]> Pileus Git - ~andy/linux/blob - drivers/md/raid5.c
[PATCH] md: remove the working_disks and failed_disks from raid5 state data.
[~andy/linux] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
53
54 #include <linux/raid/bitmap.h>
55
56 /*
57  * Stripe cache
58  */
59
60 #define NR_STRIPES              256
61 #define STRIPE_SIZE             PAGE_SIZE
62 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
63 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
64 #define IO_THRESHOLD            1
65 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
66 #define HASH_MASK               (NR_HASH - 1)
67
68 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
69
70 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
71  * order without overlap.  There may be several bio's per stripe+device, and
72  * a bio could span several devices.
73  * When walking this list for a particular stripe+device, we must never proceed
74  * beyond a bio that extends past this device, as the next bio might no longer
75  * be valid.
76  * This macro is used to determine the 'next' bio in the list, given the sector
77  * of the current stripe+device
78  */
79 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
80 /*
81  * The following can be used to debug the driver
82  */
83 #define RAID5_DEBUG     0
84 #define RAID5_PARANOIA  1
85 #if RAID5_PARANOIA && defined(CONFIG_SMP)
86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87 #else
88 # define CHECK_DEVLOCK()
89 #endif
90
91 #define PRINTK(x...) ((void)(RAID5_DEBUG && printk(x)))
92 #if RAID5_DEBUG
93 #define inline
94 #define __inline__
95 #endif
96
97 #if !RAID6_USE_EMPTY_ZERO_PAGE
98 /* In .bss so it's zeroed */
99 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
100 #endif
101
102 static inline int raid6_next_disk(int disk, int raid_disks)
103 {
104         disk++;
105         return (disk < raid_disks) ? disk : 0;
106 }
107 static void print_raid5_conf (raid5_conf_t *conf);
108
109 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
110 {
111         if (atomic_dec_and_test(&sh->count)) {
112                 BUG_ON(!list_empty(&sh->lru));
113                 BUG_ON(atomic_read(&conf->active_stripes)==0);
114                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
115                         if (test_bit(STRIPE_DELAYED, &sh->state)) {
116                                 list_add_tail(&sh->lru, &conf->delayed_list);
117                                 blk_plug_device(conf->mddev->queue);
118                         } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
119                                    sh->bm_seq - conf->seq_write > 0) {
120                                 list_add_tail(&sh->lru, &conf->bitmap_list);
121                                 blk_plug_device(conf->mddev->queue);
122                         } else {
123                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
124                                 list_add_tail(&sh->lru, &conf->handle_list);
125                         }
126                         md_wakeup_thread(conf->mddev->thread);
127                 } else {
128                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
129                                 atomic_dec(&conf->preread_active_stripes);
130                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
131                                         md_wakeup_thread(conf->mddev->thread);
132                         }
133                         atomic_dec(&conf->active_stripes);
134                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
135                                 list_add_tail(&sh->lru, &conf->inactive_list);
136                                 wake_up(&conf->wait_for_stripe);
137                         }
138                 }
139         }
140 }
141 static void release_stripe(struct stripe_head *sh)
142 {
143         raid5_conf_t *conf = sh->raid_conf;
144         unsigned long flags;
145
146         spin_lock_irqsave(&conf->device_lock, flags);
147         __release_stripe(conf, sh);
148         spin_unlock_irqrestore(&conf->device_lock, flags);
149 }
150
151 static inline void remove_hash(struct stripe_head *sh)
152 {
153         PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector);
154
155         hlist_del_init(&sh->hash);
156 }
157
158 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
159 {
160         struct hlist_head *hp = stripe_hash(conf, sh->sector);
161
162         PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector);
163
164         CHECK_DEVLOCK();
165         hlist_add_head(&sh->hash, hp);
166 }
167
168
169 /* find an idle stripe, make sure it is unhashed, and return it. */
170 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
171 {
172         struct stripe_head *sh = NULL;
173         struct list_head *first;
174
175         CHECK_DEVLOCK();
176         if (list_empty(&conf->inactive_list))
177                 goto out;
178         first = conf->inactive_list.next;
179         sh = list_entry(first, struct stripe_head, lru);
180         list_del_init(first);
181         remove_hash(sh);
182         atomic_inc(&conf->active_stripes);
183 out:
184         return sh;
185 }
186
187 static void shrink_buffers(struct stripe_head *sh, int num)
188 {
189         struct page *p;
190         int i;
191
192         for (i=0; i<num ; i++) {
193                 p = sh->dev[i].page;
194                 if (!p)
195                         continue;
196                 sh->dev[i].page = NULL;
197                 put_page(p);
198         }
199 }
200
201 static int grow_buffers(struct stripe_head *sh, int num)
202 {
203         int i;
204
205         for (i=0; i<num; i++) {
206                 struct page *page;
207
208                 if (!(page = alloc_page(GFP_KERNEL))) {
209                         return 1;
210                 }
211                 sh->dev[i].page = page;
212         }
213         return 0;
214 }
215
216 static void raid5_build_block (struct stripe_head *sh, int i);
217
218 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
219 {
220         raid5_conf_t *conf = sh->raid_conf;
221         int i;
222
223         BUG_ON(atomic_read(&sh->count) != 0);
224         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
225         
226         CHECK_DEVLOCK();
227         PRINTK("init_stripe called, stripe %llu\n", 
228                 (unsigned long long)sh->sector);
229
230         remove_hash(sh);
231
232         sh->sector = sector;
233         sh->pd_idx = pd_idx;
234         sh->state = 0;
235
236         sh->disks = disks;
237
238         for (i = sh->disks; i--; ) {
239                 struct r5dev *dev = &sh->dev[i];
240
241                 if (dev->toread || dev->towrite || dev->written ||
242                     test_bit(R5_LOCKED, &dev->flags)) {
243                         printk("sector=%llx i=%d %p %p %p %d\n",
244                                (unsigned long long)sh->sector, i, dev->toread,
245                                dev->towrite, dev->written,
246                                test_bit(R5_LOCKED, &dev->flags));
247                         BUG();
248                 }
249                 dev->flags = 0;
250                 raid5_build_block(sh, i);
251         }
252         insert_hash(conf, sh);
253 }
254
255 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
256 {
257         struct stripe_head *sh;
258         struct hlist_node *hn;
259
260         CHECK_DEVLOCK();
261         PRINTK("__find_stripe, sector %llu\n", (unsigned long long)sector);
262         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
263                 if (sh->sector == sector && sh->disks == disks)
264                         return sh;
265         PRINTK("__stripe %llu not in cache\n", (unsigned long long)sector);
266         return NULL;
267 }
268
269 static void unplug_slaves(mddev_t *mddev);
270 static void raid5_unplug_device(request_queue_t *q);
271
272 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
273                                              int pd_idx, int noblock)
274 {
275         struct stripe_head *sh;
276
277         PRINTK("get_stripe, sector %llu\n", (unsigned long long)sector);
278
279         spin_lock_irq(&conf->device_lock);
280
281         do {
282                 wait_event_lock_irq(conf->wait_for_stripe,
283                                     conf->quiesce == 0,
284                                     conf->device_lock, /* nothing */);
285                 sh = __find_stripe(conf, sector, disks);
286                 if (!sh) {
287                         if (!conf->inactive_blocked)
288                                 sh = get_free_stripe(conf);
289                         if (noblock && sh == NULL)
290                                 break;
291                         if (!sh) {
292                                 conf->inactive_blocked = 1;
293                                 wait_event_lock_irq(conf->wait_for_stripe,
294                                                     !list_empty(&conf->inactive_list) &&
295                                                     (atomic_read(&conf->active_stripes)
296                                                      < (conf->max_nr_stripes *3/4)
297                                                      || !conf->inactive_blocked),
298                                                     conf->device_lock,
299                                                     raid5_unplug_device(conf->mddev->queue)
300                                         );
301                                 conf->inactive_blocked = 0;
302                         } else
303                                 init_stripe(sh, sector, pd_idx, disks);
304                 } else {
305                         if (atomic_read(&sh->count)) {
306                           BUG_ON(!list_empty(&sh->lru));
307                         } else {
308                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
309                                         atomic_inc(&conf->active_stripes);
310                                 if (list_empty(&sh->lru) &&
311                                     !test_bit(STRIPE_EXPANDING, &sh->state))
312                                         BUG();
313                                 list_del_init(&sh->lru);
314                         }
315                 }
316         } while (sh == NULL);
317
318         if (sh)
319                 atomic_inc(&sh->count);
320
321         spin_unlock_irq(&conf->device_lock);
322         return sh;
323 }
324
325 static int grow_one_stripe(raid5_conf_t *conf)
326 {
327         struct stripe_head *sh;
328         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
329         if (!sh)
330                 return 0;
331         memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
332         sh->raid_conf = conf;
333         spin_lock_init(&sh->lock);
334
335         if (grow_buffers(sh, conf->raid_disks)) {
336                 shrink_buffers(sh, conf->raid_disks);
337                 kmem_cache_free(conf->slab_cache, sh);
338                 return 0;
339         }
340         sh->disks = conf->raid_disks;
341         /* we just created an active stripe so... */
342         atomic_set(&sh->count, 1);
343         atomic_inc(&conf->active_stripes);
344         INIT_LIST_HEAD(&sh->lru);
345         release_stripe(sh);
346         return 1;
347 }
348
349 static int grow_stripes(raid5_conf_t *conf, int num)
350 {
351         kmem_cache_t *sc;
352         int devs = conf->raid_disks;
353
354         sprintf(conf->cache_name[0], "raid5/%s", mdname(conf->mddev));
355         sprintf(conf->cache_name[1], "raid5/%s-alt", mdname(conf->mddev));
356         conf->active_name = 0;
357         sc = kmem_cache_create(conf->cache_name[conf->active_name],
358                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
359                                0, 0, NULL, NULL);
360         if (!sc)
361                 return 1;
362         conf->slab_cache = sc;
363         conf->pool_size = devs;
364         while (num--)
365                 if (!grow_one_stripe(conf))
366                         return 1;
367         return 0;
368 }
369
370 #ifdef CONFIG_MD_RAID5_RESHAPE
371 static int resize_stripes(raid5_conf_t *conf, int newsize)
372 {
373         /* Make all the stripes able to hold 'newsize' devices.
374          * New slots in each stripe get 'page' set to a new page.
375          *
376          * This happens in stages:
377          * 1/ create a new kmem_cache and allocate the required number of
378          *    stripe_heads.
379          * 2/ gather all the old stripe_heads and tranfer the pages across
380          *    to the new stripe_heads.  This will have the side effect of
381          *    freezing the array as once all stripe_heads have been collected,
382          *    no IO will be possible.  Old stripe heads are freed once their
383          *    pages have been transferred over, and the old kmem_cache is
384          *    freed when all stripes are done.
385          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
386          *    we simple return a failre status - no need to clean anything up.
387          * 4/ allocate new pages for the new slots in the new stripe_heads.
388          *    If this fails, we don't bother trying the shrink the
389          *    stripe_heads down again, we just leave them as they are.
390          *    As each stripe_head is processed the new one is released into
391          *    active service.
392          *
393          * Once step2 is started, we cannot afford to wait for a write,
394          * so we use GFP_NOIO allocations.
395          */
396         struct stripe_head *osh, *nsh;
397         LIST_HEAD(newstripes);
398         struct disk_info *ndisks;
399         int err = 0;
400         kmem_cache_t *sc;
401         int i;
402
403         if (newsize <= conf->pool_size)
404                 return 0; /* never bother to shrink */
405
406         /* Step 1 */
407         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
408                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
409                                0, 0, NULL, NULL);
410         if (!sc)
411                 return -ENOMEM;
412
413         for (i = conf->max_nr_stripes; i; i--) {
414                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
415                 if (!nsh)
416                         break;
417
418                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
419
420                 nsh->raid_conf = conf;
421                 spin_lock_init(&nsh->lock);
422
423                 list_add(&nsh->lru, &newstripes);
424         }
425         if (i) {
426                 /* didn't get enough, give up */
427                 while (!list_empty(&newstripes)) {
428                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
429                         list_del(&nsh->lru);
430                         kmem_cache_free(sc, nsh);
431                 }
432                 kmem_cache_destroy(sc);
433                 return -ENOMEM;
434         }
435         /* Step 2 - Must use GFP_NOIO now.
436          * OK, we have enough stripes, start collecting inactive
437          * stripes and copying them over
438          */
439         list_for_each_entry(nsh, &newstripes, lru) {
440                 spin_lock_irq(&conf->device_lock);
441                 wait_event_lock_irq(conf->wait_for_stripe,
442                                     !list_empty(&conf->inactive_list),
443                                     conf->device_lock,
444                                     unplug_slaves(conf->mddev)
445                         );
446                 osh = get_free_stripe(conf);
447                 spin_unlock_irq(&conf->device_lock);
448                 atomic_set(&nsh->count, 1);
449                 for(i=0; i<conf->pool_size; i++)
450                         nsh->dev[i].page = osh->dev[i].page;
451                 for( ; i<newsize; i++)
452                         nsh->dev[i].page = NULL;
453                 kmem_cache_free(conf->slab_cache, osh);
454         }
455         kmem_cache_destroy(conf->slab_cache);
456
457         /* Step 3.
458          * At this point, we are holding all the stripes so the array
459          * is completely stalled, so now is a good time to resize
460          * conf->disks.
