]> Pileus Git - ~andy/linux/blob - drivers/md/raid5.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux...
[~andy/linux] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <trace/events/block.h>
57
58 #include "md.h"
59 #include "raid5.h"
60 #include "raid0.h"
61 #include "bitmap.h"
62
63 /*
64  * Stripe cache
65  */
66
67 #define NR_STRIPES              256
68 #define STRIPE_SIZE             PAGE_SIZE
69 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
70 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
71 #define IO_THRESHOLD            1
72 #define BYPASS_THRESHOLD        1
73 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
74 #define HASH_MASK               (NR_HASH - 1)
75
76 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
77 {
78         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
79         return &conf->stripe_hashtbl[hash];
80 }
81
82 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
83  * order without overlap.  There may be several bio's per stripe+device, and
84  * a bio could span several devices.
85  * When walking this list for a particular stripe+device, we must never proceed
86  * beyond a bio that extends past this device, as the next bio might no longer
87  * be valid.
88  * This function is used to determine the 'next' bio in the list, given the sector
89  * of the current stripe+device
90  */
91 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
92 {
93         int sectors = bio->bi_size >> 9;
94         if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
95                 return bio->bi_next;
96         else
97                 return NULL;
98 }
99
100 /*
101  * We maintain a biased count of active stripes in the bottom 16 bits of
102  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103  */
104 static inline int raid5_bi_processed_stripes(struct bio *bio)
105 {
106         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
107         return (atomic_read(segments) >> 16) & 0xffff;
108 }
109
110 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
111 {
112         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
113         return atomic_sub_return(1, segments) & 0xffff;
114 }
115
116 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
117 {
118         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
119         atomic_inc(segments);
120 }
121
122 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
123         unsigned int cnt)
124 {
125         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
126         int old, new;
127
128         do {
129                 old = atomic_read(segments);
130                 new = (old & 0xffff) | (cnt << 16);
131         } while (atomic_cmpxchg(segments, old, new) != old);
132 }
133
134 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
135 {
136         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
137         atomic_set(segments, cnt);
138 }
139
140 /* Find first data disk in a raid6 stripe */
141 static inline int raid6_d0(struct stripe_head *sh)
142 {
143         if (sh->ddf_layout)
144                 /* ddf always start from first device */
145                 return 0;
146         /* md starts just after Q block */
147         if (sh->qd_idx == sh->disks - 1)
148                 return 0;
149         else
150                 return sh->qd_idx + 1;
151 }
152 static inline int raid6_next_disk(int disk, int raid_disks)
153 {
154         disk++;
155         return (disk < raid_disks) ? disk : 0;
156 }
157
158 /* When walking through the disks in a raid5, starting at raid6_d0,
159  * We need to map each disk to a 'slot', where the data disks are slot
160  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
161  * is raid_disks-1.  This help does that mapping.
162  */
163 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
164                              int *count, int syndrome_disks)
165 {
166         int slot = *count;
167
168         if (sh->ddf_layout)
169                 (*count)++;
170         if (idx == sh->pd_idx)
171                 return syndrome_disks;
172         if (idx == sh->qd_idx)
173                 return syndrome_disks + 1;
174         if (!sh->ddf_layout)
175                 (*count)++;
176         return slot;
177 }
178
179 static void return_io(struct bio *return_bi)
180 {
181         struct bio *bi = return_bi;
182         while (bi) {
183
184                 return_bi = bi->bi_next;
185                 bi->bi_next = NULL;
186                 bi->bi_size = 0;
187                 bio_endio(bi, 0);
188                 bi = return_bi;
189         }
190 }
191
192 static void print_raid5_conf (struct r5conf *conf);
193
194 static int stripe_operations_active(struct stripe_head *sh)
195 {
196         return sh->check_state || sh->reconstruct_state ||
197                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
198                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
199 }
200
201 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
202 {
203         BUG_ON(!list_empty(&sh->lru));
204         BUG_ON(atomic_read(&conf->active_stripes)==0);
205         if (test_bit(STRIPE_HANDLE, &sh->state)) {
206                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
207                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
208                         list_add_tail(&sh->lru, &conf->delayed_list);
209                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
210                            sh->bm_seq - conf->seq_write > 0)
211                         list_add_tail(&sh->lru, &conf->bitmap_list);
212                 else {
213                         clear_bit(STRIPE_DELAYED, &sh->state);
214                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
215                         list_add_tail(&sh->lru, &conf->handle_list);
216                 }
217                 md_wakeup_thread(conf->mddev->thread);
218         } else {
219                 BUG_ON(stripe_operations_active(sh));
220                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
221                         if (atomic_dec_return(&conf->preread_active_stripes)
222                             < IO_THRESHOLD)
223                                 md_wakeup_thread(conf->mddev->thread);
224                 atomic_dec(&conf->active_stripes);
225                 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
226                         list_add_tail(&sh->lru, &conf->inactive_list);
227                         wake_up(&conf->wait_for_stripe);
228                         if (conf->retry_read_aligned)
229                                 md_wakeup_thread(conf->mddev->thread);
230                 }
231         }
232 }
233
234 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
235 {
236         if (atomic_dec_and_test(&sh->count))
237                 do_release_stripe(conf, sh);
238 }
239
240 static void release_stripe(struct stripe_head *sh)
241 {
242         struct r5conf *conf = sh->raid_conf;
243         unsigned long flags;
244
245         local_irq_save(flags);
246         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
247                 do_release_stripe(conf, sh);
248                 spin_unlock(&conf->device_lock);
249         }
250         local_irq_restore(flags);
251 }
252
253 static inline void remove_hash(struct stripe_head *sh)
254 {
255         pr_debug("remove_hash(), stripe %llu\n",
256                 (unsigned long long)sh->sector);
257
258         hlist_del_init(&sh->hash);
259 }
260
261 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
262 {
263         struct hlist_head *hp = stripe_hash(conf, sh->sector);
264
265         pr_debug("insert_hash(), stripe %llu\n",
266                 (unsigned long long)sh->sector);
267
268         hlist_add_head(&sh->hash, hp);
269 }
270
271
272 /* find an idle stripe, make sure it is unhashed, and return it. */
273 static struct stripe_head *get_free_stripe(struct r5conf *conf)
274 {
275         struct stripe_head *sh = NULL;
276         struct list_head *first;
277
278         if (list_empty(&conf->inactive_list))
279                 goto out;
280         first = conf->inactive_list.next;
281         sh = list_entry(first, struct stripe_head, lru);
282         list_del_init(first);
283         remove_hash(sh);
284         atomic_inc(&conf->active_stripes);
285 out:
286         return sh;
287 }
288
289 static void shrink_buffers(struct stripe_head *sh)
290 {
291         struct page *p;
292         int i;
293         int num = sh->raid_conf->pool_size;
294
295         for (i = 0; i < num ; i++) {
296                 p = sh->dev[i].page;
297                 if (!p)
298                         continue;
299                 sh->dev[i].page = NULL;
300                 put_page(p);
301         }
302 }
303
304 static int grow_buffers(struct stripe_head *sh)
305 {
306         int i;
307         int num = sh->raid_conf->pool_size;
308
309         for (i = 0; i < num; i++) {
310                 struct page *page;
311
312                 if (!(page = alloc_page(GFP_KERNEL))) {
313                         return 1;
314                 }
315                 sh->dev[i].page = page;
316         }
317         return 0;
318 }
319
320 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
321 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
322                             struct stripe_head *sh);
323
324 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
325 {
326         struct r5conf *conf = sh->raid_conf;
327         int i;
328
329         BUG_ON(atomic_read(&sh->count) != 0);
330         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
331         BUG_ON(stripe_operations_active(sh));
332
333         pr_debug("init_stripe called, stripe %llu\n",
334                 (unsigned long long)sh->sector);
335
336         remove_hash(sh);
337
338         sh->generation = conf->generation - previous;
339         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
340         sh->sector = sector;
341         stripe_set_idx(sector, conf, previous, sh);
342         sh->state = 0;
343
344
345         for (i = sh->disks; i--; ) {
346                 struct r5dev *dev = &sh->dev[i];
347
348                 if (dev->toread || dev->read || dev->towrite || dev->written ||
349                     test_bit(R5_LOCKED, &dev->flags)) {
350                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
351                                (unsigned long long)sh->sector, i, dev->toread,
352                                dev->read, dev->towrite, dev->written,
353                                test_bit(R5_LOCKED, &dev->flags));
354                         WARN_ON(1);
355                 }
356                 dev->flags = 0;
357                 raid5_build_block(sh, i, previous);
358         }
359         insert_hash(conf, sh);
360 }
361
362 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
363                                          short generation)
364 {
365         struct stripe_head *sh;
366
367         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
368         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
369                 if (sh->sector == sector && sh->generation == generation)
370                         return sh;
371         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
372         return NULL;
373 }
374
375 /*
376  * Need to check if array has failed when deciding whether to:
377  *  - start an array
378  *  - remove non-faulty devices
379  *  - add a spare
380  *  - allow a reshape
381  * This determination is simple when no reshape is happening.
382  * However if there is a reshape, we need to carefully check
383  * both the before and after sections.
384  * This is because some failed devices may only affect one
385  * of the two sections, and some non-in_sync devices may
386  * be insync in the section most affected by failed devices.
387  */
388 static int calc_degraded(struct r5conf *conf)
389 {
390         int degraded, degraded2;
391         int i;
392
393         rcu_read_lock();
394         degraded = 0;
395         for (i = 0; i < conf->previous_raid_disks; i++) {
396                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
397                 if (rdev && test_bit(Faulty, &rdev->flags))
398                         rdev = rcu_dereference(conf->disks[i].replacement);
399                 if (!rdev || test_bit(Faulty, &rdev->flags))
400                         degraded++;
401                 else if (test_bit(In_sync, &rdev->flags))
402                         ;
403                 else
404                         /* not in-sync or faulty.
405                          * If the reshape increases the number of devices,
406                          * this is being recovered by the reshape, so
407                          * this 'previous' section is not in_sync.
408                          * If the number of devices is being reduced however,
409                          * the device can only be part of the array if
410                          * we are reverting a reshape, so this section will
411                          * be in-sync.
412                          */
413                         if (conf->raid_disks >= conf->previous_raid_disks)
414                                 degraded++;
415         }
416         rcu_read_unlock();
417         if (conf->raid_disks == conf->previous_raid_disks)
418                 return degraded;
419         rcu_read_lock();
420         degraded2 = 0;
421         for (i = 0; i < conf->raid_disks; i++) {
422                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
423                 if (rdev && test_bit(Faulty, &rdev->flags))
424                         rdev = rcu_dereference(conf->disks[i].replacement);
425                 if (!rdev || test_bit(Faulty, &rdev->flags))
426                         degraded2++;
427                 else if (test_bit(In_sync, &rdev->flags))
428                         ;
429                 else
430                         /* not in-sync or faulty.
431                          * If reshape increases the number of devices, this
432                          * section has already been recovered, else it
433                          * almost certainly hasn't.
434                          */
435                         if (conf->raid_disks <= conf->previous_raid_disks)
436                                 degraded2++;
437         }
438         rcu_read_unlock();
439         if (degraded2 > degraded)
440                 return degraded2;
441         return degraded;
442 }
443
444 static int has_failed(struct r5conf *conf)
445 {
446         int degraded;
447
448         if (conf->mddev->reshape_position == MaxSector)
449                 return conf->mddev->degraded > conf->max_degraded;
450
451         degraded = calc_degraded(conf);
452         if (degraded > conf->max_degraded)
453                 return 1;
454         return 0;
455 }
456
457 static struct stripe_head *
458 get_active_stripe(struct r5conf *conf, sector_t sector,
459                   int previous, int noblock, int noquiesce)
460 {
461         struct stripe_head *sh;
462
463         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
464
465         spin_lock_irq(&conf->device_lock);
466
467         do {
468                 wait_event_lock_irq(conf->wait_for_stripe,
469                                     conf->quiesce == 0 || noquiesce,
470                                     conf->device_lock);
471                 sh = __find_stripe(conf, sector, conf->generation - previous);
472                 if (!sh) {
473                         if (!conf->inactive_blocked)
474                                 sh = get_free_stripe(conf);
475                         if (noblock && sh == NULL)
476                                 break;
477                         if (!sh) {
478                                 conf->inactive_blocked = 1;
479                                 wait_event_lock_irq(conf->wait_for_stripe,
480                                                     !list_empty(&conf->inactive_list) &&
481                                                     (atomic_read(&conf->active_stripes)
482                                                      < (conf->max_nr_stripes *3/4)
483                                                      || !conf->inactive_blocked),
484                                                     conf->device_lock);
485                                 conf->inactive_blocked = 0;
486                         } else
487                                 init_stripe(sh, sector, previous);
488                 } else {
489                         if (atomic_read(&sh->count)) {
490                                 BUG_ON(!list_empty(&sh->lru)
491                                     && !test_bit(STRIPE_EXPANDING, &sh->state)
492                                     && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state));
493                         } else {
494                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
495                                         atomic_inc(&conf->active_stripes);
496                                 if (list_empty(&sh->lru) &&
497                                     !test_bit(STRIPE_EXPANDING, &sh->state))
498                                         BUG();
499                                 list_del_init(&sh->lru);
500                         }
501                 }
502         } while (sh == NULL);
503
504         if (sh)
505                 atomic_inc(&sh->count);
506
507         spin_unlock_irq(&conf->device_lock);
508         return sh;
509 }
510
511 /* Determine if 'data_offset' or 'new_data_offset' should be used
512  * in this stripe_head.
513  */
514 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
515 {
516         sector_t progress = conf->reshape_progress;
517         /* Need a memory barrier to make sure we see the value
518          * of conf->generation, or ->data_offset that was set before
519          * reshape_progress was updated.
520          */
521         smp_rmb();
522         if (progress == MaxSector)
523                 return 0;
524         if (sh->generation == conf->generation - 1)
525                 return 0;
526         /* We are in a reshape, and this is a new-generation stripe,
527          * so use new_data_offset.
528          */
529         return 1;
530 }
531
532 static void
533 raid5_end_read_request(struct bio *bi, int error);
534 static void
535 raid5_end_write_request(struct bio *bi, int error);
536
537 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
538 {
539         struct r5conf *conf = sh->raid_conf;
540         int i, disks = sh->disks;
541
542         might_sleep();
543
544         for (i = disks; i--; ) {
545                 int rw;
546                 int replace_only = 0;
547                 struct bio *bi, *rbi;
548                 struct md_rdev *rdev, *rrdev = NULL;
549                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
550                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
551                                 rw = WRITE_FUA;
552                         else
553                                 rw = WRITE;
554                         if (test_bit(R5_Discard, &sh->dev[i].flags))
555                                 rw |= REQ_DISCARD;
556                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
557                         rw = READ;
558                 else if (test_and_clear_bit(R5_WantReplace,
559                                             &sh->dev[i].flags)) {
560                         rw = WRITE;
561                         replace_only = 1;
562                 } else
563                         continue;
564                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
565                         rw |= REQ_SYNC;
566
567                 bi = &sh->dev[i].req;
568                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
569
570                 bi->bi_rw = rw;
571                 rbi->bi_rw = rw;
572                 if (rw & WRITE) {
573                         bi->bi_end_io = raid5_end_write_request;
574                         rbi->bi_end_io = raid5_end_write_request;
575                 } else
576                         bi->bi_end_io = raid5_end_read_request;
577
578                 rcu_read_lock();
579                 rrdev = rcu_dereference(conf->disks[i].replacement);
580                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
581                 rdev = rcu_dereference(conf->disks[i].rdev);
582                 if (!rdev) {
583                         rdev = rrdev;
584                         rrdev = NULL;
585                 }
586                 if (rw & WRITE) {
587                         if (replace_only)
588                                 rdev = NULL;
589                         if (rdev == rrdev)
590                                 /* We raced and saw duplicates */
591                                 rrdev = NULL;
592                 } else {
593                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
594                                 rdev = rrdev;
595                         rrdev = NULL;
596                 }
597
598                 if (rdev && test_bit(Faulty, &rdev->flags))
599                         rdev = NULL;
600                 if (rdev)
601                         atomic_inc(&rdev->nr_pending);
602                 if (rrdev && test_bit(Faulty, &rrdev->flags))
603                         rrdev = NULL;
604                 if (rrdev)
605                         atomic_inc(&rrdev->nr_pending);
606                 rcu_read_unlock();
607
608                 /* We have already checked bad blocks for reads.  Now
609                  * need to check for writes.  We never accept write errors
610                  * on the replacement, so we don't to check rrdev.
611                  */
612                 while ((rw & WRITE) && rdev &&
613                        test_bit(WriteErrorSeen, &rdev->flags)) {
614                         sector_t first_bad;
615                         int bad_sectors;
616                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
617                                               &first_bad, &bad_sectors);
618                         if (!bad)
619                                 break;
620
621                         if (bad < 0) {
622                                 set_bit(BlockedBadBlocks, &rdev->flags);
623                                 if (!conf->mddev->external &&
624                                     conf->mddev->flags) {
625                                         /* It is very unlikely, but we might
626                                          * still need to write out the
627                                          * bad block log - better give it
628                                          * a chance*/
629                                         md_check_recovery(conf->mddev);
630                                 }
631                                 /*
632                                  * Because md_wait_for_blocked_rdev
633                                  * will dec nr_pending, we must
634                                  * increment it first.
635                                  */
636                                 atomic_inc(&rdev->nr_pending);
637                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
638                         } else {
639                                 /* Acknowledged bad block - skip the write */
640                                 rdev_dec_pending(rdev, conf->mddev);
641                                 rdev = NULL;
642                         }
643                 }
644
645                 if (rdev) {
646                         if (s->syncing || s->expanding || s->expanded
647                             || s->replacing)
648                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
649
650                         set_bit(STRIPE_IO_STARTED, &sh->state);
651
652                         bi->bi_bdev = rdev->bdev;
653                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
654                                 __func__, (unsigned long long)sh->sector,
655                                 bi->bi_rw, i);
656                         atomic_inc(&sh->count);
657                         if (use_new_offset(conf, sh))
658                                 bi->bi_sector = (sh->sector
659                                                  + rdev->new_data_offset);
660                         else
661                                 bi->bi_sector = (sh->sector
662                                                  + rdev->data_offset);
663                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
664                                 bi->bi_rw |= REQ_FLUSH;
665
666                         bi->bi_flags = 1 << BIO_UPTODATE;
667                         bi->bi_idx = 0;
668                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
669                         bi->bi_io_vec[0].bv_offset = 0;
670                         bi->bi_size = STRIPE_SIZE;
671                         bi->bi_next = NULL;
672                         if (rrdev)
673                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
674                         trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
675                                               bi, disk_devt(conf->mddev->gendisk),
676                                               sh->dev[i].sector);
677                         generic_make_request(bi);
678                 }
679                 if (rrdev) {
680                         if (s->syncing || s->expanding || s->expanded
681                             || s->replacing)
682                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
683
684                         set_bit(STRIPE_IO_STARTED, &sh->state);
685
686                         rbi->bi_bdev = rrdev->bdev;
687                         pr_debug("%s: for %llu schedule op %ld on "
688                                  "replacement disc %d\n",
689                                 __func__, (unsigned long long)sh->sector,
690                                 rbi->bi_rw, i);
691                         atomic_inc(&sh->count);
692                         if (use_new_offset(conf, sh))
693                                 rbi->bi_sector = (sh->sector
694                                                   + rrdev->new_data_offset);
695                         else
696                                 rbi->bi_sector = (sh->sector
697                                                   + rrdev->data_offset);
698                         rbi->bi_flags = 1 << BIO_UPTODATE;
699                         rbi->bi_idx = 0;
700                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
701                         rbi->bi_io_vec[0].bv_offset = 0;
702                         rbi->bi_size = STRIPE_SIZE;
703                         rbi->bi_next = NULL;
704                         trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
705                                               rbi, disk_devt(conf->mddev->gendisk),
706                                               sh->dev[i].sector);
707                         generic_make_request(rbi);
708                 }
709                 if (!rdev && !rrdev) {
710                         if (rw & WRITE)
711                                 set_bit(STRIPE_DEGRADED, &sh->state);
712                         pr_debug("skip op %ld on disc %d for sector %llu\n",
713                                 bi->bi_rw, i, (unsigned long long)sh->sector);
714                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
715                         set_bit(STRIPE_HANDLE, &sh->state);
716                 }
717         }
718 }
719
720 static struct dma_async_tx_descriptor *
721 async_copy_data(int frombio, struct bio *bio, struct page *page,
722         sector_t sector, struct dma_async_tx_descriptor *tx)
723 {
724         struct bio_vec *bvl;
725         struct page *bio_page;
726         int i;
727         int page_offset;
728         struct async_submit_ctl submit;
729         enum async_tx_flags flags = 0;
730
731         if (bio->bi_sector >= sector)
732                 page_offset = (signed)(bio->bi_sector - sector) * 512;
733         else
734                 page_offset = (signed)(sector - bio->bi_sector) * -512;
735
736         if (frombio)
737                 flags |= ASYNC_TX_FENCE;
738         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
739
740         bio_for_each_segment(bvl, bio, i) {
741                 int len = bvl->bv_len;
742                 int clen;
743                 int b_offset = 0;
744
745                 if (page_offset < 0) {
746                         b_offset = -page_offset;
747                         page_offset += b_offset;
748                         len -= b_offset;
749                 }
750
751                 if (len > 0 && page_offset + len > STRIPE_SIZE)
752                         clen = STRIPE_SIZE - page_offset;
753                 else
754                         clen = len;
755
756                 if (clen > 0) {
757                         b_offset += bvl->bv_offset;
758                         bio_page = bvl->bv_page;
759                         if (frombio)
760                                 tx = async_memcpy(page, bio_page, page_offset,
761                                                   b_offset, clen, &submit);
762                         else
763                                 tx = async_memcpy(bio_page, page, b_offset,
764                                                   page_offset, clen, &submit);
765                 }
766                 /* chain the operations */
767                 submit.depend_tx = tx;
768
769                 if (clen < len) /* hit end of page */
770                         break;
771                 page_offset +=  len;
772         }
773
774         return tx;
775 }
776
777 static void ops_complete_biofill(void *stripe_head_ref)
778 {
779         struct stripe_head *sh = stripe_head_ref;
780         struct bio *return_bi = NULL;
781         int i;
782
783         pr_debug("%s: stripe %llu\n", __func__,
784                 (unsigned long long)sh->sector);
785
786         /* clear completed biofills */
787         for (i = sh->disks; i--; ) {
788                 struct r5dev *dev = &sh->dev[i];
789
790                 /* acknowledge completion of a biofill operation */
791                 /* and check if we need to reply to a read request,
792                  * new R5_Wantfill requests are held off until
793                  * !STRIPE_BIOFILL_RUN
794                  */
795                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
796                         struct bio *rbi, *rbi2;
797
798                         BUG_ON(!dev->read);
799                         rbi = dev->read;
800                         dev->read = NULL;
801                         while (rbi && rbi->bi_sector <
802                                 dev->sector + STRIPE_SECTORS) {
803                                 rbi2 = r5_next_bio(rbi, dev->sector);
804                                 if (!raid5_dec_bi_active_stripes(rbi)) {
805                                         rbi->bi_next = return_bi;
806                                         return_bi = rbi;
807                                 }
808                                 rbi = rbi2;
809                         }
810                 }
811         }
812         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
813
814         return_io(return_bi);
815
816         set_bit(STRIPE_HANDLE, &sh->state);
817         release_stripe(sh);
818 }
819
820 static void ops_run_biofill(struct stripe_head *sh)
821 {
822         struct dma_async_tx_descriptor *tx = NULL;
823         struct async_submit_ctl submit;
824         int i;
825
826         pr_debug("%s: stripe %llu\n", __func__,
827                 (unsigned long long)sh->sector);
828
829         for (i = sh->disks; i--; ) {
830                 struct r5dev *dev = &sh->dev[i];
831                 if (test_bit(R5_Wantfill, &dev->flags)) {
832                         struct bio *rbi;
833                         spin_lock_irq(&sh->stripe_lock);
834                         dev->read = rbi = dev->toread;
835                         dev->toread = NULL;
836                         spin_unlock_irq(&sh->stripe_lock);
837                         while (rbi && rbi->bi_sector <
838                                 dev->sector + STRIPE_SECTORS) {
839                                 tx = async_copy_data(0, rbi, dev->page,
840                                         dev->sector, tx);
841                                 rbi = r5_next_bio(rbi, dev->sector);
842                         }
843                 }
844         }
845
846         atomic_inc(&sh->count);
847         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
848         async_trigger_callback(&submit);
849 }
850
851 static void mark_target_uptodate(struct stripe_head *sh, int target)
852 {
853         struct r5dev *tgt;
854
855         if (target < 0)
856                 return;
857
858         tgt = &sh->dev[target];
859         set_bit(R5_UPTODATE, &tgt->flags);
860         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
861         clear_bit(R5_Wantcompute, &tgt->flags);
862 }
863
864 static void ops_complete_compute(void *stripe_head_ref)
865 {
866         struct stripe_head *sh = stripe_head_ref;
867
868         pr_debug("%s: stripe %llu\n", __func__,
869                 (unsigned long long)sh->sector);
870
871         /* mark the computed target(s) as uptodate */
872         mark_target_uptodate(sh, sh->ops.target);
873         mark_target_uptodate(sh, sh->ops.target2);
874
875         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
876         if (sh->check_state == check_state_compute_run)
877                 sh->check_state = check_state_compute_result;
878         set_bit(STRIPE_HANDLE, &sh->state);
879         release_stripe(sh);
880 }
881
882 /* return a pointer to the address conversion region of the scribble buffer */
883 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
884                                  struct raid5_percpu *percpu)
885 {
886         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
887 }
888
889 static struct dma_async_tx_descriptor *
890 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
891 {
892         int disks = sh->disks;
893         struct page **xor_srcs = percpu->scribble;
894         int target = sh->ops.target;
895         struct r5dev *tgt = &sh->dev[target];
896         struct page *xor_dest = tgt->page;
897         int count = 0;
898         struct dma_async_tx_descriptor *tx;
899         struct async_submit_ctl submit;
900         int i;
901
902         pr_debug("%s: stripe %llu block: %d\n",
903                 __func__, (unsigned long long)sh->sector, target);
904         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
905
906         for (i = disks; i--; )
907                 if (i != target)
908                         xor_srcs[count++] = sh->dev[i].page;
909
910         atomic_inc(&sh->count);
911
912         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
913                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
914         if (unlikely(count == 1))
915                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
916         else
917                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
918
919         return tx;
920 }
921
922 /* set_syndrome_sources - populate source buffers for gen_syndrome
923  * @srcs - (struct page *) array of size sh->disks
924  * @sh - stripe_head to parse
925  *
926  * Populates srcs in proper layout order for the stripe and returns the
927  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
928  * destination buffer is recorded in srcs[count] and the Q destination
929  * is recorded in srcs[count+1]].
