]> Pileus Git - ~andy/linux/blob - drivers/md/raid1.c
MD: Move macros from raid1*.h to raid1*.c
[~andy/linux] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45  * Number of guaranteed r1bios in case of extreme VM load:
46  */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50  * device without failing the first device, or trying to over-write to
51  * correct the read error.  To keep track of bad blocks on a per-bio
52  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53  */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56  * bad-block marking which must be done from process context.  So we record
57  * the success by setting devs[n].bio to IO_MADE_GOOD
58  */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64  * the raid1 thread, we become 'congested' to provide back-pressure
65  * for writeback.
66  */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf);
70 static void lower_barrier(struct r1conf *conf);
71
72 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
73 {
74         struct pool_info *pi = data;
75         int size = offsetof(struct r1bio, bios[pi->raid_disks]);
76
77         /* allocate a r1bio with room for raid_disks entries in the bios array */
78         return kzalloc(size, gfp_flags);
79 }
80
81 static void r1bio_pool_free(void *r1_bio, void *data)
82 {
83         kfree(r1_bio);
84 }
85
86 #define RESYNC_BLOCK_SIZE (64*1024)
87 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
88 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90 #define RESYNC_WINDOW (2048*1024)
91
92 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94         struct pool_info *pi = data;
95         struct page *page;
96         struct r1bio *r1_bio;
97         struct bio *bio;
98         int i, j;
99
100         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
101         if (!r1_bio)
102                 return NULL;
103
104         /*
105          * Allocate bios : 1 for reading, n-1 for writing
106          */
107         for (j = pi->raid_disks ; j-- ; ) {
108                 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
109                 if (!bio)
110                         goto out_free_bio;
111                 r1_bio->bios[j] = bio;
112         }
113         /*
114          * Allocate RESYNC_PAGES data pages and attach them to
115          * the first bio.
116          * If this is a user-requested check/repair, allocate
117          * RESYNC_PAGES for each bio.
118          */
119         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
120                 j = pi->raid_disks;
121         else
122                 j = 1;
123         while(j--) {
124                 bio = r1_bio->bios[j];
125                 for (i = 0; i < RESYNC_PAGES; i++) {
126                         page = alloc_page(gfp_flags);
127                         if (unlikely(!page))
128                                 goto out_free_pages;
129
130                         bio->bi_io_vec[i].bv_page = page;
131                         bio->bi_vcnt = i+1;
132                 }
133         }
134         /* If not user-requests, copy the page pointers to all bios */
135         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
136                 for (i=0; i<RESYNC_PAGES ; i++)
137                         for (j=1; j<pi->raid_disks; j++)
138                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
139                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
140         }
141
142         r1_bio->master_bio = NULL;
143
144         return r1_bio;
145
146 out_free_pages:
147         for (j=0 ; j < pi->raid_disks; j++)
148                 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
149                         put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
150         j = -1;
151 out_free_bio:
152         while (++j < pi->raid_disks)
153                 bio_put(r1_bio->bios[j]);
154         r1bio_pool_free(r1_bio, data);
155         return NULL;
156 }
157
158 static void r1buf_pool_free(void *__r1_bio, void *data)
159 {
160         struct pool_info *pi = data;
161         int i,j;
162         struct r1bio *r1bio = __r1_bio;
163
164         for (i = 0; i < RESYNC_PAGES; i++)
165                 for (j = pi->raid_disks; j-- ;) {
166                         if (j == 0 ||
167                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
168                             r1bio->bios[0]->bi_io_vec[i].bv_page)
169                                 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
170                 }
171         for (i=0 ; i < pi->raid_disks; i++)
172                 bio_put(r1bio->bios[i]);
173
174         r1bio_pool_free(r1bio, data);
175 }
176
177 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
178 {
179         int i;
180
181         for (i = 0; i < conf->raid_disks * 2; i++) {
182                 struct bio **bio = r1_bio->bios + i;
183                 if (!BIO_SPECIAL(*bio))
184                         bio_put(*bio);
185                 *bio = NULL;
186         }
187 }
188
189 static void free_r1bio(struct r1bio *r1_bio)
190 {
191         struct r1conf *conf = r1_bio->mddev->private;
192
193         put_all_bios(conf, r1_bio);
194         mempool_free(r1_bio, conf->r1bio_pool);
195 }
196
197 static void put_buf(struct r1bio *r1_bio)
198 {
199         struct r1conf *conf = r1_bio->mddev->private;
200         int i;
201
202         for (i = 0; i < conf->raid_disks * 2; i++) {
203                 struct bio *bio = r1_bio->bios[i];
204                 if (bio->bi_end_io)
205                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
206         }
207
208         mempool_free(r1_bio, conf->r1buf_pool);
209
210         lower_barrier(conf);
211 }
212
213 static void reschedule_retry(struct r1bio *r1_bio)
214 {
215         unsigned long flags;
216         struct mddev *mddev = r1_bio->mddev;
217         struct r1conf *conf = mddev->private;
218
219         spin_lock_irqsave(&conf->device_lock, flags);
220         list_add(&r1_bio->retry_list, &conf->retry_list);
221         conf->nr_queued ++;
222         spin_unlock_irqrestore(&conf->device_lock, flags);
223
224         wake_up(&conf->wait_barrier);
225         md_wakeup_thread(mddev->thread);
226 }
227
228 /*
229  * raid_end_bio_io() is called when we have finished servicing a mirrored
230  * operation and are ready to return a success/failure code to the buffer
231  * cache layer.
232  */
233 static void call_bio_endio(struct r1bio *r1_bio)
234 {
235         struct bio *bio = r1_bio->master_bio;
236         int done;
237         struct r1conf *conf = r1_bio->mddev->private;
238
239         if (bio->bi_phys_segments) {
240                 unsigned long flags;
241                 spin_lock_irqsave(&conf->device_lock, flags);
242                 bio->bi_phys_segments--;
243                 done = (bio->bi_phys_segments == 0);
244                 spin_unlock_irqrestore(&conf->device_lock, flags);
245         } else
246                 done = 1;
247
248         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
249                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
250         if (done) {
251                 bio_endio(bio, 0);
252                 /*
253                  * Wake up any possible resync thread that waits for the device
254                  * to go idle.
255                  */
256                 allow_barrier(conf);
257         }
258 }
259
260 static void raid_end_bio_io(struct r1bio *r1_bio)
261 {
262         struct bio *bio = r1_bio->master_bio;
263
264         /* if nobody has done the final endio yet, do it now */
265         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
266                 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
267                          (bio_data_dir(bio) == WRITE) ? "write" : "read",
268                          (unsigned long long) bio->bi_sector,
269                          (unsigned long long) bio->bi_sector +
270                          (bio->bi_size >> 9) - 1);
271
272                 call_bio_endio(r1_bio);
273         }
274         free_r1bio(r1_bio);
275 }
276
277 /*
278  * Update disk head position estimator based on IRQ completion info.
279  */
280 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
281 {
282         struct r1conf *conf = r1_bio->mddev->private;
283
284         conf->mirrors[disk].head_position =
285                 r1_bio->sector + (r1_bio->sectors);
286 }
287
288 /*
289  * Find the disk number which triggered given bio
290  */
291 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
292 {
293         int mirror;
294         struct r1conf *conf = r1_bio->mddev->private;
295         int raid_disks = conf->raid_disks;
296
297         for (mirror = 0; mirror < raid_disks * 2; mirror++)
298                 if (r1_bio->bios[mirror] == bio)
299                         break;
300
301         BUG_ON(mirror == raid_disks * 2);
302         update_head_pos(mirror, r1_bio);
303
304         return mirror;
305 }
306
307 static void raid1_end_read_request(struct bio *bio, int error)
308 {
309         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310         struct r1bio *r1_bio = bio->bi_private;
311         int mirror;
312         struct r1conf *conf = r1_bio->mddev->private;
313
314         mirror = r1_bio->read_disk;
315         /*
316          * this branch is our 'one mirror IO has finished' event handler:
317          */
318         update_head_pos(mirror, r1_bio);
319
320         if (uptodate)
321                 set_bit(R1BIO_Uptodate, &r1_bio->state);
322         else {
323                 /* If all other devices have failed, we want to return
324                  * the error upwards rather than fail the last device.
325                  * Here we redefine "uptodate" to mean "Don't want to retry"
326                  */
327                 unsigned long flags;
328                 spin_lock_irqsave(&conf->device_lock, flags);
329                 if (r1_bio->mddev->degraded == conf->raid_disks ||
330                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
331                      !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
332                         uptodate = 1;
333                 spin_unlock_irqrestore(&conf->device_lock, flags);
334         }
335
336         if (uptodate)
337                 raid_end_bio_io(r1_bio);
338         else {
339                 /*
340                  * oops, read error:
341                  */
342                 char b[BDEVNAME_SIZE];
343                 printk_ratelimited(
344                         KERN_ERR "md/raid1:%s: %s: "
345                         "rescheduling sector %llu\n",
346                         mdname(conf->mddev),
347                         bdevname(conf->mirrors[mirror].rdev->bdev,
348                                  b),
349                         (unsigned long long)r1_bio->sector);
350                 set_bit(R1BIO_ReadError, &r1_bio->state);
351                 reschedule_retry(r1_bio);
352         }
353
354         rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
355 }
356
357 static void close_write(struct r1bio *r1_bio)
358 {
359         /* it really is the end of this request */
360         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
361                 /* free extra copy of the data pages */
362                 int i = r1_bio->behind_page_count;
363                 while (i--)
364                         safe_put_page(r1_bio->behind_bvecs[i].bv_page);
365                 kfree(r1_bio->behind_bvecs);
366                 r1_bio->behind_bvecs = NULL;
367         }
368         /* clear the bitmap if all writes complete successfully */
369         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
370                         r1_bio->sectors,
371                         !test_bit(R1BIO_Degraded, &r1_bio->state),
372                         test_bit(R1BIO_BehindIO, &r1_bio->state));
373         md_write_end(r1_bio->mddev);
374 }
375
376 static void r1_bio_write_done(struct r1bio *r1_bio)
377 {
378         if (!atomic_dec_and_test(&r1_bio->remaining))
379                 return;
380
381         if (test_bit(R1BIO_WriteError, &r1_bio->state))
382                 reschedule_retry(r1_bio);
383         else {
384                 close_write(r1_bio);
385                 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
386                         reschedule_retry(r1_bio);
387                 else
388                         raid_end_bio_io(r1_bio);
389         }
390 }
391
392 static void raid1_end_write_request(struct bio *bio, int error)
393 {
394         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
395         struct r1bio *r1_bio = bio->bi_private;
396         int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
397         struct r1conf *conf = r1_bio->mddev->private;
398         struct bio *to_put = NULL;
399
400         mirror = find_bio_disk(r1_bio, bio);
401
402         /*
403          * 'one mirror IO has finished' event handler:
404          */
405         if (!uptodate) {
406                 set_bit(WriteErrorSeen,
407                         &conf->mirrors[mirror].rdev->flags);
408                 if (!test_and_set_bit(WantReplacement,
409                                       &conf->mirrors[mirror].rdev->flags))
410                         set_bit(MD_RECOVERY_NEEDED, &
411                                 conf->mddev->recovery);
412
413                 set_bit(R1BIO_WriteError, &r1_bio->state);
414         } else {
415                 /*
416                  * Set R1BIO_Uptodate in our master bio, so that we
417                  * will return a good error code for to the higher
418                  * levels even if IO on some other mirrored buffer
419                  * fails.
420                  *
421                  * The 'master' represents the composite IO operation
422                  * to user-side. So if something waits for IO, then it
423                  * will wait for the 'master' bio.
424                  */
425                 sector_t first_bad;
426                 int bad_sectors;
427
428                 r1_bio->bios[mirror] = NULL;
429                 to_put = bio;
430                 set_bit(R1BIO_Uptodate, &r1_bio->state);
431
432                 /* Maybe we can clear some bad blocks. */
433                 if (is_badblock(conf->mirrors[mirror].rdev,
434                                 r1_bio->sector, r1_bio->sectors,
435                                 &first_bad, &bad_sectors)) {
436                         r1_bio->bios[mirror] = IO_MADE_GOOD;
437                         set_bit(R1BIO_MadeGood, &r1_bio->state);
438                 }
439         }
440
441         if (behind) {
442                 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
443                         atomic_dec(&r1_bio->behind_remaining);
444
445                 /*
446                  * In behind mode, we ACK the master bio once the I/O
447                  * has safely reached all non-writemostly
448                  * disks. Setting the Returned bit ensures that this
449                  * gets done only once -- we don't ever want to return
450                  * -EIO here, instead we'll wait
451                  */
452                 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
453                     test_bit(R1BIO_Uptodate, &r1_bio->state)) {
454                         /* Maybe we can return now */
455                         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
456                                 struct bio *mbio = r1_bio->master_bio;
457                                 pr_debug("raid1: behind end write sectors"
458                                          " %llu-%llu\n",
459                                          (unsigned long long) mbio->bi_sector,
460                                          (unsigned long long) mbio->bi_sector +
461                                          (mbio->bi_size >> 9) - 1);
462                                 call_bio_endio(r1_bio);
463                         }
464                 }
465         }
466         if (r1_bio->bios[mirror] == NULL)
467                 rdev_dec_pending(conf->mirrors[mirror].rdev,
468                                  conf->mddev);
469
470         /*
471          * Let's see if all mirrored write operations have finished
472          * already.
