3623 }
3624
3625
3626 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3627 {
3628         struct bio *bi;
3629
3630         bi = conf->retry_read_aligned;
3631         if (bi) {
3632                 conf->retry_read_aligned = NULL;
3633                 return bi;
3634         }
3635         bi = conf->retry_read_aligned_list;
3636         if(bi) {
3637                 conf->retry_read_aligned_list = bi->bi_next;
3638                 bi->bi_next = NULL;
3639                 /*
3640                  * this sets the active strip count to 1 and the processed
3641                  * strip count to zero (upper 8 bits)
3642                  */
3643                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3644         }
3645
3646         return bi;
3647 }
3648
3649
3650 /*
3651  *  The "raid5_align_endio" should check if the read succeeded and if it
3652  *  did, call bio_endio on the original bio (having bio_put the new bio
3653  *  first).
3654  *  If the read failed..
3655  */
3656 static void raid5_align_endio(struct bio *bi, int error)
3657 {
3658         struct bio* raid_bi  = bi->bi_private;
3659         mddev_t *mddev;
3660         raid5_conf_t *conf;
3661         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3662         mdk_rdev_t *rdev;
3663
3664         bio_put(bi);
3665
3666         rdev = (void*)raid_bi->bi_next;
3667         raid_bi->bi_next = NULL;
3668         mddev = rdev->mddev;
3669         conf = mddev->private;
3670
3671         rdev_dec_pending(rdev, conf->mddev);
3672
3673         if (!error && uptodate) {
3674                 bio_endio(raid_bi, 0);
3675                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3676                         wake_up(&conf->wait_for_stripe);
3677                 return;
3678         }
3679
3680
3681         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3682
3683         add_bio_to_retry(raid_bi, conf);
3684 }
3685
3686 static int bio_fits_rdev(struct bio *bi)
3687 {
3688         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3689
3690         if ((bi->bi_size>>9) > queue_max_sectors(q))
3691                 return 0;
3692         blk_recount_segments(q, bi);
3693         if (bi->bi_phys_segments > queue_max_segments(q))
3694                 return 0;
3695
3696         if (q->merge_bvec_fn)
3697                 /* it's too hard to apply the merge_bvec_fn at this stage,
3698                  * just just give up
3699                  */
3700                 return 0;
3701
3702         return 1;
3703 }
3704
3705
3706 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3707 {
3708         raid5_conf_t *conf = mddev->private;
3709         int dd_idx;
3710         struct bio* align_bi;
3711         mdk_rdev_t *rdev;
3712
3713         if (!in_chunk_boundary(mddev, raid_bio)) {
3714                 pr_debug("chunk_aligned_read : non aligned\n");
3715                 return 0;
3716         }
3717         /*
3718          * use bio_clone_mddev to make a copy of the bio
3719          */
3720         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3721         if (!align_bi)
3722                 return 0;
3723         /*
3724          *   set bi_end_io to a new function, and set bi_private to the
3725          *     original bio.
3726          */
3727         align_bi->bi_end_io  = raid5_align_endio;
3728         align_bi->bi_private = raid_bio;
3729         /*
3730          *      compute position
3731          */
3732         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3733                                                     0,
3734                                                     &dd_idx, NULL);
3735
3736         rcu_read_lock();
3737         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3738         if (rdev && test_bit(In_sync, &rdev->flags)) {
3739                 atomic_inc(&rdev->nr_pending);
3740                 rcu_read_unlock();
3741                 raid_bio->bi_next = (void*)rdev;
3742                 align_bi->bi_bdev =  rdev->bdev;
3743                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3744                 align_bi->bi_sector += rdev->data_offset;
3745
3746                 if (!bio_fits_rdev(align_bi)) {
3747                         /* too big in some way */
3748                         bio_put(align_bi);
3749                         rdev_dec_pending(rdev, mddev);
3750                         return 0;
3751                 }
3752
3753                 spin_lock_irq(&conf->device_lock);
3754                 wait_event_lock_irq(conf->wait_for_stripe,
3755                                     conf->quiesce == 0,
3756                                     conf->device_lock, /* nothing */);
3757                 atomic_inc(&conf->active_aligned_reads);
3758                 spin_unlock_irq(&conf->device_lock);
3759
3760                 generic_make_request(align_bi);
3761                 return 1;
3762         } else {
3763                 rcu_read_unlock();
3764                 bio_put(align_bi);
3765                 return 0;
3766         }
3767 }
3768
3769 /* __get_priority_stripe - get the next stripe to process
3770  *
3771  * Full stripe writes are allowed to pass preread active stripes up until
3772  * the bypass_threshold is exceeded.  In general the bypass_count
3773  * increments when the handle_list is handled before the hold_list; however, it
3774  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3775  * stripe with in flight i/o.  The bypass_count will be reset when the
3776  * head of the hold_list has changed, i.e. the head was promoted to the
3777  * handle_list.
3778  */
3779 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3780 {
3781         struct stripe_head *sh;
3782
3783         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3784                   __func__,
3785                   list_empty(&conf->handle_list) ? "empty" : "busy",
3786                   list_empty(&conf->hold_list) ? "empty" : "busy",
3787                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3788
3789         if (!list_empty(&conf->handle_list)) {
3790                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3791
3792                 if (list_empty(&conf->hold_list))
3793                         conf->bypass_count = 0;
3794                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3795                         if (conf->hold_list.next == conf->last_hold)
3796                                 conf->bypass_count++;
3797                         else {
3798                                 conf->last_hold = conf->hold_list.next;
3799                                 conf->bypass_count -= conf->bypass_threshold;
3800                                 if (conf->bypass_count < 0)
3801                                         conf->bypass_count = 0;
3802                         }
3803                 }
3804         } else if (!list_empty(&conf->hold_list) &&
3805                    ((conf->bypass_threshold &&
3806                      conf->bypass_count > conf->bypass_threshold) ||
3807                     atomic_read(&conf->pending_full_writes) == 0)) {
3808                 sh = list_entry(conf->hold_list.next,
3809                                 typeof(*sh), lru);
3810                 conf->bypass_count -= conf->bypass_threshold;
3811                 if (conf->bypass_count < 0)
3812                         conf->bypass_count = 0;
3813         } else
3814                 return NULL;
3815
3816         list_del_init(&sh->lru);
3817         atomic_inc(&sh->count);
3818         BUG_ON(atomic_read(&sh->count) != 1);
3819         return sh;
3820 }
3821
3822 static int make_request(mddev_t *mddev, struct bio * bi)
3823 {
3824         raid5_conf_t *conf = mddev->private;
3825         int dd_idx;
3826         sector_t new_sector;
3827         sector_t logical_sector, last_sector;
3828         struct stripe_head *sh;
3829         const int rw = bio_data_dir(bi);
3830         int remaining;
3831         int plugged;
3832
3833         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3834                 md_flush_request(mddev, bi);
3835                 return 0;
3836         }
3837
3838         md_write_start(mddev, bi);
3839
3840         if (rw == READ &&
3841              mddev->reshape_position == MaxSector &&
3842              chunk_aligned_read(mddev,bi))
3843                 return 0;
3844
3845         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3846         last_sector = bi->bi_sector + (bi->bi_size>>9);
3847         bi->bi_next = NULL;
3848         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3849
3850         plugged = mddev_check_plugged(mddev);
3851         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3852                 DEFINE_WAIT(w);
3853                 int disks, data_disks;
3854                 int previous;
3855
3856         retry:
3857                 previous = 0;
3858                 disks = conf->raid_disks;
3859                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3860                 if (unlikely(conf->reshape_progress != MaxSector)) {
3861                         /* spinlock is needed as reshape_progress may be
3862                          * 64bit on a 32bit platform, and so it might be
3863                          * possible to see a half-updated value
3864                          * Of course reshape_progress could change after
3865                          * the lock is dropped, so once we get a reference
3866                          * to the stripe that we think it is, we will have
3867                          * to check again.
3868                          */
3869                         spin_lock_irq(&conf->device_lock);
3870                         if (mddev->delta_disks < 0
3871                             ? logical_sector < conf->reshape_progress
3872                             : logical_sector >= conf->reshape_progress) {
3873                                 disks = conf->previous_raid_disks;
3874                                 previous = 1;
3875                         } else {
3876                                 if (mddev->delta_disks < 0
3877                                     ? logical_sector < conf->reshape_safe
3878                                     : logical_sector >= conf->reshape_safe) {
3879                                         spin_unlock_irq(&conf->device_lock);
3880                                         schedule();
3881                                         goto retry;
3882                                 }
3883                         }
3884                         spin_unlock_irq(&conf->device_lock);
3885                 }
3886                 data_disks = disks - conf->max_degraded;
3887
3888                 new_sector = raid5_compute_sector(conf, logical_sector,
3889                                                   previous,
3890                                                   &dd_idx, NULL);
3891                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3892                         (unsigned long long)new_sector, 
3893                         (unsigned long long)logical_sector);
3894
3895                 sh = get_active_stripe(conf, new_sector, previous,
3896                                        (bi->bi_rw&RWA_MASK), 0);
3897                 if (sh) {
3898                         if (unlikely(previous)) {
3899                                 /* expansion might have moved on while waiting for a
3900                                  * stripe, so we must do the range check again.
3901                                  * Expansion could still move past after this
3902                                  * test, but as we are holding a reference to
3903                                  * 'sh', we know that if that happens,
3904                                  *  STRIPE_EXPANDING will get set and the expansion
3905                                  * won't proceed until we finish with the stripe.