461          */
462         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
463         if (ndisks) {
464                 for (i=0; i<conf->raid_disks; i++)
465                         ndisks[i] = conf->disks[i];
466                 kfree(conf->disks);
467                 conf->disks = ndisks;
468         } else
469                 err = -ENOMEM;
470
471         /* Step 4, return new stripes to service */
472         while(!list_empty(&newstripes)) {
473                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
474                 list_del_init(&nsh->lru);
475                 for (i=conf->raid_disks; i < newsize; i++)
476                         if (nsh->dev[i].page == NULL) {
477                                 struct page *p = alloc_page(GFP_NOIO);
478                                 nsh->dev[i].page = p;
479                                 if (!p)
480                                         err = -ENOMEM;
481                         }
482                 release_stripe(nsh);
483         }
484         /* critical section pass, GFP_NOIO no longer needed */
485
486         conf->slab_cache = sc;
487         conf->active_name = 1-conf->active_name;
488         conf->pool_size = newsize;
489         return err;
490 }
491 #endif
492
493 static int drop_one_stripe(raid5_conf_t *conf)
494 {
495         struct stripe_head *sh;
496
497         spin_lock_irq(&conf->device_lock);
498         sh = get_free_stripe(conf);
499         spin_unlock_irq(&conf->device_lock);
500         if (!sh)
501                 return 0;
502         BUG_ON(atomic_read(&sh->count));
503         shrink_buffers(sh, conf->pool_size);
504         kmem_cache_free(conf->slab_cache, sh);
505         atomic_dec(&conf->active_stripes);
506         return 1;
507 }
508
509 static void shrink_stripes(raid5_conf_t *conf)
510 {
511         while (drop_one_stripe(conf))
512                 ;
513
514         if (conf->slab_cache)
515                 kmem_cache_destroy(conf->slab_cache);
516         conf->slab_cache = NULL;
517 }
518
519 static int raid5_end_read_request(struct bio * bi, unsigned int bytes_done,
520                                    int error)
521 {
522         struct stripe_head *sh = bi->bi_private;
523         raid5_conf_t *conf = sh->raid_conf;
524         int disks = sh->disks, i;
525         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
526         char b[BDEVNAME_SIZE];
527         mdk_rdev_t *rdev;
528
529         if (bi->bi_size)
530                 return 1;
531
532         for (i=0 ; i<disks; i++)
533                 if (bi == &sh->dev[i].req)
534                         break;
535
536         PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n", 
537                 (unsigned long long)sh->sector, i, atomic_read(&sh->count), 
538                 uptodate);
539         if (i == disks) {
540                 BUG();
541                 return 0;
542         }
543
544         if (uptodate) {
545 #if 0
546                 struct bio *bio;
547                 unsigned long flags;
548                 spin_lock_irqsave(&conf->device_lock, flags);
549                 /* we can return a buffer if we bypassed the cache or
550                  * if the top buffer is not in highmem.  If there are
551                  * multiple buffers, leave the extra work to
552                  * handle_stripe
553                  */
554                 buffer = sh->bh_read[i];
555                 if (buffer &&
556                     (!PageHighMem(buffer->b_page)
557                      || buffer->b_page == bh->b_page )
558                         ) {
559                         sh->bh_read[i] = buffer->b_reqnext;
560                         buffer->b_reqnext = NULL;
561                 } else
562                         buffer = NULL;
563                 spin_unlock_irqrestore(&conf->device_lock, flags);
564                 if (sh->bh_page[i]==bh->b_page)
565                         set_buffer_uptodate(bh);
566                 if (buffer) {
567                         if (buffer->b_page != bh->b_page)
568                                 memcpy(buffer->b_data, bh->b_data, bh->b_size);
569                         buffer->b_end_io(buffer, 1);
570                 }
571 #else
572                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
573 #endif
574                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
575                         rdev = conf->disks[i].rdev;
576                         printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
577                                mdname(conf->mddev), STRIPE_SECTORS,
578                                (unsigned long long)sh->sector + rdev->data_offset,
579                                bdevname(rdev->bdev, b));
580                         clear_bit(R5_ReadError, &sh->dev[i].flags);
581                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
582                 }
583                 if (atomic_read(&conf->disks[i].rdev->read_errors))
584                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
585         } else {
586                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
587                 int retry = 0;
588                 rdev = conf->disks[i].rdev;
589
590                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
591                 atomic_inc(&rdev->read_errors);
592                 if (conf->mddev->degraded)
593                         printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n",
594                                mdname(conf->mddev),
595                                (unsigned long long)sh->sector + rdev->data_offset,
596                                bdn);
597                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
598                         /* Oh, no!!! */
599                         printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
600                                mdname(conf->mddev),
601                                (unsigned long long)sh->sector + rdev->data_offset,
602                                bdn);
603                 else if (atomic_read(&rdev->read_errors)
604                          > conf->max_nr_stripes)
605                         printk(KERN_WARNING
606                                "raid5:%s: Too many read errors, failing device %s.\n",
607                                mdname(conf->mddev), bdn);
608                 else
609                         retry = 1;
610                 if (retry)
611                         set_bit(R5_ReadError, &sh->dev[i].flags);
612                 else {
613                         clear_bit(R5_ReadError, &sh->dev[i].flags);
614                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
615                         md_error(conf->mddev, rdev);
616                 }
617         }
618         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
619 #if 0
620         /* must restore b_page before unlocking buffer... */
621         if (sh->bh_page[i] != bh->b_page) {
622                 bh->b_page = sh->bh_page[i];
623                 bh->b_data = page_address(bh->b_page);
624                 clear_buffer_uptodate(bh);
625         }
626 #endif
627         clear_bit(R5_LOCKED, &sh->dev[i].flags);
628         set_bit(STRIPE_HANDLE, &sh->state);
629         release_stripe(sh);
630         return 0;
631 }
632
633 static int raid5_end_write_request (struct bio *bi, unsigned int bytes_done,
634                                     int error)
635 {
636         struct stripe_head *sh = bi->bi_private;
637         raid5_conf_t *conf = sh->raid_conf;
638         int disks = sh->disks, i;
639         unsigned long flags;
640         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
641
642         if (bi->bi_size)
643                 return 1;
644
645         for (i=0 ; i<disks; i++)
646                 if (bi == &sh->dev[i].req)
647                         break;
648
649         PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n", 
650                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
651                 uptodate);
652         if (i == disks) {
653                 BUG();
654                 return 0;
655         }
656
657         spin_lock_irqsave(&conf->device_lock, flags);
658         if (!uptodate)
659                 md_error(conf->mddev, conf->disks[i].rdev);
660
661         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
662         
663         clear_bit(R5_LOCKED, &sh->dev[i].flags);
664         set_bit(STRIPE_HANDLE, &sh->state);
665         __release_stripe(conf, sh);
666         spin_unlock_irqrestore(&conf->device_lock, flags);
667         return 0;
668 }
669
670
671 static sector_t compute_blocknr(struct stripe_head *sh, int i);
672         
673 static void raid5_build_block (struct stripe_head *sh, int i)
674 {
675         struct r5dev *dev = &sh->dev[i];
676
677         bio_init(&dev->req);
678         dev->req.bi_io_vec = &dev->vec;
679         dev->req.bi_vcnt++;
680         dev->req.bi_max_vecs++;
681         dev->vec.bv_page = dev->page;
682         dev->vec.bv_len = STRIPE_SIZE;
683         dev->vec.bv_offset = 0;
684
685         dev->req.bi_sector = sh->sector;
686         dev->req.bi_private = sh;
687
688         dev->flags = 0;
689         dev->sector = compute_blocknr(sh, i);
690 }
691
692 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
693 {
694         char b[BDEVNAME_SIZE];
695         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
696         PRINTK("raid5: error called\n");
697
698         if (!test_bit(Faulty, &rdev->flags)) {
699                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
700                 if (test_bit(In_sync, &rdev->flags)) {
701                         mddev->degraded++;
702                         clear_bit(In_sync, &rdev->flags);
703                         /*
704                          * if recovery was running, make sure it aborts.
705                          */
706                         set_bit(MD_RECOVERY_ERR, &mddev->recovery);
707                 }
708                 set_bit(Faulty, &rdev->flags);
709                 printk (KERN_ALERT
710                         "raid5: Disk failure on %s, disabling device."
711                         " Operation continuing on %d devices\n",
712                         bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
713         }
714 }
715
716 /*
717  * Input: a 'big' sector number,
718  * Output: index of the data and parity disk, and the sector # in them.
719  */
720 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
721                         unsigned int data_disks, unsigned int * dd_idx,
722                         unsigned int * pd_idx, raid5_conf_t *conf)
723 {
724         long stripe;
725         unsigned long chunk_number;
726         unsigned int chunk_offset;
727         sector_t new_sector;
728         int sectors_per_chunk = conf->chunk_size >> 9;
729
730         /* First compute the information on this sector */
731
732         /*
733          * Compute the chunk number and the sector offset inside the chunk
734          */
735         chunk_offset = sector_div(r_sector, sectors_per_chunk);
736         chunk_number = r_sector;
737         BUG_ON(r_sector != chunk_number);
738
739         /*
740          * Compute the stripe number
741          */
742         stripe = chunk_number / data_disks;
743
744         /*
745          * Compute the data disk and parity disk indexes inside the stripe
746          */
747         *dd_idx = chunk_number % data_disks;
748
749         /*
750          * Select the parity disk based on the user selected algorithm.
751          */
752         switch(conf->level) {
753         case 4:
754                 *pd_idx = data_disks;
755                 break;
756         case 5:
757                 switch (conf->algorithm) {
758                 case ALGORITHM_LEFT_ASYMMETRIC:
759                         *pd_idx = data_disks - stripe % raid_disks;
760                         if (*dd_idx >= *pd_idx)
761                                 (*dd_idx)++;
762                         break;
763                 case ALGORITHM_RIGHT_ASYMMETRIC:
764                         *pd_idx = stripe % raid_disks;
765                         if (*dd_idx >= *pd_idx)
766                                 (*dd_idx)++;
767                         break;
768                 case ALGORITHM_LEFT_SYMMETRIC:
769                         *pd_idx = data_disks - stripe % raid_disks;
770                         *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
771                         break;
772                 case ALGORITHM_RIGHT_SYMMETRIC:
773                         *pd_idx = stripe % raid_disks;
774                         *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
775                         break;
776                 default:
777                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
778                                 conf->algorithm);
779                 }
780                 break;
781         case 6:
782
783                 /**** FIX THIS ****/
784                 switch (conf->algorithm) {
785                 case ALGORITHM_LEFT_ASYMMETRIC:
786                         *pd_idx = raid_disks - 1 - (stripe % raid_disks);
787                         if (*pd_idx == raid_disks-1)
788                                 (*dd_idx)++;    /* Q D D D P */
789                         else if (*dd_idx >= *pd_idx)
790                                 (*dd_idx) += 2; /* D D P Q D */
791                         break;
792                 case ALGORITHM_RIGHT_ASYMMETRIC:
793                         *pd_idx = stripe % raid_disks;
794                         if (*pd_idx == raid_disks-1)
795                                 (*dd_idx)++;    /* Q D D D P */
796                         else if (*dd_idx >= *pd_idx)
797                                 (*dd_idx) += 2; /* D D P Q D */
798                         break;
799                 case ALGORITHM_LEFT_SYMMETRIC:
800                         *pd_idx = raid_disks - 1 - (stripe % raid_disks);
801                         *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
802                         break;
803                 case ALGORITHM_RIGHT_SYMMETRIC:
804                         *pd_idx = stripe % raid_disks;
805                         *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
806                         break;
807                 default:
808                         printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
809                                 conf->algorithm);
810                 }
811                 break;
812         }
813
814         /*
815          * Finally, compute the new sector number
816          */
817         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
818         return new_sector;
819 }
820
821
822 static sector_t compute_blocknr(struct stripe_head *sh, int i)
823 {
824         raid5_conf_t *conf = sh->raid_conf;
825         int raid_disks = sh->disks, data_disks = raid_disks - 1;
826         sector_t new_sector = sh->sector, check;
827         int sectors_per_chunk = conf->chunk_size >> 9;
828         sector_t stripe;
829         int chunk_offset;
830         int chunk_number, dummy1, dummy2, dd_idx = i;
831         sector_t r_sector;
832
833
834         chunk_offset = sector_div(new_sector, sectors_per_chunk);
835         stripe = new_sector;
836         BUG_ON(new_sector != stripe);
837
838         if (i == sh->pd_idx)
839                 return 0;
840         switch(conf->level) {
841         case 4: break;
842         case 5:
843                 switch (conf->algorithm) {
844                 case ALGORITHM_LEFT_ASYMMETRIC:
845                 case ALGORITHM_RIGHT_ASYMMETRIC:
846                         if (i > sh->pd_idx)
847                                 i--;
848                         break;
849                 case ALGORITHM_LEFT_SYMMETRIC:
850                 case ALGORITHM_RIGHT_SYMMETRIC:
851                         if (i < sh->pd_idx)
852                                 i += raid_disks;
853                         i -= (sh->pd_idx + 1);
854                         break;
855                 default:
856                         printk(KERN_ERR "raid5: unsupported algorithm %d\n",
857                                conf->algorithm);
858                 }
859                 break;
860         case 6:
861                 data_disks = raid_disks - 2;
862                 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
863                         return 0; /* It is the Q disk */
864                 switch (conf->algorithm) {
865                 case ALGORITHM_LEFT_ASYMMETRIC:
866                 case ALGORITHM_RIGHT_ASYMMETRIC:
867                         if (sh->pd_idx == raid_disks-1)
868                                 i--;    /* Q D D D P */
869                         else if (i > sh->pd_idx)
870                                 i -= 2; /* D D P Q D */
871                         break;
872                 case ALGORITHM_LEFT_SYMMETRIC:
873                 case ALGORITHM_RIGHT_SYMMETRIC:
874                         if (sh->pd_idx == raid_disks-1)
875                                 i--; /* Q D D D P */
876                         else {
877                                 /* D D P Q D */
878                                 if (i < sh->pd_idx)
879                                         i += raid_disks;
880                                 i -= (sh->pd_idx + 2);
881                         }
882                         break;
883                 default:
884                         printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
885                                 conf->algorithm);
886                 }
887                 break;
888         }
889
890         chunk_number = stripe * data_disks + i;
891         r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
892
893         check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
894         if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
895                 printk(KERN_ERR "compute_blocknr: map not correct\n");
896                 return 0;
897         }
898         return r_sector;
899 }
900
901
902
903 /*
904  * Copy data between a page in the stripe cache, and one or more bion
905  * The page could align with the middle of the bio, or there could be
906  * several bion, each with several bio_vecs, which cover part of the page
907  * Multiple bion are linked together on bi_next.  There may be extras
908  * at the end of this list.  We ignore them.
909  */
910 static void copy_data(int frombio, struct bio *bio,
911                      struct page *page,
912                      sector_t sector)
913 {
914         char *pa = page_address(page);
915         struct bio_vec *bvl;
916         int i;
917         int page_offset;
918
919         if (bio->bi_sector >= sector)
920                 page_offset = (signed)(bio->bi_sector - sector) * 512;
921         else
922                 page_offset = (signed)(sector - bio->bi_sector) * -512;
923         bio_for_each_segment(bvl, bio, i) {
924                 int len = bio_iovec_idx(bio,i)->bv_len;
925                 int clen;
926                 int b_offset = 0;
927
928                 if (page_offset < 0) {
929                         b_offset = -page_offset;
930                         page_offset += b_offset;
931                         len -= b_offset;
932                 }
933
934                 if (len > 0 && page_offset + len > STRIPE_SIZE)
935                         clen = STRIPE_SIZE - page_offset;
936                 else clen = len;
937
938                 if (clen > 0) {
939                         char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
940                         if (frombio)
941                                 memcpy(pa+page_offset, ba+b_offset, clen);
942                         else
943                                 memcpy(ba+b_offset, pa+page_offset, clen);
944                         __bio_kunmap_atomic(ba, KM_USER0);
945                 }
946                 if (clen < len) /* hit end of page */
947                         break;
948                 page_offset +=  len;
949         }
950 }
951
952 #define check_xor()     do {                                            \
953                            if (count == MAX_XOR_BLOCKS) {               \
954                                 xor_block(count, STRIPE_SIZE, ptr);     \
955                                 count = 1;                              \
956                            }                                            \
957                         } while(0)
958
959
960 static void compute_block(struct stripe_head *sh, int dd_idx)
961 {
962         int i, count, disks = sh->disks;
963         void *ptr[MAX_XOR_BLOCKS], *p;
964
965         PRINTK("compute_block, stripe %llu, idx %d\n", 
966                 (unsigned long long)sh->sector, dd_idx);
967
968         ptr[0] = page_address(sh->dev[dd_idx].page);
969         memset(ptr[0], 0, STRIPE_SIZE);
970         count = 1;
971         for (i = disks ; i--; ) {
972                 if (i == dd_idx)
973                         continue;
974                 p = page_address(sh->dev[i].page);
975                 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
976                         ptr[count++] = p;
977                 else
978                         printk(KERN_ERR "compute_block() %d, stripe %llu, %d"
979                                 " not present\n", dd_idx,
980                                 (unsigned long long)sh->sector, i);
981
982                 check_xor();
983         }
984         if (count != 1)
985                 xor_block(count, STRIPE_SIZE, ptr);
986         set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
987 }
988
989 static void compute_parity5(struct stripe_head *sh, int method)
990 {
991         raid5_conf_t *conf = sh->raid_conf;
992         int i, pd_idx = sh->pd_idx, disks = sh->disks, count;
993         void *ptr[MAX_XOR_BLOCKS];
994         struct bio *chosen;
995
996         PRINTK("compute_parity5, stripe %llu, method %d\n",
997                 (unsigned long long)sh->sector, method);
998
999         count = 1;
1000         ptr[0] = page_address(sh->dev[pd_idx].page);
1001         switch(method) {
1002         case READ_MODIFY_WRITE:
1003                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags));
1004                 for (i=disks ; i-- ;) {
1005                         if (i==pd_idx)
1006                                 continue;
1007                         if (sh->dev[i].towrite &&
1008                             test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
1009                                 ptr[count++] = page_address(sh->dev[i].page);
1010                                 chosen = sh->dev[i].towrite;
1011                                 sh->dev[i].towrite = NULL;
1012
1013                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1014                                         wake_up(&conf->wait_for_overlap);
1015
1016                                 BUG_ON(sh->dev[i].written);
1017                                 sh->dev[i].written = chosen;
1018                                 check_xor();
1019                         }
1020                 }
1021                 break;
1022         case RECONSTRUCT_WRITE:
1023                 memset(ptr[0], 0, STRIPE_SIZE);
1024                 for (i= disks; i-- ;)
1025                         if (i!=pd_idx && sh->dev[i].towrite) {
1026                                 chosen = sh->dev[i].towrite;
1027                                 sh->dev[i].towrite = NULL;
1028
1029                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1030                                         wake_up(&conf->wait_for_overlap);
1031
1032                                 BUG_ON(sh->dev[i].written);
1033                                 sh->dev[i].written = chosen;
1034                         }
1035                 break;
1036         case CHECK_PARITY:
1037                 break;
1038         }
1039         if (count>1) {