473          */
474         r1_bio_write_done(r1_bio);
475
476         if (to_put)
477                 bio_put(to_put);
478 }
479
480
481 /*
482  * This routine returns the disk from which the requested read should
483  * be done. There is a per-array 'next expected sequential IO' sector
484  * number - if this matches on the next IO then we use the last disk.
485  * There is also a per-disk 'last know head position' sector that is
486  * maintained from IRQ contexts, both the normal and the resync IO
487  * completion handlers update this position correctly. If there is no
488  * perfect sequential match then we pick the disk whose head is closest.
489  *
490  * If there are 2 mirrors in the same 2 devices, performance degrades
491  * because position is mirror, not device based.
492  *
493  * The rdev for the device selected will have nr_pending incremented.
494  */
495 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
496 {
497         const sector_t this_sector = r1_bio->sector;
498         int sectors;
499         int best_good_sectors;
500         int start_disk;
501         int best_disk;
502         int i;
503         sector_t best_dist;
504         struct md_rdev *rdev;
505         int choose_first;
506
507         rcu_read_lock();
508         /*
509          * Check if we can balance. We can balance on the whole
510          * device if no resync is going on, or below the resync window.
511          * We take the first readable disk when above the resync window.
512          */
513  retry:
514         sectors = r1_bio->sectors;
515         best_disk = -1;
516         best_dist = MaxSector;
517         best_good_sectors = 0;
518
519         if (conf->mddev->recovery_cp < MaxSector &&
520             (this_sector + sectors >= conf->next_resync)) {
521                 choose_first = 1;
522                 start_disk = 0;
523         } else {
524                 choose_first = 0;
525                 start_disk = conf->last_used;
526         }
527
528         for (i = 0 ; i < conf->raid_disks * 2 ; i++) {
529                 sector_t dist;
530                 sector_t first_bad;
531                 int bad_sectors;
532
533                 int disk = start_disk + i;
534                 if (disk >= conf->raid_disks * 2)
535                         disk -= conf->raid_disks * 2;
536
537                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
538                 if (r1_bio->bios[disk] == IO_BLOCKED
539                     || rdev == NULL
540                     || test_bit(Unmerged, &rdev->flags)
541                     || test_bit(Faulty, &rdev->flags))
542                         continue;
543                 if (!test_bit(In_sync, &rdev->flags) &&
544                     rdev->recovery_offset < this_sector + sectors)
545                         continue;
546                 if (test_bit(WriteMostly, &rdev->flags)) {
547                         /* Don't balance among write-mostly, just
548                          * use the first as a last resort */
549                         if (best_disk < 0) {
550                                 if (is_badblock(rdev, this_sector, sectors,
551                                                 &first_bad, &bad_sectors)) {
552                                         if (first_bad < this_sector)
553                                                 /* Cannot use this */
554                                                 continue;
555                                         best_good_sectors = first_bad - this_sector;
556                                 } else
557                                         best_good_sectors = sectors;
558                                 best_disk = disk;
559                         }
560                         continue;
561                 }
562                 /* This is a reasonable device to use.  It might
563                  * even be best.
564                  */
565                 if (is_badblock(rdev, this_sector, sectors,
566                                 &first_bad, &bad_sectors)) {
567                         if (best_dist < MaxSector)
568                                 /* already have a better device */
569                                 continue;
570                         if (first_bad <= this_sector) {
571                                 /* cannot read here. If this is the 'primary'
572                                  * device, then we must not read beyond
573                                  * bad_sectors from another device..
574                                  */
575                                 bad_sectors -= (this_sector - first_bad);
576                                 if (choose_first && sectors > bad_sectors)
577                                         sectors = bad_sectors;
578                                 if (best_good_sectors > sectors)
579                                         best_good_sectors = sectors;
580
581                         } else {
582                                 sector_t good_sectors = first_bad - this_sector;
583                                 if (good_sectors > best_good_sectors) {
584                                         best_good_sectors = good_sectors;
585                                         best_disk = disk;
586                                 }
587                                 if (choose_first)
588                                         break;
589                         }
590                         continue;
591                 } else
592                         best_good_sectors = sectors;
593
594                 dist = abs(this_sector - conf->mirrors[disk].head_position);
595                 if (choose_first
596                     /* Don't change to another disk for sequential reads */
597                     || conf->next_seq_sect == this_sector
598                     || dist == 0
599                     /* If device is idle, use it */
600                     || atomic_read(&rdev->nr_pending) == 0) {
601                         best_disk = disk;
602                         break;
603                 }
604                 if (dist < best_dist) {
605                         best_dist = dist;
606                         best_disk = disk;
607                 }
608         }
609
610         if (best_disk >= 0) {
611                 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
612                 if (!rdev)
613                         goto retry;
614                 atomic_inc(&rdev->nr_pending);
615                 if (test_bit(Faulty, &rdev->flags)) {
616                         /* cannot risk returning a device that failed
617                          * before we inc'ed nr_pending
618                          */
619                         rdev_dec_pending(rdev, conf->mddev);
620                         goto retry;
621                 }
622                 sectors = best_good_sectors;
623                 conf->next_seq_sect = this_sector + sectors;
624                 conf->last_used = best_disk;
625         }
626         rcu_read_unlock();
627         *max_sectors = sectors;
628
629         return best_disk;
630 }
631
632 static int raid1_mergeable_bvec(struct request_queue *q,
633                                 struct bvec_merge_data *bvm,
634                                 struct bio_vec *biovec)
635 {
636         struct mddev *mddev = q->queuedata;
637         struct r1conf *conf = mddev->private;
638         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
639         int max = biovec->bv_len;
640
641         if (mddev->merge_check_needed) {
642                 int disk;
643                 rcu_read_lock();
644                 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
645                         struct md_rdev *rdev = rcu_dereference(
646                                 conf->mirrors[disk].rdev);
647                         if (rdev && !test_bit(Faulty, &rdev->flags)) {
648                                 struct request_queue *q =
649                                         bdev_get_queue(rdev->bdev);
650                                 if (q->merge_bvec_fn) {
651                                         bvm->bi_sector = sector +
652                                                 rdev->data_offset;
653                                         bvm->bi_bdev = rdev->bdev;
654                                         max = min(max, q->merge_bvec_fn(
655                                                           q, bvm, biovec));
656                                 }
657                         }
658                 }
659                 rcu_read_unlock();
660         }
661         return max;
662
663 }
664
665 int md_raid1_congested(struct mddev *mddev, int bits)
666 {
667         struct r1conf *conf = mddev->private;
668         int i, ret = 0;
669
670         if ((bits & (1 << BDI_async_congested)) &&
671             conf->pending_count >= max_queued_requests)
672                 return 1;
673
674         rcu_read_lock();
675         for (i = 0; i < conf->raid_disks * 2; i++) {
676                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
677                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
678                         struct request_queue *q = bdev_get_queue(rdev->bdev);
679
680                         BUG_ON(!q);
681
682                         /* Note the '|| 1' - when read_balance prefers
683                          * non-congested targets, it can be removed
684                          */
685                         if ((bits & (1<<BDI_async_congested)) || 1)
686                                 ret |= bdi_congested(&q->backing_dev_info, bits);
687                         else
688                                 ret &= bdi_congested(&q->backing_dev_info, bits);
689                 }
690         }
691         rcu_read_unlock();
692         return ret;
693 }
694 EXPORT_SYMBOL_GPL(md_raid1_congested);
695
696 static int raid1_congested(void *data, int bits)
697 {
698         struct mddev *mddev = data;
699
700         return mddev_congested(mddev, bits) ||
701                 md_raid1_congested(mddev, bits);
702 }
703
704 static void flush_pending_writes(struct r1conf *conf)
705 {
706         /* Any writes that have been queued but are awaiting
707          * bitmap updates get flushed here.
708          */
709         spin_lock_irq(&conf->device_lock);
710
711         if (conf->pending_bio_list.head) {
712                 struct bio *bio;
713                 bio = bio_list_get(&conf->pending_bio_list);
714                 conf->pending_count = 0;
715                 spin_unlock_irq(&conf->device_lock);
716                 /* flush any pending bitmap writes to
717                  * disk before proceeding w/ I/O */
718                 bitmap_unplug(conf->mddev->bitmap);
719                 wake_up(&conf->wait_barrier);
720
721                 while (bio) { /* submit pending writes */
722                         struct bio *next = bio->bi_next;
723                         bio->bi_next = NULL;
724                         generic_make_request(bio);
725                         bio = next;
726                 }
727         } else
728                 spin_unlock_irq(&conf->device_lock);
729 }
730
731 /* Barriers....
732  * Sometimes we need to suspend IO while we do something else,
733  * either some resync/recovery, or reconfigure the array.
734  * To do this we raise a 'barrier'.
735  * The 'barrier' is a counter that can be raised multiple times
736  * to count how many activities are happening which preclude
737  * normal IO.
738  * We can only raise the barrier if there is no pending IO.
739  * i.e. if nr_pending == 0.
740  * We choose only to raise the barrier if no-one is waiting for the
741  * barrier to go down.  This means that as soon as an IO request
742  * is ready, no other operations which require a barrier will start
743  * until the IO request has had a chance.
744  *
745  * So: regular IO calls 'wait_barrier'.  When that returns there
746  *    is no backgroup IO happening,  It must arrange to call
747  *    allow_barrier when it has finished its IO.
748  * backgroup IO calls must call raise_barrier.  Once that returns
749  *    there is no normal IO happeing.  It must arrange to call
750  *    lower_barrier when the particular background IO completes.
751  */
752 #define RESYNC_DEPTH 32
753
754 static void raise_barrier(struct r1conf *conf)
755 {
756         spin_lock_irq(&conf->resync_lock);
757
758         /* Wait until no block IO is waiting */
759         wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
760                             conf->resync_lock, );
761
762         /* block any new IO from starting */
763         conf->barrier++;
764
765         /* Now wait for all pending IO to complete */
766         wait_event_lock_irq(conf->wait_barrier,
767                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
768                             conf->resync_lock, );
769
770         spin_unlock_irq(&conf->resync_lock);
771 }
772
773 static void lower_barrier(struct r1conf *conf)
774 {
775         unsigned long flags;
776         BUG_ON(conf->barrier <= 0);
777         spin_lock_irqsave(&conf->resync_lock, flags);
778         conf->barrier--;
779         spin_unlock_irqrestore(&conf->resync_lock, flags);
780         wake_up(&conf->wait_barrier);
781 }
782
783 static void wait_barrier(struct r1conf *conf)
784 {
785         spin_lock_irq(&conf->resync_lock);
786         if (conf->barrier) {
787                 conf->nr_waiting++;
788                 /* Wait for the barrier to drop.
789                  * However if there are already pending
790                  * requests (preventing the barrier from
791                  * rising completely), and the
792                  * pre-process bio queue isn't empty,
793                  * then don't wait, as we need to empty
794                  * that queue to get the nr_pending
795                  * count down.
796                  */
797                 wait_event_lock_irq(conf->wait_barrier,
798                                     !conf->barrier ||
799                                     (conf->nr_pending &&
800                                      current->bio_list &&
801                                      !bio_list_empty(current->bio_list)),
802                                     conf->resync_lock,
803                         );
804                 conf->nr_waiting--;
805         }
806         conf->nr_pending++;
807         spin_unlock_irq(&conf->resync_lock);
808 }
809
810 static void allow_barrier(struct r1conf *conf)
811 {
812         unsigned long flags;
813         spin_lock_irqsave(&conf->resync_lock, flags);
814         conf->nr_pending--;
815         spin_unlock_irqrestore(&conf->resync_lock, flags);
816         wake_up(&conf->wait_barrier);
817 }
818
819 static void freeze_array(struct r1conf *conf)
820 {
821         /* stop syncio and normal IO and wait for everything to
822          * go quite.
