]> Pileus Git - ~andy/linux/blob - drivers/md/raid5.c
Merge tag 'md-3.3' of git://neil.brown.name/md
[~andy/linux] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include "md.h"
57 #include "raid5.h"
58 #include "raid0.h"
59 #include "bitmap.h"
60
61 /*
62  * Stripe cache
63  */
64
65 #define NR_STRIPES              256
66 #define STRIPE_SIZE             PAGE_SIZE
67 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
69 #define IO_THRESHOLD            1
70 #define BYPASS_THRESHOLD        1
71 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK               (NR_HASH - 1)
73
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77         return &conf->stripe_hashtbl[hash];
78 }
79
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81  * order without overlap.  There may be several bio's per stripe+device, and
82  * a bio could span several devices.
83  * When walking this list for a particular stripe+device, we must never proceed
84  * beyond a bio that extends past this device, as the next bio might no longer
85  * be valid.
86  * This function is used to determine the 'next' bio in the list, given the sector
87  * of the current stripe+device
88  */
89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90 {
91         int sectors = bio->bi_size >> 9;
92         if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93                 return bio->bi_next;
94         else
95                 return NULL;
96 }
97
98 /*
99  * We maintain a biased count of active stripes in the bottom 16 bits of
100  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101  */
102 static inline int raid5_bi_phys_segments(struct bio *bio)
103 {
104         return bio->bi_phys_segments & 0xffff;
105 }
106
107 static inline int raid5_bi_hw_segments(struct bio *bio)
108 {
109         return (bio->bi_phys_segments >> 16) & 0xffff;
110 }
111
112 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
113 {
114         --bio->bi_phys_segments;
115         return raid5_bi_phys_segments(bio);
116 }
117
118 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
119 {
120         unsigned short val = raid5_bi_hw_segments(bio);
121
122         --val;
123         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
124         return val;
125 }
126
127 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
128 {
129         bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
130 }
131
132 /* Find first data disk in a raid6 stripe */
133 static inline int raid6_d0(struct stripe_head *sh)
134 {
135         if (sh->ddf_layout)
136                 /* ddf always start from first device */
137                 return 0;
138         /* md starts just after Q block */
139         if (sh->qd_idx == sh->disks - 1)
140                 return 0;
141         else
142                 return sh->qd_idx + 1;
143 }
144 static inline int raid6_next_disk(int disk, int raid_disks)
145 {
146         disk++;
147         return (disk < raid_disks) ? disk : 0;
148 }
149
150 /* When walking through the disks in a raid5, starting at raid6_d0,
151  * We need to map each disk to a 'slot', where the data disks are slot
152  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153  * is raid_disks-1.  This help does that mapping.
154  */
155 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
156                              int *count, int syndrome_disks)
157 {
158         int slot = *count;
159
160         if (sh->ddf_layout)
161                 (*count)++;
162         if (idx == sh->pd_idx)
163                 return syndrome_disks;
164         if (idx == sh->qd_idx)
165                 return syndrome_disks + 1;
166         if (!sh->ddf_layout)
167                 (*count)++;
168         return slot;
169 }
170
171 static void return_io(struct bio *return_bi)
172 {
173         struct bio *bi = return_bi;
174         while (bi) {
175
176                 return_bi = bi->bi_next;
177                 bi->bi_next = NULL;
178                 bi->bi_size = 0;
179                 bio_endio(bi, 0);
180                 bi = return_bi;
181         }
182 }
183
184 static void print_raid5_conf (struct r5conf *conf);
185
186 static int stripe_operations_active(struct stripe_head *sh)
187 {
188         return sh->check_state || sh->reconstruct_state ||
189                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
190                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
191 }
192
193 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
194 {
195         if (atomic_dec_and_test(&sh->count)) {
196                 BUG_ON(!list_empty(&sh->lru));
197                 BUG_ON(atomic_read(&conf->active_stripes)==0);
198                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
199                         if (test_bit(STRIPE_DELAYED, &sh->state))
200                                 list_add_tail(&sh->lru, &conf->delayed_list);
201                         else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
202                                    sh->bm_seq - conf->seq_write > 0)
203                                 list_add_tail(&sh->lru, &conf->bitmap_list);
204                         else {
205                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
206                                 list_add_tail(&sh->lru, &conf->handle_list);
207                         }
208                         md_wakeup_thread(conf->mddev->thread);
209                 } else {
210                         BUG_ON(stripe_operations_active(sh));
211                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
212                                 atomic_dec(&conf->preread_active_stripes);
213                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
214                                         md_wakeup_thread(conf->mddev->thread);
215                         }
216                         atomic_dec(&conf->active_stripes);
217                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
218                                 list_add_tail(&sh->lru, &conf->inactive_list);
219                                 wake_up(&conf->wait_for_stripe);
220                                 if (conf->retry_read_aligned)
221                                         md_wakeup_thread(conf->mddev->thread);
222                         }
223                 }
224         }
225 }
226
227 static void release_stripe(struct stripe_head *sh)
228 {
229         struct r5conf *conf = sh->raid_conf;
230         unsigned long flags;
231
232         spin_lock_irqsave(&conf->device_lock, flags);
233         __release_stripe(conf, sh);
234         spin_unlock_irqrestore(&conf->device_lock, flags);
235 }
236
237 static inline void remove_hash(struct stripe_head *sh)
238 {
239         pr_debug("remove_hash(), stripe %llu\n",
240                 (unsigned long long)sh->sector);
241
242         hlist_del_init(&sh->hash);
243 }
244
245 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
246 {
247         struct hlist_head *hp = stripe_hash(conf, sh->sector);
248
249         pr_debug("insert_hash(), stripe %llu\n",
250                 (unsigned long long)sh->sector);
251
252         hlist_add_head(&sh->hash, hp);
253 }
254
255
256 /* find an idle stripe, make sure it is unhashed, and return it. */
257 static struct stripe_head *get_free_stripe(struct r5conf *conf)
258 {
259         struct stripe_head *sh = NULL;
260         struct list_head *first;
261
262         if (list_empty(&conf->inactive_list))
263                 goto out;
264         first = conf->inactive_list.next;
265         sh = list_entry(first, struct stripe_head, lru);
266         list_del_init(first);
267         remove_hash(sh);
268         atomic_inc(&conf->active_stripes);
269 out:
270         return sh;
271 }
272
273 static void shrink_buffers(struct stripe_head *sh)
274 {
275         struct page *p;
276         int i;
277         int num = sh->raid_conf->pool_size;
278
279         for (i = 0; i < num ; i++) {
280                 p = sh->dev[i].page;
281                 if (!p)
282                         continue;
283                 sh->dev[i].page = NULL;
284                 put_page(p);
285         }
286 }
287
288 static int grow_buffers(struct stripe_head *sh)
289 {
290         int i;
291         int num = sh->raid_conf->pool_size;
292
293         for (i = 0; i < num; i++) {
294                 struct page *page;
295
296                 if (!(page = alloc_page(GFP_KERNEL))) {
297                         return 1;
298                 }
299                 sh->dev[i].page = page;
300         }
301         return 0;
302 }
303
304 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
305 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
306                             struct stripe_head *sh);
307
308 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
309 {
310         struct r5conf *conf = sh->raid_conf;
311         int i;
312
313         BUG_ON(atomic_read(&sh->count) != 0);
314         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
315         BUG_ON(stripe_operations_active(sh));
316
317         pr_debug("init_stripe called, stripe %llu\n",
318                 (unsigned long long)sh->sector);
319
320         remove_hash(sh);
321
322         sh->generation = conf->generation - previous;
323         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
324         sh->sector = sector;
325         stripe_set_idx(sector, conf, previous, sh);
326         sh->state = 0;
327
328
329         for (i = sh->disks; i--; ) {
330                 struct r5dev *dev = &sh->dev[i];
331
332                 if (dev->toread || dev->read || dev->towrite || dev->written ||
333                     test_bit(R5_LOCKED, &dev->flags)) {
334                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
335                                (unsigned long long)sh->sector, i, dev->toread,
336                                dev->read, dev->towrite, dev->written,
337                                test_bit(R5_LOCKED, &dev->flags));
338                         WARN_ON(1);
339                 }
340                 dev->flags = 0;
341                 raid5_build_block(sh, i, previous);
342         }
343         insert_hash(conf, sh);
344 }
345
346 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
347                                          short generation)
348 {
349         struct stripe_head *sh;
350         struct hlist_node *hn;
351
352         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
353         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
354                 if (sh->sector == sector && sh->generation == generation)
355                         return sh;
356         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
357         return NULL;
358 }
359
360 /*
361  * Need to check if array has failed when deciding whether to:
362  *  - start an array
363  *  - remove non-faulty devices
364  *  - add a spare
365  *  - allow a reshape
366  * This determination is simple when no reshape is happening.
367  * However if there is a reshape, we need to carefully check
368  * both the before and after sections.
369  * This is because some failed devices may only affect one
370  * of the two sections, and some non-in_sync devices may
371  * be insync in the section most affected by failed devices.
372  */
373 static int calc_degraded(struct r5conf *conf)
374 {
375         int degraded, degraded2;
376         int i;
377
378         rcu_read_lock();
379         degraded = 0;
380         for (i = 0; i < conf->previous_raid_disks; i++) {
381                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
382                 if (!rdev || test_bit(Faulty, &rdev->flags))
383                         degraded++;
384                 else if (test_bit(In_sync, &rdev->flags))
385                         ;
386                 else
387                         /* not in-sync or faulty.
388                          * If the reshape increases the number of devices,
389                          * this is being recovered by the reshape, so
390                          * this 'previous' section is not in_sync.
391                          * If the number of devices is being reduced however,
392                          * the device can only be part of the array if
393                          * we are reverting a reshape, so this section will
394                          * be in-sync.
395                          */
396                         if (conf->raid_disks >= conf->previous_raid_disks)
397                                 degraded++;
398         }
399         rcu_read_unlock();
400         if (conf->raid_disks == conf->previous_raid_disks)
401                 return degraded;
402         rcu_read_lock();
403         degraded2 = 0;
404         for (i = 0; i < conf->raid_disks; i++) {
405                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
406                 if (!rdev || test_bit(Faulty, &rdev->flags))
407                         degraded2++;
408                 else if (test_bit(In_sync, &rdev->flags))
409                         ;
410                 else
411                         /* not in-sync or faulty.
412                          * If reshape increases the number of devices, this
413                          * section has already been recovered, else it
414                          * almost certainly hasn't.
415                          */
416                         if (conf->raid_disks <= conf->previous_raid_disks)
417                                 degraded2++;
418         }
419         rcu_read_unlock();
420         if (degraded2 > degraded)
421                 return degraded2;
422         return degraded;
423 }
424
425 static int has_failed(struct r5conf *conf)
426 {
427         int degraded;
428
429         if (conf->mddev->reshape_position == MaxSector)
430                 return conf->mddev->degraded > conf->max_degraded;
431
432         degraded = calc_degraded(conf);
433         if (degraded > conf->max_degraded)
434                 return 1;
435         return 0;
436 }
437
438 static struct stripe_head *
439 get_active_stripe(struct r5conf *conf, sector_t sector,
440                   int previous, int noblock, int noquiesce)
441 {
442         struct stripe_head *sh;
443
444         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
445
446         spin_lock_irq(&conf->device_lock);
447
448         do {
449                 wait_event_lock_irq(conf->wait_for_stripe,
450                                     conf->quiesce == 0 || noquiesce,
451                                     conf->device_lock, /* nothing */);
452                 sh = __find_stripe(conf, sector, conf->generation - previous);
453                 if (!sh) {
454                         if (!conf->inactive_blocked)
455                                 sh = get_free_stripe(conf);
456                         if (noblock && sh == NULL)
457                                 break;
458                         if (!sh) {
459                                 conf->inactive_blocked = 1;
460                                 wait_event_lock_irq(conf->wait_for_stripe,
461                                                     !list_empty(&conf->inactive_list) &&
462                                                     (atomic_read(&conf->active_stripes)
463                                                      < (conf->max_nr_stripes *3/4)
464                                                      || !conf->inactive_blocked),
465                                                     conf->device_lock,
466                                                     );
467                                 conf->inactive_blocked = 0;
468                         } else
469                                 init_stripe(sh, sector, previous);
470                 } else {
471                         if (atomic_read(&sh->count)) {
472                                 BUG_ON(!list_empty(&sh->lru)
473                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
474                         } else {
475                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
476                                         atomic_inc(&conf->active_stripes);
477                                 if (list_empty(&sh->lru) &&
478                                     !test_bit(STRIPE_EXPANDING, &sh->state))
479                                         BUG();
480                                 list_del_init(&sh->lru);
481                         }
482                 }
483         } while (sh == NULL);
484
485         if (sh)
486                 atomic_inc(&sh->count);
487
488         spin_unlock_irq(&conf->device_lock);
489         return sh;
490 }
491
492 static void
493 raid5_end_read_request(struct bio *bi, int error);
494 static void
495 raid5_end_write_request(struct bio *bi, int error);
496
497 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
498 {
499         struct r5conf *conf = sh->raid_conf;
500         int i, disks = sh->disks;
501
502         might_sleep();
503
504         for (i = disks; i--; ) {
505                 int rw;
506                 int replace_only = 0;
507                 struct bio *bi, *rbi;
508                 struct md_rdev *rdev, *rrdev = NULL;
509                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
510                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
511                                 rw = WRITE_FUA;
512                         else
513                                 rw = WRITE;
514                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
515                         rw = READ;
516                 else if (test_and_clear_bit(R5_WantReplace,
517                                             &sh->dev[i].flags)) {
518                         rw = WRITE;
519                         replace_only = 1;
520                 } else
521                         continue;
522
523                 bi = &sh->dev[i].req;
524                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
525
526                 bi->bi_rw = rw;
527                 rbi->bi_rw = rw;
528                 if (rw & WRITE) {
529                         bi->bi_end_io = raid5_end_write_request;
530                         rbi->bi_end_io = raid5_end_write_request;
531                 } else
532                         bi->bi_end_io = raid5_end_read_request;
533
534                 rcu_read_lock();
535                 rrdev = rcu_dereference(conf->disks[i].replacement);
536                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
537                 rdev = rcu_dereference(conf->disks[i].rdev);
538                 if (!rdev) {
539                         rdev = rrdev;
540                         rrdev = NULL;
541                 }
542                 if (rw & WRITE) {
543                         if (replace_only)
544                                 rdev = NULL;
545                         if (rdev == rrdev)
546                                 /* We raced and saw duplicates */
547                                 rrdev = NULL;
548                 } else {
549                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
550                                 rdev = rrdev;
551                         rrdev = NULL;
552                 }
553
554                 if (rdev && test_bit(Faulty, &rdev->flags))
555                         rdev = NULL;
556                 if (rdev)
557                         atomic_inc(&rdev->nr_pending);
558                 if (rrdev && test_bit(Faulty, &rrdev->flags))
559                         rrdev = NULL;
560                 if (rrdev)
561                         atomic_inc(&rrdev->nr_pending);
562                 rcu_read_unlock();
563
564                 /* We have already checked bad blocks for reads.  Now
565                  * need to check for writes.  We never accept write errors
566                  * on the replacement, so we don't to check rrdev.
567                  */
568                 while ((rw & WRITE) && rdev &&
569                        test_bit(WriteErrorSeen, &rdev->flags)) {
570                         sector_t first_bad;
571                         int bad_sectors;
572                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
573                                               &first_bad, &bad_sectors);
574                         if (!bad)
575                                 break;
576
577                         if (bad < 0) {
578                                 set_bit(BlockedBadBlocks, &rdev->flags);
579                                 if (!conf->mddev->external &&
580                                     conf->mddev->flags) {
581                                         /* It is very unlikely, but we might
582                                          * still need to write out the
583                                          * bad block log - better give it
584                                          * a chance*/
585                                         md_check_recovery(conf->mddev);
586                                 }
587                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
588                         } else {
589                                 /* Acknowledged bad block - skip the write */
590                                 rdev_dec_pending(rdev, conf->mddev);
591                                 rdev = NULL;
592                         }
593                 }
594
595                 if (rdev) {
596                         if (s->syncing || s->expanding || s->expanded
597                             || s->replacing)
598                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
599
600                         set_bit(STRIPE_IO_STARTED, &sh->state);
601
602                         bi->bi_bdev = rdev->bdev;
603                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
604                                 __func__, (unsigned long long)sh->sector,
605                                 bi->bi_rw, i);
606                         atomic_inc(&sh->count);
607                         bi->bi_sector = sh->sector + rdev->data_offset;
608                         bi->bi_flags = 1 << BIO_UPTODATE;
609                         bi->bi_idx = 0;
610                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
611                         bi->bi_io_vec[0].bv_offset = 0;
612                         bi->bi_size = STRIPE_SIZE;
613                         bi->bi_next = NULL;
614                         if (rrdev)
615                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
616                         generic_make_request(bi);
617                 }
618                 if (rrdev) {
619                         if (s->syncing || s->expanding || s->expanded
620                             || s->replacing)
621                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
622
623                         set_bit(STRIPE_IO_STARTED, &sh->state);
624
625                         rbi->bi_bdev = rrdev->bdev;
626                         pr_debug("%s: for %llu schedule op %ld on "
627                                  "replacement disc %d\n",
628                                 __func__, (unsigned long long)sh->sector,
629                                 rbi->bi_rw, i);
630                         atomic_inc(&sh->count);
631                         rbi->bi_sector = sh->sector + rrdev->data_offset;
632                         rbi->bi_flags = 1 << BIO_UPTODATE;
633                         rbi->bi_idx = 0;
634                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
635                         rbi->bi_io_vec[0].bv_offset = 0;
636                         rbi->bi_size = STRIPE_SIZE;
637                         rbi->bi_next = NULL;
638                         generic_make_request(rbi);
639                 }
640                 if (!rdev && !rrdev) {
641                         if (rw & WRITE)
642                                 set_bit(STRIPE_DEGRADED, &sh->state);
643                         pr_debug("skip op %ld on disc %d for sector %llu\n",
644                                 bi->bi_rw, i, (unsigned long long)sh->sector);
645                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
646                         set_bit(STRIPE_HANDLE, &sh->state);
647                 }
648         }
649 }
650
651 static struct dma_async_tx_descriptor *
652 async_copy_data(int frombio, struct bio *bio, struct page *page,
653         sector_t sector, struct dma_async_tx_descriptor *tx)
654 {
655         struct bio_vec *bvl;
656         struct page *bio_page;
657         int i;
658         int page_offset;
659         struct async_submit_ctl submit;
660         enum async_tx_flags flags = 0;
661
662         if (bio->bi_sector >= sector)
663                 page_offset = (signed)(bio->bi_sector - sector) * 512;
664         else
665                 page_offset = (signed)(sector - bio->bi_sector) * -512;
666
667         if (frombio)
668                 flags |= ASYNC_TX_FENCE;
669         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
670
671         bio_for_each_segment(bvl, bio, i) {
672                 int len = bvl->bv_len;
673                 int clen;
674                 int b_offset = 0;
675
676                 if (page_offset < 0) {
677                         b_offset = -page_offset;
678                         page_offset += b_offset;
679                         len -= b_offset;
680                 }
681
682                 if (len > 0 && page_offset + len > STRIPE_SIZE)
683                         clen = STRIPE_SIZE - page_offset;
684                 else
685                         clen = len;
686
687                 if (clen > 0) {
688                         b_offset += bvl->bv_offset;
689                         bio_page = bvl->bv_page;
690                         if (frombio)
691                                 tx = async_memcpy(page, bio_page, page_offset,
692                                                   b_offset, clen, &submit);
693                         else
694                                 tx = async_memcpy(bio_page, page, b_offset,
695                                                   page_offset, clen, &submit);
696                 }
697                 /* chain the operations */
698                 submit.depend_tx = tx;
699
700                 if (clen < len) /* hit end of page */
701                         break;
702                 page_offset +=  len;
703         }
704
705         return tx;
706 }
707
708 static void ops_complete_biofill(void *stripe_head_ref)
709 {
710         struct stripe_head *sh = stripe_head_ref;
711         struct bio *return_bi = NULL;
712         struct r5conf *conf = sh->raid_conf;
713         int i;
714
715         pr_debug("%s: stripe %llu\n", __func__,
716                 (unsigned long long)sh->sector);
717
718         /* clear completed biofills */
719         spin_lock_irq(&conf->device_lock);
720         for (i = sh->disks; i--; ) {
721                 struct r5dev *dev = &sh->dev[i];
722
723                 /* acknowledge completion of a biofill operation */
724                 /* and check if we need to reply to a read request,
725                  * new R5_Wantfill requests are held off until
726                  * !STRIPE_BIOFILL_RUN
727                  */
728                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
729                         struct bio *rbi, *rbi2;
730
731                         BUG_ON(!dev->read);
732                         rbi = dev->read;
733                         dev->read = NULL;
734                         while (rbi && rbi->bi_sector <
735                                 dev->sector + STRIPE_SECTORS) {
736                                 rbi2 = r5_next_bio(rbi, dev->sector);
737                                 if (!raid5_dec_bi_phys_segments(rbi)) {
738                                         rbi->bi_next = return_bi;
739                                         return_bi = rbi;
740                                 }
741                                 rbi = rbi2;
742                         }
743                 }
744         }
745         spin_unlock_irq(&conf->device_lock);
746         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
747
748         return_io(return_bi);
749
750         set_bit(STRIPE_HANDLE, &sh->state);
751         release_stripe(sh);
752 }
753
754 static void ops_run_biofill(struct stripe_head *sh)
755 {
756         struct dma_async_tx_descriptor *tx = NULL;
757         struct r5conf *conf = sh->raid_conf;
758         struct async_submit_ctl submit;
759         int i;
760
761         pr_debug("%s: stripe %llu\n", __func__,
762                 (unsigned long long)sh->sector);
763
764         for (i = sh->disks; i--; ) {
765                 struct r5dev *dev = &sh->dev[i];
766                 if (test_bit(R5_Wantfill, &dev->flags)) {
767                         struct bio *rbi;
768                         spin_lock_irq(&conf->device_lock);
769                         dev->read = rbi = dev->toread;
770                         dev->toread = NULL;
771                         spin_unlock_irq(&conf->device_lock);
772                         while (rbi && rbi->bi_sector <
773                                 dev->sector + STRIPE_SECTORS) {
774                                 tx = async_copy_data(0, rbi, dev->page,
775                                         dev->sector, tx);
776                                 rbi = r5_next_bio(rbi, dev->sector);
777                         }
778                 }
779         }
780
781         atomic_inc(&sh->count);
782         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
783         async_trigger_callback(&submit);
784 }
785
786 static void mark_target_uptodate(struct stripe_head *sh, int target)
787 {
788         struct r5dev *tgt;
789
790         if (target < 0)
791                 return;
792
793         tgt = &sh->dev[target];
794         set_bit(R5_UPTODATE, &tgt->flags);
795         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
796         clear_bit(R5_Wantcompute, &tgt->flags);
797 }
798
799 static void ops_complete_compute(void *stripe_head_ref)
800 {
801         struct stripe_head *sh = stripe_head_ref;
802
803         pr_debug("%s: stripe %llu\n", __func__,
804                 (unsigned long long)sh->sector);
805
806         /* mark the computed target(s) as uptodate */
807         mark_target_uptodate(sh, sh->ops.target);
808         mark_target_uptodate(sh, sh->ops.target2);
809
810         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
811         if (sh->check_state == check_state_compute_run)
812                 sh->check_state = check_state_compute_result;
813         set_bit(STRIPE_HANDLE, &sh->state);
814         release_stripe(sh);
815 }
816
817 /* return a pointer to the address conversion region of the scribble buffer */
818 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
819                                  struct raid5_percpu *percpu)
820 {
821         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
822 }
823
824 static struct dma_async_tx_descriptor *
825 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
826 {
827         int disks = sh->disks;
828         struct page **xor_srcs = percpu->scribble;
829         int target = sh->ops.target;
830         struct r5dev *tgt = &sh->dev[target];
831         struct page *xor_dest = tgt->page;
832         int count = 0;
833         struct dma_async_tx_descriptor *tx;
834         struct async_submit_ctl submit;
835         int i;
836
837         pr_debug("%s: stripe %llu block: %d\n",
838                 __func__, (unsigned long long)sh->sector, target);
839         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
840
841         for (i = disks; i--; )
842                 if (i != target)
843                         xor_srcs[count++] = sh->dev[i].page;
844
845         atomic_inc(&sh->count);
846
847         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
848                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
849         if (unlikely(count == 1))
850                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
851         else
852                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
853
854         return tx;
855 }
856
857 /* set_syndrome_sources - populate source buffers for gen_syndrome
858  * @srcs - (struct page *) array of size sh->disks
859  * @sh - stripe_head to parse
860  *
861  * Populates srcs in proper layout order for the stripe and returns the
862  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
863  * destination buffer is recorded in srcs[count] and the Q destination
864  * is recorded in srcs[count+1]].