1040                 xor_block(count, STRIPE_SIZE, ptr);
1041                 count = 1;
1042         }
1043         
1044         for (i = disks; i--;)
1045                 if (sh->dev[i].written) {
1046                         sector_t sector = sh->dev[i].sector;
1047                         struct bio *wbi = sh->dev[i].written;
1048                         while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1049                                 copy_data(1, wbi, sh->dev[i].page, sector);
1050                                 wbi = r5_next_bio(wbi, sector);
1051                         }
1052
1053                         set_bit(R5_LOCKED, &sh->dev[i].flags);
1054                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
1055                 }
1056
1057         switch(method) {
1058         case RECONSTRUCT_WRITE:
1059         case CHECK_PARITY:
1060                 for (i=disks; i--;)
1061                         if (i != pd_idx) {
1062                                 ptr[count++] = page_address(sh->dev[i].page);
1063                                 check_xor();
1064                         }
1065                 break;
1066         case READ_MODIFY_WRITE:
1067                 for (i = disks; i--;)
1068                         if (sh->dev[i].written) {
1069                                 ptr[count++] = page_address(sh->dev[i].page);
1070                                 check_xor();
1071                         }
1072         }
1073         if (count != 1)
1074                 xor_block(count, STRIPE_SIZE, ptr);
1075         
1076         if (method != CHECK_PARITY) {
1077                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1078                 set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1079         } else
1080                 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1081 }
1082
1083 static void compute_parity6(struct stripe_head *sh, int method)
1084 {
1085         raid6_conf_t *conf = sh->raid_conf;
1086         int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = conf->raid_disks, count;
1087         struct bio *chosen;
1088         /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1089         void *ptrs[disks];
1090
1091         qd_idx = raid6_next_disk(pd_idx, disks);
1092         d0_idx = raid6_next_disk(qd_idx, disks);
1093
1094         PRINTK("compute_parity, stripe %llu, method %d\n",
1095                 (unsigned long long)sh->sector, method);
1096
1097         switch(method) {
1098         case READ_MODIFY_WRITE:
1099                 BUG();          /* READ_MODIFY_WRITE N/A for RAID-6 */
1100         case RECONSTRUCT_WRITE:
1101                 for (i= disks; i-- ;)
1102                         if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1103                                 chosen = sh->dev[i].towrite;
1104                                 sh->dev[i].towrite = NULL;
1105
1106                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1107                                         wake_up(&conf->wait_for_overlap);
1108
1109                                 if (sh->dev[i].written) BUG();
1110                                 sh->dev[i].written = chosen;
1111                         }
1112                 break;
1113         case CHECK_PARITY:
1114                 BUG();          /* Not implemented yet */
1115         }
1116
1117         for (i = disks; i--;)
1118                 if (sh->dev[i].written) {
1119                         sector_t sector = sh->dev[i].sector;
1120                         struct bio *wbi = sh->dev[i].written;
1121                         while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1122                                 copy_data(1, wbi, sh->dev[i].page, sector);
1123                                 wbi = r5_next_bio(wbi, sector);
1124                         }
1125
1126                         set_bit(R5_LOCKED, &sh->dev[i].flags);
1127                         set_bit(R5_UPTODATE, &sh->dev[i].flags);
1128                 }
1129
1130 //      switch(method) {
1131 //      case RECONSTRUCT_WRITE:
1132 //      case CHECK_PARITY:
1133 //      case UPDATE_PARITY:
1134                 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1135                 /* FIX: Is this ordering of drives even remotely optimal? */
1136                 count = 0;
1137                 i = d0_idx;
1138                 do {
1139                         ptrs[count++] = page_address(sh->dev[i].page);
1140                         if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1141                                 printk("block %d/%d not uptodate on parity calc\n", i,count);
1142                         i = raid6_next_disk(i, disks);
1143                 } while ( i != d0_idx );
1144 //              break;
1145 //      }
1146
1147         raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1148
1149         switch(method) {
1150         case RECONSTRUCT_WRITE:
1151                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1152                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1153                 set_bit(R5_LOCKED,   &sh->dev[pd_idx].flags);
1154                 set_bit(R5_LOCKED,   &sh->dev[qd_idx].flags);
1155                 break;
1156         case UPDATE_PARITY:
1157                 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1158                 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1159                 break;
1160         }
1161 }
1162
1163
1164 /* Compute one missing block */
1165 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1166 {
1167         raid6_conf_t *conf = sh->raid_conf;
1168         int i, count, disks = conf->raid_disks;
1169         void *ptr[MAX_XOR_BLOCKS], *p;
1170         int pd_idx = sh->pd_idx;
1171         int qd_idx = raid6_next_disk(pd_idx, disks);
1172
1173         PRINTK("compute_block_1, stripe %llu, idx %d\n",
1174                 (unsigned long long)sh->sector, dd_idx);
1175
1176         if ( dd_idx == qd_idx ) {
1177                 /* We're actually computing the Q drive */
1178                 compute_parity6(sh, UPDATE_PARITY);
1179         } else {
1180                 ptr[0] = page_address(sh->dev[dd_idx].page);
1181                 if (!nozero) memset(ptr[0], 0, STRIPE_SIZE);
1182                 count = 1;
1183                 for (i = disks ; i--; ) {
1184                         if (i == dd_idx || i == qd_idx)
1185                                 continue;
1186                         p = page_address(sh->dev[i].page);
1187                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1188                                 ptr[count++] = p;
1189                         else
1190                                 printk("compute_block() %d, stripe %llu, %d"
1191                                        " not present\n", dd_idx,
1192                                        (unsigned long long)sh->sector, i);
1193
1194                         check_xor();
1195                 }
1196                 if (count != 1)
1197                         xor_block(count, STRIPE_SIZE, ptr);
1198                 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1199                 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1200         }
1201 }
1202
1203 /* Compute two missing blocks */
1204 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1205 {
1206         raid6_conf_t *conf = sh->raid_conf;
1207         int i, count, disks = conf->raid_disks;
1208         int pd_idx = sh->pd_idx;
1209         int qd_idx = raid6_next_disk(pd_idx, disks);
1210         int d0_idx = raid6_next_disk(qd_idx, disks);
1211         int faila, failb;
1212
1213         /* faila and failb are disk numbers relative to d0_idx */
1214         /* pd_idx become disks-2 and qd_idx become disks-1 */
1215         faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1216         failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1217
1218         BUG_ON(faila == failb);
1219         if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1220
1221         PRINTK("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1222                (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1223
1224         if ( failb == disks-1 ) {
1225                 /* Q disk is one of the missing disks */
1226                 if ( faila == disks-2 ) {
1227                         /* Missing P+Q, just recompute */
1228                         compute_parity6(sh, UPDATE_PARITY);
1229                         return;
1230                 } else {
1231                         /* We're missing D+Q; recompute D from P */
1232                         compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1233                         compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1234                         return;
1235                 }
1236         }
1237
1238         /* We're missing D+P or D+D; build pointer table */
1239         {
1240                 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1241                 void *ptrs[disks];
1242
1243                 count = 0;
1244                 i = d0_idx;
1245                 do {
1246                         ptrs[count++] = page_address(sh->dev[i].page);
1247                         i = raid6_next_disk(i, disks);
1248                         if (i != dd_idx1 && i != dd_idx2 &&
1249                             !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1250                                 printk("compute_2 with missing block %d/%d\n", count, i);
1251                 } while ( i != d0_idx );
1252
1253                 if ( failb == disks-2 ) {
1254                         /* We're missing D+P. */
1255                         raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1256                 } else {
1257                         /* We're missing D+D. */
1258                         raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1259                 }
1260
1261                 /* Both the above update both missing blocks */
1262                 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1263                 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1264         }
1265 }
1266
1267
1268
1269 /*
1270  * Each stripe/dev can have one or more bion attached.
1271  * toread/towrite point to the first in a chain.
1272  * The bi_next chain must be in order.
1273  */
1274 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1275 {
1276         struct bio **bip;
1277         raid5_conf_t *conf = sh->raid_conf;
1278         int firstwrite=0;
1279
1280         PRINTK("adding bh b#%llu to stripe s#%llu\n",
1281                 (unsigned long long)bi->bi_sector,
1282                 (unsigned long long)sh->sector);
1283
1284
1285         spin_lock(&sh->lock);
1286         spin_lock_irq(&conf->device_lock);
1287         if (forwrite) {
1288                 bip = &sh->dev[dd_idx].towrite;
1289                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1290                         firstwrite = 1;
1291         } else
1292                 bip = &sh->dev[dd_idx].toread;
1293         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1294                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1295                         goto overlap;
1296                 bip = & (*bip)->bi_next;
1297         }
1298         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1299                 goto overlap;
1300
1301         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1302         if (*bip)
1303                 bi->bi_next = *bip;
1304         *bip = bi;
1305         bi->bi_phys_segments ++;
1306         spin_unlock_irq(&conf->device_lock);
1307         spin_unlock(&sh->lock);
1308
1309         PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n",
1310                 (unsigned long long)bi->bi_sector,
1311                 (unsigned long long)sh->sector, dd_idx);
1312
1313         if (conf->mddev->bitmap && firstwrite) {
1314                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1315                                   STRIPE_SECTORS, 0);
1316                 sh->bm_seq = conf->seq_flush+1;
1317                 set_bit(STRIPE_BIT_DELAY, &sh->state);
1318         }
1319
1320         if (forwrite) {
1321                 /* check if page is covered */
1322                 sector_t sector = sh->dev[dd_idx].sector;
1323                 for (bi=sh->dev[dd_idx].towrite;
1324                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1325                              bi && bi->bi_sector <= sector;
1326                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1327                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1328                                 sector = bi->bi_sector + (bi->bi_size>>9);
1329                 }
1330                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1331                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1332         }
1333         return 1;
1334
1335  overlap:
1336         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1337         spin_unlock_irq(&conf->device_lock);
1338         spin_unlock(&sh->lock);
1339         return 0;
1340 }
1341
1342 static void end_reshape(raid5_conf_t *conf);
1343
1344 static int page_is_zero(struct page *p)
1345 {
1346         char *a = page_address(p);
1347         return ((*(u32*)a) == 0 &&
1348                 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1349 }
1350
1351 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1352 {
1353         int sectors_per_chunk = conf->chunk_size >> 9;
1354         sector_t x = stripe;
1355         int pd_idx, dd_idx;
1356         int chunk_offset = sector_div(x, sectors_per_chunk);
1357         stripe = x;
1358         raid5_compute_sector(stripe*(disks-1)*sectors_per_chunk
1359                              + chunk_offset, disks, disks-1, &dd_idx, &pd_idx, conf);
1360         return pd_idx;
1361 }
1362
1363
1364 /*
1365  * handle_stripe - do things to a stripe.
1366  *
1367  * We lock the stripe and then examine the state of various bits
1368  * to see what needs to be done.
1369  * Possible results:
1370  *    return some read request which now have data
1371  *    return some write requests which are safely on disc
1372  *    schedule a read on some buffers
1373  *    schedule a write of some buffers
1374  *    return confirmation of parity correctness
1375  *
1376  * Parity calculations are done inside the stripe lock
1377  * buffers are taken off read_list or write_list, and bh_cache buffers
1378  * get BH_Lock set before the stripe lock is released.
1379  *
1380  */
1381  
1382 static void handle_stripe5(struct stripe_head *sh)
1383 {
1384         raid5_conf_t *conf = sh->raid_conf;
1385         int disks = sh->disks;
1386         struct bio *return_bi= NULL;
1387         struct bio *bi;
1388         int i;
1389         int syncing, expanding, expanded;
1390         int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
1391         int non_overwrite = 0;
1392         int failed_num=0;
1393         struct r5dev *dev;
1394
1395         PRINTK("handling stripe %llu, cnt=%d, pd_idx=%d\n",
1396                 (unsigned long long)sh->sector, atomic_read(&sh->count),
1397                 sh->pd_idx);
1398
1399         spin_lock(&sh->lock);
1400         clear_bit(STRIPE_HANDLE, &sh->state);
1401         clear_bit(STRIPE_DELAYED, &sh->state);
1402
1403         syncing = test_bit(STRIPE_SYNCING, &sh->state);
1404         expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1405         expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
1406         /* Now to look around and see what can be done */
1407
1408         rcu_read_lock();
1409         for (i=disks; i--; ) {
1410                 mdk_rdev_t *rdev;
1411                 dev = &sh->dev[i];
1412                 clear_bit(R5_Insync, &dev->flags);
1413
1414                 PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1415                         i, dev->flags, dev->toread, dev->towrite, dev->written);
1416                 /* maybe we can reply to a read */
1417                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
1418                         struct bio *rbi, *rbi2;
1419                         PRINTK("Return read for disc %d\n", i);
1420                         spin_lock_irq(&conf->device_lock);
1421                         rbi = dev->toread;
1422                         dev->toread = NULL;
1423                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1424                                 wake_up(&conf->wait_for_overlap);
1425                         spin_unlock_irq(&conf->device_lock);
1426                         while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1427                                 copy_data(0, rbi, dev->page, dev->sector);
1428                                 rbi2 = r5_next_bio(rbi, dev->sector);
1429                                 spin_lock_irq(&conf->device_lock);
1430                                 if (--rbi->bi_phys_segments == 0) {
1431                                         rbi->bi_next = return_bi;
1432                                         return_bi = rbi;
1433                                 }
1434                                 spin_unlock_irq(&conf->device_lock);
1435                                 rbi = rbi2;
1436                         }
1437                 }
1438
1439                 /* now count some things */
1440                 if (test_bit(R5_LOCKED, &dev->flags)) locked++;
1441                 if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
1442
1443                 
1444                 if (dev->toread) to_read++;
1445                 if (dev->towrite) {
1446                         to_write++;
1447                         if (!test_bit(R5_OVERWRITE, &dev->flags))
1448                                 non_overwrite++;
1449                 }
1450                 if (dev->written) written++;
1451                 rdev = rcu_dereference(conf->disks[i].rdev);
1452                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
1453                         /* The ReadError flag will just be confusing now */
1454                         clear_bit(R5_ReadError, &dev->flags);
1455                         clear_bit(R5_ReWrite, &dev->flags);
1456                 }
1457                 if (!rdev || !test_bit(In_sync, &rdev->flags)
1458                     || test_bit(R5_ReadError, &dev->flags)) {
1459                         failed++;
1460                         failed_num = i;
1461                 } else
1462                         set_bit(R5_Insync, &dev->flags);
1463         }
1464         rcu_read_unlock();
1465         PRINTK("locked=%d uptodate=%d to_read=%d"
1466                 " to_write=%d failed=%d failed_num=%d\n",
1467                 locked, uptodate, to_read, to_write, failed, failed_num);
1468         /* check if the array has lost two devices and, if so, some requests might
1469          * need to be failed
1470          */
1471         if (failed > 1 && to_read+to_write+written) {
1472                 for (i=disks; i--; ) {
1473                         int bitmap_end = 0;
1474
1475                         if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1476                                 mdk_rdev_t *rdev;
1477                                 rcu_read_lock();
1478                                 rdev = rcu_dereference(conf->disks[i].rdev);
1479                                 if (rdev && test_bit(In_sync, &rdev->flags))
1480                                         /* multiple read failures in one stripe */
1481                                         md_error(conf->mddev, rdev);
1482                                 rcu_read_unlock();
1483                         }
1484
1485                         spin_lock_irq(&conf->device_lock);
1486                         /* fail all writes first */
1487                         bi = sh->dev[i].towrite;
1488                         sh->dev[i].towrite = NULL;
1489                         if (bi) { to_write--; bitmap_end = 1; }
1490
1491                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1492                                 wake_up(&conf->wait_for_overlap);
1493
1494                         while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1495                                 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1496                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1497                                 if (--bi->bi_phys_segments == 0) {
1498                                         md_write_end(conf->mddev);
1499                                         bi->bi_next = return_bi;
1500                                         return_bi = bi;
1501                                 }
1502                                 bi = nextbi;
1503                         }
1504                         /* and fail all 'written' */
1505                         bi = sh->dev[i].written;
1506                         sh->dev[i].written = NULL;
1507                         if (bi) bitmap_end = 1;
1508                         while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
1509                                 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1510                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1511                                 if (--bi->bi_phys_segments == 0) {
1512                                         md_write_end(conf->mddev);
1513                                         bi->bi_next = return_bi;
1514                                         return_bi = bi;
1515                                 }
1516                                 bi = bi2;
1517                         }
1518
1519                         /* fail any reads if this device is non-operational */
1520                         if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1521                             test_bit(R5_ReadError, &sh->dev[i].flags)) {
1522                                 bi = sh->dev[i].toread;
1523                                 sh->dev[i].toread = NULL;
1524                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1525                                         wake_up(&conf->wait_for_overlap);
1526                                 if (bi) to_read--;
1527                                 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
1528                                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1529                                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
1530                                         if (--bi->bi_phys_segments == 0) {
1531                                                 bi->bi_next = return_bi;
1532                                                 return_bi = bi;
1533                                         }
1534                                         bi = nextbi;
1535                                 }
1536                         }
1537                         spin_unlock_irq(&conf->device_lock);
1538                         if (bitmap_end)
1539                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1540                                                 STRIPE_SECTORS, 0, 0);
1541                 }
1542         }
1543         if (failed > 1 && syncing) {
1544                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
1545                 clear_bit(STRIPE_SYNCING, &sh->state);
1546                 syncing = 0;
1547         }
1548
1549         /* might be able to return some write requests if the parity block
1550          * is safe, or on a failed drive
1551          */
1552         dev = &sh->dev[sh->pd_idx];
1553         if ( written &&
1554              ( (test_bit(R5_Insync, &dev->flags) && !test_bit(R5_LOCKED, &dev->flags) &&
1555                 test_bit(R5_UPTODATE, &dev->flags))
1556                || (failed == 1 && failed_num == sh->pd_idx))
1557             ) {
1558             /* any written block on an uptodate or failed drive can be returned.