930  */
931 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
932 {
933         int disks = sh->disks;
934         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
935         int d0_idx = raid6_d0(sh);
936         int count;
937         int i;
938
939         for (i = 0; i < disks; i++)
940                 srcs[i] = NULL;
941
942         count = 0;
943         i = d0_idx;
944         do {
945                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
946
947                 srcs[slot] = sh->dev[i].page;
948                 i = raid6_next_disk(i, disks);
949         } while (i != d0_idx);
950
951         return syndrome_disks;
952 }
953
954 static struct dma_async_tx_descriptor *
955 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
956 {
957         int disks = sh->disks;
958         struct page **blocks = percpu->scribble;
959         int target;
960         int qd_idx = sh->qd_idx;
961         struct dma_async_tx_descriptor *tx;
962         struct async_submit_ctl submit;
963         struct r5dev *tgt;
964         struct page *dest;
965         int i;
966         int count;
967
968         if (sh->ops.target < 0)
969                 target = sh->ops.target2;
970         else if (sh->ops.target2 < 0)
971                 target = sh->ops.target;
972         else
973                 /* we should only have one valid target */
974                 BUG();
975         BUG_ON(target < 0);
976         pr_debug("%s: stripe %llu block: %d\n",
977                 __func__, (unsigned long long)sh->sector, target);
978
979         tgt = &sh->dev[target];
980         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
981         dest = tgt->page;
982
983         atomic_inc(&sh->count);
984
985         if (target == qd_idx) {
986                 count = set_syndrome_sources(blocks, sh);
987                 blocks[count] = NULL; /* regenerating p is not necessary */
988                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
989                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
990                                   ops_complete_compute, sh,
991                                   to_addr_conv(sh, percpu));
992                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
993         } else {
994                 /* Compute any data- or p-drive using XOR */
995                 count = 0;
996                 for (i = disks; i-- ; ) {
997                         if (i == target || i == qd_idx)
998                                 continue;
999                         blocks[count++] = sh->dev[i].page;
1000                 }
1001
1002                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1003                                   NULL, ops_complete_compute, sh,
1004                                   to_addr_conv(sh, percpu));
1005                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1006         }
1007
1008         return tx;
1009 }
1010
1011 static struct dma_async_tx_descriptor *
1012 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1013 {
1014         int i, count, disks = sh->disks;
1015         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1016         int d0_idx = raid6_d0(sh);
1017         int faila = -1, failb = -1;
1018         int target = sh->ops.target;
1019         int target2 = sh->ops.target2;
1020         struct r5dev *tgt = &sh->dev[target];
1021         struct r5dev *tgt2 = &sh->dev[target2];
1022         struct dma_async_tx_descriptor *tx;
1023         struct page **blocks = percpu->scribble;
1024         struct async_submit_ctl submit;
1025
1026         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1027                  __func__, (unsigned long long)sh->sector, target, target2);
1028         BUG_ON(target < 0 || target2 < 0);
1029         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1030         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1031
1032         /* we need to open-code set_syndrome_sources to handle the
1033          * slot number conversion for 'faila' and 'failb'
1034          */
1035         for (i = 0; i < disks ; i++)
1036                 blocks[i] = NULL;
1037         count = 0;
1038         i = d0_idx;
1039         do {
1040                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1041
1042                 blocks[slot] = sh->dev[i].page;
1043
1044                 if (i == target)
1045                         faila = slot;
1046                 if (i == target2)
1047                         failb = slot;
1048                 i = raid6_next_disk(i, disks);
1049         } while (i != d0_idx);
1050
1051         BUG_ON(faila == failb);
1052         if (failb < faila)
1053                 swap(faila, failb);
1054         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1055                  __func__, (unsigned long long)sh->sector, faila, failb);
1056
1057         atomic_inc(&sh->count);
1058
1059         if (failb == syndrome_disks+1) {
1060                 /* Q disk is one of the missing disks */
1061                 if (faila == syndrome_disks) {
1062                         /* Missing P+Q, just recompute */
1063                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1064                                           ops_complete_compute, sh,
1065                                           to_addr_conv(sh, percpu));
1066                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1067                                                   STRIPE_SIZE, &submit);
1068                 } else {
1069                         struct page *dest;
1070                         int data_target;
1071                         int qd_idx = sh->qd_idx;
1072
1073                         /* Missing D+Q: recompute D from P, then recompute Q */
1074                         if (target == qd_idx)
1075                                 data_target = target2;
1076                         else
1077                                 data_target = target;
1078
1079                         count = 0;
1080                         for (i = disks; i-- ; ) {
1081                                 if (i == data_target || i == qd_idx)
1082                                         continue;
1083                                 blocks[count++] = sh->dev[i].page;
1084                         }
1085                         dest = sh->dev[data_target].page;
1086                         init_async_submit(&submit,
1087                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1088                                           NULL, NULL, NULL,
1089                                           to_addr_conv(sh, percpu));
1090                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1091                                        &submit);
1092
1093                         count = set_syndrome_sources(blocks, sh);
1094                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1095                                           ops_complete_compute, sh,
1096                                           to_addr_conv(sh, percpu));
1097                         return async_gen_syndrome(blocks, 0, count+2,
1098                                                   STRIPE_SIZE, &submit);
1099                 }
1100         } else {
1101                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1102                                   ops_complete_compute, sh,
1103                                   to_addr_conv(sh, percpu));
1104                 if (failb == syndrome_disks) {
1105                         /* We're missing D+P. */
1106                         return async_raid6_datap_recov(syndrome_disks+2,
1107                                                        STRIPE_SIZE, faila,
1108                                                        blocks, &submit);
1109                 } else {
1110                         /* We're missing D+D. */
1111                         return async_raid6_2data_recov(syndrome_disks+2,
1112                                                        STRIPE_SIZE, faila, failb,
1113                                                        blocks, &submit);
1114                 }
1115         }
1116 }
1117
1118
1119 static void ops_complete_prexor(void *stripe_head_ref)
1120 {
1121         struct stripe_head *sh = stripe_head_ref;
1122
1123         pr_debug("%s: stripe %llu\n", __func__,
1124                 (unsigned long long)sh->sector);
1125 }
1126
1127 static struct dma_async_tx_descriptor *
1128 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1129                struct dma_async_tx_descriptor *tx)
1130 {
1131         int disks = sh->disks;
1132         struct page **xor_srcs = percpu->scribble;
1133         int count = 0, pd_idx = sh->pd_idx, i;
1134         struct async_submit_ctl submit;
1135
1136         /* existing parity data subtracted */
1137         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1138
1139         pr_debug("%s: stripe %llu\n", __func__,
1140                 (unsigned long long)sh->sector);
1141
1142         for (i = disks; i--; ) {
1143                 struct r5dev *dev = &sh->dev[i];
1144                 /* Only process blocks that are known to be uptodate */
1145                 if (test_bit(R5_Wantdrain, &dev->flags))
1146                         xor_srcs[count++] = dev->page;
1147         }
1148
1149         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1150                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1151         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1152
1153         return tx;
1154 }
1155
1156 static struct dma_async_tx_descriptor *
1157 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1158 {
1159         int disks = sh->disks;
1160         int i;
1161
1162         pr_debug("%s: stripe %llu\n", __func__,
1163                 (unsigned long long)sh->sector);
1164
1165         for (i = disks; i--; ) {
1166                 struct r5dev *dev = &sh->dev[i];
1167                 struct bio *chosen;
1168
1169                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1170                         struct bio *wbi;
1171
1172                         spin_lock_irq(&sh->stripe_lock);
1173                         chosen = dev->towrite;
1174                         dev->towrite = NULL;
1175                         BUG_ON(dev->written);
1176                         wbi = dev->written = chosen;
1177                         spin_unlock_irq(&sh->stripe_lock);
1178
1179                         while (wbi && wbi->bi_sector <
1180                                 dev->sector + STRIPE_SECTORS) {
1181                                 if (wbi->bi_rw & REQ_FUA)
1182                                         set_bit(R5_WantFUA, &dev->flags);
1183                                 if (wbi->bi_rw & REQ_SYNC)
1184                                         set_bit(R5_SyncIO, &dev->flags);
1185                                 if (wbi->bi_rw & REQ_DISCARD)
1186                                         set_bit(R5_Discard, &dev->flags);
1187                                 else
1188                                         tx = async_copy_data(1, wbi, dev->page,
1189                                                 dev->sector, tx);
1190                                 wbi = r5_next_bio(wbi, dev->sector);
1191                         }
1192                 }
1193         }
1194
1195         return tx;
1196 }
1197
1198 static void ops_complete_reconstruct(void *stripe_head_ref)
1199 {
1200         struct stripe_head *sh = stripe_head_ref;
1201         int disks = sh->disks;
1202         int pd_idx = sh->pd_idx;
1203         int qd_idx = sh->qd_idx;
1204         int i;
1205         bool fua = false, sync = false, discard = false;
1206
1207         pr_debug("%s: stripe %llu\n", __func__,
1208                 (unsigned long long)sh->sector);
1209
1210         for (i = disks; i--; ) {
1211                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1212                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1213                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1214         }
1215
1216         for (i = disks; i--; ) {
1217                 struct r5dev *dev = &sh->dev[i];
1218
1219                 if (dev->written || i == pd_idx || i == qd_idx) {
1220                         if (!discard)
1221                                 set_bit(R5_UPTODATE, &dev->flags);
1222                         if (fua)
1223                                 set_bit(R5_WantFUA, &dev->flags);
1224                         if (sync)
1225                                 set_bit(R5_SyncIO, &dev->flags);
1226                 }
1227         }
1228
1229         if (sh->reconstruct_state == reconstruct_state_drain_run)
1230                 sh->reconstruct_state = reconstruct_state_drain_result;
1231         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1232                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1233         else {
1234                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1235                 sh->reconstruct_state = reconstruct_state_result;
1236         }
1237
1238         set_bit(STRIPE_HANDLE, &sh->state);
1239         release_stripe(sh);
1240 }
1241
1242 static void
1243 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1244                      struct dma_async_tx_descriptor *tx)
1245 {
1246         int disks = sh->disks;
1247         struct page **xor_srcs = percpu->scribble;
1248         struct async_submit_ctl submit;
1249         int count = 0, pd_idx = sh->pd_idx, i;
1250         struct page *xor_dest;
1251         int prexor = 0;
1252         unsigned long flags;
1253
1254         pr_debug("%s: stripe %llu\n", __func__,
1255                 (unsigned long long)sh->sector);
1256
1257         for (i = 0; i < sh->disks; i++) {
1258                 if (pd_idx == i)
1259                         continue;
1260                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1261                         break;
1262         }
1263         if (i >= sh->disks) {
1264                 atomic_inc(&sh->count);
1265                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1266                 ops_complete_reconstruct(sh);
1267                 return;
1268         }
1269         /* check if prexor is active which means only process blocks
1270          * that are part of a read-modify-write (written)
1271          */
1272         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1273                 prexor = 1;
1274                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1275                 for (i = disks; i--; ) {
1276                         struct r5dev *dev = &sh->dev[i];
1277                         if (dev->written)
1278                                 xor_srcs[count++] = dev->page;
1279                 }
1280         } else {
1281                 xor_dest = sh->dev[pd_idx].page;
1282                 for (i = disks; i--; ) {
1283                         struct r5dev *dev = &sh->dev[i];
1284                         if (i != pd_idx)
1285                                 xor_srcs[count++] = dev->page;
1286                 }
1287         }
1288
1289         /* 1/ if we prexor'd then the dest is reused as a source
1290          * 2/ if we did not prexor then we are redoing the parity
1291          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1292          * for the synchronous xor case
1293          */
1294         flags = ASYNC_TX_ACK |
1295                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1296
1297         atomic_inc(&sh->count);
1298
1299         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1300                           to_addr_conv(sh, percpu));
1301         if (unlikely(count == 1))
1302                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1303         else
1304                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1305 }
1306
1307 static void
1308 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1309                      struct dma_async_tx_descriptor *tx)
1310 {
1311         struct async_submit_ctl submit;
1312         struct page **blocks = percpu->scribble;
1313         int count, i;
1314
1315         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1316
1317         for (i = 0; i < sh->disks; i++) {
1318                 if (sh->pd_idx == i || sh->qd_idx == i)
1319                         continue;
1320                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1321                         break;
1322         }
1323         if (i >= sh->disks) {
1324                 atomic_inc(&sh->count);
1325                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1326                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1327                 ops_complete_reconstruct(sh);
1328                 return;
1329         }
1330
1331         count = set_syndrome_sources(blocks, sh);
1332
1333         atomic_inc(&sh->count);
1334
1335         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1336                           sh, to_addr_conv(sh, percpu));
1337         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1338 }
1339
1340 static void ops_complete_check(void *stripe_head_ref)
1341 {
1342         struct stripe_head *sh = stripe_head_ref;
1343
1344         pr_debug("%s: stripe %llu\n", __func__,
1345                 (unsigned long long)sh->sector);
1346
1347         sh->check_state = check_state_check_result;
1348         set_bit(STRIPE_HANDLE, &sh->state);
1349         release_stripe(sh);
1350 }
1351
1352 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1353 {
1354         int disks = sh->disks;
1355         int pd_idx = sh->pd_idx;
1356         int qd_idx = sh->qd_idx;
1357         struct page *xor_dest;
1358         struct page **xor_srcs = percpu->scribble;
1359         struct dma_async_tx_descriptor *tx;
1360         struct async_submit_ctl submit;
1361         int count;
1362         int i;
1363
1364         pr_debug("%s: stripe %llu\n", __func__,
1365                 (unsigned long long)sh->sector);
1366
1367         count = 0;
1368         xor_dest = sh->dev[pd_idx].page;
1369         xor_srcs[count++] = xor_dest;
1370         for (i = disks; i--; ) {
1371                 if (i == pd_idx || i == qd_idx)
1372                         continue;
1373                 xor_srcs[count++] = sh->dev[i].page;
1374         }
1375
1376         init_async_submit(&submit, 0, NULL, NULL, NULL,
1377                           to_addr_conv(sh, percpu));
1378         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1379                            &sh->ops.zero_sum_result, &submit);
1380
1381         atomic_inc(&sh->count);
1382         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1383         tx = async_trigger_callback(&submit);
1384 }
1385
1386 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1387 {
1388         struct page **srcs = percpu->scribble;
1389         struct async_submit_ctl submit;
1390         int count;
1391
1392         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1393                 (unsigned long long)sh->sector, checkp);
1394
1395         count = set_syndrome_sources(srcs, sh);
1396         if (!checkp)
1397                 srcs[count] = NULL;
1398
1399         atomic_inc(&sh->count);
1400         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1401                           sh, to_addr_conv(sh, percpu));
1402         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1403                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1404 }
1405
1406 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1407 {
1408         int overlap_clear = 0, i, disks = sh->disks;
1409         struct dma_async_tx_descriptor *tx = NULL;
1410         struct r5conf *conf = sh->raid_conf;
1411         int level = conf->level;
1412         struct raid5_percpu *percpu;
1413         unsigned long cpu;
1414
1415         cpu = get_cpu();
1416         percpu = per_cpu_ptr(conf->percpu, cpu);
1417         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1418                 ops_run_biofill(sh);
1419                 overlap_clear++;
1420         }
1421
1422         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1423                 if (level < 6)
1424                         tx = ops_run_compute5(sh, percpu);
1425                 else {
1426                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1427                                 tx = ops_run_compute6_1(sh, percpu);
1428                         else
1429                                 tx = ops_run_compute6_2(sh, percpu);
1430                 }
1431                 /* terminate the chain if reconstruct is not set to be run */
1432                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1433                         async_tx_ack(tx);
1434         }
1435
1436         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1437                 tx = ops_run_prexor(sh, percpu, tx);
1438
1439         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1440                 tx = ops_run_biodrain(sh, tx);
1441                 overlap_clear++;
1442         }
1443
1444         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1445                 if (level < 6)
1446                         ops_run_reconstruct5(sh, percpu, tx);
1447                 else
1448                         ops_run_reconstruct6(sh, percpu, tx);
1449         }
1450
1451         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1452                 if (sh->check_state == check_state_run)
1453                         ops_run_check_p(sh, percpu);
1454                 else if (sh->check_state == check_state_run_q)
1455                         ops_run_check_pq(sh, percpu, 0);
1456                 else if (sh->check_state == check_state_run_pq)
1457                         ops_run_check_pq(sh, percpu, 1);
1458                 else
1459                         BUG();
1460         }
1461
1462         if (overlap_clear)
1463                 for (i = disks; i--; ) {
1464                         struct r5dev *dev = &sh->dev[i];
1465                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1466                                 wake_up(&sh->raid_conf->wait_for_overlap);
1467                 }
1468         put_cpu();
1469 }
1470
1471 #ifdef CONFIG_MULTICORE_RAID456
1472 static void async_run_ops(void *param, async_cookie_t cookie)
1473 {
1474         struct stripe_head *sh = param;
1475         unsigned long ops_request = sh->ops.request;
1476
1477         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1478         wake_up(&sh->ops.wait_for_ops);
1479
1480         __raid_run_ops(sh, ops_request);
1481         release_stripe(sh);
1482 }
1483
1484 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1485 {
1486         /* since handle_stripe can be called outside of raid5d context
1487          * we need to ensure sh->ops.request is de-staged before another
1488          * request arrives
1489          */
1490         wait_event(sh->ops.wait_for_ops,
1491                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1492         sh->ops.request = ops_request;
1493
1494         atomic_inc(&sh->count);
1495         async_schedule(async_run_ops, sh);
1496 }
1497 #else
1498 #define raid_run_ops __raid_run_ops
1499 #endif
1500
1501 static int grow_one_stripe(struct r5conf *conf)
1502 {
1503         struct stripe_head *sh;
1504         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1505         if (!sh)
1506                 return 0;
1507
1508         sh->raid_conf = conf;
1509         #ifdef CONFIG_MULTICORE_RAID456
1510         init_waitqueue_head(&sh->ops.wait_for_ops);
1511         #endif
1512
1513         spin_lock_init(&sh->stripe_lock);
1514
1515         if (grow_buffers(sh)) {
1516                 shrink_buffers(sh);
1517                 kmem_cache_free(conf->slab_cache, sh);
1518                 return 0;
1519         }
1520         /* we just created an active stripe so... */
1521         atomic_set(&sh->count, 1);
1522         atomic_inc(&conf->active_stripes);
1523         INIT_LIST_HEAD(&sh->lru);
1524         release_stripe(sh);
1525         return 1;
1526 }
1527
1528 static int grow_stripes(struct r5conf *conf, int num)
1529 {
1530         struct kmem_cache *sc;
1531         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1532
1533         if (conf->mddev->gendisk)
1534                 sprintf(conf->cache_name[0],
1535                         "raid%d-%s", conf->level, mdname(conf->mddev));
1536         else
1537                 sprintf(conf->cache_name[0],
1538                         "raid%d-%p", conf->level, conf->mddev);
1539         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1540
1541         conf->active_name = 0;
1542         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1543                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1544                                0, 0, NULL);
1545         if (!sc)
1546                 return 1;
1547         conf->slab_cache = sc;
1548         conf->pool_size = devs;
1549         while (num--)
1550                 if (!grow_one_stripe(conf))
1551                         return 1;
1552         return 0;
1553 }
1554
1555 /**
1556  * scribble_len - return the required size of the scribble region
1557  * @num - total number of disks in the array
1558  *
1559  * The size must be enough to contain:
1560  * 1/ a struct page pointer for each device in the array +2
1561  * 2/ room to convert each entry in (1) to its corresponding dma
1562  *    (dma_map_page()) or page (page_address()) address.
1563  *
1564  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1565  * calculate over all devices (not just the data blocks), using zeros in place
1566  * of the P and Q blocks.
1567  */
1568 static size_t scribble_len(int num)
1569 {
1570         size_t len;
1571
1572         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1573
1574         return len;
1575 }
1576
1577 static int resize_stripes(struct r5conf *conf, int newsize)
1578 {
1579         /* Make all the stripes able to hold 'newsize' devices.
1580          * New slots in each stripe get 'page' set to a new page.
1581          *
1582          * This happens in stages:
1583          * 1/ create a new kmem_cache and allocate the required number of
1584          *    stripe_heads.
1585          * 2/ gather all the old stripe_heads and transfer the pages across
1586          *    to the new stripe_heads.  This will have the side effect of
1587          *    freezing the array as once all stripe_heads have been collected,
1588          *    no IO will be possible.  Old stripe heads are freed once their
1589          *    pages have been transferred over, and the old kmem_cache is
1590          *    freed when all stripes are done.
1591          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1592          *    we simple return a failre status - no need to clean anything up.
1593          * 4/ allocate new pages for the new slots in the new stripe_heads.
1594          *    If this fails, we don't bother trying the shrink the
1595          *    stripe_heads down again, we just leave them as they are.
1596          *    As each stripe_head is processed the new one is released into
1597          *    active service.
1598          *
1599          * Once step2 is started, we cannot afford to wait for a write,
1600          * so we use GFP_NOIO allocations.
1601          */
1602         struct stripe_head *osh, *nsh;
1603         LIST_HEAD(newstripes);
1604         struct disk_info *ndisks;
1605         unsigned long cpu;
1606         int err;
1607         struct kmem_cache *sc;
1608         int i;
1609
1610         if (newsize <= conf->pool_size)
1611                 return 0; /* never bother to shrink */
1612
1613         err = md_allow_write(conf->mddev);
1614         if (err)
1615                 return err;
1616
1617         /* Step 1 */
1618         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1619                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1620                                0, 0, NULL);
1621         if (!sc)
1622                 return -ENOMEM;
1623
1624         for (i = conf->max_nr_stripes; i; i--) {
1625                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1626                 if (!nsh)
1627                         break;
1628
1629                 nsh->raid_conf = conf;
1630                 #ifdef CONFIG_MULTICORE_RAID456
1631                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1632                 #endif
1633                 spin_lock_init(&nsh->stripe_lock);
1634
1635                 list_add(&nsh->lru, &newstripes);
1636         }
1637         if (i) {
1638                 /* didn't get enough, give up */
1639                 while (!list_empty(&newstripes)) {
1640                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1641                         list_del(&nsh->lru);
1642                         kmem_cache_free(sc, nsh);
1643                 }
1644                 kmem_cache_destroy(sc);
1645                 return -ENOMEM;
1646         }
1647         /* Step 2 - Must use GFP_NOIO now.
1648          * OK, we have enough stripes, start collecting inactive
1649          * stripes and copying them over
1650          */
1651         list_for_each_entry(nsh, &newstripes, lru) {
1652                 spin_lock_irq(&conf->device_lock);
1653                 wait_event_lock_irq(conf->wait_for_stripe,
1654                                     !list_empty(&conf->inactive_list),
1655                                     conf->device_lock);
1656                 osh = get_free_stripe(conf);
1657                 spin_unlock_irq(&conf->device_lock);
1658                 atomic_set(&nsh->count, 1);
1659                 for(i=0; i<conf->pool_size; i++)
1660                         nsh->dev[i].page = osh->dev[i].page;
1661                 for( ; i<newsize; i++)
1662                         nsh->dev[i].page = NULL;
1663                 kmem_cache_free(conf->slab_cache, osh);
1664         }
1665         kmem_cache_destroy(conf->slab_cache);
1666
1667         /* Step 3.
1668          * At this point, we are holding all the stripes so the array
1669          * is completely stalled, so now is a good time to resize
1670          * conf->disks and the scribble region
1671          */
1672         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1673         if (ndisks) {
1674                 for (i=0; i<conf->raid_disks; i++)
1675                         ndisks[i] = conf->disks[i];
1676                 kfree(conf->disks);
1677                 conf->disks = ndisks;
1678         } else
1679                 err = -ENOMEM;
1680
1681         get_online_cpus();
1682         conf->scribble_len = scribble_len(newsize);
1683         for_each_present_cpu(cpu) {
1684                 struct raid5_percpu *percpu;
1685                 void *scribble;
1686
1687                 percpu = per_cpu_ptr(conf->percpu, cpu);
1688                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1689
1690                 if (scribble) {
1691                         kfree(percpu->scribble);
1692                         percpu->scribble = scribble;
1693                 } else {
1694                         err = -ENOMEM;
1695                         break;
1696                 }
1697         }
1698         put_online_cpus();
1699
1700         /* Step 4, return new stripes to service */
1701         while(!list_empty(&newstripes)) {
1702                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1703                 list_del_init(&nsh->lru);
1704
1705                 for (i=conf->raid_disks; i < newsize; i++)
1706                         if (nsh->dev[i].page == NULL) {
1707                                 struct page *p = alloc_page(GFP_NOIO);
1708                                 nsh->dev[i].page = p;
1709                                 if (!p)
1710                                         err = -ENOMEM;
1711                         }
1712                 release_stripe(nsh);
1713         }
1714         /* critical section pass, GFP_NOIO no longer needed */
1715
1716         conf->slab_cache = sc;
1717         conf->active_name = 1-conf->active_name;
1718         conf->pool_size = newsize;
1719         return err;
1720 }
1721
1722 static int drop_one_stripe(struct r5conf *conf)
1723 {
1724         struct stripe_head *sh;
1725
1726         spin_lock_irq(&conf->device_lock);
1727         sh = get_free_stripe(conf);
1728         spin_unlock_irq(&conf->device_lock);
1729         if (!sh)
1730                 return 0;
1731         BUG_ON(atomic_read(&sh->count));
1732         shrink_buffers(sh);
1733         kmem_cache_free(conf->slab_cache, sh);
1734         atomic_dec(&conf->active_stripes);
1735         return 1;
1736 }
1737
1738 static void shrink_stripes(struct r5conf *conf)
1739 {
1740         while (drop_one_stripe(conf))
1741                 ;
1742
1743         if (conf->slab_cache)
1744                 kmem_cache_destroy(conf->slab_cache);
1745         conf->slab_cache = NULL;
1746 }
1747
1748 static void raid5_end_read_request(struct bio * bi, int error)
1749 {
1750         struct stripe_head *sh = bi->bi_private;
1751         struct r5conf *conf = sh->raid_conf;
1752         int disks = sh->disks, i;
1753         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1754         char b[BDEVNAME_SIZE];
1755         struct md_rdev *rdev = NULL;
1756         sector_t s;
1757
1758         for (i=0 ; i<disks; i++)
1759                 if (bi == &sh->dev[i].req)
1760                         break;
1761
1762         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1763                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1764                 uptodate);
1765         if (i == disks) {
1766                 BUG();
1767                 return;
1768         }
1769         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1770                 /* If replacement finished while this request was outstanding,
1771                  * 'replacement' might be NULL already.
1772                  * In that case it moved down to 'rdev'.
1773                  * rdev is not removed until all requests are finished.