865  */
866 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
867 {
868         int disks = sh->disks;
869         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
870         int d0_idx = raid6_d0(sh);
871         int count;
872         int i;
873
874         for (i = 0; i < disks; i++)
875                 srcs[i] = NULL;
876
877         count = 0;
878         i = d0_idx;
879         do {
880                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
881
882                 srcs[slot] = sh->dev[i].page;
883                 i = raid6_next_disk(i, disks);
884         } while (i != d0_idx);
885
886         return syndrome_disks;
887 }
888
889 static struct dma_async_tx_descriptor *
890 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
891 {
892         int disks = sh->disks;
893         struct page **blocks = percpu->scribble;
894         int target;
895         int qd_idx = sh->qd_idx;
896         struct dma_async_tx_descriptor *tx;
897         struct async_submit_ctl submit;
898         struct r5dev *tgt;
899         struct page *dest;
900         int i;
901         int count;
902
903         if (sh->ops.target < 0)
904                 target = sh->ops.target2;
905         else if (sh->ops.target2 < 0)
906                 target = sh->ops.target;
907         else
908                 /* we should only have one valid target */
909                 BUG();
910         BUG_ON(target < 0);
911         pr_debug("%s: stripe %llu block: %d\n",
912                 __func__, (unsigned long long)sh->sector, target);
913
914         tgt = &sh->dev[target];
915         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
916         dest = tgt->page;
917
918         atomic_inc(&sh->count);
919
920         if (target == qd_idx) {
921                 count = set_syndrome_sources(blocks, sh);
922                 blocks[count] = NULL; /* regenerating p is not necessary */
923                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
924                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
925                                   ops_complete_compute, sh,
926                                   to_addr_conv(sh, percpu));
927                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
928         } else {
929                 /* Compute any data- or p-drive using XOR */
930                 count = 0;
931                 for (i = disks; i-- ; ) {
932                         if (i == target || i == qd_idx)
933                                 continue;
934                         blocks[count++] = sh->dev[i].page;
935                 }
936
937                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
938                                   NULL, ops_complete_compute, sh,
939                                   to_addr_conv(sh, percpu));
940                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
941         }
942
943         return tx;
944 }
945
946 static struct dma_async_tx_descriptor *
947 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
948 {
949         int i, count, disks = sh->disks;
950         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
951         int d0_idx = raid6_d0(sh);
952         int faila = -1, failb = -1;
953         int target = sh->ops.target;
954         int target2 = sh->ops.target2;
955         struct r5dev *tgt = &sh->dev[target];
956         struct r5dev *tgt2 = &sh->dev[target2];
957         struct dma_async_tx_descriptor *tx;
958         struct page **blocks = percpu->scribble;
959         struct async_submit_ctl submit;
960
961         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
962                  __func__, (unsigned long long)sh->sector, target, target2);
963         BUG_ON(target < 0 || target2 < 0);
964         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
965         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
966
967         /* we need to open-code set_syndrome_sources to handle the
968          * slot number conversion for 'faila' and 'failb'
969          */
970         for (i = 0; i < disks ; i++)
971                 blocks[i] = NULL;
972         count = 0;
973         i = d0_idx;
974         do {
975                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
976
977                 blocks[slot] = sh->dev[i].page;
978
979                 if (i == target)
980                         faila = slot;
981                 if (i == target2)
982                         failb = slot;
983                 i = raid6_next_disk(i, disks);
984         } while (i != d0_idx);
985
986         BUG_ON(faila == failb);
987         if (failb < faila)
988                 swap(faila, failb);
989         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
990                  __func__, (unsigned long long)sh->sector, faila, failb);
991
992         atomic_inc(&sh->count);
993
994         if (failb == syndrome_disks+1) {
995                 /* Q disk is one of the missing disks */
996                 if (faila == syndrome_disks) {
997                         /* Missing P+Q, just recompute */
998                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
999                                           ops_complete_compute, sh,
1000                                           to_addr_conv(sh, percpu));
1001                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1002                                                   STRIPE_SIZE, &submit);
1003                 } else {
1004                         struct page *dest;
1005                         int data_target;
1006                         int qd_idx = sh->qd_idx;
1007
1008                         /* Missing D+Q: recompute D from P, then recompute Q */
1009                         if (target == qd_idx)
1010                                 data_target = target2;
1011                         else
1012                                 data_target = target;
1013
1014                         count = 0;
1015                         for (i = disks; i-- ; ) {
1016                                 if (i == data_target || i == qd_idx)
1017                                         continue;
1018                                 blocks[count++] = sh->dev[i].page;
1019                         }
1020                         dest = sh->dev[data_target].page;
1021                         init_async_submit(&submit,
1022                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1023                                           NULL, NULL, NULL,
1024                                           to_addr_conv(sh, percpu));
1025                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1026                                        &submit);
1027
1028                         count = set_syndrome_sources(blocks, sh);
1029                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1030                                           ops_complete_compute, sh,
1031                                           to_addr_conv(sh, percpu));
1032                         return async_gen_syndrome(blocks, 0, count+2,
1033                                                   STRIPE_SIZE, &submit);
1034                 }
1035         } else {
1036                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1037                                   ops_complete_compute, sh,
1038                                   to_addr_conv(sh, percpu));
1039                 if (failb == syndrome_disks) {
1040                         /* We're missing D+P. */
1041                         return async_raid6_datap_recov(syndrome_disks+2,
1042                                                        STRIPE_SIZE, faila,
1043                                                        blocks, &submit);
1044                 } else {
1045                         /* We're missing D+D. */
1046                         return async_raid6_2data_recov(syndrome_disks+2,
1047                                                        STRIPE_SIZE, faila, failb,
1048                                                        blocks, &submit);
1049                 }
1050         }
1051 }
1052
1053
1054 static void ops_complete_prexor(void *stripe_head_ref)
1055 {
1056         struct stripe_head *sh = stripe_head_ref;
1057
1058         pr_debug("%s: stripe %llu\n", __func__,
1059                 (unsigned long long)sh->sector);
1060 }
1061
1062 static struct dma_async_tx_descriptor *
1063 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1064                struct dma_async_tx_descriptor *tx)
1065 {
1066         int disks = sh->disks;
1067         struct page **xor_srcs = percpu->scribble;
1068         int count = 0, pd_idx = sh->pd_idx, i;
1069         struct async_submit_ctl submit;
1070
1071         /* existing parity data subtracted */
1072         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1073
1074         pr_debug("%s: stripe %llu\n", __func__,
1075                 (unsigned long long)sh->sector);
1076
1077         for (i = disks; i--; ) {
1078                 struct r5dev *dev = &sh->dev[i];
1079                 /* Only process blocks that are known to be uptodate */
1080                 if (test_bit(R5_Wantdrain, &dev->flags))
1081                         xor_srcs[count++] = dev->page;
1082         }
1083
1084         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1085                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1086         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1087
1088         return tx;
1089 }
1090
1091 static struct dma_async_tx_descriptor *
1092 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1093 {
1094         int disks = sh->disks;
1095         int i;
1096
1097         pr_debug("%s: stripe %llu\n", __func__,
1098                 (unsigned long long)sh->sector);
1099
1100         for (i = disks; i--; ) {
1101                 struct r5dev *dev = &sh->dev[i];
1102                 struct bio *chosen;
1103
1104                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1105                         struct bio *wbi;
1106
1107                         spin_lock_irq(&sh->raid_conf->device_lock);
1108                         chosen = dev->towrite;
1109                         dev->towrite = NULL;
1110                         BUG_ON(dev->written);
1111                         wbi = dev->written = chosen;
1112                         spin_unlock_irq(&sh->raid_conf->device_lock);
1113
1114                         while (wbi && wbi->bi_sector <
1115                                 dev->sector + STRIPE_SECTORS) {
1116                                 if (wbi->bi_rw & REQ_FUA)
1117                                         set_bit(R5_WantFUA, &dev->flags);
1118                                 tx = async_copy_data(1, wbi, dev->page,
1119                                         dev->sector, tx);
1120                                 wbi = r5_next_bio(wbi, dev->sector);
1121                         }
1122                 }
1123         }
1124
1125         return tx;
1126 }
1127
1128 static void ops_complete_reconstruct(void *stripe_head_ref)
1129 {
1130         struct stripe_head *sh = stripe_head_ref;
1131         int disks = sh->disks;
1132         int pd_idx = sh->pd_idx;
1133         int qd_idx = sh->qd_idx;
1134         int i;
1135         bool fua = false;
1136
1137         pr_debug("%s: stripe %llu\n", __func__,
1138                 (unsigned long long)sh->sector);
1139
1140         for (i = disks; i--; )
1141                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1142
1143         for (i = disks; i--; ) {
1144                 struct r5dev *dev = &sh->dev[i];
1145
1146                 if (dev->written || i == pd_idx || i == qd_idx) {
1147                         set_bit(R5_UPTODATE, &dev->flags);
1148                         if (fua)
1149                                 set_bit(R5_WantFUA, &dev->flags);
1150                 }
1151         }
1152
1153         if (sh->reconstruct_state == reconstruct_state_drain_run)
1154                 sh->reconstruct_state = reconstruct_state_drain_result;
1155         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1156                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1157         else {
1158                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1159                 sh->reconstruct_state = reconstruct_state_result;
1160         }
1161
1162         set_bit(STRIPE_HANDLE, &sh->state);
1163         release_stripe(sh);
1164 }
1165
1166 static void
1167 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1168                      struct dma_async_tx_descriptor *tx)
1169 {
1170         int disks = sh->disks;
1171         struct page **xor_srcs = percpu->scribble;
1172         struct async_submit_ctl submit;
1173         int count = 0, pd_idx = sh->pd_idx, i;
1174         struct page *xor_dest;
1175         int prexor = 0;
1176         unsigned long flags;
1177
1178         pr_debug("%s: stripe %llu\n", __func__,
1179                 (unsigned long long)sh->sector);
1180
1181         /* check if prexor is active which means only process blocks
1182          * that are part of a read-modify-write (written)
1183          */
1184         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1185                 prexor = 1;
1186                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1187                 for (i = disks; i--; ) {
1188                         struct r5dev *dev = &sh->dev[i];
1189                         if (dev->written)
1190                                 xor_srcs[count++] = dev->page;
1191                 }
1192         } else {
1193                 xor_dest = sh->dev[pd_idx].page;
1194                 for (i = disks; i--; ) {
1195                         struct r5dev *dev = &sh->dev[i];
1196                         if (i != pd_idx)
1197                                 xor_srcs[count++] = dev->page;
1198                 }
1199         }
1200
1201         /* 1/ if we prexor'd then the dest is reused as a source
1202          * 2/ if we did not prexor then we are redoing the parity
1203          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1204          * for the synchronous xor case
1205          */
1206         flags = ASYNC_TX_ACK |
1207                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1208
1209         atomic_inc(&sh->count);
1210
1211         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1212                           to_addr_conv(sh, percpu));
1213         if (unlikely(count == 1))
1214                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1215         else
1216                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1217 }
1218
1219 static void
1220 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1221                      struct dma_async_tx_descriptor *tx)
1222 {
1223         struct async_submit_ctl submit;
1224         struct page **blocks = percpu->scribble;
1225         int count;
1226
1227         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1228
1229         count = set_syndrome_sources(blocks, sh);
1230
1231         atomic_inc(&sh->count);
1232
1233         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1234                           sh, to_addr_conv(sh, percpu));
1235         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1236 }
1237
1238 static void ops_complete_check(void *stripe_head_ref)
1239 {
1240         struct stripe_head *sh = stripe_head_ref;
1241
1242         pr_debug("%s: stripe %llu\n", __func__,
1243                 (unsigned long long)sh->sector);
1244
1245         sh->check_state = check_state_check_result;
1246         set_bit(STRIPE_HANDLE, &sh->state);
1247         release_stripe(sh);
1248 }
1249
1250 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1251 {
1252         int disks = sh->disks;
1253         int pd_idx = sh->pd_idx;
1254         int qd_idx = sh->qd_idx;
1255         struct page *xor_dest;
1256         struct page **xor_srcs = percpu->scribble;
1257         struct dma_async_tx_descriptor *tx;
1258         struct async_submit_ctl submit;
1259         int count;
1260         int i;
1261
1262         pr_debug("%s: stripe %llu\n", __func__,
1263                 (unsigned long long)sh->sector);
1264
1265         count = 0;
1266         xor_dest = sh->dev[pd_idx].page;
1267         xor_srcs[count++] = xor_dest;
1268         for (i = disks; i--; ) {
1269                 if (i == pd_idx || i == qd_idx)
1270                         continue;
1271                 xor_srcs[count++] = sh->dev[i].page;
1272         }
1273
1274         init_async_submit(&submit, 0, NULL, NULL, NULL,
1275                           to_addr_conv(sh, percpu));
1276         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1277                            &sh->ops.zero_sum_result, &submit);
1278
1279         atomic_inc(&sh->count);
1280         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1281         tx = async_trigger_callback(&submit);
1282 }
1283
1284 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1285 {
1286         struct page **srcs = percpu->scribble;
1287         struct async_submit_ctl submit;
1288         int count;
1289
1290         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1291                 (unsigned long long)sh->sector, checkp);
1292
1293         count = set_syndrome_sources(srcs, sh);
1294         if (!checkp)
1295                 srcs[count] = NULL;
1296
1297         atomic_inc(&sh->count);
1298         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1299                           sh, to_addr_conv(sh, percpu));
1300         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1301                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1302 }
1303
1304 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1305 {
1306         int overlap_clear = 0, i, disks = sh->disks;
1307         struct dma_async_tx_descriptor *tx = NULL;
1308         struct r5conf *conf = sh->raid_conf;
1309         int level = conf->level;
1310         struct raid5_percpu *percpu;
1311         unsigned long cpu;
1312
1313         cpu = get_cpu();
1314         percpu = per_cpu_ptr(conf->percpu, cpu);
1315         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1316                 ops_run_biofill(sh);
1317                 overlap_clear++;
1318         }
1319
1320         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1321                 if (level < 6)
1322                         tx = ops_run_compute5(sh, percpu);
1323                 else {
1324                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1325                                 tx = ops_run_compute6_1(sh, percpu);
1326                         else
1327                                 tx = ops_run_compute6_2(sh, percpu);
1328                 }
1329                 /* terminate the chain if reconstruct is not set to be run */
1330                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1331                         async_tx_ack(tx);
1332         }
1333
1334         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1335                 tx = ops_run_prexor(sh, percpu, tx);
1336
1337         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1338                 tx = ops_run_biodrain(sh, tx);
1339                 overlap_clear++;
1340         }
1341
1342         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1343                 if (level < 6)
1344                         ops_run_reconstruct5(sh, percpu, tx);
1345                 else
1346                         ops_run_reconstruct6(sh, percpu, tx);
1347         }
1348
1349         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1350                 if (sh->check_state == check_state_run)
1351                         ops_run_check_p(sh, percpu);
1352                 else if (sh->check_state == check_state_run_q)
1353                         ops_run_check_pq(sh, percpu, 0);
1354                 else if (sh->check_state == check_state_run_pq)
1355                         ops_run_check_pq(sh, percpu, 1);
1356                 else
1357                         BUG();
1358         }
1359
1360         if (overlap_clear)
1361                 for (i = disks; i--; ) {
1362                         struct r5dev *dev = &sh->dev[i];
1363                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1364                                 wake_up(&sh->raid_conf->wait_for_overlap);
1365                 }
1366         put_cpu();
1367 }
1368
1369 #ifdef CONFIG_MULTICORE_RAID456
1370 static void async_run_ops(void *param, async_cookie_t cookie)
1371 {
1372         struct stripe_head *sh = param;
1373         unsigned long ops_request = sh->ops.request;
1374
1375         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1376         wake_up(&sh->ops.wait_for_ops);
1377
1378         __raid_run_ops(sh, ops_request);
1379         release_stripe(sh);
1380 }
1381
1382 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1383 {
1384         /* since handle_stripe can be called outside of raid5d context
1385          * we need to ensure sh->ops.request is de-staged before another
1386          * request arrives
1387          */
1388         wait_event(sh->ops.wait_for_ops,
1389                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1390         sh->ops.request = ops_request;
1391
1392         atomic_inc(&sh->count);
1393         async_schedule(async_run_ops, sh);
1394 }
1395 #else
1396 #define raid_run_ops __raid_run_ops
1397 #endif
1398
1399 static int grow_one_stripe(struct r5conf *conf)
1400 {
1401         struct stripe_head *sh;
1402         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1403         if (!sh)
1404                 return 0;
1405
1406         sh->raid_conf = conf;
1407         #ifdef CONFIG_MULTICORE_RAID456
1408         init_waitqueue_head(&sh->ops.wait_for_ops);
1409         #endif
1410
1411         if (grow_buffers(sh)) {
1412                 shrink_buffers(sh);
1413                 kmem_cache_free(conf->slab_cache, sh);
1414                 return 0;
1415         }
1416         /* we just created an active stripe so... */
1417         atomic_set(&sh->count, 1);
1418         atomic_inc(&conf->active_stripes);
1419         INIT_LIST_HEAD(&sh->lru);
1420         release_stripe(sh);
1421         return 1;
1422 }
1423
1424 static int grow_stripes(struct r5conf *conf, int num)
1425 {
1426         struct kmem_cache *sc;
1427         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1428
1429         if (conf->mddev->gendisk)
1430                 sprintf(conf->cache_name[0],
1431                         "raid%d-%s", conf->level, mdname(conf->mddev));
1432         else
1433                 sprintf(conf->cache_name[0],
1434                         "raid%d-%p", conf->level, conf->mddev);
1435         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1436
1437         conf->active_name = 0;
1438         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1439                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1440                                0, 0, NULL);
1441         if (!sc)
1442                 return 1;
1443         conf->slab_cache = sc;
1444         conf->pool_size = devs;
1445         while (num--)
1446                 if (!grow_one_stripe(conf))
1447                         return 1;
1448         return 0;
1449 }
1450
1451 /**
1452  * scribble_len - return the required size of the scribble region
1453  * @num - total number of disks in the array
1454  *
1455  * The size must be enough to contain:
1456  * 1/ a struct page pointer for each device in the array +2
1457  * 2/ room to convert each entry in (1) to its corresponding dma
1458  *    (dma_map_page()) or page (page_address()) address.
1459  *
1460  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1461  * calculate over all devices (not just the data blocks), using zeros in place
1462  * of the P and Q blocks.
1463  */
1464 static size_t scribble_len(int num)
1465 {
1466         size_t len;
1467
1468         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1469
1470         return len;
1471 }
1472
1473 static int resize_stripes(struct r5conf *conf, int newsize)
1474 {
1475         /* Make all the stripes able to hold 'newsize' devices.
1476          * New slots in each stripe get 'page' set to a new page.
1477          *
1478          * This happens in stages:
1479          * 1/ create a new kmem_cache and allocate the required number of
1480          *    stripe_heads.
1481          * 2/ gather all the old stripe_heads and tranfer the pages across
1482          *    to the new stripe_heads.  This will have the side effect of
1483          *    freezing the array as once all stripe_heads have been collected,
1484          *    no IO will be possible.  Old stripe heads are freed once their
1485          *    pages have been transferred over, and the old kmem_cache is
1486          *    freed when all stripes are done.
1487          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1488          *    we simple return a failre status - no need to clean anything up.
1489          * 4/ allocate new pages for the new slots in the new stripe_heads.
1490          *    If this fails, we don't bother trying the shrink the
1491          *    stripe_heads down again, we just leave them as they are.
1492          *    As each stripe_head is processed the new one is released into
1493          *    active service.
1494          *
1495          * Once step2 is started, we cannot afford to wait for a write,
1496          * so we use GFP_NOIO allocations.
1497          */
1498         struct stripe_head *osh, *nsh;
1499         LIST_HEAD(newstripes);
1500         struct disk_info *ndisks;
1501         unsigned long cpu;
1502         int err;
1503         struct kmem_cache *sc;
1504         int i;
1505
1506         if (newsize <= conf->pool_size)
1507                 return 0; /* never bother to shrink */
1508
1509         err = md_allow_write(conf->mddev);
1510         if (err)
1511                 return err;
1512
1513         /* Step 1 */
1514         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1515                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1516                                0, 0, NULL);
1517         if (!sc)
1518                 return -ENOMEM;
1519
1520         for (i = conf->max_nr_stripes; i; i--) {
1521                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1522                 if (!nsh)
1523                         break;
1524
1525                 nsh->raid_conf = conf;
1526                 #ifdef CONFIG_MULTICORE_RAID456
1527                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1528                 #endif
1529
1530                 list_add(&nsh->lru, &newstripes);
1531         }
1532         if (i) {
1533                 /* didn't get enough, give up */
1534                 while (!list_empty(&newstripes)) {
1535                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1536                         list_del(&nsh->lru);
1537                         kmem_cache_free(sc, nsh);
1538                 }
1539                 kmem_cache_destroy(sc);
1540                 return -ENOMEM;
1541         }
1542         /* Step 2 - Must use GFP_NOIO now.
1543          * OK, we have enough stripes, start collecting inactive
1544          * stripes and copying them over
1545          */
1546         list_for_each_entry(nsh, &newstripes, lru) {
1547                 spin_lock_irq(&conf->device_lock);
1548                 wait_event_lock_irq(conf->wait_for_stripe,
1549                                     !list_empty(&conf->inactive_list),
1550                                     conf->device_lock,
1551                                     );
1552                 osh = get_free_stripe(conf);
1553                 spin_unlock_irq(&conf->device_lock);
1554                 atomic_set(&nsh->count, 1);
1555                 for(i=0; i<conf->pool_size; i++)
1556                         nsh->dev[i].page = osh->dev[i].page;
1557                 for( ; i<newsize; i++)
1558                         nsh->dev[i].page = NULL;
1559                 kmem_cache_free(conf->slab_cache, osh);
1560         }
1561         kmem_cache_destroy(conf->slab_cache);
1562
1563         /* Step 3.
1564          * At this point, we are holding all the stripes so the array
1565          * is completely stalled, so now is a good time to resize
1566          * conf->disks and the scribble region
1567          */
1568         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1569         if (ndisks) {
1570                 for (i=0; i<conf->raid_disks; i++)
1571                         ndisks[i] = conf->disks[i];
1572                 kfree(conf->disks);
1573                 conf->disks = ndisks;
1574         } else
1575                 err = -ENOMEM;
1576
1577         get_online_cpus();
1578         conf->scribble_len = scribble_len(newsize);
1579         for_each_present_cpu(cpu) {
1580                 struct raid5_percpu *percpu;
1581                 void *scribble;
1582
1583                 percpu = per_cpu_ptr(conf->percpu, cpu);
1584                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1585
1586                 if (scribble) {
1587                         kfree(percpu->scribble);
1588                         percpu->scribble = scribble;
1589                 } else {
1590                         err = -ENOMEM;
1591                         break;
1592                 }
1593         }
1594         put_online_cpus();
1595
1596         /* Step 4, return new stripes to service */
1597         while(!list_empty(&newstripes)) {
1598                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1599                 list_del_init(&nsh->lru);
1600
1601                 for (i=conf->raid_disks; i < newsize; i++)
1602                         if (nsh->dev[i].page == NULL) {
1603                                 struct page *p = alloc_page(GFP_NOIO);
1604                                 nsh->dev[i].page = p;
1605                                 if (!p)
1606                                         err = -ENOMEM;
1607                         }
1608                 release_stripe(nsh);
1609         }
1610         /* critical section pass, GFP_NOIO no longer needed */
1611
1612         conf->slab_cache = sc;
1613         conf->active_name = 1-conf->active_name;
1614         conf->pool_size = newsize;
1615         return err;
1616 }
1617
1618 static int drop_one_stripe(struct r5conf *conf)
1619 {
1620         struct stripe_head *sh;
1621
1622         spin_lock_irq(&conf->device_lock);
1623         sh = get_free_stripe(conf);
1624         spin_unlock_irq(&conf->device_lock);
1625         if (!sh)
1626                 return 0;
1627         BUG_ON(atomic_read(&sh->count));
1628         shrink_buffers(sh);
1629         kmem_cache_free(conf->slab_cache, sh);
1630         atomic_dec(&conf->active_stripes);
1631         return 1;
1632 }
1633
1634 static void shrink_stripes(struct r5conf *conf)
1635 {
1636         while (drop_one_stripe(conf))
1637                 ;
1638
1639         if (conf->slab_cache)
1640                 kmem_cache_destroy(conf->slab_cache);
1641         conf->slab_cache = NULL;
1642 }
1643
1644 static void raid5_end_read_request(struct bio * bi, int error)
1645 {
1646         struct stripe_head *sh = bi->bi_private;
1647         struct r5conf *conf = sh->raid_conf;
1648         int disks = sh->disks, i;
1649         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1650         char b[BDEVNAME_SIZE];
1651         struct md_rdev *rdev = NULL;
1652
1653
1654         for (i=0 ; i<disks; i++)
1655                 if (bi == &sh->dev[i].req)
1656                         break;
1657
1658         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1659                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1660                 uptodate);
1661         if (i == disks) {
1662                 BUG();
1663                 return;
1664         }
1665         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1666                 /* If replacement finished while this request was outstanding,
1667                  * 'replacement' might be NULL already.