1559              * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but 
1560              * never LOCKED, so we don't need to test 'failed' directly.
1561              */
1562             for (i=disks; i--; )
1563                 if (sh->dev[i].written) {
1564                     dev = &sh->dev[i];
1565                     if (!test_bit(R5_LOCKED, &dev->flags) &&
1566                          test_bit(R5_UPTODATE, &dev->flags) ) {
1567                         /* We can return any write requests */
1568                             struct bio *wbi, *wbi2;
1569                             int bitmap_end = 0;
1570                             PRINTK("Return write for disc %d\n", i);
1571                             spin_lock_irq(&conf->device_lock);
1572                             wbi = dev->written;
1573                             dev->written = NULL;
1574                             while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1575                                     wbi2 = r5_next_bio(wbi, dev->sector);
1576                                     if (--wbi->bi_phys_segments == 0) {
1577                                             md_write_end(conf->mddev);
1578                                             wbi->bi_next = return_bi;
1579                                             return_bi = wbi;
1580                                     }
1581                                     wbi = wbi2;
1582                             }
1583                             if (dev->towrite == NULL)
1584                                     bitmap_end = 1;
1585                             spin_unlock_irq(&conf->device_lock);
1586                             if (bitmap_end)
1587                                     bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1588                                                     STRIPE_SECTORS,
1589                                                     !test_bit(STRIPE_DEGRADED, &sh->state), 0);
1590                     }
1591                 }
1592         }
1593
1594         /* Now we might consider reading some blocks, either to check/generate
1595          * parity, or to satisfy requests
1596          * or to load a block that is being partially written.
1597          */
1598         if (to_read || non_overwrite || (syncing && (uptodate < disks)) || expanding) {
1599                 for (i=disks; i--;) {
1600                         dev = &sh->dev[i];
1601                         if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1602                             (dev->toread ||
1603                              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1604                              syncing ||
1605                              expanding ||
1606                              (failed && (sh->dev[failed_num].toread ||
1607                                          (sh->dev[failed_num].towrite && !test_bit(R5_OVERWRITE, &sh->dev[failed_num].flags))))
1608                                     )
1609                                 ) {
1610                                 /* we would like to get this block, possibly
1611                                  * by computing it, but we might not be able to
1612                                  */
1613                                 if (uptodate == disks-1) {
1614                                         PRINTK("Computing block %d\n", i);
1615                                         compute_block(sh, i);
1616                                         uptodate++;
1617                                 } else if (test_bit(R5_Insync, &dev->flags)) {
1618                                         set_bit(R5_LOCKED, &dev->flags);
1619                                         set_bit(R5_Wantread, &dev->flags);
1620 #if 0
1621                                         /* if I am just reading this block and we don't have
1622                                            a failed drive, or any pending writes then sidestep the cache */
1623                                         if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext &&
1624                                             ! syncing && !failed && !to_write) {
1625                                                 sh->bh_cache[i]->b_page =  sh->bh_read[i]->b_page;
1626                                                 sh->bh_cache[i]->b_data =  sh->bh_read[i]->b_data;
1627                                         }
1628 #endif
1629                                         locked++;
1630                                         PRINTK("Reading block %d (sync=%d)\n", 
1631                                                 i, syncing);
1632                                 }
1633                         }
1634                 }
1635                 set_bit(STRIPE_HANDLE, &sh->state);
1636         }
1637
1638         /* now to consider writing and what else, if anything should be read */
1639         if (to_write) {
1640                 int rmw=0, rcw=0;
1641                 for (i=disks ; i--;) {
1642                         /* would I have to read this buffer for read_modify_write */
1643                         dev = &sh->dev[i];
1644                         if ((dev->towrite || i == sh->pd_idx) &&
1645                             (!test_bit(R5_LOCKED, &dev->flags) 
1646 #if 0
1647 || sh->bh_page[i]!=bh->b_page
1648 #endif
1649                                     ) &&
1650                             !test_bit(R5_UPTODATE, &dev->flags)) {
1651                                 if (test_bit(R5_Insync, &dev->flags)
1652 /*                                  && !(!mddev->insync && i == sh->pd_idx) */
1653                                         )
1654                                         rmw++;
1655                                 else rmw += 2*disks;  /* cannot read it */
1656                         }
1657                         /* Would I have to read this buffer for reconstruct_write */
1658                         if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1659                             (!test_bit(R5_LOCKED, &dev->flags) 
1660 #if 0
1661 || sh->bh_page[i] != bh->b_page
1662 #endif
1663                                     ) &&
1664                             !test_bit(R5_UPTODATE, &dev->flags)) {
1665                                 if (test_bit(R5_Insync, &dev->flags)) rcw++;
1666                                 else rcw += 2*disks;
1667                         }
1668                 }
1669                 PRINTK("for sector %llu, rmw=%d rcw=%d\n", 
1670                         (unsigned long long)sh->sector, rmw, rcw);
1671                 set_bit(STRIPE_HANDLE, &sh->state);
1672                 if (rmw < rcw && rmw > 0)
1673                         /* prefer read-modify-write, but need to get some data */
1674                         for (i=disks; i--;) {
1675                                 dev = &sh->dev[i];
1676                                 if ((dev->towrite || i == sh->pd_idx) &&
1677                                     !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1678                                     test_bit(R5_Insync, &dev->flags)) {
1679                                         if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1680                                         {
1681                                                 PRINTK("Read_old block %d for r-m-w\n", i);
1682                                                 set_bit(R5_LOCKED, &dev->flags);
1683                                                 set_bit(R5_Wantread, &dev->flags);
1684                                                 locked++;
1685                                         } else {
1686                                                 set_bit(STRIPE_DELAYED, &sh->state);
1687                                                 set_bit(STRIPE_HANDLE, &sh->state);
1688                                         }
1689                                 }
1690                         }
1691                 if (rcw <= rmw && rcw > 0)
1692                         /* want reconstruct write, but need to get some data */
1693                         for (i=disks; i--;) {
1694                                 dev = &sh->dev[i];
1695                                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
1696                                     !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
1697                                     test_bit(R5_Insync, &dev->flags)) {
1698                                         if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
1699                                         {
1700                                                 PRINTK("Read_old block %d for Reconstruct\n", i);
1701                                                 set_bit(R5_LOCKED, &dev->flags);
1702                                                 set_bit(R5_Wantread, &dev->flags);
1703                                                 locked++;
1704                                         } else {
1705                                                 set_bit(STRIPE_DELAYED, &sh->state);
1706                                                 set_bit(STRIPE_HANDLE, &sh->state);
1707                                         }
1708                                 }
1709                         }
1710                 /* now if nothing is locked, and if we have enough data, we can start a write request */
1711                 if (locked == 0 && (rcw == 0 ||rmw == 0) &&
1712                     !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
1713                         PRINTK("Computing parity...\n");
1714                         compute_parity5(sh, rcw==0 ? RECONSTRUCT_WRITE : READ_MODIFY_WRITE);
1715                         /* now every locked buffer is ready to be written */
1716                         for (i=disks; i--;)
1717                                 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
1718                                         PRINTK("Writing block %d\n", i);
1719                                         locked++;
1720                                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
1721                                         if (!test_bit(R5_Insync, &sh->dev[i].flags)
1722                                             || (i==sh->pd_idx && failed == 0))
1723                                                 set_bit(STRIPE_INSYNC, &sh->state);
1724                                 }
1725                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
1726                                 atomic_dec(&conf->preread_active_stripes);
1727                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
1728                                         md_wakeup_thread(conf->mddev->thread);
1729                         }
1730                 }
1731         }
1732
1733         /* maybe we need to check and possibly fix the parity for this stripe
1734          * Any reads will already have been scheduled, so we just see if enough data
1735          * is available
1736          */
1737         if (syncing && locked == 0 &&
1738             !test_bit(STRIPE_INSYNC, &sh->state)) {
1739                 set_bit(STRIPE_HANDLE, &sh->state);
1740                 if (failed == 0) {
1741                         BUG_ON(uptodate != disks);
1742                         compute_parity5(sh, CHECK_PARITY);
1743                         uptodate--;
1744                         if (page_is_zero(sh->dev[sh->pd_idx].page)) {
1745                                 /* parity is correct (on disc, not in buffer any more) */
1746                                 set_bit(STRIPE_INSYNC, &sh->state);
1747                         } else {
1748                                 conf->mddev->resync_mismatches += STRIPE_SECTORS;
1749                                 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
1750                                         /* don't try to repair!! */
1751                                         set_bit(STRIPE_INSYNC, &sh->state);
1752                                 else {
1753                                         compute_block(sh, sh->pd_idx);
1754                                         uptodate++;
1755                                 }
1756                         }
1757                 }
1758                 if (!test_bit(STRIPE_INSYNC, &sh->state)) {
1759                         /* either failed parity check, or recovery is happening */
1760                         if (failed==0)
1761                                 failed_num = sh->pd_idx;
1762                         dev = &sh->dev[failed_num];
1763                         BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
1764                         BUG_ON(uptodate != disks);
1765
1766                         set_bit(R5_LOCKED, &dev->flags);
1767                         set_bit(R5_Wantwrite, &dev->flags);
1768                         clear_bit(STRIPE_DEGRADED, &sh->state);
1769                         locked++;
1770                         set_bit(STRIPE_INSYNC, &sh->state);
1771                 }
1772         }
1773         if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1774                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
1775                 clear_bit(STRIPE_SYNCING, &sh->state);
1776         }
1777
1778         /* If the failed drive is just a ReadError, then we might need to progress
1779          * the repair/check process
1780          */
1781         if (failed == 1 && ! conf->mddev->ro &&
1782             test_bit(R5_ReadError, &sh->dev[failed_num].flags)
1783             && !test_bit(R5_LOCKED, &sh->dev[failed_num].flags)
1784             && test_bit(R5_UPTODATE, &sh->dev[failed_num].flags)
1785                 ) {
1786                 dev = &sh->dev[failed_num];
1787                 if (!test_bit(R5_ReWrite, &dev->flags)) {
1788                         set_bit(R5_Wantwrite, &dev->flags);
1789                         set_bit(R5_ReWrite, &dev->flags);
1790                         set_bit(R5_LOCKED, &dev->flags);
1791                         locked++;
1792                 } else {
1793                         /* let's read it back */
1794                         set_bit(R5_Wantread, &dev->flags);
1795                         set_bit(R5_LOCKED, &dev->flags);
1796                         locked++;
1797                 }
1798         }
1799
1800         if (expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
1801                 /* Need to write out all blocks after computing parity */
1802                 sh->disks = conf->raid_disks;
1803                 sh->pd_idx = stripe_to_pdidx(sh->sector, conf, conf->raid_disks);
1804                 compute_parity5(sh, RECONSTRUCT_WRITE);
1805                 for (i= conf->raid_disks; i--;) {
1806                         set_bit(R5_LOCKED, &sh->dev[i].flags);
1807                         locked++;
1808                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
1809                 }
1810                 clear_bit(STRIPE_EXPANDING, &sh->state);
1811         } else if (expanded) {
1812                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
1813                 atomic_dec(&conf->reshape_stripes);
1814                 wake_up(&conf->wait_for_overlap);
1815                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
1816         }
1817
1818         if (expanding && locked == 0) {
1819                 /* We have read all the blocks in this stripe and now we need to
1820                  * copy some of them into a target stripe for expand.
1821                  */
1822                 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
1823                 for (i=0; i< sh->disks; i++)
1824                         if (i != sh->pd_idx) {
1825                                 int dd_idx, pd_idx, j;
1826                                 struct stripe_head *sh2;
1827
1828                                 sector_t bn = compute_blocknr(sh, i);
1829                                 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
1830                                                                   conf->raid_disks-1,
1831                                                                   &dd_idx, &pd_idx, conf);
1832                                 sh2 = get_active_stripe(conf, s, conf->raid_disks, pd_idx, 1);
1833                                 if (sh2 == NULL)
1834                                         /* so far only the early blocks of this stripe
1835                                          * have been requested.  When later blocks
1836                                          * get requested, we will try again
1837                                          */
1838                                         continue;
1839                                 if(!test_bit(STRIPE_EXPANDING, &sh2->state) ||
1840                                    test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
1841                                         /* must have already done this block */
1842                                         release_stripe(sh2);
1843                                         continue;
1844                                 }
1845                                 memcpy(page_address(sh2->dev[dd_idx].page),
1846                                        page_address(sh->dev[i].page),
1847                                        STRIPE_SIZE);
1848                                 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
1849                                 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
1850                                 for (j=0; j<conf->raid_disks; j++)
1851                                         if (j != sh2->pd_idx &&
1852                                             !test_bit(R5_Expanded, &sh2->dev[j].flags))
1853                                                 break;
1854                                 if (j == conf->raid_disks) {
1855                                         set_bit(STRIPE_EXPAND_READY, &sh2->state);
1856                                         set_bit(STRIPE_HANDLE, &sh2->state);
1857                                 }
1858                                 release_stripe(sh2);
1859                         }
1860         }
1861
1862         spin_unlock(&sh->lock);
1863
1864         while ((bi=return_bi)) {
1865                 int bytes = bi->bi_size;
1866
1867                 return_bi = bi->bi_next;
1868                 bi->bi_next = NULL;
1869                 bi->bi_size = 0;
1870                 bi->bi_end_io(bi, bytes, 0);
1871         }
1872         for (i=disks; i-- ;) {
1873                 int rw;
1874                 struct bio *bi;
1875                 mdk_rdev_t *rdev;
1876                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
1877                         rw = 1;
1878                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1879                         rw = 0;
1880                 else
1881                         continue;
1882  
1883                 bi = &sh->dev[i].req;
1884  
1885                 bi->bi_rw = rw;
1886                 if (rw)
1887                         bi->bi_end_io = raid5_end_write_request;
1888                 else
1889                         bi->bi_end_io = raid5_end_read_request;
1890  
1891                 rcu_read_lock();
1892                 rdev = rcu_dereference(conf->disks[i].rdev);
1893                 if (rdev && test_bit(Faulty, &rdev->flags))
1894                         rdev = NULL;
1895                 if (rdev)
1896                         atomic_inc(&rdev->nr_pending);
1897                 rcu_read_unlock();
1898  
1899                 if (rdev) {
1900                         if (syncing || expanding || expanded)
1901                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1902
1903                         bi->bi_bdev = rdev->bdev;
1904                         PRINTK("for %llu schedule op %ld on disc %d\n",
1905                                 (unsigned long long)sh->sector, bi->bi_rw, i);
1906                         atomic_inc(&sh->count);
1907                         bi->bi_sector = sh->sector + rdev->data_offset;
1908                         bi->bi_flags = 1 << BIO_UPTODATE;
1909                         bi->bi_vcnt = 1;        
1910                         bi->bi_max_vecs = 1;
1911                         bi->bi_idx = 0;
1912                         bi->bi_io_vec = &sh->dev[i].vec;
1913                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1914                         bi->bi_io_vec[0].bv_offset = 0;
1915                         bi->bi_size = STRIPE_SIZE;
1916                         bi->bi_next = NULL;
1917                         if (rw == WRITE &&
1918                             test_bit(R5_ReWrite, &sh->dev[i].flags))
1919                                 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1920                         generic_make_request(bi);
1921                 } else {
1922                         if (rw == 1)
1923                                 set_bit(STRIPE_DEGRADED, &sh->state);
1924                         PRINTK("skip op %ld on disc %d for sector %llu\n",
1925                                 bi->bi_rw, i, (unsigned long long)sh->sector);
1926                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1927                         set_bit(STRIPE_HANDLE, &sh->state);
1928                 }
1929         }
1930 }
1931
1932 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
1933 {
1934         raid6_conf_t *conf = sh->raid_conf;
1935         int disks = conf->raid_disks;
1936         struct bio *return_bi= NULL;
1937         struct bio *bi;
1938         int i;
1939         int syncing;
1940         int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0;
1941         int non_overwrite = 0;
1942         int failed_num[2] = {0, 0};
1943         struct r5dev *dev, *pdev, *qdev;
1944         int pd_idx = sh->pd_idx;
1945         int qd_idx = raid6_next_disk(pd_idx, disks);
1946         int p_failed, q_failed;
1947
1948         PRINTK("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d, qd_idx=%d\n",
1949                (unsigned long long)sh->sector, sh->state, atomic_read(&sh->count),
1950                pd_idx, qd_idx);
1951
1952         spin_lock(&sh->lock);
1953         clear_bit(STRIPE_HANDLE, &sh->state);