3906                                  */
3907                                 int must_retry = 0;
3908                                 spin_lock_irq(&conf->device_lock);
3909                                 if (mddev->delta_disks < 0
3910                                     ? logical_sector >= conf->reshape_progress
3911                                     : logical_sector < conf->reshape_progress)
3912                                         /* mismatch, need to try again */
3913                                         must_retry = 1;
3914                                 spin_unlock_irq(&conf->device_lock);
3915                                 if (must_retry) {
3916                                         release_stripe(sh);
3917                                         schedule();
3918                                         goto retry;
3919                                 }
3920                         }
3921
3922                         if (rw == WRITE &&
3923                             logical_sector >= mddev->suspend_lo &&
3924                             logical_sector < mddev->suspend_hi) {
3925                                 release_stripe(sh);
3926                                 /* As the suspend_* range is controlled by
3927                                  * userspace, we want an interruptible
3928                                  * wait.
3929                                  */
3930                                 flush_signals(current);
3931                                 prepare_to_wait(&conf->wait_for_overlap,
3932                                                 &w, TASK_INTERRUPTIBLE);
3933                                 if (logical_sector >= mddev->suspend_lo &&
3934                                     logical_sector < mddev->suspend_hi)
3935                                         schedule();
3936                                 goto retry;
3937                         }
3938
3939                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3940                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
3941                                 /* Stripe is busy expanding or
3942                                  * add failed due to overlap.  Flush everything
3943                                  * and wait a while
3944                                  */
3945                                 md_wakeup_thread(mddev->thread);
3946                                 release_stripe(sh);
3947                                 schedule();
3948                                 goto retry;
3949                         }
3950                         finish_wait(&conf->wait_for_overlap, &w);
3951                         set_bit(STRIPE_HANDLE, &sh->state);
3952                         clear_bit(STRIPE_DELAYED, &sh->state);
3953                         if ((bi->bi_rw & REQ_SYNC) &&
3954                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3955                                 atomic_inc(&conf->preread_active_stripes);
3956                         release_stripe(sh);
3957                 } else {
3958                         /* cannot get stripe for read-ahead, just give-up */
3959                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3960                         finish_wait(&conf->wait_for_overlap, &w);
3961                         break;
3962                 }
3963                         
3964         }
3965         if (!plugged)
3966                 md_wakeup_thread(mddev->thread);
3967
3968         spin_lock_irq(&conf->device_lock);
3969         remaining = raid5_dec_bi_phys_segments(bi);
3970         spin_unlock_irq(&conf->device_lock);
3971         if (remaining == 0) {
3972
3973                 if ( rw == WRITE )
3974                         md_write_end(mddev);
3975
3976                 bio_endio(bi, 0);
3977         }
3978
3979         return 0;
3980 }
3981
3982 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3983
3984 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3985 {
3986         /* reshaping is quite different to recovery/resync so it is
3987          * handled quite separately ... here.
3988          *
3989          * On each call to sync_request, we gather one chunk worth of
3990          * destination stripes and flag them as expanding.
3991          * Then we find all the source stripes and request reads.
3992          * As the reads complete, handle_stripe will copy the data
3993          * into the destination stripe and release that stripe.
3994          */
3995         raid5_conf_t *conf = mddev->private;
3996         struct stripe_head *sh;
3997         sector_t first_sector, last_sector;
3998         int raid_disks = conf->previous_raid_disks;
3999         int data_disks = raid_disks - conf->max_degraded;
4000         int new_data_disks = conf->raid_disks - conf->max_degraded;
4001         int i;
4002         int dd_idx;
4003         sector_t writepos, readpos, safepos;
4004         sector_t stripe_addr;
4005         int reshape_sectors;
4006         struct list_head stripes;
4007
4008         if (sector_nr == 0) {
4009                 /* If restarting in the middle, skip the initial sectors */
4010                 if (mddev->delta_disks < 0 &&
4011                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4012                         sector_nr = raid5_size(mddev, 0, 0)
4013                                 - conf->reshape_progress;
4014                 } else if (mddev->delta_disks >= 0 &&
4015                            conf->reshape_progress > 0)
4016                         sector_nr = conf->reshape_progress;
4017                 sector_div(sector_nr, new_data_disks);
4018                 if (sector_nr) {
4019                         mddev->curr_resync_completed = sector_nr;
4020                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4021                         *skipped = 1;
4022                         return sector_nr;
4023                 }
4024         }
4025
4026         /* We need to process a full chunk at a time.
4027          * If old and new chunk sizes differ, we need to process the
4028          * largest of these
4029          */
4030         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4031                 reshape_sectors = mddev->new_chunk_sectors;
4032         else
4033                 reshape_sectors = mddev->chunk_sectors;
4034
4035         /* we update the metadata when there is more than 3Meg
4036          * in the block range (that is rather arbitrary, should
4037          * probably be time based) or when the data about to be
4038          * copied would over-write the source of the data at
4039          * the front of the range.
4040          * i.e. one new_stripe along from reshape_progress new_maps
4041          * to after where reshape_safe old_maps to
4042          */
4043         writepos = conf->reshape_progress;
4044         sector_div(writepos, new_data_disks);
4045         readpos = conf->reshape_progress;
4046         sector_div(readpos, data_disks);
4047         safepos = conf->reshape_safe;
4048         sector_div(safepos, data_disks);
4049         if (mddev->delta_disks < 0) {
4050                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4051                 readpos += reshape_sectors;
4052                 safepos += reshape_sectors;
4053         } else {
4054                 writepos += reshape_sectors;
4055                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4056                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4057         }
4058
4059         /* 'writepos' is the most advanced device address we might write.
4060          * 'readpos' is the least advanced device address we might read.
4061          * 'safepos' is the least address recorded in the metadata as having
4062          *     been reshaped.
4063          * If 'readpos' is behind 'writepos', then there is no way that we can
4064          * ensure safety in the face of a crash - that must be done by userspace
4065          * making a backup of the data.  So in that case there is no particular
4066          * rush to update metadata.
4067          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4068          * update the metadata to advance 'safepos' to match 'readpos' so that
4069          * we can be safe in the event of a crash.
4070          * So we insist on updating metadata if safepos is behind writepos and
4071          * readpos is beyond writepos.
4072          * In any case, update the metadata every 10 seconds.
4073          * Maybe that number should be configurable, but I'm not sure it is
4074          * worth it.... maybe it could be a multiple of safemode_delay???
4075          */
4076         if ((mddev->delta_disks < 0
4077              ? (safepos > writepos && readpos < writepos)
4078              : (safepos < writepos && readpos > writepos)) ||
4079             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4080                 /* Cannot proceed until we've updated the superblock... */
4081                 wait_event(conf->wait_for_overlap,
4082                            atomic_read(&conf->reshape_stripes)==0);
4083                 mddev->reshape_position = conf->reshape_progress;
4084                 mddev->curr_resync_completed = sector_nr;
4085                 conf->reshape_checkpoint = jiffies;
4086                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4087                 md_wakeup_thread(mddev->thread);
4088                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4089                            kthread_should_stop());
4090                 spin_lock_irq(&conf->device_lock);
4091                 conf->reshape_safe = mddev->reshape_position;
4092                 spin_unlock_irq(&conf->device_lock);
4093                 wake_up(&conf->wait_for_overlap);
4094                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4095         }
4096
4097         if (mddev->delta_disks < 0) {
4098                 BUG_ON(conf->reshape_progress == 0);
4099                 stripe_addr = writepos;
4100                 BUG_ON((mddev->dev_sectors &
4101                         ~((sector_t)reshape_sectors - 1))
4102                        - reshape_sectors - stripe_addr
4103                        != sector_nr);
4104         } else {
4105                 BUG_ON(writepos != sector_nr + reshape_sectors);
4106                 stripe_addr = sector_nr;
4107         }
4108         INIT_LIST_HEAD(&stripes);
4109         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4110                 int j;
4111                 int skipped_disk = 0;
4112                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4113                 set_bit(STRIPE_EXPANDING, &sh->state);
4114                 atomic_inc(&conf->reshape_stripes);
4115                 /* If any of this stripe is beyond the end of the old
4116                  * array, then we need to zero those blocks
4117                  */
4118                 for (j=sh->disks; j--;) {
4119                         sector_t s;
4120                         if (j == sh->pd_idx)
4121                                 continue;
4122                         if (conf->level == 6 &&
4123                             j == sh->qd_idx)
4124                                 continue;
4125                         s = compute_blocknr(sh, j, 0);
4126                         if (s < raid5_size(mddev, 0, 0)) {
4127                                 skipped_disk = 1;
4128                                 continue;
4129                         }
4130                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4131                         set_bit(R5_Expanded, &sh->dev[j].flags);
4132                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4133                 }
4134                 if (!skipped_disk) {
4135                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4136                         set_bit(STRIPE_HANDLE, &sh->state);
4137                 }
4138                 list_add(&sh->lru, &stripes);
4139         }
4140         spin_lock_irq(&conf->device_lock);
4141         if (mddev->delta_disks < 0)
4142                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4143         else
4144                 conf->reshape_progress += reshape_sectors * new_data_disks;
4145         spin_unlock_irq(&conf->device_lock);
4146         /* Ok, those stripe are ready. We can start scheduling
4147          * reads on the source stripes.
4148          * The source stripes are determined by mapping the first and last
4149          * block on the destination stripes.
4150          */
4151         first_sector =
4152                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4153                                      1, &dd_idx, NULL);
4154         last_sector =
4155                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4156                                             * new_data_disks - 1),
4157                                      1, &dd_idx, NULL);
4158         if (last_sector >= mddev->dev_sectors)
4159                 last_sector = mddev->dev_sectors - 1;
4160         while (first_sector <= last_sector) {
4161                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4162                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4163                 set_bit(STRIPE_HANDLE, &sh->state);
4164                 release_stripe(sh);
4165                 first_sector += STRIPE_SECTORS;
4166         }
4167         /* Now that the sources are clearly marked, we can release
4168          * the destination stripes
4169          */
4170         while (!list_empty(&stripes)) {
4171                 sh = list_entry(stripes.next, struct stripe_head, lru);
4172                 list_del_init(&sh->lru);
4173                 release_stripe(sh);
4174         }
4175         /* If this takes us to the resync_max point where we have to pause,
4176          * then we need to write out the superblock.