1774                  */
1775                 rdev = conf->disks[i].replacement;
1776         if (!rdev)
1777                 rdev = conf->disks[i].rdev;
1778
1779         if (use_new_offset(conf, sh))
1780                 s = sh->sector + rdev->new_data_offset;
1781         else
1782                 s = sh->sector + rdev->data_offset;
1783         if (uptodate) {
1784                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1785                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1786                         /* Note that this cannot happen on a
1787                          * replacement device.  We just fail those on
1788                          * any error
1789                          */
1790                         printk_ratelimited(
1791                                 KERN_INFO
1792                                 "md/raid:%s: read error corrected"
1793                                 " (%lu sectors at %llu on %s)\n",
1794                                 mdname(conf->mddev), STRIPE_SECTORS,
1795                                 (unsigned long long)s,
1796                                 bdevname(rdev->bdev, b));
1797                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1798                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1799                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1800                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1801                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1802
1803                 if (atomic_read(&rdev->read_errors))
1804                         atomic_set(&rdev->read_errors, 0);
1805         } else {
1806                 const char *bdn = bdevname(rdev->bdev, b);
1807                 int retry = 0;
1808                 int set_bad = 0;
1809
1810                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1811                 atomic_inc(&rdev->read_errors);
1812                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1813                         printk_ratelimited(
1814                                 KERN_WARNING
1815                                 "md/raid:%s: read error on replacement device "
1816                                 "(sector %llu on %s).\n",
1817                                 mdname(conf->mddev),
1818                                 (unsigned long long)s,
1819                                 bdn);
1820                 else if (conf->mddev->degraded >= conf->max_degraded) {
1821                         set_bad = 1;
1822                         printk_ratelimited(
1823                                 KERN_WARNING
1824                                 "md/raid:%s: read error not correctable "
1825                                 "(sector %llu on %s).\n",
1826                                 mdname(conf->mddev),
1827                                 (unsigned long long)s,
1828                                 bdn);
1829                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1830                         /* Oh, no!!! */
1831                         set_bad = 1;
1832                         printk_ratelimited(
1833                                 KERN_WARNING
1834                                 "md/raid:%s: read error NOT corrected!! "
1835                                 "(sector %llu on %s).\n",
1836                                 mdname(conf->mddev),
1837                                 (unsigned long long)s,
1838                                 bdn);
1839                 } else if (atomic_read(&rdev->read_errors)
1840                          > conf->max_nr_stripes)
1841                         printk(KERN_WARNING
1842                                "md/raid:%s: Too many read errors, failing device %s.\n",
1843                                mdname(conf->mddev), bdn);
1844                 else
1845                         retry = 1;
1846                 if (retry)
1847                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1848                                 set_bit(R5_ReadError, &sh->dev[i].flags);
1849                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1850                         } else
1851                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1852                 else {
1853                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1854                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1855                         if (!(set_bad
1856                               && test_bit(In_sync, &rdev->flags)
1857                               && rdev_set_badblocks(
1858                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
1859                                 md_error(conf->mddev, rdev);
1860                 }
1861         }
1862         rdev_dec_pending(rdev, conf->mddev);
1863         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1864         set_bit(STRIPE_HANDLE, &sh->state);
1865         release_stripe(sh);
1866 }
1867
1868 static void raid5_end_write_request(struct bio *bi, int error)
1869 {
1870         struct stripe_head *sh = bi->bi_private;
1871         struct r5conf *conf = sh->raid_conf;
1872         int disks = sh->disks, i;
1873         struct md_rdev *uninitialized_var(rdev);
1874         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1875         sector_t first_bad;
1876         int bad_sectors;
1877         int replacement = 0;
1878
1879         for (i = 0 ; i < disks; i++) {
1880                 if (bi == &sh->dev[i].req) {
1881                         rdev = conf->disks[i].rdev;
1882                         break;
1883                 }
1884                 if (bi == &sh->dev[i].rreq) {
1885                         rdev = conf->disks[i].replacement;
1886                         if (rdev)
1887                                 replacement = 1;
1888                         else
1889                                 /* rdev was removed and 'replacement'
1890                                  * replaced it.  rdev is not removed
1891                                  * until all requests are finished.
1892                                  */
1893                                 rdev = conf->disks[i].rdev;
1894                         break;
1895                 }
1896         }
1897         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1898                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1899                 uptodate);
1900         if (i == disks) {
1901                 BUG();
1902                 return;
1903         }
1904
1905         if (replacement) {
1906                 if (!uptodate)
1907                         md_error(conf->mddev, rdev);
1908                 else if (is_badblock(rdev, sh->sector,
1909                                      STRIPE_SECTORS,
1910                                      &first_bad, &bad_sectors))
1911                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1912         } else {
1913                 if (!uptodate) {
1914                         set_bit(WriteErrorSeen, &rdev->flags);
1915                         set_bit(R5_WriteError, &sh->dev[i].flags);
1916                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1917                                 set_bit(MD_RECOVERY_NEEDED,
1918                                         &rdev->mddev->recovery);
1919                 } else if (is_badblock(rdev, sh->sector,
1920                                        STRIPE_SECTORS,
1921                                        &first_bad, &bad_sectors))
1922                         set_bit(R5_MadeGood, &sh->dev[i].flags);
1923         }
1924         rdev_dec_pending(rdev, conf->mddev);
1925
1926         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1927                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1928         set_bit(STRIPE_HANDLE, &sh->state);
1929         release_stripe(sh);
1930 }
1931
1932 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1933         
1934 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1935 {
1936         struct r5dev *dev = &sh->dev[i];
1937
1938         bio_init(&dev->req);
1939         dev->req.bi_io_vec = &dev->vec;
1940         dev->req.bi_vcnt++;
1941         dev->req.bi_max_vecs++;
1942         dev->req.bi_private = sh;
1943         dev->vec.bv_page = dev->page;
1944
1945         bio_init(&dev->rreq);
1946         dev->rreq.bi_io_vec = &dev->rvec;
1947         dev->rreq.bi_vcnt++;
1948         dev->rreq.bi_max_vecs++;
1949         dev->rreq.bi_private = sh;
1950         dev->rvec.bv_page = dev->page;
1951
1952         dev->flags = 0;
1953         dev->sector = compute_blocknr(sh, i, previous);
1954 }
1955
1956 static void error(struct mddev *mddev, struct md_rdev *rdev)
1957 {
1958         char b[BDEVNAME_SIZE];
1959         struct r5conf *conf = mddev->private;
1960         unsigned long flags;
1961         pr_debug("raid456: error called\n");
1962
1963         spin_lock_irqsave(&conf->device_lock, flags);
1964         clear_bit(In_sync, &rdev->flags);
1965         mddev->degraded = calc_degraded(conf);
1966         spin_unlock_irqrestore(&conf->device_lock, flags);
1967         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1968
1969         set_bit(Blocked, &rdev->flags);
1970         set_bit(Faulty, &rdev->flags);
1971         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1972         printk(KERN_ALERT
1973                "md/raid:%s: Disk failure on %s, disabling device.\n"
1974                "md/raid:%s: Operation continuing on %d devices.\n",
1975                mdname(mddev),
1976                bdevname(rdev->bdev, b),
1977                mdname(mddev),
1978                conf->raid_disks - mddev->degraded);
1979 }
1980
1981 /*
1982  * Input: a 'big' sector number,
1983  * Output: index of the data and parity disk, and the sector # in them.
1984  */
1985 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1986                                      int previous, int *dd_idx,
1987                                      struct stripe_head *sh)
1988 {
1989         sector_t stripe, stripe2;
1990         sector_t chunk_number;
1991         unsigned int chunk_offset;
1992         int pd_idx, qd_idx;
1993         int ddf_layout = 0;
1994         sector_t new_sector;
1995         int algorithm = previous ? conf->prev_algo
1996                                  : conf->algorithm;
1997         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1998                                          : conf->chunk_sectors;
1999         int raid_disks = previous ? conf->previous_raid_disks
2000                                   : conf->raid_disks;
2001         int data_disks = raid_disks - conf->max_degraded;
2002
2003         /* First compute the information on this sector */
2004
2005         /*
2006          * Compute the chunk number and the sector offset inside the chunk
2007          */
2008         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2009         chunk_number = r_sector;
2010
2011         /*
2012          * Compute the stripe number
2013          */
2014         stripe = chunk_number;
2015         *dd_idx = sector_div(stripe, data_disks);
2016         stripe2 = stripe;
2017         /*
2018          * Select the parity disk based on the user selected algorithm.
2019          */
2020         pd_idx = qd_idx = -1;
2021         switch(conf->level) {
2022         case 4:
2023                 pd_idx = data_disks;
2024                 break;
2025         case 5:
2026                 switch (algorithm) {
2027                 case ALGORITHM_LEFT_ASYMMETRIC:
2028                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2029                         if (*dd_idx >= pd_idx)
2030                                 (*dd_idx)++;
2031                         break;
2032                 case ALGORITHM_RIGHT_ASYMMETRIC:
2033                         pd_idx = sector_div(stripe2, raid_disks);
2034                         if (*dd_idx >= pd_idx)
2035                                 (*dd_idx)++;
2036                         break;
2037                 case ALGORITHM_LEFT_SYMMETRIC:
2038                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2039                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2040                         break;
2041                 case ALGORITHM_RIGHT_SYMMETRIC:
2042                         pd_idx = sector_div(stripe2, raid_disks);
2043                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2044                         break;
2045                 case ALGORITHM_PARITY_0:
2046                         pd_idx = 0;
2047                         (*dd_idx)++;
2048                         break;
2049                 case ALGORITHM_PARITY_N:
2050                         pd_idx = data_disks;
2051                         break;
2052                 default:
2053                         BUG();
2054                 }
2055                 break;
2056         case 6:
2057
2058                 switch (algorithm) {
2059                 case ALGORITHM_LEFT_ASYMMETRIC:
2060                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2061                         qd_idx = pd_idx + 1;
2062                         if (pd_idx == raid_disks-1) {
2063                                 (*dd_idx)++;    /* Q D D D P */
2064                                 qd_idx = 0;
2065                         } else if (*dd_idx >= pd_idx)
2066                                 (*dd_idx) += 2; /* D D P Q D */
2067                         break;
2068                 case ALGORITHM_RIGHT_ASYMMETRIC:
2069                         pd_idx = sector_div(stripe2, raid_disks);
2070                         qd_idx = pd_idx + 1;
2071                         if (pd_idx == raid_disks-1) {
2072                                 (*dd_idx)++;    /* Q D D D P */
2073                                 qd_idx = 0;
2074                         } else if (*dd_idx >= pd_idx)
2075                                 (*dd_idx) += 2; /* D D P Q D */
2076                         break;
2077                 case ALGORITHM_LEFT_SYMMETRIC:
2078                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2079                         qd_idx = (pd_idx + 1) % raid_disks;
2080                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2081                         break;
2082                 case ALGORITHM_RIGHT_SYMMETRIC:
2083                         pd_idx = sector_div(stripe2, raid_disks);
2084                         qd_idx = (pd_idx + 1) % raid_disks;
2085                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2086                         break;
2087
2088                 case ALGORITHM_PARITY_0:
2089                         pd_idx = 0;
2090                         qd_idx = 1;
2091                         (*dd_idx) += 2;
2092                         break;
2093                 case ALGORITHM_PARITY_N:
2094                         pd_idx = data_disks;
2095                         qd_idx = data_disks + 1;
2096                         break;
2097
2098                 case ALGORITHM_ROTATING_ZERO_RESTART:
2099                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2100                          * of blocks for computing Q is different.
2101                          */
2102                         pd_idx = sector_div(stripe2, raid_disks);
2103                         qd_idx = pd_idx + 1;
2104                         if (pd_idx == raid_disks-1) {
2105                                 (*dd_idx)++;    /* Q D D D P */
2106                                 qd_idx = 0;
2107                         } else if (*dd_idx >= pd_idx)
2108                                 (*dd_idx) += 2; /* D D P Q D */
2109                         ddf_layout = 1;
2110                         break;
2111
2112                 case ALGORITHM_ROTATING_N_RESTART:
2113                         /* Same a left_asymmetric, by first stripe is
2114                          * D D D P Q  rather than
2115                          * Q D D D P
2116                          */
2117                         stripe2 += 1;
2118                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2119                         qd_idx = pd_idx + 1;
2120                         if (pd_idx == raid_disks-1) {
2121                                 (*dd_idx)++;    /* Q D D D P */
2122                                 qd_idx = 0;
2123                         } else if (*dd_idx >= pd_idx)
2124                                 (*dd_idx) += 2; /* D D P Q D */
2125                         ddf_layout = 1;
2126                         break;
2127
2128                 case ALGORITHM_ROTATING_N_CONTINUE:
2129                         /* Same as left_symmetric but Q is before P */
2130                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2131                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2132                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2133                         ddf_layout = 1;
2134                         break;
2135
2136                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2137                         /* RAID5 left_asymmetric, with Q on last device */
2138                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2139                         if (*dd_idx >= pd_idx)
2140                                 (*dd_idx)++;
2141                         qd_idx = raid_disks - 1;
2142                         break;
2143
2144                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2145                         pd_idx = sector_div(stripe2, raid_disks-1);
2146                         if (*dd_idx >= pd_idx)
2147                                 (*dd_idx)++;
2148                         qd_idx = raid_disks - 1;
2149                         break;
2150
2151                 case ALGORITHM_LEFT_SYMMETRIC_6:
2152                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2153                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2154                         qd_idx = raid_disks - 1;
2155                         break;
2156
2157                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2158                         pd_idx = sector_div(stripe2, raid_disks-1);
2159                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2160                         qd_idx = raid_disks - 1;
2161                         break;
2162
2163                 case ALGORITHM_PARITY_0_6:
2164                         pd_idx = 0;
2165                         (*dd_idx)++;
2166                         qd_idx = raid_disks - 1;
2167                         break;
2168
2169                 default:
2170                         BUG();
2171                 }
2172                 break;
2173         }
2174
2175         if (sh) {
2176                 sh->pd_idx = pd_idx;
2177                 sh->qd_idx = qd_idx;
2178                 sh->ddf_layout = ddf_layout;
2179         }
2180         /*
2181          * Finally, compute the new sector number
2182          */
2183         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2184         return new_sector;
2185 }
2186
2187
2188 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2189 {
2190         struct r5conf *conf = sh->raid_conf;
2191         int raid_disks = sh->disks;
2192         int data_disks = raid_disks - conf->max_degraded;
2193         sector_t new_sector = sh->sector, check;
2194         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2195                                          : conf->chunk_sectors;
2196         int algorithm = previous ? conf->prev_algo
2197                                  : conf->algorithm;
2198         sector_t stripe;
2199         int chunk_offset;
2200         sector_t chunk_number;
2201         int dummy1, dd_idx = i;
2202         sector_t r_sector;
2203         struct stripe_head sh2;
2204
2205
2206         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2207         stripe = new_sector;
2208
2209         if (i == sh->pd_idx)
2210                 return 0;
2211         switch(conf->level) {
2212         case 4: break;
2213         case 5:
2214                 switch (algorithm) {
2215                 case ALGORITHM_LEFT_ASYMMETRIC:
2216                 case ALGORITHM_RIGHT_ASYMMETRIC:
2217                         if (i > sh->pd_idx)
2218                                 i--;
2219                         break;
2220                 case ALGORITHM_LEFT_SYMMETRIC:
2221                 case ALGORITHM_RIGHT_SYMMETRIC:
2222                         if (i < sh->pd_idx)
2223                                 i += raid_disks;
2224                         i -= (sh->pd_idx + 1);
2225                         break;
2226                 case ALGORITHM_PARITY_0:
2227                         i -= 1;
2228                         break;
2229                 case ALGORITHM_PARITY_N:
2230                         break;
2231                 default:
2232                         BUG();
2233                 }
2234                 break;
2235         case 6:
2236                 if (i == sh->qd_idx)
2237                         return 0; /* It is the Q disk */
2238                 switch (algorithm) {
2239                 case ALGORITHM_LEFT_ASYMMETRIC:
2240                 case ALGORITHM_RIGHT_ASYMMETRIC:
2241                 case ALGORITHM_ROTATING_ZERO_RESTART:
2242                 case ALGORITHM_ROTATING_N_RESTART:
2243                         if (sh->pd_idx == raid_disks-1)
2244                                 i--;    /* Q D D D P */
2245                         else if (i > sh->pd_idx)
2246                                 i -= 2; /* D D P Q D */
2247                         break;
2248                 case ALGORITHM_LEFT_SYMMETRIC:
2249                 case ALGORITHM_RIGHT_SYMMETRIC:
2250                         if (sh->pd_idx == raid_disks-1)
2251                                 i--; /* Q D D D P */
2252                         else {
2253                                 /* D D P Q D */
2254                                 if (i < sh->pd_idx)
2255                                         i += raid_disks;
2256                                 i -= (sh->pd_idx + 2);
2257                         }
2258                         break;
2259                 case ALGORITHM_PARITY_0:
2260                         i -= 2;
2261                         break;
2262                 case ALGORITHM_PARITY_N:
2263                         break;
2264                 case ALGORITHM_ROTATING_N_CONTINUE:
2265                         /* Like left_symmetric, but P is before Q */
2266                         if (sh->pd_idx == 0)
2267                                 i--;    /* P D D D Q */
2268                         else {
2269                                 /* D D Q P D */
2270                                 if (i < sh->pd_idx)
2271                                         i += raid_disks;
2272                                 i -= (sh->pd_idx + 1);
2273                         }
2274                         break;
2275                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2276                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2277                         if (i > sh->pd_idx)
2278                                 i--;
2279                         break;
2280                 case ALGORITHM_LEFT_SYMMETRIC_6:
2281                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2282                         if (i < sh->pd_idx)
2283                                 i += data_disks + 1;
2284                         i -= (sh->pd_idx + 1);
2285                         break;
2286                 case ALGORITHM_PARITY_0_6:
2287                         i -= 1;
2288                         break;
2289                 default:
2290                         BUG();
2291                 }
2292                 break;
2293         }
2294
2295         chunk_number = stripe * data_disks + i;
2296         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2297
2298         check = raid5_compute_sector(conf, r_sector,
2299                                      previous, &dummy1, &sh2);
2300         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2301                 || sh2.qd_idx != sh->qd_idx) {
2302                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2303                        mdname(conf->mddev));
2304                 return 0;
2305         }
2306         return r_sector;
2307 }
2308
2309
2310 static void
2311 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2312                          int rcw, int expand)
2313 {
2314         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2315         struct r5conf *conf = sh->raid_conf;
2316         int level = conf->level;
2317
2318         if (rcw) {
2319                 /* if we are not expanding this is a proper write request, and
2320                  * there will be bios with new data to be drained into the
2321                  * stripe cache
2322                  */
2323                 if (!expand) {
2324                         sh->reconstruct_state = reconstruct_state_drain_run;
2325                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2326                 } else
2327                         sh->reconstruct_state = reconstruct_state_run;
2328
2329                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2330
2331                 for (i = disks; i--; ) {
2332                         struct r5dev *dev = &sh->dev[i];
2333
2334                         if (dev->towrite) {
2335                                 set_bit(R5_LOCKED, &dev->flags);
2336                                 set_bit(R5_Wantdrain, &dev->flags);
2337                                 if (!expand)
2338                                         clear_bit(R5_UPTODATE, &dev->flags);
2339                                 s->locked++;
2340                         }
2341                 }
2342                 if (s->locked + conf->max_degraded == disks)
2343                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2344                                 atomic_inc(&conf->pending_full_writes);
2345         } else {
2346                 BUG_ON(level == 6);
2347                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2348                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2349
2350                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2351                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2352                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2353                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2354
2355                 for (i = disks; i--; ) {
2356                         struct r5dev *dev = &sh->dev[i];
2357                         if (i == pd_idx)
2358                                 continue;
2359
2360                         if (dev->towrite &&
2361                             (test_bit(R5_UPTODATE, &dev->flags) ||
2362                              test_bit(R5_Wantcompute, &dev->flags))) {
2363                                 set_bit(R5_Wantdrain, &dev->flags);
2364                                 set_bit(R5_LOCKED, &dev->flags);
2365                                 clear_bit(R5_UPTODATE, &dev->flags);
2366                                 s->locked++;
2367                         }
2368                 }
2369         }
2370
2371         /* keep the parity disk(s) locked while asynchronous operations
2372          * are in flight
2373          */
2374         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2375         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2376         s->locked++;
2377
2378         if (level == 6) {
2379                 int qd_idx = sh->qd_idx;
2380                 struct r5dev *dev = &sh->dev[qd_idx];
2381
2382                 set_bit(R5_LOCKED, &dev->flags);
2383                 clear_bit(R5_UPTODATE, &dev->flags);
2384                 s->locked++;
2385         }
2386
2387         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2388                 __func__, (unsigned long long)sh->sector,
2389                 s->locked, s->ops_request);
2390 }
2391
2392 /*
2393  * Each stripe/dev can have one or more bion attached.
2394  * toread/towrite point to the first in a chain.
2395  * The bi_next chain must be in order.
2396  */
2397 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2398 {
2399         struct bio **bip;
2400         struct r5conf *conf = sh->raid_conf;
2401         int firstwrite=0;
2402
2403         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2404                 (unsigned long long)bi->bi_sector,
2405                 (unsigned long long)sh->sector);
2406
2407         /*
2408          * If several bio share a stripe. The bio bi_phys_segments acts as a
2409          * reference count to avoid race. The reference count should already be
2410          * increased before this function is called (for example, in
2411          * make_request()), so other bio sharing this stripe will not free the
2412          * stripe. If a stripe is owned by one stripe, the stripe lock will
2413          * protect it.
2414          */
2415         spin_lock_irq(&sh->stripe_lock);
2416         if (forwrite) {
2417                 bip = &sh->dev[dd_idx].towrite;
2418                 if (*bip == NULL)
2419                         firstwrite = 1;
2420         } else
2421                 bip = &sh->dev[dd_idx].toread;
2422         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2423                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2424                         goto overlap;
2425                 bip = & (*bip)->bi_next;
2426         }
2427         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2428                 goto overlap;
2429
2430         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2431         if (*bip)
2432                 bi->bi_next = *bip;
2433         *bip = bi;
2434         raid5_inc_bi_active_stripes(bi);
2435
2436         if (forwrite) {
2437                 /* check if page is covered */
2438                 sector_t sector = sh->dev[dd_idx].sector;
2439                 for (bi=sh->dev[dd_idx].towrite;
2440                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2441                              bi && bi->bi_sector <= sector;
2442                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2443                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2444                                 sector = bi->bi_sector + (bi->bi_size>>9);
2445                 }
2446                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2447                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2448         }
2449
2450         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2451                 (unsigned long long)(*bip)->bi_sector,
2452                 (unsigned long long)sh->sector, dd_idx);
2453         spin_unlock_irq(&sh->stripe_lock);
2454
2455         if (conf->mddev->bitmap && firstwrite) {
2456                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2457                                   STRIPE_SECTORS, 0);
2458                 sh->bm_seq = conf->seq_flush+1;
2459                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2460         }
2461         return 1;
2462
2463  overlap:
2464         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2465         spin_unlock_irq(&sh->stripe_lock);
2466         return 0;
2467 }
2468
2469 static void end_reshape(struct r5conf *conf);
2470
2471 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2472                             struct stripe_head *sh)
2473 {
2474         int sectors_per_chunk =
2475                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2476         int dd_idx;
2477         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2478         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2479
2480         raid5_compute_sector(conf,
2481                              stripe * (disks - conf->max_degraded)
2482                              *sectors_per_chunk + chunk_offset,
2483                              previous,
2484                              &dd_idx, sh);
2485 }
2486
2487 static void
2488 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2489                                 struct stripe_head_state *s, int disks,
2490                                 struct bio **return_bi)
2491 {
2492         int i;
2493         for (i = disks; i--; ) {
2494                 struct bio *bi;
2495                 int bitmap_end = 0;
2496
2497                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2498                         struct md_rdev *rdev;
2499                         rcu_read_lock();
2500                         rdev = rcu_dereference(conf->disks[i].rdev);
2501                         if (rdev && test_bit(In_sync, &rdev->flags))
2502                                 atomic_inc(&rdev->nr_pending);
2503                         else
2504                                 rdev = NULL;
2505                         rcu_read_unlock();
2506                         if (rdev) {
2507                                 if (!rdev_set_badblocks(
2508                                             rdev,
2509                                             sh->sector,
2510                                             STRIPE_SECTORS, 0))
2511                                         md_error(conf->mddev, rdev);
2512                                 rdev_dec_pending(rdev, conf->mddev);
2513                         }
2514                 }
2515                 spin_lock_irq(&sh->stripe_lock);
2516                 /* fail all writes first */
2517                 bi = sh->dev[i].towrite;
2518                 sh->dev[i].towrite = NULL;
2519                 spin_unlock_irq(&sh->stripe_lock);
2520                 if (bi)
2521                         bitmap_end = 1;
2522
2523                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2524                         wake_up(&conf->wait_for_overlap);
2525
2526                 while (bi && bi->bi_sector <
2527                         sh->dev[i].sector + STRIPE_SECTORS) {
2528                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2529                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2530                         if (!raid5_dec_bi_active_stripes(bi)) {
2531                                 md_write_end(conf->mddev);
2532                                 bi->bi_next = *return_bi;
2533                                 *return_bi = bi;
2534                         }
2535                         bi = nextbi;
2536                 }
2537                 if (bitmap_end)
2538                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2539                                 STRIPE_SECTORS, 0, 0);
2540                 bitmap_end = 0;
2541                 /* and fail all 'written' */
2542                 bi = sh->dev[i].written;
2543                 sh->dev[i].written = NULL;
2544                 if (bi) bitmap_end = 1;
2545                 while (bi && bi->bi_sector <
2546                        sh->dev[i].sector + STRIPE_SECTORS) {
2547                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2548                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2549                         if (!raid5_dec_bi_active_stripes(bi)) {
2550                                 md_write_end(conf->mddev);
2551                                 bi->bi_next = *return_bi;
2552                                 *return_bi = bi;
2553                         }
2554                         bi = bi2;
2555                 }
2556
2557                 /* fail any reads if this device is non-operational and
2558                  * the data has not reached the cache yet.