823          * We increment barrier and nr_waiting, and then
824          * wait until nr_pending match nr_queued+1
825          * This is called in the context of one normal IO request
826          * that has failed. Thus any sync request that might be pending
827          * will be blocked by nr_pending, and we need to wait for
828          * pending IO requests to complete or be queued for re-try.
829          * Thus the number queued (nr_queued) plus this request (1)
830          * must match the number of pending IOs (nr_pending) before
831          * we continue.
832          */
833         spin_lock_irq(&conf->resync_lock);
834         conf->barrier++;
835         conf->nr_waiting++;
836         wait_event_lock_irq(conf->wait_barrier,
837                             conf->nr_pending == conf->nr_queued+1,
838                             conf->resync_lock,
839                             flush_pending_writes(conf));
840         spin_unlock_irq(&conf->resync_lock);
841 }
842 static void unfreeze_array(struct r1conf *conf)
843 {
844         /* reverse the effect of the freeze */
845         spin_lock_irq(&conf->resync_lock);
846         conf->barrier--;
847         conf->nr_waiting--;
848         wake_up(&conf->wait_barrier);
849         spin_unlock_irq(&conf->resync_lock);
850 }
851
852
853 /* duplicate the data pages for behind I/O 
854  */
855 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
856 {
857         int i;
858         struct bio_vec *bvec;
859         struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
860                                         GFP_NOIO);
861         if (unlikely(!bvecs))
862                 return;
863
864         bio_for_each_segment(bvec, bio, i) {
865                 bvecs[i] = *bvec;
866                 bvecs[i].bv_page = alloc_page(GFP_NOIO);
867                 if (unlikely(!bvecs[i].bv_page))
868                         goto do_sync_io;
869                 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
870                        kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
871                 kunmap(bvecs[i].bv_page);
872                 kunmap(bvec->bv_page);
873         }
874         r1_bio->behind_bvecs = bvecs;
875         r1_bio->behind_page_count = bio->bi_vcnt;
876         set_bit(R1BIO_BehindIO, &r1_bio->state);
877         return;
878
879 do_sync_io:
880         for (i = 0; i < bio->bi_vcnt; i++)
881                 if (bvecs[i].bv_page)
882                         put_page(bvecs[i].bv_page);
883         kfree(bvecs);
884         pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
885 }
886
887 static void make_request(struct mddev *mddev, struct bio * bio)
888 {
889         struct r1conf *conf = mddev->private;
890         struct raid1_info *mirror;
891         struct r1bio *r1_bio;
892         struct bio *read_bio;
893         int i, disks;
894         struct bitmap *bitmap;
895         unsigned long flags;
896         const int rw = bio_data_dir(bio);
897         const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
898         const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
899         struct md_rdev *blocked_rdev;
900         int first_clone;
901         int sectors_handled;
902         int max_sectors;
903
904         /*
905          * Register the new request and wait if the reconstruction
906          * thread has put up a bar for new requests.
907          * Continue immediately if no resync is active currently.
908          */
909
910         md_write_start(mddev, bio); /* wait on superblock update early */
911
912         if (bio_data_dir(bio) == WRITE &&
913             bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
914             bio->bi_sector < mddev->suspend_hi) {
915                 /* As the suspend_* range is controlled by
916                  * userspace, we want an interruptible
917                  * wait.
918                  */
919                 DEFINE_WAIT(w);
920                 for (;;) {
921                         flush_signals(current);
922                         prepare_to_wait(&conf->wait_barrier,
923                                         &w, TASK_INTERRUPTIBLE);
924                         if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
925                             bio->bi_sector >= mddev->suspend_hi)
926                                 break;
927                         schedule();
928                 }
929                 finish_wait(&conf->wait_barrier, &w);
930         }
931
932         wait_barrier(conf);
933
934         bitmap = mddev->bitmap;
935
936         /*
937          * make_request() can abort the operation when READA is being
938          * used and no empty request is available.
939          *
940          */
941         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
942
943         r1_bio->master_bio = bio;
944         r1_bio->sectors = bio->bi_size >> 9;
945         r1_bio->state = 0;
946         r1_bio->mddev = mddev;
947         r1_bio->sector = bio->bi_sector;
948
949         /* We might need to issue multiple reads to different
950          * devices if there are bad blocks around, so we keep
951          * track of the number of reads in bio->bi_phys_segments.
952          * If this is 0, there is only one r1_bio and no locking
953          * will be needed when requests complete.  If it is
954          * non-zero, then it is the number of not-completed requests.
955          */
956         bio->bi_phys_segments = 0;
957         clear_bit(BIO_SEG_VALID, &bio->bi_flags);
958
959         if (rw == READ) {
960                 /*
961                  * read balancing logic:
962                  */
963                 int rdisk;
964
965 read_again:
966                 rdisk = read_balance(conf, r1_bio, &max_sectors);
967
968                 if (rdisk < 0) {
969                         /* couldn't find anywhere to read from */
970                         raid_end_bio_io(r1_bio);
971                         return;
972                 }
973                 mirror = conf->mirrors + rdisk;
974
975                 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
976                     bitmap) {
977                         /* Reading from a write-mostly device must
978                          * take care not to over-take any writes
979                          * that are 'behind'
980                          */
981                         wait_event(bitmap->behind_wait,
982                                    atomic_read(&bitmap->behind_writes) == 0);
983                 }
984                 r1_bio->read_disk = rdisk;
985
986                 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
987                 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
988                             max_sectors);
989
990                 r1_bio->bios[rdisk] = read_bio;
991
992                 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
993                 read_bio->bi_bdev = mirror->rdev->bdev;
994                 read_bio->bi_end_io = raid1_end_read_request;
995                 read_bio->bi_rw = READ | do_sync;
996                 read_bio->bi_private = r1_bio;
997
998                 if (max_sectors < r1_bio->sectors) {
999                         /* could not read all from this device, so we will
1000                          * need another r1_bio.
1001                          */
1002
1003                         sectors_handled = (r1_bio->sector + max_sectors
1004                                            - bio->bi_sector);
1005                         r1_bio->sectors = max_sectors;
1006                         spin_lock_irq(&conf->device_lock);
1007                         if (bio->bi_phys_segments == 0)
1008                                 bio->bi_phys_segments = 2;
1009                         else
1010                                 bio->bi_phys_segments++;
1011                         spin_unlock_irq(&conf->device_lock);
1012                         /* Cannot call generic_make_request directly
1013                          * as that will be queued in __make_request
1014                          * and subsequent mempool_alloc might block waiting
1015                          * for it.  So hand bio over to raid1d.
1016                          */
1017                         reschedule_retry(r1_bio);
1018
1019                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1020
1021                         r1_bio->master_bio = bio;
1022                         r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1023                         r1_bio->state = 0;
1024                         r1_bio->mddev = mddev;
1025                         r1_bio->sector = bio->bi_sector + sectors_handled;
1026                         goto read_again;
1027                 } else
1028                         generic_make_request(read_bio);
1029                 return;
1030         }
1031
1032         /*
1033          * WRITE:
1034          */
1035         if (conf->pending_count >= max_queued_requests) {
1036                 md_wakeup_thread(mddev->thread);
1037                 wait_event(conf->wait_barrier,
1038                            conf->pending_count < max_queued_requests);
1039         }
1040         /* first select target devices under rcu_lock and
1041          * inc refcount on their rdev.  Record them by setting
1042          * bios[x] to bio
1043          * If there are known/acknowledged bad blocks on any device on
1044          * which we have seen a write error, we want to avoid writing those
1045          * blocks.
1046          * This potentially requires several writes to write around
1047          * the bad blocks.  Each set of writes gets it's own r1bio
1048          * with a set of bios attached.
1049          */
1050
1051         disks = conf->raid_disks * 2;
1052  retry_write:
1053         blocked_rdev = NULL;
1054         rcu_read_lock();
1055         max_sectors = r1_bio->sectors;
1056         for (i = 0;  i < disks; i++) {
1057                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1058                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1059                         atomic_inc(&rdev->nr_pending);
1060                         blocked_rdev = rdev;
1061                         break;
1062                 }
1063                 r1_bio->bios[i] = NULL;
1064                 if (!rdev || test_bit(Faulty, &rdev->flags)
1065                     || test_bit(Unmerged, &rdev->flags)) {
1066                         if (i < conf->raid_disks)
1067                                 set_bit(R1BIO_Degraded, &r1_bio->state);
1068                         continue;
1069                 }
1070
1071                 atomic_inc(&rdev->nr_pending);
1072                 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1073                         sector_t first_bad;
1074                         int bad_sectors;
1075                         int is_bad;
1076
1077                         is_bad = is_badblock(rdev, r1_bio->sector,
1078                                              max_sectors,
1079                                              &first_bad, &bad_sectors);
1080                         if (is_bad < 0) {
1081                                 /* mustn't write here until the bad block is
1082                                  * acknowledged*/
1083                                 set_bit(BlockedBadBlocks, &rdev->flags);
1084                                 blocked_rdev = rdev;
1085                                 break;
1086                         }
1087                         if (is_bad && first_bad <= r1_bio->sector) {
1088                                 /* Cannot write here at all */
1089                                 bad_sectors -= (r1_bio->sector - first_bad);
1090                                 if (bad_sectors < max_sectors)
1091                                         /* mustn't write more than bad_sectors
1092                                          * to other devices yet
1093                                          */
1094                                         max_sectors = bad_sectors;
1095                                 rdev_dec_pending(rdev, mddev);
1096                                 /* We don't set R1BIO_Degraded as that
1097                                  * only applies if the disk is
1098                                  * missing, so it might be re-added,
1099                                  * and we want to know to recover this
1100                                  * chunk.
1101                                  * In this case the device is here,
1102                                  * and the fact that this chunk is not
1103                                  * in-sync is recorded in the bad
1104                                  * block log
1105                                  */
1106                                 continue;
1107                         }
1108                         if (is_bad) {
1109                                 int good_sectors = first_bad - r1_bio->sector;
1110                                 if (good_sectors < max_sectors)
1111                                         max_sectors = good_sectors;
1112                         }
1113                 }
1114                 r1_bio->bios[i] = bio;
1115         }
1116         rcu_read_unlock();
1117
1118         if (unlikely(blocked_rdev)) {
1119                 /* Wait for this device to become unblocked */
1120                 int j;
1121
1122                 for (j = 0; j < i; j++)
1123                         if (r1_bio->bios[j])
1124                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1125                 r1_bio->state = 0;
1126                 allow_barrier(conf);
1127                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1128                 wait_barrier(conf);
1129                 goto retry_write;
1130         }
1131
1132         if (max_sectors < r1_bio->sectors) {
1133                 /* We are splitting this write into multiple parts, so
1134                  * we need to prepare for allocating another r1_bio.
1135                  */
1136                 r1_bio->sectors = max_sectors;
1137                 spin_lock_irq(&conf->device_lock);
1138                 if (bio->bi_phys_segments == 0)
1139                         bio->bi_phys_segments = 2;
1140                 else
1141                         bio->bi_phys_segments++;
1142                 spin_unlock_irq(&conf->device_lock);
1143         }
1144         sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1145
1146         atomic_set(&r1_bio->remaining, 1);
1147         atomic_set(&r1_bio->behind_remaining, 0);
1148
1149         first_clone = 1;
1150         for (i = 0; i < disks; i++) {
1151                 struct bio *mbio;
1152                 if (!r1_bio->bios[i])
1153                         continue;
1154
1155                 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1156                 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1157
1158                 if (first_clone) {
1159                         /* do behind I/O ?
1160                          * Not if there are too many, or cannot
1161                          * allocate memory, or a reader on WriteMostly
1162                          * is waiting for behind writes to flush */
1163                         if (bitmap &&
1164                             (atomic_read(&bitmap->behind_writes)
1165                              < mddev->bitmap_info.max_write_behind) &&
1166                             !waitqueue_active(&bitmap->behind_wait))
1167                                 alloc_behind_pages(mbio, r1_bio);
1168
1169                         bitmap_startwrite(bitmap, r1_bio->sector,
1170                                           r1_bio->sectors,
1171                                           test_bit(R1BIO_BehindIO,
1172                                                    &r1_bio->state));
1173                         first_clone = 0;
1174                 }
1175                 if (r1_bio->behind_bvecs) {
1176                         struct bio_vec *bvec;
1177                         int j;
1178
1179                         /* Yes, I really want the '__' version so that
1180                          * we clear any unused pointer in the io_vec, rather
1181                          * than leave them unchanged.  This is important
1182                          * because when we come to free the pages, we won't
1183                          * know the original bi_idx, so we just free
1184                          * them all
1185                          */
1186                         __bio_for_each_segment(bvec, mbio, j, 0)
1187                                 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1188                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1189                                 atomic_inc(&r1_bio->behind_remaining);
1190                 }
1191
1192                 r1_bio->bios[i] = mbio;
1193
1194                 mbio->bi_sector = (r1_bio->sector +
1195                                    conf->mirrors[i].rdev->data_offset);
1196                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1197                 mbio->bi_end_io = raid1_end_write_request;
1198                 mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1199                 mbio->bi_private = r1_bio;
1200
1201                 atomic_inc(&r1_bio->remaining);
1202                 spin_lock_irqsave(&conf->device_lock, flags);
1203                 bio_list_add(&conf->pending_bio_list, mbio);
1204                 conf->pending_count++;
1205                 spin_unlock_irqrestore(&conf->device_lock, flags);
1206                 if (!mddev_check_plugged(mddev))
1207                         md_wakeup_thread(mddev->thread);
1208         }
1209         /* Mustn't call r1_bio_write_done before this next test,
1210          * as it could result in the bio being freed.