1668                  * In that case it moved down to 'rdev'.
1669                  * rdev is not removed until all requests are finished.
1670                  */
1671                 rdev = conf->disks[i].replacement;
1672         if (!rdev)
1673                 rdev = conf->disks[i].rdev;
1674
1675         if (uptodate) {
1676                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1677                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1678                         /* Note that this cannot happen on a
1679                          * replacement device.  We just fail those on
1680                          * any error
1681                          */
1682                         printk_ratelimited(
1683                                 KERN_INFO
1684                                 "md/raid:%s: read error corrected"
1685                                 " (%lu sectors at %llu on %s)\n",
1686                                 mdname(conf->mddev), STRIPE_SECTORS,
1687                                 (unsigned long long)(sh->sector
1688                                                      + rdev->data_offset),
1689                                 bdevname(rdev->bdev, b));
1690                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1691                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1692                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1693                 }
1694                 if (atomic_read(&rdev->read_errors))
1695                         atomic_set(&rdev->read_errors, 0);
1696         } else {
1697                 const char *bdn = bdevname(rdev->bdev, b);
1698                 int retry = 0;
1699
1700                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1701                 atomic_inc(&rdev->read_errors);
1702                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1703                         printk_ratelimited(
1704                                 KERN_WARNING
1705                                 "md/raid:%s: read error on replacement device "
1706                                 "(sector %llu on %s).\n",
1707                                 mdname(conf->mddev),
1708                                 (unsigned long long)(sh->sector
1709                                                      + rdev->data_offset),
1710                                 bdn);
1711                 else if (conf->mddev->degraded >= conf->max_degraded)
1712                         printk_ratelimited(
1713                                 KERN_WARNING
1714                                 "md/raid:%s: read error not correctable "
1715                                 "(sector %llu on %s).\n",
1716                                 mdname(conf->mddev),
1717                                 (unsigned long long)(sh->sector
1718                                                      + rdev->data_offset),
1719                                 bdn);
1720                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1721                         /* Oh, no!!! */
1722                         printk_ratelimited(
1723                                 KERN_WARNING
1724                                 "md/raid:%s: read error NOT corrected!! "
1725                                 "(sector %llu on %s).\n",
1726                                 mdname(conf->mddev),
1727                                 (unsigned long long)(sh->sector
1728                                                      + rdev->data_offset),
1729                                 bdn);
1730                 else if (atomic_read(&rdev->read_errors)
1731                          > conf->max_nr_stripes)
1732                         printk(KERN_WARNING
1733                                "md/raid:%s: Too many read errors, failing device %s.\n",
1734                                mdname(conf->mddev), bdn);
1735                 else
1736                         retry = 1;
1737                 if (retry)
1738                         set_bit(R5_ReadError, &sh->dev[i].flags);
1739                 else {
1740                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1741                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1742                         md_error(conf->mddev, rdev);
1743                 }
1744         }
1745         rdev_dec_pending(rdev, conf->mddev);
1746         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1747         set_bit(STRIPE_HANDLE, &sh->state);
1748         release_stripe(sh);
1749 }
1750
1751 static void raid5_end_write_request(struct bio *bi, int error)
1752 {
1753         struct stripe_head *sh = bi->bi_private;
1754         struct r5conf *conf = sh->raid_conf;
1755         int disks = sh->disks, i;
1756         struct md_rdev *uninitialized_var(rdev);
1757         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1758         sector_t first_bad;
1759         int bad_sectors;
1760         int replacement = 0;
1761
1762         for (i = 0 ; i < disks; i++) {
1763                 if (bi == &sh->dev[i].req) {
1764                         rdev = conf->disks[i].rdev;
1765                         break;
1766                 }
1767                 if (bi == &sh->dev[i].rreq) {
1768                         rdev = conf->disks[i].replacement;
1769                         if (rdev)
1770                                 replacement = 1;
1771                         else
1772                                 /* rdev was removed and 'replacement'
1773                                  * replaced it.  rdev is not removed
1774                                  * until all requests are finished.
1775                                  */
1776                                 rdev = conf->disks[i].rdev;
1777                         break;
1778                 }
1779         }
1780         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1781                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1782                 uptodate);
1783         if (i == disks) {
1784                 BUG();
1785                 return;
1786         }
1787
1788         if (replacement) {
1789                 if (!uptodate)
1790                         md_error(conf->mddev, rdev);
1791                 else if (is_badblock(rdev, sh->sector,
1792                                      STRIPE_SECTORS,
1793                                      &first_bad, &bad_sectors))
1794                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1795         } else {
1796                 if (!uptodate) {
1797                         set_bit(WriteErrorSeen, &rdev->flags);
1798                         set_bit(R5_WriteError, &sh->dev[i].flags);
1799                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1800                                 set_bit(MD_RECOVERY_NEEDED,
1801                                         &rdev->mddev->recovery);
1802                 } else if (is_badblock(rdev, sh->sector,
1803                                        STRIPE_SECTORS,
1804                                        &first_bad, &bad_sectors))
1805                         set_bit(R5_MadeGood, &sh->dev[i].flags);
1806         }
1807         rdev_dec_pending(rdev, conf->mddev);
1808
1809         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1810                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1811         set_bit(STRIPE_HANDLE, &sh->state);
1812         release_stripe(sh);
1813 }
1814
1815 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1816         
1817 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1818 {
1819         struct r5dev *dev = &sh->dev[i];
1820
1821         bio_init(&dev->req);
1822         dev->req.bi_io_vec = &dev->vec;
1823         dev->req.bi_vcnt++;
1824         dev->req.bi_max_vecs++;
1825         dev->req.bi_private = sh;
1826         dev->vec.bv_page = dev->page;
1827
1828         bio_init(&dev->rreq);
1829         dev->rreq.bi_io_vec = &dev->rvec;
1830         dev->rreq.bi_vcnt++;
1831         dev->rreq.bi_max_vecs++;
1832         dev->rreq.bi_private = sh;
1833         dev->rvec.bv_page = dev->page;
1834
1835         dev->flags = 0;
1836         dev->sector = compute_blocknr(sh, i, previous);
1837 }
1838
1839 static void error(struct mddev *mddev, struct md_rdev *rdev)
1840 {
1841         char b[BDEVNAME_SIZE];
1842         struct r5conf *conf = mddev->private;
1843         unsigned long flags;
1844         pr_debug("raid456: error called\n");
1845
1846         spin_lock_irqsave(&conf->device_lock, flags);
1847         clear_bit(In_sync, &rdev->flags);
1848         mddev->degraded = calc_degraded(conf);
1849         spin_unlock_irqrestore(&conf->device_lock, flags);
1850         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1851
1852         set_bit(Blocked, &rdev->flags);
1853         set_bit(Faulty, &rdev->flags);
1854         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1855         printk(KERN_ALERT
1856                "md/raid:%s: Disk failure on %s, disabling device.\n"
1857                "md/raid:%s: Operation continuing on %d devices.\n",
1858                mdname(mddev),
1859                bdevname(rdev->bdev, b),
1860                mdname(mddev),
1861                conf->raid_disks - mddev->degraded);
1862 }
1863
1864 /*
1865  * Input: a 'big' sector number,
1866  * Output: index of the data and parity disk, and the sector # in them.
1867  */
1868 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1869                                      int previous, int *dd_idx,
1870                                      struct stripe_head *sh)
1871 {
1872         sector_t stripe, stripe2;
1873         sector_t chunk_number;
1874         unsigned int chunk_offset;
1875         int pd_idx, qd_idx;
1876         int ddf_layout = 0;
1877         sector_t new_sector;
1878         int algorithm = previous ? conf->prev_algo
1879                                  : conf->algorithm;
1880         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1881                                          : conf->chunk_sectors;
1882         int raid_disks = previous ? conf->previous_raid_disks
1883                                   : conf->raid_disks;
1884         int data_disks = raid_disks - conf->max_degraded;
1885
1886         /* First compute the information on this sector */
1887
1888         /*
1889          * Compute the chunk number and the sector offset inside the chunk
1890          */
1891         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1892         chunk_number = r_sector;
1893
1894         /*
1895          * Compute the stripe number
1896          */
1897         stripe = chunk_number;
1898         *dd_idx = sector_div(stripe, data_disks);
1899         stripe2 = stripe;
1900         /*
1901          * Select the parity disk based on the user selected algorithm.
1902          */
1903         pd_idx = qd_idx = -1;
1904         switch(conf->level) {
1905         case 4:
1906                 pd_idx = data_disks;
1907                 break;
1908         case 5:
1909                 switch (algorithm) {
1910                 case ALGORITHM_LEFT_ASYMMETRIC:
1911                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1912                         if (*dd_idx >= pd_idx)
1913                                 (*dd_idx)++;
1914                         break;
1915                 case ALGORITHM_RIGHT_ASYMMETRIC:
1916                         pd_idx = sector_div(stripe2, raid_disks);
1917                         if (*dd_idx >= pd_idx)
1918                                 (*dd_idx)++;
1919                         break;
1920                 case ALGORITHM_LEFT_SYMMETRIC:
1921                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1922                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1923                         break;
1924                 case ALGORITHM_RIGHT_SYMMETRIC:
1925                         pd_idx = sector_div(stripe2, raid_disks);
1926                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1927                         break;
1928                 case ALGORITHM_PARITY_0:
1929                         pd_idx = 0;
1930                         (*dd_idx)++;
1931                         break;
1932                 case ALGORITHM_PARITY_N:
1933                         pd_idx = data_disks;
1934                         break;
1935                 default:
1936                         BUG();
1937                 }
1938                 break;
1939         case 6:
1940
1941                 switch (algorithm) {
1942                 case ALGORITHM_LEFT_ASYMMETRIC:
1943                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1944                         qd_idx = pd_idx + 1;
1945                         if (pd_idx == raid_disks-1) {
1946                                 (*dd_idx)++;    /* Q D D D P */
1947                                 qd_idx = 0;
1948                         } else if (*dd_idx >= pd_idx)
1949                                 (*dd_idx) += 2; /* D D P Q D */
1950                         break;
1951                 case ALGORITHM_RIGHT_ASYMMETRIC:
1952                         pd_idx = sector_div(stripe2, raid_disks);
1953                         qd_idx = pd_idx + 1;
1954                         if (pd_idx == raid_disks-1) {
1955                                 (*dd_idx)++;    /* Q D D D P */
1956                                 qd_idx = 0;
1957                         } else if (*dd_idx >= pd_idx)
1958                                 (*dd_idx) += 2; /* D D P Q D */
1959                         break;
1960                 case ALGORITHM_LEFT_SYMMETRIC:
1961                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1962                         qd_idx = (pd_idx + 1) % raid_disks;
1963                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1964                         break;
1965                 case ALGORITHM_RIGHT_SYMMETRIC:
1966                         pd_idx = sector_div(stripe2, raid_disks);
1967                         qd_idx = (pd_idx + 1) % raid_disks;
1968                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1969                         break;
1970
1971                 case ALGORITHM_PARITY_0:
1972                         pd_idx = 0;
1973                         qd_idx = 1;
1974                         (*dd_idx) += 2;
1975                         break;
1976                 case ALGORITHM_PARITY_N:
1977                         pd_idx = data_disks;
1978                         qd_idx = data_disks + 1;
1979                         break;
1980
1981                 case ALGORITHM_ROTATING_ZERO_RESTART:
1982                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1983                          * of blocks for computing Q is different.
1984                          */
1985                         pd_idx = sector_div(stripe2, raid_disks);
1986                         qd_idx = pd_idx + 1;
1987                         if (pd_idx == raid_disks-1) {
1988                                 (*dd_idx)++;    /* Q D D D P */
1989                                 qd_idx = 0;
1990                         } else if (*dd_idx >= pd_idx)
1991                                 (*dd_idx) += 2; /* D D P Q D */
1992                         ddf_layout = 1;
1993                         break;
1994
1995                 case ALGORITHM_ROTATING_N_RESTART:
1996                         /* Same a left_asymmetric, by first stripe is
1997                          * D D D P Q  rather than
1998                          * Q D D D P
1999                          */
2000                         stripe2 += 1;
2001                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2002                         qd_idx = pd_idx + 1;
2003                         if (pd_idx == raid_disks-1) {
2004                                 (*dd_idx)++;    /* Q D D D P */
2005                                 qd_idx = 0;
2006                         } else if (*dd_idx >= pd_idx)
2007                                 (*dd_idx) += 2; /* D D P Q D */
2008                         ddf_layout = 1;
2009                         break;
2010
2011                 case ALGORITHM_ROTATING_N_CONTINUE:
2012                         /* Same as left_symmetric but Q is before P */
2013                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2014                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2015                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2016                         ddf_layout = 1;
2017                         break;
2018
2019                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2020                         /* RAID5 left_asymmetric, with Q on last device */
2021                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2022                         if (*dd_idx >= pd_idx)
2023                                 (*dd_idx)++;
2024                         qd_idx = raid_disks - 1;
2025                         break;
2026
2027                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2028                         pd_idx = sector_div(stripe2, raid_disks-1);
2029                         if (*dd_idx >= pd_idx)
2030                                 (*dd_idx)++;
2031                         qd_idx = raid_disks - 1;
2032                         break;
2033
2034                 case ALGORITHM_LEFT_SYMMETRIC_6:
2035                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2036                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2037                         qd_idx = raid_disks - 1;
2038                         break;
2039
2040                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2041                         pd_idx = sector_div(stripe2, raid_disks-1);
2042                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2043                         qd_idx = raid_disks - 1;
2044                         break;
2045
2046                 case ALGORITHM_PARITY_0_6:
2047                         pd_idx = 0;
2048                         (*dd_idx)++;
2049                         qd_idx = raid_disks - 1;
2050                         break;
2051
2052                 default:
2053                         BUG();
2054                 }
2055                 break;
2056         }
2057
2058         if (sh) {
2059                 sh->pd_idx = pd_idx;
2060                 sh->qd_idx = qd_idx;
2061                 sh->ddf_layout = ddf_layout;
2062         }
2063         /*
2064          * Finally, compute the new sector number
2065          */
2066         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2067         return new_sector;
2068 }
2069
2070
2071 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2072 {
2073         struct r5conf *conf = sh->raid_conf;
2074         int raid_disks = sh->disks;
2075         int data_disks = raid_disks - conf->max_degraded;
2076         sector_t new_sector = sh->sector, check;
2077         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2078                                          : conf->chunk_sectors;
2079         int algorithm = previous ? conf->prev_algo
2080                                  : conf->algorithm;
2081         sector_t stripe;
2082         int chunk_offset;
2083         sector_t chunk_number;
2084         int dummy1, dd_idx = i;
2085         sector_t r_sector;
2086         struct stripe_head sh2;
2087
2088
2089         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2090         stripe = new_sector;
2091
2092         if (i == sh->pd_idx)
2093                 return 0;
2094         switch(conf->level) {
2095         case 4: break;
2096         case 5:
2097                 switch (algorithm) {
2098                 case ALGORITHM_LEFT_ASYMMETRIC:
2099                 case ALGORITHM_RIGHT_ASYMMETRIC:
2100                         if (i > sh->pd_idx)
2101                                 i--;
2102                         break;
2103                 case ALGORITHM_LEFT_SYMMETRIC:
2104                 case ALGORITHM_RIGHT_SYMMETRIC:
2105                         if (i < sh->pd_idx)
2106                                 i += raid_disks;
2107                         i -= (sh->pd_idx + 1);
2108                         break;
2109                 case ALGORITHM_PARITY_0:
2110                         i -= 1;
2111                         break;
2112                 case ALGORITHM_PARITY_N:
2113                         break;
2114                 default:
2115                         BUG();
2116                 }
2117                 break;
2118         case 6:
2119                 if (i == sh->qd_idx)
2120                         return 0; /* It is the Q disk */
2121                 switch (algorithm) {
2122                 case ALGORITHM_LEFT_ASYMMETRIC:
2123                 case ALGORITHM_RIGHT_ASYMMETRIC:
2124                 case ALGORITHM_ROTATING_ZERO_RESTART:
2125                 case ALGORITHM_ROTATING_N_RESTART:
2126                         if (sh->pd_idx == raid_disks-1)
2127                                 i--;    /* Q D D D P */
2128                         else if (i > sh->pd_idx)
2129                                 i -= 2; /* D D P Q D */
2130                         break;
2131                 case ALGORITHM_LEFT_SYMMETRIC:
2132                 case ALGORITHM_RIGHT_SYMMETRIC:
2133                         if (sh->pd_idx == raid_disks-1)
2134                                 i--; /* Q D D D P */
2135                         else {
2136                                 /* D D P Q D */
2137                                 if (i < sh->pd_idx)
2138                                         i += raid_disks;
2139                                 i -= (sh->pd_idx + 2);
2140                         }
2141                         break;
2142                 case ALGORITHM_PARITY_0:
2143                         i -= 2;
2144                         break;
2145                 case ALGORITHM_PARITY_N:
2146                         break;
2147                 case ALGORITHM_ROTATING_N_CONTINUE:
2148                         /* Like left_symmetric, but P is before Q */
2149                         if (sh->pd_idx == 0)
2150                                 i--;    /* P D D D Q */
2151                         else {
2152                                 /* D D Q P D */
2153                                 if (i < sh->pd_idx)
2154                                         i += raid_disks;
2155                                 i -= (sh->pd_idx + 1);
2156                         }
2157                         break;
2158                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2159                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2160                         if (i > sh->pd_idx)
2161                                 i--;
2162                         break;
2163                 case ALGORITHM_LEFT_SYMMETRIC_6:
2164                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2165                         if (i < sh->pd_idx)
2166                                 i += data_disks + 1;
2167                         i -= (sh->pd_idx + 1);
2168                         break;
2169                 case ALGORITHM_PARITY_0_6:
2170                         i -= 1;
2171                         break;
2172                 default:
2173                         BUG();
2174                 }
2175                 break;
2176         }
2177
2178         chunk_number = stripe * data_disks + i;
2179         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2180
2181         check = raid5_compute_sector(conf, r_sector,
2182                                      previous, &dummy1, &sh2);
2183         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2184                 || sh2.qd_idx != sh->qd_idx) {
2185                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2186                        mdname(conf->mddev));
2187                 return 0;
2188         }
2189         return r_sector;
2190 }
2191
2192
2193 static void
2194 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2195                          int rcw, int expand)
2196 {
2197         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2198         struct r5conf *conf = sh->raid_conf;
2199         int level = conf->level;
2200
2201         if (rcw) {
2202                 /* if we are not expanding this is a proper write request, and
2203                  * there will be bios with new data to be drained into the
2204                  * stripe cache
2205                  */
2206                 if (!expand) {
2207                         sh->reconstruct_state = reconstruct_state_drain_run;
2208                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2209                 } else
2210                         sh->reconstruct_state = reconstruct_state_run;
2211
2212                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2213
2214                 for (i = disks; i--; ) {
2215                         struct r5dev *dev = &sh->dev[i];
2216
2217                         if (dev->towrite) {
2218                                 set_bit(R5_LOCKED, &dev->flags);
2219                                 set_bit(R5_Wantdrain, &dev->flags);
2220                                 if (!expand)
2221                                         clear_bit(R5_UPTODATE, &dev->flags);
2222                                 s->locked++;
2223                         }
2224                 }
2225                 if (s->locked + conf->max_degraded == disks)
2226                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2227                                 atomic_inc(&conf->pending_full_writes);
2228         } else {
2229                 BUG_ON(level == 6);
2230                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2231                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2232
2233                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2234                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2235                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2236                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2237
2238                 for (i = disks; i--; ) {
2239                         struct r5dev *dev = &sh->dev[i];
2240                         if (i == pd_idx)
2241                                 continue;
2242
2243                         if (dev->towrite &&
2244                             (test_bit(R5_UPTODATE, &dev->flags) ||
2245                              test_bit(R5_Wantcompute, &dev->flags))) {
2246                                 set_bit(R5_Wantdrain, &dev->flags);
2247                                 set_bit(R5_LOCKED, &dev->flags);
2248                                 clear_bit(R5_UPTODATE, &dev->flags);
2249                                 s->locked++;
2250                         }
2251                 }
2252         }
2253
2254         /* keep the parity disk(s) locked while asynchronous operations
2255          * are in flight
2256          */
2257         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2258         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2259         s->locked++;
2260
2261         if (level == 6) {
2262                 int qd_idx = sh->qd_idx;
2263                 struct r5dev *dev = &sh->dev[qd_idx];
2264
2265                 set_bit(R5_LOCKED, &dev->flags);
2266                 clear_bit(R5_UPTODATE, &dev->flags);
2267                 s->locked++;
2268         }
2269
2270         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2271                 __func__, (unsigned long long)sh->sector,
2272                 s->locked, s->ops_request);
2273 }
2274
2275 /*
2276  * Each stripe/dev can have one or more bion attached.
2277  * toread/towrite point to the first in a chain.
2278  * The bi_next chain must be in order.
2279  */
2280 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2281 {
2282         struct bio **bip;
2283         struct r5conf *conf = sh->raid_conf;
2284         int firstwrite=0;
2285
2286         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2287                 (unsigned long long)bi->bi_sector,
2288                 (unsigned long long)sh->sector);
2289
2290
2291         spin_lock_irq(&conf->device_lock);
2292         if (forwrite) {
2293                 bip = &sh->dev[dd_idx].towrite;
2294                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2295                         firstwrite = 1;
2296         } else
2297                 bip = &sh->dev[dd_idx].toread;
2298         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2299                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2300                         goto overlap;
2301                 bip = & (*bip)->bi_next;
2302         }
2303         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2304                 goto overlap;
2305
2306         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2307         if (*bip)
2308                 bi->bi_next = *bip;
2309         *bip = bi;
2310         bi->bi_phys_segments++;
2311
2312         if (forwrite) {
2313                 /* check if page is covered */
2314                 sector_t sector = sh->dev[dd_idx].sector;
2315                 for (bi=sh->dev[dd_idx].towrite;
2316                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2317                              bi && bi->bi_sector <= sector;
2318                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2319                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2320                                 sector = bi->bi_sector + (bi->bi_size>>9);
2321                 }
2322                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2323                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2324         }
2325         spin_unlock_irq(&conf->device_lock);
2326
2327         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2328                 (unsigned long long)(*bip)->bi_sector,
2329                 (unsigned long long)sh->sector, dd_idx);
2330
2331         if (conf->mddev->bitmap && firstwrite) {
2332                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2333                                   STRIPE_SECTORS, 0);
2334                 sh->bm_seq = conf->seq_flush+1;
2335                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2336         }
2337         return 1;
2338
2339  overlap:
2340         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2341         spin_unlock_irq(&conf->device_lock);
2342         return 0;
2343 }
2344
2345 static void end_reshape(struct r5conf *conf);
2346
2347 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2348                             struct stripe_head *sh)
2349 {
2350         int sectors_per_chunk =
2351                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2352         int dd_idx;
2353         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2354         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2355
2356         raid5_compute_sector(conf,
2357                              stripe * (disks - conf->max_degraded)
2358                              *sectors_per_chunk + chunk_offset,
2359                              previous,
2360                              &dd_idx, sh);
2361 }
2362
2363 static void
2364 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2365                                 struct stripe_head_state *s, int disks,
2366                                 struct bio **return_bi)
2367 {
2368         int i;
2369         for (i = disks; i--; ) {
2370                 struct bio *bi;
2371                 int bitmap_end = 0;
2372
2373                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2374                         struct md_rdev *rdev;
2375                         rcu_read_lock();
2376                         rdev = rcu_dereference(conf->disks[i].rdev);
2377                         if (rdev && test_bit(In_sync, &rdev->flags))
2378                                 atomic_inc(&rdev->nr_pending);
2379                         else
2380                                 rdev = NULL;
2381                         rcu_read_unlock();
2382                         if (rdev) {
2383                                 if (!rdev_set_badblocks(
2384                                             rdev,
2385                                             sh->sector,
2386                                             STRIPE_SECTORS, 0))
2387                                         md_error(conf->mddev, rdev);
2388                                 rdev_dec_pending(rdev, conf->mddev);
2389                         }
2390                 }
2391                 spin_lock_irq(&conf->device_lock);
2392                 /* fail all writes first */
2393                 bi = sh->dev[i].towrite;
2394                 sh->dev[i].towrite = NULL;
2395                 if (bi) {
2396                         s->to_write--;
2397                         bitmap_end = 1;
2398                 }
2399
2400                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2401                         wake_up(&conf->wait_for_overlap);
2402
2403                 while (bi && bi->bi_sector <
2404                         sh->dev[i].sector + STRIPE_SECTORS) {
2405                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2406                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2407                         if (!raid5_dec_bi_phys_segments(bi)) {
2408                                 md_write_end(conf->mddev);
2409                                 bi->bi_next = *return_bi;
2410                                 *return_bi = bi;
2411                         }
2412                         bi = nextbi;
2413                 }
2414                 /* and fail all 'written' */
2415                 bi = sh->dev[i].written;
2416                 sh->dev[i].written = NULL;
2417                 if (bi) bitmap_end = 1;
2418                 while (bi && bi->bi_sector <
2419                        sh->dev[i].sector + STRIPE_SECTORS) {
2420                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2421                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2422                         if (!raid5_dec_bi_phys_segments(bi)) {
2423                                 md_write_end(conf->mddev);
2424                                 bi->bi_next = *return_bi;
2425                                 *return_bi = bi;
2426                         }
2427                         bi = bi2;
2428                 }
2429
2430                 /* fail any reads if this device is non-operational and
2431                  * the data has not reached the cache yet.