1954         clear_bit(STRIPE_DELAYED, &sh->state);
1955
1956         syncing = test_bit(STRIPE_SYNCING, &sh->state);
1957         /* Now to look around and see what can be done */
1958
1959         rcu_read_lock();
1960         for (i=disks; i--; ) {
1961                 mdk_rdev_t *rdev;
1962                 dev = &sh->dev[i];
1963                 clear_bit(R5_Insync, &dev->flags);
1964
1965                 PRINTK("check %d: state 0x%lx read %p write %p written %p\n",
1966                         i, dev->flags, dev->toread, dev->towrite, dev->written);
1967                 /* maybe we can reply to a read */
1968                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
1969                         struct bio *rbi, *rbi2;
1970                         PRINTK("Return read for disc %d\n", i);
1971                         spin_lock_irq(&conf->device_lock);
1972                         rbi = dev->toread;
1973                         dev->toread = NULL;
1974                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1975                                 wake_up(&conf->wait_for_overlap);
1976                         spin_unlock_irq(&conf->device_lock);
1977                         while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
1978                                 copy_data(0, rbi, dev->page, dev->sector);
1979                                 rbi2 = r5_next_bio(rbi, dev->sector);
1980                                 spin_lock_irq(&conf->device_lock);
1981                                 if (--rbi->bi_phys_segments == 0) {
1982                                         rbi->bi_next = return_bi;
1983                                         return_bi = rbi;
1984                                 }
1985                                 spin_unlock_irq(&conf->device_lock);
1986                                 rbi = rbi2;
1987                         }
1988                 }
1989
1990                 /* now count some things */
1991                 if (test_bit(R5_LOCKED, &dev->flags)) locked++;
1992                 if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++;
1993
1994
1995                 if (dev->toread) to_read++;
1996                 if (dev->towrite) {
1997                         to_write++;
1998                         if (!test_bit(R5_OVERWRITE, &dev->flags))
1999                                 non_overwrite++;
2000                 }
2001                 if (dev->written) written++;
2002                 rdev = rcu_dereference(conf->disks[i].rdev);
2003                 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2004                         /* The ReadError flag will just be confusing now */
2005                         clear_bit(R5_ReadError, &dev->flags);
2006                         clear_bit(R5_ReWrite, &dev->flags);
2007                 }
2008                 if (!rdev || !test_bit(In_sync, &rdev->flags)
2009                     || test_bit(R5_ReadError, &dev->flags)) {
2010                         if ( failed < 2 )
2011                                 failed_num[failed] = i;
2012                         failed++;
2013                 } else
2014                         set_bit(R5_Insync, &dev->flags);
2015         }
2016         rcu_read_unlock();
2017         PRINTK("locked=%d uptodate=%d to_read=%d"
2018                " to_write=%d failed=%d failed_num=%d,%d\n",
2019                locked, uptodate, to_read, to_write, failed,
2020                failed_num[0], failed_num[1]);
2021         /* check if the array has lost >2 devices and, if so, some requests might
2022          * need to be failed
2023          */
2024         if (failed > 2 && to_read+to_write+written) {
2025                 for (i=disks; i--; ) {
2026                         int bitmap_end = 0;
2027
2028                         if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2029                                 mdk_rdev_t *rdev;
2030                                 rcu_read_lock();
2031                                 rdev = rcu_dereference(conf->disks[i].rdev);
2032                                 if (rdev && test_bit(In_sync, &rdev->flags))
2033                                         /* multiple read failures in one stripe */
2034                                         md_error(conf->mddev, rdev);
2035                                 rcu_read_unlock();
2036                         }
2037
2038                         spin_lock_irq(&conf->device_lock);
2039                         /* fail all writes first */
2040                         bi = sh->dev[i].towrite;
2041                         sh->dev[i].towrite = NULL;
2042                         if (bi) { to_write--; bitmap_end = 1; }
2043
2044                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2045                                 wake_up(&conf->wait_for_overlap);
2046
2047                         while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
2048                                 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2049                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2050                                 if (--bi->bi_phys_segments == 0) {
2051                                         md_write_end(conf->mddev);
2052                                         bi->bi_next = return_bi;
2053                                         return_bi = bi;
2054                                 }
2055                                 bi = nextbi;
2056                         }
2057                         /* and fail all 'written' */
2058                         bi = sh->dev[i].written;
2059                         sh->dev[i].written = NULL;
2060                         if (bi) bitmap_end = 1;
2061                         while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) {
2062                                 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2063                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2064                                 if (--bi->bi_phys_segments == 0) {
2065                                         md_write_end(conf->mddev);
2066                                         bi->bi_next = return_bi;
2067                                         return_bi = bi;
2068                                 }
2069                                 bi = bi2;
2070                         }
2071
2072                         /* fail any reads if this device is non-operational */
2073                         if (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2074                             test_bit(R5_ReadError, &sh->dev[i].flags)) {
2075                                 bi = sh->dev[i].toread;
2076                                 sh->dev[i].toread = NULL;
2077                                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2078                                         wake_up(&conf->wait_for_overlap);
2079                                 if (bi) to_read--;
2080                                 while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){
2081                                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2082                                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2083                                         if (--bi->bi_phys_segments == 0) {
2084                                                 bi->bi_next = return_bi;
2085                                                 return_bi = bi;
2086                                         }
2087                                         bi = nextbi;
2088                                 }
2089                         }
2090                         spin_unlock_irq(&conf->device_lock);
2091                         if (bitmap_end)
2092                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2093                                                 STRIPE_SECTORS, 0, 0);
2094                 }
2095         }
2096         if (failed > 2 && syncing) {
2097                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2098                 clear_bit(STRIPE_SYNCING, &sh->state);
2099                 syncing = 0;
2100         }
2101
2102         /*
2103          * might be able to return some write requests if the parity blocks
2104          * are safe, or on a failed drive
2105          */
2106         pdev = &sh->dev[pd_idx];
2107         p_failed = (failed >= 1 && failed_num[0] == pd_idx)
2108                 || (failed >= 2 && failed_num[1] == pd_idx);
2109         qdev = &sh->dev[qd_idx];
2110         q_failed = (failed >= 1 && failed_num[0] == qd_idx)
2111                 || (failed >= 2 && failed_num[1] == qd_idx);
2112
2113         if ( written &&
2114              ( p_failed || ((test_bit(R5_Insync, &pdev->flags)
2115                              && !test_bit(R5_LOCKED, &pdev->flags)
2116                              && test_bit(R5_UPTODATE, &pdev->flags))) ) &&
2117              ( q_failed || ((test_bit(R5_Insync, &qdev->flags)
2118                              && !test_bit(R5_LOCKED, &qdev->flags)
2119                              && test_bit(R5_UPTODATE, &qdev->flags))) ) ) {
2120                 /* any written block on an uptodate or failed drive can be
2121                  * returned.  Note that if we 'wrote' to a failed drive,
2122                  * it will be UPTODATE, but never LOCKED, so we don't need
2123                  * to test 'failed' directly.
2124                  */
2125                 for (i=disks; i--; )
2126                         if (sh->dev[i].written) {
2127                                 dev = &sh->dev[i];
2128                                 if (!test_bit(R5_LOCKED, &dev->flags) &&
2129                                     test_bit(R5_UPTODATE, &dev->flags) ) {
2130                                         /* We can return any write requests */
2131                                         int bitmap_end = 0;
2132                                         struct bio *wbi, *wbi2;
2133                                         PRINTK("Return write for stripe %llu disc %d\n",
2134                                                (unsigned long long)sh->sector, i);
2135                                         spin_lock_irq(&conf->device_lock);
2136                                         wbi = dev->written;
2137                                         dev->written = NULL;
2138                                         while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2139                                                 wbi2 = r5_next_bio(wbi, dev->sector);
2140                                                 if (--wbi->bi_phys_segments == 0) {
2141                                                         md_write_end(conf->mddev);
2142                                                         wbi->bi_next = return_bi;
2143                                                         return_bi = wbi;
2144                                                 }
2145                                                 wbi = wbi2;
2146                                         }
2147                                         if (dev->towrite == NULL)
2148                                                 bitmap_end = 1;
2149                                         spin_unlock_irq(&conf->device_lock);
2150                                         if (bitmap_end)
2151                                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2152                                                                 STRIPE_SECTORS,
2153                                                                 !test_bit(STRIPE_DEGRADED, &sh->state), 0);
2154                                 }
2155                         }
2156         }
2157
2158         /* Now we might consider reading some blocks, either to check/generate
2159          * parity, or to satisfy requests
2160          * or to load a block that is being partially written.
2161          */
2162         if (to_read || non_overwrite || (to_write && failed) || (syncing && (uptodate < disks))) {
2163                 for (i=disks; i--;) {
2164                         dev = &sh->dev[i];
2165                         if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
2166                             (dev->toread ||
2167                              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2168                              syncing ||
2169                              (failed >= 1 && (sh->dev[failed_num[0]].toread || to_write)) ||
2170                              (failed >= 2 && (sh->dev[failed_num[1]].toread || to_write))
2171                                     )
2172                                 ) {
2173                                 /* we would like to get this block, possibly
2174                                  * by computing it, but we might not be able to
2175                                  */
2176                                 if (uptodate == disks-1) {
2177                                         PRINTK("Computing stripe %llu block %d\n",
2178                                                (unsigned long long)sh->sector, i);
2179                                         compute_block_1(sh, i, 0);
2180                                         uptodate++;
2181                                 } else if ( uptodate == disks-2 && failed >= 2 ) {
2182                                         /* Computing 2-failure is *very* expensive; only do it if failed >= 2 */
2183                                         int other;
2184                                         for (other=disks; other--;) {
2185                                                 if ( other == i )
2186                                                         continue;
2187                                                 if ( !test_bit(R5_UPTODATE, &sh->dev[other].flags) )
2188                                                         break;
2189                                         }
2190                                         BUG_ON(other < 0);
2191                                         PRINTK("Computing stripe %llu blocks %d,%d\n",
2192                                                (unsigned long long)sh->sector, i, other);
2193                                         compute_block_2(sh, i, other);
2194                                         uptodate += 2;
2195                                 } else if (test_bit(R5_Insync, &dev->flags)) {
2196                                         set_bit(R5_LOCKED, &dev->flags);
2197                                         set_bit(R5_Wantread, &dev->flags);
2198 #if 0
2199                                         /* if I am just reading this block and we don't have
2200                                            a failed drive, or any pending writes then sidestep the cache */
2201                                         if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext &&
2202                                             ! syncing && !failed && !to_write) {
2203                                                 sh->bh_cache[i]->b_page =  sh->bh_read[i]->b_page;
2204                                                 sh->bh_cache[i]->b_data =  sh->bh_read[i]->b_data;
2205                                         }
2206 #endif
2207                                         locked++;
2208                                         PRINTK("Reading block %d (sync=%d)\n",
2209                                                 i, syncing);
2210                                 }
2211                         }
2212                 }
2213                 set_bit(STRIPE_HANDLE, &sh->state);
2214         }
2215
2216         /* now to consider writing and what else, if anything should be read */
2217         if (to_write) {
2218                 int rcw=0, must_compute=0;
2219                 for (i=disks ; i--;) {
2220                         dev = &sh->dev[i];
2221                         /* Would I have to read this buffer for reconstruct_write */
2222                         if (!test_bit(R5_OVERWRITE, &dev->flags)
2223                             && i != pd_idx && i != qd_idx
2224                             && (!test_bit(R5_LOCKED, &dev->flags)
2225 #if 0
2226                                 || sh->bh_page[i] != bh->b_page
2227 #endif
2228                                     ) &&
2229                             !test_bit(R5_UPTODATE, &dev->flags)) {
2230                                 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2231                                 else {
2232                                         PRINTK("raid6: must_compute: disk %d flags=%#lx\n", i, dev->flags);
2233                                         must_compute++;
2234                                 }
2235                         }
2236                 }
2237                 PRINTK("for sector %llu, rcw=%d, must_compute=%d\n",
2238                        (unsigned long long)sh->sector, rcw, must_compute);
2239                 set_bit(STRIPE_HANDLE, &sh->state);
2240
2241                 if (rcw > 0)
2242                         /* want reconstruct write, but need to get some data */
2243                         for (i=disks; i--;) {
2244                                 dev = &sh->dev[i];
2245                                 if (!test_bit(R5_OVERWRITE, &dev->flags)
2246                                     && !(failed == 0 && (i == pd_idx || i == qd_idx))
2247                                     && !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) &&
2248                                     test_bit(R5_Insync, &dev->flags)) {
2249                                         if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
2250                                         {
2251                                                 PRINTK("Read_old stripe %llu block %d for Reconstruct\n",
2252                                                        (unsigned long long)sh->sector, i);
2253                                                 set_bit(R5_LOCKED, &dev->flags);
2254                                                 set_bit(R5_Wantread, &dev->flags);
2255                                                 locked++;
2256                                         } else {
2257                                                 PRINTK("Request delayed stripe %llu block %d for Reconstruct\n",
2258                                                        (unsigned long long)sh->sector, i);
2259                                                 set_bit(STRIPE_DELAYED, &sh->state);
2260                                                 set_bit(STRIPE_HANDLE, &sh->state);
2261                                         }
2262                                 }
2263                         }
2264                 /* now if nothing is locked, and if we have enough data, we can start a write request */
2265                 if (locked == 0 && rcw == 0 &&
2266                     !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2267                         if ( must_compute > 0 ) {
2268                                 /* We have failed blocks and need to compute them */
2269                                 switch ( failed ) {
2270                                 case 0: BUG();
2271                                 case 1: compute_block_1(sh, failed_num[0], 0); break;
2272                                 case 2: compute_block_2(sh, failed_num[0], failed_num[1]); break;
2273                                 default: BUG(); /* This request should have been failed? */
2274                                 }
2275                         }
2276
2277                         PRINTK("Computing parity for stripe %llu\n", (unsigned long long)sh->sector);
2278                         compute_parity6(sh, RECONSTRUCT_WRITE);
2279                         /* now every locked buffer is ready to be written */
2280                         for (i=disks; i--;)
2281                                 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2282                                         PRINTK("Writing stripe %llu block %d\n",
2283                                                (unsigned long long)sh->sector, i);
2284                                         locked++;
2285                                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
2286                                 }
2287                         /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2288                         set_bit(STRIPE_INSYNC, &sh->state);
2289
2290                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2291                                 atomic_dec(&conf->preread_active_stripes);
2292                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
2293                                         md_wakeup_thread(conf->mddev->thread);
2294                         }
2295                 }
2296         }
2297
2298         /* maybe we need to check and possibly fix the parity for this stripe
2299          * Any reads will already have been scheduled, so we just see if enough data
2300          * is available
2301          */
2302         if (syncing && locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state)) {
2303                 int update_p = 0, update_q = 0;
2304                 struct r5dev *dev;
2305
2306                 set_bit(STRIPE_HANDLE, &sh->state);
2307
2308                 BUG_ON(failed>2);
2309                 BUG_ON(uptodate < disks);
2310                 /* Want to check and possibly repair P and Q.
2311                  * However there could be one 'failed' device, in which
2312                  * case we can only check one of them, possibly using the
2313                  * other to generate missing data
2314                  */
2315
2316                 /* If !tmp_page, we cannot do the calculations,
2317                  * but as we have set STRIPE_HANDLE, we will soon be called
2318                  * by stripe_handle with a tmp_page - just wait until then.
2319                  */
2320                 if (tmp_page) {
2321                         if (failed == q_failed) {
2322                                 /* The only possible failed device holds 'Q', so it makes
2323                                  * sense to check P (If anything else were failed, we would
2324                                  * have used P to recreate it).