1211          */
1212         if (sectors_handled < (bio->bi_size >> 9)) {
1213                 r1_bio_write_done(r1_bio);
1214                 /* We need another r1_bio.  It has already been counted
1215                  * in bio->bi_phys_segments
1216                  */
1217                 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1218                 r1_bio->master_bio = bio;
1219                 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1220                 r1_bio->state = 0;
1221                 r1_bio->mddev = mddev;
1222                 r1_bio->sector = bio->bi_sector + sectors_handled;
1223                 goto retry_write;
1224         }
1225
1226         r1_bio_write_done(r1_bio);
1227
1228         /* In case raid1d snuck in to freeze_array */
1229         wake_up(&conf->wait_barrier);
1230 }
1231
1232 static void status(struct seq_file *seq, struct mddev *mddev)
1233 {
1234         struct r1conf *conf = mddev->private;
1235         int i;
1236
1237         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1238                    conf->raid_disks - mddev->degraded);
1239         rcu_read_lock();
1240         for (i = 0; i < conf->raid_disks; i++) {
1241                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1242                 seq_printf(seq, "%s",
1243                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1244         }
1245         rcu_read_unlock();
1246         seq_printf(seq, "]");
1247 }
1248
1249
1250 static void error(struct mddev *mddev, struct md_rdev *rdev)
1251 {
1252         char b[BDEVNAME_SIZE];
1253         struct r1conf *conf = mddev->private;
1254
1255         /*
1256          * If it is not operational, then we have already marked it as dead
1257          * else if it is the last working disks, ignore the error, let the
1258          * next level up know.
1259          * else mark the drive as failed
1260          */
1261         if (test_bit(In_sync, &rdev->flags)
1262             && (conf->raid_disks - mddev->degraded) == 1) {
1263                 /*
1264                  * Don't fail the drive, act as though we were just a
1265                  * normal single drive.
1266                  * However don't try a recovery from this drive as
1267                  * it is very likely to fail.
1268                  */
1269                 conf->recovery_disabled = mddev->recovery_disabled;
1270                 return;
1271         }
1272         set_bit(Blocked, &rdev->flags);
1273         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1274                 unsigned long flags;
1275                 spin_lock_irqsave(&conf->device_lock, flags);
1276                 mddev->degraded++;
1277                 set_bit(Faulty, &rdev->flags);
1278                 spin_unlock_irqrestore(&conf->device_lock, flags);
1279                 /*
1280                  * if recovery is running, make sure it aborts.
1281                  */
1282                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1283         } else
1284                 set_bit(Faulty, &rdev->flags);
1285         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1286         printk(KERN_ALERT
1287                "md/raid1:%s: Disk failure on %s, disabling device.\n"
1288                "md/raid1:%s: Operation continuing on %d devices.\n",
1289                mdname(mddev), bdevname(rdev->bdev, b),
1290                mdname(mddev), conf->raid_disks - mddev->degraded);
1291 }
1292
1293 static void print_conf(struct r1conf *conf)
1294 {
1295         int i;
1296
1297         printk(KERN_DEBUG "RAID1 conf printout:\n");
1298         if (!conf) {
1299                 printk(KERN_DEBUG "(!conf)\n");
1300                 return;
1301         }
1302         printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1303                 conf->raid_disks);
1304
1305         rcu_read_lock();
1306         for (i = 0; i < conf->raid_disks; i++) {
1307                 char b[BDEVNAME_SIZE];
1308                 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1309                 if (rdev)
1310                         printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1311                                i, !test_bit(In_sync, &rdev->flags),
1312                                !test_bit(Faulty, &rdev->flags),
1313                                bdevname(rdev->bdev,b));
1314         }
1315         rcu_read_unlock();
1316 }
1317
1318 static void close_sync(struct r1conf *conf)
1319 {
1320         wait_barrier(conf);
1321         allow_barrier(conf);
1322
1323         mempool_destroy(conf->r1buf_pool);
1324         conf->r1buf_pool = NULL;
1325 }
1326
1327 static int raid1_spare_active(struct mddev *mddev)
1328 {
1329         int i;
1330         struct r1conf *conf = mddev->private;
1331         int count = 0;
1332         unsigned long flags;
1333
1334         /*
1335          * Find all failed disks within the RAID1 configuration 
1336          * and mark them readable.
1337          * Called under mddev lock, so rcu protection not needed.
1338          */
1339         for (i = 0; i < conf->raid_disks; i++) {
1340                 struct md_rdev *rdev = conf->mirrors[i].rdev;
1341                 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1342                 if (repl
1343                     && repl->recovery_offset == MaxSector
1344                     && !test_bit(Faulty, &repl->flags)
1345                     && !test_and_set_bit(In_sync, &repl->flags)) {
1346                         /* replacement has just become active */
1347                         if (!rdev ||
1348                             !test_and_clear_bit(In_sync, &rdev->flags))
1349                                 count++;
1350                         if (rdev) {
1351                                 /* Replaced device not technically
1352                                  * faulty, but we need to be sure
1353                                  * it gets removed and never re-added
1354                                  */
1355                                 set_bit(Faulty, &rdev->flags);
1356                                 sysfs_notify_dirent_safe(
1357                                         rdev->sysfs_state);
1358                         }
1359                 }
1360                 if (rdev
1361                     && !test_bit(Faulty, &rdev->flags)
1362                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1363                         count++;
1364                         sysfs_notify_dirent_safe(rdev->sysfs_state);
1365                 }
1366         }
1367         spin_lock_irqsave(&conf->device_lock, flags);
1368         mddev->degraded -= count;
1369         spin_unlock_irqrestore(&conf->device_lock, flags);
1370
1371         print_conf(conf);
1372         return count;
1373 }
1374
1375
1376 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1377 {
1378         struct r1conf *conf = mddev->private;
1379         int err = -EEXIST;
1380         int mirror = 0;
1381         struct raid1_info *p;
1382         int first = 0;
1383         int last = conf->raid_disks - 1;
1384         struct request_queue *q = bdev_get_queue(rdev->bdev);
1385
1386         if (mddev->recovery_disabled == conf->recovery_disabled)
1387                 return -EBUSY;
1388
1389         if (rdev->raid_disk >= 0)
1390                 first = last = rdev->raid_disk;
1391
1392         if (q->merge_bvec_fn) {
1393                 set_bit(Unmerged, &rdev->flags);
1394                 mddev->merge_check_needed = 1;
1395         }
1396
1397         for (mirror = first; mirror <= last; mirror++) {
1398                 p = conf->mirrors+mirror;
1399                 if (!p->rdev) {
1400
1401                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1402                                           rdev->data_offset << 9);
1403
1404                         p->head_position = 0;
1405                         rdev->raid_disk = mirror;
1406                         err = 0;
1407                         /* As all devices are equivalent, we don't need a full recovery
1408                          * if this was recently any drive of the array
1409                          */
1410                         if (rdev->saved_raid_disk < 0)
1411                                 conf->fullsync = 1;
1412                         rcu_assign_pointer(p->rdev, rdev);
1413                         break;
1414                 }
1415                 if (test_bit(WantReplacement, &p->rdev->flags) &&
1416                     p[conf->raid_disks].rdev == NULL) {
1417                         /* Add this device as a replacement */
1418                         clear_bit(In_sync, &rdev->flags);
1419                         set_bit(Replacement, &rdev->flags);
1420                         rdev->raid_disk = mirror;
1421                         err = 0;
1422                         conf->fullsync = 1;
1423                         rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1424                         break;
1425                 }
1426         }
1427         if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1428                 /* Some requests might not have seen this new
1429                  * merge_bvec_fn.  We must wait for them to complete
1430                  * before merging the device fully.
1431                  * First we make sure any code which has tested
1432                  * our function has submitted the request, then
1433                  * we wait for all outstanding requests to complete.
1434                  */
1435                 synchronize_sched();
1436                 raise_barrier(conf);
1437                 lower_barrier(conf);
1438                 clear_bit(Unmerged, &rdev->flags);
1439         }
1440         md_integrity_add_rdev(rdev, mddev);
1441         print_conf(conf);
1442         return err;
1443 }
1444
1445 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1446 {
1447         struct r1conf *conf = mddev->private;
1448         int err = 0;
1449         int number = rdev->raid_disk;
1450         struct raid1_info *p = conf->mirrors + number;
1451
1452         if (rdev != p->rdev)
1453                 p = conf->mirrors + conf->raid_disks + number;
1454
1455         print_conf(conf);
1456         if (rdev == p->rdev) {
1457                 if (test_bit(In_sync, &rdev->flags) ||
1458                     atomic_read(&rdev->nr_pending)) {
1459                         err = -EBUSY;
1460                         goto abort;
1461                 }
1462                 /* Only remove non-faulty devices if recovery
1463                  * is not possible.
1464                  */
1465                 if (!test_bit(Faulty, &rdev->flags) &&
1466                     mddev->recovery_disabled != conf->recovery_disabled &&
1467                     mddev->degraded < conf->raid_disks) {
1468                         err = -EBUSY;
1469                         goto abort;
1470                 }
1471                 p->rdev = NULL;
1472                 synchronize_rcu();
1473                 if (atomic_read(&rdev->nr_pending)) {
1474                         /* lost the race, try later */
1475                         err = -EBUSY;
1476                         p->rdev = rdev;
1477                         goto abort;
1478                 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1479                         /* We just removed a device that is being replaced.
1480                          * Move down the replacement.  We drain all IO before
1481                          * doing this to avoid confusion.
1482                          */
1483                         struct md_rdev *repl =
1484                                 conf->mirrors[conf->raid_disks + number].rdev;
1485                         raise_barrier(conf);
1486                         clear_bit(Replacement, &repl->flags);
1487                         p->rdev = repl;
1488                         conf->mirrors[conf->raid_disks + number].rdev = NULL;
1489                         lower_barrier(conf);
1490                         clear_bit(WantReplacement, &rdev->flags);
1491                 } else
1492                         clear_bit(WantReplacement, &rdev->flags);
1493                 err = md_integrity_register(mddev);
1494         }
1495 abort:
1496
1497         print_conf(conf);
1498         return err;
1499 }
1500
1501
1502 static void end_sync_read(struct bio *bio, int error)
1503 {
1504         struct r1bio *r1_bio = bio->bi_private;
1505
1506         update_head_pos(r1_bio->read_disk, r1_bio);
1507
1508         /*
1509          * we have read a block, now it needs to be re-written,
1510          * or re-read if the read failed.