2432                  */
2433                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2434                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2435                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2436                         bi = sh->dev[i].toread;
2437                         sh->dev[i].toread = NULL;
2438                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2439                                 wake_up(&conf->wait_for_overlap);
2440                         if (bi) s->to_read--;
2441                         while (bi && bi->bi_sector <
2442                                sh->dev[i].sector + STRIPE_SECTORS) {
2443                                 struct bio *nextbi =
2444                                         r5_next_bio(bi, sh->dev[i].sector);
2445                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2446                                 if (!raid5_dec_bi_phys_segments(bi)) {
2447                                         bi->bi_next = *return_bi;
2448                                         *return_bi = bi;
2449                                 }
2450                                 bi = nextbi;
2451                         }
2452                 }
2453                 spin_unlock_irq(&conf->device_lock);
2454                 if (bitmap_end)
2455                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2456                                         STRIPE_SECTORS, 0, 0);
2457                 /* If we were in the middle of a write the parity block might
2458                  * still be locked - so just clear all R5_LOCKED flags
2459                  */
2460                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2461         }
2462
2463         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2464                 if (atomic_dec_and_test(&conf->pending_full_writes))
2465                         md_wakeup_thread(conf->mddev->thread);
2466 }
2467
2468 static void
2469 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2470                    struct stripe_head_state *s)
2471 {
2472         int abort = 0;
2473         int i;
2474
2475         md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
2476         clear_bit(STRIPE_SYNCING, &sh->state);
2477         s->syncing = 0;
2478         s->replacing = 0;
2479         /* There is nothing more to do for sync/check/repair.
2480          * For recover/replace we need to record a bad block on all
2481          * non-sync devices, or abort the recovery
2482          */
2483         if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
2484                 return;
2485         /* During recovery devices cannot be removed, so locking and
2486          * refcounting of rdevs is not needed
2487          */
2488         for (i = 0; i < conf->raid_disks; i++) {
2489                 struct md_rdev *rdev = conf->disks[i].rdev;
2490                 if (rdev
2491                     && !test_bit(Faulty, &rdev->flags)
2492                     && !test_bit(In_sync, &rdev->flags)
2493                     && !rdev_set_badblocks(rdev, sh->sector,
2494                                            STRIPE_SECTORS, 0))
2495                         abort = 1;
2496                 rdev = conf->disks[i].replacement;
2497                 if (rdev
2498                     && !test_bit(Faulty, &rdev->flags)
2499                     && !test_bit(In_sync, &rdev->flags)
2500                     && !rdev_set_badblocks(rdev, sh->sector,
2501                                            STRIPE_SECTORS, 0))
2502                         abort = 1;
2503         }
2504         if (abort) {
2505                 conf->recovery_disabled = conf->mddev->recovery_disabled;
2506                 set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
2507         }
2508 }
2509
2510 static int want_replace(struct stripe_head *sh, int disk_idx)
2511 {
2512         struct md_rdev *rdev;
2513         int rv = 0;
2514         /* Doing recovery so rcu locking not required */
2515         rdev = sh->raid_conf->disks[disk_idx].replacement;
2516         if (rdev
2517             && !test_bit(Faulty, &rdev->flags)
2518             && !test_bit(In_sync, &rdev->flags)
2519             && (rdev->recovery_offset <= sh->sector
2520                 || rdev->mddev->recovery_cp <= sh->sector))
2521                 rv = 1;
2522
2523         return rv;
2524 }
2525
2526 /* fetch_block - checks the given member device to see if its data needs
2527  * to be read or computed to satisfy a request.
2528  *
2529  * Returns 1 when no more member devices need to be checked, otherwise returns
2530  * 0 to tell the loop in handle_stripe_fill to continue
2531  */
2532 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2533                        int disk_idx, int disks)
2534 {
2535         struct r5dev *dev = &sh->dev[disk_idx];
2536         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2537                                   &sh->dev[s->failed_num[1]] };
2538
2539         /* is the data in this block needed, and can we get it? */
2540         if (!test_bit(R5_LOCKED, &dev->flags) &&
2541             !test_bit(R5_UPTODATE, &dev->flags) &&
2542             (dev->toread ||
2543              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2544              s->syncing || s->expanding ||
2545              (s->replacing && want_replace(sh, disk_idx)) ||
2546              (s->failed >= 1 && fdev[0]->toread) ||
2547              (s->failed >= 2 && fdev[1]->toread) ||
2548              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2549               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2550              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2551                 /* we would like to get this block, possibly by computing it,
2552                  * otherwise read it if the backing disk is insync
2553                  */
2554                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2555                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2556                 if ((s->uptodate == disks - 1) &&
2557                     (s->failed && (disk_idx == s->failed_num[0] ||
2558                                    disk_idx == s->failed_num[1]))) {
2559                         /* have disk failed, and we're requested to fetch it;
2560                          * do compute it
2561                          */
2562                         pr_debug("Computing stripe %llu block %d\n",
2563                                (unsigned long long)sh->sector, disk_idx);
2564                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2565                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2566                         set_bit(R5_Wantcompute, &dev->flags);
2567                         sh->ops.target = disk_idx;
2568                         sh->ops.target2 = -1; /* no 2nd target */
2569                         s->req_compute = 1;
2570                         /* Careful: from this point on 'uptodate' is in the eye
2571                          * of raid_run_ops which services 'compute' operations
2572                          * before writes. R5_Wantcompute flags a block that will
2573                          * be R5_UPTODATE by the time it is needed for a
2574                          * subsequent operation.
2575                          */
2576                         s->uptodate++;
2577                         return 1;
2578                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2579                         /* Computing 2-failure is *very* expensive; only
2580                          * do it if failed >= 2
2581                          */
2582                         int other;
2583                         for (other = disks; other--; ) {
2584                                 if (other == disk_idx)
2585                                         continue;
2586                                 if (!test_bit(R5_UPTODATE,
2587                                       &sh->dev[other].flags))
2588                                         break;
2589                         }
2590                         BUG_ON(other < 0);
2591                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2592                                (unsigned long long)sh->sector,
2593                                disk_idx, other);
2594                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2595                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2596                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2597                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2598                         sh->ops.target = disk_idx;
2599                         sh->ops.target2 = other;
2600                         s->uptodate += 2;
2601                         s->req_compute = 1;
2602                         return 1;
2603                 } else if (test_bit(R5_Insync, &dev->flags)) {
2604                         set_bit(R5_LOCKED, &dev->flags);
2605                         set_bit(R5_Wantread, &dev->flags);
2606                         s->locked++;
2607                         pr_debug("Reading block %d (sync=%d)\n",
2608                                 disk_idx, s->syncing);
2609                 }
2610         }
2611
2612         return 0;
2613 }
2614
2615 /**
2616  * handle_stripe_fill - read or compute data to satisfy pending requests.
2617  */
2618 static void handle_stripe_fill(struct stripe_head *sh,
2619                                struct stripe_head_state *s,
2620                                int disks)
2621 {
2622         int i;
2623
2624         /* look for blocks to read/compute, skip this if a compute
2625          * is already in flight, or if the stripe contents are in the
2626          * midst of changing due to a write
2627          */
2628         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2629             !sh->reconstruct_state)
2630                 for (i = disks; i--; )
2631                         if (fetch_block(sh, s, i, disks))
2632                                 break;
2633         set_bit(STRIPE_HANDLE, &sh->state);
2634 }
2635
2636
2637 /* handle_stripe_clean_event
2638  * any written block on an uptodate or failed drive can be returned.
2639  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2640  * never LOCKED, so we don't need to test 'failed' directly.
2641  */
2642 static void handle_stripe_clean_event(struct r5conf *conf,
2643         struct stripe_head *sh, int disks, struct bio **return_bi)
2644 {
2645         int i;
2646         struct r5dev *dev;
2647
2648         for (i = disks; i--; )
2649                 if (sh->dev[i].written) {
2650                         dev = &sh->dev[i];
2651                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2652                                 test_bit(R5_UPTODATE, &dev->flags)) {
2653                                 /* We can return any write requests */
2654                                 struct bio *wbi, *wbi2;
2655                                 int bitmap_end = 0;
2656                                 pr_debug("Return write for disc %d\n", i);
2657                                 spin_lock_irq(&conf->device_lock);
2658                                 wbi = dev->written;
2659                                 dev->written = NULL;
2660                                 while (wbi && wbi->bi_sector <
2661                                         dev->sector + STRIPE_SECTORS) {
2662                                         wbi2 = r5_next_bio(wbi, dev->sector);
2663                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2664                                                 md_write_end(conf->mddev);
2665                                                 wbi->bi_next = *return_bi;
2666                                                 *return_bi = wbi;
2667                                         }
2668                                         wbi = wbi2;
2669                                 }
2670                                 if (dev->towrite == NULL)
2671                                         bitmap_end = 1;
2672                                 spin_unlock_irq(&conf->device_lock);
2673                                 if (bitmap_end)
2674                                         bitmap_endwrite(conf->mddev->bitmap,
2675                                                         sh->sector,
2676                                                         STRIPE_SECTORS,
2677                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2678                                                         0);
2679                         }
2680                 }
2681
2682         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2683                 if (atomic_dec_and_test(&conf->pending_full_writes))
2684                         md_wakeup_thread(conf->mddev->thread);
2685 }
2686
2687 static void handle_stripe_dirtying(struct r5conf *conf,
2688                                    struct stripe_head *sh,
2689                                    struct stripe_head_state *s,
2690                                    int disks)
2691 {
2692         int rmw = 0, rcw = 0, i;
2693         if (conf->max_degraded == 2) {
2694                 /* RAID6 requires 'rcw' in current implementation
2695                  * Calculate the real rcw later - for now fake it
2696                  * look like rcw is cheaper
2697                  */
2698                 rcw = 1; rmw = 2;
2699         } else for (i = disks; i--; ) {
2700                 /* would I have to read this buffer for read_modify_write */
2701                 struct r5dev *dev = &sh->dev[i];
2702                 if ((dev->towrite || i == sh->pd_idx) &&
2703                     !test_bit(R5_LOCKED, &dev->flags) &&
2704                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2705                       test_bit(R5_Wantcompute, &dev->flags))) {
2706                         if (test_bit(R5_Insync, &dev->flags))
2707                                 rmw++;
2708                         else
2709                                 rmw += 2*disks;  /* cannot read it */
2710                 }
2711                 /* Would I have to read this buffer for reconstruct_write */
2712                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2713                     !test_bit(R5_LOCKED, &dev->flags) &&
2714                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2715                     test_bit(R5_Wantcompute, &dev->flags))) {
2716                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2717                         else
2718                                 rcw += 2*disks;
2719                 }
2720         }
2721         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2722                 (unsigned long long)sh->sector, rmw, rcw);
2723         set_bit(STRIPE_HANDLE, &sh->state);
2724         if (rmw < rcw && rmw > 0)
2725                 /* prefer read-modify-write, but need to get some data */
2726                 for (i = disks; i--; ) {
2727                         struct r5dev *dev = &sh->dev[i];
2728                         if ((dev->towrite || i == sh->pd_idx) &&
2729                             !test_bit(R5_LOCKED, &dev->flags) &&
2730                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2731                             test_bit(R5_Wantcompute, &dev->flags)) &&
2732                             test_bit(R5_Insync, &dev->flags)) {
2733                                 if (
2734                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2735                                         pr_debug("Read_old block "
2736                                                 "%d for r-m-w\n", i);
2737                                         set_bit(R5_LOCKED, &dev->flags);
2738                                         set_bit(R5_Wantread, &dev->flags);
2739                                         s->locked++;
2740                                 } else {
2741                                         set_bit(STRIPE_DELAYED, &sh->state);
2742                                         set_bit(STRIPE_HANDLE, &sh->state);
2743                                 }
2744                         }
2745                 }
2746         if (rcw <= rmw && rcw > 0) {
2747                 /* want reconstruct write, but need to get some data */
2748                 rcw = 0;
2749                 for (i = disks; i--; ) {
2750                         struct r5dev *dev = &sh->dev[i];
2751                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2752                             i != sh->pd_idx && i != sh->qd_idx &&
2753                             !test_bit(R5_LOCKED, &dev->flags) &&
2754                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2755                               test_bit(R5_Wantcompute, &dev->flags))) {
2756                                 rcw++;
2757                                 if (!test_bit(R5_Insync, &dev->flags))
2758                                         continue; /* it's a failed drive */
2759                                 if (
2760                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2761                                         pr_debug("Read_old block "
2762                                                 "%d for Reconstruct\n", i);
2763                                         set_bit(R5_LOCKED, &dev->flags);
2764                                         set_bit(R5_Wantread, &dev->flags);
2765                                         s->locked++;
2766                                 } else {
2767                                         set_bit(STRIPE_DELAYED, &sh->state);
2768                                         set_bit(STRIPE_HANDLE, &sh->state);
2769                                 }
2770                         }
2771                 }
2772         }
2773         /* now if nothing is locked, and if we have enough data,
2774          * we can start a write request
2775          */
2776         /* since handle_stripe can be called at any time we need to handle the
2777          * case where a compute block operation has been submitted and then a
2778          * subsequent call wants to start a write request.  raid_run_ops only
2779          * handles the case where compute block and reconstruct are requested
2780          * simultaneously.  If this is not the case then new writes need to be
2781          * held off until the compute completes.
2782          */
2783         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2784             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2785             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2786                 schedule_reconstruction(sh, s, rcw == 0, 0);
2787 }
2788
2789 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2790                                 struct stripe_head_state *s, int disks)
2791 {
2792         struct r5dev *dev = NULL;
2793
2794         set_bit(STRIPE_HANDLE, &sh->state);
2795
2796         switch (sh->check_state) {
2797         case check_state_idle:
2798                 /* start a new check operation if there are no failures */
2799                 if (s->failed == 0) {
2800                         BUG_ON(s->uptodate != disks);
2801                         sh->check_state = check_state_run;
2802                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2803                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2804                         s->uptodate--;
2805                         break;
2806                 }
2807                 dev = &sh->dev[s->failed_num[0]];
2808                 /* fall through */
2809         case check_state_compute_result:
2810                 sh->check_state = check_state_idle;
2811                 if (!dev)
2812                         dev = &sh->dev[sh->pd_idx];
2813
2814                 /* check that a write has not made the stripe insync */
2815                 if (test_bit(STRIPE_INSYNC, &sh->state))
2816                         break;
2817
2818                 /* either failed parity check, or recovery is happening */
2819                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2820                 BUG_ON(s->uptodate != disks);
2821
2822                 set_bit(R5_LOCKED, &dev->flags);
2823                 s->locked++;
2824                 set_bit(R5_Wantwrite, &dev->flags);
2825
2826                 clear_bit(STRIPE_DEGRADED, &sh->state);
2827                 set_bit(STRIPE_INSYNC, &sh->state);
2828                 break;
2829         case check_state_run:
2830                 break; /* we will be called again upon completion */
2831         case check_state_check_result:
2832                 sh->check_state = check_state_idle;
2833
2834                 /* if a failure occurred during the check operation, leave
2835                  * STRIPE_INSYNC not set and let the stripe be handled again
2836                  */
2837                 if (s->failed)
2838                         break;
2839
2840                 /* handle a successful check operation, if parity is correct
2841                  * we are done.  Otherwise update the mismatch count and repair
2842                  * parity if !MD_RECOVERY_CHECK
2843                  */
2844                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2845                         /* parity is correct (on disc,
2846                          * not in buffer any more)
2847                          */
2848                         set_bit(STRIPE_INSYNC, &sh->state);
2849                 else {
2850                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2851                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2852                                 /* don't try to repair!! */
2853                                 set_bit(STRIPE_INSYNC, &sh->state);
2854                         else {
2855                                 sh->check_state = check_state_compute_run;
2856                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2857                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2858                                 set_bit(R5_Wantcompute,
2859                                         &sh->dev[sh->pd_idx].flags);
2860                                 sh->ops.target = sh->pd_idx;
2861                                 sh->ops.target2 = -1;
2862                                 s->uptodate++;
2863                         }
2864                 }
2865                 break;
2866         case check_state_compute_run:
2867                 break;
2868         default:
2869                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2870                        __func__, sh->check_state,
2871                        (unsigned long long) sh->sector);
2872                 BUG();
2873         }
2874 }
2875
2876
2877 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2878                                   struct stripe_head_state *s,
2879                                   int disks)
2880 {
2881         int pd_idx = sh->pd_idx;
2882         int qd_idx = sh->qd_idx;
2883         struct r5dev *dev;
2884
2885         set_bit(STRIPE_HANDLE, &sh->state);
2886
2887         BUG_ON(s->failed > 2);
2888
2889         /* Want to check and possibly repair P and Q.
2890          * However there could be one 'failed' device, in which
2891          * case we can only check one of them, possibly using the
2892          * other to generate missing data
2893          */
2894
2895         switch (sh->check_state) {
2896         case check_state_idle:
2897                 /* start a new check operation if there are < 2 failures */
2898                 if (s->failed == s->q_failed) {
2899                         /* The only possible failed device holds Q, so it
2900                          * makes sense to check P (If anything else were failed,
2901                          * we would have used P to recreate it).
2902                          */
2903                         sh->check_state = check_state_run;
2904                 }
2905                 if (!s->q_failed && s->failed < 2) {
2906                         /* Q is not failed, and we didn't use it to generate
2907                          * anything, so it makes sense to check it
2908                          */
2909                         if (sh->check_state == check_state_run)
2910                                 sh->check_state = check_state_run_pq;
2911                         else
2912                                 sh->check_state = check_state_run_q;
2913                 }
2914
2915                 /* discard potentially stale zero_sum_result */
2916                 sh->ops.zero_sum_result = 0;
2917
2918                 if (sh->check_state == check_state_run) {
2919                         /* async_xor_zero_sum destroys the contents of P */
2920                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2921                         s->uptodate--;
2922                 }
2923                 if (sh->check_state >= check_state_run &&
2924                     sh->check_state <= check_state_run_pq) {
2925                         /* async_syndrome_zero_sum preserves P and Q, so
2926                          * no need to mark them !uptodate here
2927                          */
2928                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2929                         break;
2930                 }
2931
2932                 /* we have 2-disk failure */
2933                 BUG_ON(s->failed != 2);
2934                 /* fall through */
2935         case check_state_compute_result:
2936                 sh->check_state = check_state_idle;
2937
2938                 /* check that a write has not made the stripe insync */
2939                 if (test_bit(STRIPE_INSYNC, &sh->state))
2940                         break;
2941
2942                 /* now write out any block on a failed drive,
2943                  * or P or Q if they were recomputed
2944                  */
2945                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2946                 if (s->failed == 2) {
2947                         dev = &sh->dev[s->failed_num[1]];
2948                         s->locked++;
2949                         set_bit(R5_LOCKED, &dev->flags);
2950                         set_bit(R5_Wantwrite, &dev->flags);
2951                 }
2952                 if (s->failed >= 1) {
2953                         dev = &sh->dev[s->failed_num[0]];
2954                         s->locked++;
2955                         set_bit(R5_LOCKED, &dev->flags);
2956                         set_bit(R5_Wantwrite, &dev->flags);
2957                 }
2958                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2959                         dev = &sh->dev[pd_idx];
2960                         s->locked++;
2961                         set_bit(R5_LOCKED, &dev->flags);
2962                         set_bit(R5_Wantwrite, &dev->flags);
2963                 }
2964                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2965                         dev = &sh->dev[qd_idx];
2966                         s->locked++;
2967                         set_bit(R5_LOCKED, &dev->flags);
2968                         set_bit(R5_Wantwrite, &dev->flags);
2969                 }
2970                 clear_bit(STRIPE_DEGRADED, &sh->state);
2971
2972                 set_bit(STRIPE_INSYNC, &sh->state);
2973                 break;
2974         case check_state_run:
2975         case check_state_run_q:
2976         case check_state_run_pq:
2977                 break; /* we will be called again upon completion */
2978         case check_state_check_result:
2979                 sh->check_state = check_state_idle;
2980
2981                 /* handle a successful check operation, if parity is correct
2982                  * we are done.  Otherwise update the mismatch count and repair
2983                  * parity if !MD_RECOVERY_CHECK
2984                  */
2985                 if (sh->ops.zero_sum_result == 0) {
2986                         /* both parities are correct */
2987                         if (!s->failed)
2988                                 set_bit(STRIPE_INSYNC, &sh->state);
2989                         else {
2990                                 /* in contrast to the raid5 case we can validate
2991                                  * parity, but still have a failure to write
2992                                  * back
2993                                  */
2994                                 sh->check_state = check_state_compute_result;
2995                                 /* Returning at this point means that we may go
2996                                  * off and bring p and/or q uptodate again so
2997                                  * we make sure to check zero_sum_result again
2998                                  * to verify if p or q need writeback
2999                                  */
3000                         }
3001                 } else {
3002                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
3003                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3004                                 /* don't try to repair!! */
3005                                 set_bit(STRIPE_INSYNC, &sh->state);
3006                         else {
3007                                 int *target = &sh->ops.target;
3008
3009                                 sh->ops.target = -1;
3010                                 sh->ops.target2 = -1;
3011                                 sh->check_state = check_state_compute_run;
3012                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3013                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3014                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3015                                         set_bit(R5_Wantcompute,
3016                                                 &sh->dev[pd_idx].flags);
3017                                         *target = pd_idx;
3018                                         target = &sh->ops.target2;
3019                                         s->uptodate++;
3020                                 }
3021                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3022                                         set_bit(R5_Wantcompute,
3023                                                 &sh->dev[qd_idx].flags);
3024                                         *target = qd_idx;
3025                                         s->uptodate++;
3026                                 }
3027                         }
3028                 }
3029                 break;
3030         case check_state_compute_run:
3031                 break;
3032         default:
3033                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3034                        __func__, sh->check_state,
3035                        (unsigned long long) sh->sector);
3036                 BUG();
3037         }
3038 }
3039
3040 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3041 {
3042         int i;
3043
3044         /* We have read all the blocks in this stripe and now we need to
3045          * copy some of them into a target stripe for expand.
3046          */
3047         struct dma_async_tx_descriptor *tx = NULL;
3048         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3049         for (i = 0; i < sh->disks; i++)
3050                 if (i != sh->pd_idx && i != sh->qd_idx) {
3051                         int dd_idx, j;
3052                         struct stripe_head *sh2;
3053                         struct async_submit_ctl submit;
3054
3055                         sector_t bn = compute_blocknr(sh, i, 1);
3056                         sector_t s = raid5_compute_sector(conf, bn, 0,
3057                                                           &dd_idx, NULL);
3058                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3059                         if (sh2 == NULL)
3060                                 /* so far only the early blocks of this stripe
3061                                  * have been requested.  When later blocks
3062                                  * get requested, we will try again
3063                                  */
3064                                 continue;
3065                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3066                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3067                                 /* must have already done this block */
3068                                 release_stripe(sh2);
3069                                 continue;
3070                         }
3071
3072                         /* place all the copies on one channel */
3073                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3074                         tx = async_memcpy(sh2->dev[dd_idx].page,
3075                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3076                                           &submit);
3077
3078                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3079                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3080                         for (j = 0; j < conf->raid_disks; j++)
3081                                 if (j != sh2->pd_idx &&
3082                                     j != sh2->qd_idx &&
3083                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3084                                         break;
3085                         if (j == conf->raid_disks) {
3086                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3087                                 set_bit(STRIPE_HANDLE, &sh2->state);
3088                         }
3089                         release_stripe(sh2);
3090
3091                 }
3092         /* done submitting copies, wait for them to complete */
3093         if (tx) {
3094                 async_tx_ack(tx);
3095                 dma_wait_for_async_tx(tx);
3096         }
3097 }
3098
3099 /*
3100  * handle_stripe - do things to a stripe.
3101  *
3102  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3103  * state of various bits to see what needs to be done.