2559                  */
2560                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2561                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2562                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2563                         spin_lock_irq(&sh->stripe_lock);
2564                         bi = sh->dev[i].toread;
2565                         sh->dev[i].toread = NULL;
2566                         spin_unlock_irq(&sh->stripe_lock);
2567                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2568                                 wake_up(&conf->wait_for_overlap);
2569                         while (bi && bi->bi_sector <
2570                                sh->dev[i].sector + STRIPE_SECTORS) {
2571                                 struct bio *nextbi =
2572                                         r5_next_bio(bi, sh->dev[i].sector);
2573                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2574                                 if (!raid5_dec_bi_active_stripes(bi)) {
2575                                         bi->bi_next = *return_bi;
2576                                         *return_bi = bi;
2577                                 }
2578                                 bi = nextbi;
2579                         }
2580                 }
2581                 if (bitmap_end)
2582                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2583                                         STRIPE_SECTORS, 0, 0);
2584                 /* If we were in the middle of a write the parity block might
2585                  * still be locked - so just clear all R5_LOCKED flags
2586                  */
2587                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2588         }
2589
2590         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2591                 if (atomic_dec_and_test(&conf->pending_full_writes))
2592                         md_wakeup_thread(conf->mddev->thread);
2593 }
2594
2595 static void
2596 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2597                    struct stripe_head_state *s)
2598 {
2599         int abort = 0;
2600         int i;
2601
2602         clear_bit(STRIPE_SYNCING, &sh->state);
2603         s->syncing = 0;
2604         s->replacing = 0;
2605         /* There is nothing more to do for sync/check/repair.
2606          * Don't even need to abort as that is handled elsewhere
2607          * if needed, and not always wanted e.g. if there is a known
2608          * bad block here.
2609          * For recover/replace we need to record a bad block on all
2610          * non-sync devices, or abort the recovery
2611          */
2612         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2613                 /* During recovery devices cannot be removed, so
2614                  * locking and refcounting of rdevs is not needed
2615                  */
2616                 for (i = 0; i < conf->raid_disks; i++) {
2617                         struct md_rdev *rdev = conf->disks[i].rdev;
2618                         if (rdev
2619                             && !test_bit(Faulty, &rdev->flags)
2620                             && !test_bit(In_sync, &rdev->flags)
2621                             && !rdev_set_badblocks(rdev, sh->sector,
2622                                                    STRIPE_SECTORS, 0))
2623                                 abort = 1;
2624                         rdev = conf->disks[i].replacement;
2625                         if (rdev
2626                             && !test_bit(Faulty, &rdev->flags)
2627                             && !test_bit(In_sync, &rdev->flags)
2628                             && !rdev_set_badblocks(rdev, sh->sector,
2629                                                    STRIPE_SECTORS, 0))
2630                                 abort = 1;
2631                 }
2632                 if (abort)
2633                         conf->recovery_disabled =
2634                                 conf->mddev->recovery_disabled;
2635         }
2636         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2637 }
2638
2639 static int want_replace(struct stripe_head *sh, int disk_idx)
2640 {
2641         struct md_rdev *rdev;
2642         int rv = 0;
2643         /* Doing recovery so rcu locking not required */
2644         rdev = sh->raid_conf->disks[disk_idx].replacement;
2645         if (rdev
2646             && !test_bit(Faulty, &rdev->flags)
2647             && !test_bit(In_sync, &rdev->flags)
2648             && (rdev->recovery_offset <= sh->sector
2649                 || rdev->mddev->recovery_cp <= sh->sector))
2650                 rv = 1;
2651
2652         return rv;
2653 }
2654
2655 /* fetch_block - checks the given member device to see if its data needs
2656  * to be read or computed to satisfy a request.
2657  *
2658  * Returns 1 when no more member devices need to be checked, otherwise returns
2659  * 0 to tell the loop in handle_stripe_fill to continue
2660  */
2661 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2662                        int disk_idx, int disks)
2663 {
2664         struct r5dev *dev = &sh->dev[disk_idx];
2665         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2666                                   &sh->dev[s->failed_num[1]] };
2667
2668         /* is the data in this block needed, and can we get it? */
2669         if (!test_bit(R5_LOCKED, &dev->flags) &&
2670             !test_bit(R5_UPTODATE, &dev->flags) &&
2671             (dev->toread ||
2672              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2673              s->syncing || s->expanding ||
2674              (s->replacing && want_replace(sh, disk_idx)) ||
2675              (s->failed >= 1 && fdev[0]->toread) ||
2676              (s->failed >= 2 && fdev[1]->toread) ||
2677              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2678               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2679              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2680                 /* we would like to get this block, possibly by computing it,
2681                  * otherwise read it if the backing disk is insync
2682                  */
2683                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2684                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2685                 if ((s->uptodate == disks - 1) &&
2686                     (s->failed && (disk_idx == s->failed_num[0] ||
2687                                    disk_idx == s->failed_num[1]))) {
2688                         /* have disk failed, and we're requested to fetch it;
2689                          * do compute it
2690                          */
2691                         pr_debug("Computing stripe %llu block %d\n",
2692                                (unsigned long long)sh->sector, disk_idx);
2693                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2694                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2695                         set_bit(R5_Wantcompute, &dev->flags);
2696                         sh->ops.target = disk_idx;
2697                         sh->ops.target2 = -1; /* no 2nd target */
2698                         s->req_compute = 1;
2699                         /* Careful: from this point on 'uptodate' is in the eye
2700                          * of raid_run_ops which services 'compute' operations
2701                          * before writes. R5_Wantcompute flags a block that will
2702                          * be R5_UPTODATE by the time it is needed for a
2703                          * subsequent operation.
2704                          */
2705                         s->uptodate++;
2706                         return 1;
2707                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2708                         /* Computing 2-failure is *very* expensive; only
2709                          * do it if failed >= 2
2710                          */
2711                         int other;
2712                         for (other = disks; other--; ) {
2713                                 if (other == disk_idx)
2714                                         continue;
2715                                 if (!test_bit(R5_UPTODATE,
2716                                       &sh->dev[other].flags))
2717                                         break;
2718                         }
2719                         BUG_ON(other < 0);
2720                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2721                                (unsigned long long)sh->sector,
2722                                disk_idx, other);
2723                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2724                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2725                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2726                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2727                         sh->ops.target = disk_idx;
2728                         sh->ops.target2 = other;
2729                         s->uptodate += 2;
2730                         s->req_compute = 1;
2731                         return 1;
2732                 } else if (test_bit(R5_Insync, &dev->flags)) {
2733                         set_bit(R5_LOCKED, &dev->flags);
2734                         set_bit(R5_Wantread, &dev->flags);
2735                         s->locked++;
2736                         pr_debug("Reading block %d (sync=%d)\n",
2737                                 disk_idx, s->syncing);
2738                 }
2739         }
2740
2741         return 0;
2742 }
2743
2744 /**
2745  * handle_stripe_fill - read or compute data to satisfy pending requests.
2746  */
2747 static void handle_stripe_fill(struct stripe_head *sh,
2748                                struct stripe_head_state *s,
2749                                int disks)
2750 {
2751         int i;
2752
2753         /* look for blocks to read/compute, skip this if a compute
2754          * is already in flight, or if the stripe contents are in the
2755          * midst of changing due to a write
2756          */
2757         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2758             !sh->reconstruct_state)
2759                 for (i = disks; i--; )
2760                         if (fetch_block(sh, s, i, disks))
2761                                 break;
2762         set_bit(STRIPE_HANDLE, &sh->state);
2763 }
2764
2765
2766 /* handle_stripe_clean_event
2767  * any written block on an uptodate or failed drive can be returned.
2768  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2769  * never LOCKED, so we don't need to test 'failed' directly.
2770  */
2771 static void handle_stripe_clean_event(struct r5conf *conf,
2772         struct stripe_head *sh, int disks, struct bio **return_bi)
2773 {
2774         int i;
2775         struct r5dev *dev;
2776
2777         for (i = disks; i--; )
2778                 if (sh->dev[i].written) {
2779                         dev = &sh->dev[i];
2780                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2781                             (test_bit(R5_UPTODATE, &dev->flags) ||
2782                              test_bit(R5_Discard, &dev->flags))) {
2783                                 /* We can return any write requests */
2784                                 struct bio *wbi, *wbi2;
2785                                 pr_debug("Return write for disc %d\n", i);
2786                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
2787                                         clear_bit(R5_UPTODATE, &dev->flags);
2788                                 wbi = dev->written;
2789                                 dev->written = NULL;
2790                                 while (wbi && wbi->bi_sector <
2791                                         dev->sector + STRIPE_SECTORS) {
2792                                         wbi2 = r5_next_bio(wbi, dev->sector);
2793                                         if (!raid5_dec_bi_active_stripes(wbi)) {
2794                                                 md_write_end(conf->mddev);
2795                                                 wbi->bi_next = *return_bi;
2796                                                 *return_bi = wbi;
2797                                         }
2798                                         wbi = wbi2;
2799                                 }
2800                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2801                                                 STRIPE_SECTORS,
2802                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2803                                                 0);
2804                         }
2805                 } else if (test_bit(R5_Discard, &sh->dev[i].flags))
2806                         clear_bit(R5_Discard, &sh->dev[i].flags);
2807
2808         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2809                 if (atomic_dec_and_test(&conf->pending_full_writes))
2810                         md_wakeup_thread(conf->mddev->thread);
2811 }
2812
2813 static void handle_stripe_dirtying(struct r5conf *conf,
2814                                    struct stripe_head *sh,
2815                                    struct stripe_head_state *s,
2816                                    int disks)
2817 {
2818         int rmw = 0, rcw = 0, i;
2819         sector_t recovery_cp = conf->mddev->recovery_cp;
2820
2821         /* RAID6 requires 'rcw' in current implementation.
2822          * Otherwise, check whether resync is now happening or should start.
2823          * If yes, then the array is dirty (after unclean shutdown or
2824          * initial creation), so parity in some stripes might be inconsistent.
2825          * In this case, we need to always do reconstruct-write, to ensure
2826          * that in case of drive failure or read-error correction, we
2827          * generate correct data from the parity.
2828          */
2829         if (conf->max_degraded == 2 ||
2830             (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
2831                 /* Calculate the real rcw later - for now make it
2832                  * look like rcw is cheaper
2833                  */
2834                 rcw = 1; rmw = 2;
2835                 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2836                          conf->max_degraded, (unsigned long long)recovery_cp,
2837                          (unsigned long long)sh->sector);
2838         } else for (i = disks; i--; ) {
2839                 /* would I have to read this buffer for read_modify_write */
2840                 struct r5dev *dev = &sh->dev[i];
2841                 if ((dev->towrite || i == sh->pd_idx) &&
2842                     !test_bit(R5_LOCKED, &dev->flags) &&
2843                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2844                       test_bit(R5_Wantcompute, &dev->flags))) {
2845                         if (test_bit(R5_Insync, &dev->flags))
2846                                 rmw++;
2847                         else
2848                                 rmw += 2*disks;  /* cannot read it */
2849                 }
2850                 /* Would I have to read this buffer for reconstruct_write */
2851                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2852                     !test_bit(R5_LOCKED, &dev->flags) &&
2853                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2854                     test_bit(R5_Wantcompute, &dev->flags))) {
2855                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2856                         else
2857                                 rcw += 2*disks;
2858                 }
2859         }
2860         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2861                 (unsigned long long)sh->sector, rmw, rcw);
2862         set_bit(STRIPE_HANDLE, &sh->state);
2863         if (rmw < rcw && rmw > 0) {
2864                 /* prefer read-modify-write, but need to get some data */
2865                 blk_add_trace_msg(conf->mddev->queue, "raid5 rmw %llu %d",
2866                                   (unsigned long long)sh->sector, rmw);
2867                 for (i = disks; i--; ) {
2868                         struct r5dev *dev = &sh->dev[i];
2869                         if ((dev->towrite || i == sh->pd_idx) &&
2870                             !test_bit(R5_LOCKED, &dev->flags) &&
2871                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2872                             test_bit(R5_Wantcompute, &dev->flags)) &&
2873                             test_bit(R5_Insync, &dev->flags)) {
2874                                 if (
2875                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2876                                         pr_debug("Read_old block "
2877                                                  "%d for r-m-w\n", i);
2878                                         set_bit(R5_LOCKED, &dev->flags);
2879                                         set_bit(R5_Wantread, &dev->flags);
2880                                         s->locked++;
2881                                 } else {
2882                                         set_bit(STRIPE_DELAYED, &sh->state);
2883                                         set_bit(STRIPE_HANDLE, &sh->state);
2884                                 }
2885                         }
2886                 }
2887         }
2888         if (rcw <= rmw && rcw > 0) {
2889                 /* want reconstruct write, but need to get some data */
2890                 int qread =0;
2891                 rcw = 0;
2892                 for (i = disks; i--; ) {
2893                         struct r5dev *dev = &sh->dev[i];
2894                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2895                             i != sh->pd_idx && i != sh->qd_idx &&
2896                             !test_bit(R5_LOCKED, &dev->flags) &&
2897                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2898                               test_bit(R5_Wantcompute, &dev->flags))) {
2899                                 rcw++;
2900                                 if (!test_bit(R5_Insync, &dev->flags))
2901                                         continue; /* it's a failed drive */
2902                                 if (
2903                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2904                                         pr_debug("Read_old block "
2905                                                 "%d for Reconstruct\n", i);
2906                                         set_bit(R5_LOCKED, &dev->flags);
2907                                         set_bit(R5_Wantread, &dev->flags);
2908                                         s->locked++;
2909                                         qread++;
2910                                 } else {
2911                                         set_bit(STRIPE_DELAYED, &sh->state);
2912                                         set_bit(STRIPE_HANDLE, &sh->state);
2913                                 }
2914                         }
2915                 }
2916                 if (rcw)
2917                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
2918                                           (unsigned long long)sh->sector,
2919                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
2920         }
2921         /* now if nothing is locked, and if we have enough data,
2922          * we can start a write request
2923          */
2924         /* since handle_stripe can be called at any time we need to handle the
2925          * case where a compute block operation has been submitted and then a
2926          * subsequent call wants to start a write request.  raid_run_ops only
2927          * handles the case where compute block and reconstruct are requested
2928          * simultaneously.  If this is not the case then new writes need to be
2929          * held off until the compute completes.
2930          */
2931         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2932             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2933             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2934                 schedule_reconstruction(sh, s, rcw == 0, 0);
2935 }
2936
2937 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2938                                 struct stripe_head_state *s, int disks)
2939 {
2940         struct r5dev *dev = NULL;
2941
2942         set_bit(STRIPE_HANDLE, &sh->state);
2943
2944         switch (sh->check_state) {
2945         case check_state_idle:
2946                 /* start a new check operation if there are no failures */
2947                 if (s->failed == 0) {
2948                         BUG_ON(s->uptodate != disks);
2949                         sh->check_state = check_state_run;
2950                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2951                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2952                         s->uptodate--;
2953                         break;
2954                 }
2955                 dev = &sh->dev[s->failed_num[0]];
2956                 /* fall through */
2957         case check_state_compute_result:
2958                 sh->check_state = check_state_idle;
2959                 if (!dev)
2960                         dev = &sh->dev[sh->pd_idx];
2961
2962                 /* check that a write has not made the stripe insync */
2963                 if (test_bit(STRIPE_INSYNC, &sh->state))
2964                         break;
2965
2966                 /* either failed parity check, or recovery is happening */
2967                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2968                 BUG_ON(s->uptodate != disks);
2969
2970                 set_bit(R5_LOCKED, &dev->flags);
2971                 s->locked++;
2972                 set_bit(R5_Wantwrite, &dev->flags);
2973
2974                 clear_bit(STRIPE_DEGRADED, &sh->state);
2975                 set_bit(STRIPE_INSYNC, &sh->state);
2976                 break;
2977         case check_state_run:
2978                 break; /* we will be called again upon completion */
2979         case check_state_check_result:
2980                 sh->check_state = check_state_idle;
2981
2982                 /* if a failure occurred during the check operation, leave
2983                  * STRIPE_INSYNC not set and let the stripe be handled again
2984                  */
2985                 if (s->failed)
2986                         break;
2987
2988                 /* handle a successful check operation, if parity is correct
2989                  * we are done.  Otherwise update the mismatch count and repair
2990                  * parity if !MD_RECOVERY_CHECK
2991                  */
2992                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2993                         /* parity is correct (on disc,
2994                          * not in buffer any more)
2995                          */
2996                         set_bit(STRIPE_INSYNC, &sh->state);
2997                 else {
2998                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
2999                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3000                                 /* don't try to repair!! */
3001                                 set_bit(STRIPE_INSYNC, &sh->state);
3002                         else {
3003                                 sh->check_state = check_state_compute_run;
3004                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3005                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3006                                 set_bit(R5_Wantcompute,
3007                                         &sh->dev[sh->pd_idx].flags);
3008                                 sh->ops.target = sh->pd_idx;
3009                                 sh->ops.target2 = -1;
3010                                 s->uptodate++;
3011                         }
3012                 }
3013                 break;
3014         case check_state_compute_run:
3015                 break;
3016         default:
3017                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3018                        __func__, sh->check_state,
3019                        (unsigned long long) sh->sector);
3020                 BUG();
3021         }
3022 }
3023
3024
3025 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3026                                   struct stripe_head_state *s,
3027                                   int disks)
3028 {
3029         int pd_idx = sh->pd_idx;
3030         int qd_idx = sh->qd_idx;
3031         struct r5dev *dev;
3032
3033         set_bit(STRIPE_HANDLE, &sh->state);
3034
3035         BUG_ON(s->failed > 2);
3036
3037         /* Want to check and possibly repair P and Q.
3038          * However there could be one 'failed' device, in which
3039          * case we can only check one of them, possibly using the
3040          * other to generate missing data
3041          */
3042
3043         switch (sh->check_state) {
3044         case check_state_idle:
3045                 /* start a new check operation if there are < 2 failures */
3046                 if (s->failed == s->q_failed) {
3047                         /* The only possible failed device holds Q, so it
3048                          * makes sense to check P (If anything else were failed,
3049                          * we would have used P to recreate it).
3050                          */
3051                         sh->check_state = check_state_run;
3052                 }
3053                 if (!s->q_failed && s->failed < 2) {
3054                         /* Q is not failed, and we didn't use it to generate
3055                          * anything, so it makes sense to check it
3056                          */
3057                         if (sh->check_state == check_state_run)
3058                                 sh->check_state = check_state_run_pq;
3059                         else
3060                                 sh->check_state = check_state_run_q;
3061                 }
3062
3063                 /* discard potentially stale zero_sum_result */
3064                 sh->ops.zero_sum_result = 0;
3065
3066                 if (sh->check_state == check_state_run) {
3067                         /* async_xor_zero_sum destroys the contents of P */
3068                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3069                         s->uptodate--;
3070                 }
3071                 if (sh->check_state >= check_state_run &&
3072                     sh->check_state <= check_state_run_pq) {
3073                         /* async_syndrome_zero_sum preserves P and Q, so
3074                          * no need to mark them !uptodate here
3075                          */
3076                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3077                         break;
3078                 }
3079
3080                 /* we have 2-disk failure */
3081                 BUG_ON(s->failed != 2);
3082                 /* fall through */
3083         case check_state_compute_result:
3084                 sh->check_state = check_state_idle;
3085
3086                 /* check that a write has not made the stripe insync */
3087                 if (test_bit(STRIPE_INSYNC, &sh->state))
3088                         break;
3089
3090                 /* now write out any block on a failed drive,
3091                  * or P or Q if they were recomputed
3092                  */
3093                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3094                 if (s->failed == 2) {
3095                         dev = &sh->dev[s->failed_num[1]];
3096                         s->locked++;
3097                         set_bit(R5_LOCKED, &dev->flags);
3098                         set_bit(R5_Wantwrite, &dev->flags);
3099                 }
3100                 if (s->failed >= 1) {
3101                         dev = &sh->dev[s->failed_num[0]];
3102                         s->locked++;
3103                         set_bit(R5_LOCKED, &dev->flags);
3104                         set_bit(R5_Wantwrite, &dev->flags);
3105                 }
3106                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3107                         dev = &sh->dev[pd_idx];
3108                         s->locked++;
3109                         set_bit(R5_LOCKED, &dev->flags);
3110                         set_bit(R5_Wantwrite, &dev->flags);
3111                 }
3112                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3113                         dev = &sh->dev[qd_idx];
3114                         s->locked++;
3115                         set_bit(R5_LOCKED, &dev->flags);
3116                         set_bit(R5_Wantwrite, &dev->flags);
3117                 }
3118                 clear_bit(STRIPE_DEGRADED, &sh->state);
3119
3120                 set_bit(STRIPE_INSYNC, &sh->state);
3121                 break;
3122         case check_state_run:
3123         case check_state_run_q:
3124         case check_state_run_pq:
3125                 break; /* we will be called again upon completion */
3126         case check_state_check_result:
3127                 sh->check_state = check_state_idle;
3128
3129                 /* handle a successful check operation, if parity is correct
3130                  * we are done.  Otherwise update the mismatch count and repair
3131                  * parity if !MD_RECOVERY_CHECK
3132                  */
3133                 if (sh->ops.zero_sum_result == 0) {
3134                         /* both parities are correct */
3135                         if (!s->failed)
3136                                 set_bit(STRIPE_INSYNC, &sh->state);
3137                         else {
3138                                 /* in contrast to the raid5 case we can validate
3139                                  * parity, but still have a failure to write
3140                                  * back
3141                                  */
3142                                 sh->check_state = check_state_compute_result;
3143                                 /* Returning at this point means that we may go
3144                                  * off and bring p and/or q uptodate again so
3145                                  * we make sure to check zero_sum_result again
3146                                  * to verify if p or q need writeback
3147                                  */
3148                         }
3149                 } else {
3150                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3151                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3152                                 /* don't try to repair!! */
3153                                 set_bit(STRIPE_INSYNC, &sh->state);
3154                         else {
3155                                 int *target = &sh->ops.target;
3156
3157                                 sh->ops.target = -1;
3158                                 sh->ops.target2 = -1;
3159                                 sh->check_state = check_state_compute_run;
3160                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3161                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3162                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3163                                         set_bit(R5_Wantcompute,
3164                                                 &sh->dev[pd_idx].flags);
3165                                         *target = pd_idx;
3166                                         target = &sh->ops.target2;
3167                                         s->uptodate++;
3168                                 }
3169                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3170                                         set_bit(R5_Wantcompute,
3171                                                 &sh->dev[qd_idx].flags);
3172                                         *target = qd_idx;
3173                                         s->uptodate++;
3174                                 }
3175                         }
3176                 }
3177                 break;
3178         case check_state_compute_run:
3179                 break;
3180         default:
3181                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3182                        __func__, sh->check_state,
3183                        (unsigned long long) sh->sector);
3184                 BUG();
3185         }
3186 }
3187
3188 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3189 {
3190         int i;
3191
3192         /* We have read all the blocks in this stripe and now we need to
3193          * copy some of them into a target stripe for expand.
3194          */
3195         struct dma_async_tx_descriptor *tx = NULL;
3196         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3197         for (i = 0; i < sh->disks; i++)
3198                 if (i != sh->pd_idx && i != sh->qd_idx) {
3199                         int dd_idx, j;
3200                         struct stripe_head *sh2;
3201                         struct async_submit_ctl submit;
3202
3203                         sector_t bn = compute_blocknr(sh, i, 1);
3204                         sector_t s = raid5_compute_sector(conf, bn, 0,
3205                                                           &dd_idx, NULL);
3206                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3207                         if (sh2 == NULL)
3208                                 /* so far only the early blocks of this stripe
3209                                  * have been requested.  When later blocks
3210                                  * get requested, we will try again
3211                                  */
3212                                 continue;
3213                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3214                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3215                                 /* must have already done this block */
3216                                 release_stripe(sh2);
3217                                 continue;
3218                         }
3219
3220                         /* place all the copies on one channel */
3221                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3222                         tx = async_memcpy(sh2->dev[dd_idx].page,
3223                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3224                                           &submit);
3225
3226                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3227                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3228                         for (j = 0; j < conf->raid_disks; j++)
3229                                 if (j != sh2->pd_idx &&
3230                                     j != sh2->qd_idx &&
3231                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3232                                         break;
3233                         if (j == conf->raid_disks) {
3234                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3235                                 set_bit(STRIPE_HANDLE, &sh2->state);
3236                         }
3237                         release_stripe(sh2);
3238
3239                 }
3240         /* done submitting copies, wait for them to complete */
3241         async_tx_quiesce(&tx);
3242 }
3243
3244 /*
3245  * handle_stripe - do things to a stripe.
3246  *
3247  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3248  * state of various bits to see what needs to be done.
3249  * Possible results:
3250  *    return some read requests which now have data
3251  *    return some write requests which are safely on storage
3252  *    schedule a read on some buffers
3253  *    schedule a write of some buffers
3254  *    return confirmation of parity correctness
3255  *
3256  */
3257
3258 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3259 {
3260         struct r5conf *conf = sh->raid_conf;
3261         int disks = sh->disks;
3262         struct r5dev *dev;
3263         int i;
3264         int do_recovery = 0;
3265
3266         memset(s, 0, sizeof(*s));
3267
3268         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3269         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3270         s->failed_num[0] = -1;
3271         s->failed_num[1] = -1;
3272
3273         /* Now to look around and see what can be done */
3274         rcu_read_lock();
3275         for (i=disks; i--; ) {
3276                 struct md_rdev *rdev;
3277                 sector_t first_bad;
3278                 int bad_sectors;
3279                 int is_bad = 0;
3280
3281                 dev = &sh->dev[i];
3282
3283                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3284                          i, dev->flags,
3285                          dev->toread, dev->towrite, dev->written);
3286                 /* maybe we can reply to a read
3287                  *
3288                  * new wantfill requests are only permitted while
3289                  * ops_complete_biofill is guaranteed to be inactive
3290                  */
3291                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3292                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3293                         set_bit(R5_Wantfill, &dev->flags);
3294
3295                 /* now count some things */
3296                 if (test_bit(R5_LOCKED, &dev->flags))
3297                         s->locked++;
3298                 if (test_bit(R5_UPTODATE, &dev->flags))
3299                         s->uptodate++;
3300                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3301                         s->compute++;
3302                         BUG_ON(s->compute > 2);
3303                 }
3304
3305                 if (test_bit(R5_Wantfill, &dev->flags))
3306                         s->to_fill++;
3307                 else if (dev->toread)
3308                         s->to_read++;
3309                 if (dev->towrite) {
3310                         s->to_write++;
3311                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3312                                 s->non_overwrite++;
3313                 }
3314                 if (dev->written)
3315                         s->written++;
3316                 /* Prefer to use the replacement for reads, but only
3317                  * if it is recovered enough and has no bad blocks.