4177          */
4178         sector_nr += reshape_sectors;
4179         if ((sector_nr - mddev->curr_resync_completed) * 2
4180             >= mddev->resync_max - mddev->curr_resync_completed) {
4181                 /* Cannot proceed until we've updated the superblock... */
4182                 wait_event(conf->wait_for_overlap,
4183                            atomic_read(&conf->reshape_stripes) == 0);
4184                 mddev->reshape_position = conf->reshape_progress;
4185                 mddev->curr_resync_completed = sector_nr;
4186                 conf->reshape_checkpoint = jiffies;
4187                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4188                 md_wakeup_thread(mddev->thread);
4189                 wait_event(mddev->sb_wait,
4190                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4191                            || kthread_should_stop());
4192                 spin_lock_irq(&conf->device_lock);
4193                 conf->reshape_safe = mddev->reshape_position;
4194                 spin_unlock_irq(&conf->device_lock);
4195                 wake_up(&conf->wait_for_overlap);
4196                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4197         }
4198         return reshape_sectors;
4199 }
4200
4201 /* FIXME go_faster isn't used */
4202 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4203 {
4204         raid5_conf_t *conf = mddev->private;
4205         struct stripe_head *sh;
4206         sector_t max_sector = mddev->dev_sectors;
4207         sector_t sync_blocks;
4208         int still_degraded = 0;
4209         int i;
4210
4211         if (sector_nr >= max_sector) {
4212                 /* just being told to finish up .. nothing much to do */
4213
4214                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4215                         end_reshape(conf);
4216                         return 0;
4217                 }
4218
4219                 if (mddev->curr_resync < max_sector) /* aborted */
4220                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4221                                         &sync_blocks, 1);
4222                 else /* completed sync */
4223                         conf->fullsync = 0;
4224                 bitmap_close_sync(mddev->bitmap);
4225
4226                 return 0;
4227         }
4228
4229         /* Allow raid5_quiesce to complete */
4230         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4231
4232         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4233                 return reshape_request(mddev, sector_nr, skipped);
4234
4235         /* No need to check resync_max as we never do more than one
4236          * stripe, and as resync_max will always be on a chunk boundary,
4237          * if the check in md_do_sync didn't fire, there is no chance
4238          * of overstepping resync_max here
4239          */
4240
4241         /* if there is too many failed drives and we are trying
4242          * to resync, then assert that we are finished, because there is
4243          * nothing we can do.
4244          */
4245         if (mddev->degraded >= conf->max_degraded &&
4246             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4247                 sector_t rv = mddev->dev_sectors - sector_nr;
4248                 *skipped = 1;
4249                 return rv;
4250         }
4251         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4252             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4253             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4254                 /* we can skip this block, and probably more */
4255                 sync_blocks /= STRIPE_SECTORS;
4256                 *skipped = 1;
4257                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4258         }
4259
4260
4261         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4262
4263         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4264         if (sh == NULL) {
4265                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4266                 /* make sure we don't swamp the stripe cache if someone else
4267                  * is trying to get access
4268                  */
4269                 schedule_timeout_uninterruptible(1);
4270         }
4271         /* Need to check if array will still be degraded after recovery/resync
4272          * We don't need to check the 'failed' flag as when that gets set,
4273          * recovery aborts.
4274          */
4275         for (i = 0; i < conf->raid_disks; i++)
4276                 if (conf->disks[i].rdev == NULL)
4277                         still_degraded = 1;
4278
4279         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4280
4281         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4282
4283         handle_stripe(sh);
4284         release_stripe(sh);
4285
4286         return STRIPE_SECTORS;
4287 }
4288
4289 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4290 {
4291         /* We may not be able to submit a whole bio at once as there
4292          * may not be enough stripe_heads available.
4293          * We cannot pre-allocate enough stripe_heads as we may need
4294          * more than exist in the cache (if we allow ever large chunks).
4295          * So we do one stripe head at a time and record in
4296          * ->bi_hw_segments how many have been done.
4297          *
4298          * We *know* that this entire raid_bio is in one chunk, so
4299          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4300          */
4301         struct stripe_head *sh;
4302         int dd_idx;
4303         sector_t sector, logical_sector, last_sector;
4304         int scnt = 0;
4305         int remaining;
4306         int handled = 0;
4307
4308         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4309         sector = raid5_compute_sector(conf, logical_sector,
4310                                       0, &dd_idx, NULL);
4311         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4312
4313         for (; logical_sector < last_sector;
4314              logical_sector += STRIPE_SECTORS,
4315                      sector += STRIPE_SECTORS,
4316                      scnt++) {
4317
4318                 if (scnt < raid5_bi_hw_segments(raid_bio))
4319                         /* already done this stripe */
4320                         continue;
4321
4322                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4323
4324                 if (!sh) {
4325                         /* failed to get a stripe - must wait */
4326                         raid5_set_bi_hw_segments(raid_bio, scnt);
4327                         conf->retry_read_aligned = raid_bio;
4328                         return handled;
4329                 }
4330
4331                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4332                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4333                         release_stripe(sh);
4334                         raid5_set_bi_hw_segments(raid_bio, scnt);
4335                         conf->retry_read_aligned = raid_bio;
4336                         return handled;
4337                 }
4338
4339                 handle_stripe(sh);
4340                 release_stripe(sh);
4341                 handled++;
4342         }
4343         spin_lock_irq(&conf->device_lock);
4344         remaining = raid5_dec_bi_phys_segments(raid_bio);
4345         spin_unlock_irq(&conf->device_lock);
4346         if (remaining == 0)
4347                 bio_endio(raid_bio, 0);
4348         if (atomic_dec_and_test(&conf->active_aligned_reads))
4349                 wake_up(&conf->wait_for_stripe);
4350         return handled;
4351 }
4352
4353
4354 /*
4355  * This is our raid5 kernel thread.
4356  *
4357  * We scan the hash table for stripes which can be handled now.
4358  * During the scan, completed stripes are saved for us by the interrupt
4359  * handler, so that they will not have to wait for our next wakeup.
4360  */
4361 static void raid5d(mddev_t *mddev)
4362 {
4363         struct stripe_head *sh;
4364         raid5_conf_t *conf = mddev->private;
4365         int handled;
4366         struct blk_plug plug;
4367
4368         pr_debug("+++ raid5d active\n");
4369
4370         md_check_recovery(mddev);
4371
4372         blk_start_plug(&plug);
4373         handled = 0;
4374         spin_lock_irq(&conf->device_lock);
4375         while (1) {
4376                 struct bio *bio;
4377
4378                 if (atomic_read(&mddev->plug_cnt) == 0 &&
4379                     !list_empty(&conf->bitmap_list)) {
4380                         /* Now is a good time to flush some bitmap updates */
4381                         conf->seq_flush++;
4382                         spin_unlock_irq(&conf->device_lock);
4383                         bitmap_unplug(mddev->bitmap);
4384                         spin_lock_irq(&conf->device_lock);
4385                         conf->seq_write = conf->seq_flush;
4386                         activate_bit_delay(conf);
4387                 }
4388                 if (atomic_read(&mddev->plug_cnt) == 0)
4389                         raid5_activate_delayed(conf);
4390
4391                 while ((bio = remove_bio_from_retry(conf))) {
4392                         int ok;
4393                         spin_unlock_irq(&conf->device_lock);
4394                         ok = retry_aligned_read(conf, bio);
4395                         spin_lock_irq(&conf->device_lock);
4396                         if (!ok)
4397                                 break;
4398                         handled++;
4399                 }
4400
4401                 sh = __get_priority_stripe(conf);
4402
4403                 if (!sh)
4404                         break;
4405                 spin_unlock_irq(&conf->device_lock);
4406                 
4407                 handled++;
4408                 handle_stripe(sh);
4409                 release_stripe(sh);
4410                 cond_resched();
4411
4412                 spin_lock_irq(&conf->device_lock);
4413         }
4414         pr_debug("%d stripes handled\n", handled);
4415
4416         spin_unlock_irq(&conf->device_lock);
4417
4418         async_tx_issue_pending_all();
4419         blk_finish_plug(&plug);
4420
4421         pr_debug("--- raid5d inactive\n");
4422 }
4423
4424 static ssize_t
4425 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4426 {
4427         raid5_conf_t *conf = mddev->private;
4428         if (conf)
4429                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4430         else
4431                 return 0;
4432 }
4433
4434 int
4435 raid5_set_cache_size(mddev_t *mddev, int size)
4436 {
4437         raid5_conf_t *conf = mddev->private;
4438         int err;
4439
4440         if (size <= 16 || size > 32768)
4441                 return -EINVAL;
4442         while (size < conf->max_nr_stripes) {
4443                 if (drop_one_stripe(conf))
4444                         conf->max_nr_stripes--;
4445                 else
4446                         break;
4447         }
4448         err = md_allow_write(mddev);
4449         if (err)
4450                 return err;
4451         while (size > conf->max_nr_stripes) {
4452                 if (grow_one_stripe(conf))
4453                         conf->max_nr_stripes++;
4454                 else break;
4455         }
4456         return 0;
4457 }
4458 EXPORT_SYMBOL(raid5_set_cache_size);
4459
4460 static ssize_t
4461 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4462 {
4463         raid5_conf_t *conf = mddev->private;
4464         unsigned long new;
4465         int err;
4466
4467         if (len >= PAGE_SIZE)
4468                 return -EINVAL;
4469         if (!conf)
4470                 return -ENODEV;
4471
4472         if (strict_strtoul(page, 10, &new))
4473                 return -EINVAL;
4474         err = raid5_set_cache_size(mddev, new);
4475         if (err)
4476                 return err;
4477         return len;
4478 }
4479
4480 static struct md_sysfs_entry
4481 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4482                                 raid5_show_stripe_cache_size,
4483                                 raid5_store_stripe_cache_size);
4484
4485 static ssize_t
4486 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4487 {
4488         raid5_conf_t *conf = mddev->private;
4489         if (conf)
4490                 return sprintf(page, "%d\n", conf->bypass_threshold);
4491         else
4492                 return 0;
4493 }
4494
4495 static ssize_t
4496 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4497 {
4498         raid5_conf_t *conf = mddev->private;
4499         unsigned long new;
4500         if (len >= PAGE_SIZE)
4501                 return -EINVAL;
4502         if (!conf)
4503                 return -ENODEV;
4504
4505         if (strict_strtoul(page, 10, &new))
4506                 return -EINVAL;
4507         if (new > conf->max_nr_stripes)
4508                 return -EINVAL;
4509         conf->bypass_threshold = new;