3104  * Possible results:
3105  *    return some read requests which now have data
3106  *    return some write requests which are safely on storage
3107  *    schedule a read on some buffers
3108  *    schedule a write of some buffers
3109  *    return confirmation of parity correctness
3110  *
3111  */
3112
3113 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3114 {
3115         struct r5conf *conf = sh->raid_conf;
3116         int disks = sh->disks;
3117         struct r5dev *dev;
3118         int i;
3119         int do_recovery = 0;
3120
3121         memset(s, 0, sizeof(*s));
3122
3123         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3124         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3125         s->failed_num[0] = -1;
3126         s->failed_num[1] = -1;
3127
3128         /* Now to look around and see what can be done */
3129         rcu_read_lock();
3130         spin_lock_irq(&conf->device_lock);
3131         for (i=disks; i--; ) {
3132                 struct md_rdev *rdev;
3133                 sector_t first_bad;
3134                 int bad_sectors;
3135                 int is_bad = 0;
3136
3137                 dev = &sh->dev[i];
3138
3139                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3140                          i, dev->flags,
3141                          dev->toread, dev->towrite, dev->written);
3142                 /* maybe we can reply to a read
3143                  *
3144                  * new wantfill requests are only permitted while
3145                  * ops_complete_biofill is guaranteed to be inactive
3146                  */
3147                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3148                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3149                         set_bit(R5_Wantfill, &dev->flags);
3150
3151                 /* now count some things */
3152                 if (test_bit(R5_LOCKED, &dev->flags))
3153                         s->locked++;
3154                 if (test_bit(R5_UPTODATE, &dev->flags))
3155                         s->uptodate++;
3156                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3157                         s->compute++;
3158                         BUG_ON(s->compute > 2);
3159                 }
3160
3161                 if (test_bit(R5_Wantfill, &dev->flags))
3162                         s->to_fill++;
3163                 else if (dev->toread)
3164                         s->to_read++;
3165                 if (dev->towrite) {
3166                         s->to_write++;
3167                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3168                                 s->non_overwrite++;
3169                 }
3170                 if (dev->written)
3171                         s->written++;
3172                 /* Prefer to use the replacement for reads, but only
3173                  * if it is recovered enough and has no bad blocks.
3174                  */
3175                 rdev = rcu_dereference(conf->disks[i].replacement);
3176                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3177                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3178                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3179                                  &first_bad, &bad_sectors))
3180                         set_bit(R5_ReadRepl, &dev->flags);
3181                 else {
3182                         if (rdev)
3183                                 set_bit(R5_NeedReplace, &dev->flags);
3184                         rdev = rcu_dereference(conf->disks[i].rdev);
3185                         clear_bit(R5_ReadRepl, &dev->flags);
3186                 }
3187                 if (rdev && test_bit(Faulty, &rdev->flags))
3188                         rdev = NULL;
3189                 if (rdev) {
3190                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3191                                              &first_bad, &bad_sectors);
3192                         if (s->blocked_rdev == NULL
3193                             && (test_bit(Blocked, &rdev->flags)
3194                                 || is_bad < 0)) {
3195                                 if (is_bad < 0)
3196                                         set_bit(BlockedBadBlocks,
3197                                                 &rdev->flags);
3198                                 s->blocked_rdev = rdev;
3199                                 atomic_inc(&rdev->nr_pending);
3200                         }
3201                 }
3202                 clear_bit(R5_Insync, &dev->flags);
3203                 if (!rdev)
3204                         /* Not in-sync */;
3205                 else if (is_bad) {
3206                         /* also not in-sync */
3207                         if (!test_bit(WriteErrorSeen, &rdev->flags)) {
3208                                 /* treat as in-sync, but with a read error
3209                                  * which we can now try to correct
3210                                  */
3211                                 set_bit(R5_Insync, &dev->flags);
3212                                 set_bit(R5_ReadError, &dev->flags);
3213                         }
3214                 } else if (test_bit(In_sync, &rdev->flags))
3215                         set_bit(R5_Insync, &dev->flags);
3216                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3217                         /* in sync if before recovery_offset */
3218                         set_bit(R5_Insync, &dev->flags);
3219                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3220                          test_bit(R5_Expanded, &dev->flags))
3221                         /* If we've reshaped into here, we assume it is Insync.
3222                          * We will shortly update recovery_offset to make
3223                          * it official.
3224                          */
3225                         set_bit(R5_Insync, &dev->flags);
3226
3227                 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3228                         /* This flag does not apply to '.replacement'
3229                          * only to .rdev, so make sure to check that*/
3230                         struct md_rdev *rdev2 = rcu_dereference(
3231                                 conf->disks[i].rdev);
3232                         if (rdev2 == rdev)
3233                                 clear_bit(R5_Insync, &dev->flags);
3234                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3235                                 s->handle_bad_blocks = 1;
3236                                 atomic_inc(&rdev2->nr_pending);
3237                         } else
3238                                 clear_bit(R5_WriteError, &dev->flags);
3239                 }
3240                 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3241                         /* This flag does not apply to '.replacement'
3242                          * only to .rdev, so make sure to check that*/
3243                         struct md_rdev *rdev2 = rcu_dereference(
3244                                 conf->disks[i].rdev);
3245                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3246                                 s->handle_bad_blocks = 1;
3247                                 atomic_inc(&rdev2->nr_pending);
3248                         } else
3249                                 clear_bit(R5_MadeGood, &dev->flags);
3250                 }
3251                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3252                         struct md_rdev *rdev2 = rcu_dereference(
3253                                 conf->disks[i].replacement);
3254                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3255                                 s->handle_bad_blocks = 1;
3256                                 atomic_inc(&rdev2->nr_pending);
3257                         } else
3258                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3259                 }
3260                 if (!test_bit(R5_Insync, &dev->flags)) {
3261                         /* The ReadError flag will just be confusing now */
3262                         clear_bit(R5_ReadError, &dev->flags);
3263                         clear_bit(R5_ReWrite, &dev->flags);
3264                 }
3265                 if (test_bit(R5_ReadError, &dev->flags))
3266                         clear_bit(R5_Insync, &dev->flags);
3267                 if (!test_bit(R5_Insync, &dev->flags)) {
3268                         if (s->failed < 2)
3269                                 s->failed_num[s->failed] = i;
3270                         s->failed++;
3271                         if (rdev && !test_bit(Faulty, &rdev->flags))
3272                                 do_recovery = 1;
3273                 }
3274         }
3275         spin_unlock_irq(&conf->device_lock);
3276         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3277                 /* If there is a failed device being replaced,
3278                  *     we must be recovering.
3279                  * else if we are after recovery_cp, we must be syncing
3280                  * else we can only be replacing
3281                  * sync and recovery both need to read all devices, and so
3282                  * use the same flag.
3283                  */
3284                 if (do_recovery ||
3285                     sh->sector >= conf->mddev->recovery_cp)
3286                         s->syncing = 1;
3287                 else
3288                         s->replacing = 1;
3289         }
3290         rcu_read_unlock();
3291 }
3292
3293 static void handle_stripe(struct stripe_head *sh)
3294 {
3295         struct stripe_head_state s;
3296         struct r5conf *conf = sh->raid_conf;
3297         int i;
3298         int prexor;
3299         int disks = sh->disks;
3300         struct r5dev *pdev, *qdev;
3301
3302         clear_bit(STRIPE_HANDLE, &sh->state);
3303         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3304                 /* already being handled, ensure it gets handled
3305                  * again when current action finishes */
3306                 set_bit(STRIPE_HANDLE, &sh->state);
3307                 return;
3308         }
3309
3310         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3311                 set_bit(STRIPE_SYNCING, &sh->state);
3312                 clear_bit(STRIPE_INSYNC, &sh->state);
3313         }
3314         clear_bit(STRIPE_DELAYED, &sh->state);
3315
3316         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3317                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3318                (unsigned long long)sh->sector, sh->state,
3319                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3320                sh->check_state, sh->reconstruct_state);
3321
3322         analyse_stripe(sh, &s);
3323
3324         if (s.handle_bad_blocks) {
3325                 set_bit(STRIPE_HANDLE, &sh->state);
3326                 goto finish;
3327         }
3328
3329         if (unlikely(s.blocked_rdev)) {
3330                 if (s.syncing || s.expanding || s.expanded ||
3331                     s.replacing || s.to_write || s.written) {
3332                         set_bit(STRIPE_HANDLE, &sh->state);
3333                         goto finish;
3334                 }
3335                 /* There is nothing for the blocked_rdev to block */
3336                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3337                 s.blocked_rdev = NULL;
3338         }
3339
3340         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3341                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3342                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3343         }
3344
3345         pr_debug("locked=%d uptodate=%d to_read=%d"
3346                " to_write=%d failed=%d failed_num=%d,%d\n",
3347                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3348                s.failed_num[0], s.failed_num[1]);
3349         /* check if the array has lost more than max_degraded devices and,
3350          * if so, some requests might need to be failed.
3351          */
3352         if (s.failed > conf->max_degraded) {
3353                 sh->check_state = 0;
3354                 sh->reconstruct_state = 0;
3355                 if (s.to_read+s.to_write+s.written)
3356                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3357                 if (s.syncing + s.replacing)
3358                         handle_failed_sync(conf, sh, &s);
3359         }
3360
3361         /*
3362          * might be able to return some write requests if the parity blocks
3363          * are safe, or on a failed drive
3364          */
3365         pdev = &sh->dev[sh->pd_idx];
3366         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3367                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3368         qdev = &sh->dev[sh->qd_idx];
3369         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3370                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3371                 || conf->level < 6;
3372
3373         if (s.written &&
3374             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3375                              && !test_bit(R5_LOCKED, &pdev->flags)
3376                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3377             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3378                              && !test_bit(R5_LOCKED, &qdev->flags)
3379                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3380                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3381
3382         /* Now we might consider reading some blocks, either to check/generate
3383          * parity, or to satisfy requests
3384          * or to load a block that is being partially written.
3385          */
3386         if (s.to_read || s.non_overwrite
3387             || (conf->level == 6 && s.to_write && s.failed)
3388             || (s.syncing && (s.uptodate + s.compute < disks))
3389             || s.replacing
3390             || s.expanding)
3391                 handle_stripe_fill(sh, &s, disks);
3392
3393         /* Now we check to see if any write operations have recently
3394          * completed
3395          */
3396         prexor = 0;
3397         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3398                 prexor = 1;
3399         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3400             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3401                 sh->reconstruct_state = reconstruct_state_idle;
3402
3403                 /* All the 'written' buffers and the parity block are ready to
3404                  * be written back to disk
3405                  */
3406                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3407                 BUG_ON(sh->qd_idx >= 0 &&
3408                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3409                 for (i = disks; i--; ) {
3410                         struct r5dev *dev = &sh->dev[i];
3411                         if (test_bit(R5_LOCKED, &dev->flags) &&
3412                                 (i == sh->pd_idx || i == sh->qd_idx ||
3413                                  dev->written)) {
3414                                 pr_debug("Writing block %d\n", i);
3415                                 set_bit(R5_Wantwrite, &dev->flags);
3416                                 if (prexor)
3417                                         continue;
3418                                 if (!test_bit(R5_Insync, &dev->flags) ||
3419                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3420                                      s.failed == 0))
3421                                         set_bit(STRIPE_INSYNC, &sh->state);
3422                         }
3423                 }
3424                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3425                         s.dec_preread_active = 1;
3426         }
3427
3428         /* Now to consider new write requests and what else, if anything
3429          * should be read.  We do not handle new writes when:
3430          * 1/ A 'write' operation (copy+xor) is already in flight.
3431          * 2/ A 'check' operation is in flight, as it may clobber the parity
3432          *    block.
3433          */
3434         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3435                 handle_stripe_dirtying(conf, sh, &s, disks);
3436
3437         /* maybe we need to check and possibly fix the parity for this stripe
3438          * Any reads will already have been scheduled, so we just see if enough
3439          * data is available.  The parity check is held off while parity
3440          * dependent operations are in flight.
3441          */
3442         if (sh->check_state ||
3443             (s.syncing && s.locked == 0 &&
3444              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3445              !test_bit(STRIPE_INSYNC, &sh->state))) {
3446                 if (conf->level == 6)
3447                         handle_parity_checks6(conf, sh, &s, disks);
3448                 else
3449                         handle_parity_checks5(conf, sh, &s, disks);
3450         }
3451
3452         if (s.replacing && s.locked == 0
3453             && !test_bit(STRIPE_INSYNC, &sh->state)) {
3454                 /* Write out to replacement devices where possible */
3455                 for (i = 0; i < conf->raid_disks; i++)
3456                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3457                             test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3458                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3459                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3460                                 s.locked++;
3461                         }
3462                 set_bit(STRIPE_INSYNC, &sh->state);
3463         }
3464         if ((s.syncing || s.replacing) && s.locked == 0 &&
3465             test_bit(STRIPE_INSYNC, &sh->state)) {
3466                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3467                 clear_bit(STRIPE_SYNCING, &sh->state);
3468         }
3469
3470         /* If the failed drives are just a ReadError, then we might need
3471          * to progress the repair/check process
3472          */
3473         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3474                 for (i = 0; i < s.failed; i++) {
3475                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3476                         if (test_bit(R5_ReadError, &dev->flags)
3477                             && !test_bit(R5_LOCKED, &dev->flags)
3478                             && test_bit(R5_UPTODATE, &dev->flags)
3479                                 ) {
3480                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3481                                         set_bit(R5_Wantwrite, &dev->flags);
3482                                         set_bit(R5_ReWrite, &dev->flags);
3483                                         set_bit(R5_LOCKED, &dev->flags);
3484                                         s.locked++;
3485                                 } else {
3486                                         /* let's read it back */
3487                                         set_bit(R5_Wantread, &dev->flags);
3488                                         set_bit(R5_LOCKED, &dev->flags);
3489                                         s.locked++;
3490                                 }
3491                         }
3492                 }
3493
3494
3495         /* Finish reconstruct operations initiated by the expansion process */
3496         if (sh->reconstruct_state == reconstruct_state_result) {
3497                 struct stripe_head *sh_src
3498                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3499                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3500                         /* sh cannot be written until sh_src has been read.
3501                          * so arrange for sh to be delayed a little
3502                          */
3503                         set_bit(STRIPE_DELAYED, &sh->state);
3504                         set_bit(STRIPE_HANDLE, &sh->state);
3505                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3506                                               &sh_src->state))
3507                                 atomic_inc(&conf->preread_active_stripes);
3508                         release_stripe(sh_src);
3509                         goto finish;
3510                 }
3511                 if (sh_src)
3512                         release_stripe(sh_src);
3513
3514                 sh->reconstruct_state = reconstruct_state_idle;
3515                 clear_bit(STRIPE_EXPANDING, &sh->state);
3516                 for (i = conf->raid_disks; i--; ) {
3517                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3518                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3519                         s.locked++;
3520                 }
3521         }
3522
3523         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3524             !sh->reconstruct_state) {
3525                 /* Need to write out all blocks after computing parity */
3526                 sh->disks = conf->raid_disks;
3527                 stripe_set_idx(sh->sector, conf, 0, sh);
3528                 schedule_reconstruction(sh, &s, 1, 1);
3529         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3530                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3531                 atomic_dec(&conf->reshape_stripes);
3532                 wake_up(&conf->wait_for_overlap);
3533                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3534         }
3535
3536         if (s.expanding && s.locked == 0 &&
3537             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3538                 handle_stripe_expansion(conf, sh);
3539
3540 finish:
3541         /* wait for this device to become unblocked */
3542         if (conf->mddev->external && unlikely(s.blocked_rdev))
3543                 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3544
3545         if (s.handle_bad_blocks)
3546                 for (i = disks; i--; ) {
3547                         struct md_rdev *rdev;
3548                         struct r5dev *dev = &sh->dev[i];
3549                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3550                                 /* We own a safe reference to the rdev */
3551                                 rdev = conf->disks[i].rdev;
3552                                 if (!rdev_set_badblocks(rdev, sh->sector,
3553                                                         STRIPE_SECTORS, 0))
3554                                         md_error(conf->mddev, rdev);
3555                                 rdev_dec_pending(rdev, conf->mddev);
3556                         }
3557                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3558                                 rdev = conf->disks[i].rdev;
3559                                 rdev_clear_badblocks(rdev, sh->sector,
3560                                                      STRIPE_SECTORS);
3561                                 rdev_dec_pending(rdev, conf->mddev);
3562                         }
3563                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3564                                 rdev = conf->disks[i].replacement;
3565                                 if (!rdev)
3566                                         /* rdev have been moved down */
3567                                         rdev = conf->disks[i].rdev;
3568                                 rdev_clear_badblocks(rdev, sh->sector,
3569                                                      STRIPE_SECTORS);
3570                                 rdev_dec_pending(rdev, conf->mddev);
3571                         }
3572                 }
3573
3574         if (s.ops_request)
3575                 raid_run_ops(sh, s.ops_request);
3576
3577         ops_run_io(sh, &s);
3578
3579         if (s.dec_preread_active) {
3580                 /* We delay this until after ops_run_io so that if make_request
3581                  * is waiting on a flush, it won't continue until the writes
3582                  * have actually been submitted.
3583                  */
3584                 atomic_dec(&conf->preread_active_stripes);
3585                 if (atomic_read(&conf->preread_active_stripes) <
3586                     IO_THRESHOLD)
3587                         md_wakeup_thread(conf->mddev->thread);
3588         }
3589
3590         return_io(s.return_bi);
3591
3592         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3593 }
3594
3595 static void raid5_activate_delayed(struct r5conf *conf)
3596 {
3597         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3598                 while (!list_empty(&conf->delayed_list)) {
3599                         struct list_head *l = conf->delayed_list.next;
3600                         struct stripe_head *sh;
3601                         sh = list_entry(l, struct stripe_head, lru);
3602                         list_del_init(l);
3603                         clear_bit(STRIPE_DELAYED, &sh->state);
3604                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3605                                 atomic_inc(&conf->preread_active_stripes);
3606                         list_add_tail(&sh->lru, &conf->hold_list);
3607                 }
3608         }
3609 }
3610
3611 static void activate_bit_delay(struct r5conf *conf)
3612 {
3613         /* device_lock is held */
3614         struct list_head head;
3615         list_add(&head, &conf->bitmap_list);
3616         list_del_init(&conf->bitmap_list);
3617         while (!list_empty(&head)) {
3618                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3619                 list_del_init(&sh->lru);
3620                 atomic_inc(&sh->count);
3621                 __release_stripe(conf, sh);
3622         }
3623 }
3624
3625 int md_raid5_congested(struct mddev *mddev, int bits)
3626 {
3627         struct r5conf *conf = mddev->private;
3628
3629         /* No difference between reads and writes.  Just check
3630          * how busy the stripe_cache is
3631          */
3632
3633         if (conf->inactive_blocked)
3634                 return 1;
3635         if (conf->quiesce)
3636                 return 1;
3637         if (list_empty_careful(&conf->inactive_list))
3638                 return 1;
3639
3640         return 0;
3641 }
3642 EXPORT_SYMBOL_GPL(md_raid5_congested);
3643
3644 static int raid5_congested(void *data, int bits)
3645 {
3646         struct mddev *mddev = data;
3647
3648         return mddev_congested(mddev, bits) ||
3649                 md_raid5_congested(mddev, bits);
3650 }
3651
3652 /* We want read requests to align with chunks where possible,
3653  * but write requests don't need to.
3654  */
3655 static int raid5_mergeable_bvec(struct request_queue *q,
3656                                 struct bvec_merge_data *bvm,
3657                                 struct bio_vec *biovec)
3658 {
3659         struct mddev *mddev = q->queuedata;
3660         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3661         int max;
3662         unsigned int chunk_sectors = mddev->chunk_sectors;
3663         unsigned int bio_sectors = bvm->bi_size >> 9;
3664
3665         if ((bvm->bi_rw & 1) == WRITE)
3666                 return biovec->bv_len; /* always allow writes to be mergeable */
3667
3668         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3669                 chunk_sectors = mddev->new_chunk_sectors;
3670         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3671         if (max < 0) max = 0;
3672         if (max <= biovec->bv_len && bio_sectors == 0)
3673                 return biovec->bv_len;
3674         else
3675                 return max;
3676 }
3677
3678
3679 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3680 {
3681         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3682         unsigned int chunk_sectors = mddev->chunk_sectors;
3683         unsigned int bio_sectors = bio->bi_size >> 9;
3684
3685         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3686                 chunk_sectors = mddev->new_chunk_sectors;
3687         return  chunk_sectors >=
3688                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3689 }
3690
3691 /*
3692  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3693  *  later sampled by raid5d.
3694  */
3695 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3696 {
3697         unsigned long flags;
3698
3699         spin_lock_irqsave(&conf->device_lock, flags);
3700
3701         bi->bi_next = conf->retry_read_aligned_list;
3702         conf->retry_read_aligned_list = bi;
3703
3704         spin_unlock_irqrestore(&conf->device_lock, flags);
3705         md_wakeup_thread(conf->mddev->thread);
3706 }
3707
3708
3709 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3710 {
3711         struct bio *bi;
3712
3713         bi = conf->retry_read_aligned;
3714         if (bi) {
3715                 conf->retry_read_aligned = NULL;
3716                 return bi;
3717         }
3718         bi = conf->retry_read_aligned_list;
3719         if(bi) {
3720                 conf->retry_read_aligned_list = bi->bi_next;
3721                 bi->bi_next = NULL;
3722                 /*
3723                  * this sets the active strip count to 1 and the processed
3724                  * strip count to zero (upper 8 bits)
3725                  */
3726                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3727         }
3728
3729         return bi;
3730 }
3731
3732
3733 /*
3734  *  The "raid5_align_endio" should check if the read succeeded and if it
3735  *  did, call bio_endio on the original bio (having bio_put the new bio
3736  *  first).
3737  *  If the read failed..
3738  */
3739 static void raid5_align_endio(struct bio *bi, int error)
3740 {
3741         struct bio* raid_bi  = bi->bi_private;
3742         struct mddev *mddev;
3743         struct r5conf *conf;
3744         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3745         struct md_rdev *rdev;
3746
3747         bio_put(bi);
3748
3749         rdev = (void*)raid_bi->bi_next;
3750         raid_bi->bi_next = NULL;
3751         mddev = rdev->mddev;
3752         conf = mddev->private;
3753
3754         rdev_dec_pending(rdev, conf->mddev);
3755
3756         if (!error && uptodate) {
3757                 bio_endio(raid_bi, 0);
3758                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3759                         wake_up(&conf->wait_for_stripe);
3760                 return;
3761         }
3762
3763
3764         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3765
3766         add_bio_to_retry(raid_bi, conf);
3767 }
3768
3769 static int bio_fits_rdev(struct bio *bi)
3770 {
3771         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3772
3773         if ((bi->bi_size>>9) > queue_max_sectors(q))
3774                 return 0;
3775         blk_recount_segments(q, bi);
3776         if (bi->bi_phys_segments > queue_max_segments(q))
3777                 return 0;
3778
3779         if (q->merge_bvec_fn)
3780                 /* it's too hard to apply the merge_bvec_fn at this stage,
3781                  * just just give up
3782                  */
3783                 return 0;
3784
3785         return 1;
3786 }
3787
3788
3789 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3790 {
3791         struct r5conf *conf = mddev->private;
3792         int dd_idx;
3793         struct bio* align_bi;
3794         struct md_rdev *rdev;
3795         sector_t end_sector;
3796
3797         if (!in_chunk_boundary(mddev, raid_bio)) {
3798                 pr_debug("chunk_aligned_read : non aligned\n");
3799                 return 0;
3800         }
3801         /*
3802          * use bio_clone_mddev to make a copy of the bio
3803          */
3804         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3805         if (!align_bi)
3806                 return 0;
3807         /*
3808          *   set bi_end_io to a new function, and set bi_private to the
3809          *     original bio.
3810          */
3811         align_bi->bi_end_io  = raid5_align_endio;
3812         align_bi->bi_private = raid_bio;
3813         /*
3814          *      compute position
3815          */
3816         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3817                                                     0,
3818                                                     &dd_idx, NULL);
3819
3820         end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3821         rcu_read_lock();
3822         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3823         if (!rdev || test_bit(Faulty, &rdev->flags) ||
3824             rdev->recovery_offset < end_sector) {
3825                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3826                 if (rdev &&
3827                     (test_bit(Faulty, &rdev->flags) ||
3828                     !(test_bit(In_sync, &rdev->flags) ||
3829                       rdev->recovery_offset >= end_sector)))
3830                         rdev = NULL;
3831         }
3832         if (rdev) {
3833                 sector_t first_bad;
3834                 int bad_sectors;
3835
3836                 atomic_inc(&rdev->nr_pending);
3837                 rcu_read_unlock();
3838                 raid_bio->bi_next = (void*)rdev;
3839                 align_bi->bi_bdev =  rdev->bdev;
3840                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3841                 align_bi->bi_sector += rdev->data_offset;
3842
3843                 if (!bio_fits_rdev(align_bi) ||
3844                     is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3845                                 &first_bad, &bad_sectors)) {
3846                         /* too big in some way, or has a known bad block */
3847                         bio_put(align_bi);
3848                         rdev_dec_pending(rdev, mddev);
3849                         return 0;
3850                 }
3851
3852                 spin_lock_irq(&conf->device_lock);
3853                 wait_event_lock_irq(conf->wait_for_stripe,
3854                                     conf->quiesce == 0,
3855                                     conf->device_lock, /* nothing */);
3856                 atomic_inc(&conf->active_aligned_reads);
3857                 spin_unlock_irq(&conf->device_lock);
3858
3859                 generic_make_request(align_bi);
3860                 return 1;
3861         } else {
3862                 rcu_read_unlock();
3863                 bio_put(align_bi);
3864                 return 0;
3865         }
3866 }
3867
3868 /* __get_priority_stripe - get the next stripe to process
3869  *
3870  * Full stripe writes are allowed to pass preread active stripes up until
3871  * the bypass_threshold is exceeded.  In general the bypass_count
3872  * increments when the handle_list is handled before the hold_list; however, it
3873  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3874  * stripe with in flight i/o.  The bypass_count will be reset when the
3875  * head of the hold_list has changed, i.e. the head was promoted to the
3876  * handle_list.