3318                  */
3319                 rdev = rcu_dereference(conf->disks[i].replacement);
3320                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3321                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3322                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3323                                  &first_bad, &bad_sectors))
3324                         set_bit(R5_ReadRepl, &dev->flags);
3325                 else {
3326                         if (rdev)
3327                                 set_bit(R5_NeedReplace, &dev->flags);
3328                         rdev = rcu_dereference(conf->disks[i].rdev);
3329                         clear_bit(R5_ReadRepl, &dev->flags);
3330                 }
3331                 if (rdev && test_bit(Faulty, &rdev->flags))
3332                         rdev = NULL;
3333                 if (rdev) {
3334                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3335                                              &first_bad, &bad_sectors);
3336                         if (s->blocked_rdev == NULL
3337                             && (test_bit(Blocked, &rdev->flags)
3338                                 || is_bad < 0)) {
3339                                 if (is_bad < 0)
3340                                         set_bit(BlockedBadBlocks,
3341                                                 &rdev->flags);
3342                                 s->blocked_rdev = rdev;
3343                                 atomic_inc(&rdev->nr_pending);
3344                         }
3345                 }
3346                 clear_bit(R5_Insync, &dev->flags);
3347                 if (!rdev)
3348                         /* Not in-sync */;
3349                 else if (is_bad) {
3350                         /* also not in-sync */
3351                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3352                             test_bit(R5_UPTODATE, &dev->flags)) {
3353                                 /* treat as in-sync, but with a read error
3354                                  * which we can now try to correct
3355                                  */
3356                                 set_bit(R5_Insync, &dev->flags);
3357                                 set_bit(R5_ReadError, &dev->flags);
3358                         }
3359                 } else if (test_bit(In_sync, &rdev->flags))
3360                         set_bit(R5_Insync, &dev->flags);
3361                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3362                         /* in sync if before recovery_offset */
3363                         set_bit(R5_Insync, &dev->flags);
3364                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3365                          test_bit(R5_Expanded, &dev->flags))
3366                         /* If we've reshaped into here, we assume it is Insync.
3367                          * We will shortly update recovery_offset to make
3368                          * it official.
3369                          */
3370                         set_bit(R5_Insync, &dev->flags);
3371
3372                 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3373                         /* This flag does not apply to '.replacement'
3374                          * only to .rdev, so make sure to check that*/
3375                         struct md_rdev *rdev2 = rcu_dereference(
3376                                 conf->disks[i].rdev);
3377                         if (rdev2 == rdev)
3378                                 clear_bit(R5_Insync, &dev->flags);
3379                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3380                                 s->handle_bad_blocks = 1;
3381                                 atomic_inc(&rdev2->nr_pending);
3382                         } else
3383                                 clear_bit(R5_WriteError, &dev->flags);
3384                 }
3385                 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3386                         /* This flag does not apply to '.replacement'
3387                          * only to .rdev, so make sure to check that*/
3388                         struct md_rdev *rdev2 = rcu_dereference(
3389                                 conf->disks[i].rdev);
3390                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3391                                 s->handle_bad_blocks = 1;
3392                                 atomic_inc(&rdev2->nr_pending);
3393                         } else
3394                                 clear_bit(R5_MadeGood, &dev->flags);
3395                 }
3396                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3397                         struct md_rdev *rdev2 = rcu_dereference(
3398                                 conf->disks[i].replacement);
3399                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3400                                 s->handle_bad_blocks = 1;
3401                                 atomic_inc(&rdev2->nr_pending);
3402                         } else
3403                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3404                 }
3405                 if (!test_bit(R5_Insync, &dev->flags)) {
3406                         /* The ReadError flag will just be confusing now */
3407                         clear_bit(R5_ReadError, &dev->flags);
3408                         clear_bit(R5_ReWrite, &dev->flags);
3409                 }
3410                 if (test_bit(R5_ReadError, &dev->flags))
3411                         clear_bit(R5_Insync, &dev->flags);
3412                 if (!test_bit(R5_Insync, &dev->flags)) {
3413                         if (s->failed < 2)
3414                                 s->failed_num[s->failed] = i;
3415                         s->failed++;
3416                         if (rdev && !test_bit(Faulty, &rdev->flags))
3417                                 do_recovery = 1;
3418                 }
3419         }
3420         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3421                 /* If there is a failed device being replaced,
3422                  *     we must be recovering.
3423                  * else if we are after recovery_cp, we must be syncing
3424                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3425                  * else we can only be replacing
3426                  * sync and recovery both need to read all devices, and so
3427                  * use the same flag.
3428                  */
3429                 if (do_recovery ||
3430                     sh->sector >= conf->mddev->recovery_cp ||
3431                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3432                         s->syncing = 1;
3433                 else
3434                         s->replacing = 1;
3435         }
3436         rcu_read_unlock();
3437 }
3438
3439 static void handle_stripe(struct stripe_head *sh)
3440 {
3441         struct stripe_head_state s;
3442         struct r5conf *conf = sh->raid_conf;
3443         int i;
3444         int prexor;
3445         int disks = sh->disks;
3446         struct r5dev *pdev, *qdev;
3447
3448         clear_bit(STRIPE_HANDLE, &sh->state);
3449         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3450                 /* already being handled, ensure it gets handled
3451                  * again when current action finishes */
3452                 set_bit(STRIPE_HANDLE, &sh->state);
3453                 return;
3454         }
3455
3456         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3457                 set_bit(STRIPE_SYNCING, &sh->state);
3458                 clear_bit(STRIPE_INSYNC, &sh->state);
3459         }
3460         clear_bit(STRIPE_DELAYED, &sh->state);
3461
3462         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3463                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3464                (unsigned long long)sh->sector, sh->state,
3465                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3466                sh->check_state, sh->reconstruct_state);
3467
3468         analyse_stripe(sh, &s);
3469
3470         if (s.handle_bad_blocks) {
3471                 set_bit(STRIPE_HANDLE, &sh->state);
3472                 goto finish;
3473         }
3474
3475         if (unlikely(s.blocked_rdev)) {
3476                 if (s.syncing || s.expanding || s.expanded ||
3477                     s.replacing || s.to_write || s.written) {
3478                         set_bit(STRIPE_HANDLE, &sh->state);
3479                         goto finish;
3480                 }
3481                 /* There is nothing for the blocked_rdev to block */
3482                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3483                 s.blocked_rdev = NULL;
3484         }
3485
3486         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3487                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3488                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3489         }
3490
3491         pr_debug("locked=%d uptodate=%d to_read=%d"
3492                " to_write=%d failed=%d failed_num=%d,%d\n",
3493                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3494                s.failed_num[0], s.failed_num[1]);
3495         /* check if the array has lost more than max_degraded devices and,
3496          * if so, some requests might need to be failed.
3497          */
3498         if (s.failed > conf->max_degraded) {
3499                 sh->check_state = 0;
3500                 sh->reconstruct_state = 0;
3501                 if (s.to_read+s.to_write+s.written)
3502                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3503                 if (s.syncing + s.replacing)
3504                         handle_failed_sync(conf, sh, &s);
3505         }
3506
3507         /* Now we check to see if any write operations have recently
3508          * completed
3509          */
3510         prexor = 0;
3511         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3512                 prexor = 1;
3513         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3514             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3515                 sh->reconstruct_state = reconstruct_state_idle;
3516
3517                 /* All the 'written' buffers and the parity block are ready to
3518                  * be written back to disk
3519                  */
3520                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3521                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3522                 BUG_ON(sh->qd_idx >= 0 &&
3523                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3524                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3525                 for (i = disks; i--; ) {
3526                         struct r5dev *dev = &sh->dev[i];
3527                         if (test_bit(R5_LOCKED, &dev->flags) &&
3528                                 (i == sh->pd_idx || i == sh->qd_idx ||
3529                                  dev->written)) {
3530                                 pr_debug("Writing block %d\n", i);
3531                                 set_bit(R5_Wantwrite, &dev->flags);
3532                                 if (prexor)
3533                                         continue;
3534                                 if (!test_bit(R5_Insync, &dev->flags) ||
3535                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3536                                      s.failed == 0))
3537                                         set_bit(STRIPE_INSYNC, &sh->state);
3538                         }
3539                 }
3540                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3541                         s.dec_preread_active = 1;
3542         }
3543
3544         /*
3545          * might be able to return some write requests if the parity blocks
3546          * are safe, or on a failed drive
3547          */
3548         pdev = &sh->dev[sh->pd_idx];
3549         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3550                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3551         qdev = &sh->dev[sh->qd_idx];
3552         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3553                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3554                 || conf->level < 6;
3555
3556         if (s.written &&
3557             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3558                              && !test_bit(R5_LOCKED, &pdev->flags)
3559                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
3560                                  test_bit(R5_Discard, &pdev->flags))))) &&
3561             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3562                              && !test_bit(R5_LOCKED, &qdev->flags)
3563                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
3564                                  test_bit(R5_Discard, &qdev->flags))))))
3565                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3566
3567         /* Now we might consider reading some blocks, either to check/generate
3568          * parity, or to satisfy requests
3569          * or to load a block that is being partially written.
3570          */
3571         if (s.to_read || s.non_overwrite
3572             || (conf->level == 6 && s.to_write && s.failed)
3573             || (s.syncing && (s.uptodate + s.compute < disks))
3574             || s.replacing
3575             || s.expanding)
3576                 handle_stripe_fill(sh, &s, disks);
3577
3578         /* Now to consider new write requests and what else, if anything
3579          * should be read.  We do not handle new writes when:
3580          * 1/ A 'write' operation (copy+xor) is already in flight.
3581          * 2/ A 'check' operation is in flight, as it may clobber the parity
3582          *    block.
3583          */
3584         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3585                 handle_stripe_dirtying(conf, sh, &s, disks);
3586
3587         /* maybe we need to check and possibly fix the parity for this stripe
3588          * Any reads will already have been scheduled, so we just see if enough
3589          * data is available.  The parity check is held off while parity
3590          * dependent operations are in flight.
3591          */
3592         if (sh->check_state ||
3593             (s.syncing && s.locked == 0 &&
3594              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3595              !test_bit(STRIPE_INSYNC, &sh->state))) {
3596                 if (conf->level == 6)
3597                         handle_parity_checks6(conf, sh, &s, disks);
3598                 else
3599                         handle_parity_checks5(conf, sh, &s, disks);
3600         }
3601
3602         if (s.replacing && s.locked == 0
3603             && !test_bit(STRIPE_INSYNC, &sh->state)) {
3604                 /* Write out to replacement devices where possible */
3605                 for (i = 0; i < conf->raid_disks; i++)
3606                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3607                             test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3608                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3609                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3610                                 s.locked++;
3611                         }
3612                 set_bit(STRIPE_INSYNC, &sh->state);
3613         }
3614         if ((s.syncing || s.replacing) && s.locked == 0 &&
3615             test_bit(STRIPE_INSYNC, &sh->state)) {
3616                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3617                 clear_bit(STRIPE_SYNCING, &sh->state);
3618         }
3619
3620         /* If the failed drives are just a ReadError, then we might need
3621          * to progress the repair/check process
3622          */
3623         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3624                 for (i = 0; i < s.failed; i++) {
3625                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3626                         if (test_bit(R5_ReadError, &dev->flags)
3627                             && !test_bit(R5_LOCKED, &dev->flags)
3628                             && test_bit(R5_UPTODATE, &dev->flags)
3629                                 ) {
3630                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3631                                         set_bit(R5_Wantwrite, &dev->flags);
3632                                         set_bit(R5_ReWrite, &dev->flags);
3633                                         set_bit(R5_LOCKED, &dev->flags);
3634                                         s.locked++;
3635                                 } else {
3636                                         /* let's read it back */
3637                                         set_bit(R5_Wantread, &dev->flags);
3638                                         set_bit(R5_LOCKED, &dev->flags);
3639                                         s.locked++;
3640                                 }
3641                         }
3642                 }
3643
3644
3645         /* Finish reconstruct operations initiated by the expansion process */
3646         if (sh->reconstruct_state == reconstruct_state_result) {
3647                 struct stripe_head *sh_src
3648                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3649                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3650                         /* sh cannot be written until sh_src has been read.
3651                          * so arrange for sh to be delayed a little
3652                          */
3653                         set_bit(STRIPE_DELAYED, &sh->state);
3654                         set_bit(STRIPE_HANDLE, &sh->state);
3655                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3656                                               &sh_src->state))
3657                                 atomic_inc(&conf->preread_active_stripes);
3658                         release_stripe(sh_src);
3659                         goto finish;
3660                 }
3661                 if (sh_src)
3662                         release_stripe(sh_src);
3663
3664                 sh->reconstruct_state = reconstruct_state_idle;
3665                 clear_bit(STRIPE_EXPANDING, &sh->state);
3666                 for (i = conf->raid_disks; i--; ) {
3667                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3668                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3669                         s.locked++;
3670                 }
3671         }
3672
3673         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3674             !sh->reconstruct_state) {
3675                 /* Need to write out all blocks after computing parity */
3676                 sh->disks = conf->raid_disks;
3677                 stripe_set_idx(sh->sector, conf, 0, sh);
3678                 schedule_reconstruction(sh, &s, 1, 1);
3679         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3680                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3681                 atomic_dec(&conf->reshape_stripes);
3682                 wake_up(&conf->wait_for_overlap);
3683                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3684         }
3685
3686         if (s.expanding && s.locked == 0 &&
3687             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3688                 handle_stripe_expansion(conf, sh);
3689
3690 finish:
3691         /* wait for this device to become unblocked */
3692         if (unlikely(s.blocked_rdev)) {
3693                 if (conf->mddev->external)
3694                         md_wait_for_blocked_rdev(s.blocked_rdev,
3695                                                  conf->mddev);
3696                 else
3697                         /* Internal metadata will immediately
3698                          * be written by raid5d, so we don't
3699                          * need to wait here.
3700                          */
3701                         rdev_dec_pending(s.blocked_rdev,
3702                                          conf->mddev);
3703         }
3704
3705         if (s.handle_bad_blocks)
3706                 for (i = disks; i--; ) {
3707                         struct md_rdev *rdev;
3708                         struct r5dev *dev = &sh->dev[i];
3709                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3710                                 /* We own a safe reference to the rdev */
3711                                 rdev = conf->disks[i].rdev;
3712                                 if (!rdev_set_badblocks(rdev, sh->sector,
3713                                                         STRIPE_SECTORS, 0))
3714                                         md_error(conf->mddev, rdev);
3715                                 rdev_dec_pending(rdev, conf->mddev);
3716                         }
3717                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3718                                 rdev = conf->disks[i].rdev;
3719                                 rdev_clear_badblocks(rdev, sh->sector,
3720                                                      STRIPE_SECTORS, 0);
3721                                 rdev_dec_pending(rdev, conf->mddev);
3722                         }
3723                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3724                                 rdev = conf->disks[i].replacement;
3725                                 if (!rdev)
3726                                         /* rdev have been moved down */
3727                                         rdev = conf->disks[i].rdev;
3728                                 rdev_clear_badblocks(rdev, sh->sector,
3729                                                      STRIPE_SECTORS, 0);
3730                                 rdev_dec_pending(rdev, conf->mddev);
3731                         }
3732                 }
3733
3734         if (s.ops_request)
3735                 raid_run_ops(sh, s.ops_request);
3736
3737         ops_run_io(sh, &s);
3738
3739         if (s.dec_preread_active) {
3740                 /* We delay this until after ops_run_io so that if make_request
3741                  * is waiting on a flush, it won't continue until the writes
3742                  * have actually been submitted.
3743                  */
3744                 atomic_dec(&conf->preread_active_stripes);
3745                 if (atomic_read(&conf->preread_active_stripes) <
3746                     IO_THRESHOLD)
3747                         md_wakeup_thread(conf->mddev->thread);
3748         }
3749
3750         return_io(s.return_bi);
3751
3752         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3753 }
3754
3755 static void raid5_activate_delayed(struct r5conf *conf)
3756 {
3757         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3758                 while (!list_empty(&conf->delayed_list)) {
3759                         struct list_head *l = conf->delayed_list.next;
3760                         struct stripe_head *sh;
3761                         sh = list_entry(l, struct stripe_head, lru);
3762                         list_del_init(l);
3763                         clear_bit(STRIPE_DELAYED, &sh->state);
3764                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3765                                 atomic_inc(&conf->preread_active_stripes);
3766                         list_add_tail(&sh->lru, &conf->hold_list);
3767                 }
3768         }
3769 }
3770
3771 static void activate_bit_delay(struct r5conf *conf)
3772 {
3773         /* device_lock is held */
3774         struct list_head head;
3775         list_add(&head, &conf->bitmap_list);
3776         list_del_init(&conf->bitmap_list);
3777         while (!list_empty(&head)) {
3778                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3779                 list_del_init(&sh->lru);
3780                 atomic_inc(&sh->count);
3781                 __release_stripe(conf, sh);
3782         }
3783 }
3784
3785 int md_raid5_congested(struct mddev *mddev, int bits)
3786 {
3787         struct r5conf *conf = mddev->private;
3788
3789         /* No difference between reads and writes.  Just check
3790          * how busy the stripe_cache is
3791          */
3792
3793         if (conf->inactive_blocked)
3794                 return 1;
3795         if (conf->quiesce)
3796                 return 1;
3797         if (list_empty_careful(&conf->inactive_list))
3798                 return 1;
3799
3800         return 0;
3801 }
3802 EXPORT_SYMBOL_GPL(md_raid5_congested);
3803
3804 static int raid5_congested(void *data, int bits)
3805 {
3806         struct mddev *mddev = data;
3807
3808         return mddev_congested(mddev, bits) ||
3809                 md_raid5_congested(mddev, bits);
3810 }
3811
3812 /* We want read requests to align with chunks where possible,
3813  * but write requests don't need to.
3814  */
3815 static int raid5_mergeable_bvec(struct request_queue *q,
3816                                 struct bvec_merge_data *bvm,
3817                                 struct bio_vec *biovec)
3818 {
3819         struct mddev *mddev = q->queuedata;
3820         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3821         int max;
3822         unsigned int chunk_sectors = mddev->chunk_sectors;
3823         unsigned int bio_sectors = bvm->bi_size >> 9;
3824
3825         if ((bvm->bi_rw & 1) == WRITE)
3826                 return biovec->bv_len; /* always allow writes to be mergeable */
3827
3828         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3829                 chunk_sectors = mddev->new_chunk_sectors;
3830         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3831         if (max < 0) max = 0;
3832         if (max <= biovec->bv_len && bio_sectors == 0)
3833                 return biovec->bv_len;
3834         else
3835                 return max;
3836 }
3837
3838
3839 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3840 {
3841         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3842         unsigned int chunk_sectors = mddev->chunk_sectors;
3843         unsigned int bio_sectors = bio->bi_size >> 9;
3844
3845         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3846                 chunk_sectors = mddev->new_chunk_sectors;
3847         return  chunk_sectors >=
3848                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3849 }
3850
3851 /*
3852  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3853  *  later sampled by raid5d.
3854  */
3855 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3856 {
3857         unsigned long flags;
3858
3859         spin_lock_irqsave(&conf->device_lock, flags);
3860
3861         bi->bi_next = conf->retry_read_aligned_list;
3862         conf->retry_read_aligned_list = bi;
3863
3864         spin_unlock_irqrestore(&conf->device_lock, flags);
3865         md_wakeup_thread(conf->mddev->thread);
3866 }
3867
3868
3869 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3870 {
3871         struct bio *bi;
3872
3873         bi = conf->retry_read_aligned;
3874         if (bi) {
3875                 conf->retry_read_aligned = NULL;
3876                 return bi;
3877         }
3878         bi = conf->retry_read_aligned_list;
3879         if(bi) {
3880                 conf->retry_read_aligned_list = bi->bi_next;
3881                 bi->bi_next = NULL;
3882                 /*
3883                  * this sets the active strip count to 1 and the processed
3884                  * strip count to zero (upper 8 bits)
3885                  */
3886                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3887         }
3888
3889         return bi;
3890 }
3891
3892
3893 /*
3894  *  The "raid5_align_endio" should check if the read succeeded and if it
3895  *  did, call bio_endio on the original bio (having bio_put the new bio
3896  *  first).
3897  *  If the read failed..
3898  */
3899 static void raid5_align_endio(struct bio *bi, int error)
3900 {
3901         struct bio* raid_bi  = bi->bi_private;
3902         struct mddev *mddev;
3903         struct r5conf *conf;
3904         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3905         struct md_rdev *rdev;
3906
3907         bio_put(bi);
3908
3909         rdev = (void*)raid_bi->bi_next;
3910         raid_bi->bi_next = NULL;
3911         mddev = rdev->mddev;
3912         conf = mddev->private;
3913
3914         rdev_dec_pending(rdev, conf->mddev);
3915
3916         if (!error && uptodate) {
3917                 bio_endio(raid_bi, 0);
3918                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3919                         wake_up(&conf->wait_for_stripe);
3920                 return;
3921         }
3922
3923
3924         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3925
3926         add_bio_to_retry(raid_bi, conf);
3927 }
3928
3929 static int bio_fits_rdev(struct bio *bi)
3930 {
3931         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3932
3933         if ((bi->bi_size>>9) > queue_max_sectors(q))
3934                 return 0;
3935         blk_recount_segments(q, bi);
3936         if (bi->bi_phys_segments > queue_max_segments(q))
3937                 return 0;
3938
3939         if (q->merge_bvec_fn)
3940                 /* it's too hard to apply the merge_bvec_fn at this stage,
3941                  * just just give up
3942                  */
3943                 return 0;
3944
3945         return 1;
3946 }
3947
3948
3949 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3950 {
3951         struct r5conf *conf = mddev->private;
3952         int dd_idx;
3953         struct bio* align_bi;
3954         struct md_rdev *rdev;
3955         sector_t end_sector;
3956
3957         if (!in_chunk_boundary(mddev, raid_bio)) {
3958                 pr_debug("chunk_aligned_read : non aligned\n");
3959                 return 0;
3960         }
3961         /*
3962          * use bio_clone_mddev to make a copy of the bio
3963          */
3964         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3965         if (!align_bi)
3966                 return 0;
3967         /*
3968          *   set bi_end_io to a new function, and set bi_private to the
3969          *     original bio.
3970          */
3971         align_bi->bi_end_io  = raid5_align_endio;
3972         align_bi->bi_private = raid_bio;
3973         /*
3974          *      compute position
3975          */
3976         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3977                                                     0,
3978                                                     &dd_idx, NULL);
3979
3980         end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3981         rcu_read_lock();
3982         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3983         if (!rdev || test_bit(Faulty, &rdev->flags) ||
3984             rdev->recovery_offset < end_sector) {
3985                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3986                 if (rdev &&
3987                     (test_bit(Faulty, &rdev->flags) ||
3988                     !(test_bit(In_sync, &rdev->flags) ||
3989                       rdev->recovery_offset >= end_sector)))
3990                         rdev = NULL;
3991         }
3992         if (rdev) {
3993                 sector_t first_bad;
3994                 int bad_sectors;
3995
3996                 atomic_inc(&rdev->nr_pending);
3997                 rcu_read_unlock();
3998                 raid_bio->bi_next = (void*)rdev;
3999                 align_bi->bi_bdev =  rdev->bdev;
4000                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
4001
4002                 if (!bio_fits_rdev(align_bi) ||
4003                     is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
4004                                 &first_bad, &bad_sectors)) {
4005                         /* too big in some way, or has a known bad block */
4006                         bio_put(align_bi);
4007                         rdev_dec_pending(rdev, mddev);
4008                         return 0;
4009                 }
4010
4011                 /* No reshape active, so we can trust rdev->data_offset */
4012                 align_bi->bi_sector += rdev->data_offset;
4013
4014                 spin_lock_irq(&conf->device_lock);
4015                 wait_event_lock_irq(conf->wait_for_stripe,
4016                                     conf->quiesce == 0,
4017                                     conf->device_lock);
4018                 atomic_inc(&conf->active_aligned_reads);
4019                 spin_unlock_irq(&conf->device_lock);
4020
4021                 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4022                                       align_bi, disk_devt(mddev->gendisk),
4023                                       raid_bio->bi_sector);
4024                 generic_make_request(align_bi);
4025                 return 1;
4026         } else {
4027                 rcu_read_unlock();
4028                 bio_put(align_bi);
4029                 return 0;
4030         }
4031 }
4032
4033 /* __get_priority_stripe - get the next stripe to process
4034  *
4035  * Full stripe writes are allowed to pass preread active stripes up until
4036  * the bypass_threshold is exceeded.  In general the bypass_count
4037  * increments when the handle_list is handled before the hold_list; however, it
4038  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4039  * stripe with in flight i/o.  The bypass_count will be reset when the
4040  * head of the hold_list has changed, i.e. the head was promoted to the
4041  * handle_list.