1511          * We don't do much here, just schedule handling by raid1d
1512          */
1513         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1514                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1515
1516         if (atomic_dec_and_test(&r1_bio->remaining))
1517                 reschedule_retry(r1_bio);
1518 }
1519
1520 static void end_sync_write(struct bio *bio, int error)
1521 {
1522         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1523         struct r1bio *r1_bio = bio->bi_private;
1524         struct mddev *mddev = r1_bio->mddev;
1525         struct r1conf *conf = mddev->private;
1526         int mirror=0;
1527         sector_t first_bad;
1528         int bad_sectors;
1529
1530         mirror = find_bio_disk(r1_bio, bio);
1531
1532         if (!uptodate) {
1533                 sector_t sync_blocks = 0;
1534                 sector_t s = r1_bio->sector;
1535                 long sectors_to_go = r1_bio->sectors;
1536                 /* make sure these bits doesn't get cleared. */
1537                 do {
1538                         bitmap_end_sync(mddev->bitmap, s,
1539                                         &sync_blocks, 1);
1540                         s += sync_blocks;
1541                         sectors_to_go -= sync_blocks;
1542                 } while (sectors_to_go > 0);
1543                 set_bit(WriteErrorSeen,
1544                         &conf->mirrors[mirror].rdev->flags);
1545                 if (!test_and_set_bit(WantReplacement,
1546                                       &conf->mirrors[mirror].rdev->flags))
1547                         set_bit(MD_RECOVERY_NEEDED, &
1548                                 mddev->recovery);
1549                 set_bit(R1BIO_WriteError, &r1_bio->state);
1550         } else if (is_badblock(conf->mirrors[mirror].rdev,
1551                                r1_bio->sector,
1552                                r1_bio->sectors,
1553                                &first_bad, &bad_sectors) &&
1554                    !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1555                                 r1_bio->sector,
1556                                 r1_bio->sectors,
1557                                 &first_bad, &bad_sectors)
1558                 )
1559                 set_bit(R1BIO_MadeGood, &r1_bio->state);
1560
1561         if (atomic_dec_and_test(&r1_bio->remaining)) {
1562                 int s = r1_bio->sectors;
1563                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1564                     test_bit(R1BIO_WriteError, &r1_bio->state))
1565                         reschedule_retry(r1_bio);
1566                 else {
1567                         put_buf(r1_bio);
1568                         md_done_sync(mddev, s, uptodate);
1569                 }
1570         }
1571 }
1572
1573 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1574                             int sectors, struct page *page, int rw)
1575 {
1576         if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1577                 /* success */
1578                 return 1;
1579         if (rw == WRITE) {
1580                 set_bit(WriteErrorSeen, &rdev->flags);
1581                 if (!test_and_set_bit(WantReplacement,
1582                                       &rdev->flags))
1583                         set_bit(MD_RECOVERY_NEEDED, &
1584                                 rdev->mddev->recovery);
1585         }
1586         /* need to record an error - either for the block or the device */
1587         if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1588                 md_error(rdev->mddev, rdev);
1589         return 0;
1590 }
1591
1592 static int fix_sync_read_error(struct r1bio *r1_bio)
1593 {
1594         /* Try some synchronous reads of other devices to get
1595          * good data, much like with normal read errors.  Only
1596          * read into the pages we already have so we don't
1597          * need to re-issue the read request.
1598          * We don't need to freeze the array, because being in an
1599          * active sync request, there is no normal IO, and
1600          * no overlapping syncs.
1601          * We don't need to check is_badblock() again as we
1602          * made sure that anything with a bad block in range
1603          * will have bi_end_io clear.
1604          */
1605         struct mddev *mddev = r1_bio->mddev;
1606         struct r1conf *conf = mddev->private;
1607         struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1608         sector_t sect = r1_bio->sector;
1609         int sectors = r1_bio->sectors;
1610         int idx = 0;
1611
1612         while(sectors) {
1613                 int s = sectors;
1614                 int d = r1_bio->read_disk;
1615                 int success = 0;
1616                 struct md_rdev *rdev;
1617                 int start;
1618
1619                 if (s > (PAGE_SIZE>>9))
1620                         s = PAGE_SIZE >> 9;
1621                 do {
1622                         if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1623                                 /* No rcu protection needed here devices
1624                                  * can only be removed when no resync is
1625                                  * active, and resync is currently active
1626                                  */
1627                                 rdev = conf->mirrors[d].rdev;
1628                                 if (sync_page_io(rdev, sect, s<<9,
1629                                                  bio->bi_io_vec[idx].bv_page,
1630                                                  READ, false)) {
1631                                         success = 1;
1632                                         break;
1633                                 }
1634                         }
1635                         d++;
1636                         if (d == conf->raid_disks * 2)
1637                                 d = 0;
1638                 } while (!success && d != r1_bio->read_disk);
1639
1640                 if (!success) {
1641                         char b[BDEVNAME_SIZE];
1642                         int abort = 0;
1643                         /* Cannot read from anywhere, this block is lost.
1644                          * Record a bad block on each device.  If that doesn't
1645                          * work just disable and interrupt the recovery.
1646                          * Don't fail devices as that won't really help.
1647                          */
1648                         printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1649                                " for block %llu\n",
1650                                mdname(mddev),
1651                                bdevname(bio->bi_bdev, b),
1652                                (unsigned long long)r1_bio->sector);
1653                         for (d = 0; d < conf->raid_disks * 2; d++) {
1654                                 rdev = conf->mirrors[d].rdev;
1655                                 if (!rdev || test_bit(Faulty, &rdev->flags))
1656                                         continue;
1657                                 if (!rdev_set_badblocks(rdev, sect, s, 0))
1658                                         abort = 1;
1659                         }
1660                         if (abort) {
1661                                 conf->recovery_disabled =
1662                                         mddev->recovery_disabled;
1663                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1664                                 md_done_sync(mddev, r1_bio->sectors, 0);
1665                                 put_buf(r1_bio);
1666                                 return 0;
1667                         }
1668                         /* Try next page */
1669                         sectors -= s;
1670                         sect += s;
1671                         idx++;
1672                         continue;
1673                 }
1674
1675                 start = d;
1676                 /* write it back and re-read */
1677                 while (d != r1_bio->read_disk) {
1678                         if (d == 0)
1679                                 d = conf->raid_disks * 2;
1680                         d--;
1681                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1682                                 continue;
1683                         rdev = conf->mirrors[d].rdev;
1684                         if (r1_sync_page_io(rdev, sect, s,
1685                                             bio->bi_io_vec[idx].bv_page,
1686                                             WRITE) == 0) {
1687                                 r1_bio->bios[d]->bi_end_io = NULL;
1688                                 rdev_dec_pending(rdev, mddev);
1689                         }
1690                 }
1691                 d = start;
1692                 while (d != r1_bio->read_disk) {
1693                         if (d == 0)
1694                                 d = conf->raid_disks * 2;
1695                         d--;
1696                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1697                                 continue;
1698                         rdev = conf->mirrors[d].rdev;
1699                         if (r1_sync_page_io(rdev, sect, s,
1700                                             bio->bi_io_vec[idx].bv_page,
1701                                             READ) != 0)
1702                                 atomic_add(s, &rdev->corrected_errors);
1703                 }
1704                 sectors -= s;
1705                 sect += s;
1706                 idx ++;
1707         }
1708         set_bit(R1BIO_Uptodate, &r1_bio->state);
1709         set_bit(BIO_UPTODATE, &bio->bi_flags);
1710         return 1;
1711 }
1712
1713 static int process_checks(struct r1bio *r1_bio)
1714 {
1715         /* We have read all readable devices.  If we haven't
1716          * got the block, then there is no hope left.
1717          * If we have, then we want to do a comparison
1718          * and skip the write if everything is the same.
1719          * If any blocks failed to read, then we need to
1720          * attempt an over-write
1721          */
1722         struct mddev *mddev = r1_bio->mddev;
1723         struct r1conf *conf = mddev->private;
1724         int primary;
1725         int i;
1726         int vcnt;
1727
1728         for (primary = 0; primary < conf->raid_disks * 2; primary++)
1729                 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1730                     test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1731                         r1_bio->bios[primary]->bi_end_io = NULL;
1732                         rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1733                         break;
1734                 }
1735         r1_bio->read_disk = primary;
1736         vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1737         for (i = 0; i < conf->raid_disks * 2; i++) {
1738                 int j;
1739                 struct bio *pbio = r1_bio->bios[primary];
1740                 struct bio *sbio = r1_bio->bios[i];
1741                 int size;
1742
1743                 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1744                         continue;
1745
1746                 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1747                         for (j = vcnt; j-- ; ) {
1748                                 struct page *p, *s;
1749                                 p = pbio->bi_io_vec[j].bv_page;
1750                                 s = sbio->bi_io_vec[j].bv_page;
1751                                 if (memcmp(page_address(p),
1752                                            page_address(s),
1753                                            sbio->bi_io_vec[j].bv_len))
1754                                         break;
1755                         }
1756                 } else
1757                         j = 0;
1758                 if (j >= 0)
1759                         mddev->resync_mismatches += r1_bio->sectors;
1760                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1761                               && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1762                         /* No need to write to this device. */
1763                         sbio->bi_end_io = NULL;
1764                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1765                         continue;
1766                 }
1767                 /* fixup the bio for reuse */
1768                 sbio->bi_vcnt = vcnt;
1769                 sbio->bi_size = r1_bio->sectors << 9;
1770                 sbio->bi_idx = 0;
1771                 sbio->bi_phys_segments = 0;
1772                 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1773                 sbio->bi_flags |= 1 << BIO_UPTODATE;
1774                 sbio->bi_next = NULL;
1775                 sbio->bi_sector = r1_bio->sector +
1776                         conf->mirrors[i].rdev->data_offset;
1777                 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1778                 size = sbio->bi_size;
1779                 for (j = 0; j < vcnt ; j++) {
1780                         struct bio_vec *bi;
1781                         bi = &sbio->bi_io_vec[j];
1782                         bi->bv_offset = 0;
1783                         if (size > PAGE_SIZE)
1784                                 bi->bv_len = PAGE_SIZE;
1785                         else
1786                                 bi->bv_len = size;
1787                         size -= PAGE_SIZE;
1788                         memcpy(page_address(bi->bv_page),
1789                                page_address(pbio->bi_io_vec[j].bv_page),
1790                                PAGE_SIZE);
1791                 }
1792         }
1793         return 0;
1794 }
1795
1796 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1797 {
1798         struct r1conf *conf = mddev->private;
1799         int i;
1800         int disks = conf->raid_disks * 2;
1801         struct bio *bio, *wbio;
1802
1803         bio = r1_bio->bios[r1_bio->read_disk];
1804
1805         if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1806                 /* ouch - failed to read all of that. */
1807                 if (!fix_sync_read_error(r1_bio))
1808                         return;
1809
1810         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1811                 if (process_checks(r1_bio) < 0)
1812                         return;
1813         /*
1814          * schedule writes
1815          */
1816         atomic_set(&r1_bio->remaining, 1);
1817         for (i = 0; i < disks ; i++) {
1818                 wbio = r1_bio->bios[i];
1819                 if (wbio->bi_end_io == NULL ||
1820                     (wbio->bi_end_io == end_sync_read &&
1821                      (i == r1_bio->read_disk ||
1822                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1823                         continue;
1824
1825                 wbio->bi_rw = WRITE;
1826                 wbio->bi_end_io = end_sync_write;
1827                 atomic_inc(&r1_bio->remaining);
1828                 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1829
1830                 generic_make_request(wbio);
1831         }
1832
1833         if (atomic_dec_and_test(&r1_bio->remaining)) {
1834                 /* if we're here, all write(s) have completed, so clean up */
1835                 int s = r1_bio->sectors;
1836                 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1837                     test_bit(R1BIO_WriteError, &r1_bio->state))
1838                         reschedule_retry(r1_bio);
1839                 else {
1840                         put_buf(r1_bio);
1841                         md_done_sync(mddev, s, 1);
1842                 }
1843         }
1844 }
1845
1846 /*
1847  * This is a kernel thread which:
1848  *
1849  *      1.      Retries failed read operations on working mirrors.
1850  *      2.      Updates the raid superblock when problems encounter.
1851  *      3.      Performs writes following reads for array synchronising.
1852  */
1853
1854 static void fix_read_error(struct r1conf *conf, int read_disk,
1855                            sector_t sect, int sectors)
1856 {
1857         struct mddev *mddev = conf->mddev;
1858         while(sectors) {
1859                 int s = sectors;
1860                 int d = read_disk;
1861                 int success = 0;
1862                 int start;
1863                 struct md_rdev *rdev;
1864
1865                 if (s > (PAGE_SIZE>>9))
1866                         s = PAGE_SIZE >> 9;
1867
1868                 do {
1869                         /* Note: no rcu protection needed here
1870                          * as this is synchronous in the raid1d thread
1871                          * which is the thread that might remove
1872                          * a device.  If raid1d ever becomes multi-threaded....