3877  */
3878 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
3879 {
3880         struct stripe_head *sh;
3881
3882         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3883                   __func__,
3884                   list_empty(&conf->handle_list) ? "empty" : "busy",
3885                   list_empty(&conf->hold_list) ? "empty" : "busy",
3886                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3887
3888         if (!list_empty(&conf->handle_list)) {
3889                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3890
3891                 if (list_empty(&conf->hold_list))
3892                         conf->bypass_count = 0;
3893                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3894                         if (conf->hold_list.next == conf->last_hold)
3895                                 conf->bypass_count++;
3896                         else {
3897                                 conf->last_hold = conf->hold_list.next;
3898                                 conf->bypass_count -= conf->bypass_threshold;
3899                                 if (conf->bypass_count < 0)
3900                                         conf->bypass_count = 0;
3901                         }
3902                 }
3903         } else if (!list_empty(&conf->hold_list) &&
3904                    ((conf->bypass_threshold &&
3905                      conf->bypass_count > conf->bypass_threshold) ||
3906                     atomic_read(&conf->pending_full_writes) == 0)) {
3907                 sh = list_entry(conf->hold_list.next,
3908                                 typeof(*sh), lru);
3909                 conf->bypass_count -= conf->bypass_threshold;
3910                 if (conf->bypass_count < 0)
3911                         conf->bypass_count = 0;
3912         } else
3913                 return NULL;
3914
3915         list_del_init(&sh->lru);
3916         atomic_inc(&sh->count);
3917         BUG_ON(atomic_read(&sh->count) != 1);
3918         return sh;
3919 }
3920
3921 static void make_request(struct mddev *mddev, struct bio * bi)
3922 {
3923         struct r5conf *conf = mddev->private;
3924         int dd_idx;
3925         sector_t new_sector;
3926         sector_t logical_sector, last_sector;
3927         struct stripe_head *sh;
3928         const int rw = bio_data_dir(bi);
3929         int remaining;
3930         int plugged;
3931
3932         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3933                 md_flush_request(mddev, bi);
3934                 return;
3935         }
3936
3937         md_write_start(mddev, bi);
3938
3939         if (rw == READ &&
3940              mddev->reshape_position == MaxSector &&
3941              chunk_aligned_read(mddev,bi))
3942                 return;
3943
3944         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3945         last_sector = bi->bi_sector + (bi->bi_size>>9);
3946         bi->bi_next = NULL;
3947         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
3948
3949         plugged = mddev_check_plugged(mddev);
3950         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3951                 DEFINE_WAIT(w);
3952                 int disks, data_disks;
3953                 int previous;
3954
3955         retry:
3956                 previous = 0;
3957                 disks = conf->raid_disks;
3958                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3959                 if (unlikely(conf->reshape_progress != MaxSector)) {
3960                         /* spinlock is needed as reshape_progress may be
3961                          * 64bit on a 32bit platform, and so it might be
3962                          * possible to see a half-updated value
3963                          * Of course reshape_progress could change after
3964                          * the lock is dropped, so once we get a reference
3965                          * to the stripe that we think it is, we will have
3966                          * to check again.
3967                          */
3968                         spin_lock_irq(&conf->device_lock);
3969                         if (mddev->delta_disks < 0
3970                             ? logical_sector < conf->reshape_progress
3971                             : logical_sector >= conf->reshape_progress) {
3972                                 disks = conf->previous_raid_disks;
3973                                 previous = 1;
3974                         } else {
3975                                 if (mddev->delta_disks < 0
3976                                     ? logical_sector < conf->reshape_safe
3977                                     : logical_sector >= conf->reshape_safe) {
3978                                         spin_unlock_irq(&conf->device_lock);
3979                                         schedule();
3980                                         goto retry;
3981                                 }
3982                         }
3983                         spin_unlock_irq(&conf->device_lock);
3984                 }
3985                 data_disks = disks - conf->max_degraded;
3986
3987                 new_sector = raid5_compute_sector(conf, logical_sector,
3988                                                   previous,
3989                                                   &dd_idx, NULL);
3990                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3991                         (unsigned long long)new_sector, 
3992                         (unsigned long long)logical_sector);
3993
3994                 sh = get_active_stripe(conf, new_sector, previous,
3995                                        (bi->bi_rw&RWA_MASK), 0);
3996                 if (sh) {
3997                         if (unlikely(previous)) {
3998                                 /* expansion might have moved on while waiting for a
3999                                  * stripe, so we must do the range check again.
4000                                  * Expansion could still move past after this
4001                                  * test, but as we are holding a reference to
4002                                  * 'sh', we know that if that happens,
4003                                  *  STRIPE_EXPANDING will get set and the expansion
4004                                  * won't proceed until we finish with the stripe.
4005                                  */
4006                                 int must_retry = 0;
4007                                 spin_lock_irq(&conf->device_lock);
4008                                 if (mddev->delta_disks < 0
4009                                     ? logical_sector >= conf->reshape_progress
4010                                     : logical_sector < conf->reshape_progress)
4011                                         /* mismatch, need to try again */
4012                                         must_retry = 1;
4013                                 spin_unlock_irq(&conf->device_lock);
4014                                 if (must_retry) {
4015                                         release_stripe(sh);
4016                                         schedule();
4017                                         goto retry;
4018                                 }
4019                         }
4020
4021                         if (rw == WRITE &&
4022                             logical_sector >= mddev->suspend_lo &&
4023                             logical_sector < mddev->suspend_hi) {
4024                                 release_stripe(sh);
4025                                 /* As the suspend_* range is controlled by
4026                                  * userspace, we want an interruptible
4027                                  * wait.
4028                                  */
4029                                 flush_signals(current);
4030                                 prepare_to_wait(&conf->wait_for_overlap,
4031                                                 &w, TASK_INTERRUPTIBLE);
4032                                 if (logical_sector >= mddev->suspend_lo &&
4033                                     logical_sector < mddev->suspend_hi)
4034                                         schedule();
4035                                 goto retry;
4036                         }
4037
4038                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4039                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4040                                 /* Stripe is busy expanding or
4041                                  * add failed due to overlap.  Flush everything
4042                                  * and wait a while
4043                                  */
4044                                 md_wakeup_thread(mddev->thread);
4045                                 release_stripe(sh);
4046                                 schedule();
4047                                 goto retry;
4048                         }
4049                         finish_wait(&conf->wait_for_overlap, &w);
4050                         set_bit(STRIPE_HANDLE, &sh->state);
4051                         clear_bit(STRIPE_DELAYED, &sh->state);
4052                         if ((bi->bi_rw & REQ_SYNC) &&
4053                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4054                                 atomic_inc(&conf->preread_active_stripes);
4055                         release_stripe(sh);
4056                 } else {
4057                         /* cannot get stripe for read-ahead, just give-up */
4058                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4059                         finish_wait(&conf->wait_for_overlap, &w);
4060                         break;
4061                 }
4062                         
4063         }
4064         if (!plugged)
4065                 md_wakeup_thread(mddev->thread);
4066
4067         spin_lock_irq(&conf->device_lock);
4068         remaining = raid5_dec_bi_phys_segments(bi);
4069         spin_unlock_irq(&conf->device_lock);
4070         if (remaining == 0) {
4071
4072                 if ( rw == WRITE )
4073                         md_write_end(mddev);
4074
4075                 bio_endio(bi, 0);
4076         }
4077 }
4078
4079 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4080
4081 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4082 {
4083         /* reshaping is quite different to recovery/resync so it is
4084          * handled quite separately ... here.
4085          *
4086          * On each call to sync_request, we gather one chunk worth of
4087          * destination stripes and flag them as expanding.
4088          * Then we find all the source stripes and request reads.
4089          * As the reads complete, handle_stripe will copy the data
4090          * into the destination stripe and release that stripe.
4091          */
4092         struct r5conf *conf = mddev->private;
4093         struct stripe_head *sh;
4094         sector_t first_sector, last_sector;
4095         int raid_disks = conf->previous_raid_disks;
4096         int data_disks = raid_disks - conf->max_degraded;
4097         int new_data_disks = conf->raid_disks - conf->max_degraded;
4098         int i;
4099         int dd_idx;
4100         sector_t writepos, readpos, safepos;
4101         sector_t stripe_addr;
4102         int reshape_sectors;
4103         struct list_head stripes;
4104
4105         if (sector_nr == 0) {
4106                 /* If restarting in the middle, skip the initial sectors */
4107                 if (mddev->delta_disks < 0 &&
4108                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4109                         sector_nr = raid5_size(mddev, 0, 0)
4110                                 - conf->reshape_progress;
4111                 } else if (mddev->delta_disks >= 0 &&
4112                            conf->reshape_progress > 0)
4113                         sector_nr = conf->reshape_progress;
4114                 sector_div(sector_nr, new_data_disks);
4115                 if (sector_nr) {
4116                         mddev->curr_resync_completed = sector_nr;
4117                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4118                         *skipped = 1;
4119                         return sector_nr;
4120                 }
4121         }
4122
4123         /* We need to process a full chunk at a time.
4124          * If old and new chunk sizes differ, we need to process the
4125          * largest of these
4126          */
4127         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4128                 reshape_sectors = mddev->new_chunk_sectors;
4129         else
4130                 reshape_sectors = mddev->chunk_sectors;
4131
4132         /* we update the metadata when there is more than 3Meg
4133          * in the block range (that is rather arbitrary, should
4134          * probably be time based) or when the data about to be
4135          * copied would over-write the source of the data at
4136          * the front of the range.
4137          * i.e. one new_stripe along from reshape_progress new_maps
4138          * to after where reshape_safe old_maps to
4139          */
4140         writepos = conf->reshape_progress;
4141         sector_div(writepos, new_data_disks);
4142         readpos = conf->reshape_progress;
4143         sector_div(readpos, data_disks);
4144         safepos = conf->reshape_safe;
4145         sector_div(safepos, data_disks);
4146         if (mddev->delta_disks < 0) {
4147                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4148                 readpos += reshape_sectors;
4149                 safepos += reshape_sectors;
4150         } else {
4151                 writepos += reshape_sectors;
4152                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4153                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4154         }
4155
4156         /* 'writepos' is the most advanced device address we might write.
4157          * 'readpos' is the least advanced device address we might read.
4158          * 'safepos' is the least address recorded in the metadata as having
4159          *     been reshaped.
4160          * If 'readpos' is behind 'writepos', then there is no way that we can
4161          * ensure safety in the face of a crash - that must be done by userspace
4162          * making a backup of the data.  So in that case there is no particular
4163          * rush to update metadata.
4164          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4165          * update the metadata to advance 'safepos' to match 'readpos' so that
4166          * we can be safe in the event of a crash.
4167          * So we insist on updating metadata if safepos is behind writepos and
4168          * readpos is beyond writepos.
4169          * In any case, update the metadata every 10 seconds.
4170          * Maybe that number should be configurable, but I'm not sure it is
4171          * worth it.... maybe it could be a multiple of safemode_delay???
4172          */
4173         if ((mddev->delta_disks < 0
4174              ? (safepos > writepos && readpos < writepos)
4175              : (safepos < writepos && readpos > writepos)) ||
4176             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4177                 /* Cannot proceed until we've updated the superblock... */
4178                 wait_event(conf->wait_for_overlap,
4179                            atomic_read(&conf->reshape_stripes)==0);
4180                 mddev->reshape_position = conf->reshape_progress;
4181                 mddev->curr_resync_completed = sector_nr;
4182                 conf->reshape_checkpoint = jiffies;
4183                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4184                 md_wakeup_thread(mddev->thread);
4185                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4186                            kthread_should_stop());
4187                 spin_lock_irq(&conf->device_lock);
4188                 conf->reshape_safe = mddev->reshape_position;
4189                 spin_unlock_irq(&conf->device_lock);
4190                 wake_up(&conf->wait_for_overlap);
4191                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4192         }
4193
4194         if (mddev->delta_disks < 0) {
4195                 BUG_ON(conf->reshape_progress == 0);
4196                 stripe_addr = writepos;
4197                 BUG_ON((mddev->dev_sectors &
4198                         ~((sector_t)reshape_sectors - 1))
4199                        - reshape_sectors - stripe_addr
4200                        != sector_nr);
4201         } else {
4202                 BUG_ON(writepos != sector_nr + reshape_sectors);
4203                 stripe_addr = sector_nr;
4204         }
4205         INIT_LIST_HEAD(&stripes);
4206         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4207                 int j;
4208                 int skipped_disk = 0;
4209                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4210                 set_bit(STRIPE_EXPANDING, &sh->state);
4211                 atomic_inc(&conf->reshape_stripes);
4212                 /* If any of this stripe is beyond the end of the old
4213                  * array, then we need to zero those blocks
4214                  */
4215                 for (j=sh->disks; j--;) {
4216                         sector_t s;
4217                         if (j == sh->pd_idx)
4218                                 continue;
4219                         if (conf->level == 6 &&
4220                             j == sh->qd_idx)
4221                                 continue;
4222                         s = compute_blocknr(sh, j, 0);
4223                         if (s < raid5_size(mddev, 0, 0)) {
4224                                 skipped_disk = 1;
4225                                 continue;
4226                         }
4227                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4228                         set_bit(R5_Expanded, &sh->dev[j].flags);
4229                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4230                 }
4231                 if (!skipped_disk) {
4232                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4233                         set_bit(STRIPE_HANDLE, &sh->state);
4234                 }
4235                 list_add(&sh->lru, &stripes);
4236         }
4237         spin_lock_irq(&conf->device_lock);
4238         if (mddev->delta_disks < 0)
4239                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4240         else
4241                 conf->reshape_progress += reshape_sectors * new_data_disks;
4242         spin_unlock_irq(&conf->device_lock);
4243         /* Ok, those stripe are ready. We can start scheduling
4244          * reads on the source stripes.
4245          * The source stripes are determined by mapping the first and last
4246          * block on the destination stripes.
4247          */
4248         first_sector =
4249                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4250                                      1, &dd_idx, NULL);
4251         last_sector =
4252                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4253                                             * new_data_disks - 1),
4254                                      1, &dd_idx, NULL);
4255         if (last_sector >= mddev->dev_sectors)
4256                 last_sector = mddev->dev_sectors - 1;
4257         while (first_sector <= last_sector) {
4258                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4259                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4260                 set_bit(STRIPE_HANDLE, &sh->state);
4261                 release_stripe(sh);
4262                 first_sector += STRIPE_SECTORS;
4263         }
4264         /* Now that the sources are clearly marked, we can release
4265          * the destination stripes
4266          */
4267         while (!list_empty(&stripes)) {
4268                 sh = list_entry(stripes.next, struct stripe_head, lru);
4269                 list_del_init(&sh->lru);
4270                 release_stripe(sh);
4271         }
4272         /* If this takes us to the resync_max point where we have to pause,
4273          * then we need to write out the superblock.
4274          */
4275         sector_nr += reshape_sectors;
4276         if ((sector_nr - mddev->curr_resync_completed) * 2
4277             >= mddev->resync_max - mddev->curr_resync_completed) {
4278                 /* Cannot proceed until we've updated the superblock... */
4279                 wait_event(conf->wait_for_overlap,
4280                            atomic_read(&conf->reshape_stripes) == 0);
4281                 mddev->reshape_position = conf->reshape_progress;
4282                 mddev->curr_resync_completed = sector_nr;
4283                 conf->reshape_checkpoint = jiffies;
4284                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4285                 md_wakeup_thread(mddev->thread);
4286                 wait_event(mddev->sb_wait,
4287                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4288                            || kthread_should_stop());
4289                 spin_lock_irq(&conf->device_lock);
4290                 conf->reshape_safe = mddev->reshape_position;
4291                 spin_unlock_irq(&conf->device_lock);
4292                 wake_up(&conf->wait_for_overlap);
4293                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4294         }
4295         return reshape_sectors;
4296 }
4297
4298 /* FIXME go_faster isn't used */
4299 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4300 {
4301         struct r5conf *conf = mddev->private;
4302         struct stripe_head *sh;
4303         sector_t max_sector = mddev->dev_sectors;
4304         sector_t sync_blocks;
4305         int still_degraded = 0;
4306         int i;
4307
4308         if (sector_nr >= max_sector) {
4309                 /* just being told to finish up .. nothing much to do */
4310
4311                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4312                         end_reshape(conf);
4313                         return 0;
4314                 }
4315
4316                 if (mddev->curr_resync < max_sector) /* aborted */
4317                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4318                                         &sync_blocks, 1);
4319                 else /* completed sync */
4320                         conf->fullsync = 0;
4321                 bitmap_close_sync(mddev->bitmap);
4322
4323                 return 0;
4324         }
4325
4326         /* Allow raid5_quiesce to complete */
4327         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4328
4329         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4330                 return reshape_request(mddev, sector_nr, skipped);
4331
4332         /* No need to check resync_max as we never do more than one
4333          * stripe, and as resync_max will always be on a chunk boundary,
4334          * if the check in md_do_sync didn't fire, there is no chance
4335          * of overstepping resync_max here
4336          */
4337
4338         /* if there is too many failed drives and we are trying
4339          * to resync, then assert that we are finished, because there is
4340          * nothing we can do.
4341          */
4342         if (mddev->degraded >= conf->max_degraded &&
4343             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4344                 sector_t rv = mddev->dev_sectors - sector_nr;
4345                 *skipped = 1;
4346                 return rv;
4347         }
4348         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4349             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4350             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4351                 /* we can skip this block, and probably more */
4352                 sync_blocks /= STRIPE_SECTORS;
4353                 *skipped = 1;
4354                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4355         }
4356
4357         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4358
4359         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4360         if (sh == NULL) {
4361                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4362                 /* make sure we don't swamp the stripe cache if someone else
4363                  * is trying to get access
4364                  */
4365                 schedule_timeout_uninterruptible(1);
4366         }
4367         /* Need to check if array will still be degraded after recovery/resync
4368          * We don't need to check the 'failed' flag as when that gets set,
4369          * recovery aborts.
4370          */
4371         for (i = 0; i < conf->raid_disks; i++)
4372                 if (conf->disks[i].rdev == NULL)
4373                         still_degraded = 1;
4374
4375         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4376
4377         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4378
4379         handle_stripe(sh);
4380         release_stripe(sh);
4381
4382         return STRIPE_SECTORS;
4383 }
4384
4385 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4386 {
4387         /* We may not be able to submit a whole bio at once as there
4388          * may not be enough stripe_heads available.
4389          * We cannot pre-allocate enough stripe_heads as we may need
4390          * more than exist in the cache (if we allow ever large chunks).
4391          * So we do one stripe head at a time and record in
4392          * ->bi_hw_segments how many have been done.
4393          *
4394          * We *know* that this entire raid_bio is in one chunk, so
4395          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4396          */
4397         struct stripe_head *sh;
4398         int dd_idx;
4399         sector_t sector, logical_sector, last_sector;
4400         int scnt = 0;
4401         int remaining;
4402         int handled = 0;
4403
4404         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4405         sector = raid5_compute_sector(conf, logical_sector,
4406                                       0, &dd_idx, NULL);
4407         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4408
4409         for (; logical_sector < last_sector;
4410              logical_sector += STRIPE_SECTORS,
4411                      sector += STRIPE_SECTORS,
4412                      scnt++) {
4413
4414                 if (scnt < raid5_bi_hw_segments(raid_bio))
4415                         /* already done this stripe */
4416                         continue;
4417
4418                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4419
4420                 if (!sh) {
4421                         /* failed to get a stripe - must wait */
4422                         raid5_set_bi_hw_segments(raid_bio, scnt);
4423                         conf->retry_read_aligned = raid_bio;
4424                         return handled;
4425                 }
4426
4427                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4428                         release_stripe(sh);
4429                         raid5_set_bi_hw_segments(raid_bio, scnt);
4430                         conf->retry_read_aligned = raid_bio;
4431                         return handled;
4432                 }
4433
4434                 handle_stripe(sh);
4435                 release_stripe(sh);
4436                 handled++;
4437         }
4438         spin_lock_irq(&conf->device_lock);
4439         remaining = raid5_dec_bi_phys_segments(raid_bio);
4440         spin_unlock_irq(&conf->device_lock);
4441         if (remaining == 0)
4442                 bio_endio(raid_bio, 0);
4443         if (atomic_dec_and_test(&conf->active_aligned_reads))
4444                 wake_up(&conf->wait_for_stripe);
4445         return handled;
4446 }
4447
4448
4449 /*
4450  * This is our raid5 kernel thread.
4451  *
4452  * We scan the hash table for stripes which can be handled now.
4453  * During the scan, completed stripes are saved for us by the interrupt
4454  * handler, so that they will not have to wait for our next wakeup.