4510         return len;
4511 }
4512
4513 static struct md_sysfs_entry
4514 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4515                                         S_IRUGO | S_IWUSR,
4516                                         raid5_show_preread_threshold,
4517                                         raid5_store_preread_threshold);
4518
4519 static ssize_t
4520 stripe_cache_active_show(mddev_t *mddev, char *page)
4521 {
4522         raid5_conf_t *conf = mddev->private;
4523         if (conf)
4524                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4525         else
4526                 return 0;
4527 }
4528
4529 static struct md_sysfs_entry
4530 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4531
4532 static struct attribute *raid5_attrs[] =  {
4533         &raid5_stripecache_size.attr,
4534         &raid5_stripecache_active.attr,
4535         &raid5_preread_bypass_threshold.attr,
4536         NULL,
4537 };
4538 static struct attribute_group raid5_attrs_group = {
4539         .name = NULL,
4540         .attrs = raid5_attrs,
4541 };
4542
4543 static sector_t
4544 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4545 {
4546         raid5_conf_t *conf = mddev->private;
4547
4548         if (!sectors)
4549                 sectors = mddev->dev_sectors;
4550         if (!raid_disks)
4551                 /* size is defined by the smallest of previous and new size */
4552                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4553
4554         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4555         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4556         return sectors * (raid_disks - conf->max_degraded);
4557 }
4558
4559 static void raid5_free_percpu(raid5_conf_t *conf)
4560 {
4561         struct raid5_percpu *percpu;
4562         unsigned long cpu;
4563
4564         if (!conf->percpu)
4565                 return;
4566
4567         get_online_cpus();
4568         for_each_possible_cpu(cpu) {
4569                 percpu = per_cpu_ptr(conf->percpu, cpu);
4570                 safe_put_page(percpu->spare_page);
4571                 kfree(percpu->scribble);
4572         }
4573 #ifdef CONFIG_HOTPLUG_CPU
4574         unregister_cpu_notifier(&conf->cpu_notify);
4575 #endif
4576         put_online_cpus();
4577
4578         free_percpu(conf->percpu);
4579 }
4580
4581 static void free_conf(raid5_conf_t *conf)
4582 {
4583         shrink_stripes(conf);
4584         raid5_free_percpu(conf);
4585         kfree(conf->disks);
4586         kfree(conf->stripe_hashtbl);
4587         kfree(conf);
4588 }
4589
4590 #ifdef CONFIG_HOTPLUG_CPU
4591 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4592                               void *hcpu)
4593 {
4594         raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4595         long cpu = (long)hcpu;
4596         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4597
4598         switch (action) {
4599         case CPU_UP_PREPARE:
4600         case CPU_UP_PREPARE_FROZEN:
4601                 if (conf->level == 6 && !percpu->spare_page)
4602                         percpu->spare_page = alloc_page(GFP_KERNEL);
4603                 if (!percpu->scribble)
4604                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4605
4606                 if (!percpu->scribble ||
4607                     (conf->level == 6 && !percpu->spare_page)) {
4608                         safe_put_page(percpu->spare_page);
4609                         kfree(percpu->scribble);
4610                         pr_err("%s: failed memory allocation for cpu%ld\n",
4611                                __func__, cpu);
4612                         return notifier_from_errno(-ENOMEM);
4613                 }
4614                 break;
4615         case CPU_DEAD:
4616         case CPU_DEAD_FROZEN:
4617                 safe_put_page(percpu->spare_page);
4618                 kfree(percpu->scribble);
4619                 percpu->spare_page = NULL;
4620                 percpu->scribble = NULL;
4621                 break;
4622         default:
4623                 break;
4624         }
4625         return NOTIFY_OK;
4626 }
4627 #endif
4628
4629 static int raid5_alloc_percpu(raid5_conf_t *conf)
4630 {
4631         unsigned long cpu;
4632         struct page *spare_page;
4633         struct raid5_percpu __percpu *allcpus;
4634         void *scribble;
4635         int err;
4636
4637         allcpus = alloc_percpu(struct raid5_percpu);
4638         if (!allcpus)
4639                 return -ENOMEM;
4640         conf->percpu = allcpus;
4641
4642         get_online_cpus();
4643         err = 0;
4644         for_each_present_cpu(cpu) {
4645                 if (conf->level == 6) {
4646                         spare_page = alloc_page(GFP_KERNEL);
4647                         if (!spare_page) {
4648                                 err = -ENOMEM;
4649                                 break;
4650                         }
4651                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4652                 }
4653                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4654                 if (!scribble) {
4655                         err = -ENOMEM;
4656                         break;
4657                 }
4658                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4659         }
4660 #ifdef CONFIG_HOTPLUG_CPU
4661         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4662         conf->cpu_notify.priority = 0;
4663         if (err == 0)
4664                 err = register_cpu_notifier(&conf->cpu_notify);
4665 #endif
4666         put_online_cpus();
4667
4668         return err;
4669 }
4670
4671 static raid5_conf_t *setup_conf(mddev_t *mddev)
4672 {
4673         raid5_conf_t *conf;
4674         int raid_disk, memory, max_disks;
4675         mdk_rdev_t *rdev;
4676         struct disk_info *disk;
4677
4678         if (mddev->new_level != 5
4679             && mddev->new_level != 4
4680             && mddev->new_level != 6) {
4681                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4682                        mdname(mddev), mddev->new_level);
4683                 return ERR_PTR(-EIO);
4684         }
4685         if ((mddev->new_level == 5
4686              && !algorithm_valid_raid5(mddev->new_layout)) ||
4687             (mddev->new_level == 6
4688              && !algorithm_valid_raid6(mddev->new_layout))) {
4689                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4690                        mdname(mddev), mddev->new_layout);
4691                 return ERR_PTR(-EIO);
4692         }
4693         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4694                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4695                        mdname(mddev), mddev->raid_disks);
4696                 return ERR_PTR(-EINVAL);
4697         }
4698
4699         if (!mddev->new_chunk_sectors ||
4700             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4701             !is_power_of_2(mddev->new_chunk_sectors)) {
4702                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4703                        mdname(mddev), mddev->new_chunk_sectors << 9);
4704                 return ERR_PTR(-EINVAL);
4705         }
4706
4707         conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4708         if (conf == NULL)
4709                 goto abort;
4710         spin_lock_init(&conf->device_lock);
4711         init_waitqueue_head(&conf->wait_for_stripe);
4712         init_waitqueue_head(&conf->wait_for_overlap);
4713         INIT_LIST_HEAD(&conf->handle_list);
4714         INIT_LIST_HEAD(&conf->hold_list);
4715         INIT_LIST_HEAD(&conf->delayed_list);
4716         INIT_LIST_HEAD(&conf->bitmap_list);
4717         INIT_LIST_HEAD(&conf->inactive_list);
4718         atomic_set(&conf->active_stripes, 0);
4719         atomic_set(&conf->preread_active_stripes, 0);
4720         atomic_set(&conf->active_aligned_reads, 0);
4721         conf->bypass_threshold = BYPASS_THRESHOLD;
4722
4723         conf->raid_disks = mddev->raid_disks;
4724         if (mddev->reshape_position == MaxSector)
4725                 conf->previous_raid_disks = mddev->raid_disks;
4726         else
4727                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4728         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4729         conf->scribble_len = scribble_len(max_disks);
4730
4731         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4732                               GFP_KERNEL);
4733         if (!conf->disks)
4734                 goto abort;
4735
4736         conf->mddev = mddev;
4737
4738         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4739                 goto abort;
4740
4741         conf->level = mddev->new_level;
4742         if (raid5_alloc_percpu(conf) != 0)
4743                 goto abort;
4744
4745         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4746
4747         list_for_each_entry(rdev, &mddev->disks, same_set) {
4748                 raid_disk = rdev->raid_disk;
4749                 if (raid_disk >= max_disks
4750                     || raid_disk < 0)
4751                         continue;
4752                 disk = conf->disks + raid_disk;
4753
4754                 disk->rdev = rdev;
4755
4756                 if (test_bit(In_sync, &rdev->flags)) {
4757                         char b[BDEVNAME_SIZE];
4758                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4759                                " disk %d\n",
4760                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4761                 } else if (rdev->saved_raid_disk != raid_disk)
4762                         /* Cannot rely on bitmap to complete recovery */
4763                         conf->fullsync = 1;
4764         }
4765
4766         conf->chunk_sectors = mddev->new_chunk_sectors;
4767         conf->level = mddev->new_level;
4768         if (conf->level == 6)
4769                 conf->max_degraded = 2;
4770         else
4771                 conf->max_degraded = 1;
4772         conf->algorithm = mddev->new_layout;
4773         conf->max_nr_stripes = NR_STRIPES;
4774         conf->reshape_progress = mddev->reshape_position;
4775         if (conf->reshape_progress != MaxSector) {
4776                 conf->prev_chunk_sectors = mddev->chunk_sectors;
4777                 conf->prev_algo = mddev->layout;
4778         }
4779
4780         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4781                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4782         if (grow_stripes(conf, conf->max_nr_stripes)) {
4783                 printk(KERN_ERR
4784                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
4785                        mdname(mddev), memory);
4786                 goto abort;
4787         } else
4788                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4789                        mdname(mddev), memory);
4790
4791         conf->thread = md_register_thread(raid5d, mddev, NULL);
4792         if (!conf->thread) {
4793                 printk(KERN_ERR
4794                        "md/raid:%s: couldn't allocate thread.\n",
4795                        mdname(mddev));
4796                 goto abort;
4797         }
4798
4799         return conf;
4800
4801  abort:
4802         if (conf) {
4803                 free_conf(conf);
4804                 return ERR_PTR(-EIO);
4805         } else
4806                 return ERR_PTR(-ENOMEM);
4807 }
4808
4809
4810 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4811 {
4812         switch (algo) {
4813         case ALGORITHM_PARITY_0:
4814                 if (raid_disk < max_degraded)
4815                         return 1;
4816                 break;
4817         case ALGORITHM_PARITY_N:
4818                 if (raid_disk >= raid_disks - max_degraded)
4819                         return 1;
4820                 break;
4821         case ALGORITHM_PARITY_0_6:
4822                 if (raid_disk == 0 || 
4823                     raid_disk == raid_disks - 1)
4824                         return 1;
4825                 break;
4826         case ALGORITHM_LEFT_ASYMMETRIC_6:
4827         case ALGORITHM_RIGHT_ASYMMETRIC_6:
4828         case ALGORITHM_LEFT_SYMMETRIC_6:
4829         case ALGORITHM_RIGHT_SYMMETRIC_6:
4830                 if (raid_disk == raid_disks - 1)
4831                         return 1;
4832         }
4833         return 0;
4834 }
4835
4836 static int run(mddev_t *mddev)
4837 {
4838         raid5_conf_t *conf;
4839         int working_disks = 0;
4840         int dirty_parity_disks = 0;
4841         mdk_rdev_t *rdev;
4842         sector_t reshape_offset = 0;
4843
4844         if (mddev->recovery_cp != MaxSector)
4845                 printk(KERN_NOTICE "md/raid:%s: not clean"
4846                        " -- starting background reconstruction\n",
4847                        mdname(mddev));
4848         if (mddev->reshape_position != MaxSector) {
4849                 /* Check that we can continue the reshape.