2325                                  */
2326                                 compute_block_1(sh, pd_idx, 1);
2327                                 if (!page_is_zero(sh->dev[pd_idx].page)) {
2328                                         compute_block_1(sh,pd_idx,0);
2329                                         update_p = 1;
2330                                 }
2331                         }
2332                         if (!q_failed && failed < 2) {
2333                                 /* q is not failed, and we didn't use it to generate
2334                                  * anything, so it makes sense to check it
2335                                  */
2336                                 memcpy(page_address(tmp_page),
2337                                        page_address(sh->dev[qd_idx].page),
2338                                        STRIPE_SIZE);
2339                                 compute_parity6(sh, UPDATE_PARITY);
2340                                 if (memcmp(page_address(tmp_page),
2341                                            page_address(sh->dev[qd_idx].page),
2342                                            STRIPE_SIZE)!= 0) {
2343                                         clear_bit(STRIPE_INSYNC, &sh->state);
2344                                         update_q = 1;
2345                                 }
2346                         }
2347                         if (update_p || update_q) {
2348                                 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2349                                 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2350                                         /* don't try to repair!! */
2351                                         update_p = update_q = 0;
2352                         }
2353
2354                         /* now write out any block on a failed drive,
2355                          * or P or Q if they need it
2356                          */
2357
2358                         if (failed == 2) {
2359                                 dev = &sh->dev[failed_num[1]];
2360                                 locked++;
2361                                 set_bit(R5_LOCKED, &dev->flags);
2362                                 set_bit(R5_Wantwrite, &dev->flags);
2363                         }
2364                         if (failed >= 1) {
2365                                 dev = &sh->dev[failed_num[0]];
2366                                 locked++;
2367                                 set_bit(R5_LOCKED, &dev->flags);
2368                                 set_bit(R5_Wantwrite, &dev->flags);
2369                         }
2370
2371                         if (update_p) {
2372                                 dev = &sh->dev[pd_idx];
2373                                 locked ++;
2374                                 set_bit(R5_LOCKED, &dev->flags);
2375                                 set_bit(R5_Wantwrite, &dev->flags);
2376                         }
2377                         if (update_q) {
2378                                 dev = &sh->dev[qd_idx];
2379                                 locked++;
2380                                 set_bit(R5_LOCKED, &dev->flags);
2381                                 set_bit(R5_Wantwrite, &dev->flags);
2382                         }
2383                         clear_bit(STRIPE_DEGRADED, &sh->state);
2384
2385                         set_bit(STRIPE_INSYNC, &sh->state);
2386                 }
2387         }
2388
2389         if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2390                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2391                 clear_bit(STRIPE_SYNCING, &sh->state);
2392         }
2393
2394         /* If the failed drives are just a ReadError, then we might need
2395          * to progress the repair/check process
2396          */
2397         if (failed <= 2 && ! conf->mddev->ro)
2398                 for (i=0; i<failed;i++) {
2399                         dev = &sh->dev[failed_num[i]];
2400                         if (test_bit(R5_ReadError, &dev->flags)
2401                             && !test_bit(R5_LOCKED, &dev->flags)
2402                             && test_bit(R5_UPTODATE, &dev->flags)
2403                                 ) {
2404                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
2405                                         set_bit(R5_Wantwrite, &dev->flags);
2406                                         set_bit(R5_ReWrite, &dev->flags);
2407                                         set_bit(R5_LOCKED, &dev->flags);
2408                                 } else {
2409                                         /* let's read it back */
2410                                         set_bit(R5_Wantread, &dev->flags);
2411                                         set_bit(R5_LOCKED, &dev->flags);
2412                                 }
2413                         }
2414                 }
2415         spin_unlock(&sh->lock);
2416
2417         while ((bi=return_bi)) {
2418                 int bytes = bi->bi_size;
2419
2420                 return_bi = bi->bi_next;
2421                 bi->bi_next = NULL;
2422                 bi->bi_size = 0;
2423                 bi->bi_end_io(bi, bytes, 0);
2424         }
2425         for (i=disks; i-- ;) {
2426                 int rw;
2427                 struct bio *bi;
2428                 mdk_rdev_t *rdev;
2429                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
2430                         rw = 1;
2431                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
2432                         rw = 0;
2433                 else
2434                         continue;
2435
2436                 bi = &sh->dev[i].req;
2437
2438                 bi->bi_rw = rw;
2439                 if (rw)
2440                         bi->bi_end_io = raid5_end_write_request;
2441                 else
2442                         bi->bi_end_io = raid5_end_read_request;
2443
2444                 rcu_read_lock();
2445                 rdev = rcu_dereference(conf->disks[i].rdev);
2446                 if (rdev && test_bit(Faulty, &rdev->flags))
2447                         rdev = NULL;
2448                 if (rdev)
2449                         atomic_inc(&rdev->nr_pending);
2450                 rcu_read_unlock();
2451
2452                 if (rdev) {
2453                         if (syncing)
2454                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
2455
2456                         bi->bi_bdev = rdev->bdev;
2457                         PRINTK("for %llu schedule op %ld on disc %d\n",
2458                                 (unsigned long long)sh->sector, bi->bi_rw, i);
2459                         atomic_inc(&sh->count);
2460                         bi->bi_sector = sh->sector + rdev->data_offset;
2461                         bi->bi_flags = 1 << BIO_UPTODATE;
2462                         bi->bi_vcnt = 1;
2463                         bi->bi_max_vecs = 1;
2464                         bi->bi_idx = 0;
2465                         bi->bi_io_vec = &sh->dev[i].vec;
2466                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
2467                         bi->bi_io_vec[0].bv_offset = 0;
2468                         bi->bi_size = STRIPE_SIZE;
2469                         bi->bi_next = NULL;
2470                         if (rw == WRITE &&
2471                             test_bit(R5_ReWrite, &sh->dev[i].flags))
2472                                 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2473                         generic_make_request(bi);
2474                 } else {
2475                         if (rw == 1)
2476                                 set_bit(STRIPE_DEGRADED, &sh->state);
2477                         PRINTK("skip op %ld on disc %d for sector %llu\n",
2478                                 bi->bi_rw, i, (unsigned long long)sh->sector);
2479                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2480                         set_bit(STRIPE_HANDLE, &sh->state);
2481                 }
2482         }
2483 }
2484
2485 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
2486 {
2487         if (sh->raid_conf->level == 6)
2488                 handle_stripe6(sh, tmp_page);
2489         else
2490                 handle_stripe5(sh);
2491 }
2492
2493
2494
2495 static void raid5_activate_delayed(raid5_conf_t *conf)
2496 {
2497         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
2498                 while (!list_empty(&conf->delayed_list)) {
2499                         struct list_head *l = conf->delayed_list.next;
2500                         struct stripe_head *sh;
2501                         sh = list_entry(l, struct stripe_head, lru);
2502                         list_del_init(l);
2503                         clear_bit(STRIPE_DELAYED, &sh->state);
2504                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
2505                                 atomic_inc(&conf->preread_active_stripes);
2506                         list_add_tail(&sh->lru, &conf->handle_list);
2507                 }
2508         }
2509 }
2510
2511 static void activate_bit_delay(raid5_conf_t *conf)
2512 {
2513         /* device_lock is held */
2514         struct list_head head;
2515         list_add(&head, &conf->bitmap_list);
2516         list_del_init(&conf->bitmap_list);
2517         while (!list_empty(&head)) {
2518                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
2519                 list_del_init(&sh->lru);
2520                 atomic_inc(&sh->count);
2521                 __release_stripe(conf, sh);
2522         }
2523 }
2524
2525 static void unplug_slaves(mddev_t *mddev)
2526 {
2527         raid5_conf_t *conf = mddev_to_conf(mddev);
2528         int i;
2529
2530         rcu_read_lock();
2531         for (i=0; i<mddev->raid_disks; i++) {
2532                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
2533                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
2534                         request_queue_t *r_queue = bdev_get_queue(rdev->bdev);
2535
2536                         atomic_inc(&rdev->nr_pending);
2537                         rcu_read_unlock();
2538
2539                         if (r_queue->unplug_fn)
2540                                 r_queue->unplug_fn(r_queue);
2541
2542                         rdev_dec_pending(rdev, mddev);
2543                         rcu_read_lock();
2544                 }
2545         }
2546         rcu_read_unlock();
2547 }
2548
2549 static void raid5_unplug_device(request_queue_t *q)
2550 {
2551         mddev_t *mddev = q->queuedata;
2552         raid5_conf_t *conf = mddev_to_conf(mddev);
2553         unsigned long flags;
2554
2555         spin_lock_irqsave(&conf->device_lock, flags);
2556
2557         if (blk_remove_plug(q)) {
2558                 conf->seq_flush++;
2559                 raid5_activate_delayed(conf);
2560         }
2561         md_wakeup_thread(mddev->thread);
2562
2563         spin_unlock_irqrestore(&conf->device_lock, flags);
2564
2565         unplug_slaves(mddev);
2566 }
2567
2568 static int raid5_issue_flush(request_queue_t *q, struct gendisk *disk,
2569                              sector_t *error_sector)
2570 {
2571         mddev_t *mddev = q->queuedata;
2572         raid5_conf_t *conf = mddev_to_conf(mddev);
2573         int i, ret = 0;
2574
2575         rcu_read_lock();
2576         for (i=0; i<mddev->raid_disks && ret == 0; i++) {
2577                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
2578                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
2579                         struct block_device *bdev = rdev->bdev;
2580                         request_queue_t *r_queue = bdev_get_queue(bdev);
2581
2582                         if (!r_queue->issue_flush_fn)
2583                                 ret = -EOPNOTSUPP;
2584                         else {
2585                                 atomic_inc(&rdev->nr_pending);
2586                                 rcu_read_unlock();
2587                                 ret = r_queue->issue_flush_fn(r_queue, bdev->bd_disk,
2588                                                               error_sector);
2589                                 rdev_dec_pending(rdev, mddev);
2590                                 rcu_read_lock();
2591                         }
2592                 }
2593         }
2594         rcu_read_unlock();
2595         return ret;
2596 }
2597
2598 static int make_request(request_queue_t *q, struct bio * bi)
2599 {
2600         mddev_t *mddev = q->queuedata;
2601         raid5_conf_t *conf = mddev_to_conf(mddev);
2602         unsigned int dd_idx, pd_idx;
2603         sector_t new_sector;
2604         sector_t logical_sector, last_sector;
2605         struct stripe_head *sh;
2606         const int rw = bio_data_dir(bi);
2607         int remaining;
2608
2609         if (unlikely(bio_barrier(bi))) {
2610                 bio_endio(bi, bi->bi_size, -EOPNOTSUPP);
2611                 return 0;
2612         }
2613
2614         md_write_start(mddev, bi);
2615
2616         disk_stat_inc(mddev->gendisk, ios[rw]);
2617         disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
2618
2619         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
2620         last_sector = bi->bi_sector + (bi->bi_size>>9);
2621         bi->bi_next = NULL;
2622         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
2623
2624         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
2625                 DEFINE_WAIT(w);
2626                 int disks, data_disks;
2627
2628         retry:
2629                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
2630                 if (likely(conf->expand_progress == MaxSector))
2631                         disks = conf->raid_disks;
2632                 else {
2633                         /* spinlock is needed as expand_progress may be
2634                          * 64bit on a 32bit platform, and so it might be
2635                          * possible to see a half-updated value
2636                          * Ofcourse expand_progress could change after
2637                          * the lock is dropped, so once we get a reference
2638                          * to the stripe that we think it is, we will have
2639                          * to check again.
2640                          */
2641                         spin_lock_irq(&conf->device_lock);
2642                         disks = conf->raid_disks;
2643                         if (logical_sector >= conf->expand_progress)
2644                                 disks = conf->previous_raid_disks;
2645                         else {
2646                                 if (logical_sector >= conf->expand_lo) {
2647                                         spin_unlock_irq(&conf->device_lock);
2648                                         schedule();
2649                                         goto retry;
2650                                 }
2651                         }
2652                         spin_unlock_irq(&conf->device_lock);
2653                 }
2654                 data_disks = disks - conf->max_degraded;
2655
2656                 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
2657                                                   &dd_idx, &pd_idx, conf);
2658                 PRINTK("raid5: make_request, sector %llu logical %llu\n",
2659                         (unsigned long long)new_sector, 
2660                         (unsigned long long)logical_sector);
2661
2662                 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
2663                 if (sh) {
2664                         if (unlikely(conf->expand_progress != MaxSector)) {
2665                                 /* expansion might have moved on while waiting for a
2666                                  * stripe, so we must do the range check again.
2667                                  * Expansion could still move past after this
2668                                  * test, but as we are holding a reference to
2669                                  * 'sh', we know that if that happens,
2670                                  *  STRIPE_EXPANDING will get set and the expansion
2671                                  * won't proceed until we finish with the stripe.
2672                                  */
2673                                 int must_retry = 0;
2674                                 spin_lock_irq(&conf->device_lock);
2675                                 if (logical_sector <  conf->expand_progress &&
2676                                     disks == conf->previous_raid_disks)
2677                                         /* mismatch, need to try again */
2678                                         must_retry = 1;
2679                                 spin_unlock_irq(&conf->device_lock);
2680                                 if (must_retry) {
2681                                         release_stripe(sh);
2682                                         goto retry;
2683                                 }
2684                         }
2685                         /* FIXME what if we get a false positive because these
2686                          * are being updated.
2687                          */
2688                         if (logical_sector >= mddev->suspend_lo &&
2689                             logical_sector < mddev->suspend_hi) {
2690                                 release_stripe(sh);
2691                                 schedule();
2692                                 goto retry;
2693                         }
2694
2695                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
2696                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
2697                                 /* Stripe is busy expanding or
2698                                  * add failed due to overlap.  Flush everything
2699                                  * and wait a while
2700                                  */
2701                                 raid5_unplug_device(mddev->queue);
2702                                 release_stripe(sh);
2703                                 schedule();
2704                                 goto retry;
2705                         }
2706                         finish_wait(&conf->wait_for_overlap, &w);
2707                         handle_stripe(sh, NULL);
2708                         release_stripe(sh);
2709                 } else {
2710                         /* cannot get stripe for read-ahead, just give-up */
2711                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2712                         finish_wait(&conf->wait_for_overlap, &w);
2713                         break;
2714                 }
2715                         
2716         }
2717         spin_lock_irq(&conf->device_lock);
2718         remaining = --bi->bi_phys_segments;
2719         spin_unlock_irq(&conf->device_lock);
2720         if (remaining == 0) {
2721                 int bytes = bi->bi_size;
2722
2723                 if ( rw == WRITE )
2724                         md_write_end(mddev);
2725                 bi->bi_size = 0;
2726                 bi->bi_end_io(bi, bytes, 0);
2727         }
2728         return 0;
2729 }
2730
2731 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
2732 {
2733         /* reshaping is quite different to recovery/resync so it is
2734          * handled quite separately ... here.
2735          *
2736          * On each call to sync_request, we gather one chunk worth of
2737          * destination stripes and flag them as expanding.
2738          * Then we find all the source stripes and request reads.
2739          * As the reads complete, handle_stripe will copy the data
2740          * into the destination stripe and release that stripe.
2741          */
2742         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2743         struct stripe_head *sh;
2744         int pd_idx;
2745         sector_t first_sector, last_sector;
2746         int raid_disks;
2747         int data_disks;
2748         int i;
2749         int dd_idx;
2750         sector_t writepos, safepos, gap;
2751
2752         if (sector_nr == 0 &&
2753             conf->expand_progress != 0) {
2754                 /* restarting in the middle, skip the initial sectors */
2755                 sector_nr = conf->expand_progress;
2756                 sector_div(sector_nr, conf->raid_disks-1);
2757                 *skipped = 1;
2758                 return sector_nr;
2759         }
2760
2761         /* we update the metadata when there is more than 3Meg
2762          * in the block range (that is rather arbitrary, should
2763          * probably be time based) or when the data about to be
2764          * copied would over-write the source of the data at
2765          * the front of the range.
2766          * i.e. one new_stripe forward from expand_progress new_maps
2767          * to after where expand_lo old_maps to
2768          */
2769         writepos = conf->expand_progress +
2770                 conf->chunk_size/512*(conf->raid_disks-1);
2771         sector_div(writepos, conf->raid_disks-1);
2772         safepos = conf->expand_lo;
2773         sector_div(safepos, conf->previous_raid_disks-1);
2774         gap = conf->expand_progress - conf->expand_lo;
2775
2776         if (writepos >= safepos ||
2777             gap > (conf->raid_disks-1)*3000*2 /*3Meg*/) {
2778                 /* Cannot proceed until we've updated the superblock... */
2779                 wait_event(conf->wait_for_overlap,
2780                            atomic_read(&conf->reshape_stripes)==0);
2781                 mddev->reshape_position = conf->expand_progress;
2782                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2783                 md_wakeup_thread(mddev->thread);
2784                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
2785                            kthread_should_stop());
2786                 spin_lock_irq(&conf->device_lock);
2787                 conf->expand_lo = mddev->reshape_position;
2788                 spin_unlock_irq(&conf->device_lock);
2789                 wake_up(&conf->wait_for_overlap);
2790         }
2791
2792         for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
2793                 int j;
2794                 int skipped = 0;
2795                 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
2796                 sh = get_active_stripe(conf, sector_nr+i,
2797                                        conf->raid_disks, pd_idx, 0);
2798                 set_bit(STRIPE_EXPANDING, &sh->state);
2799                 atomic_inc(&conf->reshape_stripes);
2800                 /* If any of this stripe is beyond the end of the old
2801                  * array, then we need to zero those blocks
2802                  */
2803                 for (j=sh->disks; j--;) {
2804                         sector_t s;
2805                         if (j == sh->pd_idx)
2806                                 continue;
2807                         s = compute_blocknr(sh, j);
2808                         if (s < (mddev->array_size<<1)) {
2809                                 skipped = 1;
2810                                 continue;
2811                         }
2812                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
2813                         set_bit(R5_Expanded, &sh->dev[j].flags);
2814                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
2815                 }
2816                 if (!skipped) {
2817                         set_bit(STRIPE_EXPAND_READY, &sh->state);
2818                         set_bit(STRIPE_HANDLE, &sh->state);
2819                 }
2820                 release_stripe(sh);
2821         }
2822         spin_lock_irq(&conf->device_lock);
2823         conf->expand_progress = (sector_nr + i)*(conf->raid_disks-1);
2824         spin_unlock_irq(&conf->device_lock);
2825         /* Ok, those stripe are ready. We can start scheduling
2826          * reads on the source stripes.