4455  */
4456 static void raid5d(struct mddev *mddev)
4457 {
4458         struct stripe_head *sh;
4459         struct r5conf *conf = mddev->private;
4460         int handled;
4461         struct blk_plug plug;
4462
4463         pr_debug("+++ raid5d active\n");
4464
4465         md_check_recovery(mddev);
4466
4467         blk_start_plug(&plug);
4468         handled = 0;
4469         spin_lock_irq(&conf->device_lock);
4470         while (1) {
4471                 struct bio *bio;
4472
4473                 if (atomic_read(&mddev->plug_cnt) == 0 &&
4474                     !list_empty(&conf->bitmap_list)) {
4475                         /* Now is a good time to flush some bitmap updates */
4476                         conf->seq_flush++;
4477                         spin_unlock_irq(&conf->device_lock);
4478                         bitmap_unplug(mddev->bitmap);
4479                         spin_lock_irq(&conf->device_lock);
4480                         conf->seq_write = conf->seq_flush;
4481                         activate_bit_delay(conf);
4482                 }
4483                 if (atomic_read(&mddev->plug_cnt) == 0)
4484                         raid5_activate_delayed(conf);
4485
4486                 while ((bio = remove_bio_from_retry(conf))) {
4487                         int ok;
4488                         spin_unlock_irq(&conf->device_lock);
4489                         ok = retry_aligned_read(conf, bio);
4490                         spin_lock_irq(&conf->device_lock);
4491                         if (!ok)
4492                                 break;
4493                         handled++;
4494                 }
4495
4496                 sh = __get_priority_stripe(conf);
4497
4498                 if (!sh)
4499                         break;
4500                 spin_unlock_irq(&conf->device_lock);
4501                 
4502                 handled++;
4503                 handle_stripe(sh);
4504                 release_stripe(sh);
4505                 cond_resched();
4506
4507                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4508                         md_check_recovery(mddev);
4509
4510                 spin_lock_irq(&conf->device_lock);
4511         }
4512         pr_debug("%d stripes handled\n", handled);
4513
4514         spin_unlock_irq(&conf->device_lock);
4515
4516         async_tx_issue_pending_all();
4517         blk_finish_plug(&plug);
4518
4519         pr_debug("--- raid5d inactive\n");
4520 }
4521
4522 static ssize_t
4523 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4524 {
4525         struct r5conf *conf = mddev->private;
4526         if (conf)
4527                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4528         else
4529                 return 0;
4530 }
4531
4532 int
4533 raid5_set_cache_size(struct mddev *mddev, int size)
4534 {
4535         struct r5conf *conf = mddev->private;
4536         int err;
4537
4538         if (size <= 16 || size > 32768)
4539                 return -EINVAL;
4540         while (size < conf->max_nr_stripes) {
4541                 if (drop_one_stripe(conf))
4542                         conf->max_nr_stripes--;
4543                 else
4544                         break;
4545         }
4546         err = md_allow_write(mddev);
4547         if (err)
4548                 return err;
4549         while (size > conf->max_nr_stripes) {
4550                 if (grow_one_stripe(conf))
4551                         conf->max_nr_stripes++;
4552                 else break;
4553         }
4554         return 0;
4555 }
4556 EXPORT_SYMBOL(raid5_set_cache_size);
4557
4558 static ssize_t
4559 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4560 {
4561         struct r5conf *conf = mddev->private;
4562         unsigned long new;
4563         int err;
4564
4565         if (len >= PAGE_SIZE)
4566                 return -EINVAL;
4567         if (!conf)
4568                 return -ENODEV;
4569
4570         if (strict_strtoul(page, 10, &new))
4571                 return -EINVAL;
4572         err = raid5_set_cache_size(mddev, new);
4573         if (err)
4574                 return err;
4575         return len;
4576 }
4577
4578 static struct md_sysfs_entry
4579 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4580                                 raid5_show_stripe_cache_size,
4581                                 raid5_store_stripe_cache_size);
4582
4583 static ssize_t
4584 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4585 {
4586         struct r5conf *conf = mddev->private;
4587         if (conf)
4588                 return sprintf(page, "%d\n", conf->bypass_threshold);
4589         else
4590                 return 0;
4591 }
4592
4593 static ssize_t
4594 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4595 {
4596         struct r5conf *conf = mddev->private;
4597         unsigned long new;
4598         if (len >= PAGE_SIZE)
4599                 return -EINVAL;
4600         if (!conf)
4601                 return -ENODEV;
4602
4603         if (strict_strtoul(page, 10, &new))
4604                 return -EINVAL;
4605         if (new > conf->max_nr_stripes)
4606                 return -EINVAL;
4607         conf->bypass_threshold = new;
4608         return len;
4609 }
4610
4611 static struct md_sysfs_entry
4612 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4613                                         S_IRUGO | S_IWUSR,
4614                                         raid5_show_preread_threshold,
4615                                         raid5_store_preread_threshold);
4616
4617 static ssize_t
4618 stripe_cache_active_show(struct mddev *mddev, char *page)
4619 {
4620         struct r5conf *conf = mddev->private;
4621         if (conf)
4622                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4623         else
4624                 return 0;
4625 }
4626
4627 static struct md_sysfs_entry
4628 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4629
4630 static struct attribute *raid5_attrs[] =  {
4631         &raid5_stripecache_size.attr,
4632         &raid5_stripecache_active.attr,
4633         &raid5_preread_bypass_threshold.attr,
4634         NULL,
4635 };
4636 static struct attribute_group raid5_attrs_group = {
4637         .name = NULL,
4638         .attrs = raid5_attrs,
4639 };
4640
4641 static sector_t
4642 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4643 {
4644         struct r5conf *conf = mddev->private;
4645
4646         if (!sectors)
4647                 sectors = mddev->dev_sectors;
4648         if (!raid_disks)
4649                 /* size is defined by the smallest of previous and new size */
4650                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4651
4652         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4653         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4654         return sectors * (raid_disks - conf->max_degraded);
4655 }
4656
4657 static void raid5_free_percpu(struct r5conf *conf)
4658 {
4659         struct raid5_percpu *percpu;
4660         unsigned long cpu;
4661
4662         if (!conf->percpu)
4663                 return;
4664
4665         get_online_cpus();
4666         for_each_possible_cpu(cpu) {
4667                 percpu = per_cpu_ptr(conf->percpu, cpu);
4668                 safe_put_page(percpu->spare_page);
4669                 kfree(percpu->scribble);
4670         }
4671 #ifdef CONFIG_HOTPLUG_CPU
4672         unregister_cpu_notifier(&conf->cpu_notify);
4673 #endif
4674         put_online_cpus();
4675
4676         free_percpu(conf->percpu);
4677 }
4678
4679 static void free_conf(struct r5conf *conf)
4680 {
4681         shrink_stripes(conf);
4682         raid5_free_percpu(conf);
4683         kfree(conf->disks);
4684         kfree(conf->stripe_hashtbl);
4685         kfree(conf);
4686 }
4687
4688 #ifdef CONFIG_HOTPLUG_CPU
4689 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4690                               void *hcpu)
4691 {
4692         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4693         long cpu = (long)hcpu;
4694         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4695
4696         switch (action) {
4697         case CPU_UP_PREPARE:
4698         case CPU_UP_PREPARE_FROZEN:
4699                 if (conf->level == 6 && !percpu->spare_page)
4700                         percpu->spare_page = alloc_page(GFP_KERNEL);
4701                 if (!percpu->scribble)
4702                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4703
4704                 if (!percpu->scribble ||
4705                     (conf->level == 6 && !percpu->spare_page)) {
4706                         safe_put_page(percpu->spare_page);
4707                         kfree(percpu->scribble);
4708                         pr_err("%s: failed memory allocation for cpu%ld\n",
4709                                __func__, cpu);
4710                         return notifier_from_errno(-ENOMEM);
4711                 }
4712                 break;
4713         case CPU_DEAD:
4714         case CPU_DEAD_FROZEN:
4715                 safe_put_page(percpu->spare_page);
4716                 kfree(percpu->scribble);
4717                 percpu->spare_page = NULL;
4718                 percpu->scribble = NULL;
4719                 break;
4720         default:
4721                 break;
4722         }
4723         return NOTIFY_OK;
4724 }
4725 #endif
4726
4727 static int raid5_alloc_percpu(struct r5conf *conf)
4728 {
4729         unsigned long cpu;
4730         struct page *spare_page;
4731         struct raid5_percpu __percpu *allcpus;
4732         void *scribble;
4733         int err;
4734
4735         allcpus = alloc_percpu(struct raid5_percpu);
4736         if (!allcpus)
4737                 return -ENOMEM;
4738         conf->percpu = allcpus;
4739
4740         get_online_cpus();
4741         err = 0;
4742         for_each_present_cpu(cpu) {
4743                 if (conf->level == 6) {
4744                         spare_page = alloc_page(GFP_KERNEL);
4745                         if (!spare_page) {
4746                                 err = -ENOMEM;
4747                                 break;
4748                         }
4749                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4750                 }
4751                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4752                 if (!scribble) {
4753                         err = -ENOMEM;
4754                         break;
4755                 }
4756                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4757         }
4758 #ifdef CONFIG_HOTPLUG_CPU
4759         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4760         conf->cpu_notify.priority = 0;
4761         if (err == 0)
4762                 err = register_cpu_notifier(&conf->cpu_notify);
4763 #endif
4764         put_online_cpus();
4765
4766         return err;
4767 }
4768
4769 static struct r5conf *setup_conf(struct mddev *mddev)
4770 {
4771         struct r5conf *conf;
4772         int raid_disk, memory, max_disks;
4773         struct md_rdev *rdev;
4774         struct disk_info *disk;
4775
4776         if (mddev->new_level != 5
4777             && mddev->new_level != 4
4778             && mddev->new_level != 6) {
4779                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4780                        mdname(mddev), mddev->new_level);
4781                 return ERR_PTR(-EIO);
4782         }
4783         if ((mddev->new_level == 5
4784              && !algorithm_valid_raid5(mddev->new_layout)) ||
4785             (mddev->new_level == 6
4786              && !algorithm_valid_raid6(mddev->new_layout))) {
4787                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4788                        mdname(mddev), mddev->new_layout);
4789                 return ERR_PTR(-EIO);
4790         }
4791         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4792                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4793                        mdname(mddev), mddev->raid_disks);
4794                 return ERR_PTR(-EINVAL);
4795         }
4796
4797         if (!mddev->new_chunk_sectors ||
4798             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4799             !is_power_of_2(mddev->new_chunk_sectors)) {
4800                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4801                        mdname(mddev), mddev->new_chunk_sectors << 9);
4802                 return ERR_PTR(-EINVAL);
4803         }
4804
4805         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
4806         if (conf == NULL)
4807                 goto abort;
4808         spin_lock_init(&conf->device_lock);
4809         init_waitqueue_head(&conf->wait_for_stripe);
4810         init_waitqueue_head(&conf->wait_for_overlap);
4811         INIT_LIST_HEAD(&conf->handle_list);
4812         INIT_LIST_HEAD(&conf->hold_list);
4813         INIT_LIST_HEAD(&conf->delayed_list);
4814         INIT_LIST_HEAD(&conf->bitmap_list);
4815         INIT_LIST_HEAD(&conf->inactive_list);
4816         atomic_set(&conf->active_stripes, 0);
4817         atomic_set(&conf->preread_active_stripes, 0);
4818         atomic_set(&conf->active_aligned_reads, 0);
4819         conf->bypass_threshold = BYPASS_THRESHOLD;
4820         conf->recovery_disabled = mddev->recovery_disabled - 1;
4821
4822         conf->raid_disks = mddev->raid_disks;
4823         if (mddev->reshape_position == MaxSector)
4824                 conf->previous_raid_disks = mddev->raid_disks;
4825         else
4826                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4827         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4828         conf->scribble_len = scribble_len(max_disks);
4829
4830         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4831                               GFP_KERNEL);
4832         if (!conf->disks)
4833                 goto abort;
4834
4835         conf->mddev = mddev;
4836
4837         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4838                 goto abort;
4839
4840         conf->level = mddev->new_level;
4841         if (raid5_alloc_percpu(conf) != 0)
4842                 goto abort;
4843
4844         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4845
4846         list_for_each_entry(rdev, &mddev->disks, same_set) {
4847                 raid_disk = rdev->raid_disk;
4848                 if (raid_disk >= max_disks
4849                     || raid_disk < 0)
4850                         continue;
4851                 disk = conf->disks + raid_disk;
4852
4853                 if (test_bit(Replacement, &rdev->flags)) {
4854                         if (disk->replacement)
4855                                 goto abort;
4856                         disk->replacement = rdev;
4857                 } else {
4858                         if (disk->rdev)
4859                                 goto abort;
4860                         disk->rdev = rdev;
4861                 }
4862
4863                 if (test_bit(In_sync, &rdev->flags)) {
4864                         char b[BDEVNAME_SIZE];
4865                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4866                                " disk %d\n",
4867                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4868                 } else if (rdev->saved_raid_disk != raid_disk)
4869                         /* Cannot rely on bitmap to complete recovery */
4870                         conf->fullsync = 1;
4871         }
4872
4873         conf->chunk_sectors = mddev->new_chunk_sectors;
4874         conf->level = mddev->new_level;
4875         if (conf->level == 6)
4876                 conf->max_degraded = 2;
4877         else
4878                 conf->max_degraded = 1;
4879         conf->algorithm = mddev->new_layout;
4880         conf->max_nr_stripes = NR_STRIPES;
4881         conf->reshape_progress = mddev->reshape_position;
4882         if (conf->reshape_progress != MaxSector) {
4883                 conf->prev_chunk_sectors = mddev->chunk_sectors;
4884                 conf->prev_algo = mddev->layout;
4885         }
4886
4887         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4888                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4889         if (grow_stripes(conf, conf->max_nr_stripes)) {
4890                 printk(KERN_ERR
4891                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
4892                        mdname(mddev), memory);
4893                 goto abort;
4894         } else
4895                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4896                        mdname(mddev), memory);
4897
4898         conf->thread = md_register_thread(raid5d, mddev, NULL);
4899         if (!conf->thread) {
4900                 printk(KERN_ERR
4901                        "md/raid:%s: couldn't allocate thread.\n",
4902                        mdname(mddev));
4903                 goto abort;
4904         }
4905
4906         return conf;
4907
4908  abort:
4909         if (conf) {
4910                 free_conf(conf);
4911                 return ERR_PTR(-EIO);
4912         } else
4913                 return ERR_PTR(-ENOMEM);
4914 }
4915
4916
4917 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4918 {
4919         switch (algo) {
4920         case ALGORITHM_PARITY_0:
4921                 if (raid_disk < max_degraded)
4922                         return 1;
4923                 break;
4924         case ALGORITHM_PARITY_N:
4925                 if (raid_disk >= raid_disks - max_degraded)
4926                         return 1;
4927                 break;
4928         case ALGORITHM_PARITY_0_6:
4929                 if (raid_disk == 0 || 
4930                     raid_disk == raid_disks - 1)
4931                         return 1;
4932                 break;
4933         case ALGORITHM_LEFT_ASYMMETRIC_6:
4934         case ALGORITHM_RIGHT_ASYMMETRIC_6:
4935         case ALGORITHM_LEFT_SYMMETRIC_6:
4936         case ALGORITHM_RIGHT_SYMMETRIC_6:
4937                 if (raid_disk == raid_disks - 1)
4938                         return 1;
4939         }
4940         return 0;
4941 }
4942
4943 static int run(struct mddev *mddev)
4944 {
4945         struct r5conf *conf;
4946         int working_disks = 0;
4947         int dirty_parity_disks = 0;
4948         struct md_rdev *rdev;
4949         sector_t reshape_offset = 0;
4950         int i;
4951
4952         if (mddev->recovery_cp != MaxSector)
4953                 printk(KERN_NOTICE "md/raid:%s: not clean"
4954                        " -- starting background reconstruction\n",
4955                        mdname(mddev));
4956         if (mddev->reshape_position != MaxSector) {
4957                 /* Check that we can continue the reshape.
4958                  * Currently only disks can change, it must
4959                  * increase, and we must be past the point where
4960                  * a stripe over-writes itself
4961                  */
4962                 sector_t here_new, here_old;
4963                 int old_disks;
4964                 int max_degraded = (mddev->level == 6 ? 2 : 1);
4965
4966                 if (mddev->new_level != mddev->level) {
4967                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
4968                                "required - aborting.\n",
4969                                mdname(mddev));
4970                         return -EINVAL;
4971                 }
4972                 old_disks = mddev->raid_disks - mddev->delta_disks;
4973                 /* reshape_position must be on a new-stripe boundary, and one
4974                  * further up in new geometry must map after here in old
4975                  * geometry.
4976                  */
4977                 here_new = mddev->reshape_position;
4978                 if (sector_div(here_new, mddev->new_chunk_sectors *
4979                                (mddev->raid_disks - max_degraded))) {
4980                         printk(KERN_ERR "md/raid:%s: reshape_position not "
4981                                "on a stripe boundary\n", mdname(mddev));
4982                         return -EINVAL;
4983                 }
4984                 reshape_offset = here_new * mddev->new_chunk_sectors;
4985                 /* here_new is the stripe we will write to */
4986                 here_old = mddev->reshape_position;
4987                 sector_div(here_old, mddev->chunk_sectors *
4988                            (old_disks-max_degraded));
4989                 /* here_old is the first stripe that we might need to read
4990                  * from */
4991                 if (mddev->delta_disks == 0) {
4992                         /* We cannot be sure it is safe to start an in-place
4993                          * reshape.  It is only safe if user-space if monitoring
4994                          * and taking constant backups.
4995                          * mdadm always starts a situation like this in
4996                          * readonly mode so it can take control before
4997                          * allowing any writes.  So just check for that.
4998                          */
4999                         if ((here_new * mddev->new_chunk_sectors != 
5000                              here_old * mddev->chunk_sectors) ||
5001                             mddev->ro == 0) {
5002                                 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
5003                                        " in read-only mode - aborting\n",
5004                                        mdname(mddev));
5005                                 return -EINVAL;
5006                         }
5007                 } else if (mddev->delta_disks < 0
5008                     ? (here_new * mddev->new_chunk_sectors <=
5009                        here_old * mddev->chunk_sectors)
5010                     : (here_new * mddev->new_chunk_sectors >=
5011                        here_old * mddev->chunk_sectors)) {
5012                         /* Reading from the same stripe as writing to - bad */
5013                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5014                                "auto-recovery - aborting.\n",
5015                                mdname(mddev));
5016                         return -EINVAL;
5017                 }
5018                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5019                        mdname(mddev));
5020                 /* OK, we should be able to continue; */
5021         } else {
5022                 BUG_ON(mddev->level != mddev->new_level);
5023                 BUG_ON(mddev->layout != mddev->new_layout);
5024                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5025                 BUG_ON(mddev->delta_disks != 0);
5026         }
5027
5028         if (mddev->private == NULL)
5029                 conf = setup_conf(mddev);
5030         else
5031                 conf = mddev->private;
5032
5033         if (IS_ERR(conf))
5034                 return PTR_ERR(conf);
5035
5036         mddev->thread = conf->thread;
5037         conf->thread = NULL;
5038         mddev->private = conf;
5039
5040         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5041              i++) {
5042                 rdev = conf->disks[i].rdev;
5043                 if (!rdev && conf->disks[i].replacement) {
5044                         /* The replacement is all we have yet */
5045                         rdev = conf->disks[i].replacement;
5046                         conf->disks[i].replacement = NULL;
5047                         clear_bit(Replacement, &rdev->flags);
5048                         conf->disks[i].rdev = rdev;
5049                 }
5050                 if (!rdev)
5051                         continue;
5052                 if (conf->disks[i].replacement &&
5053                     conf->reshape_progress != MaxSector) {
5054                         /* replacements and reshape simply do not mix. */
5055                         printk(KERN_ERR "md: cannot handle concurrent "
5056                                "replacement and reshape.\n");
5057                         goto abort;
5058                 }
5059                 if (test_bit(In_sync, &rdev->flags)) {
5060                         working_disks++;
5061                         continue;
5062                 }
5063                 /* This disc is not fully in-sync.  However if it
5064                  * just stored parity (beyond the recovery_offset),
5065                  * when we don't need to be concerned about the
5066                  * array being dirty.
5067                  * When reshape goes 'backwards', we never have
5068                  * partially completed devices, so we only need
5069                  * to worry about reshape going forwards.
5070                  */
5071                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5072                 if (mddev->major_version == 0 &&
5073                     mddev->minor_version > 90)
5074                         rdev->recovery_offset = reshape_offset;
5075                         
5076                 if (rdev->recovery_offset < reshape_offset) {
5077                         /* We need to check old and new layout */
5078                         if (!only_parity(rdev->raid_disk,
5079                                          conf->algorithm,
5080                                          conf->raid_disks,
5081                                          conf->max_degraded))
5082                                 continue;
5083                 }
5084                 if (!only_parity(rdev->raid_disk,
5085                                  conf->prev_algo,
5086                                  conf->previous_raid_disks,
5087                                  conf->max_degraded))
5088                         continue;
5089                 dirty_parity_disks++;
5090         }
5091
5092         /*
5093          * 0 for a fully functional array, 1 or 2 for a degraded array.
5094          */
5095         mddev->degraded = calc_degraded(conf);
5096
5097         if (has_failed(conf)) {
5098                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5099                         " (%d/%d failed)\n",
5100                         mdname(mddev), mddev->degraded, conf->raid_disks);
5101                 goto abort;
5102         }
5103
5104         /* device size must be a multiple of chunk size */
5105         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5106         mddev->resync_max_sectors = mddev->dev_sectors;
5107
5108         if (mddev->degraded > dirty_parity_disks &&
5109             mddev->recovery_cp != MaxSector) {
5110                 if (mddev->ok_start_degraded)
5111                         printk(KERN_WARNING
5112                                "md/raid:%s: starting dirty degraded array"
5113                                " - data corruption possible.\n",
5114                                mdname(mddev));
5115                 else {
5116                         printk(KERN_ERR
5117                                "md/raid:%s: cannot start dirty degraded array.\n",
5118                                mdname(mddev));
5119                         goto abort;
5120                 }
5121         }
5122
5123         if (mddev->degraded == 0)
5124                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5125                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5126                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5127                        mddev->new_layout);
5128         else
5129                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5130                        " out of %d devices, algorithm %d\n",
5131                        mdname(mddev), conf->level,
5132                        mddev->raid_disks - mddev->degraded,
5133                        mddev->raid_disks, mddev->new_layout);
5134
5135         print_raid5_conf(conf);
5136
5137         if (conf->reshape_progress != MaxSector) {
5138                 conf->reshape_safe = conf->reshape_progress;
5139                 atomic_set(&conf->reshape_stripes, 0);
5140                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5141                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5142                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5143                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5144                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5145                                                         "reshape");
5146         }
5147
5148
5149         /* Ok, everything is just fine now */
5150         if (mddev->to_remove == &raid5_attrs_group)
5151                 mddev->to_remove = NULL;
5152         else if (mddev->kobj.sd &&
5153             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5154                 printk(KERN_WARNING
5155                        "raid5: failed to create sysfs attributes for %s\n",
5156                        mdname(mddev));
5157         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5158
5159         if (mddev->queue) {
5160                 int chunk_size;
5161                 /* read-ahead size must cover two whole stripes, which
5162                  * is 2 * (datadisks) * chunksize where 'n' is the
5163                  * number of raid devices
5164                  */
5165                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5166                 int stripe = data_disks *
5167                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5168                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5169                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5170
5171                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5172
5173                 mddev->queue->backing_dev_info.congested_data = mddev;
5174                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5175
5176                 chunk_size = mddev->chunk_sectors << 9;
5177                 blk_queue_io_min(mddev->queue, chunk_size);
5178                 blk_queue_io_opt(mddev->queue, chunk_size *
5179                                  (conf->raid_disks - conf->max_degraded));
5180
5181                 list_for_each_entry(rdev, &mddev->disks, same_set)
5182                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5183                                           rdev->data_offset << 9);
5184         }
5185
5186         return 0;
5187 abort:
5188         md_unregister_thread(&mddev->thread);
5189         print_raid5_conf(conf);
5190         free_conf(conf);
5191         mddev->private = NULL;
5192         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5193         return -EIO;
5194 }
5195
5196 static int stop(struct mddev *mddev)
5197 {
5198         struct r5conf *conf = mddev->private;
5199
5200         md_unregister_thread(&mddev->thread);
5201         if (mddev->queue)
5202                 mddev->queue->backing_dev_info.congested_fn = NULL;
5203         free_conf(conf);
5204         mddev->private = NULL;
5205         mddev->to_remove = &raid5_attrs_group;
5206         return 0;
5207 }
5208
5209 static void status(struct seq_file *seq, struct mddev *mddev)
5210 {
5211         struct r5conf *conf = mddev->private;
5212         int i;
5213
5214         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5215                 mddev->chunk_sectors / 2, mddev->layout);
5216         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5217         for (i = 0; i < conf->raid_disks; i++)
5218                 seq_printf (seq, "%s",
5219                                conf->disks[i].rdev &&
5220                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5221         seq_printf (seq, "]");
5222 }
5223
5224 static void print_raid5_conf (struct r5conf *conf)
5225 {
5226         int i;
5227         struct disk_info *tmp;
5228
5229         printk(KERN_DEBUG "RAID conf printout:\n");
5230         if (!conf) {
5231                 printk("(conf==NULL)\n");
5232                 return;
5233         }
5234         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5235                conf->raid_disks,
5236                conf->raid_disks - conf->mddev->degraded);
5237
5238         for (i = 0; i < conf->raid_disks; i++) {
5239                 char b[BDEVNAME_SIZE];
5240                 tmp = conf->disks + i;
5241                 if (tmp->rdev)
5242                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5243                                i, !test_bit(Faulty, &tmp->rdev->flags),
5244                                bdevname(tmp->rdev->bdev, b));
5245         }
5246 }
5247
5248 static int raid5_spare_active(struct mddev *mddev)
5249 {
5250         int i;
5251         struct r5conf *conf = mddev->private;
5252         struct disk_info *tmp;
5253         int count = 0;
5254         unsigned long flags;
5255
5256         for (i = 0; i < conf->raid_disks; i++) {
5257                 tmp = conf->disks + i;
5258                 if (tmp->replacement
5259                     && tmp->replacement->recovery_offset == MaxSector
5260                     && !test_bit(Faulty, &tmp->replacement->flags)
5261                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5262                         /* Replacement has just become active. */
5263                         if (!tmp->rdev
5264                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5265                                 count++;
5266                         if (tmp->rdev) {
5267                                 /* Replaced device not technically faulty,
5268                                  * but we need to be sure it gets removed
5269                                  * and never re-added.
5270                                  */
5271                                 set_bit(Faulty, &tmp->rdev->flags);
5272                                 sysfs_notify_dirent_safe(
5273                                         tmp->rdev->sysfs_state);
5274                         }
5275                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5276                 } else if (tmp->rdev
5277                     && tmp->rdev->recovery_offset == MaxSector
5278                     && !test_bit(Faulty, &tmp->rdev->flags)
5279                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5280                         count++;
5281                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5282                 }
5283         }
5284         spin_lock_irqsave(&conf->device_lock, flags);
5285         mddev->degraded = calc_degraded(conf);
5286         spin_unlock_irqrestore(&conf->device_lock, flags);
5287         print_raid5_conf(conf);
5288         return count;
5289 }
5290
5291 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5292 {
5293         struct r5conf *conf = mddev->private;
5294         int err = 0;
5295         int number = rdev->raid_disk;
5296         struct md_rdev **rdevp;
5297         struct disk_info *p = conf->disks + number;
5298
5299         print_raid5_conf(conf);
5300         if (rdev == p->rdev)
5301                 rdevp = &p->rdev;
5302         else if (rdev == p->replacement)
5303                 rdevp = &p->replacement;
5304         else
5305                 return 0;
5306
5307         if (number >= conf->raid_disks &&
5308             conf->reshape_progress == MaxSector)
5309                 clear_bit(In_sync, &rdev->flags);
5310
5311         if (test_bit(In_sync, &rdev->flags) ||
5312             atomic_read(&rdev->nr_pending)) {
5313                 err = -EBUSY;
5314                 goto abort;
5315         }
5316         /* Only remove non-faulty devices if recovery
5317          * isn't possible.