4850                  * Currently only disks can change, it must
4851                  * increase, and we must be past the point where
4852                  * a stripe over-writes itself
4853                  */
4854                 sector_t here_new, here_old;
4855                 int old_disks;
4856                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4857
4858                 if (mddev->new_level != mddev->level) {
4859                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
4860                                "required - aborting.\n",
4861                                mdname(mddev));
4862                         return -EINVAL;
4863                 }
4864                 old_disks = mddev->raid_disks - mddev->delta_disks;
4865                 /* reshape_position must be on a new-stripe boundary, and one
4866                  * further up in new geometry must map after here in old
4867                  * geometry.
4868                  */
4869                 here_new = mddev->reshape_position;
4870                 if (sector_div(here_new, mddev->new_chunk_sectors *
4871                                (mddev->raid_disks - max_degraded))) {
4872                         printk(KERN_ERR "md/raid:%s: reshape_position not "
4873                                "on a stripe boundary\n", mdname(mddev));
4874                         return -EINVAL;
4875                 }
4876                 reshape_offset = here_new * mddev->new_chunk_sectors;
4877                 /* here_new is the stripe we will write to */
4878                 here_old = mddev->reshape_position;
4879                 sector_div(here_old, mddev->chunk_sectors *
4880                            (old_disks-max_degraded));
4881                 /* here_old is the first stripe that we might need to read
4882                  * from */
4883                 if (mddev->delta_disks == 0) {
4884                         /* We cannot be sure it is safe to start an in-place
4885                          * reshape.  It is only safe if user-space if monitoring
4886                          * and taking constant backups.
4887                          * mdadm always starts a situation like this in
4888                          * readonly mode so it can take control before
4889                          * allowing any writes.  So just check for that.
4890                          */
4891                         if ((here_new * mddev->new_chunk_sectors != 
4892                              here_old * mddev->chunk_sectors) ||
4893                             mddev->ro == 0) {
4894                                 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4895                                        " in read-only mode - aborting\n",
4896                                        mdname(mddev));
4897                                 return -EINVAL;
4898                         }
4899                 } else if (mddev->delta_disks < 0
4900                     ? (here_new * mddev->new_chunk_sectors <=
4901                        here_old * mddev->chunk_sectors)
4902                     : (here_new * mddev->new_chunk_sectors >=
4903                        here_old * mddev->chunk_sectors)) {
4904                         /* Reading from the same stripe as writing to - bad */
4905                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4906                                "auto-recovery - aborting.\n",
4907                                mdname(mddev));
4908                         return -EINVAL;
4909                 }
4910                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4911                        mdname(mddev));
4912                 /* OK, we should be able to continue; */
4913         } else {
4914                 BUG_ON(mddev->level != mddev->new_level);
4915                 BUG_ON(mddev->layout != mddev->new_layout);
4916                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4917                 BUG_ON(mddev->delta_disks != 0);
4918         }
4919
4920         if (mddev->private == NULL)
4921                 conf = setup_conf(mddev);
4922         else
4923                 conf = mddev->private;
4924
4925         if (IS_ERR(conf))
4926                 return PTR_ERR(conf);
4927
4928         mddev->thread = conf->thread;
4929         conf->thread = NULL;
4930         mddev->private = conf;
4931
4932         /*
4933          * 0 for a fully functional array, 1 or 2 for a degraded array.
4934          */
4935         list_for_each_entry(rdev, &mddev->disks, same_set) {
4936                 if (rdev->raid_disk < 0)
4937                         continue;
4938                 if (test_bit(In_sync, &rdev->flags)) {
4939                         working_disks++;
4940                         continue;
4941                 }
4942                 /* This disc is not fully in-sync.  However if it
4943                  * just stored parity (beyond the recovery_offset),
4944                  * when we don't need to be concerned about the
4945                  * array being dirty.
4946                  * When reshape goes 'backwards', we never have
4947                  * partially completed devices, so we only need
4948                  * to worry about reshape going forwards.
4949                  */
4950                 /* Hack because v0.91 doesn't store recovery_offset properly. */
4951                 if (mddev->major_version == 0 &&
4952                     mddev->minor_version > 90)
4953                         rdev->recovery_offset = reshape_offset;
4954                         
4955                 if (rdev->recovery_offset < reshape_offset) {
4956                         /* We need to check old and new layout */
4957                         if (!only_parity(rdev->raid_disk,
4958                                          conf->algorithm,
4959                                          conf->raid_disks,
4960                                          conf->max_degraded))
4961                                 continue;
4962                 }
4963                 if (!only_parity(rdev->raid_disk,
4964                                  conf->prev_algo,
4965                                  conf->previous_raid_disks,
4966                                  conf->max_degraded))
4967                         continue;
4968                 dirty_parity_disks++;
4969         }
4970
4971         mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
4972                            - working_disks);
4973
4974         if (has_failed(conf)) {
4975                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
4976                         " (%d/%d failed)\n",
4977                         mdname(mddev), mddev->degraded, conf->raid_disks);
4978                 goto abort;
4979         }
4980
4981         /* device size must be a multiple of chunk size */
4982         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
4983         mddev->resync_max_sectors = mddev->dev_sectors;
4984
4985         if (mddev->degraded > dirty_parity_disks &&
4986             mddev->recovery_cp != MaxSector) {
4987                 if (mddev->ok_start_degraded)
4988                         printk(KERN_WARNING
4989                                "md/raid:%s: starting dirty degraded array"
4990                                " - data corruption possible.\n",
4991                                mdname(mddev));
4992                 else {
4993                         printk(KERN_ERR
4994                                "md/raid:%s: cannot start dirty degraded array.\n",
4995                                mdname(mddev));
4996                         goto abort;
4997                 }
4998         }
4999
5000         if (mddev->degraded == 0)
5001                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5002                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5003                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5004                        mddev->new_layout);
5005         else
5006                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5007                        " out of %d devices, algorithm %d\n",
5008                        mdname(mddev), conf->level,
5009                        mddev->raid_disks - mddev->degraded,
5010                        mddev->raid_disks, mddev->new_layout);
5011
5012         print_raid5_conf(conf);
5013
5014         if (conf->reshape_progress != MaxSector) {
5015                 conf->reshape_safe = conf->reshape_progress;
5016                 atomic_set(&conf->reshape_stripes, 0);
5017                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5018                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5019                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5020                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5021                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5022                                                         "reshape");
5023         }
5024
5025
5026         /* Ok, everything is just fine now */
5027         if (mddev->to_remove == &raid5_attrs_group)
5028                 mddev->to_remove = NULL;
5029         else if (mddev->kobj.sd &&
5030             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5031                 printk(KERN_WARNING
5032                        "raid5: failed to create sysfs attributes for %s\n",
5033                        mdname(mddev));
5034         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5035
5036         if (mddev->queue) {
5037                 int chunk_size;
5038                 /* read-ahead size must cover two whole stripes, which
5039                  * is 2 * (datadisks) * chunksize where 'n' is the
5040                  * number of raid devices
5041                  */
5042                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5043                 int stripe = data_disks *
5044                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5045                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5046                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5047
5048                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5049
5050                 mddev->queue->backing_dev_info.congested_data = mddev;
5051                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5052
5053                 chunk_size = mddev->chunk_sectors << 9;
5054                 blk_queue_io_min(mddev->queue, chunk_size);
5055                 blk_queue_io_opt(mddev->queue, chunk_size *
5056                                  (conf->raid_disks - conf->max_degraded));
5057
5058                 list_for_each_entry(rdev, &mddev->disks, same_set)
5059                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5060                                           rdev->data_offset << 9);