4042  */
4043 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
4044 {
4045         struct stripe_head *sh;
4046
4047         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4048                   __func__,
4049                   list_empty(&conf->handle_list) ? "empty" : "busy",
4050                   list_empty(&conf->hold_list) ? "empty" : "busy",
4051                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4052
4053         if (!list_empty(&conf->handle_list)) {
4054                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
4055
4056                 if (list_empty(&conf->hold_list))
4057                         conf->bypass_count = 0;
4058                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4059                         if (conf->hold_list.next == conf->last_hold)
4060                                 conf->bypass_count++;
4061                         else {
4062                                 conf->last_hold = conf->hold_list.next;
4063                                 conf->bypass_count -= conf->bypass_threshold;
4064                                 if (conf->bypass_count < 0)
4065                                         conf->bypass_count = 0;
4066                         }
4067                 }
4068         } else if (!list_empty(&conf->hold_list) &&
4069                    ((conf->bypass_threshold &&
4070                      conf->bypass_count > conf->bypass_threshold) ||
4071                     atomic_read(&conf->pending_full_writes) == 0)) {
4072                 sh = list_entry(conf->hold_list.next,
4073                                 typeof(*sh), lru);
4074                 conf->bypass_count -= conf->bypass_threshold;
4075                 if (conf->bypass_count < 0)
4076                         conf->bypass_count = 0;
4077         } else
4078                 return NULL;
4079
4080         list_del_init(&sh->lru);
4081         atomic_inc(&sh->count);
4082         BUG_ON(atomic_read(&sh->count) != 1);
4083         return sh;
4084 }
4085
4086 struct raid5_plug_cb {
4087         struct blk_plug_cb      cb;
4088         struct list_head        list;
4089 };
4090
4091 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4092 {
4093         struct raid5_plug_cb *cb = container_of(
4094                 blk_cb, struct raid5_plug_cb, cb);
4095         struct stripe_head *sh;
4096         struct mddev *mddev = cb->cb.data;
4097         struct r5conf *conf = mddev->private;
4098         int cnt = 0;
4099
4100         if (cb->list.next && !list_empty(&cb->list)) {
4101                 spin_lock_irq(&conf->device_lock);
4102                 while (!list_empty(&cb->list)) {
4103                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4104                         list_del_init(&sh->lru);
4105                         /*
4106                          * avoid race release_stripe_plug() sees
4107                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4108                          * is still in our list
4109                          */
4110                         smp_mb__before_clear_bit();
4111                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4112                         __release_stripe(conf, sh);
4113                         cnt++;
4114                 }
4115                 spin_unlock_irq(&conf->device_lock);
4116         }
4117         trace_block_unplug(mddev->queue, cnt, !from_schedule);
4118         kfree(cb);
4119 }
4120
4121 static void release_stripe_plug(struct mddev *mddev,
4122                                 struct stripe_head *sh)
4123 {
4124         struct blk_plug_cb *blk_cb = blk_check_plugged(
4125                 raid5_unplug, mddev,
4126                 sizeof(struct raid5_plug_cb));
4127         struct raid5_plug_cb *cb;
4128
4129         if (!blk_cb) {
4130                 release_stripe(sh);
4131                 return;
4132         }
4133
4134         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4135
4136         if (cb->list.next == NULL)
4137                 INIT_LIST_HEAD(&cb->list);
4138
4139         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4140                 list_add_tail(&sh->lru, &cb->list);
4141         else
4142                 release_stripe(sh);
4143 }
4144
4145 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4146 {
4147         struct r5conf *conf = mddev->private;
4148         sector_t logical_sector, last_sector;
4149         struct stripe_head *sh;
4150         int remaining;
4151         int stripe_sectors;
4152
4153         if (mddev->reshape_position != MaxSector)
4154                 /* Skip discard while reshape is happening */
4155                 return;
4156
4157         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4158         last_sector = bi->bi_sector + (bi->bi_size>>9);
4159
4160         bi->bi_next = NULL;
4161         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4162
4163         stripe_sectors = conf->chunk_sectors *
4164                 (conf->raid_disks - conf->max_degraded);
4165         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4166                                                stripe_sectors);
4167         sector_div(last_sector, stripe_sectors);
4168
4169         logical_sector *= conf->chunk_sectors;
4170         last_sector *= conf->chunk_sectors;
4171
4172         for (; logical_sector < last_sector;
4173              logical_sector += STRIPE_SECTORS) {
4174                 DEFINE_WAIT(w);
4175                 int d;
4176         again:
4177                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4178                 prepare_to_wait(&conf->wait_for_overlap, &w,
4179                                 TASK_UNINTERRUPTIBLE);
4180                 spin_lock_irq(&sh->stripe_lock);
4181                 for (d = 0; d < conf->raid_disks; d++) {
4182                         if (d == sh->pd_idx || d == sh->qd_idx)
4183                                 continue;
4184                         if (sh->dev[d].towrite || sh->dev[d].toread) {
4185                                 set_bit(R5_Overlap, &sh->dev[d].flags);
4186                                 spin_unlock_irq(&sh->stripe_lock);
4187                                 release_stripe(sh);
4188                                 schedule();
4189                                 goto again;
4190                         }
4191                 }
4192                 finish_wait(&conf->wait_for_overlap, &w);
4193                 for (d = 0; d < conf->raid_disks; d++) {
4194                         if (d == sh->pd_idx || d == sh->qd_idx)
4195                                 continue;
4196                         sh->dev[d].towrite = bi;
4197                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4198                         raid5_inc_bi_active_stripes(bi);
4199                 }
4200                 spin_unlock_irq(&sh->stripe_lock);
4201                 if (conf->mddev->bitmap) {
4202                         for (d = 0;
4203                              d < conf->raid_disks - conf->max_degraded;
4204                              d++)
4205                                 bitmap_startwrite(mddev->bitmap,
4206                                                   sh->sector,
4207                                                   STRIPE_SECTORS,
4208                                                   0);
4209                         sh->bm_seq = conf->seq_flush + 1;
4210                         set_bit(STRIPE_BIT_DELAY, &sh->state);
4211                 }
4212
4213                 set_bit(STRIPE_HANDLE, &sh->state);
4214                 clear_bit(STRIPE_DELAYED, &sh->state);
4215                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4216                         atomic_inc(&conf->preread_active_stripes);
4217                 release_stripe_plug(mddev, sh);
4218         }
4219
4220         remaining = raid5_dec_bi_active_stripes(bi);
4221         if (remaining == 0) {
4222                 md_write_end(mddev);
4223                 bio_endio(bi, 0);
4224         }
4225 }
4226
4227 static void make_request(struct mddev *mddev, struct bio * bi)
4228 {
4229         struct r5conf *conf = mddev->private;
4230         int dd_idx;
4231         sector_t new_sector;
4232         sector_t logical_sector, last_sector;
4233         struct stripe_head *sh;
4234         const int rw = bio_data_dir(bi);
4235         int remaining;
4236
4237         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4238                 md_flush_request(mddev, bi);
4239                 return;
4240         }
4241
4242         md_write_start(mddev, bi);
4243
4244         if (rw == READ &&
4245              mddev->reshape_position == MaxSector &&
4246              chunk_aligned_read(mddev,bi))
4247                 return;
4248
4249         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4250                 make_discard_request(mddev, bi);
4251                 return;
4252         }
4253
4254         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4255         last_sector = bi->bi_sector + (bi->bi_size>>9);
4256         bi->bi_next = NULL;
4257         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4258
4259         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4260                 DEFINE_WAIT(w);
4261                 int previous;
4262
4263         retry:
4264                 previous = 0;
4265                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4266                 if (unlikely(conf->reshape_progress != MaxSector)) {
4267                         /* spinlock is needed as reshape_progress may be
4268                          * 64bit on a 32bit platform, and so it might be
4269                          * possible to see a half-updated value
4270                          * Of course reshape_progress could change after
4271                          * the lock is dropped, so once we get a reference
4272                          * to the stripe that we think it is, we will have
4273                          * to check again.
4274                          */
4275                         spin_lock_irq(&conf->device_lock);
4276                         if (mddev->reshape_backwards
4277                             ? logical_sector < conf->reshape_progress
4278                             : logical_sector >= conf->reshape_progress) {
4279                                 previous = 1;
4280                         } else {
4281                                 if (mddev->reshape_backwards
4282                                     ? logical_sector < conf->reshape_safe
4283                                     : logical_sector >= conf->reshape_safe) {
4284                                         spin_unlock_irq(&conf->device_lock);
4285                                         schedule();
4286                                         goto retry;
4287                                 }
4288                         }
4289                         spin_unlock_irq(&conf->device_lock);
4290                 }
4291
4292                 new_sector = raid5_compute_sector(conf, logical_sector,
4293                                                   previous,
4294                                                   &dd_idx, NULL);
4295                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4296                         (unsigned long long)new_sector, 
4297                         (unsigned long long)logical_sector);
4298
4299                 sh = get_active_stripe(conf, new_sector, previous,
4300                                        (bi->bi_rw&RWA_MASK), 0);
4301                 if (sh) {
4302                         if (unlikely(previous)) {
4303                                 /* expansion might have moved on while waiting for a
4304                                  * stripe, so we must do the range check again.
4305                                  * Expansion could still move past after this
4306                                  * test, but as we are holding a reference to
4307                                  * 'sh', we know that if that happens,
4308                                  *  STRIPE_EXPANDING will get set and the expansion
4309                                  * won't proceed until we finish with the stripe.
4310                                  */
4311                                 int must_retry = 0;
4312                                 spin_lock_irq(&conf->device_lock);
4313                                 if (mddev->reshape_backwards
4314                                     ? logical_sector >= conf->reshape_progress
4315                                     : logical_sector < conf->reshape_progress)
4316                                         /* mismatch, need to try again */
4317                                         must_retry = 1;
4318                                 spin_unlock_irq(&conf->device_lock);
4319                                 if (must_retry) {
4320                                         release_stripe(sh);
4321                                         schedule();
4322                                         goto retry;
4323                                 }
4324                         }
4325
4326                         if (rw == WRITE &&
4327                             logical_sector >= mddev->suspend_lo &&
4328                             logical_sector < mddev->suspend_hi) {
4329                                 release_stripe(sh);
4330                                 /* As the suspend_* range is controlled by
4331                                  * userspace, we want an interruptible
4332                                  * wait.
4333                                  */
4334                                 flush_signals(current);
4335                                 prepare_to_wait(&conf->wait_for_overlap,
4336                                                 &w, TASK_INTERRUPTIBLE);
4337                                 if (logical_sector >= mddev->suspend_lo &&
4338                                     logical_sector < mddev->suspend_hi)
4339                                         schedule();
4340                                 goto retry;
4341                         }
4342
4343                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4344                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4345                                 /* Stripe is busy expanding or
4346                                  * add failed due to overlap.  Flush everything
4347                                  * and wait a while
4348                                  */
4349                                 md_wakeup_thread(mddev->thread);
4350                                 release_stripe(sh);
4351                                 schedule();
4352                                 goto retry;
4353                         }
4354                         finish_wait(&conf->wait_for_overlap, &w);
4355                         set_bit(STRIPE_HANDLE, &sh->state);
4356                         clear_bit(STRIPE_DELAYED, &sh->state);
4357                         if ((bi->bi_rw & REQ_SYNC) &&
4358                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4359                                 atomic_inc(&conf->preread_active_stripes);
4360                         release_stripe_plug(mddev, sh);
4361                 } else {
4362                         /* cannot get stripe for read-ahead, just give-up */
4363                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4364                         finish_wait(&conf->wait_for_overlap, &w);
4365                         break;
4366                 }
4367         }
4368
4369         remaining = raid5_dec_bi_active_stripes(bi);
4370         if (remaining == 0) {
4371
4372                 if ( rw == WRITE )
4373                         md_write_end(mddev);
4374
4375                 bio_endio(bi, 0);
4376         }
4377 }
4378
4379 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4380
4381 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4382 {
4383         /* reshaping is quite different to recovery/resync so it is
4384          * handled quite separately ... here.
4385          *
4386          * On each call to sync_request, we gather one chunk worth of
4387          * destination stripes and flag them as expanding.
4388          * Then we find all the source stripes and request reads.
4389          * As the reads complete, handle_stripe will copy the data
4390          * into the destination stripe and release that stripe.
4391          */
4392         struct r5conf *conf = mddev->private;
4393         struct stripe_head *sh;
4394         sector_t first_sector, last_sector;
4395         int raid_disks = conf->previous_raid_disks;
4396         int data_disks = raid_disks - conf->max_degraded;
4397         int new_data_disks = conf->raid_disks - conf->max_degraded;
4398         int i;
4399         int dd_idx;
4400         sector_t writepos, readpos, safepos;
4401         sector_t stripe_addr;
4402         int reshape_sectors;
4403         struct list_head stripes;
4404
4405         if (sector_nr == 0) {
4406                 /* If restarting in the middle, skip the initial sectors */
4407                 if (mddev->reshape_backwards &&
4408                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4409                         sector_nr = raid5_size(mddev, 0, 0)
4410                                 - conf->reshape_progress;
4411                 } else if (!mddev->reshape_backwards &&
4412                            conf->reshape_progress > 0)
4413                         sector_nr = conf->reshape_progress;
4414                 sector_div(sector_nr, new_data_disks);
4415                 if (sector_nr) {
4416                         mddev->curr_resync_completed = sector_nr;
4417                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4418                         *skipped = 1;
4419                         return sector_nr;
4420                 }
4421         }
4422
4423         /* We need to process a full chunk at a time.
4424          * If old and new chunk sizes differ, we need to process the
4425          * largest of these
4426          */
4427         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4428                 reshape_sectors = mddev->new_chunk_sectors;
4429         else
4430                 reshape_sectors = mddev->chunk_sectors;
4431
4432         /* We update the metadata at least every 10 seconds, or when
4433          * the data about to be copied would over-write the source of
4434          * the data at the front of the range.  i.e. one new_stripe
4435          * along from reshape_progress new_maps to after where
4436          * reshape_safe old_maps to
4437          */
4438         writepos = conf->reshape_progress;
4439         sector_div(writepos, new_data_disks);
4440         readpos = conf->reshape_progress;
4441         sector_div(readpos, data_disks);
4442         safepos = conf->reshape_safe;
4443         sector_div(safepos, data_disks);
4444         if (mddev->reshape_backwards) {
4445                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4446                 readpos += reshape_sectors;
4447                 safepos += reshape_sectors;
4448         } else {
4449                 writepos += reshape_sectors;
4450                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4451                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4452         }
4453
4454         /* Having calculated the 'writepos' possibly use it
4455          * to set 'stripe_addr' which is where we will write to.
4456          */
4457         if (mddev->reshape_backwards) {
4458                 BUG_ON(conf->reshape_progress == 0);
4459                 stripe_addr = writepos;
4460                 BUG_ON((mddev->dev_sectors &
4461                         ~((sector_t)reshape_sectors - 1))
4462                        - reshape_sectors - stripe_addr
4463                        != sector_nr);
4464         } else {
4465                 BUG_ON(writepos != sector_nr + reshape_sectors);
4466                 stripe_addr = sector_nr;
4467         }
4468
4469         /* 'writepos' is the most advanced device address we might write.
4470          * 'readpos' is the least advanced device address we might read.
4471          * 'safepos' is the least address recorded in the metadata as having
4472          *     been reshaped.
4473          * If there is a min_offset_diff, these are adjusted either by
4474          * increasing the safepos/readpos if diff is negative, or
4475          * increasing writepos if diff is positive.
4476          * If 'readpos' is then behind 'writepos', there is no way that we can
4477          * ensure safety in the face of a crash - that must be done by userspace
4478          * making a backup of the data.  So in that case there is no particular
4479          * rush to update metadata.
4480          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4481          * update the metadata to advance 'safepos' to match 'readpos' so that
4482          * we can be safe in the event of a crash.
4483          * So we insist on updating metadata if safepos is behind writepos and
4484          * readpos is beyond writepos.
4485          * In any case, update the metadata every 10 seconds.
4486          * Maybe that number should be configurable, but I'm not sure it is
4487          * worth it.... maybe it could be a multiple of safemode_delay???
4488          */
4489         if (conf->min_offset_diff < 0) {
4490                 safepos += -conf->min_offset_diff;
4491                 readpos += -conf->min_offset_diff;
4492         } else
4493                 writepos += conf->min_offset_diff;
4494
4495         if ((mddev->reshape_backwards
4496              ? (safepos > writepos && readpos < writepos)
4497              : (safepos < writepos && readpos > writepos)) ||
4498             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4499                 /* Cannot proceed until we've updated the superblock... */
4500                 wait_event(conf->wait_for_overlap,
4501                            atomic_read(&conf->reshape_stripes)==0);
4502                 mddev->reshape_position = conf->reshape_progress;
4503                 mddev->curr_resync_completed = sector_nr;
4504                 conf->reshape_checkpoint = jiffies;
4505                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4506                 md_wakeup_thread(mddev->thread);
4507                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4508                            kthread_should_stop());
4509                 spin_lock_irq(&conf->device_lock);
4510                 conf->reshape_safe = mddev->reshape_position;
4511                 spin_unlock_irq(&conf->device_lock);
4512                 wake_up(&conf->wait_for_overlap);
4513                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4514         }
4515
4516         INIT_LIST_HEAD(&stripes);
4517         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4518                 int j;
4519                 int skipped_disk = 0;
4520                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4521                 set_bit(STRIPE_EXPANDING, &sh->state);
4522                 atomic_inc(&conf->reshape_stripes);
4523                 /* If any of this stripe is beyond the end of the old
4524                  * array, then we need to zero those blocks
4525                  */
4526                 for (j=sh->disks; j--;) {
4527                         sector_t s;
4528                         if (j == sh->pd_idx)
4529                                 continue;
4530                         if (conf->level == 6 &&
4531                             j == sh->qd_idx)
4532                                 continue;
4533                         s = compute_blocknr(sh, j, 0);
4534                         if (s < raid5_size(mddev, 0, 0)) {
4535                                 skipped_disk = 1;
4536                                 continue;
4537                         }
4538                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4539                         set_bit(R5_Expanded, &sh->dev[j].flags);
4540                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4541                 }
4542                 if (!skipped_disk) {
4543                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4544                         set_bit(STRIPE_HANDLE, &sh->state);
4545                 }
4546                 list_add(&sh->lru, &stripes);
4547         }
4548         spin_lock_irq(&conf->device_lock);
4549         if (mddev->reshape_backwards)
4550                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4551         else
4552                 conf->reshape_progress += reshape_sectors * new_data_disks;
4553         spin_unlock_irq(&conf->device_lock);
4554         /* Ok, those stripe are ready. We can start scheduling
4555          * reads on the source stripes.
4556          * The source stripes are determined by mapping the first and last
4557          * block on the destination stripes.
4558          */
4559         first_sector =
4560                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4561                                      1, &dd_idx, NULL);
4562         last_sector =
4563                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4564                                             * new_data_disks - 1),
4565                                      1, &dd_idx, NULL);
4566         if (last_sector >= mddev->dev_sectors)
4567                 last_sector = mddev->dev_sectors - 1;
4568         while (first_sector <= last_sector) {
4569                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4570                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4571                 set_bit(STRIPE_HANDLE, &sh->state);
4572                 release_stripe(sh);
4573                 first_sector += STRIPE_SECTORS;
4574         }
4575         /* Now that the sources are clearly marked, we can release
4576          * the destination stripes
4577          */
4578         while (!list_empty(&stripes)) {
4579                 sh = list_entry(stripes.next, struct stripe_head, lru);
4580                 list_del_init(&sh->lru);
4581                 release_stripe(sh);
4582         }
4583         /* If this takes us to the resync_max point where we have to pause,
4584          * then we need to write out the superblock.
4585          */
4586         sector_nr += reshape_sectors;
4587         if ((sector_nr - mddev->curr_resync_completed) * 2
4588             >= mddev->resync_max - mddev->curr_resync_completed) {
4589                 /* Cannot proceed until we've updated the superblock... */
4590                 wait_event(conf->wait_for_overlap,
4591                            atomic_read(&conf->reshape_stripes) == 0);
4592                 mddev->reshape_position = conf->reshape_progress;
4593                 mddev->curr_resync_completed = sector_nr;
4594                 conf->reshape_checkpoint = jiffies;
4595                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4596                 md_wakeup_thread(mddev->thread);
4597                 wait_event(mddev->sb_wait,
4598                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4599                            || kthread_should_stop());
4600                 spin_lock_irq(&conf->device_lock);
4601                 conf->reshape_safe = mddev->reshape_position;
4602                 spin_unlock_irq(&conf->device_lock);
4603                 wake_up(&conf->wait_for_overlap);
4604                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4605         }
4606         return reshape_sectors;
4607 }
4608
4609 /* FIXME go_faster isn't used */
4610 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4611 {
4612         struct r5conf *conf = mddev->private;
4613         struct stripe_head *sh;
4614         sector_t max_sector = mddev->dev_sectors;
4615         sector_t sync_blocks;
4616         int still_degraded = 0;
4617         int i;
4618
4619         if (sector_nr >= max_sector) {
4620                 /* just being told to finish up .. nothing much to do */
4621
4622                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4623                         end_reshape(conf);
4624                         return 0;
4625                 }
4626
4627                 if (mddev->curr_resync < max_sector) /* aborted */
4628                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4629                                         &sync_blocks, 1);
4630                 else /* completed sync */
4631                         conf->fullsync = 0;
4632                 bitmap_close_sync(mddev->bitmap);
4633
4634                 return 0;
4635         }
4636
4637         /* Allow raid5_quiesce to complete */
4638         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4639
4640         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4641                 return reshape_request(mddev, sector_nr, skipped);
4642
4643         /* No need to check resync_max as we never do more than one
4644          * stripe, and as resync_max will always be on a chunk boundary,
4645          * if the check in md_do_sync didn't fire, there is no chance
4646          * of overstepping resync_max here
4647          */
4648
4649         /* if there is too many failed drives and we are trying
4650          * to resync, then assert that we are finished, because there is
4651          * nothing we can do.
4652          */
4653         if (mddev->degraded >= conf->max_degraded &&
4654             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4655                 sector_t rv = mddev->dev_sectors - sector_nr;
4656                 *skipped = 1;
4657                 return rv;
4658         }
4659         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4660             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4661             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4662                 /* we can skip this block, and probably more */
4663                 sync_blocks /= STRIPE_SECTORS;
4664                 *skipped = 1;
4665                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4666         }
4667
4668         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4669
4670         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4671         if (sh == NULL) {
4672                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4673                 /* make sure we don't swamp the stripe cache if someone else
4674                  * is trying to get access
4675                  */
4676                 schedule_timeout_uninterruptible(1);
4677         }
4678         /* Need to check if array will still be degraded after recovery/resync
4679          * We don't need to check the 'failed' flag as when that gets set,
4680          * recovery aborts.
4681          */
4682         for (i = 0; i < conf->raid_disks; i++)
4683                 if (conf->disks[i].rdev == NULL)
4684                         still_degraded = 1;
4685
4686         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4687
4688         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4689
4690         handle_stripe(sh);
4691         release_stripe(sh);
4692
4693         return STRIPE_SECTORS;
4694 }
4695
4696 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4697 {
4698         /* We may not be able to submit a whole bio at once as there
4699          * may not be enough stripe_heads available.
4700          * We cannot pre-allocate enough stripe_heads as we may need
4701          * more than exist in the cache (if we allow ever large chunks).
4702          * So we do one stripe head at a time and record in
4703          * ->bi_hw_segments how many have been done.
4704          *
4705          * We *know* that this entire raid_bio is in one chunk, so
4706          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4707          */
4708         struct stripe_head *sh;
4709         int dd_idx;
4710         sector_t sector, logical_sector, last_sector;
4711         int scnt = 0;
4712         int remaining;
4713         int handled = 0;
4714
4715         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4716         sector = raid5_compute_sector(conf, logical_sector,
4717                                       0, &dd_idx, NULL);
4718         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4719
4720         for (; logical_sector < last_sector;
4721              logical_sector += STRIPE_SECTORS,
4722                      sector += STRIPE_SECTORS,
4723                      scnt++) {
4724
4725                 if (scnt < raid5_bi_processed_stripes(raid_bio))
4726                         /* already done this stripe */
4727                         continue;
4728
4729                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4730
4731                 if (!sh) {
4732                         /* failed to get a stripe - must wait */
4733                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4734                         conf->retry_read_aligned = raid_bio;
4735                         return handled;
4736                 }
4737
4738                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4739                         release_stripe(sh);
4740                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4741                         conf->retry_read_aligned = raid_bio;
4742                         return handled;
4743                 }
4744
4745                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4746                 handle_stripe(sh);
4747                 release_stripe(sh);
4748                 handled++;
4749         }
4750         remaining = raid5_dec_bi_active_stripes(raid_bio);
4751         if (remaining == 0)
4752                 bio_endio(raid_bio, 0);
4753         if (atomic_dec_and_test(&conf->active_aligned_reads))
4754                 wake_up(&conf->wait_for_stripe);
4755         return handled;
4756 }
4757
4758 #define MAX_STRIPE_BATCH 8
4759 static int handle_active_stripes(struct r5conf *conf)
4760 {
4761         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4762         int i, batch_size = 0;
4763
4764         while (batch_size < MAX_STRIPE_BATCH &&
4765                         (sh = __get_priority_stripe(conf)) != NULL)
4766                 batch[batch_size++] = sh;
4767
4768         if (batch_size == 0)
4769                 return batch_size;
4770         spin_unlock_irq(&conf->device_lock);
4771
4772         for (i = 0; i < batch_size; i++)
4773                 handle_stripe(batch[i]);
4774
4775         cond_resched();
4776
4777         spin_lock_irq(&conf->device_lock);
4778         for (i = 0; i < batch_size; i++)
4779                 __release_stripe(conf, batch[i]);
4780         return batch_size;
4781 }
4782
4783 /*
4784  * This is our raid5 kernel thread.
4785  *
4786  * We scan the hash table for stripes which can be handled now.
4787  * During the scan, completed stripes are saved for us by the interrupt
4788  * handler, so that they will not have to wait for our next wakeup.