5318          */
5319         if (!test_bit(Faulty, &rdev->flags) &&
5320             mddev->recovery_disabled != conf->recovery_disabled &&
5321             !has_failed(conf) &&
5322             (!p->replacement || p->replacement == rdev) &&
5323             number < conf->raid_disks) {
5324                 err = -EBUSY;
5325                 goto abort;
5326         }
5327         *rdevp = NULL;
5328         synchronize_rcu();
5329         if (atomic_read(&rdev->nr_pending)) {
5330                 /* lost the race, try later */
5331                 err = -EBUSY;
5332                 *rdevp = rdev;
5333         } else if (p->replacement) {
5334                 /* We must have just cleared 'rdev' */
5335                 p->rdev = p->replacement;
5336                 clear_bit(Replacement, &p->replacement->flags);
5337                 smp_mb(); /* Make sure other CPUs may see both as identical
5338                            * but will never see neither - if they are careful
5339                            */
5340                 p->replacement = NULL;
5341                 clear_bit(WantReplacement, &rdev->flags);
5342         } else
5343                 /* We might have just removed the Replacement as faulty-
5344                  * clear the bit just in case
5345                  */
5346                 clear_bit(WantReplacement, &rdev->flags);
5347 abort:
5348
5349         print_raid5_conf(conf);
5350         return err;
5351 }
5352
5353 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5354 {
5355         struct r5conf *conf = mddev->private;
5356         int err = -EEXIST;
5357         int disk;
5358         struct disk_info *p;
5359         int first = 0;
5360         int last = conf->raid_disks - 1;
5361
5362         if (mddev->recovery_disabled == conf->recovery_disabled)
5363                 return -EBUSY;
5364
5365         if (has_failed(conf))
5366                 /* no point adding a device */
5367                 return -EINVAL;
5368
5369         if (rdev->raid_disk >= 0)
5370                 first = last = rdev->raid_disk;
5371
5372         /*
5373          * find the disk ... but prefer rdev->saved_raid_disk
5374          * if possible.
5375          */
5376         if (rdev->saved_raid_disk >= 0 &&
5377             rdev->saved_raid_disk >= first &&
5378             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5379                 disk = rdev->saved_raid_disk;
5380         else
5381                 disk = first;
5382         for ( ; disk <= last ; disk++) {
5383                 p = conf->disks + disk;
5384                 if (p->rdev == NULL) {
5385                         clear_bit(In_sync, &rdev->flags);
5386                         rdev->raid_disk = disk;
5387                         err = 0;
5388                         if (rdev->saved_raid_disk != disk)
5389                                 conf->fullsync = 1;
5390                         rcu_assign_pointer(p->rdev, rdev);
5391                         break;
5392                 }
5393                 if (test_bit(WantReplacement, &p->rdev->flags) &&
5394                     p->replacement == NULL) {
5395                         clear_bit(In_sync, &rdev->flags);
5396                         set_bit(Replacement, &rdev->flags);
5397                         rdev->raid_disk = disk;
5398                         err = 0;
5399                         conf->fullsync = 1;
5400                         rcu_assign_pointer(p->replacement, rdev);
5401                         break;
5402                 }
5403         }
5404         print_raid5_conf(conf);
5405         return err;
5406 }
5407
5408 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5409 {
5410         /* no resync is happening, and there is enough space
5411          * on all devices, so we can resize.
5412          * We need to make sure resync covers any new space.
5413          * If the array is shrinking we should possibly wait until
5414          * any io in the removed space completes, but it hardly seems
5415          * worth it.
5416          */
5417         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5418         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5419                                                mddev->raid_disks));
5420         if (mddev->array_sectors >
5421             raid5_size(mddev, sectors, mddev->raid_disks))
5422                 return -EINVAL;
5423         set_capacity(mddev->gendisk, mddev->array_sectors);
5424         revalidate_disk(mddev->gendisk);
5425         if (sectors > mddev->dev_sectors &&
5426             mddev->recovery_cp > mddev->dev_sectors) {
5427                 mddev->recovery_cp = mddev->dev_sectors;
5428                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5429         }
5430         mddev->dev_sectors = sectors;
5431         mddev->resync_max_sectors = sectors;
5432         return 0;
5433 }
5434
5435 static int check_stripe_cache(struct mddev *mddev)
5436 {
5437         /* Can only proceed if there are plenty of stripe_heads.
5438          * We need a minimum of one full stripe,, and for sensible progress
5439          * it is best to have about 4 times that.
5440          * If we require 4 times, then the default 256 4K stripe_heads will
5441          * allow for chunk sizes up to 256K, which is probably OK.
5442          * If the chunk size is greater, user-space should request more
5443          * stripe_heads first.
5444          */
5445         struct r5conf *conf = mddev->private;
5446         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5447             > conf->max_nr_stripes ||
5448             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5449             > conf->max_nr_stripes) {
5450                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5451                        mdname(mddev),
5452                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5453                         / STRIPE_SIZE)*4);
5454                 return 0;
5455         }
5456         return 1;
5457 }
5458
5459 static int check_reshape(struct mddev *mddev)
5460 {
5461         struct r5conf *conf = mddev->private;
5462
5463         if (mddev->delta_disks == 0 &&
5464             mddev->new_layout == mddev->layout &&
5465             mddev->new_chunk_sectors == mddev->chunk_sectors)
5466                 return 0; /* nothing to do */
5467         if (mddev->bitmap)
5468                 /* Cannot grow a bitmap yet */
5469                 return -EBUSY;
5470         if (has_failed(conf))
5471                 return -EINVAL;
5472         if (mddev->delta_disks < 0) {
5473                 /* We might be able to shrink, but the devices must
5474                  * be made bigger first.
5475                  * For raid6, 4 is the minimum size.
5476                  * Otherwise 2 is the minimum
5477                  */
5478                 int min = 2;
5479                 if (mddev->level == 6)
5480                         min = 4;
5481                 if (mddev->raid_disks + mddev->delta_disks < min)
5482                         return -EINVAL;
5483         }
5484
5485         if (!check_stripe_cache(mddev))
5486                 return -ENOSPC;
5487
5488         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5489 }
5490
5491 static int raid5_start_reshape(struct mddev *mddev)
5492 {
5493         struct r5conf *conf = mddev->private;
5494         struct md_rdev *rdev;
5495         int spares = 0;
5496         unsigned long flags;
5497
5498         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5499                 return -EBUSY;
5500
5501         if (!check_stripe_cache(mddev))
5502                 return -ENOSPC;
5503
5504         list_for_each_entry(rdev, &mddev->disks, same_set)
5505                 if (!test_bit(In_sync, &rdev->flags)
5506                     && !test_bit(Faulty, &rdev->flags))
5507                         spares++;
5508
5509         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5510                 /* Not enough devices even to make a degraded array
5511                  * of that size
5512                  */
5513                 return -EINVAL;
5514
5515         /* Refuse to reduce size of the array.  Any reductions in
5516          * array size must be through explicit setting of array_size
5517          * attribute.
5518          */
5519         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5520             < mddev->array_sectors) {
5521                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5522                        "before number of disks\n", mdname(mddev));
5523                 return -EINVAL;
5524         }
5525
5526         atomic_set(&conf->reshape_stripes, 0);
5527         spin_lock_irq(&conf->device_lock);
5528         conf->previous_raid_disks = conf->raid_disks;
5529         conf->raid_disks += mddev->delta_disks;
5530         conf->prev_chunk_sectors = conf->chunk_sectors;
5531         conf->chunk_sectors = mddev->new_chunk_sectors;
5532         conf->prev_algo = conf->algorithm;
5533         conf->algorithm = mddev->new_layout;
5534         if (mddev->delta_disks < 0)
5535                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5536         else
5537                 conf->reshape_progress = 0;
5538         conf->reshape_safe = conf->reshape_progress;
5539         conf->generation++;
5540         spin_unlock_irq(&conf->device_lock);
5541
5542         /* Add some new drives, as many as will fit.
5543          * We know there are enough to make the newly sized array work.
5544          * Don't add devices if we are reducing the number of
5545          * devices in the array.  This is because it is not possible
5546          * to correctly record the "partially reconstructed" state of
5547          * such devices during the reshape and confusion could result.
5548          */
5549         if (mddev->delta_disks >= 0) {
5550                 int added_devices = 0;
5551                 list_for_each_entry(rdev, &mddev->disks, same_set)
5552                         if (rdev->raid_disk < 0 &&
5553                             !test_bit(Faulty, &rdev->flags)) {
5554                                 if (raid5_add_disk(mddev, rdev) == 0) {
5555                                         if (rdev->raid_disk
5556                                             >= conf->previous_raid_disks) {
5557                                                 set_bit(In_sync, &rdev->flags);
5558                                                 added_devices++;
5559                                         } else
5560                                                 rdev->recovery_offset = 0;
5561
5562                                         if (sysfs_link_rdev(mddev, rdev))
5563                                                 /* Failure here is OK */;
5564                                 }
5565                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5566                                    && !test_bit(Faulty, &rdev->flags)) {
5567                                 /* This is a spare that was manually added */
5568                                 set_bit(In_sync, &rdev->flags);
5569                                 added_devices++;
5570                         }
5571
5572                 /* When a reshape changes the number of devices,
5573                  * ->degraded is measured against the larger of the
5574                  * pre and post number of devices.
5575                  */
5576                 spin_lock_irqsave(&conf->device_lock, flags);
5577                 mddev->degraded = calc_degraded(conf);
5578                 spin_unlock_irqrestore(&conf->device_lock, flags);
5579         }
5580         mddev->raid_disks = conf->raid_disks;
5581         mddev->reshape_position = conf->reshape_progress;
5582         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5583
5584         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5585         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5586         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5587         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5588         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5589                                                 "reshape");
5590         if (!mddev->sync_thread) {
5591                 mddev->recovery = 0;
5592                 spin_lock_irq(&conf->device_lock);
5593                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5594                 conf->reshape_progress = MaxSector;
5595                 spin_unlock_irq(&conf->device_lock);
5596                 return -EAGAIN;
5597         }
5598         conf->reshape_checkpoint = jiffies;
5599         md_wakeup_thread(mddev->sync_thread);
5600         md_new_event(mddev);
5601         return 0;
5602 }
5603
5604 /* This is called from the reshape thread and should make any
5605  * changes needed in 'conf'
5606  */
5607 static void end_reshape(struct r5conf *conf)
5608 {
5609
5610         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5611
5612                 spin_lock_irq(&conf->device_lock);
5613                 conf->previous_raid_disks = conf->raid_disks;
5614                 conf->reshape_progress = MaxSector;
5615                 spin_unlock_irq(&conf->device_lock);
5616                 wake_up(&conf->wait_for_overlap);
5617
5618                 /* read-ahead size must cover two whole stripes, which is
5619                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5620                  */
5621                 if (conf->mddev->queue) {
5622                         int data_disks = conf->raid_disks - conf->max_degraded;
5623                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5624                                                    / PAGE_SIZE);
5625                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5626                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5627                 }
5628         }
5629 }
5630
5631 /* This is called from the raid5d thread with mddev_lock held.
5632  * It makes config changes to the device.
5633  */
5634 static void raid5_finish_reshape(struct mddev *mddev)
5635 {
5636         struct r5conf *conf = mddev->private;
5637
5638         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5639
5640                 if (mddev->delta_disks > 0) {
5641                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5642                         set_capacity(mddev->gendisk, mddev->array_sectors);
5643                         revalidate_disk(mddev->gendisk);
5644                 } else {
5645                         int d;
5646                         spin_lock_irq(&conf->device_lock);
5647                         mddev->degraded = calc_degraded(conf);
5648                         spin_unlock_irq(&conf->device_lock);
5649                         for (d = conf->raid_disks ;
5650                              d < conf->raid_disks - mddev->delta_disks;
5651                              d++) {
5652                                 struct md_rdev *rdev = conf->disks[d].rdev;
5653                                 if (rdev &&
5654                                     raid5_remove_disk(mddev, rdev) == 0) {
5655                                         sysfs_unlink_rdev(mddev, rdev);
5656                                         rdev->raid_disk = -1;
5657                                 }
5658                         }
5659                 }
5660                 mddev->layout = conf->algorithm;
5661                 mddev->chunk_sectors = conf->chunk_sectors;
5662                 mddev->reshape_position = MaxSector;
5663                 mddev->delta_disks = 0;
5664         }
5665 }
5666
5667 static void raid5_quiesce(struct mddev *mddev, int state)
5668 {
5669         struct r5conf *conf = mddev->private;
5670
5671         switch(state) {
5672         case 2: /* resume for a suspend */
5673                 wake_up(&conf->wait_for_overlap);
5674                 break;
5675
5676         case 1: /* stop all writes */
5677                 spin_lock_irq(&conf->device_lock);
5678                 /* '2' tells resync/reshape to pause so that all
5679                  * active stripes can drain
5680                  */
5681                 conf->quiesce = 2;
5682                 wait_event_lock_irq(conf->wait_for_stripe,
5683                                     atomic_read(&conf->active_stripes) == 0 &&
5684                                     atomic_read(&conf->active_aligned_reads) == 0,
5685                                     conf->device_lock, /* nothing */);
5686                 conf->quiesce = 1;
5687                 spin_unlock_irq(&conf->device_lock);
5688                 /* allow reshape to continue */
5689                 wake_up(&conf->wait_for_overlap);
5690                 break;
5691
5692         case 0: /* re-enable writes */
5693                 spin_lock_irq(&conf->device_lock);
5694                 conf->quiesce = 0;
5695                 wake_up(&conf->wait_for_stripe);
5696                 wake_up(&conf->wait_for_overlap);
5697                 spin_unlock_irq(&conf->device_lock);
5698                 break;
5699         }
5700 }
5701
5702
5703 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
5704 {
5705         struct r0conf *raid0_conf = mddev->private;
5706         sector_t sectors;
5707
5708         /* for raid0 takeover only one zone is supported */
5709         if (raid0_conf->nr_strip_zones > 1) {
5710                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5711                        mdname(mddev));
5712                 return ERR_PTR(-EINVAL);
5713         }
5714
5715         sectors = raid0_conf->strip_zone[0].zone_end;
5716         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
5717         mddev->dev_sectors = sectors;
5718         mddev->new_level = level;
5719         mddev->new_layout = ALGORITHM_PARITY_N;
5720         mddev->new_chunk_sectors = mddev->chunk_sectors;
5721         mddev->raid_disks += 1;
5722         mddev->delta_disks = 1;
5723         /* make sure it will be not marked as dirty */
5724         mddev->recovery_cp = MaxSector;
5725
5726         return setup_conf(mddev);
5727 }
5728
5729
5730 static void *raid5_takeover_raid1(struct mddev *mddev)
5731 {
5732         int chunksect;
5733
5734         if (mddev->raid_disks != 2 ||
5735             mddev->degraded > 1)
5736                 return ERR_PTR(-EINVAL);
5737
5738         /* Should check if there are write-behind devices? */
5739
5740         chunksect = 64*2; /* 64K by default */
5741
5742         /* The array must be an exact multiple of chunksize */
5743         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5744                 chunksect >>= 1;
5745
5746         if ((chunksect<<9) < STRIPE_SIZE)
5747                 /* array size does not allow a suitable chunk size */
5748                 return ERR_PTR(-EINVAL);
5749
5750         mddev->new_level = 5;
5751         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5752         mddev->new_chunk_sectors = chunksect;
5753
5754         return setup_conf(mddev);
5755 }
5756
5757 static void *raid5_takeover_raid6(struct mddev *mddev)
5758 {
5759         int new_layout;
5760
5761         switch (mddev->layout) {
5762         case ALGORITHM_LEFT_ASYMMETRIC_6:
5763                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5764                 break;
5765         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5766                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5767                 break;
5768         case ALGORITHM_LEFT_SYMMETRIC_6:
5769                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5770                 break;
5771         case ALGORITHM_RIGHT_SYMMETRIC_6:
5772                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5773                 break;
5774         case ALGORITHM_PARITY_0_6:
5775                 new_layout = ALGORITHM_PARITY_0;
5776                 break;
5777         case ALGORITHM_PARITY_N:
5778                 new_layout = ALGORITHM_PARITY_N;
5779                 break;
5780         default:
5781                 return ERR_PTR(-EINVAL);
5782         }
5783         mddev->new_level = 5;
5784         mddev->new_layout = new_layout;
5785         mddev->delta_disks = -1;
5786         mddev->raid_disks -= 1;
5787         return setup_conf(mddev);
5788 }
5789
5790
5791 static int raid5_check_reshape(struct mddev *mddev)
5792 {
5793         /* For a 2-drive array, the layout and chunk size can be changed
5794          * immediately as not restriping is needed.
5795          * For larger arrays we record the new value - after validation
5796          * to be used by a reshape pass.
5797          */
5798         struct r5conf *conf = mddev->private;
5799         int new_chunk = mddev->new_chunk_sectors;
5800
5801         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5802                 return -EINVAL;
5803         if (new_chunk > 0) {
5804                 if (!is_power_of_2(new_chunk))
5805                         return -EINVAL;
5806                 if (new_chunk < (PAGE_SIZE>>9))
5807                         return -EINVAL;
5808                 if (mddev->array_sectors & (new_chunk-1))
5809                         /* not factor of array size */
5810                         return -EINVAL;
5811         }
5812
5813         /* They look valid */
5814
5815         if (mddev->raid_disks == 2) {
5816                 /* can make the change immediately */
5817                 if (mddev->new_layout >= 0) {
5818                         conf->algorithm = mddev->new_layout;
5819                         mddev->layout = mddev->new_layout;
5820                 }
5821                 if (new_chunk > 0) {
5822                         conf->chunk_sectors = new_chunk ;
5823                         mddev->chunk_sectors = new_chunk;
5824                 }
5825                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5826                 md_wakeup_thread(mddev->thread);
5827         }
5828         return check_reshape(mddev);
5829 }
5830
5831 static int raid6_check_reshape(struct mddev *mddev)
5832 {
5833         int new_chunk = mddev->new_chunk_sectors;
5834
5835         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5836                 return -EINVAL;
5837         if (new_chunk > 0) {
5838                 if (!is_power_of_2(new_chunk))
5839                         return -EINVAL;
5840                 if (new_chunk < (PAGE_SIZE >> 9))
5841                         return -EINVAL;
5842                 if (mddev->array_sectors & (new_chunk-1))
5843                         /* not factor of array size */
5844                         return -EINVAL;
5845         }
5846
5847         /* They look valid */
5848         return check_reshape(mddev);
5849 }
5850
5851 static void *raid5_takeover(struct mddev *mddev)
5852 {
5853         /* raid5 can take over:
5854          *  raid0 - if there is only one strip zone - make it a raid4 layout
5855          *  raid1 - if there are two drives.  We need to know the chunk size
5856          *  raid4 - trivial - just use a raid4 layout.
5857          *  raid6 - Providing it is a *_6 layout
5858          */
5859         if (mddev->level == 0)
5860                 return raid45_takeover_raid0(mddev, 5);
5861         if (mddev->level == 1)
5862                 return raid5_takeover_raid1(mddev);
5863         if (mddev->level == 4) {
5864                 mddev->new_layout = ALGORITHM_PARITY_N;
5865                 mddev->new_level = 5;
5866                 return setup_conf(mddev);
5867         }
5868         if (mddev->level == 6)
5869                 return raid5_takeover_raid6(mddev);
5870
5871         return ERR_PTR(-EINVAL);
5872 }
5873
5874 static void *raid4_takeover(struct mddev *mddev)
5875 {
5876         /* raid4 can take over:
5877          *  raid0 - if there is only one strip zone
5878          *  raid5 - if layout is right
5879          */
5880         if (mddev->level == 0)
5881                 return raid45_takeover_raid0(mddev, 4);
5882         if (mddev->level == 5 &&
5883             mddev->layout == ALGORITHM_PARITY_N) {
5884                 mddev->new_layout = 0;
5885                 mddev->new_level = 4;
5886                 return setup_conf(mddev);
5887         }
5888         return ERR_PTR(-EINVAL);
5889 }
5890
5891 static struct md_personality raid5_personality;
5892
5893 static void *raid6_takeover(struct mddev *mddev)
5894 {
5895         /* Currently can only take over a raid5.  We map the
5896          * personality to an equivalent raid6 personality
5897          * with the Q block at the end.
5898          */
5899         int new_layout;
5900
5901         if (mddev->pers != &raid5_personality)
5902                 return ERR_PTR(-EINVAL);
5903         if (mddev->degraded > 1)
5904                 return ERR_PTR(-EINVAL);
5905         if (mddev->raid_disks > 253)
5906                 return ERR_PTR(-EINVAL);
5907         if (mddev->raid_disks < 3)
5908                 return ERR_PTR(-EINVAL);
5909
5910         switch (mddev->layout) {
5911         case ALGORITHM_LEFT_ASYMMETRIC:
5912                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5913                 break;
5914         case ALGORITHM_RIGHT_ASYMMETRIC:
5915                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5916                 break;
5917         case ALGORITHM_LEFT_SYMMETRIC:
5918                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5919                 break;
5920         case ALGORITHM_RIGHT_SYMMETRIC:
5921                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5922                 break;
5923         case ALGORITHM_PARITY_0:
5924                 new_layout = ALGORITHM_PARITY_0_6;
5925                 break;
5926         case ALGORITHM_PARITY_N:
5927                 new_layout = ALGORITHM_PARITY_N;
5928                 break;
5929         default:
5930                 return ERR_PTR(-EINVAL);
5931         }
5932         mddev->new_level = 6;
5933         mddev->new_layout = new_layout;
5934         mddev->delta_disks = 1;
5935         mddev->raid_disks += 1;
5936         return setup_conf(mddev);
5937 }
5938
5939
5940 static struct md_personality raid6_personality =
5941 {
5942         .name           = "raid6",
5943         .level          = 6,
5944         .owner          = THIS_MODULE,
5945         .make_request   = make_request,
5946         .run            = run,
5947         .stop           = stop,
5948         .status         = status,
5949         .error_handler  = error,
5950         .hot_add_disk   = raid5_add_disk,
5951         .hot_remove_disk= raid5_remove_disk,
5952         .spare_active   = raid5_spare_active,
5953         .sync_request   = sync_request,
5954         .resize         = raid5_resize,
5955         .size           = raid5_size,
5956         .check_reshape  = raid6_check_reshape,
5957         .start_reshape  = raid5_start_reshape,
5958         .finish_reshape = raid5_finish_reshape,
5959         .quiesce        = raid5_quiesce,
5960         .takeover       = raid6_takeover,
5961 };
5962 static struct md_personality raid5_personality =
5963 {
5964         .name           = "raid5",
5965         .level          = 5,
5966         .owner          = THIS_MODULE,
5967         .make_request   = make_request,
5968         .run            = run,
5969         .stop           = stop,
5970         .status         = status,
5971         .error_handler  = error,
5972         .hot_add_disk   = raid5_add_disk,
5973         .hot_remove_disk= raid5_remove_disk,
5974         .spare_active   = raid5_spare_active,
5975         .sync_request   = sync_request,
5976         .resize         = raid5_resize,
5977         .size           = raid5_size,
5978         .check_reshape  = raid5_check_reshape,
5979         .start_reshape  = raid5_start_reshape,
5980         .finish_reshape = raid5_finish_reshape,
5981         .quiesce        = raid5_quiesce,
5982         .takeover       = raid5_takeover,
5983 };
5984
5985 static struct md_personality raid4_personality =
5986 {
5987         .name           = "raid4",
5988         .level          = 4,
5989         .owner          = THIS_MODULE,
5990         .make_request   = make_request,
5991         .run            = run,
5992         .stop           = stop,
5993         .status         = status,
5994         .error_handler  = error,
5995         .hot_add_disk   = raid5_add_disk,
5996         .hot_remove_disk= raid5_remove_disk,
5997         .spare_active   = raid5_spare_active,
5998         .sync_request   = sync_request,
5999         .resize         = raid5_resize,
6000         .size           = raid5_size,
6001         .check_reshape  = raid5_check_reshape,
6002         .start_reshape  = raid5_start_reshape,
6003         .finish_reshape = raid5_finish_reshape,
6004         .quiesce        = raid5_quiesce,
6005         .takeover       = raid4_takeover,
6006 };
6007
6008 static int __init raid5_init(void)
6009 {
6010         register_md_personality(&raid6_personality);
6011         register_md_personality(&raid5_personality);
6012         register_md_personality(&raid4_personality);
6013         return 0;
6014 }
6015
6016 static void raid5_exit(void)
6017 {
6018         unregister_md_personality(&raid6_personality);
6019         unregister_md_personality(&raid5_personality);
6020         unregister_md_personality(&raid4_personality);
6021 }
6022
6023 module_init(raid5_init);
6024 module_exit(raid5_exit);
6025 MODULE_LICENSE("GPL");
6026 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6027 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6028 MODULE_ALIAS("md-raid5");
6029 MODULE_ALIAS("md-raid4");
6030 MODULE_ALIAS("md-level-5");
6031 MODULE_ALIAS("md-level-4");
6032 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6033 MODULE_ALIAS("md-raid6");
6034 MODULE_ALIAS("md-level-6");
6035
6036 /* This used to be two separate modules, they were: */
6037 MODULE_ALIAS("raid5");
6038 MODULE_ALIAS("raid6");