5061         }
5062
5063         return 0;
5064 abort:
5065         md_unregister_thread(mddev->thread);
5066         mddev->thread = NULL;
5067         if (conf) {
5068                 print_raid5_conf(conf);
5069                 free_conf(conf);
5070         }
5071         mddev->private = NULL;
5072         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5073         return -EIO;
5074 }
5075
5076 static int stop(mddev_t *mddev)
5077 {
5078         raid5_conf_t *conf = mddev->private;
5079
5080         md_unregister_thread(mddev->thread);
5081         mddev->thread = NULL;
5082         if (mddev->queue)
5083                 mddev->queue->backing_dev_info.congested_fn = NULL;
5084         free_conf(conf);
5085         mddev->private = NULL;
5086         mddev->to_remove = &raid5_attrs_group;
5087         return 0;
5088 }
5089
5090 #ifdef DEBUG
5091 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5092 {
5093         int i;
5094
5095         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5096                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5097         seq_printf(seq, "sh %llu,  count %d.\n",
5098                    (unsigned long long)sh->sector, atomic_read(&sh->count));
5099         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5100         for (i = 0; i < sh->disks; i++) {
5101                 seq_printf(seq, "(cache%d: %p %ld) ",
5102                            i, sh->dev[i].page, sh->dev[i].flags);
5103         }
5104         seq_printf(seq, "\n");
5105 }
5106
5107 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5108 {
5109         struct stripe_head *sh;
5110         struct hlist_node *hn;
5111         int i;
5112
5113         spin_lock_irq(&conf->device_lock);
5114         for (i = 0; i < NR_HASH; i++) {
5115                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5116                         if (sh->raid_conf != conf)
5117                                 continue;
5118                         print_sh(seq, sh);
5119                 }
5120         }
5121         spin_unlock_irq(&conf->device_lock);
5122 }
5123 #endif
5124
5125 static void status(struct seq_file *seq, mddev_t *mddev)
5126 {
5127         raid5_conf_t *conf = mddev->private;
5128         int i;
5129
5130         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5131                 mddev->chunk_sectors / 2, mddev->layout);
5132         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5133         for (i = 0; i < conf->raid_disks; i++)
5134                 seq_printf (seq, "%s",
5135                                conf->disks[i].rdev &&
5136                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5137         seq_printf (seq, "]");
5138 #ifdef DEBUG
5139         seq_printf (seq, "\n");
5140         printall(seq, conf);
5141 #endif
5142 }
5143
5144 static void print_raid5_conf (raid5_conf_t *conf)
5145 {
5146         int i;
5147         struct disk_info *tmp;
5148
5149         printk(KERN_DEBUG "RAID conf printout:\n");
5150         if (!conf) {
5151                 printk("(conf==NULL)\n");
5152                 return;
5153         }
5154         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5155                conf->raid_disks,
5156                conf->raid_disks - conf->mddev->degraded);
5157
5158         for (i = 0; i < conf->raid_disks; i++) {
5159                 char b[BDEVNAME_SIZE];
5160                 tmp = conf->disks + i;
5161                 if (tmp->rdev)
5162                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5163                                i, !test_bit(Faulty, &tmp->rdev->flags),
5164                                bdevname(tmp->rdev->bdev, b));
5165         }
5166 }
5167
5168 static int raid5_spare_active(mddev_t *mddev)
5169 {
5170         int i;
5171         raid5_conf_t *conf = mddev->private;
5172         struct disk_info *tmp;
5173         int count = 0;
5174         unsigned long flags;
5175
5176         for (i = 0; i < conf->raid_disks; i++) {
5177                 tmp = conf->disks + i;
5178                 if (tmp->rdev
5179                     && tmp->rdev->recovery_offset == MaxSector
5180                     && !test_bit(Faulty, &tmp->rdev->flags)
5181                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5182                         count++;
5183                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5184                 }
5185         }
5186         spin_lock_irqsave(&conf->device_lock, flags);
5187         mddev->degraded -= count;
5188         spin_unlock_irqrestore(&conf->device_lock, flags);
5189         print_raid5_conf(conf);
5190         return count;
5191 }
5192
5193 static int raid5_remove_disk(mddev_t *mddev, int number)
5194 {
5195         raid5_conf_t *conf = mddev->private;
5196         int err = 0;
5197         mdk_rdev_t *rdev;
5198         struct disk_info *p = conf->disks + number;
5199
5200         print_raid5_conf(conf);
5201         rdev = p->rdev;
5202         if (rdev) {
5203                 if (number >= conf->raid_disks &&
5204                     conf->reshape_progress == MaxSector)
5205                         clear_bit(In_sync, &rdev->flags);
5206
5207                 if (test_bit(In_sync, &rdev->flags) ||
5208                     atomic_read(&rdev->nr_pending)) {
5209                         err = -EBUSY;
5210                         goto abort;
5211                 }
5212                 /* Only remove non-faulty devices if recovery
5213                  * isn't possible.
5214                  */
5215                 if (!test_bit(Faulty, &rdev->flags) &&
5216                     !has_failed(conf) &&
5217                     number < conf->raid_disks) {
5218                         err = -EBUSY;
5219                         goto abort;
5220                 }
5221                 p->rdev = NULL;
5222                 synchronize_rcu();
5223                 if (atomic_read(&rdev->nr_pending)) {
5224                         /* lost the race, try later */
5225                         err = -EBUSY;
5226                         p->rdev = rdev;
5227                 }
5228         }
5229 abort:
5230
5231         print_raid5_conf(conf);
5232         return err;
5233 }
5234
5235 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5236 {
5237         raid5_conf_t *conf = mddev->private;
5238         int err = -EEXIST;
5239         int disk;
5240         struct disk_info *p;
5241         int first = 0;
5242         int last = conf->raid_disks - 1;
5243
5244         if (has_failed(conf))
5245                 /* no point adding a device */
5246                 return -EINVAL;
5247
5248         if (rdev->raid_disk >= 0)
5249                 first = last = rdev->raid_disk;
5250
5251         /*
5252          * find the disk ... but prefer rdev->saved_raid_disk
5253          * if possible.
5254          */
5255         if (rdev->saved_raid_disk >= 0 &&
5256             rdev->saved_raid_disk >= first &&
5257             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5258                 disk = rdev->saved_raid_disk;
5259         else
5260                 disk = first;
5261         for ( ; disk <= last ; disk++)
5262                 if ((p=conf->disks + disk)->rdev == NULL) {
5263                         clear_bit(In_sync, &rdev->flags);
5264                         rdev->raid_disk = disk;
5265                         err = 0;
5266                         if (rdev->saved_raid_disk != disk)
5267                                 conf->fullsync = 1;
5268                         rcu_assign_pointer(p->rdev, rdev);
5269                         break;
5270                 }
5271         print_raid5_conf(conf);
5272         return err;
5273 }
5274
5275 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5276 {
5277         /* no resync is happening, and there is enough space
5278          * on all devices, so we can resize.
5279          * We need to make sure resync covers any new space.
5280          * If the array is shrinking we should possibly wait until
5281          * any io in the removed space completes, but it hardly seems
5282          * worth it.
5283          */
5284         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5285         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5286                                                mddev->raid_disks));
5287         if (mddev->array_sectors >
5288             raid5_size(mddev, sectors, mddev->raid_disks))
5289                 return -EINVAL;
5290         set_capacity(mddev->gendisk, mddev->array_sectors);
5291         revalidate_disk(mddev->gendisk);
5292         if (sectors > mddev->dev_sectors &&
5293             mddev->recovery_cp > mddev->dev_sectors) {
5294                 mddev->recovery_cp = mddev->dev_sectors;
5295                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5296         }
5297         mddev->dev_sectors = sectors;
5298         mddev->resync_max_sectors = sectors;
5299         return 0;
5300 }
5301
5302 static int check_stripe_cache(mddev_t *mddev)
5303 {
5304         /* Can only proceed if there are plenty of stripe_heads.
5305          * We need a minimum of one full stripe,, and for sensible progress
5306          * it is best to have about 4 times that.
5307          * If we require 4 times, then the default 256 4K stripe_heads will
5308          * allow for chunk sizes up to 256K, which is probably OK.
5309          * If the chunk size is greater, user-space should request more
5310          * stripe_heads first.
5311          */
5312         raid5_conf_t *conf = mddev->private;
5313         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5314             > conf->max_nr_stripes ||
5315             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5316             > conf->max_nr_stripes) {
5317                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5318                        mdname(mddev),
5319                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5320                         / STRIPE_SIZE)*4);
5321                 return 0;
5322         }
5323         return 1;
5324 }
5325
5326 static int check_reshape(mddev_t *mddev)
5327 {
5328         raid5_conf_t *conf = mddev->private;
5329
5330         if (mddev->delta_disks == 0 &&
5331             mddev->new_layout == mddev->layout &&
5332             mddev->new_chunk_sectors == mddev->chunk_sectors)
5333                 return 0; /* nothing to do */
5334         if (mddev->bitmap)
5335                 /* Cannot grow a bitmap yet */
5336                 return -EBUSY;
5337         if (has_failed(conf))
5338                 return -EINVAL;
5339         if (mddev->delta_disks < 0) {
5340                 /* We might be able to shrink, but the devices must
5341                  * be made bigger first.
5342                  * For raid6, 4 is the minimum size.