4789  */
4790 static void raid5d(struct md_thread *thread)
4791 {
4792         struct mddev *mddev = thread->mddev;
4793         struct r5conf *conf = mddev->private;
4794         int handled;
4795         struct blk_plug plug;
4796
4797         pr_debug("+++ raid5d active\n");
4798
4799         md_check_recovery(mddev);
4800
4801         blk_start_plug(&plug);
4802         handled = 0;
4803         spin_lock_irq(&conf->device_lock);
4804         while (1) {
4805                 struct bio *bio;
4806                 int batch_size;
4807
4808                 if (
4809                     !list_empty(&conf->bitmap_list)) {
4810                         /* Now is a good time to flush some bitmap updates */
4811                         conf->seq_flush++;
4812                         spin_unlock_irq(&conf->device_lock);
4813                         bitmap_unplug(mddev->bitmap);
4814                         spin_lock_irq(&conf->device_lock);
4815                         conf->seq_write = conf->seq_flush;
4816                         activate_bit_delay(conf);
4817                 }
4818                 raid5_activate_delayed(conf);
4819
4820                 while ((bio = remove_bio_from_retry(conf))) {
4821                         int ok;
4822                         spin_unlock_irq(&conf->device_lock);
4823                         ok = retry_aligned_read(conf, bio);
4824                         spin_lock_irq(&conf->device_lock);
4825                         if (!ok)
4826                                 break;
4827                         handled++;
4828                 }
4829
4830                 batch_size = handle_active_stripes(conf);
4831                 if (!batch_size)
4832                         break;
4833                 handled += batch_size;
4834
4835                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
4836                         spin_unlock_irq(&conf->device_lock);
4837                         md_check_recovery(mddev);
4838                         spin_lock_irq(&conf->device_lock);
4839                 }
4840         }
4841         pr_debug("%d stripes handled\n", handled);
4842
4843         spin_unlock_irq(&conf->device_lock);
4844
4845         async_tx_issue_pending_all();
4846         blk_finish_plug(&plug);
4847
4848         pr_debug("--- raid5d inactive\n");
4849 }
4850
4851 static ssize_t
4852 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4853 {
4854         struct r5conf *conf = mddev->private;
4855         if (conf)
4856                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4857         else
4858                 return 0;
4859 }
4860
4861 int
4862 raid5_set_cache_size(struct mddev *mddev, int size)
4863 {
4864         struct r5conf *conf = mddev->private;
4865         int err;
4866
4867         if (size <= 16 || size > 32768)
4868                 return -EINVAL;
4869         while (size < conf->max_nr_stripes) {
4870                 if (drop_one_stripe(conf))
4871                         conf->max_nr_stripes--;
4872                 else
4873                         break;
4874         }
4875         err = md_allow_write(mddev);
4876         if (err)
4877                 return err;
4878         while (size > conf->max_nr_stripes) {
4879                 if (grow_one_stripe(conf))
4880                         conf->max_nr_stripes++;
4881                 else break;
4882         }
4883         return 0;
4884 }
4885 EXPORT_SYMBOL(raid5_set_cache_size);
4886
4887 static ssize_t
4888 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4889 {
4890         struct r5conf *conf = mddev->private;
4891         unsigned long new;
4892         int err;
4893
4894         if (len >= PAGE_SIZE)
4895                 return -EINVAL;
4896         if (!conf)
4897                 return -ENODEV;
4898
4899         if (strict_strtoul(page, 10, &new))
4900                 return -EINVAL;
4901         err = raid5_set_cache_size(mddev, new);
4902         if (err)
4903                 return err;
4904         return len;
4905 }
4906
4907 static struct md_sysfs_entry
4908 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4909                                 raid5_show_stripe_cache_size,
4910                                 raid5_store_stripe_cache_size);
4911
4912 static ssize_t
4913 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4914 {
4915         struct r5conf *conf = mddev->private;
4916         if (conf)
4917                 return sprintf(page, "%d\n", conf->bypass_threshold);
4918         else
4919                 return 0;
4920 }
4921
4922 static ssize_t
4923 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4924 {
4925         struct r5conf *conf = mddev->private;
4926         unsigned long new;
4927         if (len >= PAGE_SIZE)
4928                 return -EINVAL;
4929         if (!conf)
4930                 return -ENODEV;
4931
4932         if (strict_strtoul(page, 10, &new))
4933                 return -EINVAL;
4934         if (new > conf->max_nr_stripes)
4935                 return -EINVAL;
4936         conf->bypass_threshold = new;
4937         return len;
4938 }
4939
4940 static struct md_sysfs_entry
4941 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4942                                         S_IRUGO | S_IWUSR,
4943                                         raid5_show_preread_threshold,
4944                                         raid5_store_preread_threshold);
4945
4946 static ssize_t
4947 stripe_cache_active_show(struct mddev *mddev, char *page)
4948 {
4949         struct r5conf *conf = mddev->private;
4950         if (conf)
4951                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4952         else
4953                 return 0;
4954 }
4955
4956 static struct md_sysfs_entry
4957 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4958
4959 static struct attribute *raid5_attrs[] =  {
4960         &raid5_stripecache_size.attr,
4961         &raid5_stripecache_active.attr,
4962         &raid5_preread_bypass_threshold.attr,
4963         NULL,
4964 };
4965 static struct attribute_group raid5_attrs_group = {
4966         .name = NULL,
4967         .attrs = raid5_attrs,
4968 };
4969
4970 static sector_t
4971 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4972 {
4973         struct r5conf *conf = mddev->private;
4974
4975         if (!sectors)
4976                 sectors = mddev->dev_sectors;
4977         if (!raid_disks)
4978                 /* size is defined by the smallest of previous and new size */
4979                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4980
4981         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4982         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4983         return sectors * (raid_disks - conf->max_degraded);
4984 }
4985
4986 static void raid5_free_percpu(struct r5conf *conf)
4987 {
4988         struct raid5_percpu *percpu;
4989         unsigned long cpu;
4990
4991         if (!conf->percpu)
4992                 return;
4993
4994         get_online_cpus();
4995         for_each_possible_cpu(cpu) {
4996                 percpu = per_cpu_ptr(conf->percpu, cpu);
4997                 safe_put_page(percpu->spare_page);
4998                 kfree(percpu->scribble);
4999         }
5000 #ifdef CONFIG_HOTPLUG_CPU
5001         unregister_cpu_notifier(&conf->cpu_notify);
5002 #endif
5003         put_online_cpus();
5004
5005         free_percpu(conf->percpu);
5006 }
5007
5008 static void free_conf(struct r5conf *conf)
5009 {
5010         shrink_stripes(conf);
5011         raid5_free_percpu(conf);
5012         kfree(conf->disks);
5013         kfree(conf->stripe_hashtbl);
5014         kfree(conf);
5015 }
5016
5017 #ifdef CONFIG_HOTPLUG_CPU
5018 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5019                               void *hcpu)
5020 {
5021         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5022         long cpu = (long)hcpu;
5023         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5024
5025         switch (action) {
5026         case CPU_UP_PREPARE:
5027         case CPU_UP_PREPARE_FROZEN:
5028                 if (conf->level == 6 && !percpu->spare_page)
5029                         percpu->spare_page = alloc_page(GFP_KERNEL);
5030                 if (!percpu->scribble)
5031                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5032
5033                 if (!percpu->scribble ||
5034                     (conf->level == 6 && !percpu->spare_page)) {
5035                         safe_put_page(percpu->spare_page);
5036                         kfree(percpu->scribble);
5037                         pr_err("%s: failed memory allocation for cpu%ld\n",
5038                                __func__, cpu);
5039                         return notifier_from_errno(-ENOMEM);
5040                 }
5041                 break;
5042         case CPU_DEAD:
5043         case CPU_DEAD_FROZEN:
5044                 safe_put_page(percpu->spare_page);
5045                 kfree(percpu->scribble);
5046                 percpu->spare_page = NULL;
5047                 percpu->scribble = NULL;
5048                 break;
5049         default:
5050                 break;
5051         }
5052         return NOTIFY_OK;
5053 }
5054 #endif
5055
5056 static int raid5_alloc_percpu(struct r5conf *conf)
5057 {
5058         unsigned long cpu;
5059         struct page *spare_page;
5060         struct raid5_percpu __percpu *allcpus;
5061         void *scribble;
5062         int err;
5063
5064         allcpus = alloc_percpu(struct raid5_percpu);
5065         if (!allcpus)
5066                 return -ENOMEM;
5067         conf->percpu = allcpus;
5068
5069         get_online_cpus();
5070         err = 0;
5071         for_each_present_cpu(cpu) {
5072                 if (conf->level == 6) {
5073                         spare_page = alloc_page(GFP_KERNEL);
5074                         if (!spare_page) {
5075                                 err = -ENOMEM;
5076                                 break;
5077                         }
5078                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5079                 }
5080                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5081                 if (!scribble) {
5082                         err = -ENOMEM;
5083                         break;
5084                 }
5085                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5086         }
5087 #ifdef CONFIG_HOTPLUG_CPU
5088         conf->cpu_notify.notifier_call = raid456_cpu_notify;
5089         conf->cpu_notify.priority = 0;
5090         if (err == 0)
5091                 err = register_cpu_notifier(&conf->cpu_notify);
5092 #endif
5093         put_online_cpus();
5094
5095         return err;
5096 }
5097
5098 static struct r5conf *setup_conf(struct mddev *mddev)
5099 {
5100         struct r5conf *conf;
5101         int raid_disk, memory, max_disks;
5102         struct md_rdev *rdev;
5103         struct disk_info *disk;
5104         char pers_name[6];
5105
5106         if (mddev->new_level != 5
5107             && mddev->new_level != 4
5108             && mddev->new_level != 6) {
5109                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5110                        mdname(mddev), mddev->new_level);
5111                 return ERR_PTR(-EIO);
5112         }
5113         if ((mddev->new_level == 5
5114              && !algorithm_valid_raid5(mddev->new_layout)) ||
5115             (mddev->new_level == 6
5116              && !algorithm_valid_raid6(mddev->new_layout))) {
5117                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5118                        mdname(mddev), mddev->new_layout);
5119                 return ERR_PTR(-EIO);
5120         }
5121         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5122                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5123                        mdname(mddev), mddev->raid_disks);
5124                 return ERR_PTR(-EINVAL);
5125         }
5126
5127         if (!mddev->new_chunk_sectors ||
5128             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5129             !is_power_of_2(mddev->new_chunk_sectors)) {
5130                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5131                        mdname(mddev), mddev->new_chunk_sectors << 9);
5132                 return ERR_PTR(-EINVAL);
5133         }
5134
5135         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5136         if (conf == NULL)
5137                 goto abort;
5138         spin_lock_init(&conf->device_lock);
5139         init_waitqueue_head(&conf->wait_for_stripe);
5140         init_waitqueue_head(&conf->wait_for_overlap);
5141         INIT_LIST_HEAD(&conf->handle_list);
5142         INIT_LIST_HEAD(&conf->hold_list);
5143         INIT_LIST_HEAD(&conf->delayed_list);
5144         INIT_LIST_HEAD(&conf->bitmap_list);
5145         INIT_LIST_HEAD(&conf->inactive_list);
5146         atomic_set(&conf->active_stripes, 0);
5147         atomic_set(&conf->preread_active_stripes, 0);
5148         atomic_set(&conf->active_aligned_reads, 0);
5149         conf->bypass_threshold = BYPASS_THRESHOLD;
5150         conf->recovery_disabled = mddev->recovery_disabled - 1;
5151
5152         conf->raid_disks = mddev->raid_disks;
5153         if (mddev->reshape_position == MaxSector)
5154                 conf->previous_raid_disks = mddev->raid_disks;
5155         else
5156                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5157         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5158         conf->scribble_len = scribble_len(max_disks);
5159
5160         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5161                               GFP_KERNEL);
5162         if (!conf->disks)
5163                 goto abort;
5164
5165         conf->mddev = mddev;
5166
5167         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5168                 goto abort;
5169
5170         conf->level = mddev->new_level;
5171         if (raid5_alloc_percpu(conf) != 0)
5172                 goto abort;
5173
5174         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5175
5176         rdev_for_each(rdev, mddev) {
5177                 raid_disk = rdev->raid_disk;
5178                 if (raid_disk >= max_disks
5179                     || raid_disk < 0)
5180                         continue;
5181                 disk = conf->disks + raid_disk;
5182
5183                 if (test_bit(Replacement, &rdev->flags)) {
5184                         if (disk->replacement)
5185                                 goto abort;
5186                         disk->replacement = rdev;
5187                 } else {
5188                         if (disk->rdev)
5189                                 goto abort;
5190                         disk->rdev = rdev;
5191                 }
5192
5193                 if (test_bit(In_sync, &rdev->flags)) {
5194                         char b[BDEVNAME_SIZE];
5195                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5196                                " disk %d\n",
5197                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5198                 } else if (rdev->saved_raid_disk != raid_disk)
5199                         /* Cannot rely on bitmap to complete recovery */
5200                         conf->fullsync = 1;
5201         }
5202
5203         conf->chunk_sectors = mddev->new_chunk_sectors;
5204         conf->level = mddev->new_level;
5205         if (conf->level == 6)
5206                 conf->max_degraded = 2;
5207         else
5208                 conf->max_degraded = 1;
5209         conf->algorithm = mddev->new_layout;
5210         conf->max_nr_stripes = NR_STRIPES;
5211         conf->reshape_progress = mddev->reshape_position;
5212         if (conf->reshape_progress != MaxSector) {
5213                 conf->prev_chunk_sectors = mddev->chunk_sectors;
5214                 conf->prev_algo = mddev->layout;
5215         }
5216
5217         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5218                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5219         if (grow_stripes(conf, conf->max_nr_stripes)) {
5220                 printk(KERN_ERR
5221                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
5222                        mdname(mddev), memory);
5223                 goto abort;
5224         } else
5225                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5226                        mdname(mddev), memory);
5227
5228         sprintf(pers_name, "raid%d", mddev->new_level);
5229         conf->thread = md_register_thread(raid5d, mddev, pers_name);
5230         if (!conf->thread) {
5231                 printk(KERN_ERR
5232                        "md/raid:%s: couldn't allocate thread.\n",
5233                        mdname(mddev));
5234                 goto abort;
5235         }
5236
5237         return conf;
5238
5239  abort:
5240         if (conf) {
5241                 free_conf(conf);
5242                 return ERR_PTR(-EIO);
5243         } else
5244                 return ERR_PTR(-ENOMEM);
5245 }
5246
5247
5248 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5249 {
5250         switch (algo) {
5251         case ALGORITHM_PARITY_0:
5252                 if (raid_disk < max_degraded)
5253                         return 1;
5254                 break;
5255         case ALGORITHM_PARITY_N:
5256                 if (raid_disk >= raid_disks - max_degraded)
5257                         return 1;
5258                 break;
5259         case ALGORITHM_PARITY_0_6:
5260                 if (raid_disk == 0 || 
5261                     raid_disk == raid_disks - 1)
5262                         return 1;
5263                 break;
5264         case ALGORITHM_LEFT_ASYMMETRIC_6:
5265         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5266         case ALGORITHM_LEFT_SYMMETRIC_6:
5267         case ALGORITHM_RIGHT_SYMMETRIC_6:
5268                 if (raid_disk == raid_disks - 1)
5269                         return 1;
5270         }
5271         return 0;
5272 }
5273
5274 static int run(struct mddev *mddev)
5275 {
5276         struct r5conf *conf;
5277         int working_disks = 0;
5278         int dirty_parity_disks = 0;
5279         struct md_rdev *rdev;
5280         sector_t reshape_offset = 0;
5281         int i;
5282         long long min_offset_diff = 0;
5283         int first = 1;
5284
5285         if (mddev->recovery_cp != MaxSector)
5286                 printk(KERN_NOTICE "md/raid:%s: not clean"
5287                        " -- starting background reconstruction\n",
5288                        mdname(mddev));
5289
5290         rdev_for_each(rdev, mddev) {
5291                 long long diff;
5292                 if (rdev->raid_disk < 0)
5293                         continue;
5294                 diff = (rdev->new_data_offset - rdev->data_offset);
5295                 if (first) {
5296                         min_offset_diff = diff;
5297                         first = 0;
5298                 } else if (mddev->reshape_backwards &&
5299                          diff < min_offset_diff)
5300                         min_offset_diff = diff;
5301                 else if (!mddev->reshape_backwards &&
5302                          diff > min_offset_diff)
5303                         min_offset_diff = diff;
5304         }
5305
5306         if (mddev->reshape_position != MaxSector) {
5307                 /* Check that we can continue the reshape.
5308                  * Difficulties arise if the stripe we would write to
5309                  * next is at or after the stripe we would read from next.
5310                  * For a reshape that changes the number of devices, this
5311                  * is only possible for a very short time, and mdadm makes
5312                  * sure that time appears to have past before assembling
5313                  * the array.  So we fail if that time hasn't passed.
5314                  * For a reshape that keeps the number of devices the same
5315                  * mdadm must be monitoring the reshape can keeping the
5316                  * critical areas read-only and backed up.  It will start
5317                  * the array in read-only mode, so we check for that.
5318                  */
5319                 sector_t here_new, here_old;
5320                 int old_disks;
5321                 int max_degraded = (mddev->level == 6 ? 2 : 1);
5322
5323                 if (mddev->new_level != mddev->level) {
5324                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
5325                                "required - aborting.\n",
5326                                mdname(mddev));
5327                         return -EINVAL;
5328                 }
5329                 old_disks = mddev->raid_disks - mddev->delta_disks;
5330                 /* reshape_position must be on a new-stripe boundary, and one
5331                  * further up in new geometry must map after here in old
5332                  * geometry.
5333                  */
5334                 here_new = mddev->reshape_position;
5335                 if (sector_div(here_new, mddev->new_chunk_sectors *
5336                                (mddev->raid_disks - max_degraded))) {
5337                         printk(KERN_ERR "md/raid:%s: reshape_position not "
5338                                "on a stripe boundary\n", mdname(mddev));
5339                         return -EINVAL;
5340                 }
5341                 reshape_offset = here_new * mddev->new_chunk_sectors;
5342                 /* here_new is the stripe we will write to */
5343                 here_old = mddev->reshape_position;
5344                 sector_div(here_old, mddev->chunk_sectors *
5345                            (old_disks-max_degraded));
5346                 /* here_old is the first stripe that we might need to read
5347                  * from */
5348                 if (mddev->delta_disks == 0) {
5349                         if ((here_new * mddev->new_chunk_sectors !=
5350                              here_old * mddev->chunk_sectors)) {
5351                                 printk(KERN_ERR "md/raid:%s: reshape position is"
5352                                        " confused - aborting\n", mdname(mddev));
5353                                 return -EINVAL;
5354                         }
5355                         /* We cannot be sure it is safe to start an in-place
5356                          * reshape.  It is only safe if user-space is monitoring
5357                          * and taking constant backups.
5358                          * mdadm always starts a situation like this in
5359                          * readonly mode so it can take control before
5360                          * allowing any writes.  So just check for that.
5361                          */
5362                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5363                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
5364                                 /* not really in-place - so OK */;
5365                         else if (mddev->ro == 0) {
5366                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
5367                                        "must be started in read-only mode "
5368                                        "- aborting\n",
5369                                        mdname(mddev));
5370                                 return -EINVAL;
5371                         }
5372                 } else if (mddev->reshape_backwards
5373                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5374                        here_old * mddev->chunk_sectors)
5375                     : (here_new * mddev->new_chunk_sectors >=
5376                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5377                         /* Reading from the same stripe as writing to - bad */
5378                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5379                                "auto-recovery - aborting.\n",
5380                                mdname(mddev));
5381                         return -EINVAL;
5382                 }
5383                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5384                        mdname(mddev));
5385                 /* OK, we should be able to continue; */
5386         } else {
5387                 BUG_ON(mddev->level != mddev->new_level);
5388                 BUG_ON(mddev->layout != mddev->new_layout);
5389                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5390                 BUG_ON(mddev->delta_disks != 0);
5391         }
5392
5393         if (mddev->private == NULL)
5394                 conf = setup_conf(mddev);
5395         else
5396                 conf = mddev->private;
5397
5398         if (IS_ERR(conf))
5399                 return PTR_ERR(conf);
5400
5401         conf->min_offset_diff = min_offset_diff;
5402         mddev->thread = conf->thread;
5403         conf->thread = NULL;
5404         mddev->private = conf;
5405
5406         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5407              i++) {
5408                 rdev = conf->disks[i].rdev;
5409                 if (!rdev && conf->disks[i].replacement) {
5410                         /* The replacement is all we have yet */
5411                         rdev = conf->disks[i].replacement;
5412                         conf->disks[i].replacement = NULL;
5413                         clear_bit(Replacement, &rdev->flags);
5414                         conf->disks[i].rdev = rdev;
5415                 }
5416                 if (!rdev)
5417                         continue;
5418                 if (conf->disks[i].replacement &&
5419                     conf->reshape_progress != MaxSector) {
5420                         /* replacements and reshape simply do not mix. */
5421                         printk(KERN_ERR "md: cannot handle concurrent "
5422                                "replacement and reshape.\n");
5423                         goto abort;
5424                 }
5425                 if (test_bit(In_sync, &rdev->flags)) {
5426                         working_disks++;
5427                         continue;
5428                 }
5429                 /* This disc is not fully in-sync.  However if it
5430                  * just stored parity (beyond the recovery_offset),
5431                  * when we don't need to be concerned about the
5432                  * array being dirty.
5433                  * When reshape goes 'backwards', we never have
5434                  * partially completed devices, so we only need
5435                  * to worry about reshape going forwards.
5436                  */
5437                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5438                 if (mddev->major_version == 0 &&
5439                     mddev->minor_version > 90)
5440                         rdev->recovery_offset = reshape_offset;
5441                         
5442                 if (rdev->recovery_offset < reshape_offset) {
5443                         /* We need to check old and new layout */
5444                         if (!only_parity(rdev->raid_disk,
5445                                          conf->algorithm,
5446                                          conf->raid_disks,
5447                                          conf->max_degraded))
5448                                 continue;
5449                 }
5450                 if (!only_parity(rdev->raid_disk,
5451                                  conf->prev_algo,
5452                                  conf->previous_raid_disks,
5453                                  conf->max_degraded))
5454                         continue;
5455                 dirty_parity_disks++;
5456         }
5457
5458         /*
5459          * 0 for a fully functional array, 1 or 2 for a degraded array.
5460          */
5461         mddev->degraded = calc_degraded(conf);
5462
5463         if (has_failed(conf)) {
5464                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5465                         " (%d/%d failed)\n",
5466                         mdname(mddev), mddev->degraded, conf->raid_disks);
5467                 goto abort;
5468         }
5469
5470         /* device size must be a multiple of chunk size */
5471         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5472         mddev->resync_max_sectors = mddev->dev_sectors;
5473
5474         if (mddev->degraded > dirty_parity_disks &&
5475             mddev->recovery_cp != MaxSector) {
5476                 if (mddev->ok_start_degraded)
5477                         printk(KERN_WARNING
5478                                "md/raid:%s: starting dirty degraded array"
5479                                " - data corruption possible.\n",
5480                                mdname(mddev));
5481                 else {
5482                         printk(KERN_ERR
5483                                "md/raid:%s: cannot start dirty degraded array.\n",
5484                                mdname(mddev));
5485                         goto abort;
5486                 }
5487         }
5488
5489         if (mddev->degraded == 0)
5490                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5491                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5492                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5493                        mddev->new_layout);
5494         else
5495                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5496                        " out of %d devices, algorithm %d\n",
5497                        mdname(mddev), conf->level,
5498                        mddev->raid_disks - mddev->degraded,
5499                        mddev->raid_disks, mddev->new_layout);
5500
5501         print_raid5_conf(conf);
5502
5503         if (conf->reshape_progress != MaxSector) {
5504                 conf->reshape_safe = conf->reshape_progress;
5505                 atomic_set(&conf->reshape_stripes, 0);
5506                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5507                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5508                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5509                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5510                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5511                                                         "reshape");
5512         }
5513
5514
5515         /* Ok, everything is just fine now */
5516         if (mddev->to_remove == &raid5_attrs_group)
5517                 mddev->to_remove = NULL;
5518         else if (mddev->kobj.sd &&
5519             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5520                 printk(KERN_WARNING
5521                        "raid5: failed to create sysfs attributes for %s\n",
5522                        mdname(mddev));
5523         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5524
5525         if (mddev->queue) {
5526                 int chunk_size;
5527                 bool discard_supported = true;
5528                 /* read-ahead size must cover two whole stripes, which
5529                  * is 2 * (datadisks) * chunksize where 'n' is the
5530                  * number of raid devices
5531                  */
5532                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5533                 int stripe = data_disks *
5534                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5535                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5536                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5537
5538                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5539
5540                 mddev->queue->backing_dev_info.congested_data = mddev;
5541                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5542
5543                 chunk_size = mddev->chunk_sectors << 9;
5544                 blk_queue_io_min(mddev->queue, chunk_size);
5545                 blk_queue_io_opt(mddev->queue, chunk_size *
5546                                  (conf->raid_disks - conf->max_degraded));
5547                 /*
5548                  * We can only discard a whole stripe. It doesn't make sense to
5549                  * discard data disk but write parity disk
5550                  */
5551                 stripe = stripe * PAGE_SIZE;
5552                 /* Round up to power of 2, as discard handling
5553                  * currently assumes that */
5554                 while ((stripe-1) & stripe)
5555                         stripe = (stripe | (stripe-1)) + 1;
5556                 mddev->queue->limits.discard_alignment = stripe;
5557                 mddev->queue->limits.discard_granularity = stripe;
5558                 /*
5559                  * unaligned part of discard request will be ignored, so can't
5560                  * guarantee discard_zerors_data
5561                  */
5562                 mddev->queue->limits.discard_zeroes_data = 0;
5563
5564                 rdev_for_each(rdev, mddev) {
5565                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5566                                           rdev->data_offset << 9);
5567                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5568                                           rdev->new_data_offset << 9);
5569                         /*
5570                          * discard_zeroes_data is required, otherwise data
5571                          * could be lost. Consider a scenario: discard a stripe
5572                          * (the stripe could be inconsistent if
5573                          * discard_zeroes_data is 0); write one disk of the
5574                          * stripe (the stripe could be inconsistent again
5575                          * depending on which disks are used to calculate
5576                          * parity); the disk is broken; The stripe data of this
5577                          * disk is lost.
5578                          */
5579                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
5580                             !bdev_get_queue(rdev->bdev)->
5581                                                 limits.discard_zeroes_data)
5582                                 discard_supported = false;
5583                 }
5584
5585                 if (discard_supported &&
5586                    mddev->queue->limits.max_discard_sectors >= stripe &&
5587                    mddev->queue->limits.discard_granularity >= stripe)
5588                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
5589                                                 mddev->queue);
5590                 else
5591                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
5592                                                 mddev->queue);
5593         }
5594
5595         return 0;
5596 abort:
5597         md_unregister_thread(&mddev->thread);
5598         print_raid5_conf(conf);
5599         free_conf(conf);
5600         mddev->private = NULL;
5601         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5602         return -EIO;
5603 }
5604
5605 static int stop(struct mddev *mddev)
5606 {
5607         struct r5conf *conf = mddev->private;
5608
5609         md_unregister_thread(&mddev->thread);
5610         if (mddev->queue)
5611                 mddev->queue->backing_dev_info.congested_fn = NULL;
5612         free_conf(conf);
5613         mddev->private = NULL;
5614         mddev->to_remove = &raid5_attrs_group;
5615         return 0;
5616 }
5617
5618 static void status(struct seq_file *seq, struct mddev *mddev)
5619 {
5620         struct r5conf *conf = mddev->private;
5621         int i;
5622
5623         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5624                 mddev->chunk_sectors / 2, mddev->layout);
5625         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5626         for (i = 0; i < conf->raid_disks; i++)
5627                 seq_printf (seq, "%s",
5628                                conf->disks[i].rdev &&
5629                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5630         seq_printf (seq, "]");
5631 }
5632
5633 static void print_raid5_conf (struct r5conf *conf)
5634 {
5635         int i;
5636         struct disk_info *tmp;
5637
5638         printk(KERN_DEBUG "RAID conf printout:\n");
5639         if (!conf) {
5640                 printk("(conf==NULL)\n");
5641                 return;
5642         }
5643         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5644                conf->raid_disks,
5645                conf->raid_disks - conf->mddev->degraded);
5646
5647         for (i = 0; i < conf->raid_disks; i++) {
5648                 char b[BDEVNAME_SIZE];
5649                 tmp = conf->disks + i;
5650                 if (tmp->rdev)
5651                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5652                                i, !test_bit(Faulty, &tmp->rdev->flags),
5653                                bdevname(tmp->rdev->bdev, b));
5654         }
5655 }
5656
5657 static int raid5_spare_active(struct mddev *mddev)
5658 {
5659         int i;
5660         struct r5conf *conf = mddev->private;
5661         struct disk_info *tmp;
5662         int count = 0;
5663         unsigned long flags;
5664
5665         for (i = 0; i < conf->raid_disks; i++) {
5666                 tmp = conf->disks + i;
5667                 if (tmp->replacement
5668                     && tmp->replacement->recovery_offset == MaxSector
5669                     && !test_bit(Faulty, &tmp->replacement->flags)
5670                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5671                         /* Replacement has just become active. */
5672                         if (!tmp->rdev
5673                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5674                                 count++;
5675                         if (tmp->rdev) {
5676                                 /* Replaced device not technically faulty,
5677                                  * but we need to be sure it gets removed
5678                                  * and never re-added.
5679                                  */
5680                                 set_bit(Faulty, &tmp->rdev->flags);
5681                                 sysfs_notify_dirent_safe(
5682                                         tmp->rdev->sysfs_state);
5683                         }
5684                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5685                 } else if (tmp->rdev
5686                     && tmp->rdev->recovery_offset == MaxSector
5687                     && !test_bit(Faulty, &tmp->rdev->flags)
5688                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5689                         count++;
5690                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5691                 }
5692         }
5693         spin_lock_irqsave(&conf->device_lock, flags);
5694         mddev->degraded = calc_degraded(conf);
5695         spin_unlock_irqrestore(&conf->device_lock, flags);
5696         print_raid5_conf(conf);
5697         return count;
5698 }
5699
5700 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5701 {
5702         struct r5conf *conf = mddev->private;
5703         int err = 0;
5704         int number = rdev->raid_disk;
5705         struct md_rdev **rdevp;
5706         struct disk_info *p = conf->disks + number;
5707
5708         print_raid5_conf(conf);
5709         if (rdev == p->rdev)
5710                 rdevp = &p->rdev;
5711         else if (rdev == p->replacement)
5712                 rdevp = &p->replacement;
5713         else
5714                 return 0;
5715
5716         if (number >= conf->raid_disks &&
5717             conf->reshape_progress == MaxSector)
5718                 clear_bit(In_sync, &rdev->flags);
5719
5720         if (test_bit(In_sync, &rdev->flags) ||
5721             atomic_read(&rdev->nr_pending)) {
5722                 err = -EBUSY;
5723                 goto abort;
5724         }
5725         /* Only remove non-faulty devices if recovery
5726          * isn't possible.