1873                          */
1874                         sector_t first_bad;
1875                         int bad_sectors;
1876
1877                         rdev = conf->mirrors[d].rdev;
1878                         if (rdev &&
1879                             (test_bit(In_sync, &rdev->flags) ||
1880                              (!test_bit(Faulty, &rdev->flags) &&
1881                               rdev->recovery_offset >= sect + s)) &&
1882                             is_badblock(rdev, sect, s,
1883                                         &first_bad, &bad_sectors) == 0 &&
1884                             sync_page_io(rdev, sect, s<<9,
1885                                          conf->tmppage, READ, false))
1886                                 success = 1;
1887                         else {
1888                                 d++;
1889                                 if (d == conf->raid_disks * 2)
1890                                         d = 0;
1891                         }
1892                 } while (!success && d != read_disk);
1893
1894                 if (!success) {
1895                         /* Cannot read from anywhere - mark it bad */
1896                         struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
1897                         if (!rdev_set_badblocks(rdev, sect, s, 0))
1898                                 md_error(mddev, rdev);
1899                         break;
1900                 }
1901                 /* write it back and re-read */
1902                 start = d;
1903                 while (d != read_disk) {
1904                         if (d==0)
1905                                 d = conf->raid_disks * 2;
1906                         d--;
1907                         rdev = conf->mirrors[d].rdev;
1908                         if (rdev &&
1909                             test_bit(In_sync, &rdev->flags))
1910                                 r1_sync_page_io(rdev, sect, s,
1911                                                 conf->tmppage, WRITE);
1912                 }
1913                 d = start;
1914                 while (d != read_disk) {
1915                         char b[BDEVNAME_SIZE];
1916                         if (d==0)
1917                                 d = conf->raid_disks * 2;
1918                         d--;
1919                         rdev = conf->mirrors[d].rdev;
1920                         if (rdev &&
1921                             test_bit(In_sync, &rdev->flags)) {
1922                                 if (r1_sync_page_io(rdev, sect, s,
1923                                                     conf->tmppage, READ)) {
1924                                         atomic_add(s, &rdev->corrected_errors);
1925                                         printk(KERN_INFO
1926                                                "md/raid1:%s: read error corrected "
1927                                                "(%d sectors at %llu on %s)\n",
1928                                                mdname(mddev), s,
1929                                                (unsigned long long)(sect +
1930                                                    rdev->data_offset),
1931                                                bdevname(rdev->bdev, b));
1932                                 }
1933                         }
1934                 }
1935                 sectors -= s;
1936                 sect += s;
1937         }
1938 }
1939
1940 static void bi_complete(struct bio *bio, int error)
1941 {
1942         complete((struct completion *)bio->bi_private);
1943 }
1944
1945 static int submit_bio_wait(int rw, struct bio *bio)
1946 {
1947         struct completion event;
1948         rw |= REQ_SYNC;
1949
1950         init_completion(&event);
1951         bio->bi_private = &event;
1952         bio->bi_end_io = bi_complete;
1953         submit_bio(rw, bio);
1954         wait_for_completion(&event);
1955
1956         return test_bit(BIO_UPTODATE, &bio->bi_flags);
1957 }
1958
1959 static int narrow_write_error(struct r1bio *r1_bio, int i)
1960 {
1961         struct mddev *mddev = r1_bio->mddev;
1962         struct r1conf *conf = mddev->private;
1963         struct md_rdev *rdev = conf->mirrors[i].rdev;
1964         int vcnt, idx;
1965         struct bio_vec *vec;
1966
1967         /* bio has the data to be written to device 'i' where
1968          * we just recently had a write error.
1969          * We repeatedly clone the bio and trim down to one block,
1970          * then try the write.  Where the write fails we record
1971          * a bad block.
1972          * It is conceivable that the bio doesn't exactly align with
1973          * blocks.  We must handle this somehow.
1974          *
1975          * We currently own a reference on the rdev.
1976          */
1977
1978         int block_sectors;
1979         sector_t sector;
1980         int sectors;
1981         int sect_to_write = r1_bio->sectors;
1982         int ok = 1;
1983
1984         if (rdev->badblocks.shift < 0)
1985                 return 0;
1986
1987         block_sectors = 1 << rdev->badblocks.shift;
1988         sector = r1_bio->sector;
1989         sectors = ((sector + block_sectors)
1990                    & ~(sector_t)(block_sectors - 1))
1991                 - sector;
1992
1993         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1994                 vcnt = r1_bio->behind_page_count;
1995                 vec = r1_bio->behind_bvecs;
1996                 idx = 0;
1997                 while (vec[idx].bv_page == NULL)
1998                         idx++;
1999         } else {
2000                 vcnt = r1_bio->master_bio->bi_vcnt;
2001                 vec = r1_bio->master_bio->bi_io_vec;
2002                 idx = r1_bio->master_bio->bi_idx;
2003         }
2004         while (sect_to_write) {
2005                 struct bio *wbio;
2006                 if (sectors > sect_to_write)
2007                         sectors = sect_to_write;
2008                 /* Write at 'sector' for 'sectors'*/
2009
2010                 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2011                 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2012                 wbio->bi_sector = r1_bio->sector;
2013                 wbio->bi_rw = WRITE;
2014                 wbio->bi_vcnt = vcnt;
2015                 wbio->bi_size = r1_bio->sectors << 9;
2016                 wbio->bi_idx = idx;
2017
2018                 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
2019                 wbio->bi_sector += rdev->data_offset;
2020                 wbio->bi_bdev = rdev->bdev;
2021                 if (submit_bio_wait(WRITE, wbio) == 0)
2022                         /* failure! */
2023                         ok = rdev_set_badblocks(rdev, sector,
2024                                                 sectors, 0)
2025                                 && ok;
2026
2027                 bio_put(wbio);
2028                 sect_to_write -= sectors;
2029                 sector += sectors;
2030                 sectors = block_sectors;
2031         }
2032         return ok;
2033 }
2034
2035 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2036 {
2037         int m;
2038         int s = r1_bio->sectors;
2039         for (m = 0; m < conf->raid_disks * 2 ; m++) {
2040                 struct md_rdev *rdev = conf->mirrors[m].rdev;
2041                 struct bio *bio = r1_bio->bios[m];
2042                 if (bio->bi_end_io == NULL)
2043                         continue;
2044                 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2045                     test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2046                         rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2047                 }
2048                 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2049                     test_bit(R1BIO_WriteError, &r1_bio->state)) {
2050                         if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2051                                 md_error(conf->mddev, rdev);
2052                 }
2053         }
2054         put_buf(r1_bio);
2055         md_done_sync(conf->mddev, s, 1);
2056 }
2057
2058 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2059 {
2060         int m;
2061         for (m = 0; m < conf->raid_disks * 2 ; m++)
2062                 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2063                         struct md_rdev *rdev = conf->mirrors[m].rdev;
2064                         rdev_clear_badblocks(rdev,
2065                                              r1_bio->sector,
2066                                              r1_bio->sectors, 0);
2067                         rdev_dec_pending(rdev, conf->mddev);
2068                 } else if (r1_bio->bios[m] != NULL) {
2069                         /* This drive got a write error.  We need to
2070                          * narrow down and record precise write
2071                          * errors.
2072                          */
2073                         if (!narrow_write_error(r1_bio, m)) {
2074                                 md_error(conf->mddev,
2075                                          conf->mirrors[m].rdev);
2076                                 /* an I/O failed, we can't clear the bitmap */
2077                                 set_bit(R1BIO_Degraded, &r1_bio->state);
2078                         }
2079                         rdev_dec_pending(conf->mirrors[m].rdev,
2080                                          conf->mddev);
2081                 }
2082         if (test_bit(R1BIO_WriteError, &r1_bio->state))
2083                 close_write(r1_bio);
2084         raid_end_bio_io(r1_bio);
2085 }
2086
2087 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2088 {
2089         int disk;
2090         int max_sectors;
2091         struct mddev *mddev = conf->mddev;
2092         struct bio *bio;
2093         char b[BDEVNAME_SIZE];
2094         struct md_rdev *rdev;
2095
2096         clear_bit(R1BIO_ReadError, &r1_bio->state);
2097         /* we got a read error. Maybe the drive is bad.  Maybe just
2098          * the block and we can fix it.
2099          * We freeze all other IO, and try reading the block from
2100          * other devices.  When we find one, we re-write
2101          * and check it that fixes the read error.
2102          * This is all done synchronously while the array is
2103          * frozen
2104          */
2105         if (mddev->ro == 0) {
2106                 freeze_array(conf);
2107                 fix_read_error(conf, r1_bio->read_disk,
2108                                r1_bio->sector, r1_bio->sectors);
2109                 unfreeze_array(conf);
2110         } else
2111                 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2112
2113         bio = r1_bio->bios[r1_bio->read_disk];
2114         bdevname(bio->bi_bdev, b);
2115 read_more:
2116         disk = read_balance(conf, r1_bio, &max_sectors);
2117         if (disk == -1) {
2118                 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2119                        " read error for block %llu\n",
2120                        mdname(mddev), b, (unsigned long long)r1_bio->sector);
2121                 raid_end_bio_io(r1_bio);
2122         } else {
2123                 const unsigned long do_sync
2124                         = r1_bio->master_bio->bi_rw & REQ_SYNC;
2125                 if (bio) {
2126                         r1_bio->bios[r1_bio->read_disk] =
2127                                 mddev->ro ? IO_BLOCKED : NULL;
2128                         bio_put(bio);
2129                 }
2130                 r1_bio->read_disk = disk;
2131                 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2132                 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2133                 r1_bio->bios[r1_bio->read_disk] = bio;
2134                 rdev = conf->mirrors[disk].rdev;
2135                 printk_ratelimited(KERN_ERR
2136                                    "md/raid1:%s: redirecting sector %llu"
2137                                    " to other mirror: %s\n",
2138                                    mdname(mddev),
2139                                    (unsigned long long)r1_bio->sector,
2140                                    bdevname(rdev->bdev, b));
2141                 bio->bi_sector = r1_bio->sector + rdev->data_offset;
2142                 bio->bi_bdev = rdev->bdev;
2143                 bio->bi_end_io = raid1_end_read_request;
2144                 bio->bi_rw = READ | do_sync;
2145                 bio->bi_private = r1_bio;
2146                 if (max_sectors < r1_bio->sectors) {
2147                         /* Drat - have to split this up more */
2148                         struct bio *mbio = r1_bio->master_bio;
2149                         int sectors_handled = (r1_bio->sector + max_sectors
2150                                                - mbio->bi_sector);
2151                         r1_bio->sectors = max_sectors;
2152                         spin_lock_irq(&conf->device_lock);
2153                         if (mbio->bi_phys_segments == 0)
2154                                 mbio->bi_phys_segments = 2;
2155                         else
2156                                 mbio->bi_phys_segments++;
2157                         spin_unlock_irq(&conf->device_lock);
2158                         generic_make_request(bio);
2159                         bio = NULL;
2160
2161                         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2162
2163                         r1_bio->master_bio = mbio;
2164                         r1_bio->sectors = (mbio->bi_size >> 9)
2165                                           - sectors_handled;
2166                         r1_bio->state = 0;
2167                         set_bit(R1BIO_ReadError, &r1_bio->state);
2168                         r1_bio->mddev = mddev;
2169                         r1_bio->sector = mbio->bi_sector + sectors_handled;
2170
2171                         goto read_more;
2172                 } else
2173                         generic_make_request(bio);
2174         }
2175 }
2176
2177 static void raid1d(struct mddev *mddev)
2178 {
2179         struct r1bio *r1_bio;
2180         unsigned long flags;
2181         struct r1conf *conf = mddev->private;
2182         struct list_head *head = &conf->retry_list;
2183         struct blk_plug plug;
2184
2185         md_check_recovery(mddev);
2186
2187         blk_start_plug(&plug);
2188         for (;;) {
2189
2190                 if (atomic_read(&mddev->plug_cnt) == 0)
2191                         flush_pending_writes(conf);
2192
2193                 spin_lock_irqsave(&conf->device_lock, flags);
2194                 if (list_empty(head)) {
2195                         spin_unlock_irqrestore(&conf->device_lock, flags);
2196                         break;
2197                 }
2198                 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2199                 list_del(head->prev);
2200                 conf->nr_queued--;
2201                 spin_unlock_irqrestore(&conf->device_lock, flags);
2202
2203                 mddev = r1_bio->mddev;
2204                 conf = mddev->private;
2205                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2206                         if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2207                             test_bit(R1BIO_WriteError, &r1_bio->state))
2208                                 handle_sync_write_finished(conf, r1_bio);
2209                         else
2210                                 sync_request_write(mddev, r1_bio);
2211                 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2212                            test_bit(R1BIO_WriteError, &r1_bio->state))
2213                         handle_write_finished(conf, r1_bio);
2214                 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2215                         handle_read_error(conf, r1_bio);
2216                 else
2217                         /* just a partial read to be scheduled from separate
2218                          * context
2219                          */
2220                         generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2221
2222                 cond_resched();
2223                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2224                         md_check_recovery(mddev);
2225         }
2226         blk_finish_plug(&plug);
2227 }
2228
2229
2230 static int init_resync(struct r1conf *conf)
2231 {
2232         int buffs;
2233
2234         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2235         BUG_ON(conf->r1buf_pool);
2236         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2237                                           conf->poolinfo);
2238         if (!conf->r1buf_pool)
2239                 return -ENOMEM;
2240         conf->next_resync = 0;
2241         return 0;
2242 }
2243
2244 /*
2245  * perform a "sync" on one "block"
2246  *
2247  * We need to make sure that no normal I/O request - particularly write
2248  * requests - conflict with active sync requests.