5343                  * Otherwise 2 is the minimum
5344                  */
5345                 int min = 2;
5346                 if (mddev->level == 6)
5347                         min = 4;
5348                 if (mddev->raid_disks + mddev->delta_disks < min)
5349                         return -EINVAL;
5350         }
5351
5352         if (!check_stripe_cache(mddev))
5353                 return -ENOSPC;
5354
5355         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5356 }
5357
5358 static int raid5_start_reshape(mddev_t *mddev)
5359 {
5360         raid5_conf_t *conf = mddev->private;
5361         mdk_rdev_t *rdev;
5362         int spares = 0;
5363         unsigned long flags;
5364
5365         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5366                 return -EBUSY;
5367
5368         if (!check_stripe_cache(mddev))
5369                 return -ENOSPC;
5370
5371         list_for_each_entry(rdev, &mddev->disks, same_set)
5372                 if (!test_bit(In_sync, &rdev->flags)
5373                     && !test_bit(Faulty, &rdev->flags))
5374                         spares++;
5375
5376         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5377                 /* Not enough devices even to make a degraded array
5378                  * of that size
5379                  */
5380                 return -EINVAL;
5381
5382         /* Refuse to reduce size of the array.  Any reductions in
5383          * array size must be through explicit setting of array_size
5384          * attribute.
5385          */
5386         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5387             < mddev->array_sectors) {
5388                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5389                        "before number of disks\n", mdname(mddev));
5390                 return -EINVAL;
5391         }
5392
5393         atomic_set(&conf->reshape_stripes, 0);
5394         spin_lock_irq(&conf->device_lock);
5395         conf->previous_raid_disks = conf->raid_disks;
5396         conf->raid_disks += mddev->delta_disks;
5397         conf->prev_chunk_sectors = conf->chunk_sectors;
5398         conf->chunk_sectors = mddev->new_chunk_sectors;
5399         conf->prev_algo = conf->algorithm;
5400         conf->algorithm = mddev->new_layout;
5401         if (mddev->delta_disks < 0)
5402                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5403         else
5404                 conf->reshape_progress = 0;
5405         conf->reshape_safe = conf->reshape_progress;
5406         conf->generation++;
5407         spin_unlock_irq(&conf->device_lock);
5408
5409         /* Add some new drives, as many as will fit.
5410          * We know there are enough to make the newly sized array work.
5411          * Don't add devices if we are reducing the number of
5412          * devices in the array.  This is because it is not possible
5413          * to correctly record the "partially reconstructed" state of
5414          * such devices during the reshape and confusion could result.
5415          */
5416         if (mddev->delta_disks >= 0) {
5417                 int added_devices = 0;
5418                 list_for_each_entry(rdev, &mddev->disks, same_set)
5419                         if (rdev->raid_disk < 0 &&
5420                             !test_bit(Faulty, &rdev->flags)) {
5421                                 if (raid5_add_disk(mddev, rdev) == 0) {
5422                                         char nm[20];
5423                                         if (rdev->raid_disk
5424                                             >= conf->previous_raid_disks) {
5425                                                 set_bit(In_sync, &rdev->flags);
5426                                                 added_devices++;
5427                                         } else
5428                                                 rdev->recovery_offset = 0;
5429                                         sprintf(nm, "rd%d", rdev->raid_disk);
5430                                         if (sysfs_create_link(&mddev->kobj,
5431                                                               &rdev->kobj, nm))
5432                                                 /* Failure here is OK */;
5433                                 }
5434                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5435                                    && !test_bit(Faulty, &rdev->flags)) {
5436                                 /* This is a spare that was manually added */
5437                                 set_bit(In_sync, &rdev->flags);
5438                                 added_devices++;
5439                         }
5440
5441                 /* When a reshape changes the number of devices,
5442                  * ->degraded is measured against the larger of the
5443                  * pre and post number of devices.
5444                  */
5445                 spin_lock_irqsave(&conf->device_lock, flags);
5446                 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5447                         - added_devices;
5448                 spin_unlock_irqrestore(&conf->device_lock, flags);
5449         }
5450         mddev->raid_disks = conf->raid_disks;
5451         mddev->reshape_position = conf->reshape_progress;
5452         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5453
5454         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5455         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5456         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5457         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5458         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5459                                                 "reshape");
5460         if (!mddev->sync_thread) {
5461                 mddev->recovery = 0;
5462                 spin_lock_irq(&conf->device_lock);
5463                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5464                 conf->reshape_progress = MaxSector;
5465                 spin_unlock_irq(&conf->device_lock);
5466                 return -EAGAIN;
5467         }
5468         conf->reshape_checkpoint = jiffies;
5469         md_wakeup_thread(mddev->sync_thread);
5470         md_new_event(mddev);
5471         return 0;
5472 }
5473
5474 /* This is called from the reshape thread and should make any
5475  * changes needed in 'conf'
5476  */
5477 static void end_reshape(raid5_conf_t *conf)
5478 {
5479
5480         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5481
5482                 spin_lock_irq(&conf->device_lock);
5483                 conf->previous_raid_disks = conf->raid_disks;
5484                 conf->reshape_progress = MaxSector;
5485                 spin_unlock_irq(&conf->device_lock);
5486                 wake_up(&conf->wait_for_overlap);
5487
5488                 /* read-ahead size must cover two whole stripes, which is
5489                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5490                  */
5491                 if (conf->mddev->queue) {
5492                         int data_disks = conf->raid_disks - conf->max_degraded;
5493                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5494                                                    / PAGE_SIZE);
5495                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5496                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5497                 }
5498         }
5499 }
5500
5501 /* This is called from the raid5d thread with mddev_lock held.
5502  * It makes config changes to the device.
5503  */
5504 static void raid5_finish_reshape(mddev_t *mddev)
5505 {
5506         raid5_conf_t *conf = mddev->private;
5507
5508         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5509
5510                 if (mddev->delta_disks > 0) {
5511                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5512                         set_capacity(mddev->gendisk, mddev->array_sectors);
5513                         revalidate_disk(mddev->gendisk);
5514                 } else {
5515                         int d;
5516                         mddev->degraded = conf->raid_disks;
5517                         for (d = 0; d < conf->raid_disks ; d++)
5518                                 if (conf->disks[d].rdev &&
5519                                     test_bit(In_sync,
5520                                              &conf->disks[d].rdev->flags))
5521                                         mddev->degraded--;
5522                         for (d = conf->raid_disks ;
5523                              d < conf->raid_disks - mddev->delta_disks;
5524                              d++) {
5525                                 mdk_rdev_t *rdev = conf->disks[d].rdev;
5526                                 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5527                                         char nm[20];
5528                                         sprintf(nm, "rd%d", rdev->raid_disk);
5529                                         sysfs_remove_link(&mddev->kobj, nm);
5530                                         rdev->raid_disk = -1;
5531                                 }
5532                         }
5533                 }
5534                 mddev->layout = conf->algorithm;
5535                 mddev->chunk_sectors = conf->chunk_sectors;
5536                 mddev->reshape_position = MaxSector;
5537                 mddev->delta_disks = 0;
5538         }
5539 }
5540
5541 static void raid5_quiesce(mddev_t *mddev, int state)
5542 {
5543         raid5_conf_t *conf = mddev->private;
5544
5545         switch(state) {
5546         case 2: /* resume for a suspend */
5547                 wake_up(&conf->wait_for_overlap);
5548                 break;
5549
5550         case 1: /* stop all writes */
5551                 spin_lock_irq(&conf->device_lock);
5552                 /* '2' tells resync/reshape to pause so that all
5553                  * active stripes can drain
5554                  */
5555                 conf->quiesce = 2;
5556                 wait_event_lock_irq(conf->wait_for_stripe,
5557                                     atomic_read(&conf->active_stripes) == 0 &&
5558                                     atomic_read(&conf->active_aligned_reads) == 0,
5559                                     conf->device_lock, /* nothing */);
5560                 conf->quiesce = 1;
5561                 spin_unlock_irq(&conf->device_lock);
5562                 /* allow reshape to continue */
5563                 wake_up(&conf->wait_for_overlap);
5564                 break;
5565
5566         case 0: /* re-enable writes */
5567                 spin_lock_irq(&conf->device_lock);
5568                 conf->quiesce = 0;
5569                 wake_up(&conf->wait_for_stripe);
5570                 wake_up(&conf->wait_for_overlap);
5571                 spin_unlock_irq(&conf->device_lock);
5572                 break;
5573         }
5574 }
5575
5576
5577 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5578 {
5579         struct raid0_private_data *raid0_priv = mddev->private;
5580         sector_t sectors;
5581
5582         /* for raid0 takeover only one zone is supported */
5583         if (raid0_priv->nr_strip_zones > 1) {
5584                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5585                        mdname(mddev));
5586                 return ERR_PTR(-EINVAL);
5587         }
5588
5589         sectors = raid0_priv->strip_zone[0].zone_end;
5590         sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5591         mddev->dev_sectors = sectors;
5592         mddev->new_level = level;
5593         mddev->new_layout = ALGORITHM_PARITY_N;
5594         mddev->new_chunk_sectors = mddev->chunk_sectors;
5595         mddev->raid_disks += 1;
5596         mddev->delta_disks = 1;
5597         /* make sure it will be not marked as dirty */
5598         mddev->recovery_cp = MaxSector;
5599
5600         return setup_conf(mddev);
5601 }
5602
5603
5604 static void *raid5_takeover_raid1(mddev_t *mddev)
5605 {
5606         int chunksect;
5607
5608         if (mddev->raid_disks != 2 ||
5609             mddev->degraded > 1)
5610                 return ERR_PTR(-EINVAL);
5611
5612         /* Should check if there are write-behind devices? */
5613
5614         chunksect = 64*2; /* 64K by default */
5615
5616         /* The array must be an exact multiple of chunksize */
5617         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5618                 chunksect >>= 1;
5619
5620         if ((chunksect<<9) < STRIPE_SIZE)
5621                 /* array size does not allow a suitable chunk size */
5622                 return ERR_PTR(-EINVAL);
5623
5624         mddev->new_level = 5;
5625         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5626         mddev->new_chunk_sectors = chunksect;
5627
5628         return setup_conf(mddev);
5629 }
5630
5631 static void *raid5_takeover_raid6(mddev_t *mddev)
5632 {
5633         int new_layout;
5634
5635         switch (mddev->layout) {
5636         case ALGORITHM_LEFT_ASYMMETRIC_6:
5637                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5638                 break;
5639         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5640                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5641                 break;
5642         case ALGORITHM_LEFT_SYMMETRIC_6:
5643                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5644                 break;
5645         case ALGORITHM_RIGHT_SYMMETRIC_6:
5646                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5647                 break;
5648         case ALGORITHM_PARITY_0_6:
5649                 new_layout = ALGORITHM_PARITY_0;
5650                 break;
5651         case ALGORITHM_PARITY_N:
5652                 new_layout = ALGORITHM_PARITY_N;
5653                 break;
5654         default:
5655                 return ERR_PTR(-EINVAL);
5656         }
5657         mddev->new_level = 5;
5658         mddev->new_layout = new_layout;
5659         mddev->delta_disks = -1;
5660         mddev->raid_disks -= 1;
5661         return setup_conf(mddev);
5662 }
5663
5664
5665 static int raid5_check_reshape(mddev_t *mddev)
5666 {
5667         /* For a 2-drive array, the layout and chunk size can be changed
5668          * immediately as not restriping is needed.