5727          */
5728         if (!test_bit(Faulty, &rdev->flags) &&
5729             mddev->recovery_disabled != conf->recovery_disabled &&
5730             !has_failed(conf) &&
5731             (!p->replacement || p->replacement == rdev) &&
5732             number < conf->raid_disks) {
5733                 err = -EBUSY;
5734                 goto abort;
5735         }
5736         *rdevp = NULL;
5737         synchronize_rcu();
5738         if (atomic_read(&rdev->nr_pending)) {
5739                 /* lost the race, try later */
5740                 err = -EBUSY;
5741                 *rdevp = rdev;
5742         } else if (p->replacement) {
5743                 /* We must have just cleared 'rdev' */
5744                 p->rdev = p->replacement;
5745                 clear_bit(Replacement, &p->replacement->flags);
5746                 smp_mb(); /* Make sure other CPUs may see both as identical
5747                            * but will never see neither - if they are careful
5748                            */
5749                 p->replacement = NULL;
5750                 clear_bit(WantReplacement, &rdev->flags);
5751         } else
5752                 /* We might have just removed the Replacement as faulty-
5753                  * clear the bit just in case
5754                  */
5755                 clear_bit(WantReplacement, &rdev->flags);
5756 abort:
5757
5758         print_raid5_conf(conf);
5759         return err;
5760 }
5761
5762 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5763 {
5764         struct r5conf *conf = mddev->private;
5765         int err = -EEXIST;
5766         int disk;
5767         struct disk_info *p;
5768         int first = 0;
5769         int last = conf->raid_disks - 1;
5770
5771         if (mddev->recovery_disabled == conf->recovery_disabled)
5772                 return -EBUSY;
5773
5774         if (rdev->saved_raid_disk < 0 && has_failed(conf))
5775                 /* no point adding a device */
5776                 return -EINVAL;
5777
5778         if (rdev->raid_disk >= 0)
5779                 first = last = rdev->raid_disk;
5780
5781         /*
5782          * find the disk ... but prefer rdev->saved_raid_disk
5783          * if possible.
5784          */
5785         if (rdev->saved_raid_disk >= 0 &&
5786             rdev->saved_raid_disk >= first &&
5787             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5788                 first = rdev->saved_raid_disk;
5789
5790         for (disk = first; disk <= last; disk++) {
5791                 p = conf->disks + disk;
5792                 if (p->rdev == NULL) {
5793                         clear_bit(In_sync, &rdev->flags);
5794                         rdev->raid_disk = disk;
5795                         err = 0;
5796                         if (rdev->saved_raid_disk != disk)
5797                                 conf->fullsync = 1;
5798                         rcu_assign_pointer(p->rdev, rdev);
5799                         goto out;
5800                 }
5801         }
5802         for (disk = first; disk <= last; disk++) {
5803                 p = conf->disks + disk;
5804                 if (test_bit(WantReplacement, &p->rdev->flags) &&
5805                     p->replacement == NULL) {
5806                         clear_bit(In_sync, &rdev->flags);
5807                         set_bit(Replacement, &rdev->flags);
5808                         rdev->raid_disk = disk;
5809                         err = 0;
5810                         conf->fullsync = 1;
5811                         rcu_assign_pointer(p->replacement, rdev);
5812                         break;
5813                 }
5814         }
5815 out:
5816         print_raid5_conf(conf);
5817         return err;
5818 }
5819
5820 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5821 {
5822         /* no resync is happening, and there is enough space
5823          * on all devices, so we can resize.
5824          * We need to make sure resync covers any new space.
5825          * If the array is shrinking we should possibly wait until
5826          * any io in the removed space completes, but it hardly seems
5827          * worth it.
5828          */
5829         sector_t newsize;
5830         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5831         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5832         if (mddev->external_size &&
5833             mddev->array_sectors > newsize)
5834                 return -EINVAL;
5835         if (mddev->bitmap) {
5836                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5837                 if (ret)
5838                         return ret;
5839         }
5840         md_set_array_sectors(mddev, newsize);
5841         set_capacity(mddev->gendisk, mddev->array_sectors);
5842         revalidate_disk(mddev->gendisk);
5843         if (sectors > mddev->dev_sectors &&
5844             mddev->recovery_cp > mddev->dev_sectors) {
5845                 mddev->recovery_cp = mddev->dev_sectors;
5846                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5847         }
5848         mddev->dev_sectors = sectors;
5849         mddev->resync_max_sectors = sectors;
5850         return 0;
5851 }
5852
5853 static int check_stripe_cache(struct mddev *mddev)
5854 {
5855         /* Can only proceed if there are plenty of stripe_heads.
5856          * We need a minimum of one full stripe,, and for sensible progress
5857          * it is best to have about 4 times that.
5858          * If we require 4 times, then the default 256 4K stripe_heads will
5859          * allow for chunk sizes up to 256K, which is probably OK.
5860          * If the chunk size is greater, user-space should request more
5861          * stripe_heads first.
5862          */
5863         struct r5conf *conf = mddev->private;
5864         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5865             > conf->max_nr_stripes ||
5866             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5867             > conf->max_nr_stripes) {
5868                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5869                        mdname(mddev),
5870                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5871                         / STRIPE_SIZE)*4);
5872                 return 0;
5873         }
5874         return 1;
5875 }
5876
5877 static int check_reshape(struct mddev *mddev)
5878 {
5879         struct r5conf *conf = mddev->private;
5880
5881         if (mddev->delta_disks == 0 &&
5882             mddev->new_layout == mddev->layout &&
5883             mddev->new_chunk_sectors == mddev->chunk_sectors)
5884                 return 0; /* nothing to do */
5885         if (has_failed(conf))
5886                 return -EINVAL;
5887         if (mddev->delta_disks < 0) {
5888                 /* We might be able to shrink, but the devices must
5889                  * be made bigger first.
5890                  * For raid6, 4 is the minimum size.
5891                  * Otherwise 2 is the minimum
5892                  */
5893                 int min = 2;
5894                 if (mddev->level == 6)
5895                         min = 4;
5896                 if (mddev->raid_disks + mddev->delta_disks < min)
5897                         return -EINVAL;
5898         }
5899
5900         if (!check_stripe_cache(mddev))
5901                 return -ENOSPC;
5902
5903         return resize_stripes(conf, (conf->previous_raid_disks
5904                                      + mddev->delta_disks));
5905 }
5906
5907 static int raid5_start_reshape(struct mddev *mddev)
5908 {
5909         struct r5conf *conf = mddev->private;
5910         struct md_rdev *rdev;
5911         int spares = 0;
5912         unsigned long flags;
5913
5914         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5915                 return -EBUSY;
5916
5917         if (!check_stripe_cache(mddev))
5918                 return -ENOSPC;
5919
5920         if (has_failed(conf))
5921                 return -EINVAL;
5922
5923         rdev_for_each(rdev, mddev) {
5924                 if (!test_bit(In_sync, &rdev->flags)
5925                     && !test_bit(Faulty, &rdev->flags))
5926                         spares++;
5927         }
5928
5929         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5930                 /* Not enough devices even to make a degraded array
5931                  * of that size
5932                  */
5933                 return -EINVAL;
5934
5935         /* Refuse to reduce size of the array.  Any reductions in
5936          * array size must be through explicit setting of array_size
5937          * attribute.
5938          */
5939         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5940             < mddev->array_sectors) {
5941                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5942                        "before number of disks\n", mdname(mddev));
5943                 return -EINVAL;
5944         }
5945
5946         atomic_set(&conf->reshape_stripes, 0);
5947         spin_lock_irq(&conf->device_lock);
5948         conf->previous_raid_disks = conf->raid_disks;
5949         conf->raid_disks += mddev->delta_disks;
5950         conf->prev_chunk_sectors = conf->chunk_sectors;
5951         conf->chunk_sectors = mddev->new_chunk_sectors;
5952         conf->prev_algo = conf->algorithm;
5953         conf->algorithm = mddev->new_layout;
5954         conf->generation++;
5955         /* Code that selects data_offset needs to see the generation update
5956          * if reshape_progress has been set - so a memory barrier needed.
5957          */
5958         smp_mb();
5959         if (mddev->reshape_backwards)
5960                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5961         else
5962                 conf->reshape_progress = 0;
5963         conf->reshape_safe = conf->reshape_progress;
5964         spin_unlock_irq(&conf->device_lock);
5965
5966         /* Add some new drives, as many as will fit.
5967          * We know there are enough to make the newly sized array work.
5968          * Don't add devices if we are reducing the number of
5969          * devices in the array.  This is because it is not possible
5970          * to correctly record the "partially reconstructed" state of
5971          * such devices during the reshape and confusion could result.
5972          */
5973         if (mddev->delta_disks >= 0) {
5974                 rdev_for_each(rdev, mddev)
5975                         if (rdev->raid_disk < 0 &&
5976                             !test_bit(Faulty, &rdev->flags)) {
5977                                 if (raid5_add_disk(mddev, rdev) == 0) {
5978                                         if (rdev->raid_disk
5979                                             >= conf->previous_raid_disks)
5980                                                 set_bit(In_sync, &rdev->flags);
5981                                         else
5982                                                 rdev->recovery_offset = 0;
5983
5984                                         if (sysfs_link_rdev(mddev, rdev))
5985                                                 /* Failure here is OK */;
5986                                 }
5987                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5988                                    && !test_bit(Faulty, &rdev->flags)) {
5989                                 /* This is a spare that was manually added */
5990                                 set_bit(In_sync, &rdev->flags);
5991                         }
5992
5993                 /* When a reshape changes the number of devices,
5994                  * ->degraded is measured against the larger of the
5995                  * pre and post number of devices.
5996                  */
5997                 spin_lock_irqsave(&conf->device_lock, flags);
5998                 mddev->degraded = calc_degraded(conf);
5999                 spin_unlock_irqrestore(&conf->device_lock, flags);
6000         }
6001         mddev->raid_disks = conf->raid_disks;
6002         mddev->reshape_position = conf->reshape_progress;
6003         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6004
6005         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6006         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6007         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6008         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6009         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6010                                                 "reshape");
6011         if (!mddev->sync_thread) {
6012                 mddev->recovery = 0;
6013                 spin_lock_irq(&conf->device_lock);
6014                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6015                 rdev_for_each(rdev, mddev)
6016                         rdev->new_data_offset = rdev->data_offset;
6017                 smp_wmb();
6018                 conf->reshape_progress = MaxSector;
6019                 mddev->reshape_position = MaxSector;
6020                 spin_unlock_irq(&conf->device_lock);
6021                 return -EAGAIN;
6022         }
6023         conf->reshape_checkpoint = jiffies;
6024         md_wakeup_thread(mddev->sync_thread);
6025         md_new_event(mddev);
6026         return 0;
6027 }
6028
6029 /* This is called from the reshape thread and should make any
6030  * changes needed in 'conf'
6031  */
6032 static void end_reshape(struct r5conf *conf)
6033 {
6034
6035         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6036                 struct md_rdev *rdev;
6037
6038                 spin_lock_irq(&conf->device_lock);
6039                 conf->previous_raid_disks = conf->raid_disks;
6040                 rdev_for_each(rdev, conf->mddev)
6041                         rdev->data_offset = rdev->new_data_offset;
6042                 smp_wmb();
6043                 conf->reshape_progress = MaxSector;
6044                 spin_unlock_irq(&conf->device_lock);
6045                 wake_up(&conf->wait_for_overlap);
6046
6047                 /* read-ahead size must cover two whole stripes, which is
6048                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6049                  */
6050                 if (conf->mddev->queue) {
6051                         int data_disks = conf->raid_disks - conf->max_degraded;
6052                         int stripe = data_disks * ((conf->chunk_sectors << 9)
6053                                                    / PAGE_SIZE);
6054                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6055                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6056                 }
6057         }
6058 }
6059
6060 /* This is called from the raid5d thread with mddev_lock held.
6061  * It makes config changes to the device.
6062  */
6063 static void raid5_finish_reshape(struct mddev *mddev)
6064 {
6065         struct r5conf *conf = mddev->private;
6066
6067         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6068
6069                 if (mddev->delta_disks > 0) {
6070                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6071                         set_capacity(mddev->gendisk, mddev->array_sectors);
6072                         revalidate_disk(mddev->gendisk);
6073                 } else {
6074                         int d;
6075                         spin_lock_irq(&conf->device_lock);
6076                         mddev->degraded = calc_degraded(conf);
6077                         spin_unlock_irq(&conf->device_lock);
6078                         for (d = conf->raid_disks ;
6079                              d < conf->raid_disks - mddev->delta_disks;
6080                              d++) {
6081                                 struct md_rdev *rdev = conf->disks[d].rdev;
6082                                 if (rdev)
6083                                         clear_bit(In_sync, &rdev->flags);
6084                                 rdev = conf->disks[d].replacement;
6085                                 if (rdev)
6086                                         clear_bit(In_sync, &rdev->flags);
6087                         }
6088                 }
6089                 mddev->layout = conf->algorithm;
6090                 mddev->chunk_sectors = conf->chunk_sectors;
6091                 mddev->reshape_position = MaxSector;
6092                 mddev->delta_disks = 0;
6093                 mddev->reshape_backwards = 0;
6094         }
6095 }
6096
6097 static void raid5_quiesce(struct mddev *mddev, int state)
6098 {
6099         struct r5conf *conf = mddev->private;
6100
6101         switch(state) {
6102         case 2: /* resume for a suspend */
6103                 wake_up(&conf->wait_for_overlap);
6104                 break;
6105
6106         case 1: /* stop all writes */
6107                 spin_lock_irq(&conf->device_lock);
6108                 /* '2' tells resync/reshape to pause so that all
6109                  * active stripes can drain
6110                  */
6111                 conf->quiesce = 2;
6112                 wait_event_lock_irq(conf->wait_for_stripe,
6113                                     atomic_read(&conf->active_stripes) == 0 &&
6114                                     atomic_read(&conf->active_aligned_reads) == 0,
6115                                     conf->device_lock);
6116                 conf->quiesce = 1;
6117                 spin_unlock_irq(&conf->device_lock);
6118                 /* allow reshape to continue */
6119                 wake_up(&conf->wait_for_overlap);
6120                 break;
6121
6122         case 0: /* re-enable writes */
6123                 spin_lock_irq(&conf->device_lock);
6124                 conf->quiesce = 0;
6125                 wake_up(&conf->wait_for_stripe);
6126                 wake_up(&conf->wait_for_overlap);
6127                 spin_unlock_irq(&conf->device_lock);
6128                 break;
6129         }
6130 }
6131
6132
6133 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6134 {
6135         struct r0conf *raid0_conf = mddev->private;
6136         sector_t sectors;
6137
6138         /* for raid0 takeover only one zone is supported */
6139         if (raid0_conf->nr_strip_zones > 1) {
6140                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6141                        mdname(mddev));
6142                 return ERR_PTR(-EINVAL);
6143         }
6144
6145         sectors = raid0_conf->strip_zone[0].zone_end;
6146         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6147         mddev->dev_sectors = sectors;
6148         mddev->new_level = level;
6149         mddev->new_layout = ALGORITHM_PARITY_N;
6150         mddev->new_chunk_sectors = mddev->chunk_sectors;
6151         mddev->raid_disks += 1;
6152         mddev->delta_disks = 1;
6153         /* make sure it will be not marked as dirty */
6154         mddev->recovery_cp = MaxSector;
6155
6156         return setup_conf(mddev);
6157 }
6158
6159
6160 static void *raid5_takeover_raid1(struct mddev *mddev)
6161 {
6162         int chunksect;
6163
6164         if (mddev->raid_disks != 2 ||
6165             mddev->degraded > 1)
6166                 return ERR_PTR(-EINVAL);
6167
6168         /* Should check if there are write-behind devices? */
6169
6170         chunksect = 64*2; /* 64K by default */
6171
6172         /* The array must be an exact multiple of chunksize */
6173         while (chunksect && (mddev->array_sectors & (chunksect-1)))
6174                 chunksect >>= 1;
6175
6176         if ((chunksect<<9) < STRIPE_SIZE)
6177                 /* array size does not allow a suitable chunk size */
6178                 return ERR_PTR(-EINVAL);
6179
6180         mddev->new_level = 5;
6181         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6182         mddev->new_chunk_sectors = chunksect;
6183
6184         return setup_conf(mddev);
6185 }
6186
6187 static void *raid5_takeover_raid6(struct mddev *mddev)
6188 {
6189         int new_layout;
6190
6191         switch (mddev->layout) {
6192         case ALGORITHM_LEFT_ASYMMETRIC_6:
6193                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6194                 break;
6195         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6196                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6197                 break;
6198         case ALGORITHM_LEFT_SYMMETRIC_6:
6199                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6200                 break;
6201         case ALGORITHM_RIGHT_SYMMETRIC_6:
6202                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6203                 break;
6204         case ALGORITHM_PARITY_0_6:
6205                 new_layout = ALGORITHM_PARITY_0;
6206                 break;
6207         case ALGORITHM_PARITY_N:
6208                 new_layout = ALGORITHM_PARITY_N;
6209                 break;
6210         default:
6211                 return ERR_PTR(-EINVAL);
6212         }
6213         mddev->new_level = 5;
6214         mddev->new_layout = new_layout;
6215         mddev->delta_disks = -1;
6216         mddev->raid_disks -= 1;
6217         return setup_conf(mddev);
6218 }
6219
6220
6221 static int raid5_check_reshape(struct mddev *mddev)
6222 {
6223         /* For a 2-drive array, the layout and chunk size can be changed
6224          * immediately as not restriping is needed.
6225          * For larger arrays we record the new value - after validation
6226          * to be used by a reshape pass.
6227          */
6228         struct r5conf *conf = mddev->private;
6229         int new_chunk = mddev->new_chunk_sectors;
6230
6231         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6232                 return -EINVAL;
6233         if (new_chunk > 0) {
6234                 if (!is_power_of_2(new_chunk))
6235                         return -EINVAL;
6236                 if (new_chunk < (PAGE_SIZE>>9))
6237                         return -EINVAL;
6238                 if (mddev->array_sectors & (new_chunk-1))
6239                         /* not factor of array size */
6240                         return -EINVAL;
6241         }
6242
6243         /* They look valid */
6244
6245         if (mddev->raid_disks == 2) {
6246                 /* can make the change immediately */
6247                 if (mddev->new_layout >= 0) {
6248                         conf->algorithm = mddev->new_layout;
6249                         mddev->layout = mddev->new_layout;
6250                 }
6251                 if (new_chunk > 0) {
6252                         conf->chunk_sectors = new_chunk ;
6253                         mddev->chunk_sectors = new_chunk;
6254                 }
6255                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6256                 md_wakeup_thread(mddev->thread);
6257         }
6258         return check_reshape(mddev);
6259 }
6260
6261 static int raid6_check_reshape(struct mddev *mddev)
6262 {
6263         int new_chunk = mddev->new_chunk_sectors;
6264
6265         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6266                 return -EINVAL;
6267         if (new_chunk > 0) {
6268                 if (!is_power_of_2(new_chunk))
6269                         return -EINVAL;
6270                 if (new_chunk < (PAGE_SIZE >> 9))
6271                         return -EINVAL;
6272                 if (mddev->array_sectors & (new_chunk-1))
6273                         /* not factor of array size */
6274                         return -EINVAL;
6275         }
6276
6277         /* They look valid */
6278         return check_reshape(mddev);
6279 }
6280
6281 static void *raid5_takeover(struct mddev *mddev)
6282 {
6283         /* raid5 can take over:
6284          *  raid0 - if there is only one strip zone - make it a raid4 layout
6285          *  raid1 - if there are two drives.  We need to know the chunk size
6286          *  raid4 - trivial - just use a raid4 layout.
6287          *  raid6 - Providing it is a *_6 layout
6288          */
6289         if (mddev->level == 0)
6290                 return raid45_takeover_raid0(mddev, 5);
6291         if (mddev->level == 1)
6292                 return raid5_takeover_raid1(mddev);
6293         if (mddev->level == 4) {
6294                 mddev->new_layout = ALGORITHM_PARITY_N;
6295                 mddev->new_level = 5;
6296                 return setup_conf(mddev);
6297         }
6298         if (mddev->level == 6)
6299                 return raid5_takeover_raid6(mddev);
6300
6301         return ERR_PTR(-EINVAL);
6302 }
6303
6304 static void *raid4_takeover(struct mddev *mddev)
6305 {
6306         /* raid4 can take over:
6307          *  raid0 - if there is only one strip zone
6308          *  raid5 - if layout is right
6309          */
6310         if (mddev->level == 0)
6311                 return raid45_takeover_raid0(mddev, 4);
6312         if (mddev->level == 5 &&
6313             mddev->layout == ALGORITHM_PARITY_N) {
6314                 mddev->new_layout = 0;
6315                 mddev->new_level = 4;
6316                 return setup_conf(mddev);
6317         }
6318         return ERR_PTR(-EINVAL);
6319 }
6320
6321 static struct md_personality raid5_personality;
6322
6323 static void *raid6_takeover(struct mddev *mddev)
6324 {
6325         /* Currently can only take over a raid5.  We map the
6326          * personality to an equivalent raid6 personality
6327          * with the Q block at the end.
6328          */
6329         int new_layout;
6330
6331         if (mddev->pers != &raid5_personality)
6332                 return ERR_PTR(-EINVAL);
6333         if (mddev->degraded > 1)
6334                 return ERR_PTR(-EINVAL);
6335         if (mddev->raid_disks > 253)
6336                 return ERR_PTR(-EINVAL);
6337         if (mddev->raid_disks < 3)
6338                 return ERR_PTR(-EINVAL);
6339
6340         switch (mddev->layout) {
6341         case ALGORITHM_LEFT_ASYMMETRIC:
6342                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6343                 break;
6344         case ALGORITHM_RIGHT_ASYMMETRIC:
6345                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6346                 break;
6347         case ALGORITHM_LEFT_SYMMETRIC:
6348                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6349                 break;
6350         case ALGORITHM_RIGHT_SYMMETRIC:
6351                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6352                 break;
6353         case ALGORITHM_PARITY_0:
6354                 new_layout = ALGORITHM_PARITY_0_6;
6355                 break;
6356         case ALGORITHM_PARITY_N:
6357                 new_layout = ALGORITHM_PARITY_N;
6358                 break;
6359         default:
6360                 return ERR_PTR(-EINVAL);
6361         }
6362         mddev->new_level = 6;
6363         mddev->new_layout = new_layout;
6364         mddev->delta_disks = 1;
6365         mddev->raid_disks += 1;
6366         return setup_conf(mddev);
6367 }
6368
6369
6370 static struct md_personality raid6_personality =
6371 {
6372         .name           = "raid6",
6373         .level          = 6,
6374         .owner          = THIS_MODULE,
6375         .make_request   = make_request,
6376         .run            = run,
6377         .stop           = stop,
6378         .status         = status,
6379         .error_handler  = error,
6380         .hot_add_disk   = raid5_add_disk,
6381         .hot_remove_disk= raid5_remove_disk,
6382         .spare_active   = raid5_spare_active,
6383         .sync_request   = sync_request,
6384         .resize         = raid5_resize,
6385         .size           = raid5_size,
6386         .check_reshape  = raid6_check_reshape,
6387         .start_reshape  = raid5_start_reshape,
6388         .finish_reshape = raid5_finish_reshape,
6389         .quiesce        = raid5_quiesce,
6390         .takeover       = raid6_takeover,
6391 };
6392 static struct md_personality raid5_personality =
6393 {
6394         .name           = "raid5",
6395         .level          = 5,
6396         .owner          = THIS_MODULE,
6397         .make_request   = make_request,
6398         .run            = run,
6399         .stop           = stop,
6400         .status         = status,
6401         .error_handler  = error,
6402         .hot_add_disk   = raid5_add_disk,
6403         .hot_remove_disk= raid5_remove_disk,
6404         .spare_active   = raid5_spare_active,
6405         .sync_request   = sync_request,
6406         .resize         = raid5_resize,
6407         .size           = raid5_size,
6408         .check_reshape  = raid5_check_reshape,
6409         .start_reshape  = raid5_start_reshape,
6410         .finish_reshape = raid5_finish_reshape,
6411         .quiesce        = raid5_quiesce,
6412         .takeover       = raid5_takeover,
6413 };
6414
6415 static struct md_personality raid4_personality =
6416 {
6417         .name           = "raid4",
6418         .level          = 4,
6419         .owner          = THIS_MODULE,
6420         .make_request   = make_request,
6421         .run            = run,
6422         .stop           = stop,
6423         .status         = status,
6424         .error_handler  = error,
6425         .hot_add_disk   = raid5_add_disk,
6426         .hot_remove_disk= raid5_remove_disk,
6427         .spare_active   = raid5_spare_active,
6428         .sync_request   = sync_request,
6429         .resize         = raid5_resize,
6430         .size           = raid5_size,
6431         .check_reshape  = raid5_check_reshape,
6432         .start_reshape  = raid5_start_reshape,
6433         .finish_reshape = raid5_finish_reshape,
6434         .quiesce        = raid5_quiesce,
6435         .takeover       = raid4_takeover,
6436 };
6437
6438 static int __init raid5_init(void)
6439 {
6440         register_md_personality(&raid6_personality);
6441         register_md_personality(&raid5_personality);
6442         register_md_personality(&raid4_personality);
6443         return 0;
6444 }
6445
6446 static void raid5_exit(void)
6447 {
6448         unregister_md_personality(&raid6_personality);
6449         unregister_md_personality(&raid5_personality);
6450         unregister_md_personality(&raid4_personality);
6451 }
6452
6453 module_init(raid5_init);
6454 module_exit(raid5_exit);
6455 MODULE_LICENSE("GPL");
6456 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6457 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6458 MODULE_ALIAS("md-raid5");
6459 MODULE_ALIAS("md-raid4");
6460 MODULE_ALIAS("md-level-5");
6461 MODULE_ALIAS("md-level-4");
6462 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6463 MODULE_ALIAS("md-raid6");
6464 MODULE_ALIAS("md-level-6");
6465
6466 /* This used to be two separate modules, they were: */
6467 MODULE_ALIAS("raid5");
6468 MODULE_ALIAS("raid6");