2827          * The source stripes are determined by mapping the first and last
2828          * block on the destination stripes.
2829          */
2830         raid_disks = conf->previous_raid_disks;
2831         data_disks = raid_disks - 1;
2832         first_sector =
2833                 raid5_compute_sector(sector_nr*(conf->raid_disks-1),
2834                                      raid_disks, data_disks,
2835                                      &dd_idx, &pd_idx, conf);
2836         last_sector =
2837                 raid5_compute_sector((sector_nr+conf->chunk_size/512)
2838                                      *(conf->raid_disks-1) -1,
2839                                      raid_disks, data_disks,
2840                                      &dd_idx, &pd_idx, conf);
2841         if (last_sector >= (mddev->size<<1))
2842                 last_sector = (mddev->size<<1)-1;
2843         while (first_sector <= last_sector) {
2844                 pd_idx = stripe_to_pdidx(first_sector, conf, conf->previous_raid_disks);
2845                 sh = get_active_stripe(conf, first_sector,
2846                                        conf->previous_raid_disks, pd_idx, 0);
2847                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2848                 set_bit(STRIPE_HANDLE, &sh->state);
2849                 release_stripe(sh);
2850                 first_sector += STRIPE_SECTORS;
2851         }
2852         return conf->chunk_size>>9;
2853 }
2854
2855 /* FIXME go_faster isn't used */
2856 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
2857 {
2858         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
2859         struct stripe_head *sh;
2860         int pd_idx;
2861         int raid_disks = conf->raid_disks;
2862         sector_t max_sector = mddev->size << 1;
2863         int sync_blocks;
2864         int still_degraded = 0;
2865         int i;
2866
2867         if (sector_nr >= max_sector) {
2868                 /* just being told to finish up .. nothing much to do */
2869                 unplug_slaves(mddev);
2870                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2871                         end_reshape(conf);
2872                         return 0;
2873                 }
2874
2875                 if (mddev->curr_resync < max_sector) /* aborted */
2876                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2877                                         &sync_blocks, 1);
2878                 else /* completed sync */
2879                         conf->fullsync = 0;
2880                 bitmap_close_sync(mddev->bitmap);
2881
2882                 return 0;
2883         }
2884
2885         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2886                 return reshape_request(mddev, sector_nr, skipped);
2887
2888         /* if there is too many failed drives and we are trying
2889          * to resync, then assert that we are finished, because there is
2890          * nothing we can do.
2891          */
2892         if (mddev->degraded >= conf->max_degraded &&
2893             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2894                 sector_t rv = (mddev->size << 1) - sector_nr;
2895                 *skipped = 1;
2896                 return rv;
2897         }
2898         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2899             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2900             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
2901                 /* we can skip this block, and probably more */
2902                 sync_blocks /= STRIPE_SECTORS;
2903                 *skipped = 1;
2904                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
2905         }
2906
2907         pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
2908         sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
2909         if (sh == NULL) {
2910                 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
2911                 /* make sure we don't swamp the stripe cache if someone else
2912                  * is trying to get access
2913                  */
2914                 schedule_timeout_uninterruptible(1);
2915         }
2916         /* Need to check if array will still be degraded after recovery/resync
2917          * We don't need to check the 'failed' flag as when that gets set,
2918          * recovery aborts.
2919          */
2920         for (i=0; i<mddev->raid_disks; i++)
2921                 if (conf->disks[i].rdev == NULL)
2922                         still_degraded = 1;
2923
2924         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
2925
2926         spin_lock(&sh->lock);
2927         set_bit(STRIPE_SYNCING, &sh->state);
2928         clear_bit(STRIPE_INSYNC, &sh->state);
2929         spin_unlock(&sh->lock);
2930
2931         handle_stripe(sh, NULL);
2932         release_stripe(sh);
2933
2934         return STRIPE_SECTORS;
2935 }
2936
2937 /*
2938  * This is our raid5 kernel thread.
2939  *
2940  * We scan the hash table for stripes which can be handled now.
2941  * During the scan, completed stripes are saved for us by the interrupt
2942  * handler, so that they will not have to wait for our next wakeup.
2943  */
2944 static void raid5d (mddev_t *mddev)
2945 {
2946         struct stripe_head *sh;
2947         raid5_conf_t *conf = mddev_to_conf(mddev);
2948         int handled;
2949
2950         PRINTK("+++ raid5d active\n");
2951
2952         md_check_recovery(mddev);
2953
2954         handled = 0;
2955         spin_lock_irq(&conf->device_lock);
2956         while (1) {
2957                 struct list_head *first;
2958
2959                 if (conf->seq_flush != conf->seq_write) {
2960                         int seq = conf->seq_flush;
2961                         spin_unlock_irq(&conf->device_lock);
2962                         bitmap_unplug(mddev->bitmap);
2963                         spin_lock_irq(&conf->device_lock);
2964                         conf->seq_write = seq;
2965                         activate_bit_delay(conf);
2966                 }
2967
2968                 if (list_empty(&conf->handle_list) &&
2969                     atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
2970                     !blk_queue_plugged(mddev->queue) &&
2971                     !list_empty(&conf->delayed_list))
2972                         raid5_activate_delayed(conf);
2973
2974                 if (list_empty(&conf->handle_list))
2975                         break;
2976
2977                 first = conf->handle_list.next;
2978                 sh = list_entry(first, struct stripe_head, lru);
2979
2980                 list_del_init(first);
2981                 atomic_inc(&sh->count);
2982                 BUG_ON(atomic_read(&sh->count)!= 1);
2983                 spin_unlock_irq(&conf->device_lock);
2984                 
2985                 handled++;
2986                 handle_stripe(sh, conf->spare_page);
2987                 release_stripe(sh);
2988
2989                 spin_lock_irq(&conf->device_lock);
2990         }
2991         PRINTK("%d stripes handled\n", handled);
2992
2993         spin_unlock_irq(&conf->device_lock);
2994
2995         unplug_slaves(mddev);
2996
2997         PRINTK("--- raid5d inactive\n");
2998 }
2999
3000 static ssize_t
3001 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3002 {
3003         raid5_conf_t *conf = mddev_to_conf(mddev);
3004         if (conf)
3005                 return sprintf(page, "%d\n", conf->max_nr_stripes);
3006         else
3007                 return 0;
3008 }
3009
3010 static ssize_t
3011 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3012 {
3013         raid5_conf_t *conf = mddev_to_conf(mddev);
3014         char *end;
3015         int new;
3016         if (len >= PAGE_SIZE)
3017                 return -EINVAL;
3018         if (!conf)
3019                 return -ENODEV;
3020
3021         new = simple_strtoul(page, &end, 10);
3022         if (!*page || (*end && *end != '\n') )
3023                 return -EINVAL;
3024         if (new <= 16 || new > 32768)
3025                 return -EINVAL;
3026         while (new < conf->max_nr_stripes) {
3027                 if (drop_one_stripe(conf))
3028                         conf->max_nr_stripes--;
3029                 else
3030                         break;
3031         }
3032         while (new > conf->max_nr_stripes) {
3033                 if (grow_one_stripe(conf))
3034                         conf->max_nr_stripes++;
3035                 else break;
3036         }
3037         return len;
3038 }
3039
3040 static struct md_sysfs_entry
3041 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3042                                 raid5_show_stripe_cache_size,
3043                                 raid5_store_stripe_cache_size);
3044
3045 static ssize_t
3046 stripe_cache_active_show(mddev_t *mddev, char *page)
3047 {
3048         raid5_conf_t *conf = mddev_to_conf(mddev);
3049         if (conf)
3050                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
3051         else
3052                 return 0;
3053 }
3054
3055 static struct md_sysfs_entry
3056 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3057
3058 static struct attribute *raid5_attrs[] =  {
3059         &raid5_stripecache_size.attr,
3060         &raid5_stripecache_active.attr,
3061         NULL,
3062 };
3063 static struct attribute_group raid5_attrs_group = {
3064         .name = NULL,
3065         .attrs = raid5_attrs,
3066 };
3067
3068 static int run(mddev_t *mddev)
3069 {
3070         raid5_conf_t *conf;
3071         int raid_disk, memory;
3072         mdk_rdev_t *rdev;
3073         struct disk_info *disk;
3074         struct list_head *tmp;
3075         int working_disks = 0;
3076
3077         if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
3078                 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
3079                        mdname(mddev), mddev->level);
3080                 return -EIO;
3081         }
3082
3083         if (mddev->reshape_position != MaxSector) {
3084                 /* Check that we can continue the reshape.
3085                  * Currently only disks can change, it must
3086                  * increase, and we must be past the point where
3087                  * a stripe over-writes itself
3088                  */
3089                 sector_t here_new, here_old;
3090                 int old_disks;
3091
3092                 if (mddev->new_level != mddev->level ||
3093                     mddev->new_layout != mddev->layout ||
3094                     mddev->new_chunk != mddev->chunk_size) {
3095                         printk(KERN_ERR "raid5: %s: unsupported reshape required - aborting.\n",
3096                                mdname(mddev));
3097                         return -EINVAL;
3098                 }
3099                 if (mddev->delta_disks <= 0) {
3100                         printk(KERN_ERR "raid5: %s: unsupported reshape (reduce disks) required - aborting.\n",
3101                                mdname(mddev));
3102                         return -EINVAL;
3103                 }
3104                 old_disks = mddev->raid_disks - mddev->delta_disks;
3105                 /* reshape_position must be on a new-stripe boundary, and one
3106                  * further up in new geometry must map after here in old geometry.
3107                  */
3108                 here_new = mddev->reshape_position;
3109                 if (sector_div(here_new, (mddev->chunk_size>>9)*(mddev->raid_disks-1))) {
3110                         printk(KERN_ERR "raid5: reshape_position not on a stripe boundary\n");
3111                         return -EINVAL;
3112                 }
3113                 /* here_new is the stripe we will write to */
3114                 here_old = mddev->reshape_position;
3115                 sector_div(here_old, (mddev->chunk_size>>9)*(old_disks-1));
3116                 /* here_old is the first stripe that we might need to read from */
3117                 if (here_new >= here_old) {
3118                         /* Reading from the same stripe as writing to - bad */
3119                         printk(KERN_ERR "raid5: reshape_position too early for auto-recovery - aborting.\n");
3120                         return -EINVAL;
3121                 }
3122                 printk(KERN_INFO "raid5: reshape will continue\n");
3123                 /* OK, we should be able to continue; */
3124         }
3125
3126
3127         mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
3128         if ((conf = mddev->private) == NULL)
3129                 goto abort;
3130         if (mddev->reshape_position == MaxSector) {
3131                 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
3132         } else {
3133                 conf->raid_disks = mddev->raid_disks;
3134                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
3135         }
3136
3137         conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
3138                               GFP_KERNEL);
3139         if (!conf->disks)
3140                 goto abort;
3141
3142         conf->mddev = mddev;
3143
3144         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
3145                 goto abort;
3146
3147         if (mddev->level == 6) {
3148                 conf->spare_page = alloc_page(GFP_KERNEL);
3149                 if (!conf->spare_page)
3150                         goto abort;
3151         }
3152         spin_lock_init(&conf->device_lock);
3153         init_waitqueue_head(&conf->wait_for_stripe);
3154         init_waitqueue_head(&conf->wait_for_overlap);
3155         INIT_LIST_HEAD(&conf->handle_list);
3156         INIT_LIST_HEAD(&conf->delayed_list);
3157         INIT_LIST_HEAD(&conf->bitmap_list);
3158         INIT_LIST_HEAD(&conf->inactive_list);
3159         atomic_set(&conf->active_stripes, 0);
3160         atomic_set(&conf->preread_active_stripes, 0);
3161
3162         PRINTK("raid5: run(%s) called.\n", mdname(mddev));
3163
3164         ITERATE_RDEV(mddev,rdev,tmp) {
3165                 raid_disk = rdev->raid_disk;
3166                 if (raid_disk >= conf->raid_disks
3167                     || raid_disk < 0)
3168                         continue;
3169                 disk = conf->disks + raid_disk;
3170
3171                 disk->rdev = rdev;
3172
3173                 if (test_bit(In_sync, &rdev->flags)) {
3174                         char b[BDEVNAME_SIZE];
3175                         printk(KERN_INFO "raid5: device %s operational as raid"
3176                                 " disk %d\n", bdevname(rdev->bdev,b),
3177                                 raid_disk);
3178                         working_disks++;
3179                 }
3180         }
3181
3182         /*
3183          * 0 for a fully functional array, 1 or 2 for a degraded array.