2249  *
2250  * This is achieved by tracking pending requests and a 'barrier' concept
2251  * that can be installed to exclude normal IO requests.
2252  */
2253
2254 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2255 {
2256         struct r1conf *conf = mddev->private;
2257         struct r1bio *r1_bio;
2258         struct bio *bio;
2259         sector_t max_sector, nr_sectors;
2260         int disk = -1;
2261         int i;
2262         int wonly = -1;
2263         int write_targets = 0, read_targets = 0;
2264         sector_t sync_blocks;
2265         int still_degraded = 0;
2266         int good_sectors = RESYNC_SECTORS;
2267         int min_bad = 0; /* number of sectors that are bad in all devices */
2268
2269         if (!conf->r1buf_pool)
2270                 if (init_resync(conf))
2271                         return 0;
2272
2273         max_sector = mddev->dev_sectors;
2274         if (sector_nr >= max_sector) {
2275                 /* If we aborted, we need to abort the
2276                  * sync on the 'current' bitmap chunk (there will
2277                  * only be one in raid1 resync.
2278                  * We can find the current addess in mddev->curr_resync
2279                  */
2280                 if (mddev->curr_resync < max_sector) /* aborted */
2281                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2282                                                 &sync_blocks, 1);
2283                 else /* completed sync */
2284                         conf->fullsync = 0;
2285
2286                 bitmap_close_sync(mddev->bitmap);
2287                 close_sync(conf);
2288                 return 0;
2289         }
2290
2291         if (mddev->bitmap == NULL &&
2292             mddev->recovery_cp == MaxSector &&
2293             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2294             conf->fullsync == 0) {
2295                 *skipped = 1;
2296                 return max_sector - sector_nr;
2297         }
2298         /* before building a request, check if we can skip these blocks..
2299          * This call the bitmap_start_sync doesn't actually record anything
2300          */
2301         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2302             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2303                 /* We can skip this block, and probably several more */
2304                 *skipped = 1;
2305                 return sync_blocks;
2306         }
2307         /*
2308          * If there is non-resync activity waiting for a turn,
2309          * and resync is going fast enough,
2310          * then let it though before starting on this new sync request.
2311          */
2312         if (!go_faster && conf->nr_waiting)
2313                 msleep_interruptible(1000);
2314
2315         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2316         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2317         raise_barrier(conf);
2318
2319         conf->next_resync = sector_nr;
2320
2321         rcu_read_lock();
2322         /*
2323          * If we get a correctably read error during resync or recovery,
2324          * we might want to read from a different device.  So we
2325          * flag all drives that could conceivably be read from for READ,
2326          * and any others (which will be non-In_sync devices) for WRITE.
2327          * If a read fails, we try reading from something else for which READ
2328          * is OK.
2329          */
2330
2331         r1_bio->mddev = mddev;
2332         r1_bio->sector = sector_nr;
2333         r1_bio->state = 0;
2334         set_bit(R1BIO_IsSync, &r1_bio->state);
2335
2336         for (i = 0; i < conf->raid_disks * 2; i++) {
2337                 struct md_rdev *rdev;
2338                 bio = r1_bio->bios[i];
2339
2340                 /* take from bio_init */
2341                 bio->bi_next = NULL;
2342                 bio->bi_flags &= ~(BIO_POOL_MASK-1);
2343                 bio->bi_flags |= 1 << BIO_UPTODATE;
2344                 bio->bi_rw = READ;
2345                 bio->bi_vcnt = 0;
2346                 bio->bi_idx = 0;
2347                 bio->bi_phys_segments = 0;
2348                 bio->bi_size = 0;
2349                 bio->bi_end_io = NULL;
2350                 bio->bi_private = NULL;
2351
2352                 rdev = rcu_dereference(conf->mirrors[i].rdev);
2353                 if (rdev == NULL ||
2354                     test_bit(Faulty, &rdev->flags)) {
2355                         if (i < conf->raid_disks)
2356                                 still_degraded = 1;
2357                 } else if (!test_bit(In_sync, &rdev->flags)) {
2358                         bio->bi_rw = WRITE;
2359                         bio->bi_end_io = end_sync_write;
2360                         write_targets ++;
2361                 } else {
2362                         /* may need to read from here */
2363                         sector_t first_bad = MaxSector;
2364                         int bad_sectors;
2365
2366                         if (is_badblock(rdev, sector_nr, good_sectors,
2367                                         &first_bad, &bad_sectors)) {
2368                                 if (first_bad > sector_nr)
2369                                         good_sectors = first_bad - sector_nr;
2370                                 else {
2371                                         bad_sectors -= (sector_nr - first_bad);
2372                                         if (min_bad == 0 ||
2373                                             min_bad > bad_sectors)
2374                                                 min_bad = bad_sectors;
2375                                 }
2376                         }
2377                         if (sector_nr < first_bad) {
2378                                 if (test_bit(WriteMostly, &rdev->flags)) {
2379                                         if (wonly < 0)
2380                                                 wonly = i;
2381                                 } else {
2382                                         if (disk < 0)
2383                                                 disk = i;
2384                                 }
2385                                 bio->bi_rw = READ;
2386                                 bio->bi_end_io = end_sync_read;
2387                                 read_targets++;
2388                         }
2389                 }
2390                 if (bio->bi_end_io) {
2391                         atomic_inc(&rdev->nr_pending);
2392                         bio->bi_sector = sector_nr + rdev->data_offset;
2393                         bio->bi_bdev = rdev->bdev;
2394                         bio->bi_private = r1_bio;
2395                 }
2396         }
2397         rcu_read_unlock();
2398         if (disk < 0)
2399                 disk = wonly;
2400         r1_bio->read_disk = disk;
2401
2402         if (read_targets == 0 && min_bad > 0) {
2403                 /* These sectors are bad on all InSync devices, so we
2404                  * need to mark them bad on all write targets
2405                  */
2406                 int ok = 1;
2407                 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2408                         if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2409                                 struct md_rdev *rdev = conf->mirrors[i].rdev;
2410                                 ok = rdev_set_badblocks(rdev, sector_nr,
2411                                                         min_bad, 0
2412                                         ) && ok;
2413                         }
2414                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2415                 *skipped = 1;
2416                 put_buf(r1_bio);
2417
2418                 if (!ok) {
2419                         /* Cannot record the badblocks, so need to
2420                          * abort the resync.
2421                          * If there are multiple read targets, could just
2422                          * fail the really bad ones ???
2423                          */
2424                         conf->recovery_disabled = mddev->recovery_disabled;
2425                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2426                         return 0;
2427                 } else
2428                         return min_bad;
2429
2430         }
2431         if (min_bad > 0 && min_bad < good_sectors) {
2432                 /* only resync enough to reach the next bad->good
2433                  * transition */
2434                 good_sectors = min_bad;
2435         }
2436
2437         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2438                 /* extra read targets are also write targets */
2439                 write_targets += read_targets-1;
2440
2441         if (write_targets == 0 || read_targets == 0) {
2442                 /* There is nowhere to write, so all non-sync
2443                  * drives must be failed - so we are finished
2444                  */
2445                 sector_t rv = max_sector - sector_nr;
2446                 *skipped = 1;
2447                 put_buf(r1_bio);
2448                 return rv;
2449         }
2450
2451         if (max_sector > mddev->resync_max)
2452                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2453         if (max_sector > sector_nr + good_sectors)
2454                 max_sector = sector_nr + good_sectors;
2455         nr_sectors = 0;
2456         sync_blocks = 0;
2457         do {
2458                 struct page *page;
2459                 int len = PAGE_SIZE;
2460                 if (sector_nr + (len>>9) > max_sector)
2461                         len = (max_sector - sector_nr) << 9;
2462                 if (len == 0)
2463                         break;
2464                 if (sync_blocks == 0) {
2465                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2466                                                &sync_blocks, still_degraded) &&
2467                             !conf->fullsync &&
2468                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2469                                 break;
2470                         BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2471                         if ((len >> 9) > sync_blocks)
2472                                 len = sync_blocks<<9;
2473                 }
2474
2475                 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2476                         bio = r1_bio->bios[i];
2477                         if (bio->bi_end_io) {
2478                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2479                                 if (bio_add_page(bio, page, len, 0) == 0) {
2480                                         /* stop here */
2481                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2482                                         while (i > 0) {
2483                                                 i--;
2484                                                 bio = r1_bio->bios[i];
2485                                                 if (bio->bi_end_io==NULL)
2486                                                         continue;
2487                                                 /* remove last page from this bio */
2488                                                 bio->bi_vcnt--;
2489                                                 bio->bi_size -= len;
2490                                                 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2491                                         }
2492                                         goto bio_full;
2493                                 }
2494                         }
2495                 }
2496                 nr_sectors += len>>9;
2497                 sector_nr += len>>9;
2498                 sync_blocks -= (len>>9);
2499         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2500  bio_full:
2501         r1_bio->sectors = nr_sectors;
2502
2503         /* For a user-requested sync, we read all readable devices and do a
2504          * compare
2505          */
2506         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2507                 atomic_set(&r1_bio->remaining, read_targets);
2508                 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2509                         bio = r1_bio->bios[i];
2510                         if (bio->bi_end_io == end_sync_read) {
2511                                 read_targets--;
2512                                 md_sync_acct(bio->bi_bdev, nr_sectors);
2513                                 generic_make_request(bio);
2514                         }
2515                 }
2516         } else {
2517                 atomic_set(&r1_bio->remaining, 1);
2518                 bio = r1_bio->bios[r1_bio->read_disk];
2519                 md_sync_acct(bio->bi_bdev, nr_sectors);
2520                 generic_make_request(bio);
2521
2522         }
2523         return nr_sectors;
2524 }
2525
2526 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2527 {
2528         if (sectors)
2529                 return sectors;
2530
2531         return mddev->dev_sectors;
2532 }
2533
2534 static struct r1conf *setup_conf(struct mddev *mddev)
2535 {
2536         struct r1conf *conf;
2537         int i;
2538         struct raid1_info *disk;
2539         struct md_rdev *rdev;
2540         int err = -ENOMEM;
2541
2542         conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2543         if (!conf)
2544                 goto abort;
2545
2546         conf->mirrors = kzalloc(sizeof(struct raid1_info)
2547                                 * mddev->raid_disks * 2,
2548                                  GFP_KERNEL);
2549         if (!conf->mirrors)
2550                 goto abort;
2551
2552         conf->tmppage = alloc_page(GFP_KERNEL);
2553         if (!conf->tmppage)
2554                 goto abort;
2555
2556         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2557         if (!conf->poolinfo)
2558                 goto abort;
2559         conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2560         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2561                                           r1bio_pool_free,
2562                                           conf->poolinfo);
2563         if (!conf->r1bio_pool)
2564                 goto abort;
2565
2566         conf->poolinfo->mddev = mddev;
2567
2568         err = -EINVAL;
2569         spin_lock_init(&conf->device_lock);
2570         rdev_for_each(rdev, mddev) {
2571                 struct request_queue *q;
2572                 int disk_idx = rdev->raid_disk;
2573                 if (disk_idx >= mddev->raid_disks
2574                     || disk_idx < 0)
2575                         continue;
2576                 if (test_bit(Replacement, &rdev->flags))
2577                         disk = conf->mirrors + conf->raid_disks + disk_idx;
2578                 else
2579                         disk = conf->mirrors + disk_idx;
2580
2581                 if (disk->rdev)
2582                         goto abort;
2583                 disk->rdev = rdev;
2584                 q = bdev_get_queue(rdev->bdev);
2585                 if (q->merge_bvec_fn)
2586                         mddev->merge_check_needed = 1;
2587
2588                 disk->head_position = 0;
2589         }
2590         conf->raid_disks = mddev->raid_disks;
2591         conf->mddev = mddev;
2592         INIT_LIST_HEAD(&conf->retry_list);
2593
2594         spin_lock_init(&conf->resync_lock);
2595         init_waitqueue_head(&conf->wait_barrier);
2596
2597         bio_list_init(&conf->pending_bio_list);
2598         conf->pending_count = 0;
2599         conf->recovery_disabled = mddev->recovery_disabled - 1;
2600
2601         err = -EIO;
2602         conf->last_used = -1;
2603         for (i = 0; i < conf->raid_disks * 2; i++) {
2604
2605                 disk = conf->mirrors + i;
2606
2607                 if (i < conf->raid_disks &&
2608                     disk[conf->raid_disks].rdev) {
2609                         /* This slot has a replacement. */
2610                         if (!disk->rdev) {
2611                                 /* No original, just make the replacement
2612                                  * a recovering spare
2613                                  */
2614                                 disk->rdev =
2615                                         disk[conf->raid_disks].rdev;
2616                                 disk[conf->raid_disks].rdev = NULL;
2617                         } else if (!test_bit(In_sync, &disk->rdev->flags))
2618                                 /* Original is not in_sync - bad */
2619                                 goto abort;
2620                 }
2621
2622                 if (!disk->rdev ||
2623                     !test_bit(In_sync, &disk->rdev->flags)) {
2624                         disk->head_position = 0;
2625                         if (disk->rdev &&
2626                             (disk->rdev->saved_raid_disk < 0))
2627                                 conf->fullsync = 1;
2628                 } else if (conf->last_used < 0)
2629                         /*
2630                          * The first working device is used as a
2631                          * starting point to read balancing.