5669          * For larger arrays we record the new value - after validation
5670          * to be used by a reshape pass.
5671          */
5672         raid5_conf_t *conf = mddev->private;
5673         int new_chunk = mddev->new_chunk_sectors;
5674
5675         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5676                 return -EINVAL;
5677         if (new_chunk > 0) {
5678                 if (!is_power_of_2(new_chunk))
5679                         return -EINVAL;
5680                 if (new_chunk < (PAGE_SIZE>>9))
5681                         return -EINVAL;
5682                 if (mddev->array_sectors & (new_chunk-1))
5683                         /* not factor of array size */
5684                         return -EINVAL;
5685         }
5686
5687         /* They look valid */
5688
5689         if (mddev->raid_disks == 2) {
5690                 /* can make the change immediately */
5691                 if (mddev->new_layout >= 0) {
5692                         conf->algorithm = mddev->new_layout;
5693                         mddev->layout = mddev->new_layout;
5694                 }
5695                 if (new_chunk > 0) {
5696                         conf->chunk_sectors = new_chunk ;
5697                         mddev->chunk_sectors = new_chunk;
5698                 }
5699                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5700                 md_wakeup_thread(mddev->thread);
5701         }
5702         return check_reshape(mddev);
5703 }
5704
5705 static int raid6_check_reshape(mddev_t *mddev)
5706 {
5707         int new_chunk = mddev->new_chunk_sectors;
5708
5709         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5710                 return -EINVAL;
5711         if (new_chunk > 0) {
5712                 if (!is_power_of_2(new_chunk))
5713                         return -EINVAL;
5714                 if (new_chunk < (PAGE_SIZE >> 9))
5715                         return -EINVAL;
5716                 if (mddev->array_sectors & (new_chunk-1))
5717                         /* not factor of array size */
5718                         return -EINVAL;
5719         }
5720
5721         /* They look valid */
5722         return check_reshape(mddev);
5723 }
5724
5725 static void *raid5_takeover(mddev_t *mddev)
5726 {
5727         /* raid5 can take over:
5728          *  raid0 - if there is only one strip zone - make it a raid4 layout
5729          *  raid1 - if there are two drives.  We need to know the chunk size
5730          *  raid4 - trivial - just use a raid4 layout.
5731          *  raid6 - Providing it is a *_6 layout
5732          */
5733         if (mddev->level == 0)
5734                 return raid45_takeover_raid0(mddev, 5);
5735         if (mddev->level == 1)
5736                 return raid5_takeover_raid1(mddev);
5737         if (mddev->level == 4) {
5738                 mddev->new_layout = ALGORITHM_PARITY_N;
5739                 mddev->new_level = 5;
5740                 return setup_conf(mddev);
5741         }
5742         if (mddev->level == 6)
5743                 return raid5_takeover_raid6(mddev);
5744
5745         return ERR_PTR(-EINVAL);
5746 }
5747
5748 static void *raid4_takeover(mddev_t *mddev)
5749 {
5750         /* raid4 can take over:
5751          *  raid0 - if there is only one strip zone
5752          *  raid5 - if layout is right
5753          */
5754         if (mddev->level == 0)
5755                 return raid45_takeover_raid0(mddev, 4);
5756         if (mddev->level == 5 &&
5757             mddev->layout == ALGORITHM_PARITY_N) {
5758                 mddev->new_layout = 0;
5759                 mddev->new_level = 4;
5760                 return setup_conf(mddev);
5761         }
5762         return ERR_PTR(-EINVAL);
5763 }
5764
5765 static struct mdk_personality raid5_personality;
5766
5767 static void *raid6_takeover(mddev_t *mddev)
5768 {
5769         /* Currently can only take over a raid5.  We map the
5770          * personality to an equivalent raid6 personality
5771          * with the Q block at the end.
5772          */
5773         int new_layout;
5774
5775         if (mddev->pers != &raid5_personality)
5776                 return ERR_PTR(-EINVAL);
5777         if (mddev->degraded > 1)
5778                 return ERR_PTR(-EINVAL);
5779         if (mddev->raid_disks > 253)
5780                 return ERR_PTR(-EINVAL);
5781         if (mddev->raid_disks < 3)
5782                 return ERR_PTR(-EINVAL);
5783
5784         switch (mddev->layout) {
5785         case ALGORITHM_LEFT_ASYMMETRIC:
5786                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5787                 break;
5788         case ALGORITHM_RIGHT_ASYMMETRIC:
5789                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5790                 break;
5791         case ALGORITHM_LEFT_SYMMETRIC:
5792                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5793                 break;
5794         case ALGORITHM_RIGHT_SYMMETRIC:
5795                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5796                 break;
5797         case ALGORITHM_PARITY_0:
5798                 new_layout = ALGORITHM_PARITY_0_6;
5799                 break;
5800         case ALGORITHM_PARITY_N:
5801                 new_layout = ALGORITHM_PARITY_N;
5802                 break;
5803         default:
5804                 return ERR_PTR(-EINVAL);
5805         }
5806         mddev->new_level = 6;
5807         mddev->new_layout = new_layout;
5808         mddev->delta_disks = 1;
5809         mddev->raid_disks += 1;
5810         return setup_conf(mddev);
5811 }
5812
5813
5814 static struct mdk_personality raid6_personality =
5815 {
5816         .name           = "raid6",
5817         .level          = 6,
5818         .owner          = THIS_MODULE,
5819         .make_request   = make_request,
5820         .run            = run,
5821         .stop           = stop,
5822         .status         = status,
5823         .error_handler  = error,
5824         .hot_add_disk   = raid5_add_disk,
5825         .hot_remove_disk= raid5_remove_disk,
5826         .spare_active   = raid5_spare_active,
5827         .sync_request   = sync_request,
5828         .resize         = raid5_resize,
5829         .size           = raid5_size,
5830         .check_reshape  = raid6_check_reshape,
5831         .start_reshape  = raid5_start_reshape,
5832         .finish_reshape = raid5_finish_reshape,
5833         .quiesce        = raid5_quiesce,
5834         .takeover       = raid6_takeover,
5835 };
5836 static struct mdk_personality raid5_personality =
5837 {
5838         .name           = "raid5",
5839         .level          = 5,
5840         .owner          = THIS_MODULE,
5841         .make_request   = make_request,
5842         .run            = run,
5843         .stop           = stop,
5844         .status         = status,
5845         .error_handler  = error,
5846         .hot_add_disk   = raid5_add_disk,
5847         .hot_remove_disk= raid5_remove_disk,
5848         .spare_active   = raid5_spare_active,
5849         .sync_request   = sync_request,
5850         .resize         = raid5_resize,
5851         .size           = raid5_size,
5852         .check_reshape  = raid5_check_reshape,
5853         .start_reshape  = raid5_start_reshape,
5854         .finish_reshape = raid5_finish_reshape,
5855         .quiesce        = raid5_quiesce,
5856         .takeover       = raid5_takeover,
5857 };
5858
5859 static struct mdk_personality raid4_personality =
5860 {
5861         .name           = "raid4",
5862         .level          = 4,
5863         .owner          = THIS_MODULE,
5864         .make_request   = make_request,
5865         .run            = run,
5866         .stop           = stop,
5867         .status         = status,
5868         .error_handler  = error,
5869         .hot_add_disk   = raid5_add_disk,
5870         .hot_remove_disk= raid5_remove_disk,
5871         .spare_active   = raid5_spare_active,
5872         .sync_request   = sync_request,
5873         .resize         = raid5_resize,
5874         .size           = raid5_size,
5875         .check_reshape  = raid5_check_reshape,
5876         .start_reshape  = raid5_start_reshape,
5877         .finish_reshape = raid5_finish_reshape,
5878         .quiesce        = raid5_quiesce,
5879         .takeover       = raid4_takeover,
5880 };
5881
5882 static int __init raid5_init(void)
5883 {
5884         register_md_personality(&raid6_personality);
5885         register_md_personality(&raid5_personality);
5886         register_md_personality(&raid4_personality);
5887         return 0;
5888 }
5889
5890 static void raid5_exit(void)
5891 {
5892         unregister_md_personality(&raid6_personality);
5893         unregister_md_personality(&raid5_personality);
5894         unregister_md_personality(&raid4_personality);
5895 }
5896
5897 module_init(raid5_init);
5898 module_exit(raid5_exit);
5899 MODULE_LICENSE("GPL");
5900 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5901 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5902 MODULE_ALIAS("md-raid5");
5903 MODULE_ALIAS("md-raid4");
5904 MODULE_ALIAS("md-level-5");
5905 MODULE_ALIAS("md-level-4");
5906 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5907 MODULE_ALIAS("md-raid6");
5908 MODULE_ALIAS("md-level-6");
5909
5910 /* This used to be two separate modules, they were: */
5911 MODULE_ALIAS("raid5");
5912 MODULE_ALIAS("raid6");