3184          */
3185         mddev->degraded = conf->raid_disks - working_disks;
3186         conf->mddev = mddev;
3187         conf->chunk_size = mddev->chunk_size;
3188         conf->level = mddev->level;
3189         if (conf->level == 6)
3190                 conf->max_degraded = 2;
3191         else
3192                 conf->max_degraded = 1;
3193         conf->algorithm = mddev->layout;
3194         conf->max_nr_stripes = NR_STRIPES;
3195         conf->expand_progress = mddev->reshape_position;
3196
3197         /* device size must be a multiple of chunk size */
3198         mddev->size &= ~(mddev->chunk_size/1024 -1);
3199         mddev->resync_max_sectors = mddev->size << 1;
3200
3201         if (conf->level == 6 && conf->raid_disks < 4) {
3202                 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
3203                        mdname(mddev), conf->raid_disks);
3204                 goto abort;
3205         }
3206         if (!conf->chunk_size || conf->chunk_size % 4) {
3207                 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
3208                         conf->chunk_size, mdname(mddev));
3209                 goto abort;
3210         }
3211         if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
3212                 printk(KERN_ERR 
3213                         "raid5: unsupported parity algorithm %d for %s\n",
3214                         conf->algorithm, mdname(mddev));
3215                 goto abort;
3216         }
3217         if (mddev->degraded > conf->max_degraded) {
3218                 printk(KERN_ERR "raid5: not enough operational devices for %s"
3219                         " (%d/%d failed)\n",
3220                         mdname(mddev), mddev->degraded, conf->raid_disks);
3221                 goto abort;
3222         }
3223
3224         if (mddev->degraded > 0 &&
3225             mddev->recovery_cp != MaxSector) {
3226                 if (mddev->ok_start_degraded)
3227                         printk(KERN_WARNING
3228                                "raid5: starting dirty degraded array: %s"
3229                                "- data corruption possible.\n",
3230                                mdname(mddev));
3231                 else {
3232                         printk(KERN_ERR
3233                                "raid5: cannot start dirty degraded array for %s\n",
3234                                mdname(mddev));
3235                         goto abort;
3236                 }
3237         }
3238
3239         {
3240                 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
3241                 if (!mddev->thread) {
3242                         printk(KERN_ERR 
3243                                 "raid5: couldn't allocate thread for %s\n",
3244                                 mdname(mddev));
3245                         goto abort;
3246                 }
3247         }
3248         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
3249                  conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
3250         if (grow_stripes(conf, conf->max_nr_stripes)) {
3251                 printk(KERN_ERR 
3252                         "raid5: couldn't allocate %dkB for buffers\n", memory);
3253                 shrink_stripes(conf);
3254                 md_unregister_thread(mddev->thread);
3255                 goto abort;
3256         } else
3257                 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
3258                         memory, mdname(mddev));
3259
3260         if (mddev->degraded == 0)
3261                 printk("raid5: raid level %d set %s active with %d out of %d"
3262                         " devices, algorithm %d\n", conf->level, mdname(mddev), 
3263                         mddev->raid_disks-mddev->degraded, mddev->raid_disks,
3264                         conf->algorithm);
3265         else
3266                 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
3267                         " out of %d devices, algorithm %d\n", conf->level,
3268                         mdname(mddev), mddev->raid_disks - mddev->degraded,
3269                         mddev->raid_disks, conf->algorithm);
3270
3271         print_raid5_conf(conf);
3272
3273         if (conf->expand_progress != MaxSector) {
3274                 printk("...ok start reshape thread\n");
3275                 conf->expand_lo = conf->expand_progress;
3276                 atomic_set(&conf->reshape_stripes, 0);
3277                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3278                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3279                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3280                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3281                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3282                                                         "%s_reshape");
3283         }
3284
3285         /* read-ahead size must cover two whole stripes, which is
3286          * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
3287          */
3288         {
3289                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
3290                 int stripe = data_disks *
3291                         (mddev->chunk_size / PAGE_SIZE);
3292                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3293                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3294         }
3295
3296         /* Ok, everything is just fine now */
3297         sysfs_create_group(&mddev->kobj, &raid5_attrs_group);
3298
3299         mddev->queue->unplug_fn = raid5_unplug_device;
3300         mddev->queue->issue_flush_fn = raid5_issue_flush;
3301         mddev->array_size =  mddev->size * (conf->previous_raid_disks -
3302                                             conf->max_degraded);
3303
3304         return 0;
3305 abort:
3306         if (conf) {
3307                 print_raid5_conf(conf);
3308                 safe_put_page(conf->spare_page);
3309                 kfree(conf->disks);
3310                 kfree(conf->stripe_hashtbl);
3311                 kfree(conf);
3312         }
3313         mddev->private = NULL;
3314         printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
3315         return -EIO;
3316 }
3317
3318
3319
3320 static int stop(mddev_t *mddev)
3321 {
3322         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3323
3324         md_unregister_thread(mddev->thread);
3325         mddev->thread = NULL;
3326         shrink_stripes(conf);
3327         kfree(conf->stripe_hashtbl);
3328         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3329         sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
3330         kfree(conf->disks);
3331         kfree(conf);
3332         mddev->private = NULL;
3333         return 0;
3334 }
3335
3336 #if RAID5_DEBUG
3337 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
3338 {
3339         int i;
3340
3341         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
3342                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
3343         seq_printf(seq, "sh %llu,  count %d.\n",
3344                    (unsigned long long)sh->sector, atomic_read(&sh->count));
3345         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
3346         for (i = 0; i < sh->disks; i++) {
3347                 seq_printf(seq, "(cache%d: %p %ld) ",
3348                            i, sh->dev[i].page, sh->dev[i].flags);
3349         }
3350         seq_printf(seq, "\n");
3351 }
3352
3353 static void printall (struct seq_file *seq, raid5_conf_t *conf)
3354 {
3355         struct stripe_head *sh;
3356         struct hlist_node *hn;
3357         int i;
3358
3359         spin_lock_irq(&conf->device_lock);
3360         for (i = 0; i < NR_HASH; i++) {
3361                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
3362                         if (sh->raid_conf != conf)
3363                                 continue;
3364                         print_sh(seq, sh);
3365                 }
3366         }
3367         spin_unlock_irq(&conf->device_lock);
3368 }
3369 #endif
3370
3371 static void status (struct seq_file *seq, mddev_t *mddev)
3372 {
3373         raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3374         int i;
3375
3376         seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
3377         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
3378         for (i = 0; i < conf->raid_disks; i++)
3379                 seq_printf (seq, "%s",
3380                                conf->disks[i].rdev &&
3381                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
3382         seq_printf (seq, "]");
3383 #if RAID5_DEBUG
3384         seq_printf (seq, "\n");
3385         printall(seq, conf);
3386 #endif
3387 }
3388
3389 static void print_raid5_conf (raid5_conf_t *conf)
3390 {
3391         int i;
3392         struct disk_info *tmp;
3393
3394         printk("RAID5 conf printout:\n");
3395         if (!conf) {
3396                 printk("(conf==NULL)\n");
3397                 return;
3398         }
3399         printk(" --- rd:%d wd:%d\n", conf->raid_disks,
3400                  conf->raid_disks - conf->mddev->degraded);
3401
3402         for (i = 0; i < conf->raid_disks; i++) {
3403                 char b[BDEVNAME_SIZE];
3404                 tmp = conf->disks + i;
3405                 if (tmp->rdev)
3406                 printk(" disk %d, o:%d, dev:%s\n",
3407                         i, !test_bit(Faulty, &tmp->rdev->flags),
3408                         bdevname(tmp->rdev->bdev,b));
3409         }
3410 }
3411
3412 static int raid5_spare_active(mddev_t *mddev)
3413 {
3414         int i;
3415         raid5_conf_t *conf = mddev->private;
3416         struct disk_info *tmp;
3417
3418         for (i = 0; i < conf->raid_disks; i++) {
3419                 tmp = conf->disks + i;
3420                 if (tmp->rdev
3421                     && !test_bit(Faulty, &tmp->rdev->flags)
3422                     && !test_bit(In_sync, &tmp->rdev->flags)) {
3423                         mddev->degraded--;
3424                         set_bit(In_sync, &tmp->rdev->flags);
3425                 }
3426         }
3427         print_raid5_conf(conf);
3428         return 0;
3429 }
3430
3431 static int raid5_remove_disk(mddev_t *mddev, int number)
3432 {
3433         raid5_conf_t *conf = mddev->private;
3434         int err = 0;
3435         mdk_rdev_t *rdev;
3436         struct disk_info *p = conf->disks + number;
3437
3438         print_raid5_conf(conf);
3439         rdev = p->rdev;
3440         if (rdev) {
3441                 if (test_bit(In_sync, &rdev->flags) ||
3442                     atomic_read(&rdev->nr_pending)) {
3443                         err = -EBUSY;
3444                         goto abort;
3445                 }
3446                 p->rdev = NULL;
3447                 synchronize_rcu();
3448                 if (atomic_read(&rdev->nr_pending)) {
3449                         /* lost the race, try later */
3450                         err = -EBUSY;
3451                         p->rdev = rdev;
3452                 }
3453         }
3454 abort:
3455
3456         print_raid5_conf(conf);
3457         return err;
3458 }
3459
3460 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
3461 {
3462         raid5_conf_t *conf = mddev->private;
3463         int found = 0;
3464         int disk;
3465         struct disk_info *p;
3466
3467         if (mddev->degraded > conf->max_degraded)
3468                 /* no point adding a device */
3469                 return 0;
3470
3471         /*
3472          * find the disk ... but prefer rdev->saved_raid_disk
3473          * if possible.
3474          */
3475         if (rdev->saved_raid_disk >= 0 &&
3476             conf->disks[rdev->saved_raid_disk].rdev == NULL)
3477                 disk = rdev->saved_raid_disk;
3478         else
3479                 disk = 0;
3480         for ( ; disk < conf->raid_disks; disk++)
3481                 if ((p=conf->disks + disk)->rdev == NULL) {
3482                         clear_bit(In_sync, &rdev->flags);
3483                         rdev->raid_disk = disk;
3484                         found = 1;
3485                         if (rdev->saved_raid_disk != disk)
3486                                 conf->fullsync = 1;
3487                         rcu_assign_pointer(p->rdev, rdev);
3488                         break;
3489                 }
3490         print_raid5_conf(conf);
3491         return found;
3492 }
3493
3494 static int raid5_resize(mddev_t *mddev, sector_t sectors)
3495 {
3496         /* no resync is happening, and there is enough space
3497          * on all devices, so we can resize.
3498          * We need to make sure resync covers any new space.
3499          * If the array is shrinking we should possibly wait until
3500          * any io in the removed space completes, but it hardly seems
3501          * worth it.
3502          */
3503         raid5_conf_t *conf = mddev_to_conf(mddev);
3504
3505         sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
3506         mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
3507         set_capacity(mddev->gendisk, mddev->array_size << 1);
3508         mddev->changed = 1;
3509         if (sectors/2  > mddev->size && mddev->recovery_cp == MaxSector) {
3510                 mddev->recovery_cp = mddev->size << 1;
3511                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3512         }
3513         mddev->size = sectors /2;
3514         mddev->resync_max_sectors = sectors;
3515         return 0;
3516 }
3517
3518 #ifdef CONFIG_MD_RAID5_RESHAPE
3519 static int raid5_check_reshape(mddev_t *mddev)
3520 {
3521         raid5_conf_t *conf = mddev_to_conf(mddev);
3522         int err;
3523
3524         if (mddev->delta_disks < 0 ||
3525             mddev->new_level != mddev->level)
3526                 return -EINVAL; /* Cannot shrink array or change level yet */
3527         if (mddev->delta_disks == 0)
3528                 return 0; /* nothing to do */
3529
3530         /* Can only proceed if there are plenty of stripe_heads.
3531          * We need a minimum of one full stripe,, and for sensible progress
3532          * it is best to have about 4 times that.
3533          * If we require 4 times, then the default 256 4K stripe_heads will
3534          * allow for chunk sizes up to 256K, which is probably OK.
3535          * If the chunk size is greater, user-space should request more
3536          * stripe_heads first.
3537          */
3538         if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
3539             (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
3540                 printk(KERN_WARNING "raid5: reshape: not enough stripes.  Needed %lu\n",
3541                        (mddev->chunk_size / STRIPE_SIZE)*4);
3542                 return -ENOSPC;
3543         }
3544
3545         err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
3546         if (err)
3547                 return err;
3548
3549         /* looks like we might be able to manage this */
3550         return 0;
3551 }
3552
3553 static int raid5_start_reshape(mddev_t *mddev)
3554 {
3555         raid5_conf_t *conf = mddev_to_conf(mddev);
3556         mdk_rdev_t *rdev;
3557         struct list_head *rtmp;
3558         int spares = 0;
3559         int added_devices = 0;
3560
3561         if (mddev->degraded ||
3562             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3563                 return -EBUSY;
3564
3565         ITERATE_RDEV(mddev, rdev, rtmp)
3566                 if (rdev->raid_disk < 0 &&
3567                     !test_bit(Faulty, &rdev->flags))
3568                         spares++;
3569
3570         if (spares < mddev->delta_disks-1)
3571                 /* Not enough devices even to make a degraded array
3572                  * of that size
3573                  */
3574                 return -EINVAL;
3575
3576         atomic_set(&conf->reshape_stripes, 0);
3577         spin_lock_irq(&conf->device_lock);
3578         conf->previous_raid_disks = conf->raid_disks;
3579         conf->raid_disks += mddev->delta_disks;
3580         conf->expand_progress = 0;
3581         conf->expand_lo = 0;
3582         spin_unlock_irq(&conf->device_lock);
3583
3584         /* Add some new drives, as many as will fit.
3585          * We know there are enough to make the newly sized array work.
3586          */
3587         ITERATE_RDEV(mddev, rdev, rtmp)
3588                 if (rdev->raid_disk < 0 &&
3589                     !test_bit(Faulty, &rdev->flags)) {
3590                         if (raid5_add_disk(mddev, rdev)) {
3591                                 char nm[20];
3592                                 set_bit(In_sync, &rdev->flags);
3593                                 added_devices++;
3594                                 rdev->recovery_offset = 0;
3595                                 sprintf(nm, "rd%d", rdev->raid_disk);
3596                                 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
3597                         } else
3598                                 break;
3599                 }
3600
3601         mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
3602         mddev->raid_disks = conf->raid_disks;
3603         mddev->reshape_position = 0;
3604         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3605
3606         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3607         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3608         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3609         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3610         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3611                                                 "%s_reshape");
3612         if (!mddev->sync_thread) {
3613                 mddev->recovery = 0;
3614                 spin_lock_irq(&conf->device_lock);
3615                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
3616                 conf->expand_progress = MaxSector;
3617                 spin_unlock_irq(&conf->device_lock);
3618                 return -EAGAIN;
3619         }
3620         md_wakeup_thread(mddev->sync_thread);
3621         md_new_event(mddev);
3622         return 0;
3623 }
3624 #endif
3625
3626 static void end_reshape(raid5_conf_t *conf)
3627 {
3628         struct block_device *bdev;
3629
3630         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
3631                 conf->mddev->array_size = conf->mddev->size * (conf->raid_disks-1);
3632                 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
3633                 conf->mddev->changed = 1;
3634
3635                 bdev = bdget_disk(conf->mddev->gendisk, 0);
3636                 if (bdev) {
3637                         mutex_lock(&bdev->bd_inode->i_mutex);
3638                         i_size_write(bdev->bd_inode, conf->mddev->array_size << 10);
3639                         mutex_unlock(&bdev->bd_inode->i_mutex);
3640                         bdput(bdev);
3641                 }
3642                 spin_lock_irq(&conf->device_lock);
3643                 conf->expand_progress = MaxSector;
3644                 spin_unlock_irq(&conf->device_lock);
3645                 conf->mddev->reshape_position = MaxSector;
3646
3647                 /* read-ahead size must cover two whole stripes, which is
3648                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
3649                  */
3650                 {
3651                         int data_disks = conf->previous_raid_disks - conf->max_degraded;
3652                         int stripe = data_disks *
3653                                 (conf->mddev->chunk_size / PAGE_SIZE);
3654                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3655                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3656                 }
3657         }
3658 }
3659
3660 static void raid5_quiesce(mddev_t *mddev, int state)
3661 {
3662         raid5_conf_t *conf = mddev_to_conf(mddev);
3663
3664         switch(state) {
3665         case 2: /* resume for a suspend */
3666                 wake_up(&conf->wait_for_overlap);
3667                 break;
3668
3669         case 1: /* stop all writes */
3670                 spin_lock_irq(&conf->device_lock);
3671                 conf->quiesce = 1;
3672                 wait_event_lock_irq(conf->wait_for_stripe,
3673                                     atomic_read(&conf->active_stripes) == 0,
3674                                     conf->device_lock, /* nothing */);
3675                 spin_unlock_irq(&conf->device_lock);
3676                 break;
3677
3678         case 0: /* re-enable writes */
3679                 spin_lock_irq(&conf->device_lock);
3680                 conf->quiesce = 0;
3681                 wake_up(&conf->wait_for_stripe);
3682                 wake_up(&conf->wait_for_overlap);
3683                 spin_unlock_irq(&conf->device_lock);
3684                 break;
3685         }
3686 }
3687
3688 static struct mdk_personality raid6_personality =
3689 {
3690         .name           = "raid6",
3691         .level          = 6,
3692         .owner          = THIS_MODULE,
3693         .make_request   = make_request,
3694         .run            = run,
3695         .stop           = stop,
3696         .status         = status,
3697         .error_handler  = error,
3698         .hot_add_disk   = raid5_add_disk,
3699         .hot_remove_disk= raid5_remove_disk,
3700         .spare_active   = raid5_spare_active,
3701         .sync_request   = sync_request,
3702         .resize         = raid5_resize,
3703         .quiesce        = raid5_quiesce,
3704 };
3705 static struct mdk_personality raid5_personality =
3706 {
3707         .name           = "raid5",
3708         .level          = 5,
3709         .owner          = THIS_MODULE,
3710         .make_request   = make_request,
3711         .run            = run,
3712         .stop           = stop,
3713         .status         = status,
3714         .error_handler  = error,
3715         .hot_add_disk   = raid5_add_disk,
3716         .hot_remove_disk= raid5_remove_disk,
3717         .spare_active   = raid5_spare_active,
3718         .sync_request   = sync_request,
3719         .resize         = raid5_resize,
3720 #ifdef CONFIG_MD_RAID5_RESHAPE
3721         .check_reshape  = raid5_check_reshape,
3722         .start_reshape  = raid5_start_reshape,
3723 #endif
3724         .quiesce        = raid5_quiesce,
3725 };
3726
3727 static struct mdk_personality raid4_personality =
3728 {
3729         .name           = "raid4",
3730         .level          = 4,
3731         .owner          = THIS_MODULE,
3732         .make_request   = make_request,
3733         .run            = run,
3734         .stop           = stop,
3735         .status         = status,
3736         .error_handler  = error,
3737         .hot_add_disk   = raid5_add_disk,
3738         .hot_remove_disk= raid5_remove_disk,
3739         .spare_active   = raid5_spare_active,
3740         .sync_request   = sync_request,
3741         .resize         = raid5_resize,
3742         .quiesce        = raid5_quiesce,
3743 };
3744
3745 static int __init raid5_init(void)
3746 {
3747         int e;
3748
3749         e = raid6_select_algo();
3750         if ( e )
3751                 return e;
3752         register_md_personality(&raid6_personality);
3753         register_md_personality(&raid5_personality);
3754         register_md_personality(&raid4_personality);
3755         return 0;
3756 }
3757
3758 static void raid5_exit(void)
3759 {
3760         unregister_md_personality(&raid6_personality);
3761         unregister_md_personality(&raid5_personality);
3762         unregister_md_personality(&raid4_personality);
3763 }
3764
3765 module_init(raid5_init);
3766 module_exit(raid5_exit);
3767 MODULE_LICENSE("GPL");
3768 MODULE_ALIAS("md-personality-4"); /* RAID5 */
3769 MODULE_ALIAS("md-raid5");
3770 MODULE_ALIAS("md-raid4");
3771 MODULE_ALIAS("md-level-5");
3772 MODULE_ALIAS("md-level-4");
3773 MODULE_ALIAS("md-personality-8"); /* RAID6 */
3774 MODULE_ALIAS("md-raid6");
3775 MODULE_ALIAS("md-level-6");
3776
3777 /* This used to be two separate modules, they were: */
3778 MODULE_ALIAS("raid5");
3779 MODULE_ALIAS("raid6");