2632                          */
2633                         conf->last_used = i;
2634         }
2635
2636         if (conf->last_used < 0) {
2637                 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
2638                        mdname(mddev));
2639                 goto abort;
2640         }
2641         err = -ENOMEM;
2642         conf->thread = md_register_thread(raid1d, mddev, "raid1");
2643         if (!conf->thread) {
2644                 printk(KERN_ERR
2645                        "md/raid1:%s: couldn't allocate thread\n",
2646                        mdname(mddev));
2647                 goto abort;
2648         }
2649
2650         return conf;
2651
2652  abort:
2653         if (conf) {
2654                 if (conf->r1bio_pool)
2655                         mempool_destroy(conf->r1bio_pool);
2656                 kfree(conf->mirrors);
2657                 safe_put_page(conf->tmppage);
2658                 kfree(conf->poolinfo);
2659                 kfree(conf);
2660         }
2661         return ERR_PTR(err);
2662 }
2663
2664 static int stop(struct mddev *mddev);
2665 static int run(struct mddev *mddev)
2666 {
2667         struct r1conf *conf;
2668         int i;
2669         struct md_rdev *rdev;
2670         int ret;
2671
2672         if (mddev->level != 1) {
2673                 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2674                        mdname(mddev), mddev->level);
2675                 return -EIO;
2676         }
2677         if (mddev->reshape_position != MaxSector) {
2678                 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2679                        mdname(mddev));
2680                 return -EIO;
2681         }
2682         /*
2683          * copy the already verified devices into our private RAID1
2684          * bookkeeping area. [whatever we allocate in run(),
2685          * should be freed in stop()]
2686          */
2687         if (mddev->private == NULL)
2688                 conf = setup_conf(mddev);
2689         else
2690                 conf = mddev->private;
2691
2692         if (IS_ERR(conf))
2693                 return PTR_ERR(conf);
2694
2695         rdev_for_each(rdev, mddev) {
2696                 if (!mddev->gendisk)
2697                         continue;
2698                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2699                                   rdev->data_offset << 9);
2700         }
2701
2702         mddev->degraded = 0;
2703         for (i=0; i < conf->raid_disks; i++)
2704                 if (conf->mirrors[i].rdev == NULL ||
2705                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2706                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2707                         mddev->degraded++;
2708
2709         if (conf->raid_disks - mddev->degraded == 1)
2710                 mddev->recovery_cp = MaxSector;
2711
2712         if (mddev->recovery_cp != MaxSector)
2713                 printk(KERN_NOTICE "md/raid1:%s: not clean"
2714                        " -- starting background reconstruction\n",
2715                        mdname(mddev));
2716         printk(KERN_INFO 
2717                 "md/raid1:%s: active with %d out of %d mirrors\n",
2718                 mdname(mddev), mddev->raid_disks - mddev->degraded, 
2719                 mddev->raid_disks);
2720
2721         /*
2722          * Ok, everything is just fine now
2723          */
2724         mddev->thread = conf->thread;
2725         conf->thread = NULL;
2726         mddev->private = conf;
2727
2728         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2729
2730         if (mddev->queue) {
2731                 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2732                 mddev->queue->backing_dev_info.congested_data = mddev;
2733                 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2734         }
2735
2736         ret =  md_integrity_register(mddev);
2737         if (ret)
2738                 stop(mddev);
2739         return ret;
2740 }
2741
2742 static int stop(struct mddev *mddev)
2743 {
2744         struct r1conf *conf = mddev->private;
2745         struct bitmap *bitmap = mddev->bitmap;
2746
2747         /* wait for behind writes to complete */
2748         if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2749                 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2750                        mdname(mddev));
2751                 /* need to kick something here to make sure I/O goes? */
2752                 wait_event(bitmap->behind_wait,
2753                            atomic_read(&bitmap->behind_writes) == 0);
2754         }
2755
2756         raise_barrier(conf);
2757         lower_barrier(conf);
2758
2759         md_unregister_thread(&mddev->thread);
2760         if (conf->r1bio_pool)
2761                 mempool_destroy(conf->r1bio_pool);
2762         kfree(conf->mirrors);
2763         kfree(conf->poolinfo);
2764         kfree(conf);
2765         mddev->private = NULL;
2766         return 0;
2767 }
2768
2769 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2770 {
2771         /* no resync is happening, and there is enough space
2772          * on all devices, so we can resize.
2773          * We need to make sure resync covers any new space.
2774          * If the array is shrinking we should possibly wait until
2775          * any io in the removed space completes, but it hardly seems
2776          * worth it.
2777          */
2778         sector_t newsize = raid1_size(mddev, sectors, 0);
2779         if (mddev->external_size &&
2780             mddev->array_sectors > newsize)
2781                 return -EINVAL;
2782         if (mddev->bitmap) {
2783                 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2784                 if (ret)
2785                         return ret;
2786         }
2787         md_set_array_sectors(mddev, newsize);
2788         set_capacity(mddev->gendisk, mddev->array_sectors);
2789         revalidate_disk(mddev->gendisk);
2790         if (sectors > mddev->dev_sectors &&
2791             mddev->recovery_cp > mddev->dev_sectors) {
2792                 mddev->recovery_cp = mddev->dev_sectors;
2793                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2794         }
2795         mddev->dev_sectors = sectors;
2796         mddev->resync_max_sectors = sectors;
2797         return 0;
2798 }
2799
2800 static int raid1_reshape(struct mddev *mddev)
2801 {
2802         /* We need to:
2803          * 1/ resize the r1bio_pool
2804          * 2/ resize conf->mirrors
2805          *
2806          * We allocate a new r1bio_pool if we can.
2807          * Then raise a device barrier and wait until all IO stops.
2808          * Then resize conf->mirrors and swap in the new r1bio pool.
2809          *
2810          * At the same time, we "pack" the devices so that all the missing
2811          * devices have the higher raid_disk numbers.
2812          */
2813         mempool_t *newpool, *oldpool;
2814         struct pool_info *newpoolinfo;
2815         struct raid1_info *newmirrors;
2816         struct r1conf *conf = mddev->private;
2817         int cnt, raid_disks;
2818         unsigned long flags;
2819         int d, d2, err;
2820
2821         /* Cannot change chunk_size, layout, or level */
2822         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2823             mddev->layout != mddev->new_layout ||
2824             mddev->level != mddev->new_level) {
2825                 mddev->new_chunk_sectors = mddev->chunk_sectors;
2826                 mddev->new_layout = mddev->layout;
2827                 mddev->new_level = mddev->level;
2828                 return -EINVAL;
2829         }
2830
2831         err = md_allow_write(mddev);
2832         if (err)
2833                 return err;
2834
2835         raid_disks = mddev->raid_disks + mddev->delta_disks;
2836
2837         if (raid_disks < conf->raid_disks) {
2838                 cnt=0;
2839                 for (d= 0; d < conf->raid_disks; d++)
2840                         if (conf->mirrors[d].rdev)
2841                                 cnt++;
2842                 if (cnt > raid_disks)
2843                         return -EBUSY;
2844         }
2845
2846         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2847         if (!newpoolinfo)
2848                 return -ENOMEM;
2849         newpoolinfo->mddev = mddev;
2850         newpoolinfo->raid_disks = raid_disks * 2;
2851
2852         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2853                                  r1bio_pool_free, newpoolinfo);
2854         if (!newpool) {
2855                 kfree(newpoolinfo);
2856                 return -ENOMEM;
2857         }
2858         newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
2859                              GFP_KERNEL);
2860         if (!newmirrors) {
2861                 kfree(newpoolinfo);
2862                 mempool_destroy(newpool);
2863                 return -ENOMEM;
2864         }
2865
2866         raise_barrier(conf);
2867
2868         /* ok, everything is stopped */
2869         oldpool = conf->r1bio_pool;
2870         conf->r1bio_pool = newpool;
2871
2872         for (d = d2 = 0; d < conf->raid_disks; d++) {
2873                 struct md_rdev *rdev = conf->mirrors[d].rdev;
2874                 if (rdev && rdev->raid_disk != d2) {
2875                         sysfs_unlink_rdev(mddev, rdev);
2876                         rdev->raid_disk = d2;
2877                         sysfs_unlink_rdev(mddev, rdev);
2878                         if (sysfs_link_rdev(mddev, rdev))
2879                                 printk(KERN_WARNING
2880                                        "md/raid1:%s: cannot register rd%d\n",
2881                                        mdname(mddev), rdev->raid_disk);
2882                 }
2883                 if (rdev)
2884                         newmirrors[d2++].rdev = rdev;
2885         }
2886         kfree(conf->mirrors);
2887         conf->mirrors = newmirrors;
2888         kfree(conf->poolinfo);
2889         conf->poolinfo = newpoolinfo;
2890
2891         spin_lock_irqsave(&conf->device_lock, flags);
2892         mddev->degraded += (raid_disks - conf->raid_disks);
2893         spin_unlock_irqrestore(&conf->device_lock, flags);
2894         conf->raid_disks = mddev->raid_disks = raid_disks;
2895         mddev->delta_disks = 0;
2896
2897         conf->last_used = 0; /* just make sure it is in-range */
2898         lower_barrier(conf);
2899
2900         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2901         md_wakeup_thread(mddev->thread);
2902
2903         mempool_destroy(oldpool);
2904         return 0;
2905 }
2906
2907 static void raid1_quiesce(struct mddev *mddev, int state)
2908 {
2909         struct r1conf *conf = mddev->private;
2910
2911         switch(state) {
2912         case 2: /* wake for suspend */
2913                 wake_up(&conf->wait_barrier);
2914                 break;
2915         case 1:
2916                 raise_barrier(conf);
2917                 break;
2918         case 0:
2919                 lower_barrier(conf);
2920                 break;
2921         }
2922 }
2923
2924 static void *raid1_takeover(struct mddev *mddev)
2925 {
2926         /* raid1 can take over:
2927          *  raid5 with 2 devices, any layout or chunk size
2928          */
2929         if (mddev->level == 5 && mddev->raid_disks == 2) {
2930                 struct r1conf *conf;
2931                 mddev->new_level = 1;
2932                 mddev->new_layout = 0;
2933                 mddev->new_chunk_sectors = 0;
2934                 conf = setup_conf(mddev);
2935                 if (!IS_ERR(conf))
2936                         conf->barrier = 1;
2937                 return conf;
2938         }
2939         return ERR_PTR(-EINVAL);
2940 }
2941
2942 static struct md_personality raid1_personality =
2943 {
2944         .name           = "raid1",
2945         .level          = 1,
2946         .owner          = THIS_MODULE,
2947         .make_request   = make_request,
2948         .run            = run,
2949         .stop           = stop,
2950         .status         = status,
2951         .error_handler  = error,
2952         .hot_add_disk   = raid1_add_disk,
2953         .hot_remove_disk= raid1_remove_disk,
2954         .spare_active   = raid1_spare_active,
2955         .sync_request   = sync_request,
2956         .resize         = raid1_resize,
2957         .size           = raid1_size,
2958         .check_reshape  = raid1_reshape,
2959         .quiesce        = raid1_quiesce,
2960         .takeover       = raid1_takeover,
2961 };
2962
2963 static int __init raid_init(void)
2964 {
2965         return register_md_personality(&raid1_personality);
2966 }
2967
2968 static void raid_exit(void)
2969 {
2970         unregister_md_personality(&raid1_personality);
2971 }
2972
2973 module_init(raid_init);
2974 module_exit(raid_exit);
2975 MODULE_LICENSE("GPL");
2976 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2977 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2978 MODULE_ALIAS("md-raid1");
2979 MODULE_ALIAS("md-level-1");
2980
2981 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);